De bestuivingsoecologie van

Phyteuma nigrum &
Phyteuma spicatum

1989

C. van den Brand
De bestuivingsoecologie van

Phyteuma nigrum & Phyteuma spicatum

1989

C. van den Brand
Doctoraalverslagen/scripties van de Vakgroep Plantenoecologie zijn interne rapporten, dus geen officiële publicaties. De inhoud varieert van een eenvoudige bespreking van onderzoeksresultaten tot een concluderende discussie van gegevens in wijder verband. De conclusies, veelal slechts gesteund door kortlopend onderzoek, zijn meestal van voorlopige aard en komen voor rekening van de auteur(s).

Overname en gebruik van gegevens slechts toegestaan na overleg met auteur(s) en/of Vakgroepbestuur.
INHOUD

1. INLEIDING .. 4
2. VRAAGSTELLING ... 4
3. MATERIAAL EN METHODEN 5
3.1. DE STANDPLAATSEN EN HUN OMvang 5
3.1.1. Phyteuma nigrum .. 5
3.1.2. Phyteuma spicatum 5
3.1.3. Phyteuma nigrum en Phyteuma spicatum 5
3.2. DE WAARNEMINGSPLOTS EN - RAAIEN EN HUN DICHTHEDEN 5
3.2.1. Phyteuma nigrum .. 5
3.2.2. Phyteuma nigrum en Phyteuma spicatum 6
3.3. DE BLOEIAR .. 6
3.3.1. Phyteuma nigrum .. 6
3.3.2. Phyteuma spicatum 7
3.4. BLOEMONTWIKKELING EN DUUR VAN DE BLOEI VAN EEN BLOEM .. 7
3.4.1. Phyteuma nigrum .. 7
3.4.2. Phyteuma spicatum 7
3.5. DE RECEPTIVITEIT VAN HET STIGMA BIJ PHYTEUMA NIGRUM .. 7
3.6. DE VORM VAN HET STIGMA 7
3.6.1. Phyteuma nigrum & Phyteuma spicatum 7
3.7. HET AANTAL OVULA PER BLOEM 8
3.7.1. Phyteuma nigrum & Phyteuma spicatum 8
3.8. DE BLOEMKLEUR EN KLEUR VAN DE POLLEN 8
3.8.1. Phyteuma nigrum & Phyteuma spicatum 8
3.9. NECTAR .. 8
3.9.1. Het volume en de suikerconcentratie 8
3.9.2. De produktie .. 8
3.9.3. De standing crop 8
3.10. HET INSECTENBEZOEK 9
3.10.1. Het bezoek in de plots en raaien 9
3.10.2. De frequentie van het bezoek in de plots en raaien 9
3.10.3. De bezoek- en handelingsduur van bezoekende insekten in de plots en raaien 9
3.10.4. De verplaatsing van de hommels tussen de plots en raaien .. 10
3.10.5. Het insektenbezoek aan Phyteuma op de andere groeiplaatsen .. 10
3.10.6. Het bezoek van Phyteuma-bezoekende insekten aan andere plantensoorten 10
3.11. HET TRANSPORT VAN POLLEN 10
3.11.1. Het voorkomen van pollen op het lichaam van bezoekers .. 10
3.11.2. Samenstelling van de pollenkloppjes van bezoekende insekten .. 11
3.11.3. De hoeveelheid pollen op het stigma 11
3.11.4. De consumptie van pollen door zweefvliegen 11
3.12. DE ZAADZETTING ... 12
3.13. VERWERKING VAN DE GEGEVENS 12
RESULTATEN .. 13
DE OMVANG VAN DE POPULATIES VAN PHYTEUMA NIGRUM &
PHYTEUMA SPICATUM .. 13
DE DICHTHEDEN IN DE WAARNEMINGSPLOTS EN -RAAIEN 13
Phyteuma nigrum .. 13
Phyteuma nigrum en Phyteuma spicatum op een gezamenlijke groeiplaats in Hortus de Wolff, Haren 16
DE BLOEIAAR .. 17
Phyteuma nigrum .. 17
Phyteuma spicatum .. 17
BLOEMONTWIKKELING EN BLOEIDUUR VAN DE BLOEM 18
Phyteuma nigrum .. 18
Phyteuma spicatum .. 19
DE RECEPTIVITEIT VAN HET STIGMA .. 21
Phyteuma nigrum .. 21
Phyteuma spicatum .. 21
DE VORM VAN HET STIGMA ... 21
Phyteuma nigrum .. 21
Phyteuma spicatum .. 21
Het aantal ovula per bloem ... 21
Phyteuma nigrum .. 22
Phyteuma spicatum .. 22
De bloemkleur en kleur van de pollen .. 23
Phyteuma nigrum .. 23
Phyteuma spicatum .. 24
De standing erop ... 25
HET INSECTENBEZOEK ... 26
Het bezoek in de plots en raaien .. 26
Het verband tussen de dichtheid van Phyteuma nigrum
en het bezoek van Bombus en Rhingia bij hoge en
lage dichtheden van Phyteuma nigrum .. 31
De gemiddelde duur van het bezoek aan een bloeiende
ar van de verschillende soorten bezoekers 31
De bezoekduur .. 33
Tijd per handeling ... 34
Doel van de handelingen in de plots met Phyteuma
nigrum ... 36
Verplaatsingen van hommels tussen de plots en
raaien van Phyteuma nigrum .. 37
Verplaatsingen op een dag ... 37
Verplaatsingen na meerdere dagen ... 37
Het insektenbezoek op de overige groeiplaatsen 38
Phyteuma nigrum .. 38
Phyteuma spicatum .. 38
Het bezoek van Phyteumabezoekende insekten aan
andere plantensoorten ... 39
Phyteuma nigrum .. 39
Phyteuma spicatum .. 39
De effectiviteit van de bezoekers als bestuiver 39
HET TRANSPORT VAN POLLEN .. 41
Pollen op het lichaam van bezoekers ... 41
Phyteuma nigrum .. 41
Phyteuma spicatum .. 43
4.11.2. Samenstelling van de pollenklompjes van bezoekende insecten ... 45
4.11.2.1. Phyteuma nigrum ... 45
4.11.2.2. De pollenklompjes tijdens de waarnemingen 47
4.11.2.3. Phyteuma spicatum ... 48
4.11.3. Pollen op het stigma .. 52
4.11.3.1. Phyteuma nigrum .. 52
4.11.3.1.1. Soortteigen en soortvreemde pollen 52
4.11.3.2. Phyteuma spicatum .. 53
4.11.4. Pollenconsumptie door Rhingia campestris 55
4.11.4.1. Inleiding .. 55
4.11.4.2. Geslachtsverdeling van Rhingia's op Phyteuma 55
4.11.4.3. Inhoud van het darmkanaal bij de verschillende geslachten .. 55
4.12. DE ZAADZETTING ... 56
4.12.1. Phyteuma nigrum ... 56
4.12.1.2. De gemiddelde natuurlijke zaadzetting en de verschillen tussen de groeiplaatsen .. 60
4.12.1.3. Het verschil tussen natuurlijke bestuiving en bestuiving met hulp ... 60
4.12.1.4. Phyteuma nigrum Hohndal ... 61
4.12.2. Phyteuma spicatum ... 61
4.12.3. Het gemiddelde aantal zaden per vrucht en per aar 62
4.12.3.1. Phyteuma nigrum en Phyteuma spicatum 62
5. CONCLUSIES ... 64
5.1. DE BLOEMEN EN DE BLOEIAREN VAN DE RAPUNZELS 64
5.1.1. Phyteuma nigrum .. 64
5.1.2. Phyteuma spicatum ... 65
5.2. HET BEZOEK ... 66
5.2.1. Phyteuma nigrum .. 66
5.2.2. Phyteuma spicatum en de intermediere Phyteuma's 67
5.2.3. De effectiviteit van de bezoekers bij de bestuiving van Phyteuma nigrum ... 68
5.2.3.1. Pollen op het lichaam van de bezoekers van een grote locatie Phyteuma nigrum ... 67
5.2.3.2. De overdracht van pollen .. 69
5.2.4. De effectiviteit van de bezoekers bij de bestuiving van Phyteuma spicatum ... 70
5.2.4.1. De pollen op het lichaam van de bezoekers van Phyteuma spicatum ... 70
5.2.4.2. De overdracht van pollen .. 71
5.5. DE ZAADZETTING ... 72
5.5.1. De zaadzetting op, de verschillende locaties bij Phyteuma nigrum ... 72
5.5.2. Het verband tussen het bezoek aan Phyteuma nigrum in de plots en de zaadzetting ... 73
5.5.3. De zaadzetting bij Phyteuma spicatum 74
5.6. DE ROL VAN ANDERE PLANTENSOORTEN VOOR DE BEZOEKERS VAN PHYTEUM ... 74
5.6.1. De bezoekers van Phyteuma nigrum ... 74
5.6.2. Het bezoek van Bombussoorten aan Rhinanthus tussen en bij Phyteuma nigrum ... 75
5.6.3. Bezoekers van Phyteuma spicatum ... 75
6. DISCUSSIE .. 77
7. SAMENVATTING .. 84
8. SUGGESTIES VOOR VERDER ONDERZOEK 85
9. LITERATUUR .. 86
10. BIJLAGEN ... 90-116
1. INLEIDING

Daarnaast is aandacht besteed aan de rol die andere plantensoorten spelen voor de Rapunzel bezoekende anthofiele insecten. Dit om inzicht te krijgen in de wisselwerking tussen bezoekers, Rapunzel en overige flora op de groeiplaatsen. De overige flora kan door competitie en facilitatie invloed hebben op de bestuiving (Rathcke, 1983 en verwijzingen daarin).

De competitie-element werd aangeroerd door Weeda (1989), die veronderstelde dat dit bij de bestuiving van de Zwarte- en Witte rapunzel mogelijk een rol speelde en had bijgedragen tot verschuivingen in het voorkomen van Phyteuma nigrum en Phyteuma spicatum. Om de bestuiving van de beide Rapunzels te kunnen bestuderen, werd besloten tevens aandacht te besteden aan de bestuiving van de Witte rapunzel op een groeiplaats met de Zwarte rapunzel en op een groeiplaats zonder de Zwarte rapunzel.

2. VRAAGSTELLING

De voor het onderzoek geformuleerde vraagstelling is meervoudig en luidt als volgt:

a. Wat is de rol van de karakteristieken van de standplaats (dichtheid bloeiaren, grootte en ligging van de standplaats) bij de bestuiving en zaadzetting van Phyteuma nigrum.

b. Wat is de invloed van tegelijkertijd bloeiende andere plantensoorten op de bestuiving en zaadzetting van Phyteuma nigrum.

c. Wat zijn bij de bestuiving van Phyteuma nigrum en Phyteuma spicatum de overeenkomsten, de verschillen en mogelijke interacties.
3. MATERIAAL EN METHODEN

3.1. DE STANDPLAATSEN EN HUN OMVANG

3.1.1. Phyteuma nigrum

De waarnemingen aan P.nigrum zijn verricht op locaties in het stroomdallandschap van de Drentsche A (zie bijlage 1a) en het dal van de Boekeloerbeek bij Delden in Twente (bijlage 1b).

Voor een populatie groeiend in een bos werd enig materiaal uit het Hohndal in Belgisch Limburg verkregen (zie bijlage 1c).

Zie voor de omvang van de populaties bijlage 2a.

3.1.2. Phyteuma spicatum

De bestudeerde P.spicatum groeide op de oevers van de Chaamse beek in Noord-Brabant (zie bijlage 1d) en in Hortus de Wolff in Haren (Groningen). Zie voor de omvang van de populaties bijlage 2b.

3.1.3. Phyteuma nigrum en Phyteuma spicatum

In de Hortus in Haren groeiden aan de rand van de groeiplaats van Phyteuma spicatum enige exemplaren Phyteuma nigrum. Op deze plaats groeiden ook Rapunzels met een intermediaire bloemkleur.

3.2. DE WAARNEMINGSPLOTS EN -RAAIEN EN HUN DICHTHEDEN

3.2.1. Phyteuma nigrum

In de lokatie ‘Populierenlaan’ in het gebied van de Drentsche A werden waarnemingsplots en -raaien uitgezet. Na een korte inventarisatie van bekende groeiplaatsen was bepaald dat het hier de grootste aaneengesloten groeiplaats voor het seizoen ‘89 betrof.

Dichtbij de plots werden drie groepjes Phyteuma omhuld door een vitragekooi om insectenbezoek uit te sluiten. Na het einde van de bloei in de meeste plots bij de Populierenlaan, werd in de lokatie ‘Vijfbomen’ in een op dat moment in bloei gekomen groep Phyteuma’s een nieuw plot uitgezet.

De plaats van de plots en raaien werd bepaald door de verschillende dichtheden van de Rapunzel. Ook werd een plot (plot D) gekozen op een plek waar tegelijk met de Zwarte rapunzel de Grote Ratelaar, Rhinanthus angustifolius bloeide.

Plot A, D, E en Vijfbomen waren 2m2 groot, plot B en C 1m2.

Plot A, B en C lagen naast een greppel. Plot D lag aan de zuidkant van wilgenbosjes langs een greppel. Plot E, Vijfbomen en de kooien lagen op wat hogere delen tussen de greppels.

Raai A, B en C waren 0.7m breed en 10m lang. Raai A en B lagen langs dezelfde greppel als van Plot A, B en C. Raai C lag langs dezelfde wilgenbosjes als van Plot D. (zie ook bijlage 1a)
De dichtheden in plot A, D en E werden op iedere waarnemingsdag bepaald door tellen van: alle bloeiende aren, het aantal bloeiende bloemen op de aren en het gedeelte manlijke bloemen daarvan.

In plot B werden alle bloeiende aren geteld en werd in een steekproef van 25 aren het aantal manlijke en vrouwelijke bloemen geteld. In plot C werden alle bloeiende aren geteld. De dichtheden van manlijke en vrouwelijke bloemen in plot B werden berekend met gebruikmaking van de steekproef, de dichtheden in plot C, welk plot vrijwel identiek was aan plot B, werden met behulp van dezelfde steekproef berekend. In de raaien werd het aantal bloeiende aren geteld. Bij berekening van de dichtheden van de bloeiende bloemen kon voor raai A gebruik gemaakt worden van metingen in plot A; plot A was gedeeltelijk in raai A gelegen. Voor de dichtheden in raai B kon gebruik gemaakt worden van metingen van het in raai B gelegen plot B. In alle raaien en plots werd het aantal niet-bloeiende (met bloemknoppen) en uitgebloeide aren geteld.

In plot D werd het aantal bloeiende Rhinanthus aren en bloemen geteld.

De dichtheden werden als volgt bepaald:

Dichtheid bloeiende aren/m² (Da) = aantal bloeiende aren / oppervlak in m².

Dichtheid bloemen/m² (Db) = gemiddeld aantal bloemen per as x aantal assen / oppervlak in m²

Dichtheid manlijke bloemen (Dm) = gem. aantal mannelijke bloemen per as x aantal assen / oppervlak in m².

3.2.2 Phyteuma spicatum en Phyteuma nigrum

Bij waarnemingen op een gezamenlijke groeiplaats van de Rapunzels in de Hortus werden twee plots uitgezet van 3x1m. De dichtheid van de bloeiende aren werd op dezelfde wijze berekend als bij P.nigrum. De dichtheden van de bloemen en de manlijke bloemen werden bepaald door een steekproef te nemen van enige aren in de plots die vanaf een pad bereikbaar waren. Met behulp van de uitkomsten van de steekproef werden de dichtheden van bloeiende bloemen en manlijke bloemen in de plots berekenend op dezelfde wijze als bij P.nigrum.

3.3 DE BLOEIAAR

3.3.1. Phyteuma nigrum

Tijdens waarnemingen in het veld werden aantekeningen gemaakt van de plaatsing van de bloemen op de as en de ruimte tussen de bloemen onderling.

In het Hohndal werden in het veld van 28 aren het totale aantal bloemen per aar geteld (knop, bloem en uitgebloeid). Voor de locatie Populierenlaan en de Vijfbomen werd in het laboratorium aan de hand van 52 verzamelde uitgebloeide bloeiaren de lengte van de aar en het totale aantal bloemen vastgesteld.
3.3.2. Phyteuma spicatum

Op beide groeiplaatsen werden in een deel van de populaties van 25 aren het totaal aantal bloemen geteld. Ook werd gekeken naar de plaats van de bloemen op de as. In Valkenberg werden tevens 9 uitgebloeide aren verzameld, waarvan later de bloemen werden geteld.

3.4. BLOEMONTWIKKELING EN DUUR VAN DE BLOEI VAN EEN BLOEM

3.4.1. Phyteuma nigrum

Door dat de bloei van de bloemen op de aar onderaan begint en zich spiraalvormig naar boven toe verplaatst, kan op een aar met bloemen in alle stadia de ontwikkeling van een bloem in de tijd gereconstrueerd worden. Voor de reconstructie werd gebruik gemaakt van tien bloeiaren uit het Hohndal en tien uit de groeiplaats bij de Populierenlaan.
De duur van de bloei van een van de verschillende stadia van de bloei werd gemeten door op meerdere bloeiaren in een tuin in Assen bloemen te merken met een niet-schadelijke verf. Vervolgens werden op regelmatige tijden aantekeningen gemaakt van de ontwikkeling van de gemerkte bloemen. De procedure werd herhaald toen het weer verslechterde (lagere temperaturen en regen).

3.4.2. Phyteuma spicatum

In het veld werd gekeken of de ontwikkeling van de bloem zoals die was gevonden bij P. nigrum, overeenkwam met die van P. spicatum. De duur van de bloei werd niet gemeten.

3.5. DE RECEPTIVITEIT VAN HET STIGMA BIJ PHYTEUMA NIGRUM

De receptiviteit van het stigma bij P. nigrum werd bepaald door de stamper in een 10% Waterstofperoxide oplossing te dompelen en meteen onder een binoculair de plaats en mate van gasontwikkeling te bepalen (naar Stelleman, 1982). Hierbij werd vooral gekeken naar de plaats waar de hoogste activiteit viel waar te nemen.

3.6. DE VORM VAN HET STIGMA

3.6.1. Phyteuma nigrum & spicatum

In iedere groep Rapunzels werd gekeken naar de vorm van het stigma, waarbij de aandacht uitging naar de mate van kromming van de stigmalobben. De kromming van delobben werd beschreven of vastgelegd m.b.v. tekeningen.
3.7. HET AANTAL OVULA PER BLOEM

3.7.1. Phyteuma nigrum & spicatum

3.8. DE BLOEMKLEUR EN KLEUR VAN DE POLLEN

3.8.1. Phyteuma nigrum & spicatum

Voor de bloemkleur werden als standaardkleuren gebruikt: de zuivere auberginekleur zoals gevonden in de groeiplaats bij de Populierenlaan en het crème-wit van de Witte rapunzel in de groep planten bij de vijver in de Hortus. Alle bloemen werden met deze kleuren vergeleken. Bloemen van ver van elkaar verwijderde groeiplaatsen werden vergeleken door bloeiaren te verzamelen en met elkaar konden worden samengebracht en vergeleken. De kleur van de pollen werd in alle groepen planten vergeleken met de kleur van de bloemen op die plek.

3.9. NECTAR

3.9.1. Het volume en suikerconcentratie

De hoeveelheid nectar per bloem werd bepaald door met een 2 micron capillair de nectar uit de bloem op te zuigen en vervolgens te meten hoeveel mm zich in het pipet bevond. De hoeveelheid in microliters werd bepaald door het aantal mm te vermenigvuldigen met twee en te delen door de lengte van het pipet (32 mm). Bij het verkrijgen van voldoende nectar tijdens de metingen (minimaal 4mm in de capillair) werd de suikerconcentratie bepaald m.b.v. een B & S refractometer.

3.9.2. De produktie

In de kooien bij de Populierenlaan werd de productie van nectar bepaald in zoveel mogelijk dezelfde bloeiaren die bij iedere meting d.m.v. van het opzuigen van de nectar werden geleegd. Bij Phyteuma spicatum in de Hortus werden op een dag enige aren omhuld met een zakje van vitragestof om bezoek buiten te sluiten. Voor het omhullen was bij metingen geen nectar gevonden. Na een bepaald aantal uren kon aldus de nectarproductie gemeten worden.
3.9.3. De 'standing-crop'

In de plots en raaien werd op waarnemingsdagen enige malen per dag in een steekproef van bloeiaren de aanwezige nectar en de suikerconcentratie ervan gemeten (bij voldoende nectar in de pipet).

Met behulp van de dichtheden (zie 3.2.) op de bewuste dagen kon de standing crop van een totale groep planten in een plot of raai berekend worden.

3.10. HET INSECTENBEZOEK

3.10.1. Het bezoek in de plots en raaien

Op waarnemingsdagen werden in de plots in een random volgorde waarnemingen van 15 minuten gedaan, waardoor werd genoteerd: de soort insect, hoeveel bloeiaren werden bezocht en welke handelingen werden verricht. Wanneer gezien werd dat de bezoeker pollenkloppjes in de corbiculae meedroeg, werd hiervan grootte en kleur genoteerd.

In de raaien werd zoveel mogelijk om het uur tijdens een ca. 2 minuten durende waarneming soort, aantal en het gedrag van bezoekende insecten genoteerd. De waarnemingen in de raaien geven door het grote oppervlak wat wordt bestreken en de regelmaat van de waarnemingen aanvullende informatie over het bezoek op de locatie.

3.10.2 De frequentie van het bezoek in de plots en raaien

De frequentie (F) van het bezoek per plot (Fp) van een soort insect (s) per vierkante meter per uur (Fp.s) werd als volgt berekend: Fp.s= (x/w * 4) / o
waarbij x= aantal bezoeken van de soort tijdens waarnemingen,
 w=aantal waarnemingen, o= oppervlak plot in m2.
De frequentie van bezoek per bloeiaar per soort (Fa.s) werd bepaald door: Fa.s= Da / Fp.s (zie voor Da: 3.2.1).

De frequentie van het bezoek in de raaien werd op overeenkomstige wijze berekend.

3.10.3. De bezoek- en handelingsduur van bezoekende insecten in de plots en raaien

Enige malen werden verschillende soorten insecten gevolgd bij hun bezoek aan Phyteuma. Tijdens het bezoek werd het aantal bezoeken aan een aar, het aantal en soort handelingen op een aar en de totale tijdsduur van het bezoek in seconden genoteerd. De bezoekduur per aar werd berekend door de tijdsduur te delen door het aantal bezoeken aan een aar. De vliegtijd tussen de aren werd in sommige gevallen meegerekend bij het bezoek aan dearen. Deze vliegtijd maakt een fractie uit van de bezoektijd door de relatief snelle verplaatsing van de bezoekers en door bij grotere verplaatsingen tussen niet-naburigearen de waarneming af te breken.

De handelingsduur werd berekend door per bezoekende soort het totaal aantal handelingen te delen door de duur van alle bezoeken tijdens de handelingen. De duur van het nectar verzamelen werd berekend door gebruik te maken van waarnemingen waarbij alleen nectar werd verzameld.
De duur van de handeling pollenverzamelen werd berekend door bij waarnemingen met zowel pollen als nectar verzamelen de eerder berekende duur van het nectar verzamelen af te trekken van de totale duur van alle handelingen.

3.10.4. De verplaatsingen van hommels tussen de plots en raaien.

Teneinde hommels in de ruimte en tijd te kunnen volgen bij hun verplaatsingen bij het bezoek aan Phyteuma, werden op tweetal data een dertigtal hommels gevangen en voorzien van merktekens op het thorax, in de vorm van verfvlekken in verschillende patronen en kleuren. Ook werden hommels gemerkt met genummerde Opalith-Formplättchen, in de imkerij gebruikt voor het merken van koninginnen. De genummerde Opalith-plättchen werden in het begin met de bijgewonende lijm opgeplakt. Om te voorkomen dat de plättjes tijdens het drogen van de lijm konden worden afgepoetst werd later overgegaan op het gebruik van een snel hardende Kontaktlijm. Wanneer bij waarnemingen in de plots of bij zoektochten tussen de plots de gemerkte dieren werden teruggezien, werden plaats en eventuele bijzonderheden genoteerd.

3.10.5. Het insectenbezoek aan Phyteuma op de andere groeiplaatsen

Bij de Witte rapunzel op beide standplaatsen werden vele waarnemingen verricht, die niet direct gericht waren op de frequentie van het bezoek. Uit deze waarnemingen kon wel een beeld gevormd worden over het aantal en de soort bezoekers in een bepaalde tijd.

Bij bezoek aan groeiplaatsen van de Zwarte rapunzel zonder plots of raaien waarin de frequentie van het insectenbezoek werd gemeten, werden toevallige waarnemingen van het bezoek genoteerd. In het Hohndal werd op reguliere tijden door de hele populatie gelopen en het insectenbezoek genoteerd.

3.10.6. Het bezoek van Phyteuma-bezoekende insecten aan andere plantensoorten.

Wanneer bezoekers van Phyteuma op andere bloemen werden gesignaleerd, werd hiervan aantekening gemaakt. In het gebied van de plots en raaien bij de Populierenlaan werden bij het in bloei komen van de daar massaal voorkomende Rhinanthus angustifolius, op waarnemingsdagen enige malen per dag het aantal en soort bezoekers geteld, tijdens een wandeling door de Rhinanthus. Hierbij werd getracht alle bezoekers te ontdekken.

3.11. HET TRANSPORT VAN POLLEN

3.11.1. Het voorkomen van pollen op het lichaam van bezoekers.

Tijdens druk bezoek in de waarnemingplots werden willekeurige bezoekers gevangen met een vitragenet, overgebracht in een glazen buisje en verdoofd met behulp van kooldioxide uit een kurketrekker (naar Kendall & Wiltshire, 1973).

De pollen werden van verschillende delen van het lichaam verzameld door zeer plakkerige glycerine-gelatine (naar Beattie, 1971) op een speld over het te onderzoeken lichaamsdeel te wrijven.
De gelatine werd ter plekke door verwarming tot een preparaat verwerkt. De preparaten werden later onder de microscoop bekeken, waarbij soort en aantal van de pollen werden vastgesteld. Voor determinatie van de pollen werd gebruik gemaakt van referentie-preparaten.

3.11.2. Samenstelling van de pollenklomjes van bezoekende insecten

Bezoekende insecten werden met een net gevangen en overgebracht in een (bijen-)koninginnemerkbuisje. Met een speld werden de pollenklomjes uit de corbiculae gehaald en overgebracht in een papieren wikkel, waarop de kleur van de klomijes bij het verzamelen werd vermeld. De klomijes werden droog bewaard en later verwerkt tot preparaten in glycerine-gelatine, nadat de kleur in droge toestand was vastgesteld en (eventueel) de verhouding in voorkomen van verschillend gekleurde pollen was genoteerd. Bij de verwerking tot preparaten werden de klomijes fijngemaakt en gemengd.

Bij het ontbreken van vervormingen veroorzaakt door afnemen, transport en bewaren van de nog onverwerkte pollenklomijes, kon een enkele maal de volgorde van verzamelen worden vastgelegd door de positie van verschillend gekleurde pollen in het klompje te noteren, waarbij de eerst verzamelde pollen in de top van het min of meer druppelvormig klompje waren opgeborgen.

De soort pollen werd in preparaten m.b.v. een microscoop vastgesteld, waarbij werd getracht bij het pletten van het klompje in een preparaat de volgorde in het klompje zo weinig mogelijk te verstoren. De kleur en de volgorde van de pollen onder de microscoop werd gerelateerd aan de positie van de gekleurde pollen in het onverwerkte klompje.

De verhouding tussen de soorten pollen in de overige preparaten werd bepaald door met een kleine vergroting het preparaat in aaneensluitende banen te bekijken en een schatting te maken van de verhoudingen tussen de pollen zoals die in een gereconstrueerd totaalbeeld naar voren kwam. Ook de verhoudingen in het onverwerkte klompje werden hiervoor gebruikt, door de kleur van de pollen te relateren aan de kleur van de pollen in het preparaat.

3.11.3. De hoeveelheid pollen op het stigma

Op enige plaatsen werden een of meerdere malen in het seizoen van vijf bloeiaren vier goed geopende stigma's verzameld. De stigma's kwamen uit bloemen die voldeden aan dezelfde voorwaarden zoals genoemd bij het merken van bloemen voor zaadzetting, zie 3.12.

De stigma's werden ter plekke in glycerine-gelatine tot een microscopisch preparaat verwerkt. De preparaten werden later onder de microscoop bekeken. Alleen van preparaten waarbij het stigma oppervlak over het gehele oppervlak kon worden bekeken werd het aantal en soort pollen op het stigma geteld.

3.11.4. De consumptie van pollen door zweefvliegen.

Bij de waarnemingen bleek snel dat grote aantallen zweefvliegen van de soort Rhingia campestris Moench, waarschijnlijk pollen consommeerden. Om de consumptie vast te stellen werden een twintigtal vliegen verzameld en gedood door een overdosis kooldioxide. Na droging in een kameromgeving werden de Rhingia's bewaard. >>>
De inhoud van het maagdarmkanaal werd later vastgesteld door de dieren bij kamertemperatuur 16 uur in een 10% KOH oplossing te dompelen (naar van der Goot en Grabant, 1970), waardoor de cuticula week werd en het achterste deel van het maagdarmkanaal kon worden uitgeprepareerd. Het darmkanaal werd met glycerine-gelatine tot een preparaat verwerkt, waarin pollen werden gedetermineerd en geteld. De verhouding tussen verschillende soorten pollen werd bepaald door met een kleine vergroting het preparaat in aaneengesloten banen te bekijken en de verhoudingen te schatten in een gereconstrueerd totaalbeeld.

3.12. DE ZAADZETTING

Diverse malen werden in groepen planten op ca. 20 bloeiarens 4 tot 6 bloemen met verf gemerkt. Alle bloemen waren in een vrouwelijk stadium, hadden zoveel mogelijk dezelfde positie op de aar en waren direct onder de manlijke bloemen gelegen (het aantal gemerkte bloemen op een aar is afhankelijk van de genoemde voorwaarden).

De helft van de bloemen werd vervolgens eenmaal bestoven m.b.v. een stijl vol stuifmeel, afkomstig uit een of meerdere planten op dezelfde groeiplaats en ter plekke geoogst (bestuiving met hulp). Alle bloemen werden vervolgens overgelaten aan bestuiving door bezoekers, resulterend in bestuiving met hulp en natuurlijke bestuiving. Wanneer de natuurlijke bestuiving achterblijft bij de bestuiving met hulp, is de door bezoekers overgebrachte hoeveelheid pollen waarschijnlijk de beperkende factor (Bierzychudek, 1981). De vruchten werden 15 tot 22 dagen na het merken geoogst, waarna de bijna rijpe en nog ongeopende zaaddozen onder een binoculair geopend werden. Het aantal zaden en het aantal niet ontwikkelde ovula werd geteld. Ontwikkelde ovula die in ontwikkeling achter waren gebleven t.o.v. de zaden maar toch duidelijk verschillen van niet-ontwikkelde ovula werden apart genoteerd. Omdat niet in alle gevallen was uit te maken of de in ontwikkeling achtergebleven ovula waren te wijten aan 'abortion' of een onvoldoende ontwikkeling door te vroegtijdig oogsten, werden zaden zowel als ontwikkelde ovula gebruikt voor het bepalen van de zaadzetting.

