Bachelor Thesis Applied Mathematics

Equivalences between behavioral representations and controllability in terms of driving variable representations

Author:
Tjerk W. Stegink
S1891723

Supervisors:
Harry L. Trentelman
Jaap Top
Sasanka V. Gottimukkala

July 12, 2012
Abstract

In this paper, we deal with the relationship between a rational kernel representation and an output nulling representation that a behavior admits. Similarly, we deal with the relationship between a rational image representation and a driving variable representation that a behavior admits. We will establish sufficient conditions on a realization of a proper rational matrix such that the behavior induced by the kernel of this matrix is equal to the behavior of the output nulling representation yielded by this realization. Also, we will look under which assumptions these conditions are also necessary.

We will establish necessary and sufficient conditions on a realization of a proper rational matrix such that the behavior induced by the image of this matrix is equal to the behavior of the driving variable representation yielded by this realization. Finally, necessary and sufficient conditions are found under which the (full/external) behavior induced by a driving variable representation is controllable.

1 Introduction

In this paper, we deal with representations of linear differential systems like rational kernel (image) representations, and state representations such as driving variable representations and output nulling representations. The state representations that we consider in this paper are more generic and a natural starting point as compared to the well-known input/state/output (I/S/O) representations. Though we deal with representations in this paper, emphasis is laid on the behavior of the system. A behavior admits various representations and the above mentioned representations are some of them. We do not impose a priori input-output partition on the system variables.

One goal of this paper is, given a behavior represented by a proper rational kernel representation, find necessary and sufficient conditions under which a realization of this matrix yields an output nulling representation of this behavior.

Also, given a controllable behavior represented by a proper rational image representation, we want to find necessary and sufficient conditions under which a realization of this matrix yields a driving variable representation of this behavior. This question also results in finding conditions for controllability on the constant real matrices of a driving variable representation of a given behavior as shown in Section 6.

The paper is organized as follows: we will start with Section 2 wherein we discuss about the notation used in this paper. Then in Section 3 some canonical decompositions of linear systems will be discussed and in Section 4 we introduce the basic concepts related to linear differential systems and further discuss necessary definitions, theorems and various representations of behaviors that will be used in obtaining the main results. In Section 5 we will focus on solving the first problem we mentioned above and in Section 6 we will focus on the second problem.
2 Notation

In this section we introduce the notation that will be used in this paper. We denote by $\mathbb{R}[\xi]^{m \times n}_{\text{coprime}}$ as the set of polynomial matrices with dimension $m \times n$ with argument ξ. Similarly we denote by $\mathbb{R}(\xi)^{m \times n}_{\text{co}}$ as the set of rational matrices with dimension $m \times n$ with argument ξ. Often we write $\mathbb{R}[\xi]^{\text{coprime}}, \mathbb{R}[\xi]^{\text{co}}, \mathbb{R}[\xi]^{\text{un}}$ if dimension is clear from the context. The notation $\mathcal{C}^\infty(\mathbb{R}^n, \mathbb{R}^m)$ is used for the set of all infinitely differentiable functions from \mathbb{R}^n to \mathbb{R}^m. The polynomial matrix $P \in \mathbb{R}[\xi]^{m \times n}_{\text{coprime}}$ is said to be left prime over $\mathbb{R}[\xi]$ if $P(\lambda)$ has rank m for all $\lambda \in \mathbb{C}$. For a given matrix $A \in \mathbb{R}^{m \times n}$ we denote by $\sigma(A)$ as the spectrum A.

We denote by \mathcal{R} the reachable subspace, \mathcal{N} the unobservable subspace, \mathcal{J}^* the strongly reachable subspace and \mathcal{V}^* the weakly unobservable subspace of the state space of the dynamical system Σ (see also Definition 4.1). We will write \oplus for the direct sum of linear subspaces.

$\mathbb{R}(\xi)^{\text{coprime}}_\pi$ denotes the set of all proper rational matrices. In this paper we will consider only left coprime and right coprime factorizations over the ring $\mathbb{R}[\xi]$. We call a factorization $G = P^{-1}Q$ with $P, Q \in \mathbb{R}[\xi]^{\text{coprime}}$ a left coprime factorization over the ring of polynomials if $[P \quad Q]$ is left prime over $\mathbb{R}[\xi]$ and $\det([P]) \neq 0$. Similarly we define a right coprime factorization analogously. Consider a rational matrix $G \in \mathbb{R}(\xi)^{\text{coprime}}_\pi$ then we call the quadruple (A, B, C, D) of real constant matrices a realization of G if $G(\xi) = C(\xi I - A)^{-1}B + D$ [2]. Given the quadruple (A, B, C, D) we define the system matrix as

$$P_\Sigma(\xi) = \begin{bmatrix} \xi I - A & -B \\ -C & -D \end{bmatrix}. $$

3 Canonical decompositions for linear systems

In this section we will discuss some canonical decompositions for linear systems. These decompositions will be useful in proving the main results in this paper. First we start with the controllable form, then the finer Kalman decomposition and the nine-fold decomposition will be discussed.

3.1 Controllable form

From [4] we know that in case of output nulling and driving variable representations we can apply a transformation on the state variable x such that the quadruple (A, B, C, D) is in controllable form:

$$A = \begin{bmatrix} A_{11} & A_{12} \\ 0 & A_{22} \end{bmatrix}, B = \begin{bmatrix} B_1 \\ 0 \end{bmatrix}, \text{ and } C = \begin{bmatrix} C_1 & C_2 \end{bmatrix}, D = D. $$

Here the pair (A_{11}, B_1) is controllable.

3.2 The Kalman decomposition

For I/S/O representations we know the following. Consider the linear system

$$\begin{align*}
\dot{x} &= Ax + Bu, \\
y &=Cx + Du,
\end{align*}$$

where $x \in \mathbb{R}^n$ is the state, $u \in \mathbb{R}^m$ is the input and $y \in \mathbb{R}^p$ is the output. Furthermore the constant matrices satisfy $A \in \mathbb{R}^{n \times n}, B \in \mathbb{R}^{n \times m}, C \in \mathbb{R}^{p \times n}, D \in \mathbb{R}^{p \times m}$.

We know that $X_1 := \mathcal{R} \cap \mathcal{N}$ is a subspace of \mathbb{R}^n. Let B_1 be a basis for this subspace. Then it is possible to choose a basis B_2 such that the subspace X_2 spanned by B_2 satisfies $X_1 \oplus X_2 = \mathcal{R}$. Also it is possible to construct a basis B_3 such that the subspace $X_3 = \text{span}(B_3)$ satisfies $X_1 \oplus X_3 = \mathcal{N}$. Having this we finally construct the basis B_4 such that the subspace $X_4 = \text{span}(B_4)$ satisfies $X_1 \oplus X_2 \oplus X_3 \oplus X_4 = \mathbb{R}^n$. Then from [3] we know that there exists a nonsingular matrix $T \in \mathbb{R}^{n \times n}$ defined as

$$T = \begin{bmatrix} T_1 & T_2 & T_3 & T_4 \end{bmatrix},$$

where $T_2 = T_1^{-1}$ and $T_3 = T_1^{-1}T_2$. Then

$$A = \begin{bmatrix} A_1 & 0 & 0 & 0 \\ -T_1 & A_2 & A_3 & 0 \\ 0 & -T_2 & A_4 & A_5 \\ 0 & 0 & -T_3 & A_6 \end{bmatrix}, B = \begin{bmatrix} B_1 \\ T_1 B_2 \\ T_2 B_3 \\ T_3 B_4 \end{bmatrix}, C = \begin{bmatrix} C_1 & C_2 & C_3 & C_4 \end{bmatrix}, D = D.$$
where the columns of \(T_i \) are the elements of \(\mathcal{B}_i, \ i = 1, 2, 3, 4. \) The transformed system (with \(\dot{x} = Tx \)) is of the form

\[
\dot{x} = \hat{A}\dot{x} + \hat{B}u,
\]

\[
y = \hat{C}\dot{x} + \hat{D}u,
\]

where \(\hat{A} = T^{-1}AT, \hat{B} = T^{-1}B, \hat{C} = CT, \) and \(\hat{D} = D. \) Moreover \(\hat{A}, \hat{B}, \hat{C} \) are of the form

\[
\hat{A} = \begin{bmatrix}
A_{11} & A_{12} & A_{13} & A_{14} \\
0 & A_{22} & 0 & A_{24} \\
0 & 0 & A_{33} & A_{34} \\
0 & 0 & 0 & A_{44}
\end{bmatrix}, \quad \hat{B} = \begin{bmatrix}
B_1 \\
B_2 \\
0 \\
0
\end{bmatrix}, \quad \text{and} \quad \hat{C} = \begin{bmatrix}0 & C_2 & 0 & C_3\end{bmatrix}.
\]

We state the properties of \(\hat{A}, \hat{B}, \hat{C} \):

1. The subsystem \((A_{22}, B_2, C_2, D)\) is reachable and observable. This means that the pair \((A_{22}, B_2)\) is controllable and the pair \((C_2, A_{22})\) is observable.

