RESULTATEN VAN 15 JAAR MAAIEN EN BEWEIDEN OP HET WESTERHOLT.

D.L. BEKKER

DOCTORAALVERSLAG APRIL - OKTOBER 1987 LAB. V. PLANTENOECOLOGIE HAREN
INHOUDSOPGAVE

1. INLEIDING 4
 1.1. Beknopte terreinomschrijving. 4
 1.2. Doelstellingen van het beheer op het Westerholt. 11
 1.3. De beheersmaatregelen op het Westerholt. 13
 1.4. Verwachte effecten van de verschillende beheersmaatregelen. 13
 1.5. Vraagstelling. 13

2. MATERIAAL EN METHODEN 16
 2.1. Beschrijving van de vegetatie. 16
 2.1.1. Methode van karteren. 16
 2.1.2. Het vormen van vegetatietypen en de beschrijving hiervan. 17
 2.1.3. Areaalkaarten. 19
 2.1.4. Vergelijking van de vegetatiekaarten. 19
 2.2. Vergelijking tussen de verschillende beheersmaatregelen. 19
 2.2.1. Verandering van de vegetatiesamenstelling bij de verschillende beheersmaatregelen, uitgaande van dezelfde uitgangssituatie. 19
 2.2.2. Heideontwikkeling bij de verschillende beheersmaatregelen. 21
 2.2.3. Verschillen in α- en β-diversiteit en equitabiliteit bij de verschillende beheersmaatregelen. 21
 2.2.4. Veranderingen in bodemrijkdom bij de verschillende beheersmaatregelen. 22
 2.3. De relatie tussen begrazing en de veranderingen in het beweide grasland. 23
 2.3.1. Veranderingen van de zwaarst begraasde vegetatietypen. 23
 2.3.2. Invloed van winterbeweiding op vegetatiepatronen op microniveau. 24
 2.4. Ontwikkelingen in de heidevegetatie. 26
 2.4.1. Handhaven van de heidevegetatie. 26

3. RESULTATEN GRASLAND 1
3.1. Vergelijking van de veranderingen in de vegetatie bij de verschillende beheersmaatregelen.

3.1.1. A. Hooien - beweiden
3.1.1. B. Hooien - plaggen.
3.1.1. C. Hooien - N-bemesten.
3.1.1. D. Plaggen - ploegen tot 60 cm.
3.1.1. E. Ploegen tot 60 cm - ploegen tot 25 cm.

3.1.2. Ontwikkeling van heide bij de verschillende beheersmaatregelen.

3.1.3. Verschillen in α- en β-diversiteit en equitabiliteit bij de verschillende beheersmaatregelen.

3.1.4. Verandering in de relatieve bodemrijkdom bij de verschillende beheersmaatregelen.

3.1.5. Veranderingen van de belangrijkste vegetatietypen onder de verschillende beheersmaatregelen over de periode 1972-1987.

3.2. De relatie tussen begraazing en veranderingen in het beweide grasland.

3.2.1. Veranderingen van de zwaarst begraasde vegetatietypen.
3.2.2. Invloed van winterbeweiding op vegetatiepatronen op microniveau.

4. RESULTATEN HEIDE

4.1. Vegetatiekaart.
4.2. Veranderingen in het areaal en de soortensamenstelling van de soortenrijke heide.
4.3. Veranderingen in de heidevegetatie.

5. DISCUSSIE

5.1. Veranderingen in vegetatiesamenstelling als gevolg van verschillende beheersmaatregelen.

5.1.1. Verandering in bodemrijkdom uitgedrukt in een verarming in vegetatiesamenstelling (verschraling).
5.1.2. De ontwikkeling van heide gekoppeld aan "verschraling".
5.1.3. Veranderingen in vegetatiesamenstelling.
5.1.3.1. Soortsdiversiteit (α-diversiteit).
5.1.3.2. β-diversiteit, relatieve patroon-
diversiteit en relatieve equita-
biliteit.

5.2. Veranderingen van begrazingspatronen in het beweide grasland.

5.2.1. Macro-patronen.
5.2.2. Micro-patronen.

5.3. Veranderingen in de heide.

5.3.1. Heidesoorten in het grasland.
5.3.2. Heidevegetatie.

6. CONCLUSIES

6.1. Veranderingen in de vegetatiesamenstelling bij de verschillende beheersmaatregelen na 15 jaar beheer van het grasland.

6.1.1. Algemeen.
6.1.2. Ontwikkeling van heide in het grasland.
6.1.3. Veranderingen in diversiteit.
6.1.4. Verschraling.

6.2. Veranderingen door begraizing in het grasland.
6.3. De ontwikkelingen in de heidevegetatie.
1. INLEIDING

1.1 Beknopte terreinomschrijving

Het "Westerholt" maakt deel uit van het "Eexterveld"; begin jaren veertig kwam op het grootste gedeelte van het Westerholt nog een rijk gevarieerde heidevegetatie voor (van Andel en Waterbolk 1945). Het terrein, dat ligt op de helling van het Scheebroekerloopje (Figuur 1), vertoont relatief grote hoogteverschillen (Figuur 2). Deze hoogteverschillen zijn het gevolg van het afwateren van hoger gelegen gronden op het Scheebroekerloopje via het Westerholt. Op deze manier zijn in de postglaciaal dekzanden geulen uitgesleten, waardoor ook hier en daar leem, afgezet in de Rissijstijd, dicht aan het oppervlak voorkomt (Figuur 3). Als gevolg van bovenstaande verschilt de grondwaterstand dan ook sterk van plaats tot plaats (Figuur 4). De bodem bestaat voor het grootste gedeelte uit een heidepodsol, die op de ontgonnen gedeelten sterk verstoord is (Figuur 5).

1.2 Doelstellingen van het beheer op het Westerholt.

Staatsbosbeheer hanteert in haar gedachtenplan (Staatsbosbeheer 1965), een aantal doelstellingen die betrekking hebben op het beheer van het Westerholt.

- Het instand houden van de nog resterende heidevegetatie.

Hiervoor is verjonging van de heide gewenst en het vrijhouden van boomopslag noodzakelijk.

- Het regenereren van een heidevegetatie in het grasland.

De doelstelling is een reconstructie van het oude heidelandschap te maken, waardoor de verspreid liggende natuurterreintjes meer levensvatbaarheid krijgen.

- Het behouden en/of verkrijgen van een zo groot mogelijke differentiatie in het grasland.

Door het ontginnen en het intensieve gebruik van het terrein, zijn enkele snelgroeiende grassoorten gaan overheersen. Door met kunstmeestgiften te stoppen en een "verschralend" beheer toe te
Figuur 1. Ligging van het proefterrein "Westerholt"
(situatie in 1968 (naar de Bie 1974))

proefterrein
heide en/of bos
cultuurland
weg
Scheepbroekerloopje
Figuur 2. Hoogtekaart
(van Wieren 1976)

Hoogtelijnen op 40 cm.
laagste punt 0 cm.
Figuur 3.
Het voorkomen van leem in de ondergrond (van Wieren 1976)

Leem beginnend:
- binnen 40 cm
- tussen 40 en 80 cm
- tussen 80 en 120 cm
- geen leem binnen 120 cm
Figuur 4. Grondwatertrappen
(van Wieren 1976)

<table>
<thead>
<tr>
<th>GT</th>
<th>GHG</th>
<th>GLG</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td><40</td>
<td>80–120</td>
</tr>
<tr>
<td>4</td>
<td>>40</td>
<td>80–120</td>
</tr>
<tr>
<td>5</td>
<td>40–80</td>
<td>>120</td>
</tr>
<tr>
<td>6</td>
<td>>80</td>
<td>>120</td>
</tr>
</tbody>
</table>
Figuur 5. Bodemkaart
(van Wieren 1976)

1 - Madeveengrond
2 - Moerige podzolgrond
3 - Broekeerdgrond
4 - Als 3, met leemondergrond en diepgeploegd
5 - Als 3, met zandondergrond en diepgeploegd
6 - Veldpodzolgrond
7 - Als 6, diepgeploegd
8 - Veldpodzol met verkitte B-horizont
9 - Als 8, diepgeploegd
10 - Beekeerdgrond
11 - Als 10, diepgeploegd
12 - Als 11, leemarm
13 - Gooreerdgrond
14 - Als 13, diepgeploegd
15 - Als 14, leemarm
Figuur 6.
Terreinoverzicht en plaats van de verschillende beheersmaatregelen

Vegetatie in 1972:
- heide
- bos
- grasland

Beheersmaatregelen:
1 - Hooien na plaggen
2 - Hooien na ploegen tot op 60 cm
3 - Hooien na ploegen tot op 25 cm
4 - Hooien
5 - Hooien + stikstofbemesting
6 - niets doen
7 - beweiden
8 - één maal gemaaid, daarna niets gedaan
9 - exclosures voor ander onderzoek
passen (het afvoeren van geproduceerd gewas), probeert men de hoeveelheid voedingsstoffen zodanig te verlagen dat ook langzaam groeiende soorten weer een kans krijgen, wat leidt tot grotere soortenrijkdom.

1.3 De beheersmaatregelen op het Westerholt

Op het Westerholt worden een aantal beheersmaatregelen naast elkaar toegepast. Hierdoor kan onderzoek worden gedaan naar de effecten van de verschillende beheersmaatregelen op de vegetatie en kunnen deze onderling worden vergeleken. In Figuur 6 is aangegeven in welke terreingedeelten de verschillende beheersmaatregelen worden toegepast.

- Beweiden met schapen.

- Maaien en afvoeren.

In juli wordt een deel van het grasland gehooid (Figuur 6: 4).

- Maaien en afvoeren na plaggen.

In 1973 is van een deel van het hooiland de zode met de hand verwijderd (Figuur 6: 1).

- Maaien en afvoeren na omploeneg.

In 1978 is van een deel van het hooiland de zode ondergeploegd. Een deel is 60 cm (Figuur 6: 2), het andere deel 25 cm (Figuur 6: 3) diep geploegd.

- Maaien en afvoeren plus stikstofbemesting.

Jaarlijks wordt een deel van het hooiland bemest met 50 kg stikstof (N) per hectare (Figuur 6: 5).

- Nietsdoen.

Een deel van de heide, grenzend aan het hooiland wordt op geen enkele manier beïnvloed (Figuur 6: 8).
Figuur 7. Globale ligging hek + transecten 1A t/m 9B.
1.4 Verwachte effecten van de verschillende beheersmaatregelen.

- Instandhouding van de nog resterende heidevegetatie.

- Regeneratie van heide in het grasland.

- Handhaven en/of vergroten van de aanwezige differentiatie in een vegetatietype.

Het gemiddeld aantal soorten per oppervlak (α-diversiteit) wordt beïnvloed door de voedselrijkdom van de bodem. In een arme onbemeste situatie zal de soortenrijkdom in het algemeen hoger zijn dan in een rijke, bemeste situatie (Thurston 1969, Oosterveld 1975, Bakker 1978b). De differentiatie in hoogte, grondwaterpeil en bodemtype zal door het toepassen van een beheer gericht op de verarming van de bodem meer in de vegetatie tot uitdrukking komen. De verwachting is dat hierdoor naast de equitabiliteit (manier om dominantieverhoudingen van de bedekkende soorten weer te geven), het aantal vegetatietypen per beheersmaatregel (β-diversiteit) zal toenemen. Bij beweiden is een grotere differentiatie in de vegetatie te verwachten dan bij de andere beheersmaatregelen. Afhankelijk van de voorkeur van de schapen, zal op sommige plaatsen meer gerust, gelopen en gegraasd worden dan op andere. Hierdoor ontstaat een mozaïek van intensief en minder intensief begraasde terreingedeelten; het "macropatroon" (Oosterveld 1975, Harper 1977). Hiernaast ontstaat er op plaatsen waar de schapen vaak komen een patroon van kortgegraasde plekken afgewisseld met hogere vegetatiestructuren. Deze plekken zijn niet groter dan enkele dm² tot m² en worden daarom "micropatroon" genoemd (Breymeyer en van Dyne 1980).

1.5 Vraagstelling

GRASLAND:
Figuur 8.
Bodemgeschiktheidskaart
(van Wieren 1976)

- niet geschikt
- weinig tot niet geschikt
- matig geschikt
- redelijk goed geschikt
1 Vergelijking tussen de verschillende beheersmaatregelen.

- Verandert de vegetatiesamenstelling bij de verschillende beheersmaatregelen, uitgaande van dezelfde beginsituatie?
- In hoeverre is er sprake van heideontwikkeling bij de verschillende beheersmaatregelen?
- Is er verschil in soortsdiversiteit (α-diversiteit) bij de verschillende beheersmaatregelen?
- Is er verschil in het aantal vegetatietypen (β-diversiteit) bij de verschillende beheersmaatregelen?
- Is er verschil in equitabiliteit (dominantie-verhoudingen) bij de verschillende beheersmaatregelen?
- Is er sprake van verarming van de bodem bij de verschillende beheersmaatregelen?

2 Veranderingen in het beweide grasland.

- In hoeverre blijven de sterkst begraasde terreingedeelten sterk begraasd? Verschuift het patroon?
- Wat is de invloed van winterbeweiding op vegetatiepatronen op micro-niveau en hoe kunnen deze patronen het best vastgelegd worden?
- In hoeverre verandert de situatie van heideplanten in het beweide grasland?

HEIDE:

- In hoeverre blijft de in 1972 aanwezige heidevegetatie gehandhaafd? In hoeverre vergrasd de heide? In hoeverre verandert het aandeel van Molinia caerulea in de heide?
2.1 Beschrijving van de vegetatie

Om de veranderingen in de vegetatie te kunnen vaststellen is het noodzakelijk de vegetatie regelmatig te beschrijven. Als methode is gekozen voor het jaarlijkse opnemen van pq's, gecombineerd met een vegetatiekartering om de vijf jaar. Met pq's kan een nauwkeurige beschrijving van het veranderingsproces gemaakt worden. De vegetatiekartering geeft aan op welke schaal bepaalde veranderingen plaatsvinden en geeft een beeld van de patronen in de vegetatie. Bovendien kunnen met een kartering veranderingen worden vastgelegd, die niet door een pq geregistreerd worden (Londo 1971).

Op het Westerholt zijn in 1972 111 pq's van 2x2 meter uitgezet, waarvan 32 in het hooiland. De ligging van de pq's is gebaseerd op de toen aanwezige differentiatie van de vegetatie. In de loop van de tijd zijn aan genoemde 111 pq's nog een aantal toegevoegd (geplongde deel, etc.), zoals te zien in Bijlage 1.

2.1.1. Methode van karteren.

- 1972
Aan de hand van verschillen in de soortensamenstelling is zowel grasland als heide in kaartvlakken ingedeeld. De vegetatie in deze vlakken is beschreven met behulp van pq-opnamen in de Braun-Blanquetschaal. De kaartvlakken zijn door afpassen op de kaart ingemeten (Dallinga en Tjaden 1981).

- 1977
De kaartvlakindeling is aan de hand van de bedekkingen van de meest algemene soorten gemaakt. De vegetatie in de vlakken is beschreven met behulp van pq-opnamen, aangevuld met een groot aantal extra opnamen in de decimale schaal van Londo (1975). Met luchtfoto's en een theodoliet is een nauwkeurige basiskaart gemaakt. De kaartvlakken zijn hierop met meetlinten ingemeten (Dallinga en Tjaden 1981).

- 1982
De vlakindeling is aan de hand van de bedekking van de meest algemene soorten gemaakt. De richtlijn is, dat in deze vlakken minstens één soort 10% in bedekking met het omliggende gebied moet verschillen. Daarnaast is ook onderscheid gemaakt in vlakken met en zonder micropatronen. Elk kaartvlak is in z'n geheel als één opname beschouwd en beschreven met de decimale schaal. Door het grote oppervlak van de opnamen kunnen soorten met een zeer geringe bedekking over het hoofd gezien worden, tenzij het
opvallend grote of bloeiende soorten betreft. Ook onopvallende soorten als Anthoxanthum odorum kunnen onderschat zijn. Het voordeel van deze methode is echter, dat het gehele kaartoppervlak beschreven wordt in plaats van een kleine steekproef van kwadraten. De kaartvlakken zijn met een meetlint en een hoekspiegel op dezelfde basiskaart als in 1977 ingemeten (Leys 1978).

Vlakken kleiner dan 5x5 of 2x10 meter worden niet ingetekend (ter Heerdt en Schutter 1984).

- 1987

Dit jaar is de vlakindeling net als in 1982 aan de hand van de bedekking van de meest voorkomende soorten gemaakt; terwijl ook dezelfde criteria gebruikt zijn. Het verschil met 1982 is, dat niet met meetlint en hoekspiegel is gewerkt, maar met behulp van luchtfoto’s, gemaakt in april 1987. Op deze foto’s zijn de belangrijkste vegetatie-overgangen (na moeilijke correctie voor de (variaabele) opnamehoek) zichtbaar, van waaruit andere vegetatiegrenzen ingemeten kunnen worden.

De kaartschaal van de vier vegetatiekaarten (die achterin dit verslag te vinden zijn) is 1:1000.

2.1.2. Het vormen van vegetatietypen en de beschrijving hiervan.

Om de beschrijving van de vegetatie te vereenvoudigen zijn eenheden die sterk overeenkomen tot één vegetatiotype gecombineerd. Voor grasland en heide zijn daarbij verschillende criteria gehanteerd; deze criteria zijn gelijk aan die uit 1982 (ter Heerdt en Schutter 1984).

- Grasland:

In het grasland is vooral gelet op de dominantie van soorten. Eenheden met dominantie van dezelfde soorten vormen samen één hoofdtype. Aan de hand van andere veel voorkomende soorten, zijn deze hoofdtypen weer in vegetatietypen ingedeeld. Elk vegetatiotype is beschreven met de gemiddelde bedekkingpercentages van elke soort, mits (in de meeste gevallen) groter dan 3% (de typen uit 1972 en 1977 zijn daartoe in 1982 door ter Heerdt en Schutter opnieuw ingedeeld).

In 1977 is een relatie tussen de grondwaterstand en de vegetatiesamenstelling aangetroffen. Een aantal soorten blijkt vooral op plaatsen met een hoge grondwaterstand voor te komen, andere soorten juist niet (Figuur 9). Aan de hand van deze gegevens zijn de vegetatietypen ingedeeld in twee klassen; vochtig en nat.

- Heide:

In de heide is niet op de bedekking van elke soort afzonderlijk gelet. Voor het beantwoorden van de vraag of de heide zich handhaaft of niet, is vooral het aandeel van Erica tetralix en Calluna vulgaris in de vegetatie van belang. Verder is gelet op
het aandeel van Molinia caerulea en op het aandeel van andere niet-heidesoorten als Agrostis capillaris en Holcus lanatus en dergelijke. Het laatste wordt vanaf hier "vergrassing" genoemd. Het aandeel (dus niet de absolute bedekking) van elk van deze drie groepen is in drie klassen ingedeeld: <5%, 5-50%, >50%.
Verder is onderscheid gemaakt in soortenrijke en soortenarme heide. De soortenrijke heide onderscheidt zich van de soortenarme heide door het plaatselijk voorkomen van soorten als Dactylorhiza maculata, Gentiana pneumonanthe, Eriophorum angustifolium, Drosera rotundifolia, Drosera intermedia, Carex panicea, Narthecium ossifragum, Pedicularis sylvatica, Salix repens, Potentilla erecta, Juncus squarrosum, Succisa pratensis en Arnica montana. Deze soorten komen niet alle gelijk voor en slechts in geringe bedekkingen.

2.1.3. Areaalkaarten

Om de veranderingen in bedekking en areaal van een aantal soorten duidelijk weer te geven, is vanuit de vegetatiekaarten voor deze soorten een areaalkaart gemaakt. Hiertoe is in de kaartvlakken alleen de bedekking van de betreffende soorten weergegeven.

2.1.4. Vergelijking van de vegetatiekaarten.

De vier vegetatiekaarten zijn op transparant papier overgenomen en op elkaar gelegd. Daarover is een puntenraster gelegd van 1x1 cm in het beweide terreingedeelte (in werkelijkheid 10x10 m) en .5x.5 cm in het hooiland (in werkelijkheid 5x5 m). Het aantal punten in een bepaald vegetatiertype is een maat voor het oppervlak ervan. De veranderingen in de vegetatie zijn bepaald door per rasterpunt het vegetatietype in 1972, 1977, 1982 en 1987 te noteren (Leys 1978).

2.2. Vergelijking tussen de verschillende beheersmaatregelen.

2.2.1. Verandering van de vegetatiesamenstelling bij de verschillende beheersmaatregelen, uitgaande van dezelfde uitgangssituatie.

De beheersmaatregelen kunnen het beste onderling vergeleken worden op plaatsen die zo dicht mogelijk bij elkaar liggen. Daardoor is de kans dat verschillen in vocht, bodemtype en dergelijke een vertroebelende rol spelen, zo klein mogelijk. Aan weerszijden van de grenzen tussen de beheersmaatregelen liggen pq's die aan deze voorwaarden voldoen. Pq's met, in 1972, eenzelfde vegetatietype en een gelijk beheer zijn bij de verwerking van de gegevens gegroepeerd tot een "subset" (Figuur 10). Per subset is het gemiddelde van de pq-opnamen berekend. Daarvoor zijn de bedekkingen per soort van alle betreffende pq's opgeteld en gedeeld door het aantal pq's. Deze gemiddelde opnamen worden onderling vergeleken op veranderingen in de vegetatiesamenstelling.
Figuur 10. Ligging van de pq's, gebruikt voor de vergelijking van de veranderingen in de vegetatie bij verschillende beheersmaatregelen.

A - Hooien - Beweiden (vochtig)
B - Hooien - Beweiden (vochtig)
C - Hooien - Beweiden (nat)
D - Plaggen - Hooien
E - Plaggen - Hooien
F - Hooien - N-bemesten
G - Plaggen - Ploegen 60 cm
H - Ploegen 60 cm - Ploegen 25 cm
Om de grootte van de veranderingen te bepalen, is de dissimilariteit (= "Ružička's index") (D) tussen de verschillende subsets berekend (Goodall 1973):

\[D = (1 - \frac{c}{a+b-c}) \times 100\% \]

a = totale bedekking van de ene gemiddelde opname

b = totale bedekking van de andere gemiddelde opname

c = som van de, voor de gemeenschappelijke soorten, laagste bedekkingen

Bij de berekeningen zijn alleen soorten met een bedekking van 2% of meer gebruikt.

2.2.2. Heide-ontwikkeling bij de verschillende beheersmaatregelen.

2.2.3. Verschillen in α- en β-diversiteit en equitabiliteit bij de verschillende beheersmaatregelen.

- α-diversiteit:

In 1987 is (net als in 1982) de α-diversiteit per beheersmaatregel bepaald, door het gemiddelde aantal soorten per vegetatietype te bepalen. Omdat de vegetatietype-oppervlakken niet even groot zijn, is de volgende formule gebruikt:

\[\text{α-diversiteit} = \Sigma (n \times \frac{a}{b}) \]

n = het aantal soorten in type *x*

a = het oppervlak van type *x*

b = het totale oppervlak van de beheersmaatregel

- β-diversiteit:

In zowel 1972, 1977, 1982 als 1987 is het aantal vegetatietypen per beheersmaatregel bepaald als maat voor de β-diversiteit.