De zaadzetting (zz) per bloem, uitgedrukt in procenten, werd als volgt bepaald: zz = (aantal zaden + ontwikkelde ovula / aantal zaden + ontwikkelde ovula + niet ontwikkelde ovula) x100.

Gebruik makend van de zaadzetting per bloem op de diverse locaties en data en het aantal ovula per bloem (zie 3.7.) is het aantal zaden per vrucht berekend volgens de formule: aantal zaden = zz x aantal ovula. Het aantal zaden per aar is te berekenen door het aantal zaden per bloem te vermenigvuldigen met het aantal bloemen per aar (zie 3.3.).

3.13. VERWERKING VAN DE GEGEVENS

De gegevens werden verwerkt m.b.v. Lotus1-2-3 v.2 of Reflex. Bij de statistische analyse van gegevens werd gebruik gemaakt van SPSS/PC+.
Voor de vervaardiging van grafieken werd SlideWrite Plus v.3 gebruikt.
4. RESULTATEN

4.1. DE OMVANG VAN DE POPULATIES VAN PHYTUMA NIGRUM & PHYTUMA SPICATUM

- Zie bijlage 2.

4.2. DE DICHTHEDEN IN DE WAARNEMINGSPLOTS EN -RAAIEN.

4.2.1. Phyteuma nigrum

- De dichtheden voor alle plots en raiien op de waarnemingsdagen zijn weergegeven in bijlage 3.

De dichtheden van de bloeiende aren in de plots (Da) zijn weergegeven in fig.1.

De dichtheden van de manlike bloemen in de plots (Dm) zijn weergegeven in fig.2.

Phyteuma heeft in Plot B en -C een duidelijk hogere dichtheid van aren en bloemen dan in Plot A, -D en -E. Het hoogtepunt van de bloei valt bij de waarnemingen op 22 mei, dit valt af te leiden uit het aantal mannelijke bloemen, wat na 22 mei afneemt, hoewel het aantal bloeiende aren hetzelfde blijft of iets toeneemt.

Op 1 juni (zie ook fig.4) wordt veroorzaakt door het tegelijkertijdig in bloei komen van een aantal aren op die datum (zie ook hieronder).

Phyteuma heeft in Plot B en -C een duidelijk hogere dichtheid van aren en bloemen dan in Plot A, -D en -E.

Het hoogtepunt van de bloei valt bij de waarnemingen op 22 mei, dit valt af te leiden uit het aantal mannelijke bloemen, wat na 22 mei afneemt, hoewel het aantal bloeiende aren hetzelfde blijft of iets toeneemt.

De afwijkende waarde van het aantal mannelijke bloemen in Plot E op 1 juni (zie ook fig.4) wordt veroorzaakt door het tegelijkertijdig in bloei komen van een aantalaren op die datum (zie ook hieronder).

Phyteuma heeft in Plot B en -C een duidelijk hogere dichtheid van aren en bloemen dan in Plot A, -D en -E.

Het hoogtepunt van de bloei valt bij de waarnemingen op 22 mei, dit valt af te leiden uit het aantal mannelijke bloemen, wat na 22 mei afneemt, hoewel het aantal bloeiende aren hetzelfde blijft of iets toeneemt.

De afwijkende waarde van het aantal mannelijke bloemen in Plot E op 1 juni (zie ook fig.4) wordt veroorzaakt door het tegelijkertijdig in bloei komen van een aantalaren op die datum (zie ook hieronder).

Het hoogtepunt van de bloei zijn de dichtheden (Da) van de plots in verhouding tot plot B: Plot C-95%, Plot E-28.75%, Plot A-20%, Plot D-14.37%.

Op 1 juni wordt de dichtheid (Da) van Plot E even groot als die van -B en -C, doordat de bloei in plot E langer doorgaat. Het einde van de bloei in plot E heeft hetzelfde verloop als in de Plot F en -Vijfbomen. Plot F is gelegen naast Plot E en bestond uit een groep planten die later in bloei kwamen, tegelijk met exemplaren in Plot E.

Het enige plot waarin Rhinanthus voorkwam, was plot D. Zie voor de dichtheden van de bloeiaren en het verloop van de bloei van Rhinanthus in vergelijking met Phyteuma fig.5.

De dichtheden van Rhinanthus in raii C waren gelijk of hoger dan in plot D. Waarschijnlijk door de ligging van Plot D (in de luwte aan de zuidzijde van een bosje) viel de hoofdbloei van Rhinanthus op ongeveer 22 mei. In andere gebieden bij de plots kwam de bloei van Rhinanthus later op gang. In Raai A werd pas op 4 juni een hoeveelheid bloeiende Rhinanthus gezien. Ook tussen de plots en in de directe nabijheid van de Vijfbomen kwam de hoofdbloei van Rhinanthus begin juni op gang. De dichtheden van Rhinanthus op deze plaatsen waren aanzienlijk en hetzelfde of groter dan die in plot D eind mei.
Fig. 1: bloeiende aren per m²
plot A,B,C,D,E,F en Vijfbomen (Vb)

Fig. 2: mannelijke bloemen per m²
plot A,B,C,D,E,F en Vijfbomen
Fig. 3: bloeiende aren/m²
raai A, B

Fig. 4: Plot EF(9.6) bloemen(f)/aar
gemiddelde en sd

fl. vrl. mnl. stadium

Fig. 5: Plot D. bloeiende Phyteuma en Rhinanthus aren per m²

- Rhin. Phyt.
4.2.2. Phyteuma nigrum en Phyteuma spicatum op een gezamenlijke groeiplaats in Hortus de Wolff, Haren

In een deel van de groep planten bij het pad werden waarnemingen gedaan in twee dicht bij elkaar gelegen plots van 1 bij 3 meter. In het ene (1) kwamen op 26 mei 25 witte-, 4 witte- met paarse kroonuiteinden en paars stigma, 5 paarse- en 3 aubergine Phyteuma bloeiaren voor, in 2: 23 witte, 1 met een paars kroonuiteinde en stigma en 5 aubergine bloeiaren.

De dichtheid van de aren per m² was op 26 mei in 1: 12.33, in 2: 9.66.

Op 31 mei werden in het ene proefvlak (1) 37 witte, 4 witte- met paarse stigma en kroonuiteinden, 8 paarse en 4 aubergine geteld, in het andere (2) 33 witte, 14 paarse en 5 aubergine exemplaren.

De dichtheid van de aren per m² was op 31 mei in 1: 17.66, in 2: 17.33. De Witte Rapunzel had meer bloeiende bloemen dan de intermediairen en de intermediairen weer meer bloemen dan de Zwarte rapunzel.

De dichtheden van alle bloeiendearen in de plots zijn weergegeven in fig.6.

De dichtheden van alle manlijke bloemen in de plots zijn weergegeven in fig.7.

Fig.6: bloeiende aren/m² Hortus, Haren raai 1 en 2

Fig.7: manlijke bloemen/m² Hortus, Haren raai 1 en 2
4.3. DE BLOEIAR

4.3.1. Phyteuma nigrum

De bloeiaar is eivormig tot cilindrisch en verlengd zich tijdens de bloei. Gemeten aan uitgebloeiide exemplaren groeiend in de plots bij de Populierenlaan en de Vijfbomen heeft de bloeiaar gemiddeld een lengte van 3.8 cm (sd 1.7 min. 1.5cm max.12cm n=52) en per aar gemiddeld 35.8 bloemen (se 1.73 min.19 max,96 n=52). In het Hohndal waren er gem. 27.39 bloemen per as (se 2.37 min.10 max.65 n=28). (zie fig.8a, 8b).

4.3.2. Phyteuma spicatum

In Valkenberg produceerde een aar gemiddeld 67.6 bloemen (se 3.14 n=44, min. 36 max.103), vrijwel alle aren hadden enige tot meerdere slecht ontwikkelde bloemknoppen in de top van de aar. In de Hortus in Haren werden op 13 juni van 20 bloeiaren het aantal bloemen bepaald. Gemiddeld waren er 80.05 bloemen (se 4.2 min. 39 max.122, n=25). (zie fig.8a, 8b).

De ruimte tussen de bloemen is bij P.spicatum groter dan bij P.nigrum, de bloemen staan verder uit elkaar op de as. De verschillen waren met eenvoudig materiaal niet goed te meten, wel was het verschil met het oog zichtbaar en bleek het verschil, doordat een potlood van onderaf tussen de bloemen van P.spicatum gebracht kon worden, terwijl dit bij P.nigrum niet mogelijk was zonder de bloemen uit elkaar te duwen.

![Diagram](image-url)
4.4. BLOEMONTWIKKELING EN BLOEIDUUR VAN DE BLOEM

4.4.1. Phyteuma nigrum

In het knopstadium zijn de bloemen groen en licht gebogen. De kelk die altijd de groene kleur houd, is evenals de kroon 5-sleppelin. De 5 meeldraden zitten in de bloem tegen de stijl aan gedrukt. Het vruchtbeginsel is onderstandig. Met het ontwikkelen van de knop verdwijnt de lichte kromming. De eerste bloemen openen zich onderaan de aar. Het openen van de bloem c.q. van de kroon begint doordat de tot een gesloten buis gevormde kroonbladeren aan de basis van elkaar loslaten en zich evenals de meeldraden gaan krommen. De helmhokken openen zich in dit stadium naar binnen toe, waardoor de pollen zich verzamelen tussen de haren aan de top van de stijl. De lintvormig verbrede basis van de meeldraden, beschermt samen met de tot koepel gevormde kroonbladeren de nectar, geproduceerd door een op het vruchtbeginsel liggend nectarium.

Slechts zeer zelden werd een drie-lobbige stigma waargenomen. Bij het verlengen van de stijl en het ontvouwen van het stigma, gaat de stijl naar boven toe krommen, waardoor het oppervlak van het stigma in een horizontaal vlak komt te staan (zie fig. 9). Op de aar liggen daardoor de stigma's van de jong-vrouwelijke en vrouwelijke bloemen ter hoogte van jongere stadia. Tijdens de bloei van een bloem werden 5 verschillende stadia onderscheiden. Stadium 1 is het jong-mannelijke, waarbij de kroon aan de basis los gaat en de stijl nog niet uitsteekt. In stadium 2 gaat de stijl uitsteken, waarbij het stuifmeel gepresenteerd wordt en in stadium 3 begint de jong-vrouwelijke fase, doordat het stigma zich ontvouwd. In het vierde stadium laten de kroonbladen los aan de top en uiteindelijk aan de eind van dit oud-vrouwelijke stadium verdort de stijl.

Fig.9: Schematische weergave bloemontwikkeling

Jong manlijk

manlijk

jong vrouwlijk

vrouwelijk
Twee maal werden in een tuin in Assen enige bloemen gemerkt en de tijdsduur van de verschillende stadia gevolgd. De gemiddelde tijdsduur was de volgende:

Periodo 29 mei-9 juni
(totaal 11 dagen, relatief koel weer met regenachtige perioden; 7 waarnemingen om de 12 uur, 4 om de 24 uur).

<table>
<thead>
<tr>
<th>Geschlecht</th>
<th>Tijdsduur</th>
<th>SD</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jong mannelijk</td>
<td>1*24 uur</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>Mannelijk</td>
<td>0.71*24 uur</td>
<td>0.25</td>
<td>7</td>
</tr>
<tr>
<td>Jong vrouwelijk</td>
<td>2.3*24 uur</td>
<td>0.78</td>
<td>10</td>
</tr>
<tr>
<td>Vrouwelijk</td>
<td>4.9*24 uur</td>
<td>1.24</td>
<td>10</td>
</tr>
</tbody>
</table>

Zie ook fig. 10.

In de periode 22 mei-27 mei (totaal 5 dagen, met vrij warm tot zeer warm zonnig weer), waren aang 14 tal bloemen 6 waarnemingen verricht, 5 om de 24 uur, eenmaal 2 keer op een dag (zie fig. 11). Hieruit bleek, dat het jong mannelijk- en het mannelijk stadium bij alle bloemen korter was dan 24 uur, ook het jong vrouwelijk stadium was korter dan 24 uur, de nacht op het verschijnen van het mannelijk stadium ging het jong vrouwelijk stadium over in het vrouwelijke.
Het vrouwelijk stadium duurde in tien gevallen 36 uur en in twee gevallen 48 uur of langer. In twee gevallen was het stadium binnen een dag (12 uur) afgelopen.
Het uit de waarnemingen resulterende beeld is, dat bij warm weer binnen twee dagen de stadia tot en met het jong vrouwelijke worden doorgelopen en het vrouwelijk stadium twee etmalen duurt, waarna de stijl verdort. Bij warm weer duren vooral de jong vrouwelijke- en vrouwelijke stadia korter dan bij koel weer, wanneer het jong vrouwelijk stadium gemiddeld na twee etmalen overgaat in het vrouwelijk-, en 5 etmalen blijft bestaan.
De bloeiduur van een bloem is uiteraard de som van de verschillende stadia en bedraagt bij koel weer gemiddeld 7.83*24 uur. Bij warm weer is dit 3.5*24 uur.

4.4.2. Phyteuma spicatum

De bloemontwikkeling is vrijwel gelijk aan die van Phyteuma nigrum.
Verschillend was de groei van de stijl; deze kromde bij veel bloemen minder naar boven en bleef min of meer haaks op de as van de bloeiar staan.
Fig. 10: bloeideur en duur -stadia
10 bloemen 29 mei - 9 juni
koel weer

Fig. 11: bloeideur en duur -stadia
14 bloemen 22-27 mei 1989
warm weer
4.5. DE RECEPTIVITEIT VAN HET STIGMA

4.5.1. Phyteuma nigrum

In het begin van het ontvouwen van het stigma is het top-einde receptief. Bij voortschrijdende opening van het stigma in het vrouwelijk stadium blijven de lobben licht tot matig krommen, waardoor telkens een deel van het stigma-oppervlak in het horizontale vlak blijft; dit deel blijft telkens het meest receptief. Het oudere deel van het stigma blijft (in mindere mate) receptief maar kromt uit het horizontale vlak. De kromming van het stigma gaat in enkele gevallen zover, dat de uiteinden van het stigma een cirkel beschrijven en de onderkant ervan lijken te raken. Volgens de in dit onderzoek gebruikte methode, waren de uiteinden van een dergelijk stigma niet meer receptief. Dit houdt in dat een omgekruld stigma ook niet of nauwelijks meer voor zelfbestuiving kan zorgen.

4.5.2. Phyteuma spicatum

Geen waarnemingen.

4.6 DE VORM VAN HET STIGMA

4.6.1. Phyteuma nigrum

In alle populaties komen per ontwikkelingsstadium verschillende maten van kromming voor. In het oud vrouwelijke stadium worden weinig vlakke en cirkelvormig gekromde stigmata gevonden.

4.6.2. Phyteuma spicatum

zie 4.6.1.

4.7 HET AANTAL OVULA PER BLOEM

4.7.1. Phyteuma nigrum

Het aantal ovula per bloem is afhankelijk van de hoogte op de bloeiari; bij vijf aren uit de plots van de Populierenlaan en het plot Vijfbomen werd onderaan midden en bovenaan in drie vruchten het aantal oorspronkelijk aanwezige ovula geteld. Onderaan was het gem. aantal ovula per bloem 25 (sd 3.3), in het midden gem. 29.2 (sd 7.3) en bovenaan 14.3 (sd 2.6). Het verschil tussen boven en midden en tussen boven en onder was significant verschillend. (Anova). Zie ook fig. 12.

Om de verspreiding van de ovula-aantallen over de hele aar te onderzoeken, werd bij een aar uit het plot van de Vijfbomen van onderaf aan van telkens drie vruchten het aantal oorspronkelijk aanwezige ovula bepaald. De aar had 24 bloemen en het gemiddeld aantal ovula verdeeld over de aar was; onder=1 > boven=8 1-21.67 2-22.33 3-21.33 4-27.67 5-19 6-21.33 7-21.33 8-17,33 Deze verdeling in deze aar wijst erop, dat voornamelijk de allerbovenste bloemen minder ovula bezitten in vergelijking met de rest van de bloemen op de aar. Bij de hierboven beschreven verdeling is niet gekeken naar de een of twee alleenstaande bloemen die soms in de oksel van de bovenste stengelbladeren worden aangetroffen.

>>>
Eveneens is gekeken naar de slecht ontwikkelde knoppen, die soms aan de top van de aar worden aangetroffen en die niet tot ontwikkeling komen.

4.7.2 Phyteuma spicatum

Op 12 juni werden in Valkenberg negen aren verzameld waarvan onderaan, midden en bovenaan twee vruchten werden onderzocht. Onderaan was het gemiddeld aantal ovula 36.22 (sd 10.1 n(ov.)=18) in het midden gem. 35.61 (sd 6.65 n(ov.)=18) en bovenaan gem. 24.81 (sd 6.96 n(ov.)=16).

Het aantal ovula is significant verschillend per aar (Anova DF 18 F 4.67 SigF 0.000) en het aantal ovula boven aan de aar verschilt met dat van midden en boven, maar is net niet sign. (Anova DF 33 F 2.07 SigF 0.013).

4.7.3. Het aantal ovula op de verschillende groeiplaatsen

Tabel 1: gem. aantal ovula/bloem (onder- en middenop de aar) op de diverse locaties.

<table>
<thead>
<tr>
<th>locaties</th>
<th>gem. (aren)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phyteuma</td>
<td></td>
</tr>
<tr>
<td>spicatum V</td>
<td>35.61 (n=16)</td>
</tr>
<tr>
<td>P.nigrum 1</td>
<td>35.67 (n=35)</td>
</tr>
<tr>
<td>P.nigrum 2</td>
<td>29.20 (n=15)</td>
</tr>
<tr>
<td>P.nigrum 3</td>
<td>30.00 (n=17)</td>
</tr>
<tr>
<td>P.nigrum 4</td>
<td>30.88 (n=22)</td>
</tr>
<tr>
<td>P.nigrum 5</td>
<td>26.07 (n=8)</td>
</tr>
<tr>
<td>P.nigrum 6</td>
<td>21.55 (n=18)</td>
</tr>
<tr>
<td>P.nigrum 7</td>
<td>19.96 (n=5)</td>
</tr>
<tr>
<td>P.nigrum 8</td>
<td>12.67 (n=12)</td>
</tr>
</tbody>
</table>

Zie ook fig.: 13.

Fig.12: ovula per bloem gem. en sd die hoogtes op de aar. P.nigrum

Fig.13: gem. aantal ovula/bloem en sd op verschillende locaties
4.8 DE BLOEMKLEUR EN KLEUR VAN DE POLLEN

4.8.1. Phyteuma nigrum

In alle tijden dit onderzoek in Drenthe bekeken populaties was de bloemkleur donker auberginekleurig. Bij Taarloo werd een exemplaar gezien met zeer lichtblauwe (bijna witte) bloemen, waarvan de top van de kroon en het stigma aubergine waren. Ook groeide er een grijsblauw (zeer licht aubergine) exemplaar. De pollen waren van beide planten licht-aubergine kleurig. De in Twente bekeken populatie was iets lichter aubergine dan die in Drente. In het Hohndal (Belgisch-Limburg) was de bloemkleur blauwig aubergine.

Het stuifmeel is op alle locaties is auberginekleurig (op foto's en dia's rood-aubergine), hoewel soms wittig stuifmeel en tussen gradaties met aubergine worden gevonden. Het wittig stuifmeel kwam veel voor in de groep planten bij de SBB-brug in de Drentse Aa en in de groep Meander, licht auberginekleurig kwam voor in de Vijfbomen en Taarloo.

De pollengrootte varieert tussen de 45 en 59 micron terwijl het overgrootte deel 50 micron is. Er kon geen verschil in grootte van de pollen tussen de op de diverse locaties groeiende planten worden gevonden.

4.8.2. Phyteuma spicatum

In Valkenberg waren alle rapunzels crème-wit. In de Hortus groeiden rapuzels, die qua aantal en bouw van de bloemen en de grootte van de plant zich niet onderscheiden van de witte rapunzel maar bloemkleuren hadden die intermediair waren tussen aubergine en crème-wit. Zie voor deze planten 4.2.2.

Het stuifmeel was in alle gevallen wit, behalve bij de intermediaire bloemkleuren waarbij intermediaire stuifmeelkleuren voor kwamen. De pollengrootte was hetzelfde als bij P.nigrum.

4.9. NECTAR

Zie voor de resultaten van de metingen bijlage 4.

4.9.1. Het volume en de suikerconcentratie

4.9.1.1 Phyteuma nigrum

Bij omhulde bloemen wordt op 22 mei om 18.00 geen nectar gevonden. De onderstaande tabel bevat de gevonden waarden op andere data.

Tabel 2: Nectarproductie in de Populierenlaan locatie

<table>
<thead>
<tr>
<th>Datum</th>
<th>Tijd</th>
<th>Stadium</th>
<th>Volume (gem.)</th>
<th>SD</th>
<th>N (bloemen)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kooi 1</td>
<td>22/5</td>
<td>18.00 m</td>
<td>0</td>
<td>0</td>
<td>14</td>
</tr>
<tr>
<td>Pop.1.</td>
<td>v</td>
<td>0</td>
<td>0</td>
<td>17</td>
<td></td>
</tr>
<tr>
<td>(omh.)</td>
<td>ov</td>
<td>0</td>
<td>0</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>29/5</td>
<td>9.30</td>
<td>m</td>
<td>0.039</td>
<td>0.057</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>v</td>
<td>0.096</td>
<td>0.123</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ov</td>
<td>0.086</td>
<td>0.112</td>
<td>15</td>
<td></td>
</tr>
</tbody>
</table>
Vervolg tabel 2: Nectarproduktie in de Populierenlaan locatie

<table>
<thead>
<tr>
<th>Datum</th>
<th>tijd</th>
<th>stadium</th>
<th>ml (gem.)</th>
<th>sd</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/6</td>
<td>11.00 m</td>
<td>v</td>
<td>0.024</td>
<td>0.139</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ov</td>
<td>0</td>
<td>0</td>
<td>12</td>
</tr>
<tr>
<td>4/6</td>
<td>13.00 m</td>
<td>v</td>
<td>0.48</td>
<td>0.299</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ov</td>
<td>0</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>9/6</td>
<td>9.50 m</td>
<td>v</td>
<td>0.229</td>
<td>0.209</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ov</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
</tbody>
</table>

Het nectargehalte van manlike en vrouwelijke bloemen die niet omhuld waren, verschilde significant (T-test; tV 4.35 DF 180 2-T-Prob.0.000), de vrouwelijke bloemen verschillen niet sign. van de oud vrouwelijke bloemen.

De manlijke bloemen bevatten gemiddeld 0.07±1, de vrouwelijke bloemen 0.02±1 en de oud-vrouwelijke bloemen 0.007±1.

Bij warm, zonnig weer heeft de nectar een suikergehalte van 47% of hoger; op 18/5 in raai A in een manlijke bloem 47%, 31/5 in raai A manlijke bloem >50%, 22/5 en 29/5 in kooi manlijke bloem >50%. Het suikergehalte van een vrouwelijke bloem in kooi op 29/5 was ook >50%.

Bij of na regen wordt de nectar verdun. Op 1/6 zijn er in kooi 1 metingen met 25% en 28% in vrouwelijke bloemen en een meting van 21% in een manlijke bloem. Op 4/6 wordt 0% suiker gemeten en in de Vijfbomen gemeten van de opgezogen vloeistof een suikergehalte van 0%, 3% en 4%, op 5/6 werd op dezelfde plaats twee maal 20% gemeten.

4.9.1.2. Phyteuma spicatum

Bij vrouwelijke en oud vrouwelijke bloemen kon geen nectar worden gevonden. Het nectar gehalte van manlike bloemen in de Hortus te Haren is weergegeven in de onderstaande tabel.

<table>
<thead>
<tr>
<th>Datum</th>
<th>ml gem.</th>
<th>sd</th>
<th>N (bloemen)</th>
</tr>
</thead>
<tbody>
<tr>
<td>31/5</td>
<td>0.073</td>
<td>0.079</td>
<td>9</td>
</tr>
<tr>
<td>6/6</td>
<td>0.08</td>
<td>0.03</td>
<td>5</td>
</tr>
<tr>
<td>13/6</td>
<td>0.063</td>
<td>0.044</td>
<td>4</td>
</tr>
</tbody>
</table>

Op 31 mei werd bij twee witte bloeiaren en een paarse geen nectar gemeten. Nadat bezoek 5 uur was buitengesloten, werd bij de witte aren in 6 manlike bloemen 5 maal nectar gevonden: 0.03, 0, 0.13, 0.07, 0.03 en 0.25 ml (gem. 0.09 1). In de paarse aar werd in drie manlike bloemen eenmaal 0.07 ml en eenmaal 0.09 ml gevonden. In alle drie gevallen werd geen nectar in vrouwelijke bloemen gevonden.
4.9.1.3. De standing crop

De standing crop in de plots is weergegeven in tabel 4.

Tabel 4: De standing crop van nectar in de plots.

<table>
<thead>
<tr>
<th>Datum, tijd</th>
<th>stadium bloem</th>
<th>nectar ml.</th>
</tr>
</thead>
<tbody>
<tr>
<td>18 mei 10.30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plot A, manlijk</td>
<td>1.96</td>
<td></td>
</tr>
<tr>
<td>vrouwlijk</td>
<td>1.87</td>
<td></td>
</tr>
<tr>
<td>totaal</td>
<td>3.83</td>
<td></td>
</tr>
<tr>
<td>plot B, manlijk</td>
<td>3.4</td>
<td></td>
</tr>
<tr>
<td>vrouwlijk</td>
<td>1.84</td>
<td></td>
</tr>
<tr>
<td>totaal</td>
<td>5.24</td>
<td></td>
</tr>
<tr>
<td>plot C, manlijk</td>
<td>2.05</td>
<td></td>
</tr>
<tr>
<td>vrouwlijk</td>
<td>1.54</td>
<td></td>
</tr>
<tr>
<td>totaal</td>
<td>3.59</td>
<td></td>
</tr>
<tr>
<td>plot D, manlijk</td>
<td>2.15</td>
<td></td>
</tr>
<tr>
<td>vrouwlijk</td>
<td>1.4</td>
<td></td>
</tr>
<tr>
<td>totaal</td>
<td>3.55</td>
<td></td>
</tr>
<tr>
<td>plot E, manlijk</td>
<td>2.3</td>
<td></td>
</tr>
<tr>
<td>vrouwlijk</td>
<td>1.07</td>
<td></td>
</tr>
<tr>
<td>totaal</td>
<td>3.37</td>
<td></td>
</tr>
<tr>
<td>Totaal</td>
<td>20.38</td>
<td></td>
</tr>
</tbody>
</table>

12.50	plot A, manlijk : 1.0	
	vrouwlijk : 5.24	
	totaal : 6.24	
	plot B, manlijk : 1.74	
	vrouwlijk : 5.14	
	totaal : 6.88	
	plot C, manlijk : 1.46	
	vrouwlijk : 4.31	
	totaal : 5.77	
	plot D, manlijk : 0.9	
	vrouwlijk : 3.92	
	totaal : 4.82	
	plot E, manlijk : 1.17	
	vrouwlijk : 2.99	
	totaal : 4.17	
Totaal		27.88

17.00 nectar niet meetbaar

22 mei 6.30 nectar niet meetbaar

8.20 plot A, manlijk : 1.6
plot B, manlijk : 2.3
plot C, manlijk : 2.18
plot D, manlijk : 1.08
plot E, manlijk : 1.70
Totaal : 8.86

10.50 nectar niet meetbaar

15.00 plot A, manlijk : 2.24
plot B, manlijk : 3.26
plot C, manlijk : 3.06
plot D, manlijk : 1.51
plot E, manlijk : 1.24
Totaal : 11.31

17.00 nectar niet meetbaar

29 mei 9.50 plot A, manlijk : 0.27
plot B, manlijk : 0.47
plot C, manlijk : 0.56
plot D, manlijk : 0.03
plot E, manlijk : 0.07
Totaal : 1.33

17.00 nectar niet meetbaar

nectar vrouwelijke bloemen niet te berekenen; verzaa
loosbare hoeveelheid.
4.10. HET INSECTENBEZOEK

4.10.1. Het bezoek in de plots en raaien

4.10.1.1. Phyteuma nigrum

Zie voor de weergave van het bezoek bijlage 5a

De belangrijkste bezoekers waren Bombus en Rhingia campestris. Ook een solitair bijtje werd vaak waargenomen.

De Fp.s van plot A is weergegeven in fig.14.
De Fp.s van plot B is weergegeven in fig.15.
De Fp.s van plot C is weergegeven in fig.16.
De Fp.s van plot D is weergegeven in fig.17.
De Fp.s van plot E, F en Vijfbomen is weergegeven in fig.18.
Het bezoek aan plot A, B en C tesamen is weergegeven in fig.19.
Het bezoek aan plot A, B, C, D en E tesamen is weergegeven in fig.20.
De Fp.s in de plots van een solitair bijtje is weergegeven in fig.21.
Het gemiddeld bezoek aan raai A en B tesamen per waarneming is weergegeven in fig.22.

Fig.14: bezoeken per m² plot A

<table>
<thead>
<tr>
<th>B.p.;ratorum</th>
<th>B.jonellus</th>
<th>Rhingia campestris</th>
</tr>
</thead>
<tbody>
<tr>
<td>B.pra.</td>
<td>B.jon.</td>
<td>Rc.</td>
</tr>
</tbody>
</table>

Fig.15: bezoeken per m² plot B

<table>
<thead>
<tr>
<th>B.p;rautorum</th>
<th>B.jonellus</th>
<th>Rhingia campestris</th>
</tr>
</thead>
<tbody>
<tr>
<td>B.pra.</td>
<td>B.jon.</td>
<td>Rc.</td>
</tr>
</tbody>
</table>

Fig. 20: totaal bezoeken Bombus en Rhingia
plot A,B,C,D,E (5m²)

Fig. 21: bezoeken per plot/m²
solitair bijtje per plot

Fig. 22: gem. bezoek/waarneming Paal A&B
Bombus, Apis en Rhingia
Bezoek per jaar

Door combinatie van de dichtheden van de aren per m² (zie 4.2.) en het aantal bezoekers per m² (zie fig.23) is het aantal bezoeken per jaar per uur te berekenen, en van uitgaand dat iedere jaar een even grote kans heeft bezocht te worden. De resultaten zijn de volgende (tabel 5):

Tabel 5: Het bezoek per jaar per uur van hommels en Rhingia in de plots op de verschillende data.