2. The subsystem \(\begin{bmatrix}
A_{11} & A_{12} \\
0 & A_{22}
\end{bmatrix}, \begin{bmatrix}B_1 \\
B_2
\end{bmatrix}, \begin{bmatrix}0 & C_2\end{bmatrix}, D \) is controllable.

3. The subsystem \(\begin{bmatrix}
A_{22} & A_{24} \\
0 & A_{44}
\end{bmatrix}, \begin{bmatrix}B_2 \\
C_2 C_4\end{bmatrix}, D \) is observable.

For a more detailed explanation on the Kalman Decomposition we refer to [3].

3.3 Nine-fold decomposition

Combining the results from the Kalman decomposition and the so called Morse canonical decomposition H. Aling and J.M. Schumacher have come to the nine-fold decomposition [1]. Similary as in the Kalman decomposition we may choose bases \(\mathcal{B}_i, i = 1, \ldots, 9 \) such that the subspaces \(Y_i := \text{span}(\mathcal{B}_i), i = 1, \ldots, 9 \) satisfy

- \(\mathcal{R} = Y_1 \oplus Y_2 \oplus Y_3 \oplus Y_4 \oplus Y_5 \oplus Y_6 \)
- \(\mathcal{N} = Y_1 \oplus Y_2 \oplus Y_7 \)
- \(\mathcal{S}^* = Y_1 \oplus Y_5 \oplus Y_6 \)
- \(\mathcal{S}^* = Y_1 \oplus Y_2 \oplus Y_3 \oplus Y_5 \oplus Y_7 \oplus Y_8 \)
- \(\mathcal{R}^* = Y_1 \oplus Y_2 \oplus Y_3 \oplus Y_4 \oplus Y_5 \oplus Y_6 \oplus Y_7 \oplus Y_8 \oplus Y_9. \)

Then there exists transformations on \((\hat{A}, \hat{B}, \hat{C}, \hat{D})\) where \(\hat{A} \in \mathbb{R}^{n \times n}, \hat{B} \in \mathbb{R}^{n \times m}, \hat{C} \in \mathbb{R}^{p \times n}, \hat{D} \in \mathbb{R}^{p \times m} \) such that transformed system \(\begin{bmatrix} \hat{A} & \hat{B} \end{bmatrix} \) is of the form

\[
\begin{bmatrix}
A_{11} & A_{12} & A_{13} & A_{14} & A_{15} & A_{16} & A_{17} & A_{18} & A_{19} & B_{11} & B_{12} \\
0 & A_{22} & A_{23} & A_{24} & A_{25} & A_{26} & A_{27} & A_{28} & A_{29} & 0 & B_{22} \\
0 & 0 & A_{33} & A_{34} & A_{35} & A_{36} & 0 & A_{38} & A_{39} & 0 & B_{32} \\
0 & 0 & 0 & A_{43} & A_{44} & A_{45} & A_{46} & 0 & A_{48} & A_{49} & 0 & B_{42} \\
0 & 0 & 0 & A_{53} & A_{54} & A_{55} & A_{56} & 0 & A_{58} & A_{59} & B_{51} & B_{52} \\
0 & 0 & 0 & A_{13} & A_{14} & A_{15} & A_{16} & 0 & A_{18} & A_{19} & 0 & B_{62} \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & A_{77} & A_{78} & A_{79} & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & A_{88} & A_{89} & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & A_{99} & 0 & 0 \\
0 & 0 & 0 & C_{14} & 0 & 0 & 0 & 0 & C_{19} & 0 & 0 & 0 \\
0 & 0 & C_{23} & C_{24} & C_{25} & C_{26} & 0 & C_{28} & C_{29} & 0 & D_{22} & 0
\end{bmatrix}.
\]

Where \(D_{22} \) is nonsingular. Observe that the quadruple \((A, B, C, D)\) is also in Kalman form and that
\[X_1 = Y_1 \oplus Y_2\]
\[X_2 = Y_3 \oplus Y_4 \oplus Y_5 \oplus Y_6\]
\[X_3 = Y_7\]
\[X_4 = Y_8 \oplus Y_9.\]

4 Behaviors and their representations

In this section we introduce behaviors and their representations. Also some basic properties of behaviors are listed. We start with the definition of a dynamical system.

Definition 4.1. A dynamical system Σ is defined as a triple $\Sigma = (\mathbb{T}, \mathbb{W}, \mathbb{B})$ where $\mathbb{T} \subseteq \mathbb{R}$ is called the time axis, \mathbb{W} is called the signal space and the behavior \mathbb{B} is a subset of \mathbb{W}^T which is the collection of all maps from \mathbb{T} to \mathbb{W}.

In this paper we deal with linear time-invariant differential (dynamical) systems (LTIDS). A LTIDS is defined as follows.

Definition 4.2. A dynamical system $\Sigma = (\mathbb{R}, \mathbb{R}^p, \mathbb{B})$ is called a LTIDS if there exists a polynomial matrix $R \in \mathbb{R}[\xi]$ such that

\[
\mathbb{B} = \ker R(\frac{d}{dt}) := \{w \in C^\infty(\mathbb{R}, \mathbb{R}^p) \mid R(\frac{d}{dt})w = 0\}. \tag{6}
\]

We then call the set of differential equations $R(\frac{d}{dt})w = 0$ a representation of the behavior \mathbb{B}. We can represent a behavior \mathbb{B} of a LTIDS in different ways than the one mentioned above.

One such representation is called an output nulling representation. In an output nulling representation we look at all infinitely often differentiable functions (w, x) that satisfy the equations

\[
\dot{x} = Ax + Bw, \\
0 = Cx + Dw, \tag{7}
\]

where $A \in \mathbb{R}^{n \times n}, B \in \mathbb{R}^{n \times m}, C \in \mathbb{R}^{p \times n}, D \in \mathbb{R}^{p \times m}$. Here x is a state variable that satisfies the property of state and w is the manifest variable. We define the full behavior of an output nulling representation as

\[
\mathbb{B}_{ON}(A, B, C, D) := \{(w, x) \in C^\infty(\mathbb{R}, \mathbb{R}^p) \times C^\infty(\mathbb{R}, \mathbb{R}^n) \mid (7) \text{ holds }\}. \tag{8}
\]

If we project this behavior onto w we call this the external behavior of the output nulling representation. We define it as

\[
\mathbb{B}_{ON}(A, B, C, D)_{ext} := \{w \mid \exists x \text{ such that } (w, x) \in \mathbb{B}_{ON}(A, B, C, D)\}. \tag{9}
\]

Another such representation is a driving variable representation. In a driving variable representation we look at all (w, x, v) that satisfy equations (10).

\[
\dot{x} = Ax + Bv, \\
w = Cx + Dw, \tag{10}
\]

where x satisfies the property of state, v is an auxiliary variable called the driving variable, and w is the manifest variable. We define the full behavior as

\[
\mathbb{B}_{DV}(A, B, C, D) := \{(w, x, v) \in C^\infty(\mathbb{R}, \mathbb{R}^p) \times C^\infty(\mathbb{R}, \mathbb{R}^n) \times C^\infty(\mathbb{R}, \mathbb{R}^m) \mid (10) \text{ holds }\}, \tag{11}
\]

and the external behavior as

\[
\mathbb{B}_{DV}(A, B, C, D)_{ext} := \{w \mid \exists (x, v) \text{ such that } (w, x, v) \in \mathbb{B}_{DV}(A, B, C, D)\}. \tag{12}
\]
Consider the quadruple \((A, B, C, D)\) we can look at solutions of differential equations using one (polynomial) matrix instead. This is called a polynomial kernel representation.