- relatieve patroon-diversiteit:

In 1982 is voor het eerst de diversiteit uitgedrukt in de
relatieve patroon-diversiteit (toen equitabiliteit genoemd). De relatieve patroon-diversiteit is een nieuw geïntroduceerde term om onderscheid te kunnen maken met de relatieve equitabiliteit, zoals hieronder beschreven.

De relatieve patroon-diversiteit (P) is een maat voor de verdeling van de vegetatietypen over het terrein (in Fresco (1980) als de equitabiliteit volgens Pielou).

$$P = \frac{s}{\ln s} \left(\sum_{i=1}^{s} p_i \ln p_i \right)$$

s = aantal vegetatietypen per beheersmaatregel
i = aantal procenten van het oppervlak dat door vegetatietype i wordt bedekt

-relatieve equitabiliteit:

$$E = \frac{H}{H_{\text{max}}} = \frac{s}{\ln s} \left(\sum_{i=1}^{s} p_i \ln p_i \right)$$

p = bedekkingspercentage van elke soort
s = aantal soorten
H = diversiteit

Om de vergelijking onafhankelijk te maken van het aantal soorten, wordt gedeeld door $\ln s$, wat een relatieve maat voor de equitabiliteit oplevert. De bovenstaande wijze om een uitspraak over een bepaald deel van het terrein te relatieren aan het gehele terrein, dus om tot een relatieve maat te komen, is gelijkvormig aan die van Bakker e.a. (1983). Deze hebben een relatieve maat voor aanwezigheid van schapen in een bepaald gedeelte van het terrein bepaald, door de gevonden mest in dat gedeelte aan de totale gevonden hoeveelheid mest voor het gehele terrein te relatieren.

2.2.4. Veranderingen in bodemrijkdom bij de verschillende beheersmaatregelen.

De bodemrijkdom is niet rechtstreeks aan bodemmonsters bepaald in verband met de grootte van het terrein. In plaats daarvan is de vegetatie als indicator voor de bodemrijkdom gebruikt. Van een groot aantal graslandsoorten is uit de literatuur bekend of ze in

Tabel 1. Indicatie voor de nutriëntentestand door de belangrijkste soorten (naar Veldman 1983)

<table>
<thead>
<tr>
<th>Arm:</th>
<th>Gemiddeld:</th>
<th>Rijk:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agrostis canina</td>
<td>Agrostis capillaris</td>
<td>Agrostis stolonifera</td>
</tr>
<tr>
<td>Calluna vulgaris</td>
<td>Antoxanthum odoratum</td>
<td>Alopecurus geniculatus</td>
</tr>
<tr>
<td>Carex nigra</td>
<td>Bellis perennis</td>
<td>Cirsium arvense</td>
</tr>
<tr>
<td>Carex rostrata</td>
<td>Cynosurus cristatus</td>
<td>Elytrigia repens</td>
</tr>
<tr>
<td>Cirsi um palustre</td>
<td>Dactylis glomerata</td>
<td>Lolium perenne</td>
</tr>
<tr>
<td>Erica tetralix</td>
<td>Glyceria fluitans</td>
<td>Poa pratensis</td>
</tr>
<tr>
<td>Hypochaeris radicata</td>
<td>Holcus lanatus</td>
<td>Poa trivialis</td>
</tr>
<tr>
<td>Juncus acutiflorus</td>
<td>Leontodon autumnalis</td>
<td>Ranunculus repens</td>
</tr>
<tr>
<td>Juncus effusus</td>
<td>Mentha aquatica</td>
<td>Rumex acetosa</td>
</tr>
<tr>
<td>Juncus subuliflorus</td>
<td>Polygonum hydropiper</td>
<td>Taraxacum spec.</td>
</tr>
<tr>
<td>Molinia caerulea</td>
<td>Ranunculus acris</td>
<td>Trifolium repens</td>
</tr>
</tbody>
</table>

Arme soorten krijgen de score 0, gemiddelde 0.5 en rijke 1. De vegetatietypen kunnen nu worden ingedeeld op een schaal van 0 (100% van de bedekking bestaat uit arme soorten) tot 100 (100% van de bedekking bestaat uit rijke soorten). Dit getal wordt de relatieve bodemrijkdom genoemd. Een vegetatietype met 20% arme, 70% gemiddelde en 10% rijke soorten krijgt als score: (20×0)+(70×0.5)+(10×1) = 45.

2.3. De relatie tussen begraazing en de veranderingen in het beweide grasland.

2.3.1. Veranderingen van de zwaarst begraasde vegetatietypen.

In 1982 is er voor het eerst in de vegetatietypen van het Westerholt sprake van typen met een micropatroon (ter Heerdt en Schutter 1984). Deze patronen bestaan uit kortgegraasde plekken afgewisseld met hogere vegetatieplekken. Het aandeel van de korte plekken in de vegetatie is volgens Breymeyer en van Dyne (1980)
groter naarmate de begrazingsintensiteit groter is. Er wordt vanuit gegaan, dat vegetatiertypen met een karakteristiek micropatroon, de nummer-9-vegetatiertypen (Bijlage 2), die typen zijn die het zwaarst begraasd worden. De vraag is of deze 9-typen in de ruimte verschuiven of globaal op dezelfde plaats blijven en overgaan in nieuwe 9-typen.

Om voorgaande te kwantificeren, is met behulp van een punten raster (2.1.4.) gekeken of de 9-typen tussen 1982 en 1987 zijn verschoven of op dezelfde plaats zijn gebleven.

2.3.2. Invloed van winterbeweiding op vegetatiepatronen op micro-niveau.

Om de invloed van winterbeweiding te achterhalen, is in maart 1988 een hek geplaatst dat er voor zorgt, dat een bepaald gedeelte van het terrein in de wintermaanden niet door schapen kan worden bereikt. Op deze manier wordt bereikt, dat een deel van het terrein negen en een ander deel twaalf maanden van het jaar begraasd wordt. Aan weerszijden van het hek zijn op een negental plaatsen transecten ingemeten met een breedte van 2 en een lengte van 8 tot 15 meter (Tabel 2). De negen transecten liggen in grotere homogene vegetatiertypen (Figuur 7), waarvan 4 in laag grasland (nr 1, 2 en 7), 2 in door Juncus effusus gedomineerd grasland (nr 5 en 6) en 3 in heidetypen (nr 4, 8 en 9).

In augustus 1987 is van alle transecten de hoogte t.o.v. N.A.P. (Bijlage 4) en tevens de vegetatiehoogte en de strooiseldikte (Bijlage 5) bepaald. Langs de middenlijn van het twee meter brede transect is voor de vegetatiehoogte en strooiseldikte om de 50 cm en voor de N.A.P.-hoogte om de meter (in situaties met grote hoogteverschillen om de 50 cm) gemeten. Met strooiseldikte wordt de dikte van het pakket liggend dood materiaal bedoeld, zonder humus-/wortel-/viltlaag direct op de bodem; tevens is geen rekening gehouden met dood plantenmateriaal dat tussen de vegetatie rechtop staat (het zogenaamde "standing dead").

Voorgaande is analogo aan de manier van werken gevolgd door Brongers, Tonckens en 't Hart (1987), die op Schiermonnikoog via transectbeschrijvingen delen van kweldervegetaties hebben vastgelegd. Langs de middenlijn van zes meter brede transecten werd om de 50 cm de vegetatiehoogte en strooiseldikte gemeten en tevens de hoogte t.o.v. N.A.P.

Bij de hoogtemetingen t.o.v. N.A.P. is gebruik gemaakt van een theodoliet; bij de bepaling van de vegetatiehoogte van een pieschaar schijf (doorsnede 30 cm, dikte 4 cm, gewicht 35.5 gram), die door hem langs een stok te laten zakken de vegetatiehoogte aangeeft (Figuur 11; Methode Bokdam (ter Heerdt en Schutter 1984)). De strooiseldikte is gemeten door een dunne lineaal (breedte 2 cm) door het strooisel te steken tot op de ondergrond/wortelzone.

Drenth en Oosterbaan (1984) hebben de onderbegroeiing in het New Forest (Groot-Brittannië) aan de hand van bedekking van soorten vastgelegd. Van tien meter brede transecten werd per twee meter
Tabel 2. Lengte van de negen transecten-paren en de vegetatietypen
waarin ze zich bevinden.

<table>
<thead>
<tr>
<th>transectnr.</th>
<th>lengte transect (m)</th>
<th>vegetatietype(n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10</td>
<td>1.7.0.</td>
</tr>
<tr>
<td>2</td>
<td>10</td>
<td>9.0.13.</td>
</tr>
<tr>
<td>3</td>
<td>10</td>
<td>9.0.9.</td>
</tr>
<tr>
<td>4</td>
<td>10</td>
<td>6c1</td>
</tr>
<tr>
<td>5</td>
<td>15</td>
<td>1.7.0./1.0.1.</td>
</tr>
<tr>
<td>6</td>
<td>10</td>
<td>1.0.1.</td>
</tr>
<tr>
<td>7</td>
<td>10</td>
<td>9.0.4.</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>6c1/6b1/6a1</td>
</tr>
<tr>
<td>9</td>
<td>9</td>
<td>6c1</td>
</tr>
</tbody>
</table>

Figuur 11. Bepaling van de vegetatie-hoogte m.b.v. een tempexschijf

A: tempexschijf
B: meetlat
lengte de procentuele bedekking van de betreffende soorten gegeven; voor het Westerholt een veel te grove methode om micropatronen vast te leggen.

Brongers, Tonckens en 't Hart (1987) hebben structuuropnamen beschreven met behulp van groeivormen in bepaalde hoogteklassen; dit was mogelijk door het beperkt aantal te onderscheiden groeivormen op de betreffende kwelders. Op het Westerholt is deze werkwijze niet mogelijk en is er gekozen voor een beschrijving met behulp van bedekkingspercentages van soorten binnen bepaalde hoogteklassen.

Van de transecten zijn de micropatronen vastgelegd in de vorm van vegetatievlakken met een bepaalde hoogte en vegetatie-samenstelling(en).

Als eerste stap is het gehele transect ingedeeld in onderdelen met een bepaalde vegetatiehoogte, waarbij de klassen kaal, 0-5, 5-10, 10-20, 20-30 en >30 cm worden onderscheiden. Binnen elke hoogteklasse-vlek is bepaald of er één of meerdere "typen" te onderscheiden zijn en wat de absolute bedekking is van de meest voorkomende soorten binnen elk type. (Het is mogelijk dat meerdere typen binnen één hoogteklasse-vlek vallen, maar ook dat een type in meerdere hoogteklassen voorkomt).

Naast bovenstaande zijn exemplaren van Cirsium palustre in het grasland en individuele berken en eiken in de heide ingetekend.

2.4. Ontwikkelingen in de heidevegetatie.

2.4.1. Handhaven van de heidevegetatie.

Veranderingen in bedekking en areaal van Calluna vulgaris en Erica tetralix, Molinia caerulea en "vergrassing" zijn met behulp van het puntenraster (2.1.4.) bepaald, evenals het areaal van de soortenrijke heide.
3. RESULTATEN GRASLAND

3.1. Vergelijking van de veranderingen in de vegetatie bij de verschillende beheersmaatregelen.

3.1.1.A. Hooien - beweidien.

De beheersmaatregelen hooien en beweidien zijn op drie plaatsen aan weerszijden van het raster bekeken. De ligging van de gebruikte pq’s is aangegeven in Figuur 10. De pq’s zijn verdeeld over drie plaatsen (drie pq-subsets) om beweidien en hooien te vergelijken onder verschillende vochtomstandigheden: twee subsets liggen in vochtig, één in nat terrein.

- Vochtig grasland: Figuur 12A en 12B.

In 1972 is Holcus lanatus de aspectbepalende soort in het vochtige grasland.

Bij beweidien zijn in 1977 de zogenaamde "rozetplanten" aspectbepalend geworden. Onder rozetplanten worden verstaan:

Bij hooien zijn in 1977 de rozetplanten samen met Holcus lanatus of Agrostis capillaris aspectbepalend. In 1982 vormt een groter aantal soorten een belangrijk deel van de bedekking, met name de rozetplanten, Agrostis capillaris, Anthoxanthum odoratum en Rhinanthus angustifolius. In 1987 is er een duidelijke toename te constateren van het aandeel van Agrostis capillaris, terwijl net als in 1982 een groter aantal soorten de rest van de bedekking uitmaakt. Een bepaalde richting is voor de twee opnameblokken (Figuur 12A en 12B) niet te geven; er zijn zelfs enige tegenstellingen zoals het verloop van Rhinanthus angustifolius.

- Nat grasland: Figuur 12C.

In het natte grasland is in 1972 Agrostis stolonifera de aspectbepalende soort.

Bij beweidien is Juncus effusus zowel in 1977 en 1982 als in 1987
Figuur 12. Vergelijking van de veranderingen in de vegetatie bij verschillende beheersmaatregelen (Bijlage 6.)

Links en rechts van de stippellijn zijn de verschillende beheersmaatregelen weergegeven. De kolommen geven de vegetatiesamenstelling in een jaar weer; de balken de dissimilariteit tussen de jaren (*) of de dissimilariteit tussen de beheersmaatregelen per jaar (**). De relatieve equitabiliteit staat voor elk jaar boven elke kolom vermeld (**).

Gebruikte afkortingen:

A.ca - Agrostis capillaris
Ach - Achillea millefolium
All - Allopecurus geniculatus
Ant - Anthoxanthum odoratum
A.st - Agrostis stolonifera
Cal - Calluna vulgaris
Cer - Cerastium fontanum
C.ni - Carex nigra
Dac - Dactylus glomerata
Ele - Eleocharis palustris
Ely - Elytrigia repens
Eri - Erica tetralix
Gal - Galium palustre
Gly - Glyceria fluitans
Hol - Holcus lanatus
J.ef - Juncus effusus
Lol - Lolium perenne
Pl.1 - Plantago lanceolata
Pot - Potentilla anserina
P.pr - Poa pratensis
R.ac - Rumex acetosa
Rhin - Rhinanthus angustifolius
Roz - rozetten
Figuur 12A. Hooien (pq 7,8) – Beweiden (pq 45,46).
Figuur 12B, Hooien (pg 15,16,23,24) – Beweiden (pg 38,39,40,41).
Figuur 12C. Hooien (pq 9,13) – Bewiden (pq 42,43).
Figuur 12D. Hooien (pq 7,8) - Flaggen (pq 110).
Figuur 12E. Hooien (pg 3,4) - Plaggen (pg 1,2).
Figuur 12F. Hooien (pg 17,18,25,26) - N-bemesten (pg 19,20,27,28).
Figuur 126. Plaggen (pq 110) – Ploegen tot 60 cm (pq 138).
Figuur 12H. Ploegen tot 60 cm (pq 138,140) - Ploegen tot 25 cm (pq 139,141).
aspectbepalend.

Zowel in het vochtige als natte grasland is bij beweiden één soort dominant geworden, terwijl bij hooien meerdere soorten een belangrijk deel van de bedekking vormen. Zowel bij beweiden als bij hooien is de vegetatie sterk gaan verschillen van de uitgangssituatie. Het verschil tussen beweiden en hooien is in de loop van de tijd aanvankelijk groter geworden; in 1987 is echter het verschil tussen hooien en beweiden onder vochtige omstandigheden kleiner dan in 1982, als gevolg van de dominantie van Agrostis capillaris (Figuur 12A en B). Dit komt tevens tot uitdrukking in de relatieve equitabiliteit, die in alle 12-figu ren boven elke kolom vermeld staat.

3.1.1.B. Hooien - plaggen.

De beheersmaatregelen hooien en plaggen zijn op twee plaatsen vergeleken. De ligging van de pq’s is aangegeven in Figuur 11. Het betreft vochtig grasland.

In 1972 is op een plaats Holcus lanatus aspectbepalend (Figuur 12D).

Bij hooien zijn in 1977 de rozetplanten samen met Agrostis capillaris de belangrijkste bedekkers. In 1982 komen meerdere soorten met ongeveer gelijke bedekkingen voor, met name Agrostis capillaris, rozetplanten, Anthoxanthum odoratum en Rhinanthus angustifolius. Dit beeld verandert in 1987; Agrostis capillaris is nu de aspectbepalende soort, wat vooral ten koste van Rhinanthus angustifolius is gegaan.

Bij plaggen neemt het aandeel van Rhinanthus angustifolius ook toe, echter ook de rozetplanten, terwijl Agrostis capillaris achteruitgaat. Hier zijn Rhinanthus angustifolius en de rozetplanten in 1987 aspectbepalend.

Onafhankelijk van de uitgangssituatie is zowel bij plaggen als
bij hooien de vegetatie sterk van de uitgangssituatie gaan verschillen. Het verschil tussen de beheersmaatregelen is in de loop van de tijd toegenomen (Figuur 12D en 12E).

3.1.1.C. Hooien - N-bemesten.

De beheersmaatregelen hooien en bemesten zijn op een plaats in het vochtige grasland vergeleken (Figuur 12F).
De uitgangssituatie in 1972 is voor de te vergelijken pq-subsets niet hetzelfde. Bij hooien was Holcus lanatus de aspectbepalende soort, terwijl bij bemesten naast Holcus lanatus ook Poa pratensis een belangrijke bedekker was.
Zowel bij hooien als bemesten verschilt de vegetatie van de uitgangssituatie, vooral wat betreft het groter aandeel van meerdere soorten in 1987 (Figuur 12F).

3.1.1.D. Plaggen - ploegen tot 60 cm.

Plaggen en ploegen tot 60 cm zijn op één plaats vergeleken (Figuur 11).
De uitgangssituatie in 1972 was een Holcus lanatus-Lolium perenne-Poa pratensis-vegetatie. Ploegen tot 60 cm vond in 1977, 5 jaar na het plaggen plaats.
In 1982, 5 jaar na het ploegen, is Agrostis capillaris de grootste bedekker met daarnaast een aandeel rozetplanten. In 1987 is Agrostis capillaris sterker aspectbepalend geworden; de bedekking rozetplanten is gelijk gebleven en er is nu een duidelijk aandeel van Calluna vulgaris (Figuur 12G).
In 1982 bestond de bedekking na plaggen uit gelijke percentages Calluna vulgaris, Erica tetralix en rozetplanten. In 1987 zijn de rozetplanten verdwenen en Calluna vulgaris heeft zich sterk uitgebreid ten koste van Erica tetralix.
Bij zowel plaggen als ploegen is een toename te zien van het aandeel Calluna vulgaris, wat bij het plaggen tot een zuiver heidetype heeft geleid. Bij het ploegen is dit niet het geval, hier is duidelijk sprake van een graslandtype (Figuur 12G).

3.1.1.E. Ploegen tot 60 cm - ploegen tot 25 cm.

Ploegen tot 60 cm en ploegen tot 25 cm zijn op één plaats
vergeleken (Figuur 11).

De uitgangssituatie, in 1977, was een vegetatie bestaande uit Lolium perenne, Holcus lanatus, Agrostis capillaris en rozetplanten met ongeveer gelijke bedekkingen. In 1982 is zowel bij ploegen tot 60 cm als bij ploegen tot 25 cm Agrostis capillaris de aspectbepalende soort geworden, met een belangrijk aandeel van de rozetplanten (Figuur 12H). In 1987 is in beide gevallen Agrostis capillaris sterk aspectbepalend geworden, met nog steeds een aandeel rozetplanten. Bij ploegen tot 60 cm valt het aandeel Calluna vulgaris op.

Het verloop van de totale bedekking in de drie opnamejaren geeft een vreemd beeld. De sterke afname in totale bedekking in 1982 zou mogelijk door zowel schattings- als milieu-invloeden (bijvoorbeeld droogte) verklaard kunnen worden.

3.1.2. Ontwikkeling van heide bij de verschillende beheersmaatregelen.

- Plaggen

Op het lagergelegen deel van het geplagde hooiland kwam in 1982 een vegetatie voor die voor ongeveer 30% uit Calluna vulgaris bestond. Daarnaast kwamen ook Erica tetralix, Dactylorhiza maculata en Scirpus cespitosus voor. De totale bedekking was niet hoger dan 30%. Op het hoger gelegen deel kwamen slechts enkele exemplaren van Calluna vulgaris voor; de totale bedekking was hier hoger. In 1987 is op de vegetatiekaart te zien, dat een deel van het geplagde hooiland tot heidevegetatietype is gebombardeerd.

Zal geeft aan, dat het om een rijk heide-type (verhouding Calluna vulgaris en Erica tetralix 3:1) gaat, met 0-5% bedekking van Molinia caerulea en eenzelfde percentage vergrassing. Het rijke aspect komt door aanwezigheid van een tiental exemplaren van Dactylorhiza maculata (Figuur 13) met daarnaast Scirpus cespitosus en een groot aantal pollen Carex pilulifera.

- Ploegen.

Calluna vulgaris en Erica tetralix komen voor met een bedekking van 1-3%. Verder komen enkele exemplaren van Dactylorhiza maculata, Carex pilulifera en Potentilla erecta voor (Figuur 13).

- Hooien.

Meerdere exemplaren Calluna vulgaris, Erica tetralix, Dactylorhiza maculata, Potentilla erecta komen in het hooiland voor (Figuur 13).

- Beweiden.

Buiten de greppels worden in het beweide grasland net als in 1982, nog slechts zeer sporadisch exemplaren van Calluna vulgaris, Erica tetralix en Dactylorhiza maculata aangetroffen. In de greppels komen Calluna vulgaris en Erica tetralix vaker

A 1-2% Molinia-bedekking
B 1-5% Molinia bedekking
C 1-10% Molinia-bedekking

- Molinia caerulea
- Erica tetralix
+ Calluna vulgaris
- Potentilla erecta
- Dactylorhiza maculata
* Platanthera bifolia

= Cirsium palustre (bloeiend)
voor. Het aantal is sinds 1972 sterk teruggelopen. Juncus squarrosus komt af en toe nog langs greppels voor, maar veel minder vaak dan in 1972 (Tabel 3). In 1982 kwam Potentilla erecta nog vaak voor (ter Heerdt en Schutter 1984); in 1987 is langs de greppels deze soort door het geringe aantal voor het eerst gescoord (Bijlage 8).

- Bemest hooiland.

Geen heidesoorten aanwezig.

- Langs randen hooiland.

Zoals te zien in Figuur 13, komen langs de randen van het hooiland nog grote aantallen exemplaren van Molinia caerulea, Erica tetralix en Calluna vulgaris voor, evenals enkele exemplaren van Potentilla erecta en Dactylorhiza maculata. Zoals zichtbaar in Figuur 13, is in het niet beweide grasland het voorkomen van Cirsium palustre ingetekend. Opvallend is het grote verschil in aantallen (dichtheid) in het N-bemeste deel in vergelijking met het daaraan grenzende hooiland (in het voordeel van de laatste).

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Calluna vulgaris</td>
<td>>50</td>
<td>126</td>
<td>46</td>
<td>9</td>
</tr>
<tr>
<td>Erica tetralix</td>
<td>>84</td>
<td>199</td>
<td>33</td>
<td>16</td>
</tr>
<tr>
<td>Juncus squarrosus</td>
<td>?</td>
<td>63</td>
<td>29</td>
<td>2</td>
</tr>
</tbody>
</table>

3.1.3. Verschillen in α- en β-diversiteit, relatieve patroon-
diversiteit en relatieve equitabiliteit bij de verschillende beheersmaatregelen.