<table>
<thead>
<tr>
<th>Datum</th>
<th>Hommels</th>
<th>Rhingia</th>
</tr>
</thead>
<tbody>
<tr>
<td>A 18.5</td>
<td>1.13</td>
<td>48</td>
</tr>
<tr>
<td>A 22.5</td>
<td>0.53</td>
<td>16.8</td>
</tr>
<tr>
<td>A 25.5</td>
<td>1.23</td>
<td>13.78</td>
</tr>
<tr>
<td>A 29.5</td>
<td>0</td>
<td>5.5</td>
</tr>
<tr>
<td>A 1.6</td>
<td>1.6</td>
<td>1.6</td>
</tr>
<tr>
<td>B 18.5</td>
<td>1.41</td>
<td>29.36</td>
</tr>
<tr>
<td>B 22.5</td>
<td>4.44</td>
<td>6.66</td>
</tr>
<tr>
<td>B 25.5</td>
<td>0</td>
<td>15.12</td>
</tr>
<tr>
<td>B 29.5</td>
<td>0</td>
<td>11.2</td>
</tr>
<tr>
<td>C 18.5</td>
<td>3.42</td>
<td>20.68</td>
</tr>
<tr>
<td>C 22.5</td>
<td>3.16</td>
<td>8.08</td>
</tr>
<tr>
<td>C 25.5</td>
<td>2.27</td>
<td>7.78</td>
</tr>
<tr>
<td>C 29.5</td>
<td>0.63</td>
<td>8.84</td>
</tr>
<tr>
<td>C 1.6</td>
<td>0</td>
<td>4.8</td>
</tr>
</tbody>
</table>

Zie ook fig.24 en 25.
Fig.24: bezoek aar/uur Bombus
plot A,B,C,D,E en F

Fig.25: bezoek aar/uur R.campestris
plot A,B,C,D,E en F

Fig.26: bezoeken per m² plot 1 en 2

- Bombus & Psith - Aep
4.10.1.2. Phyteuma spicatum (en Phyteuma nigrum)

In Hortus de Wolff in Haren, werd op 26 mei in de groep Phyteuma's het bezoek waargenomen en genoteerd welke kleur bloeiaren door de bezoekers successievelijk werden bezocht. Op deze datum was het verschil in microklimaat tussen de proefvlakken bij het pad en bij de vijver aanmerkelijk; de groep bij het pad stond sterk onder invloed van een stevige wind, welke bij de vijver nauwelijks merkbaar was.

Op 31 mei was de wind zwakker dan op 26 mei, de temperatuur iets lager (lichte wind, 17-18 °C), 's morgens werd zeer weinig bezoek waargenomen in de proefvlakken (1 Apis mellifera in 1 uur, 0.16/m²/ uur). 's Middags werd tijdens vier waarnemingen 9 maal B.pratorum waargenomen en 2 maal een Psithyrus soort (cf.P.campestris en P.sylvestris (bezoek 1.8/m²). Allen verzamelden nectar op witte —, paarse — en aubergine Phyteuma's en vlogen van plant naar plant waarbij de kleur geen rol speelde.

Zie voor het bezoek aan de plots fig.26.

4.10.1.3. Het verband tussen de dichtheid van Phyteuma nigrum en het bezoek van Bombus en Rhingia

Om het verband tussen de dichtheid van Phyteuma met het bezoek (per uur) van Bombus (B.jonellus en B.pratorum en B.pascuorum) en Rhingia campesstris te onderzoeken, werden de dichtheden van Populierenlaan-plot A (lage dichtheid) en de dichtheden van Populierenlaan-plot BC (hoge dichtheid) vergeleken met het bezoek in die plots.

Om er achter te komen welke dichtheid van Phyteuma gebruikt kon worden, werd (voor alle plots tesamen) gekomen naar de dichtheid van het aantal bloeiaren per vierkante meter, de dichtheid van het aantal bloemen per vierkante meter en de dichtheid van het aantal mannelijke bloemen per vierkante meter en werden deze dichtheden vergeleken met het bezoek, hierbij werd gebruik gemaakt van alle waarnemingen met uitzondering van die op 9 juni, omdat toen niet in alle plots waargenomen.
Voor alle drie de type dichtheden (aren, bloemen, manlijke bloemen), bestaat er een positieve correlatie met het bezoek en het verband verschilt tussen het type dichtheid en het soort bezoek. Het verband is het minst duidelijk bij de dichtheid van het aantal aren (corr.coef.: -Bombus 0.6763, -Rhingia 0.6184), het verband tussen het totaal aantal bloemen per m² en Bombus is iets groter (corr.coef.: 0.7769), maar bij Rhingia kleiner (corr.coef.: 0.5947). Het verband tussen het totaal aantal manlijke bloemen en het bezoek is het meest duidelijk; bij Rhingia corr.coef.: 0.7814 en met Bombus is het verband significant; corr.coef.: 0.9421, p>0.01. Voor de verschillende soorten Bombus is het verband verder alleen significant met Bombus jonellus; corr.coef.: 0.9629, p>0.01 (B.pratorum 0.8068). Bombus pascuorum werd vanwege het te geringe aantal waarnemingen niet apart bekeken. De dichtheid van het aantal mannelijke bloemen is in alle onderzochte gevallen de beste parameter (zie fig.27a,b). De bezoekers komen dus voornamelijk op de manlijke bloemen af.

Het verband tussen een hoge en een lage dichtheid van manlijke bloemen in de plots en het bezoek van Bombus en Rhingia

Er is een positieve correlatie bij zowel de hoge - (plot BC) als de lage dichtheid (plot A) met het bezoek. Bij een hoge dichtheid is er een sterk verband hoewel niet meer significant (bezoek Bombus corr.coef.0.8856, bezoek Rhingia corr.coef.0.7318); bij een lage dichtheid is het verband bij Rhingia groter dan bij Bombus (corr.coef. respectievelijk 0.6719 en 0.4054).

Fig.27a: mlbloemPlot A, bezoek Bombus
1=18 mei > 7=9 juni

Fig.28A: mlbloemPlot A, bezoek Bombus
1=18 mei > 7=9 juni

Fig.27b: mlbloemPlot A, bezoek Rhingia
1=18 mei > 7=9 juni

Fig.28B: mlbloemPlot BC, bezoek Bombus
1=18 mei > 7=9 juni

De bezoekers komen dus voornamelijk op de manlijke bloemen af.
4.10.2. De gemiddelde duur van het bezoek aan een bloeiende aar van de verschillende soorten bezoekers.

-In het onderstaande zijn tevens gegevens over het gedrag op Phyteuma spicatum opgenomen, dit om vergelijking van het gedrag op de twee soorten mogelijk te maken-

4.10.2.1. De bezoekduur

De bezoekduur is de som van de tijd doorgebracht op de aar en een gedeelte van de vliegtijd, nodig om de aar te bezoeken. De tijd drukt dus de snelheid van handelen uit bij het bezoeken van een aar. De vliegtijd is door waarnemingen in plots met hoge dichtheden een fractie van de tijd doorgebracht op de bloeiaar, bovendien zijn er veel waarnemingen van een enkel bezoek gevolgd, waardoor de vliegtijd geen grote invloed zal hebben op de berekende resultaten. Zie voor de bezoekduur tabel 6 en 7.

Tabel 6. Bezoek aan Phyteuma nigrum (k=koningsin, m=man)

<table>
<thead>
<tr>
<th>bezoekende soort</th>
<th>gem.duur bezoektijd + aanvliegtijd</th>
<th>code</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(1k)Bombus pratorum k</td>
<td>7.33</td>
<td>6.44</td>
<td>1</td>
</tr>
<tr>
<td>(1)Bombus pratorum</td>
<td>15.88</td>
<td>2.17E-07</td>
<td>24</td>
</tr>
<tr>
<td>(2)Apis mellifera</td>
<td>21.43</td>
<td>21.83</td>
<td>24</td>
</tr>
<tr>
<td>(3)Bombus pascuorum</td>
<td>21.93</td>
<td>15.53</td>
<td>4</td>
</tr>
<tr>
<td>(4)Bombus jonellus</td>
<td>21.93</td>
<td>15.53</td>
<td>4</td>
</tr>
<tr>
<td>(3k)Bombus pascuorum k</td>
<td>30.23</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>(5)Psithyrus spec.</td>
<td>41.43</td>
<td>14.14</td>
<td>2</td>
</tr>
<tr>
<td>(6)Rhingia campestris</td>
<td>87.93</td>
<td>86.10</td>
<td>45</td>
</tr>
</tbody>
</table>

Tabel 7. Idem Phyteuma spicatum

<table>
<thead>
<tr>
<th>soort</th>
<th>tijd</th>
<th>sd</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>(5)Psithyrus spec.</td>
<td>17.00</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>(1)Bombus pratorum</td>
<td>23.47</td>
<td>16.55</td>
<td>2</td>
</tr>
<tr>
<td>(1m)Bombus pratorum m</td>
<td>24.50</td>
<td>21.92</td>
<td>2</td>
</tr>
<tr>
<td>(2)Apis mellifera</td>
<td>31.67</td>
<td>-</td>
<td>1</td>
</tr>
</tbody>
</table>

De duur van de bezoeken is vrijwel onafhankelijk van het doel van het bezoek op P.nigrum. Op P.spicatum werd tijdens de metingen vrijwel alleen nectar verzameld (zie ook: 4.10.2.2.).

De tijden van de koninginnen zijn door het geringe aantal waarnemingen niet betrouwbaar.

Zie ook fig.28.
4.10.2.2. Tijd per handeling

Door de bezoekertijd doorgebracht op een bloeiaar te delen door het aantal handelingen, is het mogelijk een gemiddelde tijd per handeling te berekenen. Een omwikkelfigheid in aldus berekende tijden wordt veroorzaakt door het meenemen van de aanvliegtijd bij de handelingstijd (4.10.2.1).

De resultaten van berekening van de tijd per handeling zijn weergegeven in tabel 7 en -8.

Tabel 7: De tijd per handeling van de bezoekers op P.nigrum en P.spicatum; zonder onderscheid in de soort handeling.

<table>
<thead>
<tr>
<th>(code) soort</th>
<th>gem. tijd op P.nigrum</th>
<th>gem. tijd op P.spicatum</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1k) B.prat. koningin</td>
<td>2.75 sd 0 n=1</td>
<td>3.45 sd 0.55 n=2</td>
</tr>
<tr>
<td>(1m) B.prat. man</td>
<td>3.43 sd 0.52 n=4</td>
<td>4.1 sd 1.12 n=7</td>
</tr>
<tr>
<td>(4) B. jonellus</td>
<td>4.1 sd 1.72 n=16</td>
<td>7.92 sd 0 n=1</td>
</tr>
<tr>
<td>(1) B.pratorum</td>
<td>8.44 sd 0.94 n=2</td>
<td>9.93 sd 0 n=1</td>
</tr>
<tr>
<td>(2) Apis mellifera</td>
<td>9.93 sd 2.07 n=2</td>
<td>3.55 sd 0 n=1</td>
</tr>
<tr>
<td>(3) B.pascuorum</td>
<td>4.1 sd 0 n=1</td>
<td>3.45 sd 0.55 n=2</td>
</tr>
<tr>
<td>(5) Psithyrus spec.</td>
<td>8.44 sd 0.94 n=2</td>
<td>9.41 sd 0 n=1</td>
</tr>
<tr>
<td>(3k) B.pasc.koningin</td>
<td>32.54 sd 13.32 n=45</td>
<td>3.43 sd 0.52 n=2</td>
</tr>
</tbody>
</table>

Tabel 8: De tijd per handeling van de bezoekers bij nectar verzamelen en bij pollen verzamelen

<table>
<thead>
<tr>
<th>nectar verzamelen</th>
<th>pollen verzamelen (n+p verz.-nec.verz.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) B.pratorum</td>
<td>3.41 sd 0.41 n=6</td>
</tr>
<tr>
<td>(4) B.jonellus</td>
<td>3.43 sd 0.52 n=2</td>
</tr>
<tr>
<td>(2) Apis mellifera</td>
<td>8.44 sd 0.94 n=2</td>
</tr>
<tr>
<td>(6) Rhingia campestris</td>
<td>16.74 sd 8.82 n=17</td>
</tr>
</tbody>
</table>

Uit deze gegevens kan afgeleid worden, dat de langere bezoekertijd van Apis en B.pratorum op P.spicatum wordt veroorzaakt door meer handelingen per aar op P.spicatum. Psithyrus zou op P.nigrum meer handelingen verrichten. De lange bezoekduur op P.nigrum wordt veroorzaakt door een groter aantal handelingen, waardoor ook minder aannemelijk wordt dat het hier darren betrof (de traagheid bij de bezoekduur is schijnbaar).

B.pratorum en B.jonellus verschillen niet veel in hun handelings-tijd en zijn ruim twee maal zo snel dan Apis. De koninginnen zijn met uitzondering van een enkele B.pascuorum koningin wat trager. Rhingia campestris heeft in vergelijking met de hommels en bijen zeer veel tijd nodig voor de handelingen.

Zie ook fig.29, 30.
4.10.2.3. Doel van de handelingen in de plots met Phyteuma nigrum

Het doel van het bezoek is weergegeven in bijlage 6.

Per soort werd bekeken hoeveel maal pollen werd verzameld en hoeveel maal nectar op een datum.

Het doel van het bezoek is niet op alle data hetzelfde. In het begin en op de top van de bloei wordt door vrijwel alle bezoekers nectar en stuifmeel verzameld. Alleen Bombus jonellus verzamelt tijdens de top van de bloei geen pollen. Ook in de daarop volgende periode tot het einde van de bloei verzameld Bombus jonellus evenals B.pratorum geen pollen meer. Op het einde van de bloei, wanneer B.jonellus is verdwenen, verzameld B.pratorum weer pollen naast nectar. Rhingia werd tijdens de gehele bloeiperiode meer nectarverzamelend gezien dan dat pollen eten werd waargenomen.

De verhouding tussen pollen eten en nectar eten varieerde tijdens het seizoen.
4.10.3. Verplaatsingen van hommels tussen de plots en raaien van Phyteuma nigrum

Teneinde de verplaatsingen van de hommels in ruimte en tijd te kunnen meten werden 23 hommels gemerkt, zodat individuele exemplaren herkend konden worden. Acht exemplaren werden na het merken terug gezien. De vangdatum en -plaats en de tijd, evenals de plaats en datum waarop zij werden terug gezien is tezamen met genoteerde bijzonderheden, w.o. de kleur van de pollenkloppjes in de corbiculae weergegeven in bijlage 7.

4.10.3.1 Verplaatsingen op een dag

Verplaatsingen komen voor tussen A en B, B en C, B en E, verplaatsingen binnen een plot met enige tussentijd in plot C, plot E en raai B. Alle bezoeken vonden plaats op Phyteuma. De pollenkloppjes van B.pratorum no.3 op 22 mei tonen aan dat de hommel na de eerste waarneming het nest heeft bezocht en een nieuwe voorraad is genomen op Rhinanthus, alvorens voor de tweede maal gesignaleerd te worden op Phyteuma. Deze volgorde van bezoek kon ook worden gezien bij no.5 op 25 mei en no.8 op 9 juni en bij B.pascuorum op 1 juni. B.jonellus op 29 mei, B.pratorum no.4 en no.6 toonden geen tekenen van bezoek aan Rhinanthus evenals B.pascuorum op 29 mei.

4.10.3.2. Verplaatsingen na meerdere dagen

B.pascuorum wordt 22 mei gevangen op Rhinanthus in raai C, op 29 mei waargenomen op Phyteuma in plot C, 1 juni op Phyteuma in raai B. B.pratorum (3) vliegt op 22 mei op Rhinanthus en Phyteuma in plot BC, op 25 mei alleen op Phyteuma in raai B en op 1 juni alleen op Rhinanthus bij de plots. Dit zelfde beeld ziet men bij de hommels 4,5 en 7: in het begin van de waarnemingen op 22 en 25 mei wordt gevlogen op Phyteuma wel of niet in combinatie met Rhinanthus (zie ook : verplaatsingen op een dag), in juni wordt vrijwel alleen Rhinanthus bezocht, bij 5 en 7 in combinatie met Rubus. De hommels worden of op dezelfde plaats teruggezien of in een vlakbij gelegen plot of raai. Zie voor de verplaatsingen ook fig.32. N.B.: Regelmatig werd bij de waarnemingen gezien, dat hommels zich verplaatsten tussen Raai 3 en plot D en tussen de plots A,B,C en raai 1 en 2.

Fig.32: Verplaatsingen van hommels

individuele hommels genummerd
4.10.4. Het insektenbezoek op de overige groeiplaatsen

4.10.4.1. Phyteuma nigrum

B. pascuorum koningin werd waargenomen op 16 en 24 mei langs de weg bij de SBB boerderij. Op deze plek werd ook een bewoond Bombus pascuorum nest waargenomen.

Bij bezoeken aan de plots Paralelweg, SBB weg, weiland en brug, en aan Meander op 24 mei werden in korte tijd op alle plaatsen B. pratorum werksters op Phyteuma waargenomen.

De populatie in het Hohndal werd op 24 mei bezocht door 13 stuks B. pratorum (12 met aubergine pollenklompjes), 17 stuks Rhingia (8 pollen eten, 9 nectar eten). Daarnaast werden 8 vliegen en 1 schorpioenvlieg rustend waargenomen tijdens de 16 waarnemingen van ca. 2 min. van 13.18—16.06.

4.10.4.2. Phyteuma spicatum

Hortus, Haren

Op 26 mei werden bij drie waarnemingen van ca. 5 min in de groep bij de vijver drie Koekoekshommels waargenomen, 30 Honingbijen die allen nectar verzamelden, en 20 ex. Bombus pratorum: 1 man welke nectar verzamelde, 12 werksters die nectar en pollen verzamelden en 7 werksters die pollen verzamelden. Twee maal werd een Bombus pratorum pollen verzamelend gezien in twee blauwe exemplaren, waarbij een groot aantal aren werd bezocht, voordat werd overgestapt naar een wit exemplaar.

Op 13 juni aan het eind van de bloei, werden van 11.00 tot 12.30 in een groep Phyteuma spicatum onder een Hazelaar langs het pad, 4 B. pratorum werksters waargenomen en 18 B. pratorum darren. Ook werd een B. hypnorum werkster op de Phyteuma gezien.

Zowel op 26 mei als 13 juni werden enige (3 a 4 tijdens alle waarnemingen) Rhingia's gezien in de Phytema's bij het pad. Een maal werd een rustend soldaatje waargenomen.

Valkenburg

4.10.5. Het bezoek van Phyteuma bezoekende insecten aan andere plantensoorten.

4.10.5.1. Phyteuma nigrum

Het insectenbezoek op Rhinanthus is weergegeven in bijlage 8.

In de buurt van de plots bij de Populierenlaan werd Bombus pratorum begin juni waargenomen op Crepis paludosa. Ook op 9/6 was er een waarneming op Crepis. In het hele gebied van de Drentsche A kwam Bombus pratorum voor op Rubus, die vooral langs de wegranden groeide. Begin juni werd een Bombus jonellus op Verveen-mij-nietje (Myosotis) gezien. Het solitaire bijtje werd op 29 mei net buiten de plots aan de Populierenlaan pollen-verzamelend gezien op Fluitekruid. Bij het begin van de waarnemingen droeg het oranje-rode pollen bij zich en was geel bestoven.

Rhingia campestris werd bij de Populierenlaan enige malen gesignaleerd op Lychnis. Bombus lapidarius werd een maal op 8/6 in de Vijfbomen waargenomen op de Rapunzel. Op 7/6 was B. lapidarius op Ranunculus en Myosotis gesignaleerd.

4.10.5.2. Phyteuma spicatum

In Valkenberg kwam B. pratorum voor op Rubus.

In de Hortus werd niet direct naar het bezoek op andere plantensoorten gekeken. Het bezoek van B. pratorum aan Polygonum multiflorum en aan Phelondendron amurense viel op door dat beide soorten vrij naast de plots groeiden.

4.10.5.3. De effectiviteit van de bezoekers als bestuiver.

Bij het verzamelen van de gegevens voor het bezoek werd een beeld gevormd van de effectiviteit van de bezoekers als bestuiver. De beeldvorming kon geverifieerd worden met een toevallig verkregen video-opname van hommelbezoek in Valkenberg en door het bekijken van Foto’s en dia’s gemaakt door M.Kwak.

Solitair bijtje — Bij het bezoek aan de bloemen van Phyteuma nigrum kon geen duidelijk contact van het lichaam (thorax, abdomen) met het stigma worden vastgesteld; door de geringe grootte bewoog het bijtje gemakkelijk tussen de bloemen. Op foto’s kon gezien worden, dat bij het pollen verzamelen de poten contact maakten met een of twee stigma’s. De effectiviteit als bestuiver lijkt gering.

Bombus pascuorum — Hoewel de koningin relatief langzaam beweegt, is zij waarschijnlijk een goede bestuiver, doordat het lichaam groot is en op veel plaatsen contact maakt met de bloemen.

Apis mellifera — Opvallend was dat op 23 en 24 mei het lichaam diermat met pollen was bedekt, dat vooral het abdomen geheel aubergine was gekleurd, in alle gevallen was Apis aan het nectar verzamelen. Tijdens het bezoek maakt vooral abdomen contact met stil, doordat bij het nectar zoeken de bij zich tussen de bloemen in beweegt en een hoek van 45 tot 90 graden ten opzichte van de bloeiast inneemt. >>>
Het is uit deze waarnemingen niet duidelijk of Apis effectief is als bestuiver; mogelijk is dat de bij te klein is om tijdens het bezoek de op het achterlijf verzamelde pollen te kunnen afzetten op het stigma. Vooral op Phyteuma spicatum schijnt er weinig contact te zijn met het stigma.

Bombus jonellus- Bij het bezoek aan P.nigrum beweegt B.jonellus zich tussen de bloemen en zij houdt zich bij het pollen verzamelen met de voorste vier poten aan de stijl vast, waarbij de neiging tot hangen bestaat, maar door de snelheid van handelen vrijwel nooit tot vrij hangen komt. Bij zowel pollen als nectar verzamelen is er contact van het lichaam met de stijl en stigma. Bombus jonellus lijkt hierdoor een goede bestuiver.

Bombus pratorum- Het fourageergedrag komt overeen met B.jonellus, door het grotere lichaam zal B. pratorum meer contact met de bloemen maken. Op P.spicatum hangt B.pratorum bij het pollen verzamelen met de poten aan de bloem en veeft de pollen met de stijl. Ook pollen op het lichaam worden van het lichaam geborsteld, dit is waargenomen maar de frequentie en de gevolgen hiervoor voor de verdeling van de pollen op het lichaam is niet bekend.

Psithyrus spec.- Bij achtervolgingen i.v.m. gedragswaarneming op 22 mei werd tweemaal in plot D een Psithyrus waargenomen op Phyteuma. Waarschijnlijk ging het hier om P.campestris vrouwtje. Een exemplaar was volledig bedekt met orchideen pollinia (schatting ca.20), het andere exemplaar had over het gehele lijf een aubergine gloed. De pollen worden dan ook niet van het lichaam verzameld zoals bij de ‘echte’ hommels, de koekoekshommel verzameld alleen nectar.De beesten vlogen zelden naar nieuwe bloemen, korte afstanden werden lopend overgestoken. Psithyrus gedraagt zich op beide Rapunzels als ‘een tank’ en bedekt veel pollen of duwt ze uiteen. Psithyrus komt hierdoor met veel bloemen in contact en lijkt een zeer goede bestuiver.

Rhingia campestris- Rhingia komt nauwelijks in aanraking met stijl of stigma, de soort beweegt meer tussen de bloemen op de aar. Alleen bij het pollen eten komen de monddelen en poten in contact met stijl en stigma, bij het pollen eten van het stigma worden pollen verwijderd i.p.v. afgezet. Rhingia is door zijn trage gedrag en het weinig contact met de stigma waarschijnlijk een slechte bestuiver of zelfs contra-productief (zie ook: 4.11.4.). Regelmatig werd gezien, dat Rhingia na het eten met de monddelen, de kop en monddelen met de poten reinigde en daarna de verzamelde deeltjes werden opgegeten.

Overige soorten- Op onregelmatige tijden werden enige malen Syrphus spec. op Phyteuma nigrum gezien ook koolwitje (Pieris) Motvlinder (Cidaria albulata) en Bombus pratorum dar werden waargenomen. Deze soorten zijn door hun gedrag, bouw of geringe mate van voorkomen als bestuivers te verwaarlozen evenals sporadisch voorkomende soldaatjes en vliegen die de aar als rustplaats gebruiken.
4.11. HET TRANSPORT VAN POLLEN

4.11.1. Pollen op het lichaam van bezoekers.

4.11.1.2. Phyteuma nigrum

Het gemiddeld aantal en de soort pollen op lichaamsdelen van bezoekers is weergegeven in bijlage 9a. Zie ook fig.33. De gemiddelden per lichaamsdeel zijn weergegeven in tabel 9.

Tabel 9: De pollenverdeling op het lichaam van bezoekers.
*Phyteuma **Vreemd P= Populierenlaan Vb= Vijfbomen

soort,plaats plek
datum 1 2 3 5 tot. 7 gem./
deel

B. prat. &
Psithyrus (P)* 160 121.6 220 501.6 167.7
25/5 ** 1.5 2.6 3 7.1 1.4 2.4

B. prat. (Vb, *) 15 10 30 55 501.6 18.3
9/6 (P) ** 2.5 10.5 97.5 110.5 66.8 36.8

Apis mel. (P)* 350 500 250 500 1250 416.7
25/5 ** 1 0 1 1 3 0.2 1

Rhingia (P)* 20.5 63 83.5 41.4
25/5 ** 17.5 2.5 20 19 8.4

Opvallend is de grote hoeveelheid Phyteuma stuifmeel op Apis. Apis verzamelde nectar en zal minder actief de pollen van het lichaam hebben geborsteld. De grootste hoeveelheid wordt op het thorax aangetroffen, relatief weinig op de bovenkant van het abdomen.

Bombus en Psithyrus dragen minder Phyteuma pollen met zich mee. Bombus verzamelt de pollen in de corbiculae, de pollen van vorige bezoeken zoals die uit de pollenklompjes kunnen worden afgeleid (zie pollenklompjes no.4, 63, 65) zijn niet altijd meer op het lichaam terug te vinden. Het voorkomen van een pollen op het lichaam hoeft echter niet te betekenen, dat de plantensoort werd bezocht voor pollenverzamelen, de Rubus op B. jonellus no.1 en B. pratorum no.65 wordt niet terug gevonden in de pollenklompjes. Kleine hoeveelheden in de pollenklompjes zijn niet altijd terug te vinden op het lichaam (B. pratorum no.4).

Fig.33: Pollen op het lichaam van bezoekers van Phyteuma nigrum

k. = kop, t.d. = thorax dorsaal, a.d. = abdomen dorsaal, a.v. = abdomen ventraal

Bombus n Psithyrus

25 mel

Avium mellifera

25 mel

Phyteuma

vreemd

td. 351

Phyteuma

vreemd

a.d. 65.5

Rhingia campestris

25 mel

Avium

vreemd

t.d. 38

Phyteuma

vreemd

a.d. 161.5

Bombus en Psithyrus

25 mel

Avium

vreemd

t.d. 124.2

Phyteuma

vreemd

a.d. 223

Bombus pratorum

9 juni

Avium

vreemd

t.d. 17.5

Avium

vreemd

a.d. 20

Avium

vreemd

a.v. 127.5
Het aantal pollen op het lichaam is op 9 juni in de Vijfbomen minder dan op 25 mei bij het Populierenlaantje in de plots, het is ongeveer gelijk aan het aantal op 9 juni in plot E. Het aantal vreemde pollen is relatief zowel als absoluut groter. De vreemde pollen op de onderkant van het abdomen zijn voornamelijk Rhinanthuspollen. Aan de bovenkant van het lichaam zitten ook Rubus-pollen.

Rhingia campestris draagt weinig pollen bij zich in verhouding tot Apis, Bombus en Psithyrus, verhoudingsgewijs is het aantal vreemde pollen groot (zie tabel 9).

4.11.1.2. Phyteuma spicatum

Het gemiddeld aantal en de soort pollen op lichaamsdelen van bezoekers is weergegeven in bijlage 9b. De gemiddelden per lichaamsdeel zijn weergegeven in tabel 10.

Tabel 10: De pollenverdeling op het lichaam van bezoekers.

<table>
<thead>
<tr>
<th>Phyteuma*</th>
<th>*Vreemd H= Hortus, Haren</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phyteuma*</td>
<td>**Vreemd H= Hortus, Haren</td>
</tr>
<tr>
<td>1= kop</td>
<td>2= thorax dorsaal</td>
</tr>
<tr>
<td>soort, plaats</td>
<td>plek</td>
</tr>
<tr>
<td>B. prat. (H)*</td>
<td>57.7</td>
</tr>
<tr>
<td>31/5</td>
<td>**</td>
</tr>
<tr>
<td>Psithyrus (H)*</td>
<td>76</td>
</tr>
<tr>
<td>31/5</td>
<td>**</td>
</tr>
<tr>
<td>Apis mel. (H)*</td>
<td>75</td>
</tr>
</tbody>
</table>

Zie ook figuur 34.

Fig. 34: Pollen op het lichaam van bezoekers van Phyteuma spicatum.

k. = kop, t.d. = thorax dorsaal, a.d. = abdomen dorsaal,
a.l. = abdomen lateraal a.v. = abdomen ventraal

Apis mellifera
31 mei

Phyteuma vreemd

td. 187

k. 75

Bombus pratorum
31 mei

Phyteuma vreemd

td. 22.7

a.d. 40

k. 91.6

Psithyrus spec.
31 mei

Phyteuma vreemd

td. 267

a.d. 457

k. 77

av. 282

av. 25
4.11.2. Samenstelling van de pollenklompjes van bezoekende insekten

4.11.2.1. Phyteuma nigrum

Tenzij anders vermeld, zijn de klompjes van exemplaren gevangen op Phyteuma. De resultaten van de analyse van alle pollenklompjes zijn weergegeven in bijlage 10a.

Zie ook deze bijlage voor klompjes van gemaakte hommels (zie: Verplaatsingen, 4.3.10.1.) en van hommels waarbij pollen op het lichaam werden geteld (zie: 4.11.1.Pollen op het lichaam van bezoekers).

In het onderstaande is de samenstelling van de klompjes per soort hommel weergegeven.

Bombus pascuorum koningin
Een op Rhinanths waargenomen koningin droeg 100% Rhinanthus met zich mee, waarin enige pollen Phyteuma zaten.

Bombus terrestris
De klompjes van een exemplaar gevangen op 13 juni op Rhinanthus bestonden voor ca. 75% uit het stuifmeel van die plant, 25% was Labiatae stuifmeel met enige Iris en Compositae pollen.

Bombus jonellus

Op 9 juni werd Phyteuma niet bezocht, wel de Rhinanthus waarop het exemplaar werd gevangen ook pollen van een Composiet werden aangetroffen.

Zie ook fig. 35.

Fig.35: Pollenklompjes Bombus jonellus

<table>
<thead>
<tr>
<th>Datum</th>
<th>Klompjes Composiet</th>
<th>Rhinanths</th>
<th>Rubus</th>
<th>Phyteuma</th>
</tr>
</thead>
<tbody>
<tr>
<td>22.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Datum: 0 10 20 30 40 50 60 70 80 90 100

Samenstelling (in %)
Bombus pratorum

Op 22 mei werd voornamelijk Phyteuma bezocht, in mindere mate Rhinanthus (0 tot ca. 50% Rhinanthus pollen). Rubuspollen werden in de klompjes van 3 van de 5 exemplaren gevonden. Bij een ex. werd Rubus aanstaande aan het begin van de fourageertocht verzameld. Op 25 mei werd een B.pratorum onderzocht, die 75% Phyteuma pollen en 25% Rhinanthus pollen bij zich had, naast minder dan 1% Rubus. Op 1 juni nam het aandeel van Rhinanthus toe in de pollenklompjes en werd bij 6 exemplaren geen 100% Phyteuma meer gevonden. Twee op Rhinanthus gevangen werksters hadden respectievelijk 50 en 98% Phyteuma bij zich. Op 5 juni was er een waarneming met 25% Rubus naast 75% Phyteuma en op 9 juni was bij drie exemplaren het aandeel van Phyteuma vrijwel afgenomen of verdwenen, het aandeel van Rubus bleef evenals op 5 juni relatief hoog. In plaats van hoeveelheden Phyteuma wordt nu Rhinanthus aangetroffen. Bij twee hommels wordt 60% en vrijwel 100% Rhinanthus gevonden respectievelijk naast 20% Phyteuma met 20% Rubus en naast een kleine hoeveelheid Phyteuma. Een derde hommel heeft nog alleen 20% Rubus naast 80% Rhinanthus bij zich bij de vangst op Phyteuma.