Polynomial/Rational kernel representation. From Definition 4.2 it is known that for a LTIDS \(\Sigma = (\mathbb{R}, \mathbb{R}^q, \mathcal{B})\) there exists a polynomial matrix \(R \in \mathbb{R}[\xi]^{*\times *}\) such that

\[
\mathcal{B} = \ker R \frac{d}{dt} = \{w \in C^\infty(\mathbb{R}, \mathbb{R}^p) \mid R \frac{d}{dt} w = 0\}.
\]

Further, from [8], it is known that for any rational matrix \(G \in \mathbb{R}(\xi)^{n\times 1}\) there exists a left coprime factorization over \(\mathbb{R}[\xi]\). Recall that a factorization \(G = P^{-1}Q\) with \(P, Q \in \mathbb{R}[\xi]^{*\times *}\) is a left coprime factorization over \(\mathbb{R}[\xi]\) if \([P \quad Q]\) is left prime over \(\mathbb{R}[\xi]\) and \(\det(P(\xi)) \neq 0\). Now we define

\[
\mathcal{B} = \ker G \frac{d}{dt} = \ker Q \frac{d}{dt}.
\]

We denote by \(\mathcal{L}^w\) the set of all linear differential systems with \(w\) variables. Controllability is a very important property of behaviors. It is defined in Definition 4.3.

Definition 4.3. A behavior \(\mathcal{B} \in \mathcal{L}^w\) is said to be **controllable** if for any two trajectories \(w_1, w_2 \in \mathcal{B}\) there exists \(t_1 \geq 0\) and a trajectory \(w \in \mathcal{B}\) such that \(w(t) = w_1(t)\) for \(t \leq 0\) and \(w(t) = w_2(t)\) for \(t \geq t_1\).

Apart from admitting kernel representations, controllable behaviors also admit **rational and polynomial image representations** as follows. Let \(R \in \mathbb{R}[\xi]^{*\times 1}\) be a polynomial matrix, we define

\[
\mathcal{B} = \text{im } R \frac{d}{dt} := \{w \in C^\infty(\mathbb{R}, \mathbb{R}^p) \mid \exists l \in C^\infty(\mathbb{R}, \mathbb{R}^1) \text{ s.t. } w = R(\frac{d}{dt})l\}.
\]

Further it is also shown in [8] that a controllable behavior admits a **rational image representation.** Consider a rational matrix \(G \in \mathbb{R}(\xi)^{n\times 1}\) with a left coprime factorization \(G = P^{-1}Q\), then we define

\[
\mathcal{B} = \text{im } G \frac{d}{dt} := \{w \in C^\infty(\mathbb{R}, \mathbb{R}^p) \mid \exists l \in C^\infty(\mathbb{R}, \mathbb{R}^1) \text{ s.t. } P(\frac{d}{dt})w = Q(\frac{d}{dt})l\}.
\]

Observability in the behavioral framework is defined as follows [5]:

Definition 4.4. Let \((\mathbb{R}, \mathcal{W}_1 \times \mathcal{W}_2, \mathcal{B})\) be a LTIDS. Trajectories in \(\mathcal{B}\) are partitioned as \((w_1, w_2)\) with \(w_i : \mathbb{R} \rightarrow \mathcal{W}_i, i = 1, 2\). We say that \(w_2\) is **observable** from \(w_1\) if \((w_1, w_2), (w_1, w'_2) \in \mathcal{B}\) implies \(w_2 = w'_2\).

In case we consider the quadruple \((A, B, C, D)\) we define (strongly) controllability and (strongly) observability as follows.

Definition 4.5. Consider the quadruple \((A, B, C, D)\) with \(A \in \mathbb{R}^{n \times n}, B \in \mathbb{R}^{n \times m}, C \in \mathbb{R}^{p \times n}, D \in \mathbb{R}^{p \times m}\)

- The pair \((A, B)\) is called **controllable** if \(\begin{bmatrix} A - \lambda I & B \end{bmatrix}\) has full row rank for all \(\lambda \in \mathbb{C}\).

- The pair \((C, A)\) is called **observable** if \(\begin{bmatrix} A - \lambda I \\ C \end{bmatrix}\) has full column rank for all \(\lambda \in \mathbb{C}\).

- The quadruple \((A, B, C, D)\) is called **strongly observable** if the pair \((C + DF, A + BF)\) is observable for all \(F \in \mathbb{R}^{m \times n}\).

- The quadruple \((A, B, C, D)\) is called **strongly controllable** if the pair \((A + GC, B + GD)\) is observable for all \(G \in \mathbb{R}^{n \times p}\).

If we consider a behavior \(\mathcal{B}\) induced by a kernel representation we define minimality in the following way [5].
Definition 4.6. Let $\mathcal{B} = \ker R(\frac{d}{dt})$ where $R \in \mathbb{R}[\xi]^{m \times n}$. Then the representation $R(\frac{d}{dt})w = 0$ of \mathcal{B} is called minimal if every other representation has at least m rows, that is, if $\ker R(\frac{d}{dt}) = \ker R'(\frac{d}{dt})$ for some $R' \in \mathbb{R}[\xi]^{m' \times n'}$ then $m' \geq m$.

Using Theorem 3.6.4 of [5] we can check if a given representations of a LTIDS is minimal.

Theorem 4.7. Let $\mathcal{B} = \ker R(\frac{d}{dt})$, where $R \in \mathbb{R}[\xi]^{m \times n}$. Then R has full row rank if and only if $R(\frac{d}{dt})w = 0$ is a minimal representation of \mathcal{B}.

Similar to nonsingularity of real constant matrices, polynomial matrices admit a property called unimodularity and unimodular matrices are defined as follows:

Definition 4.8. A matrix $U \in \mathbb{R}[\xi]^{m \times n}$ is called unimodular if there exists a matrix $P \in \mathbb{R}[\xi]^{m \times n}$ such that $UP = I$, equivalently if $\det(U(\xi))$ is a nonzero constant.

The following theorem from [5] is well known in case of kernel representations which relates two minimal kernel representations of a given behavior.

Theorem 4.9. Let $R \in \mathbb{R}[\xi]^{m \times n}$ and $U \in \mathbb{R}[\xi]^{m \times m}$, define $R' = UR \in \mathbb{R}[\xi]^{m \times n}$. Then

- $\ker(R(\frac{d}{dt})) \subset \ker(R'(\frac{d}{dt}))$
- If U is unimodular, then $\ker(R(\frac{d}{dt})) = \ker(R'(\frac{d}{dt}))$.

The following theorem gives a condition under which a behavior induced by a polynomial kernel representation is controllable.

Theorem 4.10. A behavior defined by $\mathcal{B} = \ker(R(\frac{d}{dt}))$ with $R \in \mathbb{R}[\xi]^{m \times n}$ is controllable if and only if $R(\lambda)$ has the same rank for all $\lambda \in \mathbb{C}$. Equivalently R is left prime over $\mathbb{R}[\xi]$.

For image representations it is shown in [8] that \mathcal{B} admits a rational image representation if and only if it is controllable.

We will now review some results from [4]. In the next two theorems the system that is considered is assumed to be in controllable form (1). Using Theorem 4.11 we can always express the external behavior of an output nulling representation as a kernel representation.