- α-diversiteit.

De α-diversiteit is het hoogst in het geploegde deel en het laagst in het beweide grasland (Tabel 4). De α-diversiteit is aan de hand van de vegetatietypen bepaald (Bijlage 2) en niet met behulp van pq’s (Figuur 10), omdat deze laatste een te klein gedeelte van het terrein beschrijven.
Tabel 4. α-diversiteit; gemiddeld aantal soorten per beheersmaatregel in 1987.

<table>
<thead>
<tr>
<th>Landschap</th>
<th>Aantal soorten</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ploegen</td>
<td>6.4</td>
</tr>
<tr>
<td>Plaggen</td>
<td>5.1</td>
</tr>
<tr>
<td>Hooien</td>
<td>4.8</td>
</tr>
<tr>
<td>N-Bemesten</td>
<td>4.5</td>
</tr>
<tr>
<td>Beweiden</td>
<td>4.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ploegen</td>
<td>1</td>
<td>1</td>
<td>4</td>
<td>7</td>
</tr>
<tr>
<td>plaggen</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td>hooien</td>
<td>5</td>
<td>16</td>
<td>16</td>
<td>33</td>
</tr>
<tr>
<td>N-bemesten</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>beweiden</td>
<td>15</td>
<td>50</td>
<td>31</td>
<td>53</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Beweiden</td>
<td>67.6</td>
<td>74.9</td>
<td>63.6</td>
<td>66.4</td>
</tr>
<tr>
<td>Hooien</td>
<td>87.0</td>
<td>78.0</td>
<td>82.0</td>
<td>91.5</td>
</tr>
</tbody>
</table>
- β-diversiteit.

De β-diversiteit is bij elke beheersmaatregel toegenomen (Tabel 5). Welke beheersmaatregel de sterkste toename tot gevolg heeft wordt met deze gegevens niet duidelijk door het grote verschil in oppervlak (plaggan: .08 hectare, beweiden: 7.03 hectare).

- relatieve patroon-diversiteit.

De verdeling van de vegetatietypen over het terrein verandert niet veel bij beweiden, maar stijgt vanaf 1977 bij hooien (Tabel 6). Van de andere beheersmaatregelen zijn de oppervlakken te klein om zinnige uitspraken te kunnen doen.

- relatieve equitabiliteit.

De relatieve equitabiliteit, als maat voor de diversiteit, is voor 1987 per beheersmaatregel berekend (Tabel 7). Opvallend is de volgorde van een hoge naar een lage equitabiliteit. N-bemesten scoort hoog, wat betekent, dat de procentuele bedekking van de betreffende soorten onder deze beheersmaatregel grotendeels gelijk is. In Bijlage 9 staat per pq-set (Figuur 10) voor de periode 1972-1987 de relatieve equitabiliteit en het aantal soorten dat meespeelt. In Tabel 7 staat per beheersmaatregel het gewogen gemiddelde van de relatieve equitabiliteit voor de periode 1972-1987. Dit gewogen gemiddelde wil zeggen dat elk pq even zwaar meetelt en dus niet elke pq-subset, omdat deze niet altijd even groot zijn.

Over de periode 1972-1987 is geen duidelijke vaste volgorde in hoge naar lage relatieve equitabiliteit voor de verschillende beheersmaatregelen.

Per beheersmaatregel lijkt bij beweiden de relatieve equitabiliteit de laatste jaren af te nemen, terwijl voor de andere beheersmaatregelen deze toe lijkt te nemen.

3.1.4. Verandering in de relatieve bodemrijkdom bij de verschillende beheersmaatregelen.

In 1972 is het grasland wat betreft de verdeling van de relatieve bodemrijkdom vrij homogeen; het is te verdelen in een rijk, gemiddeld rijk en een arm gedeelte. In 1977 en 1982 treedt meer differentiatie op en is er sprake van een toename van vegetatietypen met een lage relatieve bodemrijkdom. Het beweide grasland geeft in 1987 globaal hetzelfde beeld als in 1982, met grotendeels dezelfde vlakverdeling met overeenkomstige bodemrijkdomklassen. De bodemrijkdom als geheel is niet sterk verandert, er is slechts sprake van een verplaatsing in de ruimte (figuur 14).

Het beweide grasland is in de periode 1972-1987 wat relatieve bodemrijkdom betreft, duidelijk veranderd.

Het gedeeltje van het grasland, dat tot 1972 met jongvee werd beweid (Figuur 6: percelen A en B), is in de periode 1972-1987

(* de arcering van het gemiddeld rijk type is voor 1987 per ongeluk gedraaid)
wat relatieve bodemrijkdom betreft voor verreweg het grootste
gedeelte gelijk gebleven.
In het gedeelte van het grasland dat tot 1967 als bouwland
dienst deed (Figuur 6: percelen C en D), zien we over het gehele
vlak een lichte verarming (Figuur 15). De relatie met de
begrazingsintensiteit lijkt duidelijk: in het genoemde vlak
(percelen C en D) en met een lichte verarming in relatieve
bodemrijkdom, vinden we tevens de meeste intensief begraasde 9-
typen (kaart 1987, Bijlage 2).

Wat in het hooiland opvalt, is dat de bodemrijkdom in de periode
1972-1982 geleidelijk afneemt, terwijl in 1987 deze voor een deel
weer lijkt te zijn toegenomen (Figuur 16).
Over de periode 1972-1987 neemt de verschraling af in de reeks

Plaggen	(-2.3)
Ploegen	(-1.2)
Hoelen	(-0.6)
Beweid en	(-0.3)
N-bemesten	(0.0)

In Bijlage 10 is per beheersmaatregel weergegeven hoeveel
procent van het oppervlak in de zes onderscheidde klassen van
bodemrijkdom verandert en hoe groot de gemiddelde verandering is
in de vorm veranderingsklasse per beheersmaatregel. Deze getallen
zijn grafisch weergegeven in Figuur 17.

De armste vegetatietypen in het beweide grasland in 1977, 1982
en 1987 worden aangetroffen op natte plaatsen. Een uitzondering
wordt gevormd door natte plekken langs de greppel die dwars door
het terrein loopt. Daar komen juist de rijkere typen voor (Figuur
14). Het water in deze greppel is afkomstig van terreinen die nog
bemest worden en is voedselrijk.

3.1.5. Veranderingen van de belangrijkste vegetatietypen onder de
verschillende beheersmaatregelen over de periode 1972-
1987.

- beweide grasland

De belangrijkste bedekkende vegetatietypen en hun overgangen in
het beweide grasland voor de periode 1972-1987 staan afgebeeld in
Figuur 18.

De vegetatietypen, die globaal dezelfde veranderingen doormaken
zijn in blokken geplaatst. Deze blokken zijn gerelateerd aan een
bepaalde mate van begrazing (zoals vermeld in ter Heerdt en
Schutter (1984)), waarbij drie klassen onderscheiden worden:
intensief (I), matig (M) en nauwelijks (N) begraasd, zoals
aangegeven in Figuur 18.

De figuur wijkt enigszins af van die geproduceerd door ter Heerdt
wijten aan het opnieuw punt-roosteren (2.1.4.) voor al deze
jaren, waardoor (onder andere door de ligging van het grid op de
kaarten) enige veranderingen mogelijk zijn. Tevens is door hen

-3 sterke verarming
-2 matige verarming
-1 lichte verarming
0 geen verarming
+1 lichte verrijking
+2 matige verrijking

<table>
<thead>
<tr>
<th></th>
<th>subset</th>
<th>n= 3</th>
<th>plagen: pq 1,2/pg 110</th>
<th>n= 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>ploegen:</td>
<td>pq 138,140/pq 139,141</td>
<td>n= 4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>hooien:</td>
<td>pq 3,4/pq 7,8/pq 9,13/</td>
<td>n=14</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>pq 15,16,23,24/pq 17,18,25,26</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N-bemesten:</td>
<td>pq 19,20,27,28</td>
<td>n= 4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>beweiden:</td>
<td>pq 38,39,40,41/pq 42,43/pq 45,46</td>
<td>n= 8</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>1972</th>
<th>19777</th>
<th>1982</th>
<th>1987</th>
</tr>
</thead>
<tbody>
<tr>
<td>plagen:</td>
<td>.593</td>
<td>.527</td>
<td>.425</td>
<td>.541</td>
</tr>
<tr>
<td>ploegen:</td>
<td>.759</td>
<td>.465</td>
<td>.540</td>
<td></td>
</tr>
<tr>
<td>hooien:</td>
<td>.544</td>
<td>.545</td>
<td>.629</td>
<td>.671</td>
</tr>
<tr>
<td>N-bemesten:</td>
<td>.635</td>
<td>.406</td>
<td>.747</td>
<td>.822</td>
</tr>
<tr>
<td>beweiden:</td>
<td>.576</td>
<td>.731</td>
<td>.663</td>
<td>.407</td>
</tr>
</tbody>
</table>

Figuur 17. Veranderingen in relatieve bodemrijkdom tussen 1972 en 1987 voor de verschillende beheersmaatregelen, uitgedrukt in oppervlaktepercentages. (Tabel 7)
niet vermeld wat het procentueel aandeel van een bepaald vegetatie-type moet zijn, wil het aangemerkt worden als één van de 'belangrijkste' vegetatietypen. De ondergrens om in de figuur te komen, ligt nu bij 1,5 procent van het totale beweide graslandoppervlak.

In 1972 zijn zes vegetatietypen de belangrijkste bedekkers, waarbij de rijkere typen (rijk door aanwezigheid van Lolium perenne en/of Poa pratensis en/of Elymus repens) het grootste percentage bedekken (>70%).
Vegetatietype 10.4.1. (op natte bodem) ontwikkelt zich vanaf dit moment onafhankelijk van de andere typen; tot 1987 neemt het aandeel Juncus effusus toe en het type lijkt stabiel te blijven.
De veranderingen in het totaal aan door Juncus effusus gedomineerde/gekarakteriseerde typen, wordt hier in het kort behandeld. Er wordt een scheiding gemaakt in door Juncus effusus gedomineerde (alle 10-typen (Bijlage 2)) en gekarakteriseerde typen (bedekking van 10-30 procent of meer: typen 1.0.1./1.0.2./1.0.4./1.0.8./1.0.10. (Bijlage 2)). In Bijlage 12 zijn voor de periode 1972-1987 de oppervlakten in hectarren van beide typeklassen weergegeven.
Vanaf 1972 is het aandeel 10-typen van 0,8 afgenomen tot een niveau van minder dan 0,6 hectarare, om daarna weer iets toe te nemen tot boven 0,6 hectarare. De door Juncus gekarakteriseerde typen nemen van 1972 tot 1982 sterk toe tot 0,9 hectarare, met daarna een lichte stijging tot bijna 1,0 hectarare. Het totaalbeeld van beide typeklassen bijeen geeft een redelijk constante stijging in bedekkend oppervlak van 0,8 hectarare in 1972 tot het dubbele in 1987.

De paar rijkere typen uit 1972 gaan in 1977 over in een groot aantal verschillende typen met elk een gemiddeld lagere bedekking. Opvallend is het grote aandeel van Holcus lanatus voor de meeste typen en het relatief grote aandeel van rozetten, waar in 1972 nog absoluut geen sprake van was.
De twee vegetatietypen 10.1.2. en 2.0.1. uit 1972 gaan in 1977 over in typen met een karakteristieke bedekking Juncus effusus met een dominante van Agrostis capillaris.

In 1982 is het grote aantal belangrijke typen teruggebracht tot twee blokken typen. Eén blok gekarakteriseerd door Agrostis capillaris-dominantie, het andere door aanwezigheid van een begrazingsmozaïek met eveneens dominante van Agrostis capillaris.

De typen uit 1977 met een bedekking van Juncus effusus in combinatie met een dominante van Agrostis capillaris, gaan over in één type met dezelfde dominante en een groter aandeel Juncus effusus; dit type blijft ongewijzigd in 1987. Het procentueel aandeel op het hele terrein neemt iets af.

In 1987 wordt een groot deel van het terrein door begrazingsmozaïek-typen ingenomen, voor een groot deel ontstaan uit het begrazingsmozaïek-type uit 1982 en voor een deel uit de typen uit 1982 met een Agrostis capillaris-dominantie. Het in

Deze figuur beschrijft de belangrijkste vegetatietypen per vijf-jaar-periode en vegetatietypeovergangen tussen deze perioden. De figuur beschrijft alleen het beweide weiland; de beweide heide wordt in Figuur 23. behandeld (voorgaande twee elementen beslaan respectievelijk 58 en 32 procent van het beweide oppervlak).

De kolommen geven de onderscheidde vegetatietypen weer (met de karakteristieke bedekingspercentages van de verschillende plantensoorten) in elk van de opnamejaren. De verbindingen tussen de kolommen geven de vegetatietype-overgangen gedurende vijf jaren aan. Per type (in de figuur is type 601 6.0.1.) wordt het bedekingspercentage dat het van het gehele beweide weiland beslaat aangegeven (*); tevens het percentage van het beweide weiland dat van het ene type in het andere overgaat (**) en hoe groot dat percentage is gekken vanuit het uitgangstype (per vijf jaar) (***)

Gebruikte afkortingen:
A.ca. – Agrostis capillaris
A.cn. – Agrostis canina
Ant. – Anthoxanthum odoratum
A.st. – Agrostis stolonifera
C.ar. – Cirsium arvense
C.ni. – Carex nigra
C.pa. – Cirsium palustre
E.re. – Elytrigia repens
Hol. – Holcus lanatus
Jun. – Juncus effusus
Lol. – Lolium perenne
Poa. – Poa pratensis
Roz. – rozetplanten

- bedekkingspercentage (m.b.v. puntrastermethode)
- percentage (van totale weiland) dat overgaat van ene in andere type
- percentage (van ene type) dat overgaat in andere type

I = intensief begraasd
M = matig begraasd
N = nauwelijks begraasd

% bed.
1987 belangrijkste bedekkende type (1.7.0.) is haast geheel ontstaan uit een soortgelijk type (2.0.0.) in 1982, dat in dat jaar tevens de grootste bedekking heeft met tevens een sterke dominantie van Agrostis capillaris. Het type 2.0.0. is ontstaan uit een groot aantal types uit 1977.

- hooiland.

Door het geringe oppervlak en de grote variatie hierbinnen, in de vorm van vochtigheid als gevolg van de grote variatie in hoogtelegging, zijn er veel typen die op hun beurt weer in veel typen overgaan. Geen grote trends zijn aanwijsbaar.

- andere beheersmaatregelen in het hooiland.

De "belangrijkste" veranderingen in vegetatiesamenstelling bij de resterende beheersmaatregelen staan in de volgende bijlagen:

Bijlage 11B: N-bemest hooiland
Bijlage 11C: geplagd hooiland
Bijlage 11D: tot 25 cm geploegd hooiland
Bijlage 11E: tot 60 cm geploegd hooiland
Bijlage 11F: onbemoste heide

3.2. De relatie tussen begraas en veranderingen in het beweide grasland.

3.2.1. Veranderingen van de zwaarst begraasde vegetatiertypen.

De 9-typen bedekken in 1982 en 1987 respectievelijk 30 en 32% van het beweide grasland. Van deze 30% in 1982 gaat 84% over in 9-typen in 1987 (dit is 79% van de dan onderscheiden 9-typen). Dit betekent, dat ongeveer 20% van de 9-typen over een periode van vijf jaar in de ruimte verschuift, terwijl het totaal door 9-typen bedekte oppervlak nagenoeg (30%) gelijk blijft.

Er is een globale scheiding in "sterk" en "minder sterk" begraasde 9-typen gemaakt, bij 40 procent bedekking lage plekken (type 9.0.0. (Bijlage 2) krijgt bijvoorbeeld een bedekking lage
plekken van 42.5 procent ((25+60)/2)) en is daardoor "sterk begraasd".
In Bijlage 13 staan voor 1982 en 1987 de beide klassen (<40% en ≥40% bedekking lage plekken) uitgezet met de betreffende 9-typen en hun respectievelijke bedekkingen. Hieruit blijkt dat in 1982 een kwart van de 9-typen bedekkingen aan lage plekken had van meer dan 40 procent; in 1987 is dit percentage gestegen tot 50 procent. Het aandeel sterk begraasde 9-typen is in deze periode dus verdubbeld.

In vergelijking met 1982 zijn van alle 9-typen bij elkaar de "hoge" en "lage" plekken bekeken op bedekking van grassen, rozetplanten en andere dicotylen (Tabel 8).

(op grond van vegetatietypen nr.9)

<table>
<thead>
<tr>
<th></th>
<th>Gemiddelde bedekking</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Grassen</td>
</tr>
<tr>
<td>'Hoge' plekken</td>
<td>88 (87)*</td>
</tr>
<tr>
<td>'Lage' plekken</td>
<td>61 (46)</td>
</tr>
</tbody>
</table>

*(..) = 1982

1987 levert globaal hetzelfde beeld als 1982; op de hoge plekken domineren de grassen (vooral Agrostis capillaris en Holcus lanatus) met zeer weinig rozetplanten of andere dicotylen. Vergeleken met 1982 leveren de lage plekken nu een iets ander beeld; in 1987 is het aandeel van de grassen en de overige dicotylen hoger ten koste van de rozetplanten. Ook het grootste aandeel van de grassen op de lage plekken bestaat uit Holcus lanatus en Agrostis capillaris.

3.2.2. Invloed van winterbeweiding op vegetatiepatronen op microniveau.

De manier van vastleggen van het micropatroon zoals beschreven in 2.3.2., heeft geresulteerd in de Figuren 19 (1A t/m 9B), waarvan de A-nummers in het gedeelte zonder en de B-nummers in het gedeelte met winterbeweiding liggen.

Elk figuur bestaat uit drie figuren a, b en c. De a-figuur (vegetatiehoogte) geeft een bovenaanzicht van het
transect met de onderscheiden vegetatiehoogten (elk hokje is 1x1 meter).

De b-figuur (middellijnmetingen) geeft de vegetatiehoogte en de strooiseldikte met de bijbehorende hoogte t.o.v. N.A.P. weer, gemeten langs de middellijn van het transect.

De c-figuur (typologie) geeft een bovenaanzicht van het transect met de vegetatiesamenstelling per (in de a-figuur) onderscheiden vegetatie-hoogteklasse.
Zoals in de c-figuren te zien is, is het mogelijk dat een type in meerdere klassen voorkomt, zoals uitgelegd in 2.3.1. In enkele gevallen is een type beschreven met behulp van twee hoogteklassen: een voorbeeld is transect 5B, type 4A, waar enkele pollen Juncus effusus (>30 cm, 15 procent bedekking) in een lage vegetatie (5-10 cm) van Agrostis capillaris en Poa pratensis staan.

De berk en andere boomjes in de heide-transecten (4, 7, 8 en 9) zijn in hoogte gemeten (cm) en genummerd, zoals te zien in de figuren.

In 1988 zullen deze figuren voor de tweede keer geconstrueerd worden en gekeken zal worden in hoeverre de twee onderdelen van elk transectenpaar na één winterbeweving van elkaar zijn gaan verschillen.
Figuur 19. Vastlegging van micro-patronen in het beweide grasland en de beweide heide: transecten 1A t/m 9B.

LEGENDA:

a-figuren
vegetatiehoogten

- kaal
- 0-5 cm
- 5-10 cm
- 10-20 cm
- 10-20 + 0-10 cm (9A)
- 10-20 + 0-5 cm (9A)
- 20-30 cm
- 20-30 + 0-5 cm (8A,8B)
- 20-30 + 5-10 cm (5B)
- >30 cm
- >30 + 0-5 cm (8B)

b-figuren
middellijnmetingen

- vegetatiehoogte
- strooiseldikte
- hoogte t.o.v. N.A.P.

c-figuren
typologie

- ex. Cirsium palustre
- ex. varen
- kaal
TRANSECT 1A:

(5-10): 85 5

(5-10): 70 15

70 10 2 2 2

65 20 2

60 30

(0-5): 55 35

(10-20): 75 10 5

70 5 5 10
TRANSECT IB:

(10-20): 85 2
(5-10):

80 5 2

(5-10): 80 10
(0-5):

80 10 2

(5-10): 70 20
(0-5):

70 20 2

(0-5):

45 35 5 3 2

40 40 3 3 2

30 40 15 2

40 20 20

40 10 20 10

50 5 20 10 2

55 5 20 5

(10-20): 50 30 5

57
TRANSCRIPT 2A:

1A (20-30):
Agri. cap. - Hol. lan.
(5-3):
60 20

1B (20-30):
Agri. cap. - Hol. lan.
(10-20):
70 20

1C (20-30):
75 15 5 2

1D (20-30):
50 25 5

1E (10-20):
70 25 2

1F (5-10):
65 30 3

1G (5-10):
50 40 5 2

1H (5-10):
50 30 10 10

1I (20-30):
Agri. cap. - Hol. lan.
(10-20):
50 30
(5-10):

2A (10-20):
Hol. lan. - Agri. cap.
(5-10):
60 40

2B (10-20):
70 20 10 5 2

2C (5-10):
50 35 10 5 2

2D (0-5):
Hol. lan. - Agri. cap. - Foa. pra.
33 40 5

2E (5-10):
50 40 10

2F (5-10):
50 40 5 2

2G (5-10):
45 35 10 5 2

2H (0-5):
40 30 20 10

2I (0-5):
3 2 2 2
TRANSECT 2B:

 80 20
 70 30
 60 40
 60 35 5
 50 30 10 5
 30 65 2 2
 60 20 15 5
 60 30 5
 50 30 10 3 3 2
 50 30 2 10 10
 40 30 5 5 15 2
 50 45
 30 40 10
 35 25 20 15 2 2
TRANSECT 3a:

1A (10-20):
- Agp. cap. - Hol. lan.
- 35
- 20

1B (10-20):
- Agp. cap. - Hol. lan.
- (5-10):
- 65
- 30

1C (10-20):
- Agp. cap. - Hol. lan.
- (5-10):
- 35
- 40

2A (5-10):
- (0-5): 60
- 30
- 2

2B (10-20):
- 35
- 30
- 5
- 5

2C (5-10):
- (0-5):
- 50
- 20
- 20

2D (10-20):
- 50
- 40

2E (10-20):
- 40
- 50
- 5
- 2

2F (5-10):
- (0-5):
- 40
- 40
- 10

3A (>30):
- 40
- 35
- 20

3B (>30):
- 50
- 25
- 15
- 5
TRANSECT 3B:

1A (20-20): Agr.cap. - Hol_lan. 80 20
(10-20): 60 10 3
1B (D-5): Agr.cap. - Hol_lan. - Ran_rep. - Ran_acr. 70 25 2
1C (10-20): Agr.cap. - Hol_lan. - Ran_rep. 65 20 15
1D (D-5): Agr.cap. - Hol_lan. - Jun_eff. 65 20 15
1G (5-10): Agr.cap. - Hol_lan. - Ran_rep. 60 20 20
1H (5-10): Agr.cap. - Hol_lan. - Pom_pra. 60 35 5
1I (10-20): Agr.cap. - Hol_lan. 60 40
1J (5-10): Agr.cap. - Hol_lan. - Ant_odo. 50 40 10
1K (0-5): Agr.cap. - Hol_lan. 50 50
1L (10-20): Agr.cap. - Hol_lan. 50 50
1M (5-10): Agr.cap. - Hol_lan. - Ran_rep. 45 40 5
1N (5-10): Agr.cap. - Hol_lan. - Ant_odo. - Pom_pra. - Ran_rep. 40 10 2
2A (5-10): Hol_lan. - Agr.cap. - Pom_pra. 55 40 5
2B (5-10): Hol_lan. - Agr.cap. - Ran_rep. 50 45 5
<table>
<thead>
<tr>
<th>Transect 5a</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>IA (5–10):</td>
<td>Agr.cap.</td>
<td>85</td>
</tr>
<tr>
<td>(5–10):</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>1C (10–20):</td>
<td>Agr.cap. + Hol.lan.</td>
<td>75</td>
</tr>
<tr>
<td>(10–20):</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>(10–20):</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>(10–20):</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>(5–10):</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>1G (5–10):</td>
<td>Agr.cap. + Hol.lan.</td>
<td>75</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>(10–20):</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>1I (5–10):</td>
<td>Agr.cap. + Hol.lan. + Pom.pro.</td>
<td>70</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>1J (10–20):</td>
<td>Agr.cap. + Hol.lan. + Pom.pro.</td>
<td>70</td>
</tr>
<tr>
<td></td>
<td></td>
<td>15</td>
</tr>
<tr>
<td>1K (5–10):</td>
<td>Agr.cap. + Hol.lan.</td>
<td>55</td>
</tr>
<tr>
<td></td>
<td></td>
<td>20</td>
</tr>
<tr>
<td>(10–20):</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>(10–20):</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>1N (10–20):</td>
<td>Agr.cap. + Pom.pro.</td>
<td>55</td>
</tr>
<tr>
<td>(10–20):</td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>(10–20):</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>(5–10):</td>
<td></td>
<td>40</td>
</tr>
<tr>
<td>1Q (5–10):</td>
<td>Agr.cap. + Hol.lan.</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td></td>
<td>40</td>
</tr>
<tr>
<td>(10–20):</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>(10–20):</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>1T (5–10):</td>
<td>Agr.cap. + Pom.pro.</td>
<td>80</td>
</tr>
<tr>
<td>(5–10):</td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>(10–20):</td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>2E (5–10):</td>
<td>Agr.cap. + Car.nig.</td>
<td>80</td>
</tr>
<tr>
<td>(5–10):</td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>(10–20):</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>(5–10):</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>(10–20):</td>
<td></td>
<td>15</td>
</tr>
<tr>
<td>(10–20):</td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>(10–20):</td>
<td></td>
<td>20</td>
</tr>
<tr>
<td>(10–20):</td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>(10–20):</td>
<td></td>
<td>20</td>
</tr>
<tr>
<td>(10–20):</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>(10–20):</td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>(10–20):</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>(10–20):</td>
<td></td>
<td>20</td>
</tr>
<tr>
<td>(10–20):</td>
<td></td>
<td>20</td>
</tr>
<tr>
<td>(10–20):</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>(10–20):</td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>(10–20):</td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>2U (10–20):</td>
<td>Agr.cap. + Jun.eff.</td>
<td>60</td>
</tr>
<tr>
<td>(10–20):</td>
<td></td>
<td>20</td>
</tr>
<tr>
<td>(10–20):</td>
<td></td>
<td>20</td>
</tr>
<tr>
<td>(10–20):</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>2X (10–20):</td>
<td>Agr.cap. + Jun.eff.</td>
<td>60</td>
</tr>
<tr>
<td>(10–20):</td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>(10–20):</td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>(10–20):</td>
<td></td>
<td>20</td>
</tr>
<tr>
<td>3A (5–10):</td>
<td>Agr.cap.</td>
<td>50</td>
</tr>
<tr>
<td>(5–10):</td>
<td></td>
<td>25</td>
</tr>
<tr>
<td>3B (5–10):</td>
<td>Agr.cap.</td>
<td>50</td>
</tr>
<tr>
<td>(5–10):</td>
<td></td>
<td>35</td>
</tr>
<tr>
<td>3C (5–10):</td>
<td>Agr.cap. + Hol.lan.</td>
<td>40</td>
</tr>
<tr>
<td>(5–10):</td>
<td></td>
<td>15</td>
</tr>
<tr>
<td>(5–10):</td>
<td></td>
<td>35</td>
</tr>
<tr>
<td>Transect</td>
<td>Zone</td>
<td>Species</td>
</tr>
<tr>
<td>----------</td>
<td>------</td>
<td>---------</td>
</tr>
<tr>
<td>IA (10-20)</td>
<td>Agr. cap. - Hol. lan. - Car. nig.</td>
<td>75</td>
</tr>
<tr>
<td>IB (10-20)</td>
<td>Agr. cap. - Hol. lan. - Poo. pra. - Car. nig.</td>
<td>70</td>
</tr>
<tr>
<td>IC (20-30)</td>
<td>Agr. cap. - Hol. lan. - Car. nig.</td>
<td>70</td>
</tr>
<tr>
<td>ID (20-30)</td>
<td>Agr. cap. - Hol. lan. - Poo. pra. - Car. nig. - Jun. eff.</td>
<td>65</td>
</tr>
<tr>
<td>IE (5-10)</td>
<td>Agr. cap. - Hol. lan.</td>
<td>65</td>
</tr>
<tr>
<td>IF (20-30)</td>
<td>Agr. cap. - Hol. lan. - Car. nig.</td>
<td>60</td>
</tr>
<tr>
<td>IG (10-20)</td>
<td>Agr. cap. - Hol. lan.</td>
<td>60</td>
</tr>
<tr>
<td>IH (10-20)</td>
<td>Agr. cap. - Hol. lan.</td>
<td>45</td>
</tr>
<tr>
<td>II (5-10)</td>
<td>Agr. cap. - Hol. lan. - Poo. pra. - Car. nig.</td>
<td>40</td>
</tr>
<tr>
<td>IV (5-10)</td>
<td>Agr. cap. - Poo. pra.</td>
<td>35</td>
</tr>
<tr>
<td>IV (20-30)</td>
<td>Agr. cap. - Poo. pra.</td>
<td>70</td>
</tr>
<tr>
<td>IC (10-20)</td>
<td>Agr. cap. - Hol. lan.</td>
<td>65</td>
</tr>
<tr>
<td>ID (10-20)</td>
<td>Agr. cap. - Poo. pra.</td>
<td>60</td>
</tr>
<tr>
<td>IE (5-10)</td>
<td>Agr. cap. - Hol. lan. - Poo. pra. - Car. nig.</td>
<td>60</td>
</tr>
<tr>
<td>II (5-10)</td>
<td>Agr. cap. - Hol. lan. - Poo. pra.</td>
<td>45</td>
</tr>
<tr>
<td>III (10-20)</td>
<td>Agr. cap. - Hol. lan. - Car. nig.</td>
<td>65</td>
</tr>
<tr>
<td>IV (5-10)</td>
<td>Agr. cap. - Poo. pra.</td>
<td>40</td>
</tr>
<tr>
<td>IV (10-20)</td>
<td>Agr. cap. - Hol. lan.</td>
<td>35</td>
</tr>
<tr>
<td>IA (20-30)</td>
<td>Agr. cap. - Car. nig. - Hol. lan.</td>
<td>70</td>
</tr>
<tr>
<td>IB (10-20)</td>
<td>Agr. cap. - Car. nig. - Hol. lan. - Poo. pra.</td>
<td>60</td>
</tr>
<tr>
<td>IC (10-20)</td>
<td>Agr. cap. - Car. nig. - Hol. lan.</td>
<td>60</td>
</tr>
<tr>
<td>ID (20-30)</td>
<td>Agr. cap. - Car. nig.</td>
<td>60</td>
</tr>
<tr>
<td>IE (5-10)</td>
<td>Agr. cap. - Hol. lan.</td>
<td>60</td>
</tr>
<tr>
<td>II (5-10)</td>
<td>Agr. cap. - Jun. eff.</td>
<td>45</td>
</tr>
<tr>
<td>III (5-10)</td>
<td>Agr. cap. - Jun. eff. - Poo. pra.</td>
<td>40</td>
</tr>
<tr>
<td>IV (30-50)</td>
<td>Agr. cap. - Jun. eff. - Poo. pra. - Car. nig.</td>
<td>40</td>
</tr>
<tr>
<td>IV (10-20)</td>
<td>Agr. cap. - Jun. eff. - Hol. lan.</td>
<td>60</td>
</tr>
<tr>
<td>VE (10-20)</td>
<td>Agr. cap. - Hol. lan.</td>
<td>50</td>
</tr>
<tr>
<td>VI (5-10)</td>
<td>Hol. lan. - Agr. cap. - Poo. pra.</td>
<td>50</td>
</tr>
<tr>
<td>VII (5-10)</td>
<td>Hol. lan. - Agr. cap.</td>
<td>45</td>
</tr>
<tr>
<td>VIII (5-10)</td>
<td>Hol. lan. - Agr. cap. - Poo. pra.</td>
<td>40</td>
</tr>
<tr>
<td>IX (5-10)</td>
<td>Hol. lan. - Poo. pra.</td>
<td>40</td>
</tr>
</tbody>
</table>

Note: Transects are marked with Greek letters for identification.
TRANSECT 8A

1A (>30): Hol, cae
 80
1B (20-30): Hol, cae, Eri, tet, Cal, vul.
 50 10
2A (20-30): Eri, tet, Hol, cae, Cal, vul.
 25 25 10
2B (>30): Eri, tet, Cal, vul, Hol, cae.
 20 30 5
3A (0-5): Cal, vul, Eri, tet, Hol, cae.
 50 20 2
4A (10-20): Scirpus cespitosus-pollen
5A (0-5): mos

72
<table>
<thead>
<tr>
<th>Transect 08</th>
<th>Description</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>4a (10-20)</td>
<td>Eriophorum crepsitum-pollen</td>
<td>35-30</td>
</tr>
<tr>
<td>3b (0-5)</td>
<td>Cal.vul. - Eri.tet. - Mol.cae.</td>
<td>30-20</td>
</tr>
<tr>
<td>3a (0-5)</td>
<td>Cal.vul. - Eri.tet. - Mol.cae.</td>
<td>30-20</td>
</tr>
<tr>
<td>3b (0-5)</td>
<td>Cal.vul. - Eri.tet. - Mol.cae.</td>
<td>30-20</td>
</tr>
<tr>
<td>2b (0-5)</td>
<td>Eri.tet. - Cal.vul. - Mol.cae.</td>
<td>30-20</td>
</tr>
<tr>
<td>1b (20-30a)</td>
<td>Mol.cae. - Eri.tet. - Cal.vul.</td>
<td>30-10</td>
</tr>
<tr>
<td>1a (>30)</td>
<td>Mol.cae.</td>
<td>80</td>
</tr>
</tbody>
</table>
TRANSSECT 90:

1A (20-30): Mol.cae.
3B (0-10): Mol.cae.
3C (20-30): Mol.cae. - Cari.nig.
2A (0-10): mos - Eri.tet. - Mol.cae.
2B (0-10): mos - Eri.tet. - Mol.cae.
3A (20-30): Eri.tet. - Mol.cae. - mos

75
4. RESULTATEN HEIDE.

4.1 Vegetatiekaart.

In 1987 zijn in de heide ruim 80 opnames gemaakt. De heidetypen soortenarme- en soortenrijke heide worden respectievelijk aangeduid met de cijfers 6 en 7. Deze heidetypen zijn evenals in 1977 en 1982 op grond van de bedekking van Molinia caerulea en de mate van vergrassing ingedeeld in diverse vegetatietypen. In 1987 worden op deze manier 23 vegetatietypen onderscheiden (Bijlage 3). Dit is als volgt in de legenda weergegeven:

bedekking Molinia caerulea: a; 0—57
b; 5—50

bedekking met andere grassen (vergrassing): 1: 0—57
2: 5—50
3: 50—100%

Om de aard van de vergrassing aan te geven zijn (gelijk aan 1982) de volgende vergrassingstypen onderscheiden:

A : Agrostis capillaris vaak samen met Holcus lanatus en Rumex acetosa.

D : Deschampsia flexuosa met meestal geringe bedekking van Agrostis capillaris en Rumex acetosella,

F : Festuca ovina met vaak Agrostis capillaris en Rumex acetosella,

J : Juncus effusus.

De heidesoorten Calluna vulgaris en Erica tetralix komen meestal naast elkaar voor. Er is, anders dan in 1982, geen onderscheid gemaakt in dominantie van één soort over de ander.

4.2. Veranderingen in het areaal en de soortensamenstelling van de soortenrijke heide.

In 1972 komt in de vochtiger terreingedeelten, vooral langs de bosranden, soortenrijke heide voor; 22% van het heideterrein, minus bosareaal was soortenrijke heide. In 1977 is dit oppervlak procentueel teruggelopen tot 13%, in 1982 is het 6% en in 1987 nog slechts 3% van het heideterrein (Figuur 20). Ongeschikt zijn er een aantal nieuwe stukken soortenrijke heide bijgekomen. In de betreffende gevallen zijn in 1982 steeds soortenrijke heide-soorten aangetroffen, echter in dusdanige aantallen, dat toen besloten is dat er geen sprake was van een apart te onderscheiden soortenrijke heide-type. In 1987 is in een aantal gevallen het toekennen van aparte soortenrijke heide-typer dubieus, omdat er hoogst waarschijnlijk minder exemplaren van soortenrijke heide-soorten aanwezig waren dan in 1982.
Figuur 20. Areaalkaart
Soortenarme - en
soortenrijke heide

Twijfelgevallen zijn deze typen (Figuur 20) met een stippellijn omgeven.

In 1982 komen in de soortenrijke heide plaatselijk nog de volgende soorten voor:

- Gentiana pneumonanthe
- Juncus squarrosus
- Narthecium ossifragum
- Dactylorhiza maculata
- Potentilla erecta

In 1972 en 1977 werden nog grotere aantallen van bovenstaande soorten aangetroffen. Hiernaast werden ook nog de volgende soorten gevonden:

- Arnica montana
- Carex panicea
- Drosera intermedia
- Drosera rotundifolia
- Eriophorum angustifolium
- Genista anglica
- Oxycoccus palustris
- Pedicularis sylvatica
- Rhynchospora alba
- Succisa pratensis

In 1987 komen nog in redelijke aantallen voor:

- Potentilla erecta en een stuk minder Dactylorhiza maculata
- en Juncus squarrosus.

Verder komen nog voor:

- Carex panicea en Gentiana pneumonanthe, minder Narthecium ossifragum en Oxycoccus palustris en nog minder Drosera rotundifolia, Eriophorum angustifolium en Polygala vulgaris.

3 Veranderingen in de heidevegetatie.

In 1972 zijn in het grootste gedeelte van het heideterrein (75%), Calluna vulgaris en Erica tetralix de belangrijkste bedekkers. Hoge Molinia caerulea—bedekkingen worden alleen langs de bosranden aangetroffen (Figuur 21). Slechts een klein gedeelte van het terrein is sterk vergrasd (Figuur 22).

De veranderingen in de vegetatiesamenstelling van de heide over de periode 1972—1987, staan afgebeeld in Figuur 23. Figuur 24 geeft specifieke informatie over de percentages Molinia caerulea "vergrassing" in de in Figuur 23 genoemde typen.

Jitgaande van 1972:

- In het grootste gedeelte van het terrein vindt vanaf 1972 een toename plaats van de Molinia caerulea—bedekking, terwijl de vergrassing de gehele periode zeer laag blijft.
- Een kleiner gedeelte met zeer lage percentages Molinia caerulea—bedekking, laat in de loop van de tijd een toename zien van het aandeel vergrassing.
Figuur 21. Areaalkaart
Molinia caerulea

Bedekkingspercentage:

- 0 - 49
- 50 - 100
Figuur 22. Arealkaart 'vergrassing'

Bedekkingspercentage:

0 - 4
5 - 49
50 - 100

Figuur 23. Veranderingen in de vegetatiesamenstelling van de heide.

1972:
- 6a1 26.6
- 6a1/b1 30.6
- 7a1/b1 9.3
- 7c1 9.3
- 6a/b3FrJ 9.0

1977:
- 6a2A 10.6
- 6a1 9.3
- 6b1 10.0
- 6c1 11.5
- 7b1 4.4
- 7c1 7.8
- 6b3FrJ 10.9

1982:
- 6a3A 7.8
- 6b3A 9.0
- 6b1 20.6
- 6c1 30.8
- 7c1 6.9
- 6c3DJ 4.0*

1987:
- 6a3A 11.2
- 6b3A 6.5
- 6b1 7.5
- 6c1 42.1
- 6c2D 8.4

* = bedekkingspercentage
** = absolute percentage dat overgaat van het ene in het andere type
1972: Molinia gras

1977: Molinia gras

1982: Molinia gras

1987: Molinia gras

* = absolute percentage dat overgaat van het ene type in het andere type

Bedekkingspercentages:

0-4

5-49

50-100
vergrassingspercentage, vertoont een toename van de Molinia caerulea-bekkering; wat inhoudt, dat het aandeel van heide tot zo goed als nul is gereduceerd.

In de gevallen dat vergrassingspercentages minder worden, komt dit meestal neer op een groter aandeel Molinia caerulea en omgekeerd.

Het oppervlak van het heideterrein dat gedomineerd wordt door Molinia caerulea en/of vergrassing is in de periode 1972-1987 toegenomen van ongeveer 25% tot ongeveer 85% in 1987 (Figuur 21/22).
5 DISCUSSIE

5.1. Veranderingen in vegetatiesamenstelling als gevolg van verschillende beheersmaatregelen.

5.1.1. Verandering in bodemrijkdom uitgedrukt in de indicatiewaarde van de vegetatie.

Met betrekking tot de stelling dat die beheersmaatregel, die de meeste nutriënten aan het systeem ontneemt, het sterkst verschraalt, is het voor de hand liggend dat plaggen tot een sterke verschraling leidt. Bij plaggen wordt immers de zode verwijderd, met daarin een zeer groot aandeel van de nutriënten, waardoor in korte tijd een voedselarme situatie ontstaat (Heyink 1974, Bakker 1978 a).

Bij de beheersmaatregel ploegen (in dit verband zijn de twee onderdelen tot 60 cm en tot 25 cm ploegen niet gescheiden), vindt er geen verwijdering van nutriënten plaats, maar een andere verdeling hiervan in de bodem. Een groot aandeel van de nutriënten zal niet beschikbaar zijn voor de vegetatie door het uitspoelen van mineralen (met name fosfaten) tijdens het braakliggen. Een ander deel van de nutriënten zal pas op langere termijn of moeilijker beschikbaar komen voor de vegetatie, omdat de nutriënten dieper in de bodem terecht zijn gekomen, door dat meer nutriëntarme bodemlagen boven zijn komen te liggen. De verschraling zal kleiner zijn dan bij plaggen, maar groter dan bij hooien, aangezien bij ploegen (en plaggen) ook gehoooid wordt. Hooien betekent het afvoeren van geproduceerd gewas. In vergelijking met beweiden, waarbij geen afvoer, maar slechts een herverdeling van nutriënten over het terrein plaatsvindt, zal hooien een sterkere verschraling te zien geven (Vreugdenhil en van Wieren 1979, Bakker 1978 a/b).

Bij beweiden zal de globale verschraling zeer gering zijn, daar de enige manier van verschraling de afvoer van nutriënten uit het systeem betekent. Aangezien er geen vegetatie verwijderd wordt, is de enige vorm van afvoer van nutriënten, die in de vorm van geproduceerd vlees en wol. Het belangrijkste aspect binnen het beweide terrein is de verschraling van bepaalde gedeelten (waar relatief meer gegraasd wordt) tegen verrijking van andere gedeelten (waar relatief meer mest en urine gedeponeerd wordt). Beweiden als beheersmaatregel verschraalt minder dan hooien (Heyink 1974, Bakker 1978 a/b).

De beheersmaatregel N-benesten (plus hooien) is er op gericht fosfaat (P) de beperkende (groeifactor te laten worden (Bakker 1978 a/b). Door stikstof(N)-donaties wordt de vegetatie aangezet tot snelle groei, waarbij naast N ook P aan de bodem zal worden ontrokken en zich in de vegetatie zal ophopen. Door hooien wordt P aan het systeem onttrokken zonder dat er nieuwe inkomt.
Aangezien er nog geen verschraling optreedt is het tijdstip waarop P beperkend gaat worden klaarblijkelijk nog niet aangebroken.

Dat verandering in bodemrijkdom gemeten aan de bedekkende vegetatie altijd een goede maat is voor verandering van de hoeveelheden bodemnutriënten is de vraag. Uit bodemonderzoek is gebleken dat ondanks een verandering in de indicatiewaarde van de vegetatie, de hoeveelheid bodemnutriënten niet was afgenomen (Wind 1980, ter Heerdt 1984). Andere factoren blijken een rol te spelen bij de samenstelling van de vegetatie.

5.1.2. De ontwikkeling van heide gekoppeld aan "verschraling".

5.1.3. Veranderingen in vegetatie samenstelling.

Bij de start van het vegetatiekundig onderzoek op het Westerholt in 1972, werd (buiten de heide en de door Juncus effusus gedomineerde onderdelen van het terrein) de vegetatie sterk gedomineerd door Holcus lanatus met Lolium perenne en Poa pratensis en in mindere mate door Agrostis capillaris. Voorgaande is typisch voor een beheer van intensief bemesten, beweiden en maaien (Westhoff en den Held 1969). In de loop van de tijd, als gevolg van de verschillende verschralende beheersmaatregelen, is er een sterke afname van het aandeel Poa pratensis en Lolium perenne en in mindere mate van Holcus lanatus waar te nemen. Deze afname is via een aanvankelijke toename van Agrostis capillaris en rozetplanten (in 1977 en 1982), steeds meer het gevolg van de toename van Agrostis capillaris alleen, zoals duidelijk in 1987 te zien is.

5.1.3.1. Soortsdiversiteit (α-diversiteit).

Gedurende de onderzoeksperiode is het aantal soorten toegenomen (vochtig grasland: Veldman 1983). Als gevolg van een verschil in verschraling van de verschillende beheersmaatregelen, zijn er ook verschillen in soortsdiversiteit ontstaan. De volgorde van hoge naar lage soortsdiversiteit voor de verschillende
beheersmaatregelen is: beweiden - N-bemetenen - hooien - plaggen - ploegen (3.1.3.).

Soortsdiversiteit wordt beïnvloed door de bodemrijkdom (Klapp 1971, Huston 1979), een hoge bodemrijkdom resulteert in een klein aantal soorten met hoge bedekkingen; snelle groeiers die langzamer groeiende soorten weegconcurren. Naast voorgaand aspect blijkt dat ook de hoeveelheid strooisel (positief gecorreleerd met snel groeiende soorten met hoge bedekkingen) een negatieve invloed heeft op de soortsdiversiteit (Job en Taylor 1979, Grime 1979). Verschraling zorgt voor een toename in soortsdiversiteit en deze neemt toe naarmate de afname van het nutriëntenaanbod geleidelijker gaat (Oosterveld 1975, Bakker 1978b). Dit laatste kan de verklaring zijn voor het feit, dat alhoewel de bodemvruchtbaarheid bij plaggen lager is dan bij ploegen, ploegen toch een grotere soortsdiversiteit kent. Het bij plagen abrupte verwijderen van zo goed als alle nutriënten heeft er voor gezorgd, dat de vegetatie voor een groot deel uit een heidetype bestaat met weinig soorten.