Zie ook fig. 36 en 37.

Fig.36: Pollenklompjes Bombus pratorum

Populierenlaan

<table>
<thead>
<tr>
<th></th>
<th>Phy</th>
<th>Ru</th>
<th>Phi</th>
<th>Ra</th>
</tr>
</thead>
<tbody>
<tr>
<td>22.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* samenstelling (in %)

Fig.37: Pollenklompjes Bombus pratorum

Populierenlaan

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th>-------</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.6</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* samenstelling (in %)
Bij de pollenklompjes van exemplaren uit de Vijfbomen op 5 en 7 juni, zet het beeld zich voort zoals dat op 1, 5 en 9 juni in de plots bij de Populierenlaan werd gevonden; geen 100% Phyteuma maar maximaal 80% en minimaal 0%. Rubus wordt nog maar tweemaal gevonden, eenmaal samen met ca. 10% Ranunculus.

Op 8.9 en 13 juni veranderen de klompjes niet noemenswaardig, zij het dat het aandeel Rubus toeneemt.

Op 14 juni is er nog eenmaal een Bombus met veel Phyteuma stuifmeel (90%).

Zie ook fig. 38.

- Onregelmatig voorkomende pollen bij Bombus pratorum

Enige keren werden Iris-, Ranunculus- en Compositae pollen gevonden in zeer kleine hoeveelheden.

4.11.2.2. De pollenklompjes tijdens waarnemingen

De kleur van de waargenomen klompjes van de bezoekers zijn weergegeven in bijlage 11.

De verhouding tussen Phyteuma pollen (aubergine) en niet-Phyteuma pollen is te vinden in tabel 11.
Tabel 11: De verhouding tussen de verschillende kleuren is per datum en per soort hommel of honingbij.

<table>
<thead>
<tr>
<th>Datum</th>
<th>Soort</th>
<th>Kleuren</th>
<th>Percentage</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td>24 mei</td>
<td>B. pratorum</td>
<td>100% aubergine</td>
<td>(n=12)</td>
<td></td>
</tr>
<tr>
<td>SBBweg</td>
<td>,</td>
<td>100%</td>
<td>(n=4)</td>
<td></td>
</tr>
<tr>
<td>18 mei</td>
<td>,</td>
<td>75%</td>
<td>(n=12)</td>
<td></td>
</tr>
<tr>
<td>Populierenlaan</td>
<td></td>
<td>8% tinten van geel</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>8% aubergine/geel</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>8% oranje-rood</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>B. jonellus</td>
<td>0% aubergine</td>
<td>(n=4)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>B. pascuorum k</td>
<td>100% aubergine</td>
<td>(n=1)</td>
<td></td>
</tr>
<tr>
<td>Solitair-bijtje</td>
<td></td>
<td>100% tinten van geel</td>
<td>(n=3)</td>
<td></td>
</tr>
<tr>
<td>22 mei</td>
<td>B. pratorum</td>
<td>65% aubergine</td>
<td>(n=17)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>12% tinten van geel</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>18% aubergine/geel</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>5% oranje-rood</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>B. jonellus</td>
<td>100% aubergine</td>
<td>(n=7)</td>
<td></td>
</tr>
<tr>
<td>25 mei</td>
<td>B. pratorum</td>
<td>82%</td>
<td>(n=11)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>18% tinten van geel</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>B. jonellus</td>
<td>100% aubergine</td>
<td>(n=1)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>B. pascuorum k</td>
<td>75% tinten van geel</td>
<td>(n=3)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Apis mellifera</td>
<td>100% aubergine</td>
<td>(n=2)</td>
<td></td>
</tr>
<tr>
<td>29 mei</td>
<td>B. pratorum</td>
<td>25%</td>
<td>(n=4)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>75% tinten van geel</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>B. pascuorum k</td>
<td>100%</td>
<td>(n=1)</td>
<td></td>
</tr>
<tr>
<td>1 juni</td>
<td>B. pratorum</td>
<td>100%</td>
<td>(n=1)</td>
<td></td>
</tr>
<tr>
<td>9 juni</td>
<td>B. pratorum</td>
<td>100%</td>
<td>(n=2)</td>
<td></td>
</tr>
<tr>
<td>Vijfboomen</td>
<td></td>
<td>100%</td>
<td>(n=1)</td>
<td></td>
</tr>
</tbody>
</table>

4.11.2.3. Phyteuma spicatum

Tenzij anders vermeld, zijn de klomptjes van exemplaren gevangen op Phyteuma spicatum.
De resultaten van de analyse van alle pollenklomptjes zijn weergegeven in bijlage 10b.
Zie ook deze bijlage voor klomptjes van hommels waarbij pollen op het lichaam werden geteld (zie: 4.11.1. Pollen op het lichaam van bezoekers).
In het onderstaande is de samenstelling van de klompjes per soort hommel en per groeiplaats weergegeven.

-Bombus pratorum- te Valkenberg 12 juni

Alle klompjes bestaan voor 50-100% uit Phyteuma, met uitzondering van die van een exemplaar wat vrijwel 100% Rubus bij zich droeg. Rubus wordt in acht van de tien klompjes teruggevonden in redelijke hoeveelheden (ca.20%). In 6 van de 10 gevallen wordt ook een Boraginaceae aangetroffen in dezelfde verhouding tot de rest van de pollen van het klompje als Rubus. In kleine hoeveelheden werden Iris en een Composiet aangetroffen.

Zie ook fig.39.

Bij no.102,103,105 en 106 kon de volgorde van verzamelen gereconstrueerd worden:
no.102: begin Phyteuma, weinig Rubus gevolgd door een mengeling van Rubus en Phyteuma
no.103: begin Phyteuma, gevolgd door mengeling met Rubus
no.105: begin Phyteuma, mengeling van Rubus en Boraginaceae gevolgd door Phyteuma
no.106: idem

De menging vindt vrnl. plaats aan het oppervlak van het pollenklompje.
Zie ook fig.40.

Fig.39: Pollenklompjes Bomatorum Valkenberg 12 juni

<table>
<thead>
<tr>
<th>hommel nr.</th>
<th>109</th>
<th>100</th>
<th>102</th>
<th>106</th>
<th>103</th>
<th>110</th>
<th>101</th>
<th>108</th>
<th>105</th>
<th>106</th>
<th>107</th>
<th>104</th>
</tr>
</thead>
<tbody>
<tr>
<td>samenstelling (in %)</td>
<td></td>
</tr>
</tbody>
</table>

Fig.40: Pollenklompjes 102 en 106
- Pollenklompjes van Bombus pratorum in de Hortus

Op 31 mei bij het pad wordt geen enkele maal 100% Phyteuma aangelopen, i.t.t. 6 en 13 juni, wanneer bij allen met uitzondering van een waarneming vrijwel 100% Phyteuma wordt gevonden. Op 31 mei wordt veel Rhododendron gevonden (50-2%), waarbij de Phyteuma bij het pad na de Rhododendron wordt bezocht. Ook aan het begin van de fourageertocht werd Phyteuma bezocht. De volgorde van verzamelen kon in vier gevallen goed vastgesteld worden (zie fig. 43). Bij zes van de zeven klompjes worden paarse Phyteuma-pollen gevonden. Eenmaal werden paarse pollen aan het begin van het fourageren verzameld, in andere gevallen na het verzamelen van de witte pollen, gelijktijdig of na het verzamelen van de Rhododendron pollen. De paarse pollen zijn dus waarschijnlijk verzameld in de groep planten bij het pad. In twee gevallen kwamen Polygonatum pollen voor (10% en <1%), verzameld gelijktijdig of na de Rhododendron.

Op 6 juni werd Polygonatum in dezelfde hoeveelheden en verhoudingen aangetroffen, maar kwam Rhododendron niet meer voor. Eenmaal kwam 75% Rosaceae pollen voor. Paarse Phyteuma pollen kwamen in kleinere hoeveelheden voor vergeleken met 31 mei bij het pad.

Op 13 juni werden Rosaceae pollen in kleine hoeveelheden in 3 van de 4 klompjes gezien. Nieuw waren Rhinanthis en Ranunculus pollen. De Iris pollen die in kleine hoeveelheden werden gevonden, kwamen ook eenmaal op 31 mei voor. Zie ook fig. 41, 42.

- Pollenklompjes verzameld van Apis mellifera.

Bij drie honingbijen werden de pollenklompjes afgenomen en in alle drie de gevallen bestonden ze voor 100% uit Phyteuma spicatum stuifmeel. Zie ook fig. 42.

Fig. 42: Pollenklopjes B. pratorum & Apis mellifera

1. Geel Phyteuma geelwit
Brunigeel Phyteuma paars + Polygonatum + Rhododendron

2. Aubergine Phyteuma paars
Geel Phyteuma geelwit
Brunigeel Phyteuma geelwit + Rhododendron + Polygonatum

3 (5). Dooiergeel Phyteuma geelwit
Brunigeel Phyteuma geelwit + paars + Rhododendron + Iris

4. Geel Phyteuma geelwit
Vuilgeel Rhododendron
Geel Phyteuma geelwit
4.11.3. Pollen op het stigma
4.11.3.1. Phyteuma nigrum

Zie voor de resultaten van het soort en aantal pollen bijlage 12a.

4.11.3.1.1 Soorteigen en soortvreemde pollen

In onderstaande tabel zijn de gemiddelden, de standaardafwijking en de steekproefgrootte van tellingen op drie locaties weergegeven. Tevens is het aantal niet-Phyteumapollen, en het aantal en percentage van de stigmata met deze vreemde pollen opgenomen.

Tabel 11: Phyteuma nigrum pollen en vreemde pollen op het stigma in drie locaties op diverse data.

<table>
<thead>
<tr>
<th>lokatie, datum</th>
<th>Ntot.</th>
<th>Phyteuma gem.</th>
<th>sd</th>
<th>N met soortvreemd pollen</th>
<th>aantal stigm. met soortv. (in % van tot.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SBB, 5/6</td>
<td>12</td>
<td>98</td>
<td>31.21</td>
<td>4</td>
<td>1-2</td>
</tr>
<tr>
<td>Vb , 5/6</td>
<td>12</td>
<td>73</td>
<td>35.71</td>
<td>3</td>
<td>1-2</td>
</tr>
<tr>
<td>Vb , 9/6</td>
<td>15</td>
<td>57</td>
<td>37.38</td>
<td>8</td>
<td>1-5</td>
</tr>
<tr>
<td>Vb , 13/6</td>
<td>8</td>
<td>117.75</td>
<td>45.39</td>
<td>2</td>
<td>1-5</td>
</tr>
<tr>
<td>Par, 7/6</td>
<td>15</td>
<td>113.33</td>
<td>51.94</td>
<td>3</td>
<td>4-26</td>
</tr>
</tbody>
</table>

Zie ook fig. 44, 45 en 46.

Het aantal pollen bij SBB verschilt sign. van Vijfbomen 9.6; Paralelweg van Vijfbomen 9.6 en Vijfbomen 5.6; Vijfbomen 13.6 van Vijfbomen 9.6 (Oneway, Student-Newman-Keuls procedure p<0.05)

Hoewel soortvreemde pollen bij de SBB en de Vijfbomen op veel stigma's voorkomen, gaat het verhoudings gewijs lage aantallen pollen. Bij de paralelweg gaat het om minder stigmata, maar om verhoudingsgewijs hoge aantallen pollen.

Fig.44: pollen op het stigma, Ph nigrum
(- = gem)

SBB
7/6/89

Fig.45: pollen op het stigma Ph nigrum
(- = gem)

Paralelweg
7/6/89
4.11.3.2. Phyteuma spicatum

In onderstaande tabel zijn de gemiddelden, de standaardafwijking en de steekproefgrootte van tellingen op twee locaties weergegeven. Tevens is het aantal niet-Phyteumapollen, en het aantal en percentage van de stigmata met deze vreemde pollen opgenomen.

<table>
<thead>
<tr>
<th>lokatie, datum</th>
<th>Nstig. Phyteuma tot. pollen gem. N met soortvr. en sd</th>
<th>aantal vreemd stig.met soortvr. (in % van tot.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>H,6/6</td>
<td>13 146.23 35.45 12</td>
<td>1-6 92</td>
</tr>
<tr>
<td>H,13/6</td>
<td>10 53.5 20.46 3</td>
<td>3-35 33</td>
</tr>
<tr>
<td>V,12/6</td>
<td>18 30.89 15.59 16</td>
<td>1-25 88</td>
</tr>
<tr>
<td>V,17/6</td>
<td>10 28.8 13.98 4</td>
<td>1-4 40</td>
</tr>
</tbody>
</table>

Zie ook fig.47 en 48.

Duidelijk is het geringe aantal pollen te Valkenberg t.o.v. de Hortus, waarbij in de Hortus het verschil tussen 6 en 13 juni weer opvalt. Het grote aantal stigmata met soortvreemde pollen in de Hortus op 6 juni is door het verhoudingsgewijs lage aantallen pollen van weinig belang. Op 13 juni zijn er minder soortvreemde pollen; de uitschieter van 35 pollen wordt veroorzaakt door een klomp (sterk samenhangende) Phelondendron pollen. In Valkenberg is op 12 juni het aantal soortvreemde pollen verhoudingsgewijs groot (gemiddeld 6 soortvreemde pollen/stigma) en worden deze pollen op veel stigmata gezien (88%). Op 17 juni zijn er minder soortvreemde pollen (gem.2.25) op minder stigmata.
Fig. 47: pollen op stigma bij *P. spicatum*
Hortus, Haren

![Graph showing pollen distribution on stigmas from Hortus, Haren, with bars for 6/6 and 13/6 dates.](image)

Fig. 48: pollen op stigma bij *P. spicatum*
Valkenberg

![Graph showing pollen distribution on stigmas from Valkenberg, with bars for 12/6 and 17/6 dates.](image)

Fig. 49: Inhoud maagdarmkanaal *Rhingia*
22 mei

- m = man
- v = vrouw

![Diagram showing the contents of the stomach of *Rhingia* females with bars for different species distributions.](image)

Fig. 50: Inhoud maagdarmkanaal *Rhingia*
allen vrouwtjes 4 juni

![Diagram showing the contents of the stomach of *Rhingia* females with bars for different species distributions.](image)
4.11.4. Pollen consumptie door Rhingia campestris

4.11.4.1 Inleiding

Tijdens de waarnemingen werden drie soorten gedrag van Rhingia op Phyteuma waargenomen: rusten, nectar eten en pollen eten. Bij het nectar eten bewoog de vlieg zich aan de basis van de bloemen om de nectar op te kunnen zuigen, bij het pollen eten zat de vlieg boven of onder de bloem waarop gefourageerd werd, op nog ongeopende bloemen of op de stigma's van vrouwelijke bloemen, zodat met de monddelen de stijl en stempel van de te bezoeken bloem bewerkten konden worden. Diverse malen werd ook waargenomen dat de vlieg binnen in nauwelijks aan de top geopende bloemen pollen verzamelde door de monddelen tussen stijl en kroon in de bloem te steken en voorzover zijn krachten reikten, met de voorpoten de kroon naar beneden te duwen. Na het terugtrekken van de monddelen werden ze met de voorpoten tegelijk met de kop gereinigd.

Bij het bekijken van macro-foto's (gemaakt door M.Kwak) van Rhingia's die op bovengenoemde manier fourageerden, kon gezien worden dat de poten van Rhingia bedekt waren met Phyteuma pollen.

4.11.4.2 Geslachtsverdeling van Rhingia's op Phyteuma

Op 22 mei werden om ongeveer 11.00 uur 10 Rhingia's verzameld, waarbij de geslachts verdeling 1 op 1 was. Op 29 mei werd bij waarnemingen het geslacht van Rhingia's genoteerd; hierbij was het grootste deel vrouwtjes (66 vr., 7 man), waarbij de mannen allen om 10 uur in plot E werden waargenomen. Zes man verzamelden pollen, 1 nectar. Van de vrouwtjes verzamelden 18 pollen, 19 nectar en de rest zowel pollen als nectar.

4.11.4.3 Inhoud van het darmkanaal bij de verschillende geslachten

Van de op 22 mei gevangen Rhingia's werd de inhoud van de darm onderzocht evenals van een tiental op 4 juni gevangen exemplaren.

De inhoud en de geschatte verhouding tussen de verschillende soorten pollen zijn weergegeven in bijlage 13.

Zie voor de inhoud en de verhouding tussen de verschillende soorten pollen fig.49 en 50.

Het maagdarmkanaal bij de vrouwtjes bevat in alle gevallen ca.300-1000 pollen. De mannelijke Rhingia's hebben in alle gevallen minder pollen in het darmkanaal. Eenmaal werd bij een man een matige hoeveelheid aangetroffen (ca. 250 pollen) driemaal was de hoeveelheid klein (ca.100).

Op 25 mei bestaat de inhoud voor 85-100% uit Phyteuma pollen, op 4 juni wordt deze verhouding alleen teruggevonden bij een kleine- tot matig grote inhoud van het maagdarmkanaal. Het aandeel van Lychnis pollen is sterk toegenomen (tot 100%). Nieuw in het menu zijn Composieten pollen.
4.12. DE ZAADZETTING

4.12.1.1. Phyteuma nigrum

De in de kooien bloeiende arens van Phyteuma nigrum vertoonden zaadzetting tot op een bepaalde hoogte van de aar, daarboven werd geen zaadzetting gevonden (n=4).

De resultaten van de zaadzetting met en zonder hulp zijn weergegeven in de onderstaande tabel 13.

Tabel 13: De natuurlijke zaadzetting en de zaadzetting 'met hulp' op de diverse locaties en verschillende data.

Populierenlaantje

Plot A—bloemen bloeiend 18 mei
vruchten verzameld 5 juni
natuurlijke bestuiving—zaadzetting 63.28 % (sd 21.87 n=25)
met hulp —zaadzetting 67.31 % (sd 17.59 n=24)

Plot B—bloemen bloeiend 18 mei
vruchten verzameld 5 juni
natuurlijke bestuiving—zaadzetting 63.17 % (sd 14.93 n=16)
met hulp —zaadzetting 69.77 % (sd 21.67 n=16)

Raai AB—bloemen bloeiend 22 mei
vruchten verzameld 14 juni
natuurlijke bestuiving—zaadzetting 58.63 % (sd 23.65 n=33)
met hulp —zaadzetting 74.24 % (sd 13.53 n=37)

Raai AB—bloemen bloeiend 24 mei
vruchten verzameld 14 juni
natuurlijke bestuiving—zaadzetting 60.96 % (sd 20.37 n=25)
met hulp —zaadzetting 62.92 % (sd 19.34 n=25)

Raai AB—bloemen bloeiend 1 juni
vruchten verzameld 21 juni
natuurlijke bestuiving—zaadzetting 36.52 % (sd 31.17 n=14)
met hulp —zaadzetting 45.49 % (sd 14.71 n=11)

Plot E—bloemen bloeiend 6 juni
vruchten verzameld 21 juni
natuurlijke bestuiving—zaadzetting 83.56 % (sd 11.55 n=7)
met hulp —zaadzetting 80.25 % (sd 8.52 n=7)

Vijfbomen —bloemen bloeiend 5 juni
vruchten verzameld 21 juni
natuurlijke bestuiving—zaadzetting 45 % (sd 10.89 n=7)
met hulp —zaadzetting 27 % (sd 14.36 n=9)

Zie voor de zaadzetting in de plots en raaien ook fig.51 (pag.59). Zie voor de zaadzetting in de Vijfbomen ook fig.52 (pag.59).
Vervolg tabel 13.

SBB boerderij
- weg - bloemen bloeiend 24 mei
 - vruchten verzameld 16 juni
 - natuurlijke bestuiving - zaadzetting 59.45 % (sd 26.87 n=10)
 - met hulp
 - zaadzetting 71.73 % (sd 14.74 n=7)

SBB boerderij weiland
- bloemen bloeiend 24 mei
 - vruchten verzameld 16 juni
 - natuurlijke bestuiving - zaadzetting 85 % (sd 4.08 n=3)
 - met hulp
 - zaadzetting 80 % (sd 3.27 n=3)

Oudemolen
- brug - bloemen bloeiend 24 mei
 - vruchten verzameld 16 juni
 - natuurlijke bestuiving - zaadzetting 67.62 % (sd 25.27 n=8)
 - met hulp
 - zaadzetting 79.66 % (sd 18.05 n=8)

Meander
- bloemen bloeiend 24 mei
 - vruchten verzameld 16 juni
 - natuurlijke bestuiving - zaadzetting 73.97 % (sd 20.88 n=13)
 - met hulp
 - zaadzetting 65.87 % (sd 26.13 n=18)

Parallelweg
- bloemen bloeiend 24 mei
 - vruchten verzameld 16 juni
 - natuurlijke bestuiving - zaadzetting 52.39 % (sd 35.25 n=7)
 - met hulp
 - zaadzetting 61.06 % (sd 27 n=8)

- bloemen bloeiend 7 juni
 - vruchten verzameld
 - natuurlijke bestuiving - zaadzetting 52.39 % (sd 38.61 n=6)
 - met hulp
 - zaadzetting 58.67 % (sd 34.29 n=6)

Scheebroekerloopje
- bloemen bloeiend 29 mei
 - vruchten verzameld 16 juni
 - natuurlijke bestuiving - zaadzetting 10.18 % (sd 13.06 n=11)
 - met hulp
 - zaadzetting 12.90 % (sd 23.21 n=8)

Zie voor de zaadzetting op bovenstaande lokaties fig. 53 (pag. 59).
In de groep planten aan de Beldershoekse weg werd op 7 exemplaren-gemerkte die bloeiende aren hadden. Op de aren werden zes bloemen in een vrouwelijk stadium gemerkt waarbij drie bloemen werden bestoven met stuifmeel van de groep planten langs de Boekelervhofweg. De vruchten werden op 30 mei verzameld, waarbij slechts 2 aren met gemarkte bloemen werden teruggevonden; de andere aren waren afgebroken door knagen of een andere verstoring, waarbij de bloemen/vruchten waren verdwenen.

De zaadzetting van de gemarkte bloemen was:

- nat. bestuiving: 35.71 ± 5.15 (n=3); 60.12 ± 15.53 (n=3)
- met hulp: 43.17 ± 14.69 (n=3); 56.77 ± 12.7 (n=3)

Van 9 aren die tegelijkertijd met de gemarkte aren geblüeid moeten hebben (waarvan er 5 aan gemarkte exemplaren groeiden), werden op ongeveer dezelfde hoogte aan de aar als waar de gemarkte vruchten gevonden werden, drie vruchten verzameld.

De zaadzetting (met natuurlijke bestuiving) was:

45.86 ± 13.79 (n=27)

De gevonden waarden wijzen niet op een verschil tussen natuurlijk bestoven aren en die met hulp, wel is er een duidelijke verschil in zaadzetting tussen de aren onderling (Anova)

De zaadzetting van op 30 mei gemarkte bloemen:

- nat. bestuiving: 47.39 ± 22.58 (n=29)
- met hulp: 52.79 ± 18.55 (n=26)

(vergelijke niet sign.)

De zaadzetting van zes bloeiaren van een exemplaar:

- nat. bestuiving: 28.96 ± 19.8 (n=13)
- met hulp: 46.26 ± 27.61 (n=16)

(sign. one-way F=6.8244 prob .0205)

Zie voor de zaadzetting in Twenthe ook fig. 54.

De waarden wijzen eveneens als bij de op 17 mei gevonden waarden op verschillen tussen de aren onderling en niet naar het tekortschieten van natuurlijke bestuiving. Binnen een kleine groep aren kan wel een duidelijk tekortschieten van de natuurlijke bestuiving worden aangetroffen.
4.12.1.2. De gemiddelde natuurlijke zaadzetting en de verschillen tussen de groeiplaatsen.

De gemiddelde zaadzetting en de verschillen zijn weergegeven in de onderstaande tabel, * betekend een significant verschil (SNK procedure, p<0.05). De homogeniteit van de variantie is niet getoetst.

Tabel 13: De verschillen in zaadzetting op de diverse locaties.

<table>
<thead>
<tr>
<th>zz.gem. plaats</th>
<th>code</th>
<th>verschilt met (code=plaats)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.18 Scheebroekerloopje</td>
<td>1</td>
<td>3 11 4 16 8</td>
</tr>
<tr>
<td>28.96 Twenthe(6aar)</td>
<td>3</td>
<td>*</td>
</tr>
<tr>
<td>36.51 Raai AB 1/6</td>
<td>11</td>
<td>*</td>
</tr>
<tr>
<td>45.0 Vijfbomen</td>
<td>4</td>
<td>*</td>
</tr>
<tr>
<td>46.96 Twenthe 17/5</td>
<td>16</td>
<td>*</td>
</tr>
<tr>
<td>47.89 Twenthe 30/5</td>
<td>8</td>
<td>*</td>
</tr>
<tr>
<td>52.39 Parallelweg 7/6</td>
<td>15</td>
<td>*</td>
</tr>
<tr>
<td>57.65 Raai AB 22/5</td>
<td>14</td>
<td>* * *</td>
</tr>
<tr>
<td>59.46 SBB</td>
<td>18</td>
<td>* *</td>
</tr>
<tr>
<td>60.96 Raai AB 25/5</td>
<td>10</td>
<td>* * *</td>
</tr>
<tr>
<td>63.17 Plot B</td>
<td>7</td>
<td>* * *</td>
</tr>
<tr>
<td>63.29 Plot A</td>
<td>6</td>
<td>* * *</td>
</tr>
<tr>
<td>66.68 Parallelweg 24/5</td>
<td>17</td>
<td>* *</td>
</tr>
<tr>
<td>67.62 SBB-brug</td>
<td>2</td>
<td>* *</td>
</tr>
<tr>
<td>72.98 Meander</td>
<td>5</td>
<td>* * *</td>
</tr>
<tr>
<td>83.56 Plot E</td>
<td>12</td>
<td>* * *</td>
</tr>
<tr>
<td>* * *</td>
<td>* *</td>
<td></td>
</tr>
</tbody>
</table>

Zie voor de gemiddelde zaadzetting fig.55.

4.12.1.3. Het verschil tussen natuurlijke bestuiving en natuurlijke bestuiving met hulp

Voor alle groepen planten tesamen is er geen duidelijk significant verschil tussen de twee soorten bestuiving (Manova DF 1 F3.80 Sign F 0.052). Ook tussen de grote groep planten bij de Populierenlaan (plots + raien) en de kleinere groepen in de Drentse Aa is er geen significant verschil tussen de twee groepen en de bestuiving per groep (Manova). Bij de Populierenlaan en Twenthe is er wel een significant verschil tussen de soorten bestuiving, maar niet voor de soort bestuiving per groep (Manova, bestuiving DF 1 F 8.10 Sign F 0.005).

Significante verschillen ontbreken bij vergelijking van Plot A met Plot Vijfbomen (Manova).

Wel is er een significant verschil bij de twee soorten bestuiving van Raai A, B op 22 mei (Anova DF 8 F 3.03 Sign F 0.034) en de Vijfbomen (Oneway FR=6.82 FP=0.02).

Ook is er een significant verschil bij de bestuiving van de 6 aren in Twenthe op 30 mei (Oneway F=6.8244 FP=0.0205).
4.12.1.4. Phyteuma nigrum Hohndal

Van 21 aren werden op 24/5 twee vruchten verzameld, allen onder of midden op een aar. De zaadzetting was gemiddeld 39.04% (sd 14.59, n=42).

4.12.2. Phyteuma spicatum

In Valkenberg werden op 12 juni werden negen aren verzameld waarvan onderaan, midden en bovenaan twee vruchten werden onderzocht. De zaadzetting was (in procenten): boven 55.74 sd.21.72 n=9, midden 57.52 sd.16.77 n=9, onder 66.54 sd.18.29 n=9.

Zie ook fig.56.

In de Hortus werden vier aren voor het begin van de bloei omhuld. Twee weken na het einde van de bloei kon geen zaadzetting gevonden worden. De zaadzetting van gemerkte bloemen kon in de Hortus niet gemeten worden, omdat de vruchten tijdens het bewaren te veel waren uitgedroogd en de meeste vruchten kapot waren gegaan.
4.12.3. Het gemiddeld aantal zaden per vrucht en per aar

4.12.3.1. Phyteuma nigrum en Phyteuma spicatum

Gebruik makend van het gemiddeld aantal ovula per bloem op de diverse lokaties (zie: 4.7.1.) en de natuurlijke zaadzetting (zie: 4.12.1.1.) is een gemiddeld aantal zaden per vrucht te berekenen.

Wanneer wordt aangenomen, dat het aantal ovula per bloem per hoogte op de aar niet verschilt en alleen de allerbovenste negen bloemen 50% minder ovula bevatten (zie: 4.7.1.) en tevens wordt aangenomen dat bij P. nigrum het aantal bloemen per aar op alle niet apart voor dit aspect bekeken locaties overeenkomt met het aantal bloemen per aar in de Populierenlaan, is het aantal zaden per aar te berekenen.

Bij de berekening is dus voor de bovenste negen bloemen uitgegaan van minder ovula per bloem en niet van alleen de bovenste drie zoals werd gevonden in 4.7.1.. Hiervoor is gekozen omdat de steekproef in 4.7.1. klein is (n=1) en bij het verzamelen van gegevens voor de verdeling van het aantal ovula over de aar ruime criteria werden aangehouden voor de hoogte van verzamelen, behalve voor de plaats boven op de aar, waarvoor telkens van de bovenste zes a negen bloemen is verzameld.

Het aantal zaden per aar is berekend door het aantal bloemen per aar min negen te vermenigvuldigen met het aantal zaden per bloem, en daarbij op te tellen negen maal 50% van het aantal zaden per bloem. Het totaal is naar beneden afgerond tot op tientallen.

De resultaten van de berekeningen zijn weergegeven in tabel 14 en tabel 15 en fig. 57 en fig. 58.

Tabel 14: Gemiddeld aantal zaden op de diverse locaties.