Theorem 4.11. Let $\mathcal{B}_{ON}(A,B,C,D)$ be the full behavior induced by the output nulling representation (7). Assume that A,B,C are as in (1). Let $L_2^{-1}L_1 = C_1(\xi I - A_{11})^{-1}$ and $K_2^{-1}K_1 = (L_1A_{12} + L_2C_2)(\xi I - A_{22})^{-1}$ be left coprime factorizations over $\mathbb{R}[\xi]$. Then

$$\mathcal{B}_{ON}(A,B,C,D)_{\text{ext}} = \ker K_2(L_1B_1 + L_2D)(\frac{d}{dt}).$$

The following theorem gives a polynomial kernel representation admitted by the external behavior of a driving variable representation, but first we need the following definition.

Definition 4.12. Consider $R \in \mathbb{R}[\xi]^{m \times n}$. Then the polynomial matrix $Q \in \mathbb{R}[\xi]^{m \times n}$ is called a minimal left annihilator (MLA) of R if

1. Q is left annihilator of R, i.e. $QR = 0$.
2. any left annihilator of R is a multiple of Q, i.e. $Q_1R = 0$ implies $Q_1 = XQ$ for some polynomial matrix X.

Theorem 4.13. Let $\mathcal{B}_{ON}(A,B,C,D)$ be full behavior induced by the driving variable representation (10). Assume (A,B,C) are in controllable form (1) and let $G(\xi) = C(\xi I - A)^{-1}B + D$ be the transfer function of (10). $L_2^{-1}L_1 = C_1(\xi I - A_{11})^{-1}$ and $K_2^{-1}K_1 = L_1A_{12} + L_2C_2(\xi I - A_{22})^{-1}$ are left coprime factorizations over $\mathbb{R}[\xi]$. Then

$$\mathcal{B}_{DV}(A,B,C,D)_{\text{ext}} = \ker (QK_2L_2)(\frac{d}{dt}),$$

where Q is any MLA of $K_2(L_1B_1 + L_2D)$.

6
Using Theorem 4.11 and 4.13, in [4] the following theorems were proven.

Theorem 4.14. Let \(G \in \mathbb{R}[\xi]^{pxm} \) have full row rank. Let \(G(\xi) = C(\xi I - A)^{-1}B + D \) be a realization of \(G \) where \(A \in \mathbb{R}^{nxn}, B \in \mathbb{R}^{nxm}, C \in \mathbb{R}^{pnx}, D \in \mathbb{R}^{pxm} \). If \((A, B)\) is a controllable pair then \(\mathfrak{B}_{ON}(A, B, C, D)_{\text{ext}} = \ker G(\frac{d}{dt}) \).

Theorem 4.15. Let \(G \in \mathbb{R}[\xi]^{pxm} \) have full column rank. Let \(G(\xi) = C(\xi I - A)^{-1}B + D \) be a realization of \(G \) where \(A \in \mathbb{R}^{nxn}, B \in \mathbb{R}^{nxm}, C \in \mathbb{R}^{pnx}, D \in \mathbb{R}^{pxm} \). If \((A, B)\) is a controllable pair then \(\mathfrak{B}_{DV}(A, B, C, D)_{\text{ext}} = \text{im} G(\frac{d}{dt}) \).

Observe that Theorem 4.14 and Theorem 4.15 give already sufficient conditions on \((A, B, C, D)\) on the problems we want to solve.

5 Output nulling and rational kernel representations

In this section we address the questions that we posed in the introduction of this paper. Given a behavior and its kernel representation of it involving a proper and real rational matrix, the first problem involves finding necessary and sufficient conditions under which a realization of the above matrix yields an output nulling representations of the behavior. Throughout this section we assume that a realization of a real rational matrix \(G \) is given by the quadruple \((A, B, C, D)\). In Section 2 we have already seen a sufficient condition such that \(\mathfrak{B}_{ON}(A, B, C, D)_{\text{ext}} = \ker G(\frac{d}{dt}) \).

Further in this section we search for a weaker sufficient condition than the one stated in Theorem 4.14.

We will start with a lemma that states a property of a left coprime factorization of rational matrix that has full row rank. More precisely:

Lemma 5.1. Let \(G \in \mathbb{R}(\xi)^{pxm} \) have full row rank. Let \(G = P^{-1}Q \) be a left coprime factorization over \(\mathbb{R}[\xi] \). Then \(Q \) has full row rank.

Proof. Assume \(Q \) does not have full row rank then there exists a polynomial row vector \(\eta \) such that \(\eta PG = \eta Q = 0 \). Then there exists a rational row vector \(\eta' = \eta P \neq 0 \) such that \(\eta' G = 0 \). This contradicts with the fact that \(G \) has full row rank. Thus \(Q \) has full row rank. \(\square \)

This lemma will be useful in proving the next lemma which states a property of the left coprime factorizations also used in Theorem 4.14.

Lemma 5.2. Let \(G \in \mathbb{R}(\xi)^{pxm} \) have full row rank. Let \((A, B, C, D) \) be a realization of \(G \) that satisfies (1). Let \(L_2^{-1}L_1 = C_1(\xi I - A_{11})^{-1} \) and \(K_2^{-1}K_1 = (L_1A_{12} + L_2C_2)(\xi I - A_{22})^{-1} \) be left coprime factorizations over \(\mathbb{R}[\xi] \). Then the following statements are equivalent:

1. \(\mathfrak{B}_{ON}(A, B, C, D)_{\text{ext}} = \ker G(\frac{d}{dt}) \).
2. \((L_1A_{12} + L_2C_2)(\xi I - A_{22})^{-1} \) is a polynomial matrix.

Proof. (1 \(\Rightarrow \) 2) Assume \(\mathfrak{B}_{ON}(A, B, C, D)_{\text{ext}} = \ker G(\frac{d}{dt}) \). We know

\[
\ker G(\frac{d}{dt}) = \ker (C_1(\xi I - A_{11}))B_1 + D)(\frac{d}{dt}) = \ker L_2^{-1}(L_1B_1 + L_2D)(\frac{d}{dt}).
\]

It can be verified that \(L_2^{-1}(L_1B_1 + L_2D) \) is also a left coprime factorization over \(\mathbb{R}[\xi] \). From (14) it follows that

\[
\ker G(\frac{d}{dt}) = \ker L_2^{-1}(L_1B_1 + L_2D)(\frac{d}{dt}) = \ker (L_1B_1 + L_2D)(\frac{d}{dt}), \tag{17}
\]

and from Theorem 4.11 we have

\[
\mathfrak{B}_{ON}(A, B, C, D)_{\text{ext}} = \ker K_2(L_1B_1 + L_2D)(\frac{d}{dt}). \tag{18}
\]
Since $G = L_2^{-1}(L_1 B_1 + L_2 D)$ is a left coprime factorization and G has full row rank it results from Lemma 5.1 that $L_1 B_1 + L_2 D$ has full row rank. Since $K_2(L_1 B_1 + L_2 D)(\frac{d}{dt}) = \ker (L_1 B_1 + L_2 D)(\frac{d}{dt})$ we know from Theorem 3.6.2 from [5] that

$$L_1 B_1 + L_2 D = U K_2(L_1 B_1 + L_2 D)$$ \hspace{1cm} (19)

for some unimodular matrix U. We prove now that K_2 is unimodular. Rewriting equation (19) we have

$$ (I - U K_2)(L_1 B_1 + L_2 D) = 0. $$ \hspace{1cm} (20)

Clearly $I - U K_2$ is a left annihilator (LA) of $L_1 B_1 + L_2 D$ but since this matrix has full row rank any LA must be equal to zero, thus $U K_2 = I$. By Definition 4.8 K_2 is unimodular, therefore $K_2^{-1} K_1 = (L_1 A_{12} + L_2 C_2)(\xi I - A_{22})^{-1}$ is a polynomial matrix.