5.1.3.2. β-diversiteit, relatieve patroon-diversiteit en relatieve equitabiliteit.

Het aantal vegetatietypen per beheersmaatregel, wat een maat is voor de β-diversiteit, is in de periode 1972-1987 voor elke beheersmaatregel toegenomen (3.1.3.). Dit als gevolg van verschraling en daarmee het beter tot uiting komen van de abiotische factoren in de vegetatie (1.4.), wat leidt tot meerdere typen.

De relatieve equitabiliteit, als maat voor de dominantieverhoudingen binnen een bepaalde eenheid (hoge equitabiliteit betekent dat de betrokken soorten ongeveer gelijke bedekkingen hebben), levert geen duidelijk beeld. In de periode 1972-1987 lijkt de relatieve equitabiliteit bij beweiden af en bij hooien toe te nemen, terwijl bij de andere beheersmaatregelen de relatieve equitabiliteit stijgt na eerst te zijn gedaald.

5.2. Veranderingen van begrazingspatronen in het beweide grasland.

5.2.1. Macro-patronen

5.2.2. Micro-patronen.

De voorkeur van schapen voor bepaalde plantensoorten heeft als gevolg dat plekken met deze soorten het eerst bezocht worden (Nicholson et al. 1969). Omdat het beïnvloedingspatroon van de schapen (bepaalde stukken van terrein worden sterk, andere consequent minder sterk begraasd) in de loop van de jaren globaal gelijk blijft (Bakker et al. 1983), ontstaan er typisch zwaar begraasde vegetatietypen. Deze typen worden gekenmerkt door zogenaamde micro-patronen; deze micropatronen bestaan uit plekken 'hoge' vegetatie afgewisseld met plekken 'lage' vegetatie, waarbij het aandeel lage vegetatie gezien wordt als een maat voor de begrazingsintensiteit (ter Heerdt en Schutter 1984).

Bovenstaande maakt duidelijk dat schapen meehelpen zelf hun favoriete vegetatieplekken te creëren; het patroon wordt in de loop van de tijd steeds duidelijker en verwacht wordt dat het in de ruimte gezien globaal op dezelfde plaats zal blijven. Bovenstaande verwachting, dat micro-patronen grotendeels overgaan in andere micro-patronen, blijkt te kloppen (3.2.1.): van de micro-patronen uit 1982 blijkt 80% over te gaan in nieuwe micro-

De invloed van winterbeweiding op de vegetatie en de patronen daarbinnen, zal in de komende jaren mogelijk duidelijker worden, door onderzoek als vervolg op de start gemaakt in dit onderzoek. Van de 9 transecten-paren, uitgezet in het beweide grasland (van elk paar ligt één transect in het gedeelte met, de ander in het gedeelde zonder winterbeweiding) is het micro-patroon vastgelegd (3.2.2.) en dit zal elk jaar herhaald worden.

5.3. Veranderingen in de heide.

5.3.1. Heidesoorten in het grasland.

In het hooiland worden door de steeds verder gaande verschraling steeds meer heideplanten en hiermee geassocieerde soorten gevonden. In het geplagde gedeelte zijn dit heide, Molinia caerulea en orchideeën in redelijke aantallen; minder wordt gevonden in het geploegde deel, nog minder in het hooiland en helemaal niets in het bemeste gedeelte (3.1.2.).

In het beweide grasland is er een duidelijke afname van het aantal heideplanten, waarvan het voorkomen langs de greppels gescoord is (3.1.2.).

5.3.2. Heidevegetatie.

Uitgaande van 1972, toen de heidevegetatie bestond uit enkele decimeters hoge verhoutte struiken, is de situatie sterk veranderd. Heide waaran sinds 1972 niets gedaan is, is bos geworden. De vergrassing in de vorm van Agrostis capillaris, Holcus lanatus en Deschampsia flexuosa van de heide in het beweide terrein is sterk toegenomen (4.3.), wat is te wijten aan het gedrag van de schapen (Heyink 1974, Hodgson en Grant 1981). Rusten in de heide heeft gevolgen voor de verhout heidestruiken, die hierdient slecht bestand zijn en beschadigen (Gimmingham 1972). Rusten in de heide heeft gevolgen voor de verhout heidestruiken, die hierdient slecht bestand zijn en beschadigen (Gimmingham 1972). Door het transport van nutriënten en zaad van graslandplanten (mest) naar de heide, zal vooral op rustplekken vergrassing gaan optreden (Miles 1974, Vreugdenhil en van Wieren 1976).

De heide in 1987 als geheel ziet er heel anders uit dan in 1972: de stukken open heide zijn niet meer sterk verhout, maar zijn laag met een dichte zode, wat volgens Grant en Hunter (1969) en Gimmingham (1972) een vorm is die optreedt bij intensieve begrazing. De stukken heide met een hogere vegetatie bestaan grotendeels uit Molinia caerulea en/of andere grassen, waarbij heideplanten lage tot zeer lage bedekkingen hebben, maar de planten op zich wel wat hoger worden.
6 CONCLUSIES

6.1. Veranderingen in de vegetatiesamenstelling bij de verschillende beheersmaatregelen na 15 jaar beheer van het grasland.

6.1.1. Algemeen.

De oorspronkelijke vegetatie uit 1972 is verdwenen; elke beheersmaatregel heeft zijn eigen vegetatietypen:
- Plaggen: - sterke invloed van heidesoorten, lage totale bedekkingen.
- Ploegen: - invloed van heidesoorten, grote invloed van Agrostis capillaris, hogere totale bedekkingen dan bij plaggen.
- Hooien: - natte gedeelte met vrij lage totale bedekkingen met Agrostis stolonifera en Carex nigra.
 - vochtige gedeelte met hogere totale bedekkingen met als belangrijkste bedekkers Agrostis capillaris, rozetplanten, Rhinanthus angustifolius en Plantago lanceolata.
- N-bemesten: - hoogste totale bedekking van het hooiland met belangrijkste bedekkers Holcus lanatus, Poa pratensis, Rumex acetosa en Dactylis glomerata.

6.1.2. Ontwikkeling van heide in het grasland.

Bij plaggen en ploegen is sprake van een ontwikkeling in de richting van een (arme) heidevegetatie. Bij hooien lijkt in een klein gedeelte een kleine aanzet hiertoe.

6.1.3. Veranderingen in diversiteit.

De soortsdiversiteit is voor alle beheersmaatregelen toegenomen. De toename wordt sterker in de reeks: beweiden - N-bemesten - hooien - plaggen - ploegen.

6.1.4. Verschraling.

6.2. Veranderingen door begrazing in het grasland.
Als gevolg van verschillende begraizensintensiteiten is een begraizenspatroon ontstaan. De natte, nauwelijks begraasde, gedeelten worden gedomineerd door Juncus effusus en zijn in de loop van de tijd stabiel gebleken. Het vochtige grasland wordt sterk gedomineerd door Agrostis capillaris, met op de sterk begraasde gedeelten tevens hoge bedekkingen van Holcus lanatus, rozetplanten en andere dicotylen. Van de sterkst begraasde terreingedeelten (waarvan het micro-patroon karakteristiek is) blijkt 80% uit 1982 dit in 1987 te blijven, terwijl het totale oppervlak gelijk blijft.

6.3. De ontwikkelingen in de heidevegetatie.

Na 15 jaar is het grootste gedeelte van de heidevegetatie verdwenen. Het beweide heideterrein is sterk vergrast en/of heeft hoge bedekkingen van Molinia caerulea. Enkele gedeelten worden door de schapen kort gehouden, waardoor verjonging van de heide optreedt; de totale bedekking is daar laag. Heidevegetatie waaraan niets wordt gedaan, verandert in bos.
7 LITERATUUR

Biogeography 5: 173-191.
Londo, G. 1975. De decimale schaal voor vegetatiekundige opnamen van permanente kwadraten.

LIJST VAN FIGUREN.

1. Ligging van het proefterrein "Westerholt". 5
2. Hoogtekaart. 6
3. Het voorkomen van leem in de ondergrond. 7
4. Grondwatertrappen. 8
5. Bodemkaart. 9
6. Terreinoverzicht en plaats van de verschillende beheersmaatregelen. 10
7. Globale ligging hek + transecten 1A t/m 9B. 12
8. Bodemgeschiktheidskaart. 14
10. Ligging van de pq's, gebruikt voor de vergelijking van de veranderingen in de vegetatie bij verschillende beheersmaatregelen. 20
11. Bepaling van de vegetatiehoogte m.b.v. een tempexschiif. 25
12. Vergelijking van de veranderingen in de vegetatie bij verschillende beheersmaatregelen. 28
12A. Hooien (pq 7,8) - Beweiden (pq 45,46). 29
12B. Hooien (pq15,16,23,24) - Beweiden (pq 38,39,40,41). 30
12C. Hooien (pq 9,13) - Beweiden (pq 42,43). 31
12D. Hooien (pq 7,8) - Plaggen (pq 110). 32
12E. Hooien (pq 3,4) - Plaggen (pq 1,2). 33
12F. Hooien (pq 17,18,25,26) - N-bemesten (pq 19,20,27,28). 34
12G. Plaggen (pq 110) - Ploegen tot 60 cm (pq 138). 35
12H. Ploegen tot 60 cm (pq 138,140) - Ploegen tot 25 cm (pq 139,141). 36
13. Voorkomen van heide, met heidegeassocieerde soorten en Cirsium palustre in het onbeweide hoogland. 40
15. Veranderingen in relatieve bodemrijkdom tussen 1972 en 1987 in het beweide grasland. 46
17. Veranderingen in relatieve bodemrijkdom tussen 1972 en 1987 voor de verschillende beheersmaatregelen uitgedrukt in oppervlaktepercentages. 48
18. Veranderingen in de (beweide) weilandvegetatie in de periode 1972-1987. 50/51
19. Vastlegging van micro-patronen in het beweide grasland en de beweide heide: transecten 1A t/m 9B. 55/76
20. Areaalkaart soortenarme- en soortenrijke heide. 78
21. Areaalkaart Molinia caerulea. 80
22. Areaalkaart "vergrassing". 81
23. Veranderingen in de vegetatiesamenstelling van de heide. 82
24. Veranderingen in de vegetatiesamenstelling van de heide (Molinia en vergrassingspercentages). 83

96
LIJST VAN TABellen.

1. Indicatie voor de nutriëntentoestand door de belangrijkste soorten. 23
2. Lengte van de negen transecten-paren en de vegetatietypen waarin ze zich bevinden. 25
3. Voorkomen van Calluna vulgaris, Erica tetralix en Juncus squarrosus in en langs greppels. 41
4. α-diversiteit; gemiddeld aantal soorten per beheersmaatregel in 1987. 42
5. β-diversiteit; aantal vegetatietypen per beheersmaatregel in 1972, 1977, 1982 en 1987. 42
7. Veranderingen in relatieve equitabiliteit per beheersmaatregel in de periode 1972-1987. 48
8. Verschillen in bedekking binnen het micropatroon in 1987. 53
LIJST VAN BIJLAGEN.

1. Ligging pq's. 99
2. Omschrijving van de vegetatietypen in 1972, 1977, 1982 en 1987. 100/113
3. Heidevegetatietypen in 1987. 114
4. Hoogteligging ten opzicht van N.A.P. van de transecten 1A t/m 9B. 115
5. Structuurmetingen transecten 1A t/m 9B: vegetatiehoogte (veg) en strooiseldikte (str). 116
6. Veranderingen van de diverse soorten bij verschillende beheersmaatregelen per pq. 117/119
7. Veranderingen van de diverse soorten bij verschillende beheersmaatregelen per pq-subset. 120/121
8. Het voorkomen van Calluna vulgaris, Erica tetralix, Juncus squarrosus en Potentilla erecta langs greppels in het beweide grasland in oktober 1987. 122
9. Relatieve equitabiliteit; veranderingen in relatieve equitabiliteit in de periode 1972-1987. 123
10. Relatieve bodemrijkdomveranderingen in de periode 1972-1987 bij de verschillende beheersmaatregelen. 124
11A. Veranderingen in de vegetatiesamenstelling van het hooiland. 125
11B. Veranderingen in de vegetatiesamenstelling van het met stikstof bemeste hooiland. 126
11C. Veranderingen in de vegetatiesamenstelling van het geplagde hooiland. 127
11D. Veranderingen in de vegetatiesamenstelling van het tot 25 cm geploegde hooiland. 128
11E. Veranderingen in de vegetatiesamenstelling van het tot 60 cm geploegde hooiland. 128
11F. Veranderingen in de vegetatiesamenstelling van de onbeweide heide. 129
12. Veranderingen van door Juncus effusus gedomineerde/gekaracteriseerde typen over de periode 1972-1987. 130

<table>
<thead>
<tr>
<th>Typen</th>
<th>Jaar</th>
<th>'oud'</th>
<th>beheermaatregel</th>
<th>oppervlak</th>
<th>rel. bodem/saart.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. AGROSTIS CAPILLARIS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.0.0. Agr. cap. - Jun. eff.</td>
<td>1982</td>
<td>-</td>
<td>B</td>
<td>700</td>
<td>45</td>
</tr>
<tr>
<td>2-30</td>
<td>10-40</td>
<td>1-15</td>
<td>1-5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-30</td>
<td>1-30</td>
<td>3</td>
<td>1-5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.0.3. Agr. cap. - Jun. eff. - Cir. pal. - Car. nig. - Hol. lan.</td>
<td>1977</td>
<td>2.15</td>
<td>B</td>
<td>3000</td>
<td>27</td>
</tr>
<tr>
<td>2-30</td>
<td>1-30</td>
<td>5</td>
<td>1-5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.0.4. Agr. cap. - Jun. eff. - Pot. ans. - Car. nig. - Agr. sto.</td>
<td>1982</td>
<td>-</td>
<td>B</td>
<td>100</td>
<td>50</td>
</tr>
<tr>
<td>2-30</td>
<td>30</td>
<td>30</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10-20</td>
<td>5-15</td>
<td>2-10</td>
<td>0-10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.0.6. Agr. cap. - Jun. eff. - Car. nig. - Ran. rep.</td>
<td>1987</td>
<td>-</td>
<td>B</td>
<td>73</td>
<td>41</td>
</tr>
<tr>
<td>60-80</td>
<td>2-10</td>
<td>1-10</td>
<td>1-10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.0.7. Agr. cap. - Jun. eff. - Hol. lan.</td>
<td>1987</td>
<td>-</td>
<td>B</td>
<td>778</td>
<td>43</td>
</tr>
<tr>
<td>70-90</td>
<td>2-10</td>
<td>1-10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>40-60</td>
<td>10-30</td>
<td>2-10</td>
<td>1-5</td>
<td>5-20</td>
<td></td>
</tr>
<tr>
<td>40-60</td>
<td>10-40</td>
<td>15-20</td>
<td>2-20</td>
<td>5-10</td>
<td>0-20</td>
</tr>
<tr>
<td>30-50</td>
<td>10-30</td>
<td>5-15</td>
<td>10-25</td>
<td>10-20</td>
<td>1-5</td>
</tr>
<tr>
<td>2-10</td>
<td>2-10</td>
<td>1-2</td>
<td>1-5</td>
<td>1-5</td>
<td></td>
</tr>
<tr>
<td>70-95</td>
<td>1-5</td>
<td>1-10</td>
<td>1-10</td>
<td>0-5</td>
<td></td>
</tr>
<tr>
<td>1.1.0. Agr. cap. - Car. nig. - Jun. eff. - Cir. pal. - Hol. lan.</td>
<td>1977</td>
<td>2.16</td>
<td>B</td>
<td>200</td>
<td>22</td>
</tr>
<tr>
<td>30-50</td>
<td>10-30</td>
<td>5-20</td>
<td>2-10</td>
<td>1-5</td>
<td></td>
</tr>
<tr>
<td>20-30</td>
<td>20-30</td>
<td>15-30</td>
<td>1-10</td>
<td>1-5</td>
<td></td>
</tr>
<tr>
<td>50-70</td>
<td>2-15</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20-40</td>
<td>2-20</td>
<td>1-5</td>
<td>1-10</td>
<td>1-5</td>
<td>1-2</td>
</tr>
<tr>
<td>70-80</td>
<td>2-15</td>
<td>1-10</td>
<td>1-10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.1.5. Agr. cap. - Car. nig. - Jun. eff.</td>
<td>1987</td>
<td>-</td>
<td>B</td>
<td>476</td>
<td>30</td>
</tr>
<tr>
<td>50-70</td>
<td>20-40</td>
<td>1-5</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

100
<p>| 1.2.0. | Agr.cap. - Cir.pal. - Ran.rep. - Cir.arv. | 1982 | B | 1000 | 43 |
| 1.3.0. | Agr.cap. levend - Agr.cap. dood - Cir.pal. | 1982 | B | 1300 | 53 | |
| 1.4.0. | Agr.cap. - Lol.per. - Men.aqu. - Cir.arv. - Hol.lan. - Jun.eff. | 1982 | B | 100 | 57 |
| 1.5.0. | Agr.cap. - Ant.odo. - Rhi.ser. - Leo.aut. - Tar.spe. | 1982 | H | 925 | 24 |
| 1.7.0. | Agr.cap. - Hol.lan. - Ant.odo. | 1982 | B | 20452 | 47 |
| 1.7.1. | Agr.cap. - Ant.odo. - Hol.lan. - Hyp.rad. | 1982 | 1.5.1 | H | 125 | 13 |
| 1.8.0. | Agr.cap. - Mol.cae. - Ant.odo. | 1982 | 0 | 38 | 37 |
| 1.9.0. | Agr.cap. - Ant.odo. - Ran.acr. | 1982 | H | 210 | 43 |
| 2.0.0. | Agr.cap. - Hol.lan. | 1982 | B | 26000 | 44 |
| 2.0.1. | Agr.cap. - Hol.lan. | 1982 | 1.4 | B | 6100 | 29 |</p>
<table>
<thead>
<tr>
<th>Section</th>
<th>Example</th>
<th>Year</th>
<th>Code</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>50-80 2-20 1-10 1-5 1-5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>20-50 2-20 1-10 1-2 1-10 1-10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>70-85 2-20 1-5 1-2 1-5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.1.6.</td>
<td>Agr.cap. - Hol.lan. - Rum.acr. - Cir.arv. - Pol.hyd.</td>
<td>1987</td>
<td>B</td>
<td>47</td>
</tr>
<tr>
<td></td>
<td>50-80 10-30 1-5 1-5 1-5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>60-80 2-20 0-5° 0-2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>30-50 30-50 5-15 0-5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>70-80 10-20 1-3 1-5 1-2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.2.0.</td>
<td>Agr.cap. - Hol.lan.</td>
<td>1977</td>
<td>B</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>25-50 5-50</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.3.0.</td>
<td>Agr.cap. - Hol.lan. - Dac.glo. - Poa.pra.</td>
<td>1977</td>
<td>B</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>40 30 20 4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.4.0.</td>
<td>Agr.cap. - Hol.lan. - Poa.pra. - Lol.per. - Dac.glo. - Cir.arv.</td>
<td>1987</td>
<td>B</td>
<td>106</td>
</tr>
<tr>
<td></td>
<td>30-40 20-30 20-30 2-10 0-2 5-10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.5.0.</td>
<td>Agr.cap. - Hol.lan. - Ant.odo.</td>
<td>1987</td>
<td>B</td>
<td>193</td>
</tr>
<tr>
<td></td>
<td>60-85 5-20 5-20</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.5.1.</td>
<td>Agr.cap. - Hol.lan. - Ant.odo. - Poa.pra. - Cir.arv.</td>
<td>1987</td>
<td>B</td>
<td>640</td>
</tr>
<tr>
<td></td>
<td>40-70 30-50 1-5 1-10 2-15</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3 AGROSTIS CAPILLARIS, HOLCUS LANATUS en ROZETTEN - TYPEN

<table>
<thead>
<tr>
<th>Section</th>
<th>Example</th>
<th>Year</th>
<th>Code</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>30 15 20</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>15-50 10-30 3-20 5-15 1-10 4-10 1-10 4-10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>20-30 3-15 20-30 1-7 1-4 5-20</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>50-70 25-50 10 5-10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>20-30 30-60 5-15 1-10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5-25 20-50 3-15 3-10 0-10</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1982</td>
<td>10-15</td>
<td>15-25</td>
<td>0-5</td>
<td>0-5</td>
<td>0-5</td>
<td>H 150 23</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Year</th>
<th>Hol.lan.</th>
<th>Hyp.rad.</th>
<th>Ran.acr.</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>1987</td>
<td>50-80</td>
<td>1-10</td>
<td>1-10</td>
<td>H 58 40</td>
</tr>
</tbody>
</table>

3.2.4. Agr.cap. - Hol.lan. - Ant.odo. - Hyp.rad. - Pla.lan. - Ran.acr. -
Rum.ace.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1987</td>
<td>30-60</td>
<td>1-10</td>
<td>1-5</td>
<td>0</td>
</tr>
</tbody>
</table>

4.0.0. Hol.lan. - Cir.arv. - Agr.cap.

<table>
<thead>
<tr>
<th>Year</th>
<th>Cir.arv.</th>
<th>Agr.cap.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1982</td>
<td>30-45</td>
<td>30</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Year</th>
<th>Cir.arv.</th>
<th>Ran.rep.</th>
<th>Leo.aut.</th>
<th>Tar.spe.</th>
<th>Lol.per.</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>1977</td>
<td>50-90</td>
<td>10</td>
<td>1-20</td>
<td>1-10</td>
<td>1-4</td>
<td>B 7500 66</td>
</tr>
</tbody>
</table>

4.1.0. Hol.lan. - Poa.pra. - Dac.glo.

<table>
<thead>
<tr>
<th>Year</th>
<th>Poa.pra.</th>
<th>Dac.glo.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1977</td>
<td>60-100</td>
<td>3-10</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1987</td>
<td>50-80</td>
<td>10-30</td>
<td>2-20</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1977</td>
<td>25-75</td>
<td>3-25</td>
<td>3-10</td>
<td>2-10</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1977</td>
<td>50-75</td>
<td>3-15</td>
<td>3-15</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1987</td>
<td>30-40</td>
<td>10-40</td>
<td>2-15</td>
<td>4</td>
<td>1-5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1977</td>
<td>50-70</td>
<td>10-35</td>
<td>1-10</td>
<td>1-10</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1987</td>
<td>40-80</td>
<td>2-20</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1987</td>
<td>60-80</td>
<td>2-20</td>
<td>1-5</td>
<td>1-5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1982</td>
<td>15</td>
<td>15</td>
<td>10</td>
</tr>
</tbody>
</table>

4.5.0. Hol.lan. - Ant.odo. - Poa.pra. - Tar.spe. - Cir.pal.

<table>
<thead>
<tr>
<th>Year</th>
<th>Ant.odo.</th>
<th>Poa.pra.</th>
<th>Tar.spe.</th>
<th>Cir.pal.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1977</td>
<td>30</td>
<td>5-20</td>
<td>10</td>
<td>10</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1982</td>
<td>15-45</td>
<td>5-30</td>
<td>5-10</td>
<td>5-10</td>
<td>3-10</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Year</th>
<th>Agr.cap.</th>
<th>Ran.rep.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1982</td>
<td>50-70</td>
<td>5-30</td>
</tr>
</tbody>
</table>
4.8.0. Lolium perenne — Agricola capraria — Agricola stigma