<table>
<thead>
<tr>
<th>plaats</th>
<th>gem. aantal zaden/vrucht</th>
</tr>
</thead>
<tbody>
<tr>
<td>Populierenlaan</td>
<td></td>
</tr>
<tr>
<td>plot E</td>
<td>24.4</td>
</tr>
<tr>
<td>plot A</td>
<td>18.5</td>
</tr>
<tr>
<td>plot B</td>
<td>18.4</td>
</tr>
<tr>
<td>SBB langs weg</td>
<td>17.8</td>
</tr>
<tr>
<td>SBB bij brug</td>
<td>17.6</td>
</tr>
<tr>
<td>Populierenlaan</td>
<td></td>
</tr>
<tr>
<td>raai A,B (gem.)</td>
<td>17.2</td>
</tr>
<tr>
<td>Twenthe (gem.)</td>
<td>16.9</td>
</tr>
<tr>
<td>Meander</td>
<td>15.7</td>
</tr>
<tr>
<td>Vijfbomen</td>
<td>13.1</td>
</tr>
<tr>
<td>Hohndal</td>
<td>12.1</td>
</tr>
<tr>
<td>Paralelweg (gem.)</td>
<td>8.2</td>
</tr>
<tr>
<td>Scheebroeker-loopje</td>
<td>2.2</td>
</tr>
<tr>
<td>Valkenberg(P.spicatum)</td>
<td>20.0</td>
</tr>
</tbody>
</table>

Tabel 15: Aantal zaden per aar op de diverse locaties.

<table>
<thead>
<tr>
<th>plaats</th>
<th>gem. aantal zaden/aar</th>
</tr>
</thead>
<tbody>
<tr>
<td>Populierenlaan</td>
<td></td>
</tr>
<tr>
<td>plot E</td>
<td>760</td>
</tr>
<tr>
<td>plot A</td>
<td>570</td>
</tr>
<tr>
<td>plot B</td>
<td>570</td>
</tr>
<tr>
<td>SBB langs weg</td>
<td>550</td>
</tr>
<tr>
<td>SBB bij brug</td>
<td>550</td>
</tr>
<tr>
<td>Populierenlaan</td>
<td></td>
</tr>
<tr>
<td>raai AB (gem.)</td>
<td>530</td>
</tr>
<tr>
<td>Twenthe (gem.)</td>
<td>520</td>
</tr>
<tr>
<td>Meander</td>
<td>490</td>
</tr>
<tr>
<td>Vijfbomen</td>
<td>410</td>
</tr>
<tr>
<td>Hohndal</td>
<td>390</td>
</tr>
<tr>
<td>Paralelweg (gem.)</td>
<td>270</td>
</tr>
<tr>
<td>Scheebroeker-loopje</td>
<td>70</td>
</tr>
<tr>
<td>Valkenberg(P.spicatum)</td>
<td>1260</td>
</tr>
</tbody>
</table>
Fig. 57: Gemiddelde zaden/vrucht per locatie

Fig. 58: Gemiddelde zaden/aar per locatie
5. CONCLUSIES

5.1. DE BLOEMEN EN DE BLOEIAREN VAN DE RAPUNZELS

5.1.1. Phyteuma nigrum

De Zwarte rapunzel bloeide in 1989 van half mei tot begin juni. Na die tijd werd nog hier een daar een bloeiende aar gevonden. De top van de bloei viel op de belangrijkste waarnemingsplaats (Populierenlaan) op 22 mei. Op 1 juni was er in de hoger gelegen delen van de Populierenlaan en in de Vijfbomen opnieuw een toename van in bloei komende aaren. De bloei duurde op deze plaatsen langer dan op andere plekken in het gebied.

De waarnemingen in dit onderzoek zijn begonnen toen de bloei op gang begon te komen (17 mei).

De bloemen van de Zwarte rapunzel verschillen in Drenthe, Twente en Belgisch–Limburg van kleur. In Drenthe waren de rapunzels donker-auberginekleurig, in Twente waren de bloemen minder donker (licht-aubergine) en in Limburg was de kleur blauw-aubergine. In Drenthe werden twee exemplaren met een afwijkende kleur gevonden. De kleur kwam overeen met intermediairen van P.nigrum en P.spicatum.

De pollen waren auberginekleurig. In Drenthe varieerde de kleur in de middelgrote groepen planten.

De bloeiduur van een bloem is bij warm weer drie en een half etmaal, bij koel, regenachtig weer bijna acht etmalen.

Het jong manlijk stadium van een bloem duurt bij koel, regenachtig weer ongeveer 24 uur. Bij warm, droog weer is dit korter, omdat binnen deze tijd dan ook het manlijk stadium wordt doorlopen. Bij koel weer duurt dit manlijk stadium nog ongeveer driekwart etmaal.

Het jong vrouwelijk stadium waarin het stigma het meest receptief is, duurt bij koel weer iets langer dan twee etmalen; bij warm weer korter dan een etmaal. Ook het vrouwelijk stadium, is in de meeste gevallen na twee etmalen verdwenen. Bij koel weer blijft het vrouwelijk stadium nog 5 dagen aanwezig.

In de vrouwelijk stadia is de stijl naar boven toe gebogen. Door buiging van de stigmalobben ligt telkens het stigma in een horizontaal vlak ter hoogte van de manlijke bloemen.

De nectarproductie van een bloem gemeten in het vrouwelijke stadium, was in de Populierenlaan op 29 mei: 0.096 M1, op 1 juni bij koeler weer: 0.052 M1 (zie tab. 2). Nectarproductie vindt geheel, of voor het grootste deel, plaats in het manlijk stadium, daar bij niet omhulde bloemen die geleegd kunnen worden door voldoende bezoek, alleen in manlijke bloemen noemenswaardige hoeveelheden nectar worden gevonden. Dit kan mogelijk de sterke correlatie tussen de dichtheid van manlijke bloemen en het bezoek verklaren. Het suikergehalte van de nectar is hoog: 47% en hoger. Op 9 juni was de productie tot in het vrouwelijk stadium 0.204 M1. De temperaturen waren rond deze datum lager en de productie is daardoor van een langere periode. Vermenging met regenwater is waarschijnlijk gezien de lage suikerconcentraties in metingen in de aan 9 juni voorafgaande dagen. De meting van de nectarproductie op 4 juni was om dezelfde redenen niet betrouwbaar: het suikergehalte was op 4 juni 4% of lager en een verdunning met regenwater is aannemelijk.
Het aantal ovula per bloem verschilt per hoogte op de aar en per groeiplaats. Bovenaan de aar kan het aantal ovula de helft zijn van onderaan en middenop de aar. Bij de verschillende lokaties worden de meeste ovula (onder en midden op de aar) gevonden in Twente: gem.-35.67. De grotere groepen in Drenthe hebben rond de dertig ovula per bloem: Populierenlaan en Vijfbomen ca.29 (81% van Twente), SBB 30 (84%). Ook in het Hohndal worden gelijke aantallen ovula geteld (30.9, 85% van Twente).

De minder grote groepen in Drenthe hebben minder ovula: SBB-brug 26.07 (73%), Meander 21.55 (60.4%). In de kleine groepen Schebrookerloopdie en Paraleiweg worden weinig ovula gevonden: respectievelijk gemiddeld 19.96 (55.9%) en 12.67 (35.5%).

De Zwarte rapunzel vertoont een variatie in het aantal bloemen per aar: Populierenlaan gem. 35.8 (se 1.73), in het Hohndal gem. 27.39 (se 2.37). Bij de Populierenlaan en de Vijfbomen is de (uitgebloeiide) aar gemiddeld 3.8 cm lang.

5.1.2. Phyteuma spicatum

De bloei duurde in 1989 van half mei tot midden juni. De waarnemingen in de Hortus (vanaf 31 mei) en in Valkenberg (12 juni) zijn dus na het begin van de bloei gestart.

De bloemen van de Witte rapunzel waren op beide groeiplaatsen evenals de pollen crème-wit. In de Hortus werden bij intermediairen met de Zwarte rapunzel intermediaire bloem- en pollenkleuren gevonden.

De Witte rapunzel heeft duidelijk meer bloemen dan de Zwarte rapunzel. In Valkenberg zijn er gemiddeld 67.6 bloemen (se 3.14) en in de Hortus 80.05 (se 4.2) per aar. Door het groter aantal bloemen, bloeien er ook meer bloemen op een aar in vergelijking met P.nigrum.

De intermediare rapunzels hebben minder bloemen dan P.spicatum, maar meer bloemen dan P.nigrum. Het aantal bloeiende bloemen is op 31 mei gelijk of hoger dan dat van P.nigrum op dezelfde groeiplaats.

De bloemontwikkeling bij P.spicatum is vrijwel gelijk aan die bij P.nigrum, een verschil is dat op veel aren de stijl niet naar boven buigt. Er is meer ruimte tussen de bloemen op de aar in vergelijking met P.nigrum. De bloeiduur van de bloemen is niet gemeten.

In P.spicatum is de nectar productie in manlijke bloemen op 31 mei per vijf uur gemiddeld 0.09 M1. Deze bloemen konden voorafgaande aan de metingen bezocht worden. In intermediaire aren (paarse bloemkleur) werden waarden gevonden die overeen kwamen met productie in de Witte rapunzel. Een betrouwbaar gemiddelde is voor de intermediaire niet te geven, door de kleine steekproef. Zowel in de Witte rapunzel als de intermediairen werd in vrouwelijke bloemen geen nectar gevonden.

Suikerconcentrameting gaf dezelfde concentratie als in P.nigrum (31/5 > 50% suiker).

Het aantal ovula per bloem in Valkenberg komt overeen met de hoogst gevonden waarde van P.nigrum en is midden op de aar gemiddeld ca.35. Bovenop de aar worden eveneens als bij P.nigrum minder ovula gevonden. De totale hoeveelheid ovula per aar is bij P.spicatum door de grotere aantallen bloemen per aar hoger dan bij P.nigrum.
5.2. HET BEZOEK

5.2.1. Phyteuma nigrum

Tot de bezoekers van P.nigrum behoren: Bombus pratorum (koningin,-
werksters en darren), Bombus jonellus (werksters), Bombus pascuorum
(koningin), Bombus lapidarius (werkster), Psithyrus spec., een
solitair bijtje, Rhingia campestris, Syrphus spec.,vliegen (Diptera),
Cidaria albulata, Pieris spec., schorpioen-vliegen (Mecoptera),mieren
en een klein kevertje, waarschijnlijk Meligethes spec.. Schorpioen-
vliegen werden alleen rustend op P. nigrum gezien. Bombus lapidarius
werd slechts eenmaal op P.nigrum gesignaleerd.

Vooral op uitgebroede aren werden slakken of slakkesporen waargenomen en in Twenthe was er vlaat van konijnen.

Op alle groeiplaatsen waar waarnemingen van het bezoek waren, was
Bombus pratorum de belangrijkste bezoeker!

Het verloop van het bezoek is bestudeerd in de Populierenlaan en de
Vijfbomen in het stroomdal van de Drentsche A. Hieruit resulteerde het
volgende beeld.

In het begin van de bloei is er bezoek van Bombus pratorum en Bombus
jonellus. Ook Rhingia campestris bezoekt in grote aantallen de
bloemen. Het bezoek van hommels is verhoudingsgewijs hoog op een
plaats waar tegelijk met P.nigrum Rhinanthus bloeit.

Op het hoogtepunt van de bloei is er druk bezoek van zowel Bombus
pratorum als Bombus jonellus en tijdelijk daalt het aantal bezoekende
Rhinia's. Het aantal Rhingia's neemt daarna weer toe, om vervolgens
gelijke af te nemen. Ook het totaal aantal bezoekende hommels
neemt geleidelijk af naarmate de bloei voortschrijdt.

Er is een significante positieve correlatie tussen de dichtheid van
het aantal mannelijke bloemen per m² en het aantal bezoekende hommels.
De correlatie geldt voor zowel hoge als lage dichtheden van de
manlijke bloemen, bij verschillende dichtheden is de correlatie niet
meer significant en bij lage dichtheden minder groot. Van belang
derbij kan zijn, dat het plot met de lage dichtheid naast dat met de
hoge dichtheid was gelegen. Ook voor Rhingia bestaat er een positief
verband tussen de dichtheden van de manlijke bloemen en het aantal
exemplaren. Dit verband bestaat er ook weer bij zowel hoge als lage
dichtheden van de manlijke bloemen.

Vlak na het hoogtepunt van de bloei was B.jonellus de enige bezoekende
hommel op plekken met hoge dichtheden van bloeiende aren. B.pratorum
kwam op dat moment alleen voor in een perifeer deel van de groeiplaats, waar P.nigrum nog met Rhinanthus voorkwam. Samen met het
verdwijnen van B.pratorum, valt het verschijnen van Apis mellifera.

Naar het eind van de bloei verdwijnen B.jonellus en Apis als bezoeker
van P.nigrum. Een enkele maal wordt B.jonellus nog gesignaleerd op
Rhinanthus en Myosotis. B.pratorum komt in kleinere aantallen dan
voorheen terug in alle plots en is aan en op het eind van de bloei de
enige bezoekende hommel. B.pratorum heeft een grote trouw aan
Phyteuma nigrum. In het begin van de waarnemingen wordt regelmatig een
solitair bijtje gezien. Het bijtje verdwijnt na de top van de bloei
van het toneel en wordt nog een keer op Fluitekruid gezien. Verspreid
over de waarnemingen komen een enkele maal Bombus pascuorum koningin-
nen op de rapunzels. Slechts af en toe bezoeken B.pratorum koningin en
dar, Syrphus spec., Cidaria albulata, Pieris spec., vliegen (Diptera)
een Psithyrus spec. de bloemen.
In de Populierenlaan wordt ca. 1/4 van de gemerkte hommels na enige tijd teruggevonden vlakbij de plaats waar ze voor het eerst werden gezien. De hommels blijven dus trouw aan een plaats. Gemeten werd, dat een hommel voorafgaande aan een bezoek aan het meest noordelijk gelegen perifere plot, ook een meer centraal deel van de groeiplaats had bezocht. Hommels bezoeken het hele centrale deel van de groeiplaats, en daaraan voorafgaand het zuidelijke perifere deel, zodat het noordelijk deel bezoek lijkt te ontvangen uit alle overige delen van de groeiplaats. In de Populierenlaan werden aan het eind van de bloei van P. nigrum hommels vlakbij hun vangplaats teruggevonden op de massaal in bloei gekomen Rhinanthus.

In alle plots tesamen was de standing crop van nectar aan het begin van de bloei 's morgens om 10.30 uur lager dan ca. 2 uur later. Op dit tijdstip was de hoeveelheid nectar in de manlijke bloemen de helft lager. Door het bezoek worden dus de manlijke bloemen geleegd. Nectar in de vrouwelijke bloemen kan toenemen doordat in de tussenliggende tijd manlijke bloemen zijn overgegaan in een vrouwlijk stadium, voordat ze geleegd werden. Het bezoek (wat nectar verzamelt) is aan het begin van de bloei niet groot genoeg om alle beschikbare nectar te consumeren. Op het hoogtepunt van de bloei is s' morgens om 6.30 uur geen nectar meetbaar. In de voorgaande dag moeten alle bloemen door bezoek geleegd zijn. Om 8.20 uur is er nectar meetbaar in de manlijke bloemen, de secretie komt dus s'morgens op gang. Dit ondersteunt dat de nectar in de vrouwelijke bloemen aan het begin van de bloei afkomstig is uit manlijke bloemen uit voorgaande data.

In plot E is er op 1 juni een toename van het aantal manlijke bloemen en dus van beschikbare nectar en pollen en neemt het bezoek niet af zoals in de meeste andere plots.

5.2.2. Phyteuma spicatum en intermediaire Phyteuma's

Bezoekers van P. spicatum en intermediairen zijn: Bombus pratorum (werksters en darren), Bombus hypnorum (werkster), Psithrus spec., Apis mellifera, Rhingia campestris en Rhagonycha fulva (soldaatie) welke alleen rustend op de bloeiaar werden gezien.

In Valkenberg waren B. pratorum werksters bij de waarnemingen tegen het eind van de bloei de enige bezoekers.

In deze fase van de bloei bezochten ongeveer driemaal zoveel Bombus pratorum darren als - werksters de Phyteuma.
De hoeveelheid bezoek aan de aren in de plots is laag; op 26 mei 0.45 per aar/uur, op 31 mei zijn er 0.07 bezoeken per aar/uur. De hoeveelheid bezoek is laag in vergelijking met P.nigrum wanneer wordt gekeken naar de dichtheid van de manlijke bloemen (vergelijkaar met plot B en C tijdens hoogtepunt van de bloei). Ook in Valkenberg was het bezoek per aar aan het eind van de bloei zeer laag (0.04 hommel/aar/uur).

De nectar gevonden in niet voor bezoek afgeschermd bloemen in de Hortus is op alle data ongeveer gelijk: 31/5 gemiddeld 0.073, 6/6 gem. 0.08 en 13.6 gemiddeld 0.063 ml. Suikerconcentratie meting kwamen overeen met P.nigrum (>50%). Het nectar gehalte van de bloemen is hoger dan bij P.nigrum en niet veel lager dan de produktie van een bloem in 5 uur.

5.2.3. De bezoekers bij de bestuiving van Phyteuma nigrum

In het begin van de waarnemingen dragen Bombus jonellus en B.pratorum weinig vreemde pollen met zich mee (1.4% van het tot.). De meeste pollen worden gevonden op de bovenkant van de thorax en de onderzijde van het abdomen. Ook Apis draagt weinig vreemde pollen mee. In vergelijking met Bombus, heeft Apis bijna tweemaal zoveel Phyteumapollen op het lijf. En verklaring hiervoor kan zijn, dat Apis alleen nectar verzamelde en weinig pollen van het lichaam zal borstelen.

Rhinia draagt weinig pollen met zich mee (gem. 41.4 per deel van het lichaam) in verhouding tot de andere bezoekers (Bombus gem.167.7 per deel van het lichaam), ook is 19% van de pollen geen Phyteuma.

Voor de bestuiving van Phyteuma zijn dus de hommels en bijen van belang. Vooral kop, bovenkant thorax en de onderzijde van het abdomen dragen bij deze dieren de rapuzelpollen. Deze delen komen bij de handelingen op de bloem met de stijl in aanraking met de stijl (zie: 4.10.5.3.).

Later in het seizoen (9 juni) draagt een B.pratorum veel minder Phyteuma pollen met zich mee dan eerder werd waargenomen (tot.55 tegen 501 op 25/5) en is 67% niet-Phyteuma. De verdeling van Phyteuma pollen over het lichaam is ongeveer gelijk, vergeleken met de top van de bloei.

Vooral aan de buikzijde van het abdomen worden aan het eind van de bloei grote hoeveelheden niet-Phyteumapollen (vrnl.Rhinanthus meege- dragen. Phyteumapollen worden weer weinig gevonden aan de bovenkant van het abdomen en verhoudingsgewijs veel aan de bovenkant van de thorax.
De verandering in het aandeel van Phyteumapollen op het lichaam van de hommels, is ook terug te vinden in de pollenklompjes. Wanneer B.jonellus in het begin van de bloei op Phyteuma wordt gezien, worden in de pollenklompjes vrijwel alleen Phyteumapollen gevonden en een enkele Rubus pollenkorrel. Rubus wordt naast Rhinanthus en Symphytum ook in enkele korrels op het lijf gevonden.

B.pratorum bezoekt al in het begin van de bloeiperiode van Phyteuma andere plantensoorten waarvan de pollen in de klompjes worden teruggevonden, de vreemde pollen zitten dan nog niet in grote hoeveelheden op het lichaam. Als Rhinanthus massaal in bloei komt, neemt de Rhinanthus in de klompjes de plaats van Phyteuma. De Rhinanthuspollen zijn dan ook op het lichaam van de hommel in grotere hoeveelheden te zien.

Laat in het bloeiseizoen in de Vijfbomen wordt nog een Bombus pratorum gevangen met weer voornamelijk Phyteumapollen in de klompjes (90% Phyteuma). De kleur van de Phyteumapollen in de klompjes (rose), wijst op menging met de Rhinanthus. Ook eerder in het seizoen worden er verschillen aangetroffen in de mate van trouw bij individuele hommels.

5.2.3.2. De overdracht van pollen

De hommels verrichten 3 tot 6 handelingen op een aar, in voornamelijk de manlijke bloemen, waardoor de hommels zich bewegen ter hoogte van de stigmata van de jong-vrouwtjes (stadium 3) en jonge vrouwelijke bloemen (begin stadium 4).

De overdracht van pollen door B.pratorum zal aan het eind van de bloeiperiode van Phyteuma afnemen door de lagere hoeveelheden Phyteumapollen en de grotere hoeveelheden niet-Phyteumapollen op het lichaam van de hommel.

RHINGIA is niet van belang als bestuiver. Mogelijk is van belang de consumptie van pollen. Tellingen van de pollen in het maagdarmkanaal lieten zien dat vooral de vrouwtjes op de top van de bloei Phyteumapollen consumeren. Grote aantallen Rhingia's kunnen dus een negatief effect op de bestuiving hebben door reductie van de voorraad stuifmeel in de populatie en door consumptie van op de stempel afgezette pollen.

Wanneer wordt gekeken naar de hoeveelheid pollen die op het stigma worden overgedragen aan het eind van de bloei (Vijfbomen 9 juni), dan is de hoeveelheid vreemde pollen laag (1-5 pollen), maar de vreemde pollen worden op veel stigmata (53%) teruggevonden. Ook de hoeveelheid Phyteuma pollen is lager dan bij eerder gevonden waarden (gem.-57). Op 5 juni was in de Vijfbomen de hoeveelheid Phyteuma pollen gemiddeld 73 en werd slechts op een kwart van de stigmata soortvreemde pollen in lagere aantallen (1-2) aangetroffen.

Op een andere locatie, bij de SBB boerderij, is de hoeveelheid vreemde pollen ook laag, maar worden ze op meer stigmata aangetroffen en is ook de hoeveelheid Phyteumapollen hoger.

Op een late datum (13 juni) worden in de Vijfbomen meer pollen gevonden (gem. 117.75), maar blijven de hoeveelheden soortvreemde pollen laag en worden ze op slechts een kwart van de stigmata aangetroffen.
Soortvreemde pollen op de buikzijde van het abdomen van de hommels worden nauwelijks afgezet op het stigma. De Phyteuma pollen op het stigma zijn mogelijk afkomstig van de kop of poten (geen gegevens aanwezig van pollen op de kop of poten) of van de rugzijde van de thorax, waar weinig soortvreemde pollen worden gevonden op 9 juni en waar verhoudingsgewijs veel Phyteuma pollen zitten.

In een kleinere populatie (Paralelweg 7 juni) worden wel grotere hoeveelheden soortvreemde pollen gevonden op het stigma (4-26) bij hoeveelheden Phyteumapollen vergelijkbaar met SBB 5 juni (gem.113.33), waardoor een negatieve invloed op de zaadzetting mogelijk is. Op deze locatie worden andere vreemde pollen gevonden (naast Rubus, Symphytum) dan in de Vijfbomen (vrnl. Rhinanthus), deze pollen komen in een andere verdeling op het lichaam van de bezoeker voor dan Rhinanthus, in de vier gevallen dat Symphytum op hommels werd gevonden, zaten de pollen op het thorax. Het stuifmeel heeft daardoor een grotere kans om afgezet te worden op het stigma.

Het uit bezoek resulterende bestuiving lijkt hier niet beperkend.

In de omgeving van de Phyteuma groeien voldoende drachtplanten, zodat hier geen sprake was van een eiland populatie voor de bezoekende insecten.

De grote verschillen in de aantallen Phyteumapollen op het stigma, later in het seizoen zouden te wijten kunnen zijn aan lokale factoren en aan variatie in de weersomstandigheden; het weer was begin juni variabel met overheersend koel, regenachtig weer. De vrouwelijke stadia duren dan langer dan een dag en de hoeveelheid bezoek is afhankelijk van het aantal langdurig droge periodes met een wat hogere temperatuur over meerdere dagen. Na begin juni klaarde het weer op en werden de temperaturen hoger, waardoor het bezoek minder door het weer werd beïnvloed. Op 13 juni konden binnen een uur drie hommels worden gevangen en de vangst van een enkele hommel met veel Phyteuma stuifmeel doet vermoeden, dat ook in de Vijfbomen bezoek zich concentratie op de nog aanwezige bloeiende aren. Door het hogere bezoek worden meer Phyteumapollen afgezet.

5.2.4. De effectiviteit van de bezoekers bij de bestuiving van Phyteuma spicatum

De effectiviteit van de bezoekende hommels en koekoekshommels op de Witte rapunzel is vergelijkbaar als met die op de Zwarte rapunzel. Alleen Apis is wellicht minder effectief. De honingbij verricht minder handelingen op de aar, verzamelt geen pollen en is smaller dan de hommels.

5.2.4.1. De pollen op het lichaam van bezoekers van Phyteuma spicatum

Hoewel op 31 mei de bloei nog in volle gang is, dragen de hommels op P. spicatum in de Hortus minder pollen met zich mee dan de hommels op P. nigrum op 25 mei. Het aandeel van soortvreemde pollen is hoger (19.9%). De Phyteumapollen komen verhoudingsgewijs het meest voor op de buikzijde van het abdomen, waar geen soortvreemde pollen worden gevonden. Dit kan verklard worden door de wijze van stuifmeel verzamelen: de hommel hangt ondersteboven aan de bloem en veegt de pollen met de poten van de stijl.
De vreemde pollen komen vooral voor op de kop en de zijkant van het abdomen in mindere mate op de bovenkant van thorax en abdomen. De koekoekshommels dragen veel meer pollen met zich mee dan de hommels en ook meer vreemde pollen, hetgeen verklarebaar is door hun grootte en doordat zij geen pollen van het lichaam borstelen. De Phyteuma pollen worden vooral aan de bovenkant van thorax en aan de bovenkant en zijkant van het abdomen gevonden. Aan de buikzijde van het abdomen zitten vrijwel geen pollen.

Van Apis zijn niet voldoende metingen, toch lijkt deze bij ook op P.spicatum meer pollen bij zich te dragen (gem.137.5 per bekeken deel van het lichaam) dan B.pratorum (gem.58.4 per deel).

In de pollenkloppijes van B.pratorum wordt aan het eind van de bloei minder niet-Phyteuma pollen gevonden dan eerder in het seizoen; de kloppijes bestaan aan het eind voor vrijwel 100% uit Phyteuma stuif-meel.

Op een eerder tijdstip (6 juni) hebben drie van de tien hommels vreemde pollen bij zich, op 31 mei had nog geen enkele hommel 100% Phyteuma in de corbiculae. Tussen de Phyteumapollen komen vaak paar pollen voor, er is dus ook bezoek aan Phyteuma nigrum en de intermediaire geesten geweest.

De vreemde pollen zijn in de Hortus vnl. van : Rhododendron , Phelodendron en Polygonatum.

De pollenkloppijes bestonden in Valkenburg niet voor 100 % uit Phyteuma, zoals in de Hortus aan het eind van de bloei. Slechts twee van de tien kloppijes bestonden uit 100% Phyteuma. De andere kloppijes hadden Rubus en een Boraginaceae in hoeveelheden. Deze soorten zouden een rol kunnen spelen bij eventuele concurrentie, wanneer de trend in Valkenburg overeen komt met in de Hortus, waar vreemde pollen vroeger in het seizoen meer voorkomen dan aan het eind.

5.2.4.2. De overdracht van pollen

In vergelijking met P.nigrum laat in het seizoen, worden in de Hortus midden in het seizoen meer pollen op het stigma gevonden (gem.146.23, P.nigrum 9/6 gem.57). Ook komen er meer soortvremde pollen op meer stigmata voor hoewel de aantallen verhoudingsgewijs laag zijn.

De pollengoverdracht van hommels op het stigma vindt daardoor in ieder geval voor een deel plaats via de rugzijde van de hommels en koekoekshommels en de zijkant van hun abdomen. De hoeveelheid Phyteumapollen op het lichaam van Bombus is minder dan bij Bombus op P.nigrum op het midden van de bloei.

Aan het eind van de bloei nemen de hoeveelheden pollen op het stigma af. Ook het aantal stigmata met vreemde pollen neemt af. De aantallen vreemde pollen blijven verhoudingsgewijs laag (3-4 pollen).

De Phyteumapollen nemen af tot ca. een derde (gem. 53.5). Er is niet gekeken naar de pollen op het lichaam van bezoekers aan het eind van de bloei.

Opvallend is dat op 13 juni de Phelondendron pollen op het stigma niet in de pollenkloppijes worden teruggevonden. De pollen kunnen dus door hommels met een ander fouragepatroon dan die van de voor kloppijes gevange exemplaren op het stigma gebracht zijn.

In Valkenburg zijn de hoeveelheden Phyteuma stuifmeel op het stigma laag (12 juli gen. 30.9 pollen/stigma). De hoeveelheden vreemd stuifmeel zijn net als in de Hortus hoger dan bij P.nigrum op de meeste groeiplaatsen (1-25 pollen/stigma), er is wel een gelijkenis met de Parallelweg.
De vreemde pollen komen bij P. spicatum op veel stigmata voor (88%). Op het eind van de bloei is de gemiddelde hoeveelheid Phyteumapollen niet veel gedaald (gem. 28.8/stigma), de hoeveelheid vreemde pollen is gedaald en de pollen komen op minder stigmata voor (40%). De vreemde pollen in Valkenberg zijn van Rubus en een Boraginaceae.

5.5. DE ZAADZETTING

5.5.1. De zaadzetting op de verschillende locaties bij Phyteuma nigrum

Op alle locaties werd een vruchtzetting van 100% gevonden. De zaadzetting wordt in het onderstaande uitgedrukt in het percentage ovula per bloem, wat zich tot zaad ontwikkelt.

In de locatie met de meeste rapunzels, de Populierenlaan, is de zaadzetting aan het begin en op het hoogtepunt van de bloei ca. 60%. Aan het eind van de bloei is de zaadzetting 40%. Op een plek in de locatie waar de bloei langer doorzet wordt op het einde een zaadzetting van 83.6% bereikt, de hoogste in dit onderzoek gemeten zaadzetting. In de middelgrote lokatie Vijfbomen duurt de bloei ook wat langer maar is de zaadzetting aan het eind van de bloei vergelijkbaar met die in de raaien in de Populierenlaan aan het begin van de bloei (45%). Op de andere middelgrote locaties in het stroomdal van de A is de zaadzetting het hoogtepunt van de bloei iets hoger dan bij de populierenlaan (SBB-brug: 67.6%, Meander: 73%, beiden 24 mei) of gelijk eraan (SBB-weg: 59.5%, 24 mei). In het weiland naast de SBB boerderij wordt een hoge zaadzetting gevonden, maar deze meting is niet betrouwbaar door de geringe steekproefgrootte (3 aren).

De ligging van de groeiplaats van Phyteuma is niet van belang voor de zaadzetting van de grote en middelgrote populatie in het stroomdal van de Drentsche A: verschillende groeiplaatsen vertonen een verschillende zaadzetting maar deze wijken niet af van zoals gevonden in de grootste populatie, de Populierenlaan.

Bij de twee kleine locaties, wordt in het geval van de Paraleleweg een wat hogere zaadzetting van 66.7% of wat lagere zaadzetting van 52.3% gevonden (resp. 24 mei en 7 juni) en bij het Scheepbroekerloopje is tenslotte een zaadzetting van slechts 10.2% (29 mei).

In Twenthe, een grote populatie, is de zaadzetting aan het begin van de bloei 45.8% (17 mei). Aan het eind van de bloei (30 mei) is de zaadzetting 47.3%. De zaadzetting is er lager dan in Drenthe.

In het Hohndal, een grote populatie, is de zaadzetting aan het begin van de bloei (vruchten onderaan en midden op de aar, verzameld eind mei) 39.0%. en weer minder dan in Twenthe en Drenthe.