$(2 \Rightarrow 1)$ Assume $(L_1 A_{12} + L_2 C_2)(\xi I - A_{22})^{-1}$ is a polynomial matrix. Let $K_2 = I$ and $K_1 = (L_1 A_{12} + L_2 C_2)(\xi I - A_{22})^{-1}$. Then $K_2^{-1} K_1 = (L_1 A_{12} + L_2 C_2)(\xi I - A_{22})^{-1}$ is a left coprime factorization over $\mathbb{R}[\xi]$. Then the result follows from equations (17) and (18). \hfill \square

From Theorem 4.14 we know that if the pair (A, B) is controllable we have $\mathfrak{B}_{ON}(A, B, C, D)_{ext} = \ker G(\frac{d}{dt})$. Controllability is however not necessary for $\mathfrak{B}_{ON}(A, B, C, D)_{ext} = \ker G(\frac{d}{dt})$. The next lemma states a weaker condition on (A, B, C, D) such that $\mathfrak{B}_{ON}(A, B, C, D)_{ext} = \ker G(\frac{d}{dt})$.

Lemma 5.3. Let $G \in \mathbb{R}(\xi)^{p \times m}$ and let the quadruple (A, B, C, D) be a realization of G with $A \in \mathbb{R}^{n \times n}$, $B \in \mathbb{R}^{n \times m}$, $C \in \mathbb{R}^{p \times n}$, $D \in \mathbb{R}^{p \times m}$. Then if $R + N = \mathbb{R}^n$ then $\mathfrak{B}_{ON}(A, B, C, D)_{ext} = \ker G(\frac{d}{dt})$.

Proof. Assume $R + N = \mathbb{R}^n$. Without loss of generality we may assume that (A, B, C, D) is of the form

$$ A = \begin{bmatrix} A_{11} & A_{12} & A_{13} \\ 0 & A_{22} & 0 \\ 0 & 0 & A_{33} \end{bmatrix}, B = \begin{bmatrix} B_1 \\ B_2 \\ 0 \end{bmatrix}, C = \begin{bmatrix} 0 & C_2 & 0 \end{bmatrix}. \hspace{1cm} (21) $$

From the Kalman decomposition explained in Section 3.2 it follows that the subsystem

$$ \begin{bmatrix} A_{11} & A_{12} \\ 0 & A_{22} \end{bmatrix}, \begin{bmatrix} B_1 \\ B_2 \end{bmatrix}, \begin{bmatrix} 0 & C_2 \end{bmatrix}, D \end{bmatrix} $$

is reachable so the system (21) is also in controllable form as in (1). As stated in Theorem 4.11 we construct a left coprime factorization

$$ L_2^{-1} L_1 = \begin{bmatrix} 0 & C_2 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} \xi I - A_{11} & -A_{12} \\ 0 & \xi I - A_{22} \end{bmatrix}^{-1} = \begin{bmatrix} 0 & C_2 (\xi I - A_{22})^{-1} \end{bmatrix}. \hspace{1cm} (23) $$

Since L_2 is nonsingular we can split up L_1 into blocks of appropriate sizes: $L_1 = \begin{bmatrix} 0 & L_{12} \end{bmatrix}$. Also stated in Theorem 4.11 we can construct a left coprime factorization

$$ K_2^{-1} K_1 = \begin{bmatrix} 0 & L_{12} \\ A_{13} & 0 \end{bmatrix} + L_2 \cdot 0)(\xi I - A_{33})^{-1} = \begin{bmatrix} 0 & 0 \end{bmatrix}. \hspace{1cm} (24) $$

Observe that $(L_1 A_{12} + L_2 C_2)(\xi I - A_{22})^{-1}$ is a polynomial matrix. We can take $K_2 = I$ and $K_1 = (L_1 A_{12} + L_2 C_2)(\xi I - A_{22})^{-1}$, consequently $K_2^{-1} K_1 = (L_1 A_{12} + L_2 C_2)(\xi I - A_{22})^{-1}$ is a left coprime factorization. It follows from equations (17) and (18) that $\mathfrak{B}_{ON}(A, B, C, D)_{ext} = \ker G(\frac{d}{dt})$. \hfill \square

Under the assumption that G has full row rank the converse of Lemma 5.3 is also true. The assumption that G has full row rank is not restrictive since every behavior admits a minimal rational kernel representation, therefore one can always find a \hat{G} that has full row rank such that $\mathfrak{B} = \ker G(\frac{d}{dt}) = \ker G(\frac{d}{dt})$.

8
Theorem 5.4. Let $G \in \mathbb{R}(\xi)^{p \times m}$ have full row rank. Let (A,B,C,D) be a realization of G with $A \in \mathbb{R}^{n \times n}$, $B \in \mathbb{R}^{n \times m}$, $C \in \mathbb{R}^{p \times n}$, $D \in \mathbb{R}^{p \times m}$. Then $\mathcal{B}_{ON}(A,B,C,D)_{\text{ext}} = \ker G(\frac{d}{dt})$ if and only if $\mathcal{R} + \mathcal{N} = \mathbb{R}^{n}$.

Proof. (⇒) We want to prove $\mathcal{B}_{ON}(A,B,C,D)_{\text{ext}} = \ker G(\frac{d}{dt}) \Rightarrow \mathcal{R} + \mathcal{N} = \mathbb{R}^{n}$. This is the same as to prove $\mathcal{R} + \mathcal{N} \neq \mathbb{R}^{n} \Rightarrow \mathcal{B}_{ON}(A,B,C,D)_{\text{ext}} \neq \ker G(\frac{d}{dt})$.

Assume $\mathcal{R} + \mathcal{N} \neq \mathbb{R}^{n}$. Without loss of generality we may consider the system as in (4). In the proof we distinguish between two cases:

1. X_{2} is absent.
2. X_{2} is present.

Case 1: Assume X_{2} is absent. From Section 3.2 we may assume that the system is of the form

$$A = \begin{bmatrix} A_{11} & A_{13} & A_{14} \\ 0 & A_{33} & A_{34} \\ 0 & 0 & A_{44} \end{bmatrix}, B = \begin{bmatrix} B_{1} \\ 0 \\ 0 \end{bmatrix}, C = \begin{bmatrix} C_{1} \\ C_{2} \end{bmatrix}.$$

(25)

Observe that the system is in controllable form (1). Now let $L_{2}^{-1}L_{1}$ be a left coprime factorization of $C_{1}(\xi I - A_{11})^{-1}$ over $\mathbb{R}[\xi]$. Since

$$L_{2}^{-1}L_{1} = C_{1}(\xi I - A_{11})^{-1} = 0 \cdot (\xi I - A_{11})^{-1} = 0$$

(27)

we have that $L_{2} = I$ and $L_{1} = 0$. Let

$$K_{1}^{-1}K_{2} = (L_{1}A_{12} + L_{2}C_{2})(\xi I - A_{22})^{-1}$$

$$= \begin{bmatrix} 0 & C_{4} \end{bmatrix} \begin{bmatrix} \xi I - A_{33} & -A_{34} \\ 0 & \xi I - A_{44} \end{bmatrix}^{-1} = \begin{bmatrix} 0 & C_{4}(\xi I - A_{44})^{-1} \end{bmatrix}.$$

(28)

be a left coprime factorization over $\mathbb{R}[\xi]$. Since the pair (C_{4},A_{44}) is observable we have that $[A_{44}^{-1}\mathcal{N}]$ has full column rank for all $\lambda \in \mathbb{C}$ and hence $C_{4}(\xi I - A_{44})^{-1}$ is a right coprime factorization. Further $C_{4}(\xi I - A_{44})^{-1}$ is a polynomial matrix iff $(\xi I - A_{44})$ is unimodular which is not the case since det $(\lambda I - A_{44}) = 0$ for $\lambda \in \mathbb{C}$. Therefore from Lemma 5.2 it follows that $\mathcal{B}_{ON}(A,B,C,D)_{\text{ext}} \neq \ker G(\frac{d}{dt})$.