<table>
<thead>
<tr>
<th>Hol.lan.</th>
<th>Agricola capraria</th>
<th>Agricola stigma</th>
</tr>
</thead>
<tbody>
<tr>
<td>40-60</td>
<td>10-20</td>
<td>10-40</td>
</tr>
</tbody>
</table>

1977 3.2 B 500 58

5. HOLCUS LANATUS en ROZETTEN — TYPEN

5.0.0. Holcus lanatus — Leoautumno — Triquetra — Taraxacum — Hypochaeris — Lolium perenne

<table>
<thead>
<tr>
<th>Hol.lan.</th>
<th>Leoautumno</th>
<th>Triquetra</th>
<th>Taraxacum</th>
<th>Hypochaeris</th>
<th>Lol.lan.</th>
</tr>
</thead>
<tbody>
<tr>
<td>20-50</td>
<td>5-15</td>
<td>5-20</td>
<td>1-10</td>
<td>1-5</td>
<td>5-15</td>
</tr>
</tbody>
</table>

1977 2.0 B 7500 51

5.0.1. Holcus lanatus — Leoautumno — Triquetra — Lolium perenne — Agricola capraria

<table>
<thead>
<tr>
<th>Hol.lan.</th>
<th>Leoautumno</th>
<th>Triquetra</th>
<th>Lol.lan.</th>
<th>Agricola capraria</th>
</tr>
</thead>
<tbody>
<tr>
<td>10-30</td>
<td>20</td>
<td>10-20</td>
<td>10-20</td>
<td>5-15</td>
</tr>
</tbody>
</table>

1977 2.5 B 700 55

5.0.2. Holcus lanatus — Leoautumno — Triquetra — Taraxacum — Agricola capraria

<table>
<thead>
<tr>
<th>Hol.lan.</th>
<th>Leoautumno</th>
<th>Triquetra</th>
<th>Taraxacum</th>
<th>Agricola capraria</th>
</tr>
</thead>
<tbody>
<tr>
<td>5-20</td>
<td>3-20</td>
<td>3-20</td>
<td>3-20</td>
<td>5-15</td>
</tr>
</tbody>
</table>

1977 2.6 B 200 40

5.1.0. Holcus lanatus — Taraxacum — Lolium perenne — Elymus repens

<table>
<thead>
<tr>
<th>Hol.lan.</th>
<th>Taraxacum</th>
<th>Lol.lan.</th>
<th>Elymus repens</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td>3-15</td>
<td>1-10</td>
<td>1-4</td>
</tr>
</tbody>
</table>

1977 1.0 B 2300 48

5.1.1. Holcus lanatus — Taraxacum — Triquetra — Hypochaeris

<table>
<thead>
<tr>
<th>Hol.lan.</th>
<th>Taraxacum</th>
<th>Triquetra</th>
<th>Hypochaeris</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td>3-15</td>
<td>1-10</td>
<td>2-8</td>
</tr>
</tbody>
</table>

1977 1.1 H 500 27

5.1.2. Holcus lanatus — Taraxacum — Triquetra — Agricola capraria

<table>
<thead>
<tr>
<th>Hol.lan.</th>
<th>Taraxacum</th>
<th>Triquetra</th>
<th>Agricola capraria</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>5-20</td>
<td>3-15</td>
<td>3-10</td>
</tr>
</tbody>
</table>

1977 1.3 H 1575 30

5.2.0. Holcus lanatus — Hypochaeris — Taraxacum — Rumex acetosella — Circaea palustris

<table>
<thead>
<tr>
<th>Hol.lan.</th>
<th>Hypochaeris</th>
<th>Taraxacum</th>
<th>Rumex acetosella</th>
<th>Circaea palustris</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>10</td>
<td>5</td>
<td>10</td>
<td>10</td>
</tr>
</tbody>
</table>

1982 - H 125 23

6. HOLCUS LANATUS en LOLLUM PERENNE — TYPEN

6.0.0. Holcus lanatus — Lolium perenne — Agricola capraria — Poa pratensis

<table>
<thead>
<tr>
<th>Hol.lan.</th>
<th>Lol.per.</th>
<th>Agricola capraria</th>
<th>Poa pratensis</th>
</tr>
</thead>
<tbody>
<tr>
<td>40</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
</tbody>
</table>

1972 1.3 B 7400 45

6.0.1. Holcus lanatus — Lolium perenne — Agricola capraria — Poa pratensis

<table>
<thead>
<tr>
<th>Hol.lan.</th>
<th>Lol.per.</th>
<th>Agricola capraria</th>
<th>Poa pratensis</th>
</tr>
</thead>
<tbody>
<tr>
<td>40-60</td>
<td>10</td>
<td>4-10</td>
<td>4-10</td>
</tr>
</tbody>
</table>

1972 1.1 B 17700 46

6.0.2. Holcus lanatus — Lolium perenne — Agricola capraria — Carex nigra

<table>
<thead>
<tr>
<th>Hol.lan.</th>
<th>Lol.per.</th>
<th>Agricola capraria</th>
<th>Carex nigra</th>
</tr>
</thead>
<tbody>
<tr>
<td>40</td>
<td>10</td>
<td>10</td>
<td>10-40</td>
</tr>
</tbody>
</table>

1972 1.3 B 225 35

6.1.0. Holcus lanatus — Lolium perenne — Carex nigra — Poa pratensis — Alopecurus geniculatus

<table>
<thead>
<tr>
<th>Hol.lan.</th>
<th>Lol.per.</th>
<th>Carex nigra</th>
<th>Poa pratensis</th>
<th>Alopecurus geniculatus</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
</tbody>
</table>

1972 1110 B 3500 29

6.2.0. Holcus lanatus — Lolium perenne — Poa pratensis — Elymus repens

<table>
<thead>
<tr>
<th>Hol.lan.</th>
<th>Lol.per.</th>
<th>Poa pratensis</th>
<th>Elymus repens</th>
</tr>
</thead>
<tbody>
<tr>
<td>40-60</td>
<td>10</td>
<td>10</td>
<td>4-40</td>
</tr>
</tbody>
</table>

1972 1.0 B 24600 67

7. LOLLUM PERENNE — TYPEN

7.0.0. Lolium perenne — Holcus lanatus — Ranunculus repens

<table>
<thead>
<tr>
<th>Lol.per.</th>
<th>Hol.lan.</th>
<th>Ranunculus repens</th>
</tr>
</thead>
<tbody>
<tr>
<td>30-50</td>
<td>30-40</td>
<td>3-20</td>
</tr>
</tbody>
</table>

1977 3.3 B 300 69

7.0.1. Lolium perenne — Holcus lanatus — Ranunculus repens — Poa trique — Jungermannia effusa

<table>
<thead>
<tr>
<th>Lol.per.</th>
<th>Hol.lan.</th>
<th>Ranunculus repens</th>
<th>Poa trique</th>
<th>Jungermannia effusa</th>
</tr>
</thead>
<tbody>
<tr>
<td>30-60</td>
<td>3-20</td>
<td>5-20</td>
<td>10-20</td>
<td>1-4</td>
</tr>
</tbody>
</table>

1977 3.4 B 600 78

7.1.0. Lolium perenne — Agricola stigma — Ranunculus repens — Holcus lanatus

<table>
<thead>
<tr>
<th>Lol.per.</th>
<th>Agricola stigma</th>
<th>Ranunculus repens</th>
<th>Holcus lanatus</th>
</tr>
</thead>
<tbody>
<tr>
<td>45-60</td>
<td>5-40</td>
<td>5-20</td>
<td>1-4</td>
</tr>
</tbody>
</table>

1977 3.5 B 800 89
<table>
<thead>
<tr>
<th>Period</th>
<th>Species</th>
<th>Location</th>
<th>Start</th>
<th>End</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.2.0.</td>
<td>Lol.per.</td>
<td>Hol.lan.</td>
<td>60-75</td>
<td>5-25</td>
<td>1977 2.4 B 600 75</td>
</tr>
<tr>
<td>7.3.0.</td>
<td>Lol.per.</td>
<td>Pox.pra.</td>
<td>40</td>
<td>10-40</td>
<td>4-10</td>
</tr>
<tr>
<td>8.0.0.</td>
<td>Tar.spe.</td>
<td>Hol.lan.</td>
<td>30</td>
<td>10-20</td>
<td>10</td>
</tr>
<tr>
<td>8.0.1.</td>
<td>Tar.spe.</td>
<td>Hol.lan.</td>
<td>10-20</td>
<td>3-10</td>
<td>10-20</td>
</tr>
<tr>
<td>8.0.2.</td>
<td>Tar.spe.</td>
<td>Hyp.rad.</td>
<td>25</td>
<td>5</td>
<td>20</td>
</tr>
<tr>
<td>8.1.0.</td>
<td>Hyp.rad.</td>
<td>Leo.aut.</td>
<td>1-4</td>
<td>1-4</td>
<td>20-40</td>
</tr>
<tr>
<td>8.1.1.</td>
<td>Hyp.rad.</td>
<td>Leo.aut.</td>
<td>20-30</td>
<td>5-20</td>
<td>1-10</td>
</tr>
<tr>
<td>8.1.4.</td>
<td>Hyp.rad.</td>
<td>Leo.aut.</td>
<td>15</td>
<td>10</td>
<td>5</td>
</tr>
<tr>
<td>8.1.5.</td>
<td>Hyp.rad.</td>
<td>Tar.spe.</td>
<td>15</td>
<td>5</td>
<td>15</td>
</tr>
<tr>
<td>8.2.0.</td>
<td>Leo.aut.</td>
<td>Bel.per.</td>
<td>20-30</td>
<td>5-20</td>
<td>1-10</td>
</tr>
<tr>
<td>8.2.1.</td>
<td>Leo.aut.</td>
<td>Tri.rep.</td>
<td>20-30</td>
<td>5-20</td>
<td>1-15</td>
</tr>
<tr>
<td>8.2.2.</td>
<td>Leo.aut.</td>
<td>Tri.rep.</td>
<td>5-20</td>
<td>5-20</td>
<td>5-15</td>
</tr>
<tr>
<td>8.3.0.</td>
<td>Tri.dub.</td>
<td>Hyp.rad.</td>
<td>20-50</td>
<td>5-20</td>
<td>1-10</td>
</tr>
<tr>
<td>8.4.0.</td>
<td>Pot.ans.</td>
<td>Ele.pal.</td>
<td>50-55</td>
<td>10</td>
<td>1977 4.2a B 100 46</td>
</tr>
</tbody>
</table>
Begrazingsmozaïken

8.5.0. Hyd.vul. – Car.nig. – Agr.can. – Car.pan. – Hol.caee.
- 1977: 4.8 B 100 0

8.6.0. Ran.rep. – Agr.sto. – Leo.aut.
- 1982: – B 10 53

- 1982: – H 150 70

8.7.0. Hyp.rad. – Cal.vul.
- 1982: – A 525 0

8.7.1. Hyp.rad. – Cal.vul. – Agr.cap. – Hol.lan. – Tar.spe. – Leo.aut.

| Jun.eff. | 1977 | 2.25 | A | 650 | 12 |

Begrazingsmozaïken

- 1982: – B 4400

- 1982: – B 10400

- 1982: – B 80

9.0.3. Agr.cap. – Hol.lan. – Lol.per. – Pot.ans.
- 1982: – B 200

- 1987: – B 944

- 1987: – B 640
<table>
<thead>
<tr>
<th>Section</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>60-70% H: 60-80</td>
</tr>
<tr>
<td></td>
<td>30-40% L: 20-50</td>
</tr>
<tr>
<td></td>
<td>gem: 58</td>
</tr>
<tr>
<td></td>
<td>Lol.per.</td>
</tr>
<tr>
<td></td>
<td>1987 – B 323</td>
</tr>
<tr>
<td>9.0.7.</td>
<td>Agr. cap. – Hol.lan. – Hyp.rad. – Leo.aut. – Ran.acr. – Ant.odo. –</td>
</tr>
<tr>
<td></td>
<td>30-50% H: 40-70</td>
</tr>
<tr>
<td></td>
<td>50-70% L: 5-20</td>
</tr>
<tr>
<td></td>
<td>gem: 50</td>
</tr>
<tr>
<td></td>
<td>Poa.pra. – Bel.per. – Lol.per. – Tri.rep.</td>
</tr>
<tr>
<td></td>
<td>1987 – B 571</td>
</tr>
<tr>
<td>9.0.8.</td>
<td>Agr. cap. – Hol.lan. – Hyp.rad. – Leo.aut. – Ant.odo. –</td>
</tr>
<tr>
<td></td>
<td>40-75% H: 70-85</td>
</tr>
<tr>
<td></td>
<td>25-60% L: 20-50</td>
</tr>
<tr>
<td></td>
<td>gem: 59</td>
</tr>
<tr>
<td></td>
<td>Ran.acr.</td>
</tr>
<tr>
<td></td>
<td>1987 – B 2259</td>
</tr>
<tr>
<td>9.0.9.</td>
<td>Agr. cap. – Hol.lan. – Hyp.rad. – Leo.aut. – Ant.odo. – Ran.rep. –</td>
</tr>
<tr>
<td></td>
<td>60-80% H: 50-70</td>
</tr>
<tr>
<td></td>
<td>20-40% L: 30-50</td>
</tr>
<tr>
<td></td>
<td>gem: 54</td>
</tr>
<tr>
<td></td>
<td>Ran.acr.</td>
</tr>
<tr>
<td></td>
<td>1987 – B 2899</td>
</tr>
<tr>
<td></td>
<td>60-80% H: 30-60</td>
</tr>
<tr>
<td></td>
<td>20-40% L: 20-40</td>
</tr>
<tr>
<td></td>
<td>gem: 41</td>
</tr>
<tr>
<td></td>
<td>Car.nig.</td>
</tr>
<tr>
<td></td>
<td>1987 – B 3593</td>
</tr>
<tr>
<td></td>
<td>60-80% H: 70-90</td>
</tr>
<tr>
<td></td>
<td>20-40% L: 20-40</td>
</tr>
<tr>
<td></td>
<td>gem: 65</td>
</tr>
<tr>
<td></td>
<td>Car.nig.</td>
</tr>
<tr>
<td></td>
<td>1987 – B 1562</td>
</tr>
<tr>
<td></td>
<td>60-80% H: 70-85</td>
</tr>
<tr>
<td></td>
<td>20-40% L: 30-50</td>
</tr>
<tr>
<td></td>
<td>gem: 66</td>
</tr>
<tr>
<td></td>
<td>Car.nig.</td>
</tr>
<tr>
<td></td>
<td>1987 – B 3557</td>
</tr>
<tr>
<td></td>
<td>40-60% H: 60-80</td>
</tr>
<tr>
<td></td>
<td>40-60% L: 40-50</td>
</tr>
<tr>
<td></td>
<td>gem: 60</td>
</tr>
<tr>
<td></td>
<td>Car.nig.</td>
</tr>
<tr>
<td></td>
<td>1982 – B 3000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Section</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.1.0.</td>
<td>Hol.lan. – Agr. cap. – Cir.pal. – Ran.acr. – Tri.rep.</td>
</tr>
<tr>
<td></td>
<td>50-80% H: 35-50</td>
</tr>
<tr>
<td></td>
<td>20-50% L: 25-50</td>
</tr>
<tr>
<td></td>
<td>gem: 41</td>
</tr>
</tbody>
</table>

107
90% H:	50	25	10	20	20
10% L:	35	-	20	-	-
gem:	49	23	9	2	2

9.1.2.	Hol.lan. - Agr.cap. - Ran.acr. - Cir.pal. - Cir.arv.	1987 - B 1052			
80-95% H:	40-60	15-30	-	0-10	
5-20% L:	30-50	0-5	2-10	0-5	-
gem:	49	20	1	-	4

50-70% H:	40-60	20-30	10-20	-	-
30-50% L:	20-40	2-20	10-30	2-10	0-5
gem:	42	19	17	2	1

40-60% H:	70-90	1-5	1-5	-	1-5	
40-60% L:	50-80	1-15	1-10	1-10	2-15	
gem:	75	6	4	3	4	1

10. JUNCUS EFFUSUS - TYPEN

| 10.0.0. | Jun.eff. | 1982 - B 4200 |
| 55-80 | 1987 10.0.0. B 3368 |

| 30-50 | 20-45 |

| 50-70 | 25-50 | 1-20 |

| 10 | 10 | 10 |

| 30-50 | 20-40 | 10-20 | 1-10 | 1-5 |

| 30-70 | 20-60 | 1-5 |

| 10.2.0. | Jun.eff. - Car.nig. | 1977 4.5 B 600 |
| 60-70 | 20-30 |

| 10.2.1. | Jun.eff. - Car.nig. | 1987 - B 832 |
| 30-70 | 1-30 |

| 30-50 | 20-30 | 10-20 | 10-20 |

| 10.3.0. | Jun.eff. - Agr.sto. | 1977 4.6 B 200 |
| 50-75 | 5-25 |

| 40-80 | 10-40 | 1-10 | 1-10 |

| 10.3.2. | Jun.eff. - Agr.sto. - Agr.cap. | 1987 - B 103 |
| 30-50 | 20-40 | 2-10 |

108
<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
<th>Values</th>
<th>Year</th>
<th>Code</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.4.0</td>
<td>Jun.eff. - Agr.can.</td>
<td>25-50 30-40</td>
<td>1977</td>
<td>4.7</td>
<td>B 3900 0</td>
</tr>
<tr>
<td>10.4.1</td>
<td>Jun.eff. - Agr.can. - Car.nig.</td>
<td>10 10 2-10</td>
<td>1972</td>
<td>IV.3</td>
<td>B 3500 0</td>
</tr>
<tr>
<td>11.0.0</td>
<td>Agr.sto.</td>
<td>60</td>
<td>1972</td>
<td>IV.2</td>
<td>B 100 60</td>
</tr>
<tr>
<td>11.0.1</td>
<td>Agr.sto. - Jun.eff.</td>
<td>70-90 0-5</td>
<td>1982</td>
<td>-</td>
<td>B 300 80</td>
</tr>
<tr>
<td>11.1.0</td>
<td>Agr.sto. - Jun.eff. - Men.aqu. - Pol.hyd.</td>
<td>30 20 20 20</td>
<td>1982</td>
<td>-</td>
<td>B 300 50</td>
</tr>
<tr>
<td>11.2.1</td>
<td>Agr.sto. - Car.nig.</td>
<td>20-60 2-20</td>
<td>1987</td>
<td>-</td>
<td>H 157 40</td>
</tr>
<tr>
<td>11.4.0</td>
<td>Agr.sto. - Agr.cap.</td>
<td>15 15</td>
<td>1982</td>
<td>-</td>
<td>H 350 23</td>
</tr>
<tr>
<td>11.5.1</td>
<td>Agr.sto. - Ran.rep.</td>
<td>60-80 20-40</td>
<td>1987</td>
<td>-</td>
<td>H 12 100</td>
</tr>
<tr>
<td>11.5.2</td>
<td>Agr.sto. - Ran.rep. - Jun.eff. - Alo.gen. - Ran.fla.</td>
<td>30-50 10-30 1-10 1-5 1-3</td>
<td>1987</td>
<td>-</td>
<td>B 134 63</td>
</tr>
<tr>
<td>11.8.0</td>
<td>Agr.sto. - Gly.flu.</td>
<td>40 10</td>
<td>1977</td>
<td>4.2b</td>
<td>B 100 45</td>
</tr>
<tr>
<td>11.8.1</td>
<td>Agr.sto. - Gly.flu.</td>
<td>70-90 1-5</td>
<td>1987</td>
<td>-</td>
<td>H 25 83</td>
</tr>
</tbody>
</table>

12
CAREX NIGRA - TYPEN

12.0.0.	Car.nig. - Ran.rep.	1977	4.0	H	200	30
12.2.0.	Car.nig. - Car.vur. - Car.spe. - Jun.eff.	1982	-	B	100	0
12.3.0.	Car.nig. - Hol.lan.	1982	-	H	50	1
12.4.0.	Car.nig. - Pot.pal. - Gal.pal. - Ran.fla.	1987	-	H	375	0
12.5.0.	Car.nig. - Agr.sto.	1987	-	H	37	6
12.6.0.	Car.nig. - Agr.can. - Jun.eff. - Mol.caee.	1987	-	B	110	0
12.6.1.	Car.nig. - Agr.can. - Jun.eff.	1987	-	B	126	0
12.7.0.	Car.nig. - Jun.eff. - Agr.can. - Jun.art.	1987	-	B	212	0

13
CAREX ROSTRATA - TYPEN

<p>| 13.0.0. | Car.ros. | 1982 | - | B | 100 | 0 |</p>
<table>
<thead>
<tr>
<th>Category</th>
<th>Species</th>
<th>Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>13.2.0.</td>
<td>Car.ros. - Ele.pal.</td>
<td>10-40 2-10</td>
</tr>
</tbody>
</table>

| 14 | JUNCUS ACUTIFLORUS - TYPEN |

| 15 | MENTHA AQUATICA - TYPEN |

15.0.0.	Men.aqu. - Lyc.eur. - Agr.cap. - Jun.eff. - Hol.lan.	50-85 5-10 5-10 1-10 1-10
15.1.0.	Men.aqu. - Cir.arv. - Agr.cap.	35 35 20
15.2.0.	Men.aqu. - Mol.cae. - Hol.lan. - Car.nig.	40 40 10 5

| 16 | AGROSTIS CANINA - TYPEN |

16.0.0.	Agr.can. - Car.nig.	50-100 20
16.0.1.	Agr.can. - Car.nig. - Mol.cae. - Jun.eff.	30 20 15
16.0.2.	Agr.can. - Car.nig. - Jun.eff. - Car.pil. - Car.sp.	20-50 2-10 2-15 0-2 0-2
16.1.0.	Agr.can. - Hol.lan.	5-25 40

| 17 | ALOPECURUS GENICULATUS - TYPEN |

| 17.0.0. | Alo.gen. - Hol.lan. - Ran.rep. | 5-25 5-50 5-25 |
| 17.1.0. | Alo.gen. - Cly.flu. - Hol.lan. - Poa.tri. | 40 10 10 |

| 111 |
18. DACTYLUS GLOMERATUS - TYPEN

|---|---------|----------|---------|----------|----------|----------|
| 18.0.0. | Dac.glo. | 30-50 | 15-20 | 5-10 | | | 1982 - B 350 56
| 18.1.0. | Dac.glo. | 10-40 | 5-30 | 2-20 | 2-10 | | 1987 - H 85 57

19. ANTHOXANTHUM ODORATUM en RHINANTHUS SEROTINUS - TYPEN

|---|---------|---------|---------|
| 19.0.0. | | | | 1982 - H 600 ?