In alle locaties, was er op twee uitzonderingen na, geen significant verschil tussen natuurlijke bestuiving en bestuiving met hulp en lijkt de bestuiving geen beperkende factor. Mogelijk blijft dat meerdere extra bestuivingen wel in een effect kunnen resulteren.

De ene uitzondering kwam voor in Raai AB op 22 mei, de andere bij zes apart staande aren in Twenthe op 30 mei. Bij deze laatste aren was de natuurlijke zaadzetting laag (29%). Bestuiving met behulp van pollen elders uit de populatie deed de zaadzetting stijgen tot 46% (gelijk aan de natuurlijke bestuiving in de rest van de populatie).
Door het verschil in het gemiddeld aantal ovula per locatie hebben de verschillende zaadzettingen geen evenredige gevolgen op de verschillende locaties. In Twenthe is het aantal zaden per vrucht (16.9) ondanks een lagere zaadzetting dan in de Populierenlaan nauwelijks lager dan aldaar (17-18). De Populierenlaan is wel vergelijkbaar met het Hohndal, Vijfbomen en SBB.

In de Meander is ondanks een hoge zaadzetting het geproduceerde aantal zaden (15.7) minder dan in de Populierenlaan. De Phyteuma's bij het Scheenbroekeroopje produceren door een laag aantal ovula en een geringe zaadzetting zeer weinig zaden. De gevolgen van een laag aantal ovula zijn het best zichtbaar in de Parallelweg, waar ondanks een zaadzetting van 52.3% slechts 8.2 zaden per vrucht worden gemaakt. Naast de verschillen in ovula, kunnen verschillen in het aantal bloemen per aar per locatie zorgen voor verschillen in het aantal per aar geproduceerde zaden.

5.5.2. Het verband tussen het bezoek aan Phyteuma nigrum in de plots en raaien en de zaadzetting

Zonder bezoek is er geen zaadzetting, Phyteuma nigrum is dus afhankelijk van bezoek voor bestuiving.

Bezoek van B.pratorum met weinig Phyteumapollen op het lichaam met een frequentie van 0.15 bezoek/aar/uur bij koel regenachtig weer, is voldoende voor een zaadzetting van ca. 40% (plot Vijfbomen). Gerekend over een werkdag van de hommels van 10 uur krijgt een aar toch minstens een bezoek per dag en op een receptive stigma zal 1 tot 3 maal pollen afgezet worden. De zaadzetting is niet verschillend als van na een bezoek van 0-1 B.pratorum/aar/uur verdeeld over twee dagen in de Populierenlaan (zaadzetting na 1 juni: 36.5%).

Een bezoek van 1 hommel per aar per uur bij warm weer, is voldoende voor een zaadzetting van ca. 60%. Hierbij is er geen verschil tussen alleen bezoek van B.pratorum (plot A) en gecombineerd bezoek van B.pratorum en B.jonellus (plot B). Een bezoek van 1 B.jonellus/aar/uur met aanvullend bezoek van Apis mellifera zorgt eveneens voor een zaadzetting van ca. 60% (raai AB, 25 mei).

Een toenemend hommel bezoek, oplopend tot 3 à 4 bezoeken per aar per uur (raai AB 22 mei) doet de zaadzetting niet toenemen. Bij een aanmerkelijk hoger bezoek van 7 tot 8 hommels per aar per uur neemt de zaadzetting toe tot de gevonden maximale waarde van 83.6% (plot E 6/6).

Op 18 mei is er een verschil van 4.3% in het voordeel van de bestuiving met hulp, als er veel potentiële bezoeken van Rhingia's aan de aren zijn (50 bezoeken/aar/uur), bij minder Rhingia bezoek (30 bezoeken per aar/uur) is het verschil met natuurlijke bestuiving groter (6.5%).

Op 22 mei is het aantal bezoekende Rhingia's in de raaien minder dan 10 per /aar/uur en is het verschil in bestuiving met hulp en natuurlijke bestuiving significant (15.5%). De Rhingia's voorzagen die dag meer op nectar dan op pollen i.t.t. andere data, waarop pollen en nectar eten meer gelijk was verdeeld. Op 25 mei is het aantal bezoekende Rhingia's hoger (10-20 Rhingia's/aar/uur) en resulteert een extra bestuiving in een 2% hogere zaadzetting. Op 1 juni is het aantal bezoekende Rhingia's lager (enkele per/aar/uur) en is de zaadzetting na extra bestuiving ca.9% hoger dan de natuurlijke.
Wanneer Rhingia campestris in grote aantallen op de aren voorkomt, resulteren de extra opgebrachte pollen dus niet in een duidelijke verhoging van de zaadzetting; er is en verband tussen het massaal voorkomen van Rhingia en het niet effectief zijn van extra pollen op het stigma. Het is aannemelijk te veronderstellen dat de Rhingia's de extra pollen consumeren. De hoeveelheid geconsumeerde pollen is dan nooit dusdanig dat een zaadzetting van minder dan ca. 60% ontstaat.

5.5.3. De zaadzetting bij Phyteuma spicatum.

Bij uitsluiting van bezoek vond geen zaadzetting plaats, de zaadzetting is dus afhankelijk van bestuiving door bezoek. De zaadzetting in Valkenberg is aan het begin van de bloei (vruchten onderaan de aar) 66.5% en tijdens het hoogtepunt van de bloei en daarna (vruchten midden en bovenaan de aar) ca. 56%. De zaadzetting op het eind van de bloei is niet bekend.

5.6. DE ROL VAN ANDERE PLANTENSOORTEN VOOR DE BEZOEKERS VAN PHYTEUMA

5.6.1. Bezoekers van P. nigrum

B. pratorum bezoekt al vanaf het begin van de bloei van Phyteuma Rubus voorafgaand aan Phyteuma, Rhinanthus wordt voor de Phyteuma en na de Rubus bezocht. De twee soorten worden gezamenlijk of alleen in combinatie met Phyteuma bezocht.

B. pascuorum koningin bezoekt veelal alleen Rhinanthus. Soms wordt alleen Phyteuma bezocht, maar in de meeste gevallen wordt Phyteuma aangedaan na de Rhinanthus. B. pascuorum werksters worden alleen op Rhinanthus gezien.

Het solitaire bijtje bezoekt voorafgaand aan Phyteuma twee verschillende andere plantensoorten (gele en oranjerode pollen). Na de periode met bezoek aan Phyteuma werd Anthriscus sylvestris bezocht.

Apis mellifera werd alleen op Phyteuma gezien. De bijen kwamen waarschijnlijk uit volken in Taarloo.

5.6.2. Het bezoek van Bombussoorten aan Rhinanthus tussen en bij Phyteuma nigrum.

Bombus pratorum werd tijdens de bloei van Rhinanthus regelmatig waargenomen. Op 1 en 9 juni was een kwart van de hommels op de Ratelaar B.pratorum. Bombus jonellus daarentegen werd niet of als minder dan 1% waargenomen. De andere hommelsoorten op Rhinanthus waren B.pascuorum koningin (1 juni 21%, 9 juni 35%), B.pascuorum werksters (1 juni 33%, 9 juni 1%) en Bombus lapidarius (1 juni 8%, 9 juni 2%).

Bombus terrestris (1 juni 8%, 9 juni 35%) en Bombus hortorum (1 juni 4%, 9 juni %) werden geen enkele maal op Phyteuma nigrum gezien.

5.6.3. Bezoekers van Phyteuma spicatum.

Polygonatum wordt nog door een hommel bezocht, een andere hommel voorageerde daarnaast op een Rosaceae. Rosaceae- Rhinanthus en Iris pollen werden in geringe aantallen bij de helft van de hommels gevonden, zodat deze plantensoorten wellicht af en toe bezocht worden. Iris wordt wellicht ook op eerdere data bezocht door een enkele hommel.

Psithyrus bezoekt in de Hortus evenals Bombus pratorum voorafgaand aan de rapunzels de Rhododendron. Polygonatum wordt niet aangedaan, wel een composiet.

Apis mellifera had tijdens haar bezoek aan de Phyteuma in twee van de zes gevallen Polygonatum in de corbiculae en in twee van de drie gevallen op het lijf. Voorafgaand aan Phyteuma is dus de Polygonatum bezocht. Dit bezoek tegelijkertijdig met Phyteuma werd i.t.t. bij B.pratorum nooit waargenomen. Ook actief pollenverzamelen werd niet gezien. De Polygonatum pollen kunnen daardoor bij eerdere fouragen tochten verzameld zijn.
Tegelijk met B. pratorum werden honingbijen op de Phelondendron gezien. De bijen kwamen uit een tiental volken op de bijenstand in de Hortus.

Door de grote (kunstmatige) bloemenrijkdom in de Hortus is bezoek van andere leden van de kolonie van de hommels en bijen aan andere bloemensoorten dan de hierbovengenoemde voor de hand liggend. Oppervlakkige waarnemingen (niet genoteerd) bevestigden dit.
6. DISCUSSIE

De variatie in aantal bloemen per aar in de onderzochte standplaatsen van Phyteuma nigrum niet groot, wel zijn opmerkelijk de verschillen in ovula per bloem op de verschillende groeiplaatsen en vooral de lage aantallen ovula in kleine populaties. Een dergelijk verschil werd niet gevonden door Jennersten in Dianthus deltoides (Jennersten 1988). De gevonden verschillen in aantallen ovula hebben een grote invloed op het aantal geproduceerde zaden. Op een aar worden vooral in de allerbovenste bloemen minder ovula gevonden. Deze bloemen werden niet gebruikt voor vergelijking van eventuele verschillen of overeenkomsten binnen of tussen populaties.

De Rhingia's zijn van de voorjaarsgeneratie (van der Goot, 1989) en moeten tijdens de Phyteuma bloei zorgdragen voor de zomer-generatie waarvan de larven in koeievlaaien opgroeien. Rhingia vertoont bij pollen consumptie het gedrag, wat door Holloway wordt beschreven voor Syrphus: direct pollen eten van het stigma, wordt gesuplementeerd door consumptie van pollen op het lichaam. Op Phyteuma nigrum ligt de nadruk op het direct pollen eten van de stijl en het stigma. De papillen op het stigma (waargenomen tijdens het tellen van de pollen op het stigma) zouden kunnen verhinderen, dat nooit meer pollen kunnen worden weggegeten, dan zoveel er nodig zijn voor een zaadzetting van ca. 60% van de ovula.

Opvallend was het bezoek van Apis mellifera dat alleen plaatsvond op de top van de bloei op plaatsen met hoge dichtheden aan bloeiende bloemen. Apis verdroeg op dat moment Bombus pratorum. Eenzelfde verschijnsel was waargenomen door Kwak (1980, 1987) in een Rhinanthus angustifolius populatie in het stroomdal van de Drentsche A. Ook op Phyteuma kwam Apis alleen niet voor op plekken met een lage dichtheid van bloeiende bloemen en kwam Bombus in de hoge dichtheden niet meer voor. Dat de honingbijen vooral in de hogere dichtheden van invloed zijn op het voorkomen van de inheemse bijensoorten was eerder beschreven door Ginsberg (1983). Een ander verschijnsel van mogelijke interferentie tussen bezoekers is het afnemen van het aantal bezoekende Rhingia's bij hoog bezoek van Bombus op de top van de bloei. Volgens Barendregt (1975) zouden hommels zweefvliegen verjagen van de bloemen. Hoewel er geen gerichte waarnemingen waren naar dit gedrag, bestaat niet de indruk dat agressie van hommels t.o.v. de zweefvliegen voorkwam, het veelvuldig voorkomen van hommels lijkt voldoende de zweefvliegen af te schrikken. Dat het solitaire bijtje in het begin van de waarnemingen veel voorkwam, maar op de top van de bloei verdween, vertoont overeenkomsten met zoals gevonden door Sih en Balthus (1987). De auteurs vonden dat het bezoek van hommels en bijen toeneemt bij een toenemende dichtheid, en het bezoek van solitaire bijen afnam bij een toename van de patch-grootte.

De in 1989 geproduceerde hoeveelheid nectar in Phyteuma nigrum is lager dan in 1988 (Hagedoorn 1988). Waarschijnlijk was in '88 de nectar niet geheel zuiver meer en aangelengd met regenwater door het toen heersende slechte weer, hierdoor zou ook de lage suikerconcentratie verklaard kunnen worden die in '88 werd gemeten. In '88 werd geen verschil in nectar gehalte gemeten tussen manlijke en vrouwelijke bloemen tijdens een eenvolige meting. Ook hier zou dit te wijten kunnen zijn aan onvoldoende bezoek in voorafgaande dagen.

De geproduceerde hoeveelheid nectar in een Phyteuma nigrum bloem is 0.09 ml, gelijk aan de laagste gevonden waarde in (voor bezoek open) Rhinanthus angustifolius in 1988 (Hagedoorn, 1989).

>>>
Andere waarden voor nectar in Rhinanthus waren hoger (1.66 μl, 0.42 μl). De suikerconcentratie lag tussen de 30 en 50%.

Hierdoor is op de locatie Populierenlaan waar beide soorten voorkomen, alleen in hoge dichtheden van Phyteumabloemen en lage van Rhinanthus de standing crop van nectar voor beide plantensoorten gelijk.

Van Bombus pratorum is bekend, dat veel pollen wordt verzameld in combinatie met nectar verzamelen (Prŷs-Jones, 1982). Bombus jonellus lijkt in vele opzichten op Bombus pratorum (Alford, 1975) en zal ook de voorkeur geven aan de combinatie nectar en pollen verzamelen. Deze combinatie is alleen op Rhinanthus mogelijk wanneerBombus terrestris heeft ingebroken. De perforaties nemen toe in de loop van het bloeiseizoen van Rhinanthus (Hagedoorn, 1989). In het begin van het seizoen is de nectar van Rhinanthus dus niet volledig beschikbaar voor Bombus pratorum en Bombus jonellus. Voor beide soorten hommels zal in het begin van de bloei daardoor de facilitatie van Rhinanthus voor Phyteuma kunnen overheersen. Dit komt overeen met waarnemingen in dit onderzoek.

In het verlengde van de redenatietijt ligt, dat Rhinanthus in toenemende mate zal gaan concurreren om het bezoek. Deze concurrentie blijkt in de praktijk op te treden.

De mogelijke verandering van de concurrentiepositie van Rhinanthus angustifolius tenegevolge van weersinvloeden, kon in dit onderzoek niet nagegaan worden.

De aan het allerlaatste eind van de bloei waargenomen plaatselijke toename van bezoek aan Phyteuma ondanks een blijvende concurrentie van de Rhinanthus, zou verklaard kunnen worden door concentratie van hommels die hun ‘foraging route’ (Manning, 1956) laten eindigen bij de bewuste groep Phyteuma. De volgorde van plantenbezoek is bij alle hommels ongeveer gelijk en er zijn weinig veranderingen daarin in de loop van het seizoen (Dit onderzoek en Free, 1970). Phyteuma wordt altijd aan het eind van de tocht verzameld. Wanneer Phyteuma nog verspreid bloeiend voorkomt, hoeven de routes aan het einde niet samen te vallen. Bij een afname van de ruimtelijke spreiding eindigt voor meerdere hommels de foraging route in dezelfde groep enig overgebleven planten. >>>

Wanneer Phyteuma nog verspreid bloeiend voorkomt, hoeven de routes aan het einde niet samen te vallen. Bij een afname van de ruimtelijke spreiding eindigt voor meerdere hommels de foraging route in dezelfde groep enig overgebleven planten. >>>

Uit de overdracht van pollen op Phyteuma door hommels, blijkt dat de bestuiving door bezoekende hommels plaats lijkt te vinden tijdens de handelingen op de aar. Pollen aan de buikzijde zouden tijdens het landen op de bloem kunnen worden afgezet, dit mechanisme is in dit onderzoek niet gevonden. De landing op de aar (waar in dit onderzoek niet naar is gekeken) zou hierdoor lager of hoger zijn dan de vrije bloemen. Het ligt voor de hand, dat onder de bloeiende bloemen geland wordt en de landing op oud-vrije bloemen plaatsvindt. Van deze oud-vrije stadia zijn geen stigma's bekeken op de aanwezigheid van pollen. Ook de receptiviteit van dit stadium is niet genoeg onderzocht, zodat geen uitspraken gedaan kunnen worden over de mogelijke bestuiving door landende insecten.

Het bezoek aan Phyteuma en daaruit volgende zaadzetting in de grote populatie Populierenlaan en de Vijfbomen is afhankelijk van het aantal bloeiende manlijke bloemen per aar, de dichtheden spelen echter pas een rol voor de bestuiving, aan het eind van het bloeiseizoen, wanneer de dichtheden die van het begin van de waarnemingen benaderen en er concurrentie met Rhinanthus is. In lage dichtheden is er aan het eind van het seizoen weinig bezoek, wat weinig pollen overdraagt en een lage zaadzetting van 36 tot 45%. In de voorgaande periode is er in alle dichtheden minstens eenmaal per uur bezoek aan eenaar waardoor een stigma een paar maal bestoven kan worden en een hogere zaadzetting het resultaat is (ca.60%). Het stemt overeen met het door Hagedoorn (1989) gevonden gegeven, dat meerdere malen bestuiven de zaadzetting doet toenemen.Dit werd voor andere plantensoorten ook aangetoond door de Vries en Dubois (1983);Mulcahy en Ottaviana (1983), Snow (1982) en Kwak en Jennersten (1986).

In het begin en het midden van de bloei, neemt het bezoek toe bij een toenemende dichtheid, waarbij de mate van dichtheid (veroorzaakt door een hoge of lage dichtheid van planten) geen rol speelt. Dat bezoek toenemt bij toename van de dichtheid werd ook gevonden door: Heinrich 1979;Schaal 1980; Waddington en Heinrich 1982.

Dat de dichtheid van de bloemen geen invloed heeft op de zaadzetting, maar de tijd van het bloeiseizoen wel, werd ook gevonden door Schmitt (1983) in een Senecio populatie.
De zaadzetting in een kleine geïsoleerd liggende populatie met weinig entomofiele bloemen in de omgeving, het Scheebroekerloopje, was zeer laag. De zaadzetting van ca. 10% komt overeen met een zaadzetting door Hagedoorn (1989) gevonden bij zelfbestuiving. Ook kruisbestuiving met pollen uit de populatie deed de zaadzetting in de populatie niet stijgen. Dit is overeenkomstig de bevindingen van Jennersten (1988), dat een kleine geïsoleerde populatie van protandrische planten in toenemende mate zijn genetische diversiteit zal verliezen door laag bezoek. Ook de bodemkwaliteit kan volgens Stephensom (1981) en Lee & Bazazz (1982) een rol spelen. Het was in dit onderzoek niet mogelijk te bepalen welke van de factoren een rol speelde.

De zaadzetting in Twenthe en het Hohndal was lager dan in Drenthe. In Twenthe vormde de bestuiving op de waarnemingsdagen geen beperkende factor. In het Hohndal was er bezoek op de waarnemingsdag vergelijkbaar met de Populierenlaan en lijkt hierdoor de overdracht van pollen niet beperkend. Het verschil in de zaadzetting kan veroorzaakt worden door bodemkwaliteit (Stephenson 1981, Lee & Bazazz 1982) of door een zekere mate van inteelt. In Twenthe was ook geen sprake van een inteelt effect; pollen uit een ver verwijderde deel van de populatie deden de zaadzetting niet stijgen. Ook in het Hohndal zijn geen redenen om aan te nemen dat een zeker inteelt-effect een rol zou spelen. Alleen in een geïsoleerde groep waren de bestuiving onteerlijk. Dit sluit aan bij Klinkhamer, de Jong en de Bruyn (1989), die vonden dat geïsoleerde planten van Cynoglossum minder bezoek ontvangen. Door de geïsoleerde ligging zou de groep waren minder bezoek ontvangen. Minder bezoeker zou kunnen zorgen voor minder pollen overdracht van pollen elders uit de populatie, en een toename van bestuiving met eigen pollen (Levin, 1974; Wilson et al.1979) hetgeen een negatief effect op de zaadzetting heeft (Hagedoorn, 1989). Ook Sin en Balthus (1987) vonden bij geïsoleerde Nepeta aren minder bezoek en een lagere zaadzetting.

Een ander verschil met Phyteuma nigrum is de stand van de stijl t.o.v. de bloeiaar; de stijl kromt bij Phyteuma spicatum minder duidelijk naar boven en blijft op de meeste aren min of meer loodrecht op de as staan. Phyteuma nigrum oogt als een kwast, Phyteuma spicatum als een flessenborstel.

De hoeveelheden nectar in de bloemen zijn dezelfde als in 1988 en ook het ontbreken van nectar in vrouwelijke bloemen komt overeen met de metingen in dat jaar (Hagedoorn, 1989). Het verschil in hoeveelheden nectar per tijdstip kon niet aangetoond worden.

In Valkenberg was Bombus pratorum de enige bezoekende soort aan het eind van de bloei. Op deze plaats werden alleen werksters van Bombus pratorum waargenomen in tegenstelling tot de Hortus waar veel darren voorkwamen. Dit zou veroorzaakt kunnen worden door de kunstmatig bloemrijker omgeving in de Hortus, waardoor de ontwikkeling van de kolonies door een groter voedselaanbod sneller kan verlopen (Alford, 1975). Het grote voedselaanbod in de Hortus zou ook een oorzaak kunnen zijn voor het lage bezoek aan Phyteuma op die plaats.

De bestuiving vindt net zoals bij Phyteuma nigrum plaats tijdens de handelingen op de aar. Afzetten van pollen op het stigma vanaf de ventrale delen van bezoekers bij de landing, zou weer plaats kunnen vinden op de oudere stigma. Ook in het geval van Phyteuma spicatum zijn deze stigmata niet onderzocht.

Teilingen van soortvreemde pollen op het stigma wijzen erop dat bij Phyteuma spicatum in de tijd in afnemende mate vreemde pollen op het stigma worden afgezet. De soortvreemde pollen zouden een negatieve invloed kunnen hebben op de zaadzetting, die in de loop van het seizoen afneemt. Hagedoorn (1989) vond een toename van de zaadzetting na bestuiving met vreemde pollen, maar noemt deze cijfers zelf niet betrouwbaar. Zie ook hierboven, zoals beschreven bij het effect van vreemde pollen op de stigma van P.nigrum. Meer voor de hand ligt een afname van de zaadzetting in de loop van het seizoen door minder pollen op het stigma en een afname van het bezoek, zoals ook de trend was in de Hortus. Een afname van het bezoek gecorreleerd aan de dichtheid van bloeiende bloemen werd gevonden door Hagedoorn en ondersteund de laatste gedachtengang. Zie voor literatuur P.nigrum hierboven.

De afname van het aantal soortvreemde pollen op het stigma en in de pollenklopmjes van bezoekende insecten komt overeen met Phyteuma nigrum, in de allerlaatste fase van de bloei wanneer alleen lokaal nog concentraties van bloeiende aren voorkomen. Ook bestaat er een overeenkomst in de soort vreemde-pollen op het stigma en het aantal stigma waarop deze pollen werden aangetroffen, tussen Phyteuma spicatum in Valkenberg en de Phyteuma nigrum aan de Paralelweg.

Slechts eenmaal werd een voorkeur vastgesteld van hommels voor de Witte rapunzel. Mogelijkerwijs werd de voorkeur veroorzaakt door de concurrentie van de honingbijen. De bijen discrimineerden niet, en zorgen in alle aren voor een reductie van de nectar. De hommels zullen daardoor op een efficiënte manier meer bloemen moeten bezoeken (Heinrich, 1979), waardoor de Witte rapunzel door het hoger aantal bloemen per aar de voorkeur krijgt boven de intermediairen en de Zwarte rapunzel. In een boven omschreven situatie zullen de Witte rapunzels hoger bezoek krijgen dan de Zwarte rapunzel en de intermediairen en hogere aantallen soorteigen pollen ontvangen. Een dergelijk mechanisme zou ten grondslag kunnen liggen aan de gesignaleerde achteruitgang van de Zwarte rapunzel ten gunste van de Witte rapunzel in de Hortus.

De mogelijke rol van de bestuivers bij de introgressie in het veld van Phyteuma spicatum in Phyteuma nigrum zoals genoemd door Weeda (1989) kan niet direct aangetoond of weergelegd worden door de vele complicerende factoren die een rol kunnen spelen bij de bestuiving van beide soorten. Onder natuurlijke omstandigheden (d.w.z. zonder de aanwezigheid van de honingbij) en een gemengd voorkomen van de twee Rapunzels, heeft de belangrijkste bestuiver Bombus pratorum geen voorkeur voor een van beide soorten en er is geen duidelijke isolatie bij de bestuiving. Van belang zijn dan de aantalsverhoudingen tussen de soorten en de ligging en grootte van de groeiplekken ten opzichte van elkaar.
7. SAMENVATTING

In de bloeiperiode van Phyteuma nigrum en Phyteuma spicatum werd in 1989 onderzoek gedaan naar de invloed van de karakteristieken van een groeiplaats op de bestuiving en zaadzetting van de twee soorten Campanulaceae. In de maanden mei en juni werd op verschillende groeiplaatsen gekeken naar de de morfologie van de bloem en bloeiar, de populatiegrootte en de dichtheden van bloeiende aren, het bezoek op de lokaties, de overdracht van pollen door het bezoek en de resulterende zaadzetting. In een grote populatie van Phyteuma nigrum werd het verloop van de dichtheid, bezoek en overdracht van pollen en de zaadzetting in de loop van het bloeiseizoen gevolgd.

Phyteuma nigrum en Phyteuma spicatum verschilden in zowel morfologie van de bloem als van de bloeiar. Phyteuma spicatum had meer bloemen op de bloeiar en de stijl kromde i.t.t. Phyteuma nigrum minder naar boven. In beide soorten Phyteuma’s was het aantal ovula per bloem in de bloemen bovenaan de aar minder dan in de bloemen daaronder. In Phyteuma nigrum werd in de verschillende groeiplaatsen een verschillend aantal ovula per bloem gevonden, hetgeen een groot effect had op de potentiele zaadproductie. Zelfbestuiving komt onder natuurlijke omstandigheden niet voor, Phyteuma nigrum en Phyteuma spicatum zijn afhankelijk van het bezoek voor de bestuiving.

Op alle locaties was zowel bij Phyteuma nigrum als Phyteuma spicatum Bombus pratorum de belangrijkste bezoeker en bestuiver. Alle populaties op de verschillende groeiplaatsen kregen voldoende bezoek om een goede zaadzetting te kunnen bereiken. Ook een kleine populatie welke niet geïsoleerd was van andere gelijktijdig bloeiende planten had een goede zaadzetting.

Een uitzondering vormde een zeer kleine populatie van Phyteuma nigrum bij het Scheepbroekerloopje, waarin een zaadzetting werd gevonden die overeenkwam met eerder gevonden zaadzetting bij zelfbestuiving. De zaadzetting is hier niet meer door het bezoek binnen de populatie beïnvloedbaar. Verschillen in zaadzetting tussen groeiplaatsen met verschillende geografische liggingen worden (mogelijk op een uitzondering na) waarschijnlijk bepaald door ‘resource limitation’.

Tijdens de bloei was het bezoek in een grote populatie van Phyteuma nigrum in alle dichtheden voldoende om voor meerdere bestuivingen per bloem te kunnen zorgen. In het begin van de bloei is er plaatselijk facilitatie door Rhinantheus. Aan het eind van de bloei treedt er echter concurrentie op met Rhinantheus, waardoor een aar per dag nog slechts een- tot driemaal wordt bezocht en minder pollen op de stigma’s worden overgebracht. Het resultaat van de kwantitatieve en kwalitatieve mindere bestuiving is een lagere zaadzetting. Op het einde van de bloei kan door concentratie van het bezoek aan een groepje aren het bezoek nog dusdanig stijgen, dat alsnog een zeer goede zaadzetting wordt bereikt. De zaadzetting is dan hoger dan in het begin en midden van de bloei.

Een mogelijke verklaring hiervoor zou kunnen zijn, dat de zweefvlieg Rhingia campestris die in het begin en midden van de Phyteuma bloei veel op de bloeiaren voorkomt, pollen consumeert van het stigma en daardoor de zaadzetting negatief beïnvloed. Vooral vrouwelijke Rhingia’s zouden de Phyteumapollen consumeren.
De wijze van bestuiving op Phyteuma nigrum en Phyteuma spicatum is niet duidelijk verschillend en bestuivers hebben onder natuurlijke omstandigheden (geen Apis mellifera aanwezig) en bij een gemengd voorkomen van de twee soorten, geen voorkeur voor een van beide planten. Door verschillen in het aan Phyteuma voorafgaande bezoek treden plaatselijk verschillen op in de soort en aantallen pollen die worden overgebracht op Phyteuma. De verschillen in het aan Phyteuma voorafgaande bezoek worden bepaald door het verschil in aanbod van drachtplanten in de omgeving van de Phyteuma-populatie.

8. SUGGESTIES VOOR VERDER ONDERZOEK

Dit onderzoek was het eerste uitgebreide onderzoek naar de bestuiving van Phyteuma nigrum en Phyteuma spicatum en is daardoor voornamelijk beschrijvend van aard. Helaas is voor Phyteuma nigrum het begin van de bloei niet onderzocht: voor een volledig beeld van de bestuiving zou deze beginperiode onderzocht moeten worden. Voor Phyteuma spicatum zou het onderzoek ook de top van de bloei in een 'wilde' populatie moeten omvatten. Verder onderzoek zou zich kunnen toespitsen op een kwantitatieve benadering van beschreven verschijnselen. In de eerste plaats kan daarbij gedacht worden aan de mogelijke reductie van de zaadzetting door pollenconsumptie van Rhingia campestris. In de tweede plaats lijkt onderzoek wenselijk naar de relatie tussen de op het stigma gevonden aantal, soort en kwaliteit pollen en de eruit resulterende zaadzetting. Voor een vollediger beeld van de bestuivingsoecologie lijkt het noodzakelijk een duidelijk inzicht te krijgen in de relaties tussen nectarproductie en bloeistadium en bezoek en de daarmee samenhangende relatie met de zaadzetting op een bepaald bloeitijdstip.

Opmerkelijk was het in dit onderzoek gevonden verschil in het aantal ovula per bloem in de verschillende populaties. Voor verdere vergelijking van de aantallen ovula per aar in een populatie, zou gekeken moeten worden naar de verdeling van de ovula op de aar. Ook zou een methode bedacht moeten worden om een grote steekproef te kunnen nemen zonder de populatie te schaden in zijn reproductie. Opkweken van in de populaties verzamelde planten onder gecontroleerde omstandigheden, zou uitsluitend kunnen geven over de vraag of hier sprake is van 'resource-limitation'. Ook de mogelijke rol van resource-limitation bij de zaadzetting van de populaties in Twente en het Hohndal zou onderzocht kunnen worden.
9. Literature.

Biilage 1a.

De populaties in het stroomdal van de Drentsche A

1. Oudemolen SBB-boerderij weiland
2. Oudemolen SBB-boerderij weg
3. Oudemolen SBB-boerderij brug
4. Populierenlaan
 1. Plot A
 2. Plot B
 3. Plot C
 4. Plot D
 5. Plot E
 6. Reai A(1)
 7. Reai B(2)
 8. Reai C(3)
5. Vijfbomen
9. Plot
Bijlage 1c.

De ligging van het Hohndal.
1d. De locaties van *P. spicatum* (zie ook bijlage 2b).
Bijlage 2.