Case 2: Assume X_{2} is present. From Section 3.2 we may assume that the system is of the form

$$A = \begin{bmatrix} A_{11} & A_{12} & A_{13} & A_{14} \\ 0 & A_{22} & 0 & A_{24} \\ 0 & 0 & A_{33} & A_{34} \\ 0 & 0 & 0 & A_{44} \end{bmatrix}, B = \begin{bmatrix} B_{1} \\ B_{2} \\ 0 \\ 0 \end{bmatrix}, C = \begin{bmatrix} C_{1} \\ C_{2} \\ 0 \\ C_{4} \end{bmatrix}.$$

(29)

With $A_{11} \in \mathbb{R}^{n_{1} \times n_{1}}, A_{22} \in \mathbb{R}^{n_{2} \times n_{2}}, A_{33} \in \mathbb{R}^{n_{3} \times n_{3}}, A_{44} \in \mathbb{R}^{n_{4} \times n_{4}}$ and B, C with appropriate dimensions. In particular it is known from the Kalman decomposition that the subsystem

$$\begin{bmatrix} A_{22} - \lambda I & A_{24} \\ 0 & A_{44} - \lambda I \end{bmatrix}, \begin{bmatrix} C_{2} \\ C_{4} \end{bmatrix}, D$$

(30)

is observable. This is equivalent with

$$\text{rank}(O) = \text{rank} \begin{bmatrix} A_{22} - \lambda I & A_{24} \\ 0 & A_{44} - \lambda I \end{bmatrix} = n_{2} + n_{4} \text{ for all } \lambda \in \mathbb{C}.$$

(31)
Again, the system (29) is in controllable form (1). Let
\[L_2^{-1}L_1 = \begin{bmatrix} 0 & C_2 \end{bmatrix} \begin{bmatrix} \xi I - A_{11} & -A_{12} \\ 0 & \xi I - A_{22} \end{bmatrix}^{-1} = \begin{bmatrix} 0 & C_2(\xi I - A_{22})^{-1} \end{bmatrix} \]
(32)
be a left coprime factorization over \(\mathbb{R}[\xi] \). Let \(L_1 = \begin{bmatrix} 0 & L_{12} \end{bmatrix} \) be split up into appropriate sized blocks. Then \(L_2^{-1}L_{12} = C_2(\xi I - A_{22})^{-1} \) is also a left coprime factorization over \(\mathbb{R}[\xi] \). Let
\[K_2^{-1}K_1 = \begin{bmatrix} 0 & L_{12} \end{bmatrix} \begin{bmatrix} A_{13} & A_{14} \\ 0 & A_{24} \end{bmatrix} + L_2 \begin{bmatrix} 0 & C_4 \end{bmatrix} \begin{bmatrix} \xi I - A_{43} & -A_{44} \\ 0 & \xi I - A_{44} \end{bmatrix}^{-1} \]
\[= \begin{bmatrix} 0 & L_{12}A_{24} + L_2C_4 \end{bmatrix} \begin{bmatrix} \xi I - A_{33} & -A_{34} \\ 0 & \xi I - A_{44} \end{bmatrix}^{-1} \]
\[= \begin{bmatrix} 0 & (L_{12}A_{24} + L_2C_4)(\xi I - A_{44})^{-1} \end{bmatrix} \]
(33)
be also a left coprime factorization over \(\mathbb{R}[\xi] \). Let \(K_1 = \begin{bmatrix} 0 & K_{12} \end{bmatrix} \) be split up into appropriate sized blocks. Then
\[K_2^{-1}K_{12} = (L_{12}A_{24} + L_2C_4)(\xi I - A_{44})^{-1} \]
(34)
is also a left coprime factorization over \(\mathbb{R}[\xi] \).

Since \(L_{12} \) has full row rank for all \(\lambda \in \mathbb{C} \), from [4] we can construct polynomial matrices \(M_1 \in \mathbb{R}[\xi]^{n_2 \times n_2}, M_2 \in \mathbb{R}[\xi]^{n_2 \times n_4} \) such that the matrix
\[U_1 = \begin{bmatrix} L_{12} & 0 \\ 0 & I \\ M_1 & 0 & M_2 \end{bmatrix} \]
(35)
is unimodular. It can be verified that the rank of a polynomial matrix \(R \in \mathbb{R}[\xi] \) does not change for any \(\lambda \in \mathbb{C} \) when we premultiply it with an unimodular matrix. Thus \(\text{rank}(U_1(\lambda)\mathcal{O}(\lambda)) = n_2 + n_4 \) for all \(\lambda \in \mathbb{C} \). Furthermore this matrix is given by
\[U_1\mathcal{O} = \begin{bmatrix} L_{12} & 0 & L_2 \\ 0 & I & 0 \\ M_1 & 0 & M_2 \end{bmatrix} \begin{bmatrix} A_{22} - \xi I & A_{24} \\ 0 & A_{44} - \xi I \\ C_2 & C_4 \end{bmatrix} = \begin{bmatrix} 0 & L_{12}A_{24} + L_2C_4 \\ 0 & A_{44} - \xi I \\ M_1A_{24} + M_2C_2 & M_1A_{24} + M_2C_4 \end{bmatrix}. \]
(36)

Now assume that \(\mathcal{B}_{\mathcal{O}_N}(A, B, C, D)_{\mathbb{C}^m} = \ker(G(\lambda)D) \). Then from Lemma 5.2 we know that \(K_2^{-1}K_1 \) given in (33) is a polynomial matrix and hence \(K_2^{-1}K_{12} \) is also a polynomial matrix. Thus we can choose
\[K_{12} = (L_{12}A_{24} + L_2C_4)(\xi I - A_{44})^{-1}, K_2 = I. \]
In particular \(K_{12}(\xi I - A_{44}) = L_{12}A_{24} + L_2C_4. \) Then (36) simplifies to
\[U_1\mathcal{O} = \begin{bmatrix} 0 & K_{12}(A_{44} - \xi I) \\ 0 & A_{44} - \xi I \\ M_1A_{24} + M_2C_2 & M_1A_{24} + M_2C_4 \end{bmatrix}. \]
(37)

Since \(K_{12} - K_2 = [(L_{12}A_{24} + L_2C_4)(\lambda I - A_{44})^{-1} - I] \) has also full row rank for all \(\lambda \in \mathbb{C} \) we can construct polynomial matrices \(N_1 \in \mathbb{R}[\xi]^{n_4 \times n_2}, N_2 \in \mathbb{R}[\xi]^{n_4 \times n_4} \) such that the matrix
\[U_2 = \begin{bmatrix} -I & K_{12} \\ N_1 & N_2 \\ 0 & 0 & I \end{bmatrix} \]
(38)
is unimodular. Now we define
\[\tilde{\mathcal{O}} := U_2U_1\mathcal{O} = \begin{bmatrix} 0 & 0 \\ 0 & (N_1K_{12} + N_2)(A_{44} - \xi I) \\ M_1A_{24} + M_2C_2 & M_1A_{24} + M_2C_4 \end{bmatrix}. \]
We know that \(\text{rank}(\mathcal{O}) = \text{rank}(\hat{\mathcal{O}}) \) and

\[
\text{rank}(\mathcal{O}) = \text{rank} \begin{bmatrix} 0 & (N_1 K_{12} + N_2)(A_{44} - \xi I) \\ M_1 A_{24} + M_2 C_2 & M_1 A_{24} + M_2 C_4 \end{bmatrix} = \text{rank} \begin{bmatrix} 0 & (N_1 K_{12} + N_2)(A_{44} - \xi I) \\ M_1 A_{24} + M_2 C_2 & M_1 A_{24} + M_2 C_4 \end{bmatrix} = \text{rank}(\hat{\mathcal{O}}).
\]

Since \(\hat{\mathcal{O}} \in \mathbb{R}[\xi]^{(n_2 + n_4) \times (n_2 + n_4)} \) is a square polynomial matrix the statement \(\text{rank}(\hat{\mathcal{O}}(\lambda)) = n_2 + n_4 \) for all \(\lambda \in \mathbb{C} \) is equivalent to \(\text{det}(\hat{\mathcal{O}}(\lambda)) \neq 0 \) for all \(\lambda \in \mathbb{C} \). But

\[
\text{det}(\hat{\mathcal{O}}(\lambda)) = \text{det}(M_1 A_{24} + M_2 C_2) \text{det}(N_1 K_{12} + N_2) \text{det}(A_{44} - \lambda I) = 0, \quad \text{for } \lambda \in \sigma(A_{44}).
\]

This leads to a contradiction so \(K_2^{-1} K_1 \) is not a polynomial matrix and by Lemma 5.2 we may conclude \(\mathcal{B}_{ON}(A, B, C, D)_{\text{ext}} \neq \ker G(\frac{d}{dt}) \). Thus \(\mathcal{R} + \mathcal{N} = \mathbb{R}^n \).