20. AGROSTIS CAPILLARIS, PLANTAGO LANCEOLATA en RHINANTHUS SEROTINUS - TYPEN

|---|---------|----------|---------|----------|----------|----------|
| 20.0.0. | Agr.cap. | 5-30 | 30-60 | 5-20 | 1-5 | 1-5 | 1987 - H 105 65
| 20.0.1. | Agr.cap. | 1-5 | 50-80 | 2-20 | 1-10 | 2-10 | 1-5 | 1987 - H 240 79
| 20.0.2. | Agr.cap. | 2-20 | 10-40 | 5-30 | 2-20 | 1-10 | 1-10 | 1987 - N 80 50
| 20.1.0. | Agr.cap. | 20-50 | 5-30 | 5-30 | 1-5 | 1-5 | 1-5 | 1987 - H 268 48
| 20.1.1. | Agr.cap. | 50-80 | 2-20 | 5-30 | 2-20 | 1-10 | 2-10 | 1987 - H 231 74
| 20.1.2. | Agr.cap. | 50-80 | 2-20 | 1-5 | 1-2 | 1-10 | 2-10 | 1987 - H 202 58
| 20.2.0. | Agr.cap. | 5-30 | 2-20 | 5-30 | 2-20 | 1-10 | 2-10 | 1987 - A 204 51

21. AGROSTIS CAPILLARIS, HYPOCHAERIS RADICATA en RHINANTHUS SEROTINUS - TYPEN

|---|---------|---------|----------|----------|
| 21.0.0. | Agr.cap. | 10-30 | 2-20 | 5-20 | 1-5 | 1-5 | 1987 - H 134 39
| 21.0.1. | Agr.cap. | 10-40 | 2-20 | 1-10 | 1-10 | | 1987 - H 261 42
| 21.0.2. | Agr.cap. | 5-20 | 10-30 | 2-20 | 5-20 | 1-10 | | 1987 - A 122 24

112
GLYCERIA FLUITANS – TYPEN

22.0.0.
Gly.flu. – Agr.sto.
50-80
2-20
1987 – B
58
44

22.0.1.
40-60
10-30
5-20
2-10
1-10
1-5
Lyc.eur.
1-5
1987 – B
138
65

22.1.0.
20-50
10-30
5-20
0-5
0-2
1987 – B
113
50

22.2.0.
30
30
25
5
1987 – B
31
63

tussen te voegen vegetatietypen:

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>50-80 1-5 1-5</td>
<td>50-80 1-5 1-5</td>
<td>40-70 20-40 5-20 1-5 1-5</td>
<td>10-30 40-70 2-20</td>
<td>5-20 2-15 1-10 1-10 1-5</td>
<td>1-10 30-60 1-2 5-30 1-10 1-5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>VEGETATIETYPE</th>
<th>BEHEERSMAATREGEL</th>
<th>OPPERLAK</th>
</tr>
</thead>
<tbody>
<tr>
<td>7a1</td>
<td>A</td>
<td>442</td>
</tr>
<tr>
<td></td>
<td>H</td>
<td>11</td>
</tr>
<tr>
<td>7c1</td>
<td>V</td>
<td>107</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>571</td>
</tr>
<tr>
<td>7c2</td>
<td>B</td>
<td>278</td>
</tr>
<tr>
<td>6a1</td>
<td>V</td>
<td>108</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>230</td>
</tr>
<tr>
<td>6a2</td>
<td>O</td>
<td>124</td>
</tr>
<tr>
<td>6a3</td>
<td>B</td>
<td>252</td>
</tr>
<tr>
<td>6a3A</td>
<td>B</td>
<td>3692</td>
</tr>
<tr>
<td>6a3AJ</td>
<td>B</td>
<td>46</td>
</tr>
<tr>
<td>6a3J</td>
<td>B</td>
<td>107</td>
</tr>
<tr>
<td>6b1</td>
<td>V</td>
<td>348</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>2762</td>
</tr>
<tr>
<td>6b2</td>
<td>B</td>
<td>838</td>
</tr>
<tr>
<td>6b2Fr</td>
<td>B</td>
<td>127</td>
</tr>
<tr>
<td>6b3</td>
<td>B</td>
<td>52</td>
</tr>
<tr>
<td>6b3A</td>
<td>B</td>
<td>2270</td>
</tr>
<tr>
<td>6b3Fr</td>
<td>B</td>
<td>86</td>
</tr>
<tr>
<td>6b3J</td>
<td>B</td>
<td>464</td>
</tr>
<tr>
<td>6c1</td>
<td>V</td>
<td>887</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>15145</td>
</tr>
<tr>
<td>6c2</td>
<td>B</td>
<td>948</td>
</tr>
<tr>
<td>6c2D</td>
<td>B</td>
<td>2947</td>
</tr>
<tr>
<td>6c2A</td>
<td>B</td>
<td>455</td>
</tr>
<tr>
<td>6c2AJ</td>
<td>B</td>
<td>194</td>
</tr>
<tr>
<td>6c2Fr</td>
<td>B</td>
<td>138</td>
</tr>
<tr>
<td>6c3DJ</td>
<td>B</td>
<td>1477</td>
</tr>
<tr>
<td>bos</td>
<td>A</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>H</td>
<td>137</td>
</tr>
<tr>
<td></td>
<td>V</td>
<td>348</td>
</tr>
<tr>
<td></td>
<td>N</td>
<td>106</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>9911</td>
</tr>
</tbody>
</table>

LEGENDA:
A - plaggen
B - beweiden
H - hooien
N - N-bemesten
O - ploegen
V - niets doen
Bijlage 4. Hoogteligging ten opzichte van N.A.P. van de transecten
1A t/m 9B (in cm).

<table>
<thead>
<tr>
<th>1A</th>
<th>1B</th>
<th>2A</th>
<th>2B</th>
<th>3A</th>
<th>3B</th>
<th>4A</th>
<th>4B</th>
<th>5A</th>
<th>5B</th>
<th>6A</th>
<th>6B</th>
<th>7A</th>
<th>7B</th>
<th>8A</th>
<th>8B</th>
<th>9A</th>
<th>9B</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>289.5</td>
<td>269.5</td>
<td>282</td>
<td>282</td>
<td>230</td>
<td>237.5</td>
<td>213.5</td>
<td>201.5</td>
<td>207</td>
<td>217</td>
<td>195.5</td>
<td>188.5</td>
<td>195.5</td>
<td>191</td>
<td>161.5</td>
<td>148</td>
<td>61</td>
</tr>
<tr>
<td>50</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>224.5</td>
<td>-</td>
</tr>
<tr>
<td>100</td>
<td>288.5</td>
<td>270.5</td>
<td>282.5</td>
<td>277.5</td>
<td>228.5</td>
<td>236.5</td>
<td>207</td>
<td>203.5</td>
<td>204.5</td>
<td>218</td>
<td>194</td>
<td>195.5</td>
<td>196</td>
<td>191</td>
<td>151.5</td>
<td>143</td>
<td>48.5</td>
</tr>
<tr>
<td>150</td>
<td>-</td>
<td>284.5</td>
<td>-</td>
<td>225</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>197</td>
<td>190.5</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>200</td>
<td>280.5</td>
<td>269.5</td>
<td>282.5</td>
<td>280.5</td>
<td>226</td>
<td>234.5</td>
<td>206</td>
<td>203</td>
<td>208</td>
<td>219</td>
<td>197.5</td>
<td>193.5</td>
<td>200</td>
<td>196</td>
<td>152</td>
<td>140</td>
<td>50.5</td>
</tr>
<tr>
<td>250</td>
<td>-</td>
<td>274.5</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>195.5</td>
<td>194.5</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>300</td>
<td>283.5</td>
<td>269.5</td>
<td>281</td>
<td>281</td>
<td>223.5</td>
<td>231.5</td>
<td>209.5</td>
<td>204</td>
<td>207</td>
<td>217</td>
<td>192.5</td>
<td>194.5</td>
<td>195</td>
<td>190.5</td>
<td>147</td>
<td>134</td>
<td>48.5</td>
</tr>
<tr>
<td>350</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>226</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>205</td>
<td>-</td>
<td>-</td>
<td>198</td>
<td>-</td>
<td>-</td>
<td>131</td>
<td>60</td>
</tr>
<tr>
<td>400</td>
<td>289.5</td>
<td>275.5</td>
<td>280</td>
<td>284.5</td>
<td>231</td>
<td>237.5</td>
<td>209.5</td>
<td>202</td>
<td>206.5</td>
<td>216.5</td>
<td>191</td>
<td>196.5</td>
<td>199</td>
<td>191</td>
<td>141</td>
<td>133</td>
<td>59</td>
</tr>
<tr>
<td>450</td>
<td>-</td>
<td>-</td>
<td>279.5</td>
<td>284</td>
<td>223.5</td>
<td>-</td>
<td>210</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>199.5</td>
<td>-</td>
<td>138</td>
<td>-</td>
<td>44</td>
</tr>
<tr>
<td>500</td>
<td>286.5</td>
<td>269.5</td>
<td>279.5</td>
<td>287</td>
<td>226.5</td>
<td>236</td>
<td>209.5</td>
<td>206</td>
<td>205.5</td>
<td>215</td>
<td>194</td>
<td>194.5</td>
<td>204.5</td>
<td>192.5</td>
<td>130</td>
<td>121.5</td>
<td>47.5</td>
</tr>
<tr>
<td>550</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>234</td>
<td>-</td>
<td>206</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>200</td>
<td>189.5</td>
<td>130</td>
<td>117</td>
<td>-</td>
<td>46.5</td>
</tr>
<tr>
<td>600</td>
<td>289.5</td>
<td>264.5</td>
<td>280</td>
<td>286.5</td>
<td>227</td>
<td>240</td>
<td>208</td>
<td>207</td>
<td>204.5</td>
<td>213</td>
<td>197</td>
<td>198</td>
<td>196</td>
<td>188</td>
<td>124</td>
<td>115</td>
<td>46</td>
</tr>
<tr>
<td>650</td>
<td>-</td>
<td>-</td>
<td>286</td>
<td>-</td>
<td>-</td>
<td>231.5</td>
<td>242</td>
<td>-</td>
<td>198</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>202</td>
<td>190.5</td>
<td>-</td>
<td>-</td>
<td>41.5</td>
</tr>
<tr>
<td>700</td>
<td>282.5</td>
<td>265.5</td>
<td>281</td>
<td>285.5</td>
<td>226</td>
<td>240</td>
<td>206.5</td>
<td>200</td>
<td>205.5</td>
<td>214</td>
<td>198</td>
<td>200</td>
<td>202</td>
<td>192.5</td>
<td>115</td>
<td>106</td>
<td>40</td>
</tr>
<tr>
<td>750</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>240.5</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>197</td>
<td>-</td>
<td>203</td>
<td>190</td>
<td>108</td>
<td>-</td>
<td>53</td>
<td>36.5</td>
</tr>
<tr>
<td>800</td>
<td>279.5</td>
<td>264.5</td>
<td>282</td>
<td>284.5</td>
<td>222.5</td>
<td>237.5</td>
<td>201.5</td>
<td>202.5</td>
<td>202.5</td>
<td>215</td>
<td>193</td>
<td>200</td>
<td>195</td>
<td>186</td>
<td>107.5</td>
<td>101</td>
<td>56</td>
</tr>
<tr>
<td>850</td>
<td>-</td>
<td>-</td>
<td>285.5</td>
<td>-</td>
<td>230.5</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>194.5</td>
<td>183</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>900</td>
<td>281.5</td>
<td>263.5</td>
<td>284</td>
<td>283.5</td>
<td>230</td>
<td>233.5</td>
<td>206.5</td>
<td>200</td>
<td>206.5</td>
<td>211.5</td>
<td>190.5</td>
<td>204</td>
<td>188.5</td>
<td>185</td>
<td>-</td>
<td>51</td>
<td>40</td>
</tr>
<tr>
<td>950</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>224.5</td>
<td>-</td>
<td>-</td>
<td>200.5</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>182</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>1000</td>
<td>282.5</td>
<td>262.5</td>
<td>282</td>
<td>287.5</td>
<td>225.5</td>
<td>232.5</td>
<td>205.5</td>
<td>199</td>
<td>208</td>
<td>214</td>
<td>189</td>
<td>202</td>
<td>194</td>
<td>183</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>1050</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>207</td>
<td>210.5</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>1100</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>208.5</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>1150</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>205</td>
<td>206.5</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>1200</td>
<td>-</td>
</tr>
<tr>
<td>1250</td>
<td>-</td>
</tr>
<tr>
<td>1300</td>
<td>-</td>
</tr>
<tr>
<td>1350</td>
<td>-</td>
</tr>
<tr>
<td>1400</td>
<td>-</td>
</tr>
<tr>
<td>1450</td>
<td>-</td>
</tr>
<tr>
<td>1500</td>
<td>-</td>
</tr>
</tbody>
</table>
Bijlage 5. Structuurmetingen transecten 1A t/m 9B: vegetatiehoogte (veg) en strooiseldikte (str.) (in cm).

<table>
<thead>
<tr>
<th></th>
<th>1A</th>
<th>1B</th>
<th>2A</th>
<th>2B</th>
<th>3A</th>
<th>3B</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>11.5</td>
<td>20.0</td>
<td>3.0</td>
<td>11.5</td>
<td>15.0</td>
<td>20.0</td>
</tr>
<tr>
<td>100</td>
<td>11.0</td>
<td>20.0</td>
<td>20.0</td>
<td>10.0</td>
<td>10.0</td>
<td>20.0</td>
</tr>
<tr>
<td>150</td>
<td>10.5</td>
<td>15.0</td>
<td>15.0</td>
<td>10.0</td>
<td>10.0</td>
<td>20.0</td>
</tr>
<tr>
<td>200</td>
<td>10.5</td>
<td>15.0</td>
<td>15.0</td>
<td>10.0</td>
<td>10.0</td>
<td>20.0</td>
</tr>
<tr>
<td>250</td>
<td>10.5</td>
<td>15.0</td>
<td>15.0</td>
<td>10.0</td>
<td>10.0</td>
<td>20.0</td>
</tr>
<tr>
<td>300</td>
<td>10.0</td>
<td>15.0</td>
<td>15.0</td>
<td>10.0</td>
<td>10.0</td>
<td>20.0</td>
</tr>
<tr>
<td>350</td>
<td>10.0</td>
<td>15.0</td>
<td>15.0</td>
<td>10.0</td>
<td>10.0</td>
<td>20.0</td>
</tr>
<tr>
<td>400</td>
<td>10.0</td>
<td>15.0</td>
<td>15.0</td>
<td>10.0</td>
<td>10.0</td>
<td>20.0</td>
</tr>
<tr>
<td>450</td>
<td>10.0</td>
<td>15.0</td>
<td>15.0</td>
<td>10.0</td>
<td>10.0</td>
<td>20.0</td>
</tr>
<tr>
<td>500</td>
<td>10.0</td>
<td>15.0</td>
<td>15.0</td>
<td>10.0</td>
<td>10.0</td>
<td>20.0</td>
</tr>
<tr>
<td>550</td>
<td>10.0</td>
<td>15.0</td>
<td>15.0</td>
<td>10.0</td>
<td>10.0</td>
<td>20.0</td>
</tr>
<tr>
<td>600</td>
<td>10.0</td>
<td>15.0</td>
<td>15.0</td>
<td>10.0</td>
<td>10.0</td>
<td>20.0</td>
</tr>
<tr>
<td>650</td>
<td>10.0</td>
<td>15.0</td>
<td>15.0</td>
<td>10.0</td>
<td>10.0</td>
<td>20.0</td>
</tr>
<tr>
<td>700</td>
<td>10.0</td>
<td>15.0</td>
<td>15.0</td>
<td>10.0</td>
<td>10.0</td>
<td>20.0</td>
</tr>
<tr>
<td>750</td>
<td>10.0</td>
<td>15.0</td>
<td>15.0</td>
<td>10.0</td>
<td>10.0</td>
<td>20.0</td>
</tr>
<tr>
<td>800</td>
<td>10.0</td>
<td>15.0</td>
<td>15.0</td>
<td>10.0</td>
<td>10.0</td>
<td>20.0</td>
</tr>
<tr>
<td>850</td>
<td>10.0</td>
<td>15.0</td>
<td>15.0</td>
<td>10.0</td>
<td>10.0</td>
<td>20.0</td>
</tr>
<tr>
<td>900</td>
<td>10.0</td>
<td>15.0</td>
<td>15.0</td>
<td>10.0</td>
<td>10.0</td>
<td>20.0</td>
</tr>
<tr>
<td>950</td>
<td>10.0</td>
<td>15.0</td>
<td>15.0</td>
<td>10.0</td>
<td>10.0</td>
<td>20.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>5A</th>
<th>5B</th>
<th>6A</th>
<th>6B</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>veg. str.</td>
<td>veg. str.</td>
<td>veg. str.</td>
<td>veg. str.</td>
</tr>
<tr>
<td>50</td>
<td>11.5</td>
<td>20.0</td>
<td>3.0</td>
<td>11.5</td>
</tr>
<tr>
<td>100</td>
<td>11.0</td>
<td>20.0</td>
<td>20.0</td>
<td>10.0</td>
</tr>
<tr>
<td>150</td>
<td>10.5</td>
<td>15.0</td>
<td>15.0</td>
<td>10.0</td>
</tr>
<tr>
<td>200</td>
<td>10.5</td>
<td>15.0</td>
<td>15.0</td>
<td>10.0</td>
</tr>
<tr>
<td>250</td>
<td>10.5</td>
<td>15.0</td>
<td>15.0</td>
<td>10.0</td>
</tr>
<tr>
<td>300</td>
<td>10.0</td>
<td>15.0</td>
<td>15.0</td>
<td>10.0</td>
</tr>
<tr>
<td>350</td>
<td>10.0</td>
<td>15.0</td>
<td>15.0</td>
<td>10.0</td>
</tr>
<tr>
<td>400</td>
<td>10.0</td>
<td>15.0</td>
<td>15.0</td>
<td>10.0</td>
</tr>
<tr>
<td>450</td>
<td>10.0</td>
<td>15.0</td>
<td>15.0</td>
<td>10.0</td>
</tr>
<tr>
<td>500</td>
<td>10.0</td>
<td>15.0</td>
<td>15.0</td>
<td>10.0</td>
</tr>
<tr>
<td>550</td>
<td>10.0</td>
<td>15.0</td>
<td>15.0</td>
<td>10.0</td>
</tr>
<tr>
<td>600</td>
<td>10.0</td>
<td>15.0</td>
<td>15.0</td>
<td>10.0</td>
</tr>
<tr>
<td>650</td>
<td>10.0</td>
<td>15.0</td>
<td>15.0</td>
<td>10.0</td>
</tr>
<tr>
<td>700</td>
<td>10.0</td>
<td>15.0</td>
<td>15.0</td>
<td>10.0</td>
</tr>
<tr>
<td>750</td>
<td>10.0</td>
<td>15.0</td>
<td>15.0</td>
<td>10.0</td>
</tr>
<tr>
<td>800</td>
<td>10.0</td>
<td>15.0</td>
<td>15.0</td>
<td>10.0</td>
</tr>
<tr>
<td>850</td>
<td>10.0</td>
<td>15.0</td>
<td>15.0</td>
<td>10.0</td>
</tr>
<tr>
<td>900</td>
<td>10.0</td>
<td>15.0</td>
<td>15.0</td>
<td>10.0</td>
</tr>
<tr>
<td>950</td>
<td>10.0</td>
<td>15.0</td>
<td>15.0</td>
<td>10.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>7A</th>
<th>7B</th>
<th>8A</th>
<th>8B</th>
<th>9A</th>
<th>9B</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>8.0</td>
<td>9.0</td>
<td>1.0</td>
<td>12.0</td>
<td>0.5</td>
<td>18.0</td>
</tr>
<tr>
<td>100</td>
<td>8.0</td>
<td>9.0</td>
<td>1.0</td>
<td>12.0</td>
<td>0.5</td>
<td>18.0</td>
</tr>
<tr>
<td>150</td>
<td>8.0</td>
<td>9.0</td>
<td>1.0</td>
<td>12.0</td>
<td>0.5</td>
<td>18.0</td>
</tr>
<tr>
<td>200</td>
<td>8.0</td>
<td>9.0</td>
<td>1.0</td>
<td>12.0</td>
<td>0.5</td>
<td>18.0</td>
</tr>
<tr>
<td>250</td>
<td>8.0</td>
<td>9.0</td>
<td>1.0</td>
<td>12.0</td>
<td>0.5</td>
<td>18.0</td>
</tr>
<tr>
<td>300</td>
<td>8.0</td>
<td>9.0</td>
<td>1.0</td>
<td>12.0</td>
<td>0.5</td>
<td>18.0</td>
</tr>
<tr>
<td>350</td>
<td>8.0</td>
<td>9.0</td>
<td>1.0</td>
<td>12.0</td>
<td>0.5</td>
<td>18.0</td>
</tr>
<tr>
<td>400</td>
<td>8.0</td>
<td>9.0</td>
<td>1.0</td>
<td>12.0</td>
<td>0.5</td>
<td>18.0</td>
</tr>
<tr>
<td>450</td>
<td>8.0</td>
<td>9.0</td>
<td>1.0</td>
<td>12.0</td>
<td>0.5</td>
<td>18.0</td>
</tr>
<tr>
<td>500</td>
<td>8.0</td>
<td>9.0</td>
<td>1.0</td>
<td>12.0</td>
<td>0.5</td>
<td>18.0</td>
</tr>
<tr>
<td>550</td>
<td>8.0</td>
<td>9.0</td>
<td>1.0</td>
<td>12.0</td>
<td>0.5</td>
<td>18.0</td>
</tr>
<tr>
<td>600</td>
<td>8.0</td>
<td>9.0</td>
<td>1.0</td>
<td>12.0</td>
<td>0.5</td>
<td>18.0</td>
</tr>
<tr>
<td>650</td>
<td>8.0</td>
<td>9.0</td>
<td>1.0</td>
<td>12.0</td>
<td>0.5</td>
<td>18.0</td>
</tr>
<tr>
<td>700</td>
<td>8.0</td>
<td>9.0</td>
<td>1.0</td>
<td>12.0</td>
<td>0.5</td>
<td>18.0</td>
</tr>
<tr>
<td>750</td>
<td>8.0</td>
<td>9.0</td>
<td>1.0</td>
<td>12.0</td>
<td>0.5</td>
<td>18.0</td>
</tr>
<tr>
<td>800</td>
<td>8.0</td>
<td>9.0</td>
<td>1.0</td>
<td>12.0</td>
<td>0.5</td>
<td>18.0</td>
</tr>
<tr>
<td>850</td>
<td>8.0</td>
<td>9.0</td>
<td>1.0</td>
<td>12.0</td>
<td>0.5</td>
<td>18.0</td>
</tr>
<tr>
<td>900</td>
<td>8.0</td>
<td>9.0</td>
<td>1.0</td>
<td>12.0</td>
<td>0.5</td>
<td>18.0</td>
</tr>
<tr>
<td>950</td>
<td>8.0</td>
<td>9.0</td>
<td>1.0</td>
<td>12.0</td>
<td>0.5</td>
<td>18.0</td>
</tr>
</tbody>
</table>
Bijlage 6. Veranderingen van de diverse soorten bij verschillende beheersmaatregelen per pq.