2a. De omvang van de populaties van Phyteuma nigrum

Hohndal.
De groep aren uit de waarnemingen op 24 mei, besloeg een oppervlak van 12 x 3 m en telde 207 bloeiende aren 15 niet bloeiende en 6 uitgebloeiende aren (6.33 aren/m2).
Van 28 aren werden de bloemen, knoppen en uitgebloeiide bloemen geteld: gemiddeld waren er 27.39 bloemen per ar (sd 12.54), waarvan er gem. 14.86 bloeienden (sd 8.83).
De populatie is een grote aaneengesloten populatie van enige duizend en Phyteuma nigrum planten. De totale grootte van de populatie is 600x3m, en bestaat uit meer dan 10.000 aren. Zie ook: Bongers en Govers (1985).

Scheebroekerloopje (Elsbroek)
Langs een greppel werden op 29 mei 7 individuen gevonden, die verspreid over een (geschatte) lengte van ca. 10m langs een greppel groeiden (< 1 ar/m2).

Paralelweg
Op 7 juni werden zeventien bloeiende aren halverwege de bloeigeteld, 37 aren waren uitgebloeid. De planten groeiden aan weerszijde van de klinkerweg, het grootste deel in de berm aan de kant van de asfaltweg over een (geschatte) lengte van ca. 10m en een breedte van 1m.
De planten zijn niet homogeen over het opp. verspreid.

Populierenlaan
Het totale aantal aren wordt geschat op ca.1000. Voorkomend van Raai C tot tot enige meters ten noorden van Plot E in een breedte van ca. 10m. De planten zijn niet homogeen verspreid.

Vijfbomen
ca. 100 bloeiende aren in de directe omgeving (opp.ca25m2) van het plot en langs de dichtbijgelegen greppel over een lengte van ca.5m.
Tussen het plot en de greppel komen individuele exemplaren voor.

Meander
26.5 ca. 15 aren per m2 totale populatie ca. 150 aren, homogeen verspreid.

SBB Brug
26.5 ca. 15 aren per m2 totale populatie ca. 100 aren, homogen verspreid.

SBB Weg
Op 16 mei werd de groep planten langs de weg naar de boerderij geteld. Van de brug tot aan de boerderij werden in de berm aan het water, in totaal werden 179 exemplaren geteld, waarvan 37 in een vegetatief stadium. De overige 142 exemplaren hadden 179 bloeiaren waarvan 9 aren bloeiden met gem. 6 bloemen (sd 5.25).

SBB weiland
Hagedoorn (1989) schatte de populatie op ca.100m2 met als hoogste dichtheid 422.99 bloemen/m2. Ook in 1989 was de dichtheid hoog, maar alleen in een strook langs de greppel ter grootte van enige m2.
De grootte wordt in 1989 geschat op 100-200 bloeiende aren.
Twenthe

Op 17 mei en 30 mei werd in Twenthe in Delden tussen Hengelo en Haaksbergen een populatie Phyteuma nigrum bezocht. De plant groeide in de wegbermen van de kruising van Beldershoekezweg en Boekelerhofweg waar deze langs en over de Boekelo er beek lopen.

Op 17 mei groeiden er langs de Boekelerhofweg tot de beek 110 exemplaren, waarvan 58 in een vegetatief stadium en 56 met bloeiaren. De 56 exemplaren hadden 83 bloeiaren, waarvan er 4 daadwerkelijk bloeiden, met 12, 15, 18 en 14 bloemen.

Verder langs de weg kwamen 162 vegetatieve exemplaren voor en werden 249 bloeiaren gevonden, wv. 9 aren bloeiden met zes maal 6, twee maal 8 en een maal 3 bloemen. De 249 bloeiaren wijzen op ca. 160 exemplaren.

Langs de Beldershoekezweg groeide 97 exemplaren waarvan 26 vegetatief voorkwamen. De overige 71 ex. hadden 133 bloeiaren waarvan 11 in bloei, met 15, 8, 9, 13, 12, 22, 10, 8, 16, 16 en 11 bloemen.

Aan de overkant van de weg kwam in de hoek van de kruising een groot exemplaar voor met twee bloeiaren met 8 en 3 bloemen.

De totale populatie bestond aldus uit ca. 530 exemplaren waarvan ca. 250 vegetatieve exemplaren. De overige 280 exemplaren met bloeiaren, hadden gemiddeld 1.6 bloeiaren. De 26 bloeiende aren (ca.5% van het totaal) hadden gemiddeld 10.19 bloemen (sd 4.71 n=26). Op 17 mei was de populatie aan het begin van de bloei. Op 30 mei was de populatie aan het eind van de bloei.

2b. De populaties van Phyteuma spicatum

Valkenbergen en Hondsdonk

Groeiplaats ten zuiden van Breda tussen Ulvenhout en Chaam in de landgoederen Valkenberg en Hondsdonk langs de Chaamse beek, gelegen in het stroom gebied van de Mark.

De plant groeit bij voorkeur op de oevers van de beek of van drooggevallen takken ervan. In de landgoederen werden 10 bloeiende groepen Phyteuma's gezien met in totaal 393 bloeiende aren en 438 uitgebloeide aren (11 groepen). De groep in Valkenberg waarin werd waargenomen had 275 aren (81 bloeiend, 3 in knop)

De grootte van andere groepen (plaats weergegeven op de kaart in bijlage 1):

<table>
<thead>
<tr>
<th>Locatie aren</th>
<th>in knop</th>
<th>bloeiend</th>
<th>uitgebloeid</th>
<th>totaal</th>
</tr>
</thead>
<tbody>
<tr>
<td>A' 0</td>
<td>62</td>
<td>51</td>
<td>113</td>
<td></td>
</tr>
<tr>
<td>A' *</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B 0</td>
<td>0</td>
<td>8</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(3ind.)</td>
<td></td>
</tr>
<tr>
<td>C 0</td>
<td>16</td>
<td>10</td>
<td>26</td>
<td></td>
</tr>
<tr>
<td>D 0</td>
<td>12</td>
<td>10</td>
<td>22</td>
<td></td>
</tr>
<tr>
<td>E 0</td>
<td>9</td>
<td>10</td>
<td>19</td>
<td></td>
</tr>
<tr>
<td>F 0</td>
<td>6</td>
<td>7</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>G 0</td>
<td>30</td>
<td>18</td>
<td>48</td>
<td></td>
</tr>
<tr>
<td>H 0</td>
<td>70</td>
<td>93</td>
<td>163</td>
<td></td>
</tr>
<tr>
<td>J 0</td>
<td>4</td>
<td>0</td>
<td>4 (1ind)</td>
<td></td>
</tr>
<tr>
<td>K 0</td>
<td>103</td>
<td>40</td>
<td>143</td>
<td></td>
</tr>
</tbody>
</table>

* Op 12 juni waren 19 aren van groep A' uitgebloeid, 14 assen bloeiden, 19 waren uitgebloeid.
Op 17 juni werden 10 bloeiende assen geteld. Evenals op 12 juni waren 16 assen op 15- tot 30 cm afgebroken. Dergelijke vrat werd niet gezien langs de beek in Valkenberg en Hondsdonk, waar op 17 juni nog slechts enkele exemplaren bloeiden. Groep A was op deze datum uitgebloeid.

Locatie G en H langs de beek in Hondsdonk hebben vooral dichtbij het bruggetje de meeste planten.

Hortus, Haren
P. spicatum en P. nigrum groeien in de Hortus in twee min of meer van elkaar gescheiden groepen door elkaar heen, d.w.z. in een groep komen enige aubergine kleurige Phyteuma's voor.
De ene groep bevindt zich naast de vijver bij de bijenstal en onder een aangrenzend Hazelaar-bosje. De andere groep waarin P. nigrum wordt gevonden, groeit naast het pad naar de vijver.

De 'vijvergroep' is groot (30-50 m²) en heeft een hoge dichtheid (ca. 50 bloeiaren m²). De 'padgroep' is moeilijker te begrenzen; de hoogste dichtheid van 10-20 aren/m² komt voor in een gebiedje van ca. 15 m².

De exacte grootte van de groepen is niet goed te bepalen, daarvanwege het siertuinachtige karakter van de Hortus niet in de vegetatie gelopen kon worden, mogelijk bevonden zich uit het zicht nog meer exemplaren.

Bijlage 3. de dichtheden van de bloeiaren en het aantal bloemen per aar in de waarnemingsplots en de raaien.

Grootte van de plots en raaien.

Plot A, -D en -E: 2x1m
Plot B en -C: 1x1m
Raai A, -B en -C: 10x0.7m
Vijfbomen: 2x1m

Bijzonderheden

Plot A is gedeeltelijk gelegen in Raai A; zie voor aantal bloemen/aar etc. van Raai A: Plot A
Plot B en -C zijn gedeeltelijk gelegen in Raai B; zie voor aantal bloemen/aar etc. van Raai B: Plot B
Plot C is vrijwel identiek aan Plot B; zie voor aantal bloemen/aar etc. Plot B.

Wanneer Rhinanthus in de plots of raaien tot bloei kwam, is ook het aantal aren en bloemen per aar van deze soort genoteerd; met uitzondering van Raai C, waarin vrijwel uitsluitend Rhinanthus voorkwam. Zie voor het bloeiverloop van Rhinanthus in Raai C het bloeiverloop van Rhinanthus in het naast Raai C gelegen plot D.
De dichtheden en het aantal bloemen per aar.

De voor de notatie gebruikte codes zijn de volgende:

1=aren bloeiend, 2=aren niet bl., 3=uitgebl.
4=aantal bloemen/aar (gem., sd en N)
5=aantal vrouwelijke bloemen/aar (gem., sd en N)
6=aantal mannelijke bloemen/aar (gem., sd en N)
7=aantal mannelijke bloemen per vierkante m.
 (aren bl./m²* mnl.bl. /aar)
8=aantal bloemen Rhinanthus per vierkante m.

<table>
<thead>
<tr>
<th>Plot A</th>
<th>dat.</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>18.5</td>
<td>17</td>
<td>32</td>
<td>-</td>
<td>13.35-6.74-17</td>
<td>11.0</td>
<td>-6.17-17</td>
<td>2.35</td>
<td>-1.7-17</td>
</tr>
<tr>
<td>22.5</td>
<td>32</td>
<td>9</td>
<td>1</td>
<td>14.78-5.71-32</td>
<td>12.28-5.37-32</td>
<td>2.50</td>
<td>-1.27-32</td>
<td>40</td>
</tr>
<tr>
<td>29.5</td>
<td>24</td>
<td>-</td>
<td>23</td>
<td>11.67-5.24-24</td>
<td>10.92-4.63-24</td>
<td>0.75</td>
<td>-0.99-24</td>
<td>9</td>
</tr>
<tr>
<td>1.6</td>
<td>15</td>
<td>3</td>
<td>32</td>
<td>9.4</td>
<td>-6.25-15</td>
<td>8.8</td>
<td>-5.6-15</td>
<td>0.6</td>
</tr>
<tr>
<td>4.6</td>
<td>3</td>
<td>1</td>
<td>28</td>
<td>4.0</td>
<td>-1.0-3</td>
<td>4.0</td>
<td>-1.0-3</td>
<td>0</td>
</tr>
<tr>
<td>9.6</td>
<td>3</td>
<td>-</td>
<td>41</td>
<td>6.36</td>
<td></td>
<td>6.36</td>
<td></td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Plot B</th>
<th>dat.</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>18.5</td>
<td>31</td>
<td>25</td>
<td>-</td>
<td>8.16</td>
<td>-5.73-25</td>
<td>5.92</td>
<td>-5.27-25</td>
<td>2.24</td>
</tr>
<tr>
<td>22.5</td>
<td>80</td>
<td>20</td>
<td>-</td>
<td>11.8</td>
<td>-6.08-25</td>
<td>10.36</td>
<td>-5.71-25</td>
<td>1.44</td>
</tr>
<tr>
<td>25.5</td>
<td>74</td>
<td>2</td>
<td>-</td>
<td>10.56-5.91-25</td>
<td>9.40</td>
<td>-5.33-25</td>
<td>1.16</td>
<td>-1.07-25</td>
</tr>
<tr>
<td>29.5</td>
<td>45</td>
<td>-</td>
<td>46</td>
<td>9.5</td>
<td>-5.36-26</td>
<td>8.81</td>
<td>-4.95-26</td>
<td>0.69</td>
</tr>
<tr>
<td>1.6</td>
<td>22</td>
<td>-</td>
<td>58</td>
<td>9.05</td>
<td>-6.25-22</td>
<td>8.55</td>
<td>-5.75-22</td>
<td>0.5</td>
</tr>
<tr>
<td>4.6</td>
<td>6</td>
<td>-</td>
<td>57</td>
<td>8.33</td>
<td>-4.08-6</td>
<td>8.0</td>
<td>-4.1-6</td>
<td>0.33</td>
</tr>
<tr>
<td>9.6</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Plot C</th>
<th>dat.</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>18.5</td>
<td>26</td>
<td>89</td>
<td></td>
<td>58.24</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22.5</td>
<td>76</td>
<td>16</td>
<td></td>
<td>106.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25.5</td>
<td>70</td>
<td></td>
<td></td>
<td>81.2 (*)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>29.5</td>
<td>38</td>
<td>64</td>
<td></td>
<td>26.22</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.6</td>
<td>20</td>
<td>71</td>
<td>10.75-7.09-20</td>
<td>10.15-6.29-20</td>
<td>0.6</td>
<td>-0.99-20</td>
<td>12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.6</td>
<td>4</td>
<td>-</td>
<td>10.75-4.92-4</td>
<td>9.25-4.57-4</td>
<td>1.5</td>
<td>-0.58-4</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9.6</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(* onduidelijkheden in de notatie van de veldopname, schatting van het aantal bloemen op basis van vergelijking Plot B en -C)
Plot D

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>18.5</td>
<td>16</td>
<td>33</td>
<td>-</td>
<td>11.5</td>
<td>15.24</td>
<td>16</td>
<td>8.75</td>
<td>5.95</td>
</tr>
<tr>
<td>Rhin.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3.24</td>
<td>2.25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22.5</td>
<td>23</td>
<td>5</td>
<td>15.26</td>
<td>10.59</td>
<td>23</td>
<td>12.91</td>
<td>10.28</td>
<td>23</td>
</tr>
<tr>
<td>Rhin.</td>
<td>15</td>
<td></td>
<td>3.13</td>
<td>1.36</td>
<td>-15</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25.5</td>
<td>16</td>
<td>1</td>
<td>14.06</td>
<td>7.26</td>
<td>16</td>
<td>12.56</td>
<td>6.6</td>
<td>16</td>
</tr>
<tr>
<td>Rhin.</td>
<td>12</td>
<td></td>
<td>3.25</td>
<td>1.23</td>
<td>-12</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>29.5</td>
<td>8</td>
<td>7</td>
<td>7.88</td>
<td>4.97</td>
<td>8</td>
<td>7.63</td>
<td>4.72</td>
<td>8</td>
</tr>
<tr>
<td>Rhin.</td>
<td>16</td>
<td></td>
<td>2.81</td>
<td>1.52</td>
<td>-16</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.6</td>
<td>5</td>
<td>18</td>
<td>7.8</td>
<td>4.97</td>
<td>-5</td>
<td>7.2</td>
<td>-3.96</td>
<td>-5</td>
</tr>
<tr>
<td>Rhin.</td>
<td>12</td>
<td></td>
<td>2.08</td>
<td>1.16</td>
<td>-12</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.6</td>
<td>1</td>
<td>15</td>
<td>8</td>
<td></td>
<td>8</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Rhin.</td>
<td>1</td>
<td></td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
</tr>
</tbody>
</table>

Plot E

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>18.5</td>
<td>15</td>
<td>27</td>
<td>-</td>
<td>10.27</td>
<td>5.9</td>
<td>-15</td>
<td>7.13</td>
<td>5.73</td>
</tr>
<tr>
<td>22.5</td>
<td>46</td>
<td>23</td>
<td>1</td>
<td>14.02</td>
<td>6.97</td>
<td>46</td>
<td>12.17</td>
<td>5.81</td>
</tr>
<tr>
<td>25.5</td>
<td>40</td>
<td>8</td>
<td>1</td>
<td>11.4</td>
<td>5.39</td>
<td>40</td>
<td>10.38</td>
<td>5.23</td>
</tr>
<tr>
<td>29.5</td>
<td>55</td>
<td>24</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td>1.03</td>
<td>0.65</td>
</tr>
<tr>
<td>1.6</td>
<td>37</td>
<td>28</td>
<td>15.68</td>
<td>9.27</td>
<td>37</td>
<td>12.89</td>
<td>6.91</td>
<td>37</td>
</tr>
<tr>
<td>4.6</td>
<td>23</td>
<td>40</td>
<td>12.09</td>
<td>6.80</td>
<td>23</td>
<td>10.78</td>
<td>6.55</td>
<td>23</td>
</tr>
<tr>
<td>9.6</td>
<td>13</td>
<td>51</td>
<td>13.15</td>
<td>8.22</td>
<td>13</td>
<td>11.54</td>
<td>8.25</td>
<td>13</td>
</tr>
</tbody>
</table>

Plot F

| 9.6 | 9 | - | 19.78| 12.24| 9 | 18.33| 12.96| 9 | 1 | -1.12| 9 |

Raai A

<p>| | | | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>18.5</td>
<td></td>
<td>27</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22.5</td>
<td></td>
<td>62</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25.5</td>
<td></td>
<td>99</td>
<td>-</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>29.5</td>
<td></td>
<td>24</td>
<td>76</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.6</td>
<td></td>
<td>12</td>
<td>47</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.6</td>
<td></td>
<td>4</td>
<td>59</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rhin.</td>
<td></td>
<td>41</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9.6</td>
<td></td>
<td>2</td>
<td>2</td>
<td>42</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Raai B

18.5		125	292	-							
22.5		308	50	-							
25.5		288	32	-							
29.5		221	1	185							
1.6		57	236								
4.6		28	145								
9.6											

Vijfbomen

7.6		20									
9.6		14									
13.6		8									

Hohndal

<p>| | | | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>24.5</td>
<td></td>
<td>207</td>
<td>15-6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plaats</td>
<td>Datum</td>
<td>tijd</td>
<td>gesl.</td>
<td>l.(gem.)</td>
<td>sd</td>
<td>n(bloemen)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>-------</td>
<td>------</td>
<td>-------</td>
<td>----------</td>
<td>----</td>
<td>-------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kooi 1</td>
<td>22/5</td>
<td>18.00 m</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>14</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pop.l. (omh.)</td>
<td></td>
<td></td>
<td>v</td>
<td>0</td>
<td></td>
<td>17</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>ov</td>
<td>0</td>
<td></td>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>29/5</td>
<td>9.30 m</td>
<td>0.039</td>
<td>0.057</td>
<td>14</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>v</td>
<td>0.096</td>
<td>0.123</td>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>ov</td>
<td>0.086</td>
<td>0.112</td>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1/6</td>
<td>11.00 m</td>
<td>0.024</td>
<td>0.139</td>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>v</td>
<td>0.052</td>
<td>0.207</td>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>ov</td>
<td>0</td>
<td>0</td>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4/6</td>
<td>13.00 m</td>
<td>0.48</td>
<td>0.299</td>
<td>14</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>v</td>
<td>0</td>
<td>0</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>ov</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>9/6</td>
<td>9.50 m</td>
<td>0.229</td>
<td>0.209</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>v</td>
<td>0.204</td>
<td>0.245</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>ov</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pop.1.</td>
<td>18/5</td>
<td>10.30 m</td>
<td>0.049</td>
<td>0.071</td>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>raail</td>
<td></td>
<td></td>
<td>v</td>
<td>0.014</td>
<td>0.028</td>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>ov</td>
<td>0.01</td>
<td>0.03</td>
<td>40</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>12.50 m</td>
<td>0.025</td>
<td>0.029</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>v</td>
<td>0.022</td>
<td>0.042</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>ov</td>
<td>0.035</td>
<td>0.05</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>17.00 m</td>
<td>0</td>
<td>0</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>v</td>
<td>0</td>
<td>0</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>ov</td>
<td>0</td>
<td>0</td>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Bijlage 5a

Het insectenbezoek op *P. nigrum* in de plots en raaien

In de plots zijn in een toevallige volgorde waarnemingen gedaan van 15 minuten. Hieruit is het bezoek per uur/m berekend. De resultaten hiervan zijn de onderstaande.

Gebruikte afkortingen:
- prat = *B. pratorum*
- pasc = *B. pascuorum*
- jön = *B. jonellus*
- sbbw = *Syrphus*
- pase = *B. paseuorum*
- paseq = *B. paseuorum*
- bijtje = solitair bijtje
- re = *Rhingia eampestris*
- kool = *Pieris*
- koning = *Syrphus*

Gebruikte afkortingen:
- prat = *B. pratorum*
- jön = *B. jonellus*
- sbbw = *Syrphus*
- pase = *B. paseuorum*
- paseq = *B. paseuorum*
- bijtje = solitair bijtje
- re = *Rhingia eampestris*
- kool = *Pieris*

<table>
<thead>
<tr>
<th>Plaats</th>
<th>Datum</th>
<th>tijd</th>
<th>gesl.</th>
<th>1.(gem.)</th>
<th>sd</th>
<th>n(bloemen)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pop.1</td>
<td>22/5</td>
<td>6.30</td>
<td>m</td>
<td>0.019</td>
<td>0.03</td>
<td>13</td>
</tr>
<tr>
<td>raai1</td>
<td>6.30</td>
<td>m</td>
<td>0.008</td>
<td>0.021</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td></td>
<td>8.20</td>
<td>m</td>
<td>0.019</td>
<td>0.03</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10.50</td>
<td>m</td>
<td>0</td>
<td>0</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td></td>
<td>15.00</td>
<td>m</td>
<td>0.028</td>
<td>0.064</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>raai2</td>
<td>9.50</td>
<td>m</td>
<td>0.015</td>
<td>0.038</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td></td>
<td>12.00</td>
<td>0.016</td>
<td>0.014</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>sbbw</td>
<td>24/5</td>
<td>12.00</td>
<td>0.016</td>
<td>0.014</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>twenthe</td>
<td>17/5</td>
<td>13.00</td>
<td>0</td>
<td>0</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td></td>
<td>13.00</td>
<td>0.251</td>
<td>0.709</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vijfbomen</td>
<td>5/6</td>
<td>12.00</td>
<td>0</td>
<td>0</td>
<td>10</td>
<td></td>
</tr>
</tbody>
</table>

Bijlage 5a

In de plots zijn in een toevallige volgorde waarnemingen gedaan van 15 minuten. Hieruit is het bezoek per uur/m berekend. De resultaten hiervan zijn de onderstaande.

Gebruikte afkortingen:
- prat = *B. pratorum*
- jön = *B. jonellus*
- sbbw = *Syrphus*
- pase = *B. paseuorum*
- paseq = *B. paseuorum*
- bijtje = solitair bijtje
- re = *Rhingia eampestris*
- kool = *Pieris*

Gebruikte afkortingen:
- prat = *B. pratorum*
- jön = *B. jonellus*
- sbbw = *Syrphus*
- pase = *B. paseuorum*
- paseq = *B. paseuorum*
- bijtje = solitair bijtje
- re = *Rhingia eampestris*
- kool = *Pieris*

<table>
<thead>
<tr>
<th>Plaats</th>
<th>Datum</th>
<th>Bezoek</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plot F :</td>
<td>9/6</td>
<td>5.5 prat, 4.5 rc, 1 vlieg</td>
</tr>
<tr>
<td>Plot E :</td>
<td>18/5</td>
<td>0.4(5 prat, 4 bijtje, 32 rc) -- 2 prat, 1.6 bijtje, 12.8 rc</td>
</tr>
<tr>
<td></td>
<td>22/5</td>
<td>0.4((25 prat, 3 pasc q, 1 bijtje, 54 rc) -- 10 prat, 1.2</td>
</tr>
<tr>
<td></td>
<td>25/5</td>
<td>0.5(bijtje, 93 rc, 4 sbr) -- 0.5 bijtje, 46.5 rc, 2 sbr</td>
</tr>
<tr>
<td></td>
<td>29/5</td>
<td>0.66(3 prat, 18 rc) -- 1.9 prat, 11.9 rc</td>
</tr>
<tr>
<td></td>
<td>1/6</td>
<td>1 prat, 7 rc</td>
</tr>
<tr>
<td></td>
<td>9/6</td>
<td>4 prat, 1 rc</td>
</tr>
</tbody>
</table>
vervolg bezoek in plots en raaien

<table>
<thead>
<tr>
<th>Datum</th>
<th>Plot D</th>
<th>Plot C</th>
<th>Plot B</th>
<th>Plot A</th>
<th>Plot A, B, C</th>
<th>Plot Vijfbomen:</th>
</tr>
</thead>
<tbody>
<tr>
<td>18/5</td>
<td>0.4(1 llprat, 5 jon, 2 pasc q, 2 bijtje, 51 rc)</td>
<td>0.8(6 prat, 4 jon, 6 bijtje, 56 rc)</td>
<td>0.8(2 prat, 3 jon, 2 bijtje, 104 rc)</td>
<td>0.4(2 prat, 1 syr, 1 vlieg, 85 rc)</td>
<td>6.6 prat, 5.6 jon, 162 rc, 5.8 bijtje</td>
<td>7/6 1.5 prat</td>
</tr>
<tr>
<td></td>
<td>22/5</td>
<td>0.4(3 prat, 38 rc)</td>
<td>22/5</td>
<td>0.8(30 prat, 7 jon, 2 syr, 2 kool, 55 rc)</td>
<td>22/5</td>
<td>2(2 rc) -- 9 rc</td>
</tr>
<tr>
<td></td>
<td>25/5</td>
<td>0.66(1 prat, 13 rc)</td>
<td>25/5</td>
<td>0.66(3 jon, 34 rc)</td>
<td>25/5</td>
<td>2(21 rc) -- 42 rc</td>
</tr>
<tr>
<td></td>
<td>29/5</td>
<td>0.8(1 prat, 14 rc)</td>
<td>29/5</td>
<td>0.5(11 rc) -- 5.5 rc</td>
<td>29/5</td>
<td>2 prat, 125 rc</td>
</tr>
<tr>
<td></td>
<td>1/6</td>
<td>4(2 rc) -- 9 rc</td>
<td>1/6</td>
<td>1 prat, 1 rc</td>
<td>1/6</td>
<td>1 prat, 9 rc</td>
</tr>
</tbody>
</table>

In Raai A en Raai B werden om het uur waarnemingen gedaan, waarbij een raai in ongeveer 2 minuten werd langsgelopen. De resultaten zijn:

Raai A

<table>
<thead>
<tr>
<th>Datum</th>
<th>Aantal waarnemingen</th>
<th>Soorten en som van alle waarn.</th>
</tr>
</thead>
<tbody>
<tr>
<td>18/5</td>
<td>15</td>
<td>2 bijtje, 2 jon, 1 prat, 37 rc</td>
</tr>
<tr>
<td>22/5</td>
<td>11</td>
<td>2 prat, 71 rc</td>
</tr>
<tr>
<td>25/5</td>
<td>9</td>
<td>46 rc</td>
</tr>
<tr>
<td>29/5</td>
<td>6</td>
<td>1 pasc q, 8 rc</td>
</tr>
<tr>
<td>1/6</td>
<td>7</td>
<td>2</td>
</tr>
</tbody>
</table>

Raai B

<table>
<thead>
<tr>
<th>Datum</th>
<th>Aantal waarnemingen</th>
<th>Soorten en som van alle waarn.</th>
</tr>
</thead>
<tbody>
<tr>
<td>18/5</td>
<td>15</td>
<td>3 jon, 1 mot, 3 prat, 78 rc</td>
</tr>
<tr>
<td>22/5</td>
<td>11</td>
<td>1 bijtje, 5 jon, 1 prat, 85 rc</td>
</tr>
<tr>
<td>25/5</td>
<td>9</td>
<td>4 apis, 2 jon, 1 koek, 1 mot, 1 prat, 77 rc</td>
</tr>
<tr>
<td>29/5</td>
<td>6</td>
<td>1 jon, 1 prat, 29 rc, 1 syr</td>
</tr>
<tr>
<td>1/6</td>
<td>7</td>
<td>12 rc</td>
</tr>
</tbody>
</table>
vervolg bezoek in plots en raaien

Bijlage 7. Verplaatsing van de hommels

1 Bombus pascuorum Scop. werkster
Gemerkt in raai 3, 22 mei, 10.23 op Rhinanthus, met lichtgele pollen in corbiculae.
Terug gezien: 29 mei, 9.52 op Phyteuma in plot C, met aubergine pollen in corbiculae.
 - 1 juni, 11.00 op Phyteuma in raai 2, met lichtgele en aubergine pollen.

2-Bombus jonellus Kirby werkster
Gemerkt in raai 2, 29 mei, 9.15 op Phyteuma.
Terug gezien: 29 mei, 12.30 op Phyteuma in plot E, en aubergine pollen in corbiculae.

Bijlage 7. Verplaatsing van de hommels

1 Bombus pascuorum Scop. werkster
Gemerkt in raai 3, 22 mei, 10.23 op Rhinanthus, met lichtgele pollen in corbiculae.
Terug gezien: 29 mei, 9.52 op Phyteuma in plot C, met aubergine pollen in corbiculae.
 - 1 juni, 11.00 op Phyteuma in raai 2, met lichtgele en aubergine pollen.

2-Bombus jonellus Kirby werkster
Gemerkt in raai 2, 29 mei, 9.15 op Phyteuma.
Terug gezien: 29 mei, 12.30 op Phyteuma in plot E, en aubergine pollen in corbiculae.
vervolg verplaatsing van de hommels

3—Bombus pratorum L. werkster
Gemerkt in Plot C, 22 mei, 10.38 op Phyteuma, met lichtgele- en aubergine pollen in corbiculae.
-25 mei, 16.15 op Phyteuma in raai 2, met aubergine pollen in corbiculae.
-1 juni, 8.23 op Rhinanthus tussen raai 2 en 3, met lichtgele pollen in corbiculae.

4—Bombus pratorum L. werkster
Gemerkt in raai 2, 22 mei, 10.55 op Phyteuma
Terug gezien: -22 mei, plot C, 18.30 op Phyteuma, met aubergine pollen In corbiculae, 19.05 in raai 2, idem.
-1 juni, 9.00 op Rhinanthus tussen raai 2 en -3, met lichtgele pollen In corbiculae.

5—Bombus pratorum L. werkster
Gemerkt in raai 3, 29 mei, 11.20 op Phyteuma, met aubergine pollen in corbiculae; analyse: verhouding Phyteuma/Rhinanthus = 50/1.
Terug gezien: -1 juni, 9.40 op Phyteuma in raai 1, lichtgele en aubergine pollen in corbiculae; analyse: Phyteuma/Rhinanthus = 1/1 met enige Ranunculus pollen.
-9 juni, 10.13 op Rhinanthus in raai 1, met lichtgele/beige pollen In corbiculae; analyse: Rhinanthus/Rosaceae(cf.Rubus) = 4/1.

6—Bombus pratorum L. werkster
Gemerkt in raai 2, 22 mei, 13.30 op Phyteuma met aubergine pollen in corbiculae; analyse 100% Phyteuma.
Terug gezien: -22 mei, 19.05 in plot B.