\((=)\) This follows immediately from Lemma 5.3.

It can be noted that Lemma 5.3 holds true though \(G \) doesn’t have full row rank in contrast to Theorem 5.4.

The following proposition is evident from the proofs of Lemma 5.3 and Theorem 5.4, which is useful in the rest of the paper.

Proposition 5.5. Let \(G \in \mathbb{R}(\xi)^{p \times m} \). Let \((A, B, C, D) \) be a realization of \(G \) with \(A \in \mathbb{R}^{n \times n}, B \in \mathbb{R}^{n \times m}, C \in \mathbb{R}^{p \times m}, D \in \mathbb{R}^{p \times m} \) as in (1). Let \(L_1^{-1} L_1 = C_1 (I - A_1) \) and \(K_2^{-1} K_1 = (L_1 A_{12} + L_2 C_2) (\xi I - A_{22})^{-1} \) be left coprime factorizations over \(\mathbb{R}[\xi] \). Then the following statements are equivalent

1. \(\mathcal{R} + \mathcal{N} = \mathbb{R}^n \).
2. \((L_1 A_{12} + L_2 C_2) (\xi I - A_{22})^{-1} \) is a polynomial matrix. Equivalently \(K_2 \) is unimodular.

6 Driving variable and rational image representations

In the previous section we have found conditions on a realization \((A, B, C, D) \) of \(G \) under which \(\mathcal{B}_{ON}(A, B, C, D)_{\text{ext}} = \ker G(\frac{d}{dt}) \). In this section we aim at finding conditions on the realization \((A, B, C, D) \) of \(G \) under which \(\mathcal{B}_{DV}(A, B, C, D)_{\text{ext}} = \text{im} G(\frac{d}{dt}) \). Before we proceed further we need the following lemma from [4] that states a property of a MLA.

Lemma 6.1. Let \(R \in \mathbb{R}[\xi]^{m \times \bullet} \). Assume \(Q \in \mathbb{R}[\xi]^{p \times m} \) is a MLA of \(R \). Then there exists \(Q' \in \mathbb{R}[\xi]^{(m - d) \times m} \) such that

\[
U = \begin{bmatrix} Q \\ Q' \end{bmatrix}
\]

is unimodular. For every such \(Q' \) we have that \(Q'R \) has full row rank.

We will prove that the conditions on \((A, B, C, D) \) mentioned in Lemma 5.3 also hold in the case of driving variable representations.

Lemma 6.2. Let \(G \in \mathbb{R}(\xi)^{p \times m} \). Let \((A, B, C, D) \) be a realization of \(G \) with \(A \in \mathbb{R}^{n \times n}, B \in \mathbb{R}^{n \times m}, C \in \mathbb{R}^{p \times m}, D \in \mathbb{R}^{p \times m} \). Then if \(\mathcal{R} + \mathcal{N} = \mathbb{R}^n \) then \(\mathcal{B}_{DV}(A, B, C, D)_{\text{ext}} = \text{im} G(\frac{d}{dt}) \).

Proof. Let \(Q_1, K_1, K_2, L_1, L_2 \) be as in the statement of Theorem 4.13. From Theorem 4.13 the external behavior induced by a driving variable representation is equal to

\[
\mathcal{B}_{DV}(A, B, C, D)_{\text{ext}} = \ker (Q_1 K_2 L_2)(\frac{d}{dt}),
\]
here \(Q_1 \) is a MLA of \(K_2(L_1B_1 + L_2D) \). We know that \(G = L_2^{-1}(L_1B_1 + L_2D) \) is a left coprime factorization and

\[
\text{im } G(\frac{d}{dt}) = \{ w \mid \exists l \text{ s.t. } L_2(\frac{d}{dt})w = (L_1(\frac{d}{dt})B_1 + L_2(\frac{d}{dt})D)l \}.
\]

Clearly the full behavior in \((w,l) \) of this is given by

\[
\{(w,l) \mid [-L_2 \ L_1B_1 + L_2D]\begin{pmatrix} w \\ l \end{pmatrix} = 0\} = \ker\left(\begin{bmatrix} -L_2 & L_1B_1 + L_2D \end{bmatrix}\right)(\frac{d}{dt}).
\]

From Theorem 4.9, assuming \(R(\lambda) \) has full row rank for all \(\lambda \in \mathbb{C} \), we know \(\ker(R(\frac{d}{dt})) = \ker(U(\frac{d}{dt})R(\frac{d}{dt})) \) iff \(U \) is unimodular. Let \(Q_2 \) be a left annihilator of \(L_1B_1 + L_2D \). Then from Lemma 6.1 there exists \(Q_2' \) such that

\[
U = \begin{bmatrix} Q_2 \\ Q_2' \end{bmatrix}
\]

is unimodular. Now

\[
\ker\left(\begin{bmatrix} -L_2 & L_1B_1 + L_2D \end{bmatrix}\right)(\frac{d}{dt}) = \ker\left(\begin{bmatrix} Q_2 \\ Q_2' \end{bmatrix}\begin{bmatrix} -L_2 & L_1B_1 + L_2D \end{bmatrix}\right)(\frac{d}{dt}) = \ker\left(\begin{bmatrix} -Q_2L_2 \\ -Q_2'L_2 \end{bmatrix} Q_2'(L_1B_1 + L_2D)\right)(\frac{d}{dt}).
\]

From Lemma 6.1, we know that \(Q_2'(L_1B_1 + L_2D) \) has full row rank. Thus, after eliminating the latent variable \(l \), we find that the external behavior is given by

\[
\text{im } G(\frac{d}{dt}) = \ker(Q_2(L_2))(\frac{d}{dt}).
\]

Since \(\mathcal{R} + \mathcal{N} = \mathbb{R}^n \) it follows from Proposition 5.5 that \((L_1A_{12} + L_2C_2)(\xi I - A_{22})^{-1} \) is a polynomial matrix. Therefore we have \(K_2 = 1 \) and \(K_1 = (L_1A_{12} + L_2C_2)(\xi I - A_{22})^{-1} \) such that \(K_2^{-1}K_1 \) is a left coprime factorization. Since

\[
\mathcal{B}_{DV}(A, B, C, D)_{\text{ext}} = \ker(Q_1K_2L_2)(\frac{d}{dt})
\]

(39)

\[
\text{im } G(\frac{d}{dt}) = \ker(Q_2(L_2))(\frac{d}{dt})
\]

(40)

where \(Q_1, Q_2 \) are MLAs of \(K_2(L_1B_1 + L_2D) \) and \(L_1B_1 + L_2D \) respectively. It can be verified that \(Q_1 = UQ_2 \), where \(U \) is a polynomial unimodular matrix. Therefore we conclude that \(\mathcal{B}_{DV}(A, B, C, D)_{\text{ext}} = \text{im } G(\frac{d}{dt}) \)

6.1 Controllability in terms of driving variable representations

In this subsection we will go into more detail about behaviors induced by driving variable representations. We aim at finding necessary conditions under which, given a controllable behavior and a proper rational image representation, a realization of this matrix yields a driving variable representation of the given behavior. In the previous part of this section we have already seen that if \(\mathcal{R} + \mathcal{N} = \mathbb{R}^n \) then \(\mathcal{B}_{DV}(A, B, C, D)_{\text{ext}} = \text{im } G(\frac{d}{dt}) \). In particular this means that \(\mathcal{B}_{DV}(A, B, C, D)_{\text{ext}} \) is controllable. Also the converse is true, this is stated in Lemma 6.3. Thus, finding conditions under which \(\mathcal{B}_{DV}(A, B, C, D)_{\text{ext}} = \text{im } G(\frac{d}{dt}) \) is equivalent to find conditions under which \(\mathcal{B}_{DV}(A, B, C, D)_{\text{ext}} \) is controllable.