<table>
<thead>
<tr>
<th>JAAR</th>
<th>pq 1,2 plaggen</th>
<th>pq 3,4 hooien</th>
<th>pq 7,8 hooien</th>
<th>pq 9,13 hooien</th>
<th>pq 15,16,23,24 hooien</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>rozetplanten</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Holcus lanatus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Agrostis capillaris</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anthoxanthum odoratum</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leontodon autumnalis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hypochaeris radicata</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Erica tetralix</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Calluna vulgaris</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Juncus effusus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Taraxacum spec.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rumex acetosa</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carex nigra</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plantago lanceolata</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ranunculus repens</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bellis perennis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trifolium repens</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Juncus effusus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Taraxacum spec.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ranunculus acris</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Poa pratensis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Poa trivialis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Agrostis stolonifera</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eleocharis palustris</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cerasium fontanum</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rumex acetosella</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Glyceria fluitans</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Potentilla anserina</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Galium palustre</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lolium perenne</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alopecurus geniculatus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Poa annua</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dactylis glomerata</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cirsium palustre</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ranunculus flammula</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carex rostrata</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Elytrigia repens</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phleum pratense</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Achilles millefolia</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Data:
- TOTALE BEDEKKING
- JAAR
- rozetplanten
- Holcus lanatus
- Agrostis capillaris
- Anthoxanthum odoratum
- Leontodon autumnalis
- Hypochaeris radicata
- Erica tetralix
- Calluna vulgaris
- Juncus effusus
- Taraxacum spec.
- Rumex acetosa
- Carex nigra
- Plantago lanceolata
- Ranunculus repens
- Bellis perennis
- Trifolium repens
- Juncus effusus
- Taraxacum spec.
- Ranunculus acris
- Poa pratensis
- Poa trivialis
- Agrostis stolonifera
- Eleocharis palustris
- Cerasium fontanum
- Rumex acetosella
- Glyceria fluitans
- Potentilla anserina
- Galium palustre
- Lolium perenne
- Alopecurus geniculatus
- Poa annua
- Dactylis glomerata
- Cirsium palustre
- Ranunculus flammula
- Carex rostrata
- Elytrigia repens
- Phleum pratense
- Achilles millefolia
Bijlage 6. Veranderingen van de diverse soorten bij verschillende beheersmaatregelen per pq.

<table>
<thead>
<tr>
<th>JAAR</th>
<th>pq 17,18,25,26 hooien</th>
<th>pq 19,20,27,28 bemesten</th>
<th>pq 38,39,40,41 beweiden</th>
<th>pq 42,43 beweiden</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1972</td>
<td>1972</td>
<td>1972</td>
<td>1972</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TOTALE BEDEKKING</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>87.5 63.75 43.75 81.25</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>95 97.5 68.75 91.25</td>
<td>85 78.75 95.75 92.5</td>
<td>75 55 45 60</td>
</tr>
<tr>
<td></td>
<td></td>
<td>rozetplanten</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Holcus lanatus</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Agrostis capilaris</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Anthoxanthum odoratum</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Leontodon autumnalis</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Hypochaeris radicata</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Erica tetralix</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Calluna vulgaris</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Juncus squarosus</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Rhinanthus serotinus</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Rumex acetosa</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Carex nigra</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Plantago lanceolata</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ranunculus repens</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bellis perennis</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Trifolium repens</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Juncus effusus</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Taraxacum spec.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ranunculus acris</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Poa pratensis</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Poa trivialis</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Agrostis stolonifera</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Eleocharis palustris</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cerastium fontanum</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Rumex acetosella</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Glyceria fluviatans</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Potentilla anserina</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Galium palustre</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lolium perenne</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Alopecurus geniculatus</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Poa annua</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dactylis glomerata</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cirrhium palustre</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ranunculus flammula</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Carex rostrata</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Elatrichia repens</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Phleum pratense</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Achillea millefolia</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>TOTALE BEDEKKING</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>87.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>63.75</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>43.75</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>81.25</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>95</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>97.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>68.75</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>91.25</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>85</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>78.75</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>95.75</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>92.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>75</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>55</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>45</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>60</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>30.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>11.25</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2.25</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>42.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>85</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>16.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>28.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>42.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>17.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>41</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.75</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>6.25</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>5.25</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>25</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>4.75</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.25</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>25</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>43.75</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>81.25</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>55</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>25</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>11.25</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>35.25</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>35</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>8.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>32.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>8.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>38.75</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>45</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>56.25</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>12</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>4.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>11.75</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.75</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.75</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Bijlage 6. Veranderingen van de diverse soorten bij verschillende beheersmaatregelen per pq.

<table>
<thead>
<tr>
<th>JAAR</th>
<th>pq 45,46 beweiden</th>
<th>pq 110 ploegen</th>
<th>pq 138 ploegen</th>
<th>pq 138,140 ploegen</th>
<th>pq 139,141 ploegen</th>
</tr>
</thead>
<tbody>
<tr>
<td>TOTALE BEDEKKING</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>rozetplanten</td>
<td>9.5 39 39 5.5</td>
<td>18 13 3</td>
<td>8 7</td>
<td>24.25 9.75 11.75</td>
<td>1.5 9.25</td>
</tr>
<tr>
<td>Holcus lanatus</td>
<td>60 12.5 1 1.5</td>
<td>10 1 1</td>
<td>2 1</td>
<td>32 2 1.5</td>
<td>22 3 1.5</td>
</tr>
<tr>
<td>Agrostis capillaris</td>
<td>1 16.25 1 75</td>
<td>10 2 2</td>
<td>20 40 23</td>
<td>16.25 25</td>
<td>20 25 56.25</td>
</tr>
<tr>
<td>Anthoxanthum odoratum</td>
<td>7.5 1 2.5</td>
<td>1 1</td>
<td>1 2</td>
<td>1 4.75 1 6.75</td>
<td>10 5.75 1</td>
</tr>
<tr>
<td>Leontodon autumnalis</td>
<td>2.5 20 15 1.5</td>
<td>1 2 1</td>
<td>1 1</td>
<td>8.75 1.5 2.5</td>
<td>1 6.75</td>
</tr>
<tr>
<td>Hypochaeris radicata</td>
<td>1 1.5 1</td>
<td>4 10 2</td>
<td>2 4 1</td>
<td>1 4.75 8.25</td>
<td>1 6.75</td>
</tr>
<tr>
<td>Elytrigia repens</td>
<td>1 7.5 4 1</td>
<td>1 2 1</td>
<td>1</td>
<td>1 3</td>
<td></td>
</tr>
<tr>
<td>Carex nigra</td>
<td>1 1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2.5 1</td>
</tr>
<tr>
<td>Rumex acetosella</td>
<td>1 1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Plantago lanceolata</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Rumex acetosa</td>
<td>1 1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Phleum pratense</td>
<td>2.5 20</td>
<td>2 12.5 3</td>
<td>12.5</td>
<td>3</td>
<td>1.5</td>
</tr>
<tr>
<td>Alopecurus geniculatus</td>
<td>1 1.5</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>
Bijlage 7. Veranderingen van de diverse soorten bij verschillende beheersmaatregelen per pq-subset.

<table>
<thead>
<tr>
<th>hooien (pg 3-4)</th>
<th>plassen (pg 1-2)</th>
<th>plassen (pg 110)</th>
<th>ploegen 60 cm (pg 138)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hol.lan.</td>
<td>5 25 8 2</td>
<td>4 16 4 -</td>
<td>Hol.lan.</td>
</tr>
<tr>
<td>Lol.per.</td>
<td>50 - - -</td>
<td>40 - - -</td>
<td>Agr.cap. 2 2</td>
</tr>
<tr>
<td>Poo.pra.</td>
<td>25 - - -</td>
<td>50 - - -</td>
<td>Ant.odo. - - 20 40</td>
</tr>
<tr>
<td>Agr.cap.</td>
<td>- 7 7 25</td>
<td>- 11 7 -</td>
<td>roz: Hyp.rad. 10 2</td>
</tr>
<tr>
<td>Ant.odo.</td>
<td>- - 7 -</td>
<td>- - 8 -</td>
<td>Leo.aut. 2 -</td>
</tr>
<tr>
<td>roz: Hyp.rad.</td>
<td>- - 3 -</td>
<td>- 5 6 16</td>
<td>Eri.tet. 8 4</td>
</tr>
<tr>
<td>Tar.spe.</td>
<td>4 11 15 3</td>
<td>4 3 2 -</td>
<td>Cal.vul. 8 20</td>
</tr>
<tr>
<td>Ran.acr.</td>
<td>- - 3 -</td>
<td>- - -</td>
<td>Jun.squ. - 2</td>
</tr>
<tr>
<td>Ran.rep.</td>
<td>- - 10 -</td>
<td>- - -</td>
<td>TOT.BED. 30 40</td>
</tr>
<tr>
<td>Tri.rep.</td>
<td>3 - - -</td>
<td>3 11 -</td>
<td></td>
</tr>
<tr>
<td>Rum.acl.</td>
<td>- - -</td>
<td>- - 2 2</td>
<td></td>
</tr>
<tr>
<td>Rum.ace.</td>
<td>- - 4 2</td>
<td>- - -</td>
<td></td>
</tr>
<tr>
<td>Rhi.ser.</td>
<td>- - 13 -</td>
<td>- - 15 -</td>
<td></td>
</tr>
<tr>
<td>Pla.lan.</td>
<td>- - - 3</td>
<td>- - -</td>
<td></td>
</tr>
<tr>
<td>Agr.sto.</td>
<td>- - 3 -</td>
<td>- - -</td>
<td></td>
</tr>
<tr>
<td>Cer.fon.</td>
<td>4 - - -</td>
<td>- - 2 5</td>
<td></td>
</tr>
<tr>
<td>Ach.mil.</td>
<td>- - -</td>
<td>- - -</td>
<td>TOT.BED. 90 55 38 60</td>
</tr>
<tr>
<td>TOT.BED.</td>
<td>90 55 38 60</td>
<td>90 48 28 58</td>
<td></td>
</tr>
</tbody>
</table>

hooien (pg 17,18,25,26) | bemesten (pg 19,20,27,28) | plogen 60 cm (pg 139,140) | plogen 25 cm (pg 139,141) |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Hol.lan.</td>
<td>60 31 11 2</td>
<td>43 85 17 28</td>
<td>Hol.lan.</td>
</tr>
<tr>
<td>Lol.per.</td>
<td>4 - - -</td>
<td>7 - - -</td>
<td>Lar.cap. 20 -</td>
</tr>
<tr>
<td>Poo.pra.</td>
<td>5 2 - -</td>
<td>28 10 11 35</td>
<td>Ant.odo. 25 16 35</td>
</tr>
<tr>
<td>Agr.cap.</td>
<td>- - 5 7</td>
<td>- - -</td>
<td>roz: Hyp.rad. 10 2</td>
</tr>
<tr>
<td>Ant.odo.</td>
<td>- - 7 8</td>
<td>- - -</td>
<td>Leo.aut. 20 - 20 56</td>
</tr>
<tr>
<td>roz: Hyp.rad.</td>
<td>- - 13 -</td>
<td>- - 3 -</td>
<td>TOT.BED. 93 28 73</td>
</tr>
<tr>
<td>Tar.spe.</td>
<td>- - 3 -</td>
<td>- - -</td>
<td></td>
</tr>
<tr>
<td>Ran.rep.</td>
<td>- - 13 -</td>
<td>- - 8</td>
<td>TOT.BED. 90 33 70</td>
</tr>
<tr>
<td>Rhi.ser.</td>
<td>- - 5 7</td>
<td>- - 6</td>
<td></td>
</tr>
<tr>
<td>Rum.acl.</td>
<td>- - -</td>
<td>- - 2 -</td>
<td></td>
</tr>
<tr>
<td>Pla.lan.</td>
<td>- - 2 17</td>
<td>- - 5</td>
<td></td>
</tr>
<tr>
<td>Poo.sto.</td>
<td>- - -</td>
<td>- - 6</td>
<td></td>
</tr>
<tr>
<td>Dac.glo.</td>
<td>3 4 6 -</td>
<td>- 8 10 2</td>
<td></td>
</tr>
<tr>
<td>Ran.fla.</td>
<td>- - 3 -</td>
<td>- - -</td>
<td></td>
</tr>
<tr>
<td>Phi.pra.</td>
<td>12 - - -</td>
<td>- - -</td>
<td></td>
</tr>
<tr>
<td>TOT.BED.</td>
<td>88 64 44 81</td>
<td>95 98 69 91</td>
<td></td>
</tr>
<tr>
<td>那麼</td>
<td>變更</td>
<td>不同的種類</td>
<td>不同管理措施</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>荷蘭</td>
<td>5533</td>
<td>7</td>
<td>55</td>
</tr>
<tr>
<td>拉德</td>
<td>9</td>
<td>—</td>
<td>9</td>
</tr>
<tr>
<td>波士</td>
<td>7</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>農業</td>
<td>7</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>橄欖</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>農業</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>橄欖</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>農業</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>橄欖</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>農業</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>橄欖</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>農業</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>橄欖</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>農業</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>橄欖</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>農業</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>橄欖</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>農業</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>橄欖</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>農業</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>橄欖</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>農業</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>橄欖</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>農業</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>橄欖</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>農業</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>橄欖</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>農業</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>橄欖</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>農業</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>橄欖</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>農業</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>橄欖</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>農業</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>橄欖</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>農業</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>橄欖</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>農業</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>橄欖</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>農業</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

De getallen geven het aantal meterstukken greppel met de betreffende soort.

Volgorde van soorten:
- Calluna vulgaris
- Erica tetralix
- Juncus squarrosus
- Potentilla erecta
Bijlage 9. Relatieve equitabiliteit; verandering in relatieve equitabiliteit in de periode 1972-1987.
(berekend m.b.v. gegevens Bijlage 6)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1,2</td>
<td>E</td>
<td>.593</td>
<td>.521</td>
<td>.416</td>
</tr>
<tr>
<td></td>
<td>s</td>
<td>7</td>
<td>11</td>
<td>13</td>
</tr>
<tr>
<td>3,4</td>
<td>E</td>
<td>.625</td>
<td>.502</td>
<td>.598</td>
</tr>
<tr>
<td></td>
<td>s</td>
<td>7</td>
<td>12</td>
<td>14</td>
</tr>
<tr>
<td>7,8</td>
<td>E</td>
<td>.457</td>
<td>.586</td>
<td>.592</td>
</tr>
<tr>
<td></td>
<td>s</td>
<td>9</td>
<td>13</td>
<td>8</td>
</tr>
<tr>
<td>9,13</td>
<td>E</td>
<td>.625</td>
<td>.581</td>
<td>.563</td>
</tr>
<tr>
<td></td>
<td>s</td>
<td>10</td>
<td>9</td>
<td>6</td>
</tr>
<tr>
<td>15,16,23,24</td>
<td>E</td>
<td>.505</td>
<td>.527</td>
<td>.706</td>
</tr>
<tr>
<td></td>
<td>s</td>
<td>8</td>
<td>12</td>
<td>13</td>
</tr>
<tr>
<td>17,18,25,26</td>
<td>E</td>
<td>.545</td>
<td>.545</td>
<td>.618</td>
</tr>
<tr>
<td></td>
<td>s</td>
<td>9</td>
<td>10</td>
<td>12</td>
</tr>
<tr>
<td>19,20,27,28</td>
<td>E</td>
<td>.635</td>
<td>.406</td>
<td>.747</td>
</tr>
<tr>
<td></td>
<td>s</td>
<td>5</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>38,39,40,41</td>
<td>E</td>
<td>.573</td>
<td>.776</td>
<td>.722</td>
</tr>
<tr>
<td></td>
<td>s</td>
<td>7</td>
<td>12</td>
<td>9</td>
</tr>
<tr>
<td>42,43</td>
<td>E</td>
<td>.653</td>
<td>.668</td>
<td>.427</td>
</tr>
<tr>
<td></td>
<td>s</td>
<td>6</td>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>45,46</td>
<td>E</td>
<td>.504</td>
<td>.702</td>
<td>.538</td>
</tr>
<tr>
<td></td>
<td>s</td>
<td>8</td>
<td>14</td>
<td>9</td>
</tr>
<tr>
<td>110</td>
<td>E</td>
<td></td>
<td>.538</td>
<td>.442</td>
</tr>
<tr>
<td></td>
<td>s</td>
<td></td>
<td>13</td>
<td>12</td>
</tr>
<tr>
<td>138</td>
<td>E</td>
<td></td>
<td></td>
<td>.376</td>
</tr>
<tr>
<td></td>
<td>s</td>
<td></td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>138,140</td>
<td>E</td>
<td></td>
<td>.792</td>
<td>.405</td>
</tr>
<tr>
<td></td>
<td>s</td>
<td></td>
<td>5</td>
<td>8</td>
</tr>
<tr>
<td>139,141</td>
<td>E</td>
<td></td>
<td>.725</td>
<td>.524</td>
</tr>
<tr>
<td></td>
<td>s</td>
<td></td>
<td>7</td>
<td>5</td>
</tr>
</tbody>
</table>

E = relatieve equitabiliteit
s = aantal soorten

<table>
<thead>
<tr>
<th>Beheersmethode</th>
<th>Veranderingsklasse:</th>
<th>Oppervlakpercentage:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>gem.:</td>
</tr>
<tr>
<td>Ploegen:</td>
<td>-2</td>
<td>46.6</td>
</tr>
<tr>
<td></td>
<td>-1</td>
<td>25.8</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>24.7</td>
</tr>
<tr>
<td></td>
<td>+1</td>
<td>2.9</td>
</tr>
<tr>
<td>Plaggen:</td>
<td>-3</td>
<td>56.2</td>
</tr>
<tr>
<td></td>
<td>-2</td>
<td>21.8</td>
</tr>
<tr>
<td></td>
<td>-1</td>
<td>22.0</td>
</tr>
<tr>
<td>N-bemesten:</td>
<td>0</td>
<td>100.0</td>
</tr>
<tr>
<td>Hooien:</td>
<td>-3</td>
<td>1.2</td>
</tr>
<tr>
<td></td>
<td>-2</td>
<td>7.2</td>
</tr>
<tr>
<td></td>
<td>-1</td>
<td>55.8</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>26.2</td>
</tr>
<tr>
<td></td>
<td>+1</td>
<td>8.3</td>
</tr>
<tr>
<td></td>
<td>+2</td>
<td>0.9</td>
</tr>
<tr>
<td>Beweiden:</td>
<td>-3</td>
<td>0.9</td>
</tr>
<tr>
<td></td>
<td>-2</td>
<td>4.0</td>
</tr>
<tr>
<td></td>
<td>-1</td>
<td>32.4</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>51.3</td>
</tr>
<tr>
<td></td>
<td>+1</td>
<td>10.7</td>
</tr>
<tr>
<td></td>
<td>+2</td>
<td>0.8</td>
</tr>
</tbody>
</table>
Bijlage 11A. Veranderingen in de vegetatiesamenstelling van het hooiland.

* = bedekkingspercentage
** = absolute percentage dat overgaat van het ene type in het andere type
Bijlage 11B. Veranderingen in de vegetatiesamenstelling van het met stikstof bemeste hooiland.

1972

1977

1982

1987

* = bedekkingspercentage

** = absolute percentage dat overgaat van het ene type in het andere type
Bijlage 11C. Veranderingen in de vegetatiesamenstelling van het geplagde hooiland.

1972
6.0.1. 71
 29 25 43 3
 29

1977
8.7.1. 3.2.1. 8.1.0.
 54 43 3
 54 11 3 4 3

1982
8.7.0. 1.5.1. 8.0.1. 1.6.0.
 65 25 3 7
 61 4 11 3

1987
7a1 3.2.3. 21.0.2. 21.0.1.
 61 3 11 25

* = bedekkingspercentage
** = absolute percentage dat overgaat van het ene type in het andere type
Bijlage 11D. Veranderingen in de vegetatiesamenstelling van het
tot 25 cm geploegde hooiland.

1982

1.0.5. 63
16

1.5.1. 26
11

3.2.2. 11

1987

6a2
16

1.8.0. 11

3.2.4. 16

1.8.1. 58*

* = bedekkingspercentage

** = absolute percentage dat overgaat van het ene type in het andere type

Bijlage 11E. Veranderingen in de vegetatiesamenstelling van het
tot 60 cm geploegde hooiland.

1982

1.0.5. 75
5

3.2.2. 25
70

1987

12.1.2. 5
15

1.8.2. 85

2.1.4. 10

* = bedekkingspercentage

** = absolute percentage dat overgaat van het ene type in het andere type
Bijlage 11F. Veranderingen in de vegetatiesamenstelling van de onbeweide heide.

* = bedekkingspercentage

** = absolute percentage dat overgaat van het ene type in het andere type
Bijlage 12. Veranderingen van door Juncus effusus gedomineerde/gekaracteriseerde typen over de periode 1972-1987.

A: totale oppervlak van door J.e. gedomineerde typen (ha)
B: totale oppervlak van door J.e. gekarakteriseerde typen (ha)
C: A+B (ha)

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>1972</td>
<td>.82</td>
<td>-</td>
<td>.82</td>
</tr>
<tr>
<td>1977</td>
<td>.56</td>
<td>.52</td>
<td>1.08</td>
</tr>
<tr>
<td>1982</td>
<td>.57</td>
<td>.92</td>
<td>1.49</td>
</tr>
<tr>
<td>1987</td>
<td>.65</td>
<td>.99</td>
<td>1.64</td>
</tr>
</tbody>
</table>

A: minder dan 40% lage plekken in 9-typen (m²)
B: 40% of meer lage plekken in 9-typen (m²)

<table>
<thead>
<tr>
<th>typenr.</th>
<th>oppervlak</th>
<th>typenr.</th>
<th>oppervlak</th>
</tr>
</thead>
<tbody>
<tr>
<td>1982 A:</td>
<td></td>
<td>1982 B:</td>
<td></td>
</tr>
<tr>
<td>9.1.0.</td>
<td>3000</td>
<td>9.0.0.</td>
<td>4400</td>
</tr>
<tr>
<td>9.0.1.</td>
<td>10400</td>
<td>9.0.2.</td>
<td>80</td>
</tr>
<tr>
<td>9.1.1.</td>
<td>1400</td>
<td>9.0.3.</td>
<td>200</td>
</tr>
<tr>
<td>tot. 14800</td>
<td></td>
<td>tot. 4680</td>
<td></td>
</tr>
<tr>
<td>1987 A:</td>
<td></td>
<td>1987 B:</td>
<td></td>
</tr>
<tr>
<td>9.0.6.</td>
<td>323</td>
<td>9.0.4.</td>
<td>944</td>
</tr>
<tr>
<td>9.0.9.</td>
<td>2899</td>
<td>9.0.5.</td>
<td>640</td>
</tr>
<tr>
<td>9.0.10.</td>
<td>908</td>
<td>9.0.7.</td>
<td>571</td>
</tr>
<tr>
<td>9.0.11.</td>
<td>3593</td>
<td>9.0.8.</td>
<td>2259</td>
</tr>
<tr>
<td>9.0.12.</td>
<td>1562</td>
<td>9.0.13.</td>
<td>3557</td>
</tr>
<tr>
<td>9.1.2.</td>
<td>1952</td>
<td>9.2.0.</td>
<td>1814</td>
</tr>
<tr>
<td>tot. 10337</td>
<td></td>
<td>9.3.0.</td>
<td>1007</td>
</tr>
<tr>
<td></td>
<td></td>
<td>tot. 9892</td>
<td></td>
</tr>
</tbody>
</table>

totale oppervlak/procentueel aandeel totale beweide grasland:

1982: A: 14800/25% B: 4680/8% A+B: 19480/33%
1982: B/(A+B)= 24%

1987: A: 10337/17% B: 9892/17% A+B: 20229/34%
1987: B/(A+B)= 50%