7—Bombus pratorum L. werkster
Gemerkt raai 1, 22 mei, 16.35 op Phyteuma, met aubergine- en beige pollen in corbiculae; analyse: Phyteuma/Rhinanthus = 5/1.
-1 juni, op Rhinanthus tussen raai 2 en -3 met lichtgele pollen in corbiculae; analyse: Rhinanthus/Phyteuma = 99/1.

8—Bombus pratorum L. werkster
Gemerkt 9 juni, 13.05 plot E op Phyteuma met lichtgele en aubergine pollen in corbiculae.
Terug gezien: - 9 juni 13.30, plot E op Phyteuma

Waarnemingen na meerdere dagen

B.pascuorum wordt 22 mei gevangen op Rhinanthus in raai C, op 29 mei waargenomen op Phyteuma in plot C, 1 juni op Phyteuma in raai B.
Bij 1 age 8.

Hommels op Rhinanthus

datum: 1/6
plaats: Populierenlaan

<table>
<thead>
<tr>
<th>soort</th>
<th>aantal %van tot.</th>
</tr>
</thead>
<tbody>
<tr>
<td>B.prat.</td>
<td>6 25</td>
</tr>
<tr>
<td>B.pasc.k</td>
<td>5 21</td>
</tr>
<tr>
<td>B.pasc.w</td>
<td>8 33</td>
</tr>
<tr>
<td>B.ter.</td>
<td>2 8</td>
</tr>
<tr>
<td>B.lap.</td>
<td>2 8</td>
</tr>
<tr>
<td>B.hort.</td>
<td>1 4</td>
</tr>
<tr>
<td>B.jon.</td>
<td></td>
</tr>
</tbody>
</table>

Hommels op Rhinanthus
datum: 9/6
plaats: Vijfbomen

<table>
<thead>
<tr>
<th>soort</th>
<th>tijd</th>
</tr>
</thead>
<tbody>
<tr>
<td>B.ter.</td>
<td>15.30</td>
</tr>
<tr>
<td>B.pasc.k</td>
<td>6</td>
</tr>
</tbody>
</table>

datum: 9/6
plaats: bij de plots in de Populierenlaan

<table>
<thead>
<tr>
<th>soort</th>
<th>tijd</th>
</tr>
</thead>
<tbody>
<tr>
<td>B.prat.</td>
<td>10.00</td>
</tr>
<tr>
<td>B.pasc.k</td>
<td>10.35</td>
</tr>
<tr>
<td>B.pasc.w</td>
<td>11.10</td>
</tr>
<tr>
<td>B.ter.</td>
<td>11.45</td>
</tr>
<tr>
<td>B.ter.p</td>
<td>12.25</td>
</tr>
<tr>
<td>B.lap.</td>
<td>13.20</td>
</tr>
<tr>
<td>B.hort.</td>
<td>14.00</td>
</tr>
<tr>
<td>B.jon.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>totaal</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>21</td>
</tr>
<tr>
<td></td>
<td>33</td>
</tr>
<tr>
<td></td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>23</td>
</tr>
<tr>
<td></td>
<td>22</td>
</tr>
<tr>
<td></td>
<td>122</td>
</tr>
</tbody>
</table>

* een waarneming op Crepis
Bijlage 9

Bombus pratorum 31 mei 1989
Phyteuma spicatum Hortus, Haren

Aantallen pollenkorrels per lichaamsdeel
(pollenklompjes in %)

kop: Phyteuma m 57.67 sd 34.12 n=3
vreemd m 22 sd 20.61

thorax d.: Phyteuma m 21.67 sd 20.95 n=3
vreemd m 1 sd 0.82

abdomen d.: Phyteuma m 35 sd 35 n=2
vreemd m 3 sd 2

abdomen 1.: Phyteuma 16 n=1
vreemd 20

abdomen v.: Phyteuma m 111.33 sd 64.83 n=3
vreemd -

corbiculae: Phyteuma m 84.67 % sd 10.33 n=3

Totaal op kop, thorax d., abdomen d., abdomen v.:
Phyteuma m 58.36 sd 55.12 n=11, min=0 max=164
vreemd m 6.82 sd 14.29, min=0 max=50
(vreemd= Polygonatum, Rodondendron, Compositae, Pinus)

Idem Psithyrus spec.

kop: Phyteuma m 76 sd 74 n=2
vreemd m 1 sd 0

thorax d.: Phyteuma m 200 sd 147.2 n=3
vreemd m 67 sd 94.05

abdomen d.: Phyteuma m 325 sd 201.04 n=3
vreemd m 132.33 sd 119.97

abdomen 1.: Phyteuma m 220 sd 180 n=2
vreemd m 62.5 sd 40.5

abdomen v.: Phyteuma 25 n=1
vreemd 0

Totaal kop, thorax d. en abdomen:
Phyteuma m 228.82 sd 179.34 n=11, min=2 max=600
vreemd m 68.18 sd 95.37 min=0 max=300
(vreemd= Polygonatum, Rhodondendron, Compositae, Pinus en Iris)
Idealis Apis mellifera, gevangen 25 mei 1989 op Phyteuma nigrum in de plots bij het Populierenlaantje.

kop
- Phyteuma ca. 350 n=1
 - vreemd 1

thorax d.
- Phyteuma ca. 500 n=1
 - vreemd

abdomen d.
- Phyteuma ca. 250 n=1
 - vreemd 1

abdomen v.
- Phyteuma ca. 500 n=1
 - vreemd 1

(vreemd = Ranunculus)

Idealis Bombus (2x jon., 2x prat.) en Psithyrus spec.(1x)

thorax d.
- Phyteuma m 160 sd 196.6 n=4
 - vreemd m 1.5 sd 2.1

abdomen d.
- Phyteuma m 121.6 sd 101.13 n=5
 - vreemd m 2.6 sd 2.94

abdomen v.
- Phyteuma m 220 sd 150.33 n=5
 - vreemd m 3 sd 3.63

Gemiddeld per deel:
- Phyteuma m 167.71 sd 156.59 n=14 min=30 max=1000
 - vreemd m 2.43 sd 3.06 min=0 max=10

(vreemd = Rubus, Symphytum, Rhinanthus, Iris, Compositae en Pinus)

Idealis Rhinia campestris

thorax d.
- Phyteuma m 20.5 sd 4.5 n=2
 - vreemd m 17.5 sd 8.5

abdomen d.
- Phyteuma m 63 sd 13 n=2
 - vreemd m 2.5 sd 1.5

Gemiddeld per deel:
- Phyteuma m 41.4 sd 20.92 n=4
 - vreemd m 8.4 sd 9.22

(vreemd = Symphytum, Rhinanthus, Ranunculus, Pinus)

idem Bombus pratorum 9 juni

thorax d.
- Phyteuma m 15 sd 0 n=2
 - Rubus m 2.5 sd 2.5
 - Rhinanthus m 0

abdomen d.
- Phyteuma m 10 sd 0 n=2
 - Rubus m 8 sd 8
 - Rhinanthus m 0
 - rest m 2.5

abdomen v.
- Phyteuma m 30 sd 20 n=2
 - Rubus m 12.5 sd 12.5
 - Rhinanthus m 75 sd 75
 - rest m 10
Plakpreparaten bezoekers Phyteuma nigrum

Van de onderstaande soorten werden op 25 mei en 9 juni op diverse plaatsen van het lichaam de pollen afgenomen en verwerkt tot preparaten. Onderzoek van de preparaten gaf de volgende resultaten:

(Phyt=Phyteuma, Rhin=Rhinanthus, Ran=Ranunculus, Comp=Compositae)

25 mei Populierenlaantje

<table>
<thead>
<tr>
<th>Soort</th>
<th>plaats lichaam</th>
<th>Soort pollen en aantal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rhingia campestris</td>
<td>thorax dorsaal: 25 Phyt, 25 Rhin, 1 Symphytum</td>
<td>abdomen dorsaal: 50 Phyt, 1 Ran</td>
</tr>
<tr>
<td>Rhingia campestris</td>
<td>thorax dorsaal: 16 Phyt, 7 Ran, 2 Pinus</td>
<td>abdomen dorsaal: 76 Phyt, 4 Ran</td>
</tr>
<tr>
<td></td>
<td>thor.+ abd.ventraal: 40 Phyt, 2 Ran</td>
<td></td>
</tr>
</tbody>
</table>

(No.1) (zie ook pollenklompjes)

| B. jonellus | thorax dorsaal: ca. 500 Phyt | abdomen dorsaal: ca. 300 Phyt |
| | abdomen ventraal: ca. 150 Phyt, 1 Rubus |

(No.3)

B. jonellus	thorax dorsaal: ca. 50 Phyt, 4 Symphytum, 1 Pinus
	abdomen dorsaal: ca. 100 Phyt, 2 Rhin
	abdomen ventraal: ca. 400 Phyt, 1 Pinus

(No.2)

Apis mellifera	thorax dorsaal: ca. 1000 Phyt
	abdomen dorsaal: ca. 250 Phyt, 1 Ran
	abdomen ventraal: ca. 500 Phyt, 2 Ran
	kop: ca. 350 Phyt, 1 Ran

Psithyrus sp.	abdomen dorsaal: ca. 150 Phyt, 6 Rubus, 2 Pinus
	ventraal: ca. 400 Phyt, 1 Rubus, 1 Pinus, 1 Ran
	poten: ca. 500 Phyt, 1 Iris, 1 Comp.

(No.4) (zie ook verplaatsingen no.7 en pollenklompjes 25 mei)

B. pratorum	thorax dorsaal: ca. 60 Phyt, 1 Pinus
	abdomen dorsaal: ca. 50 Phyt
	abd.+thor.ventraal: ca. 100 Phyt, 4 Rhin, 2 Iris, 1 Comp, 1 Ran, 2 Pinus

9 juni Populierenlaantje bij plot E

(No.63, zie ook pollenklompjes no.63)

B. pratorum w	thor.+ abd.ventraal: 50 Phyt
	thorax dorsaal: 30 Phyt
	abdomen dorsaal: 8 Phyt, 2 Rhin, 1 Rubus

9 juni Vijfbomen

(No.51, zie ook pollenklompjes no.51)

| B. pratorum w | thor.+ abd.ventraal: 10 Phyt, 150 Rhin, 20 Symphytum |

(No.52, zie ook pollenklompjes no.52)

| B. pratorum w | thorax dorsaal: 15 Phyt, 10 Rubus, 1 Lamium |
| | abdomen dorsaal: geen pollen |

(No.85, zie ook pollenklompjes no.85)

B. pratorum w	thor.+ abd.ventraal: 50 Phyt, 25 Rubus
	thorax dorsaal: 15 Phyt, 5 Rubus, 2 Symphytum, 1 Ran, 1 Pinus
	abdomen dorsaal: 20 Phyt, 16 Rubus
Bijlage 10.

22 mei Populierenlaantje, merken hommels

<table>
<thead>
<tr>
<th>Soort en vangplaats</th>
<th>kleur-</th>
<th>grootte</th>
<th>kleur-</th>
<th>Soort pollen en verhoudingen</th>
</tr>
</thead>
<tbody>
<tr>
<td>(no.1) Plot C</td>
<td>B.pratorum w</td>
<td>li.geel/ groot</td>
<td>vuilgeel/ aubergine</td>
<td>Phyt/Rhin:1/1 + % Ran en Rubus</td>
</tr>
<tr>
<td>(no.3) Raai B</td>
<td>B.jonellus</td>
<td>aubergine</td>
<td>zeer klein</td>
<td>Phyt ca.100% + enige Rubus pollen</td>
</tr>
<tr>
<td>(no.4) Raai B</td>
<td>B.pratorum</td>
<td>aubergine</td>
<td>groot</td>
<td>100% Phyt</td>
</tr>
<tr>
<td>(no.5) Raai B</td>
<td>B.pratorum</td>
<td>aub/beige</td>
<td>groot</td>
<td>Phyt/Rhin:5/1</td>
</tr>
<tr>
<td>(no.6) Raai C</td>
<td>B.pascuorum k</td>
<td>beige</td>
<td>klein</td>
<td>100% Rhinantes + enige pollen Phyteuma</td>
</tr>
</tbody>
</table>
| (no.7) | B.pratorum | aubergine | groot | *aubergine ca. 100% Phyteuma + *
| | | | | % Rubus en Ran |

25 mei

<table>
<thead>
<tr>
<th>Soort en vangpl.</th>
<th>kleur vers</th>
<th>kleur droog</th>
<th>Soort pollen en verh.</th>
</tr>
</thead>
<tbody>
<tr>
<td>B.jonellus</td>
<td>-</td>
<td>-</td>
<td>c.100% Phyt + enige Ran, Comp en Pinus</td>
</tr>
<tr>
<td>(zie ook plakprep. no.1)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B.pratorum</td>
<td>li.geel/ aubergine</td>
<td>-</td>
<td>Phyt/Rhin:3/1 + % Rubus, enige Ran, Lychnis</td>
</tr>
<tr>
<td>(zie ook plakprep.no.4)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1 juni Populierenlaantje 9.40 tot 13.05

<table>
<thead>
<tr>
<th>Soort en vangpl.</th>
<th>kleur vers</th>
<th>kleur droog</th>
<th>Soort pollen en verh.</th>
</tr>
</thead>
<tbody>
<tr>
<td>(no.20) Groen 4 op Rhinanthes bij Raai A</td>
<td>B.pratorum w</td>
<td>li.geel/ geel/aubergine</td>
<td>Phyt/Rhin:1/1 + % Ran</td>
</tr>
<tr>
<td>(no.21) Plot 2</td>
<td>B.pratorum w</td>
<td>li.geel/ zeer geel/aubergine</td>
<td>Phyt/Rhin:9/1</td>
</tr>
<tr>
<td>(no.22) Bruin rechts onder op Rhinanthes tussen plots</td>
<td>B.pratorum w</td>
<td>li.geel/ matig li.geel/ dooierg.</td>
<td>Phyt/Rhin:99/1</td>
</tr>
<tr>
<td>(no.23) Raai B</td>
<td>B.pratorum w</td>
<td>li.geel/ klein aub/geel</td>
<td>Phyt/Rhin:1/1 + % Rubus</td>
</tr>
<tr>
<td>Soort, vangpl.</td>
<td>kleur vers</td>
<td>kleur droog</td>
<td>Soort pollen en verh.</td>
</tr>
<tr>
<td>(no.24) Blauw li.boven/midden Raai B</td>
<td>B.pratorum w</td>
<td>li.geel/ groot aub/geel aubergine</td>
<td>Phyt/Rhin:1/1</td>
</tr>
</tbody>
</table>
Vervolg bijlage 10.

<table>
<thead>
<tr>
<th>Soort en vangplaats</th>
<th>kleur vers</th>
<th>grootte</th>
<th>kleur droog</th>
<th>Soort pollen en verhoudingen</th>
</tr>
</thead>
<tbody>
<tr>
<td>(no.25) Plot E B. pratorum w</td>
<td>aubergine</td>
<td>matig</td>
<td>aubergine</td>
<td>Phyt ca.98% Rubus 2%, Iris 1 pollenk.</td>
</tr>
<tr>
<td>5 juni (no.26) Plot E B. pratorum w</td>
<td>li.geel/ aubergine</td>
<td>-</td>
<td>li.geel/ aubergine</td>
<td>Phyt/Rubus:3/1</td>
</tr>
<tr>
<td>9 juni tussen plots op Rhinanthes B. jonellus</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Rhin/Comp.:10/1</td>
</tr>
<tr>
<td>(no.60) rood 1 bij plot E B. pratorum w</td>
<td>klein</td>
<td>li.geel</td>
<td></td>
<td>Rhin/Rubus:4/1</td>
</tr>
<tr>
<td>(no.61) bij plot E B. pratorum w</td>
<td>geel</td>
<td>klein</td>
<td>geel</td>
<td>100% Rhin, enige pollen Phy</td>
</tr>
<tr>
<td>(no.63) op Rhinanthes bij Plot E B. pratorum w</td>
<td>li.geel/ aubergine</td>
<td>groot</td>
<td>-</td>
<td>Phyt/Rhin/Rubus:1/3/1 + enige Iris en Comp</td>
</tr>
</tbody>
</table>

Opm. zie ook no 63 plakprep

5 juni Vijfbomen

| (no.27) 13.30 B. pratorum | li.geel/ aub | klein | rosegeel/ aub | Phyt/Rhin:3/2 |
| (no.28) 13.45 B. pratorum | li.geel/ aub | klein | vuilgeel/ aub | Phyt/Rhin:1/1 |

7 juni Vijfbomen 12.00 tot 14.30

<table>
<thead>
<tr>
<th>(no.30) B. pratorum w</th>
<th>kleur vers grootte</th>
<th>kleur droog</th>
<th>soort pollen</th>
</tr>
</thead>
<tbody>
<tr>
<td>geel/aub. groot</td>
<td>donkergeel/ aubergine</td>
<td>Phyt/Rhin:1/1+ ca. 1/25 Ran + Rubus</td>
<td></td>
</tr>
</tbody>
</table>

Opm.: geel aan pootkant

| (no.31) B. pratorum w | geel/aub. klein | vuilgeel | Phyt/Rhin:1/2+ ca.1/10 Rubus |

Opm.: geel aan pootkant

| (no.32) B. pratorum w | geel/aub. matig | donker-/vuil-geel/aub. | Phyt/Rhin:4/1 |

Opm.: geel aan pootkant

Soort vangpl. kleur vers grootte kleur droog Soort pollen en verh.

| (no.33) B. pratorum w | geel | matig | eierdoeier-geel | 100% Rhin |

| 7 juni Vijfbomen 12.00 tot 14.30 |

<table>
<thead>
<tr>
<th>(no.30) B. pratorum w</th>
<th>kleur vers grootte</th>
<th>kleur droog</th>
<th>soort pollen</th>
</tr>
</thead>
<tbody>
<tr>
<td>geel/aub. groot</td>
<td>donkergeel/ aubergine</td>
<td>Phyt/Rhin:1/1+ ca. 1/25 Ran + Rubus</td>
<td></td>
</tr>
</tbody>
</table>

Opm.: geel aan pootkant

| (no.31) B. pratorum w | geel/aub. klein | vuilgeel | Phyt/Rhin:1/2+ ca.1/10 Rubus |

Opm.: geel aan pootkant

| (no.32) B. pratorum w | geel/aub. matig | donker-/vuil-geel/aub. | Phyt/Rhin:4/1 |

Opm.: geel aan pootkant

Soort vangpl. kleur vers grootte kleur droog Soort pollen en verh.

<p>| (no.33) B. pratorum w | geel | matig | eierdoeier-geel | 100% Rhin |</p>
<table>
<thead>
<tr>
<th>No.</th>
<th>Soort</th>
<th>Kleur</th>
<th>Grootte</th>
<th>Kleur droog</th>
<th>Soort pollen en verhoudingen</th>
</tr>
</thead>
<tbody>
<tr>
<td>34</td>
<td>B.pratorum w</td>
<td>geel/aub</td>
<td>klein</td>
<td>vuilgeel/aubergine</td>
<td>Phyt/Rhin:1/2</td>
</tr>
<tr>
<td>35</td>
<td>B.pratorum w</td>
<td>geel/aub</td>
<td>zeer (gemengd)</td>
<td>klein</td>
<td>Phyt/Rhin:3/2+</td>
</tr>
<tr>
<td>36</td>
<td>B.pratorum w</td>
<td>geel/aub</td>
<td>klein</td>
<td>geel/vuilgeel/aub.</td>
<td>Phyt/Rhin:1/1 + ca.10% Ran</td>
</tr>
<tr>
<td>37</td>
<td>B.pratorum w</td>
<td>geel/aub</td>
<td>klein</td>
<td>vuilgeel/aubergine</td>
<td>Phyt/Rhin:1/3 + % Ran</td>
</tr>
</tbody>
</table>

8 juni Vijfbomen 14.00-15.30

<table>
<thead>
<tr>
<th>No.</th>
<th>Soort</th>
<th>Kleur</th>
<th>Grootte</th>
<th>Kleur droog</th>
<th>Soort pollen en verhoudingen</th>
</tr>
</thead>
<tbody>
<tr>
<td>40</td>
<td>B.pratorum w</td>
<td>li.geel/aubergine</td>
<td>klein</td>
<td>geel/aub</td>
<td>Phyt/Rhin:1/1 + Rubus enige %</td>
</tr>
<tr>
<td>41</td>
<td>B.pratorum w</td>
<td>li.geel/aubergine</td>
<td>-</td>
<td>geel/aub</td>
<td>Phyt/Rhin/Rubus: 2/1/1</td>
</tr>
<tr>
<td>42</td>
<td>B.pratorum w</td>
<td>li.geel/aubergine</td>
<td>-</td>
<td>li.geel/aubergine</td>
<td>Phyt/Rhin:3/1</td>
</tr>
</tbody>
</table>

9 juni Vijfbomen

<table>
<thead>
<tr>
<th>No.</th>
<th>Soort</th>
<th>Kleur</th>
<th>Grootte</th>
<th>Kleur droog</th>
<th>Soort pollen en verhoudingen</th>
</tr>
</thead>
<tbody>
<tr>
<td>51</td>
<td>B.pratorum w</td>
<td>li.geel/aubergine</td>
<td>klein</td>
<td>geel/aub</td>
<td>Phyt/Rhin:1/1</td>
</tr>
<tr>
<td>52</td>
<td>B.pratorum w</td>
<td>li.geel/aubergine</td>
<td>klein</td>
<td>geel/aub</td>
<td>Phyt/Rhin:1/1 enige % Rubus</td>
</tr>
<tr>
<td>65</td>
<td>B.pratorum w</td>
<td>-</td>
<td>groot</td>
<td>-</td>
<td>Phyt/Rhin:1/4</td>
</tr>
</tbody>
</table>

Opm.: zie voor no 51, 52 en 65 ook plakprep.
13 juni Vijfbomen 13.00

<table>
<thead>
<tr>
<th>Soort, vangpl.</th>
<th>kleur vers</th>
<th>kleur droog</th>
<th>Soort pollen en verb.</th>
</tr>
</thead>
<tbody>
<tr>
<td>(no.115) B. pratorum w</td>
<td>li. geel/ aubergine</td>
<td>klein</td>
<td>-</td>
</tr>
</tbody>
</table>

(no.14) op Rhinanthes

<table>
<thead>
<tr>
<th>Soort pollen en verb.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phyt/Rhin: 1/1 + enige Rubus, Compositae</td>
</tr>
</tbody>
</table>

B. terrestris w geel/donker-geel groot donker-paars/-geel Rhin/cf Lamium : 3/1 + enige Iris en Rubus tussen Lamium

14 juni Vijfbomen

<table>
<thead>
<tr>
<th>Soort pollen en verb.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phyt/Rhin: 9/1</td>
</tr>
</tbody>
</table>

10b. Stuifmeelladingen Valkenberg

Van de op 12 juni gevangen hommels werden de pollenklompjes verzameld en in geanalyseerd de resultaten zijn de volgende:

<table>
<thead>
<tr>
<th>Nummer</th>
<th>grootte</th>
<th>verse kleur</th>
<th>kleur droog</th>
<th>samenstelling</th>
</tr>
</thead>
<tbody>
<tr>
<td>no.100</td>
<td>middel</td>
<td>midden geel</td>
<td>vuilgeel</td>
<td>Phyt. vrywel 100%, Iris %, Rubus %, Boraginaceae %</td>
</tr>
<tr>
<td>no.101</td>
<td>,</td>
<td>,</td>
<td>dooiergeel/</td>
<td>Phyt. 75%, Rubus 15%, grijsen Boraginaceae 10%</td>
</tr>
<tr>
<td>no.102</td>
<td>,</td>
<td>/</td>
<td>vuilgeel/</td>
<td>Phyt. 95%, Iris %, Rubus 4%, donkergeel/ heldergeel Boraginaceae 1%</td>
</tr>
<tr>
<td>no.103</td>
<td>,</td>
<td>/</td>
<td>vuilgeel/</td>
<td>Phyt. 70%, Phyt.+ Rubus 30% geel wv. Rubus 10%</td>
</tr>
<tr>
<td>no.104</td>
<td>groot</td>
<td>groenig</td>
<td>vuilgrijs</td>
<td>vrijwel 100% Rubus, Phyt.%</td>
</tr>
<tr>
<td>no.105</td>
<td>,</td>
<td>middengeel/</td>
<td>geel/ grijs-</td>
<td>Phyt. 60%, Rubus 20%, Boraginaceae 20%, Comp. %</td>
</tr>
<tr>
<td>(A")</td>
<td>no.106</td>
<td>/</td>
<td>groenig/d.geel</td>
<td>Phyt. 50%, Rubus 25%, Boraginaceae 25%</td>
</tr>
<tr>
<td>(A")</td>
<td>no.107</td>
<td>/</td>
<td>dooiergeel/</td>
<td>Phyt. 50%, Rubus 25%, Boraginaceae 25%</td>
</tr>
<tr>
<td>(A")</td>
<td>no.108</td>
<td>klein</td>
<td>grijsen/ geel</td>
<td>Phyt. 75%, Rubus 15%, Boraginaceae 10%</td>
</tr>
<tr>
<td>no.109</td>
<td>groot</td>
<td>geel</td>
<td>dooiergeel</td>
<td>100% Phyt.</td>
</tr>
<tr>
<td>no.110</td>
<td>middel</td>
<td>geel/ groenig</td>
<td>dooiergeel/ grijsen</td>
<td>Phyt. 80%, Rubus 20%</td>
</tr>
</tbody>
</table>
Bijlage 11.

Wanneer de pollenklompjes verzameld worden en ter conservering gedroogd, verandert de kleur. Wanneer de droge kleur wordt vergeleken met de verse kleur, blijkt in vrijwel alle gevallen de kleur aubergine niet te veranderen, tinten van geel worden vrijwel allen donkerder door droging. Verschillende tinten geel en beige in de klompjes verzameld in de Populierenlaan verwijzen allen naar Rhinanthus pollen. Rubus pollen die tegelijk met Rhinanthus kunnen voorkomen ogen in droge klompjes ook als diverse tinten van geel, lichter maar grauwer dan dan die van Rhinanthus (zie Pollenklompjes).
Hoewel deze pollen lichter zijn in vergelijking met pollenladingen met bijmenging van Rhinanthus blijken de in het veld waargenomen kleuren te veel te variëren om hieruit voor de in het veld waargenomen kleuren voorspellingen te doen over de soort pollen bij de veldwaarnemingen. De variatie in kleur van de verschillende pollensoorten in de klompjes zou veroorzaakt kunnen worden door de door Hodges (1973) genoemde factoren bij de verkleuring van pollen in de corbiculae van homingbijen, ook kan een rol spelen dat de kleurwaarnemingen door drie personen zijn gedaan, zonder kleurentabellen.
Bijlage 12a: Pollen op stigma bij Phyteuma nigrum

SBB boerderij weg, 5 juni

Twaalf stigma's geteld. Gemiddeld 98 soorteigen pollen (sd 31,21). Vier stigma's hadden een gering aantal (1 of 2) soortvreemde pollen van de soorten Symphytum, Rhinanthes, Rubus of Ranunculus.

 Vijfbomen, 5 juni

 Vijfbomen, 9 juni

Vijftien stigma's geteld. Gemiddeld 97 soorteigen pollen (sd 37,78). Acht stigma's met een of twee pollen van Rhinanthes (3x), Rubus (2x), Composiet (3x), of Ranunculaceae (1x).

 Vijfbomen, 13 juni

Acht stigma's geteld. Gemiddeld 117,75 soorteigen pollen (sd 45,39). Een stigma had een Lychnis pollenkorrel, een ander vier Rhinanthes pollen en een Compositae pollenkorrel.

Paralelweg, 7 juni

Bijlage 12b: Pollen op het stigma bij Phyteuma spicatum

Hortus, Haren

Op 6 juni werd van 5 bloeiaren van de groep bij het pad per aar 4 stigma's verzameld. Van dertien aren kon het aantal en soort van de pollen bekeken worden. Gemiddeld waren er 146,23 soorteigen pollen (sd 35,45 n=13). In twaalf gevallen werden er 1 tot 6 vreemde pollen aangetroffen (gem.3,2) van Rhododendron, Phelodendron, Polygonatum en Ranunculaceae, zie ook fig.

Op 13 juni werd de telling herhaald, gemiddeld waren er 53,5 soort eigen pollen (sd 20,46 n=10). In drie gevallen werden er Phelodendron pollen aangetroffen; een maal 3,- 4 en een maal een klomp van 35.

Valkenberg

Op 12/6 werden in A van 5 assen 20 stigma's verzameld van bloemen in een vrouwelijk stadium. Per stigma werden gemiddeld 30,89 soorteigen pollen geteld (sd 14,59 n=18, min.10 max.59). Gemiddeld werden 6 soortvreemde pollen geteld (sd 6,25 n=16, min.1 max.25) in alle gevallen ging het hier om Rubus pollen.

Op 17/6 werden in A" eveneens 20 stigma's verzameld van 5 exemplaren. Op een stigma waren gemiddeld 28,8 soorteigen pollen (sd 13,98 n=10, min.10 max.51) en 2,25 soortvreemde pollen (sd 0,9574 min.1 max.3 n=4) in drie gevallen waren het Rubus pollen in een geval betrof het drie Iris pollen.
Bijlage 13. Inhoud maagdarmkanaal Rhingia

`kbst` = gedeelte in kopborststuk, `m=man v=vrouw

<table>
<thead>
<tr>
<th>Dat.</th>
<th>Sexe</th>
<th>hoeveel</th>
<th>%Phyt</th>
<th>%Car.</th>
<th>%Rhin.</th>
<th>%Comp.</th>
<th>%Pin.</th>
<th>Rub.</th>
<th>Onbek.</th>
<th>heid p.</th>
</tr>
</thead>
<tbody>
<tr>
<td>22/5</td>
<td>m</td>
<td>klein</td>
<td>50</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>m</td>
<td>klein</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>m</td>
<td>matig</td>
<td>50</td>
<td>50</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>m</td>
<td>klein</td>
<td>85</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>v</td>
<td>veel</td>
<td>99</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>v</td>
<td>veel</td>
<td>90</td>
<td>7</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1 1</td>
</tr>
<tr>
<td></td>
<td>kbst. klein</td>
<td>90</td>
<td>18</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>v</td>
<td>veel</td>
<td>99</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>kbst. klein</td>
<td>50</td>
<td></td>
<td>50</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>v</td>
<td>klein</td>
<td>99</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>v</td>
<td>veel</td>
<td>99</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>kbst. klein</td>
<td>90</td>
<td>10</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4/6</td>
<td>v</td>
<td>veel</td>
<td>50</td>
<td>49</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>v</td>
<td>veel</td>
<td>20</td>
<td>79</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>v</td>
<td>matig</td>
<td>90</td>
<td>9</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>v</td>
<td>veel</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>v</td>
<td>klein</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>v</td>
<td>matig</td>
<td>70</td>
<td>1</td>
<td>29</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>v</td>
<td>klein</td>
<td>15</td>
<td>75</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>v</td>
<td>veel</td>
<td>1</td>
<td>98</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>v</td>
<td>klein</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>v</td>
<td>matig</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

De Caryophyllaceae pollen zijn zeer waarschijnlijk Lychnis pollen; L. flos-cuculi L. bloeide in de hele omgeving en in de plots, Rhingia werd ook fouragerend op Lychnis waargenomen.