Lemma 6.3. Let \(G \in \mathbb{R}(\xi)^{\mathbb{C}^\times} \). Let \((A, B, C, D) \) be a realization of \(G \). Then the following statements are equivalent.

1. \(\mathcal{B}_{DV}(A, B, C, D)_{\text{ext}} \) is controllable.
2. \(\mathfrak{B}_{DV}(A, B, C, D)_{ext} = \text{im } G(\frac{d}{dt}) \).

Proof. (1. \(\Rightarrow \) 2.) Assume \(\mathfrak{B}_{DV}(A, B, C, D)_{ext} \) is controllable. From Theorem 4.13 it follows that \(\mathfrak{B}_{DV}(A, B, C, D)_{ext} = \ker Q_{2}K_{2}L_{2} \), where \(Q_{2} \) is a MLA of \(K_{2}(L_{1}B_{1} + L_{2}D) \). Since the external behavior \(\mathfrak{B}_{DV}(A, B, C, D)_{ext} \) is controllable it follows that \(Q_{2}(\lambda)K_{2}(\lambda)L_{2}(\lambda) \) has full row rank for all \(\lambda \in \mathbb{C} \). Therefore \(Q_{2}(\lambda)K_{2}(\lambda) \) has full row rank for all \(\lambda \in \mathbb{C} \).

Since \(Q_{2} \) is a MLA of \(K_{2}(L_{1}B_{1} + L_{2}D) \), \(Q_{2}K_{2}(L_{1}B_{1} + L_{2}D) = 0 \). Call \(Q'_{2} = Q_{2}K_{2} \) which is LA of \(L_{1}B_{1} + L_{2}D \). Let \(Q_{1} \) be a MLA of \(L_{1}B_{1} + L_{2}D \). Then \(Q'_{2} = XQ_{1} \). Since \(K_{2} \) is square and \(Q'_{2}(\lambda) \) and \(Q_{1}(\lambda) \) have both full row rank for all \(\lambda \in \mathbb{C} \), we conclude that \(X \) is unimodular. Then we have from equations (39) and (40)

\[
\mathfrak{B}_{DV}(A, B, C, D)_{ext} = \ker Q_{2}K_{2}L_{2} = \ker Q_{1}L_{2} = \text{im } G(\frac{d}{dt}) \quad (41)
\]
as required since \(Q_{2}K_{2}L_{2} = XQ_{1}L_{2} \).

(2. \(\Rightarrow \) 1.) Trivially true. \(\square \)

Having this result we can state an analogous result as in Lemma 6.2, but with a different proof. The idea of the proof is also used to prove Theorem 6.6.

Lemma 6.4. Let \(G \in \mathbb{R}(\xi)^{p \times m} \). Let \((A, B, C, D) \) be a realization of \(G \) with \(A \in \mathbb{R}^{n \times n}, B \in \mathbb{R}^{n \times m}, C \in \mathbb{R}^{p \times n}, D \in \mathbb{R}^{p \times m} \). Then \(R + N = \mathbb{R}^{n} \) implies that \(\mathfrak{B}_{DV}(A, B, C, D)_{ext} \) is controllable.

Proof. As before we may consider the system in the form (4). Assume \(R + N = \mathbb{R}^{n} \). Then the full behavior consists of all solutions of

\[
\begin{bmatrix}
\xi I - A_{11} & -A_{12} & -A_{13} & -B_{1} \\
0 & \xi I - A_{22} & 0 & -B_{2} \\
0 & 0 & \xi I - A_{33} & 0 \\
0 & -C_{2} & 0 & -D \\
\end{bmatrix}
\begin{bmatrix}
x_{1} \\
x_{2} \\
x_{3} \\
v \\
w
\end{bmatrix}
= 0.
\quad (42)
\]

Assume that the system matrix

\[
P_{2}(\xi) = \begin{bmatrix}
\xi I - A_{11} & -A_{12} & -A_{13} & -B_{1} \\
0 & \xi I - A_{22} & 0 & -B_{2} \\
0 & 0 & \xi I - A_{33} & 0 \\
0 & -C_{2} & 0 & -D \\
\end{bmatrix}
\]
does not have full row rank there exists a matrix \(S = [S_{1} \; S_{2} \; S_{3} \; S_{4}] \) such that it is a MLA of \(P_{2} \). Also from Lemma 6.1 there exists matrix \(N = [N_{1} \; N_{2} \; N_{3} \; N_{4}] \) such that \([S_{1}] \) is unimodular. We then have

\[
\begin{bmatrix}
S_{1} & S_{2} & S_{3} & S_{4} \\
N_{1} & N_{2} & N_{3} & N_{4}
\end{bmatrix}
\begin{bmatrix}
\xi I - A_{11} & -A_{12} & -A_{13} & -B_{1} \\
0 & \xi I - A_{22} & 0 & -B_{2} \\
0 & 0 & \xi I - A_{33} & 0 \\
0 & -C_{2} & 0 & -D \\
\end{bmatrix}
\begin{bmatrix}
x_{1} \\
x_{2} \\
x_{3} \\
v \\
w
\end{bmatrix}
= 0.
\quad (43)
\]

Here \(M = [M_{1} \; M_{2} \; M_{3} \; M_{4}] = NP_{2} \). From Lemma 6.1 we know that \(M \) has full row rank. Hence we have the external behavior as \(\mathfrak{B}_{DV}(A, B, C, D)_{ext} = \ker S_{4}(\frac{d}{dt}) \). We will now prove that
ker $S_4(\frac{d}{dt})$ is controllable. We know from (44) that S_1, S_2, S_3 has to satisfy

$$S_1(\xi - A_{11}) = 0 \Rightarrow S_1 = 0 \quad (45)$$

$$S_1A_{12} + S_2(A_{22} - \xi I) + S_4C_2 = 0 \quad (46)$$

$$S_1A_{12} + S_3(A_{33} - \xi I) = 0 \Rightarrow S_3 = 0 \quad (47)$$

$$S_1B_1 + S_2B_2 + S_4D = 0. \quad (48)$$

Assume now that $S_4(\lambda)$ does not have full row rank for all $\lambda \in \mathbb{C}$. Than there exists row vector η and $\lambda \in \mathbb{C}$ such that $\eta S_4(\lambda) = 0$. From equations (46), (48) it follows

$$\eta S_4(\lambda) \left[\begin{array}{cc} A_{22} - \lambda I & B_2 \end{array} \right] = 0. \quad (49)$$

Since $S(\lambda)$ is a MLA it has full row rank for all $\lambda \in \mathbb{C}$ from [4], therefore $\eta S_4(\lambda) \neq 0$. But then equation (49) contradicts with the fact that the pair (A_{22}, B_2) is controllable. Thus $S_4(\lambda)$ has full row rank for all $\lambda \in \mathbb{C}$, hence $\mathcal{B}_{DV}(A, B, C, D)_{ext}$ is controllable from Theorem 4.10.

In case that P_Σ does have full row rank then any MLA of P_Σ is void. We can take any unimodular matrix N instead of $\left[\begin{array}{c} \tilde{S} \end{array} \right]$ as in (43). Then (44) becomes equal to

$$\left[\begin{array}{cccc} M_1 & M_2 & M_3 & M_4 \\ & & & N_a \end{array} \right] \left(\frac{d}{dt} \right) \left[\begin{array}{c} x_1 \\ x_2 \\ x_3 \\ v \\ w \end{array} \right] = 0. \quad (50)$$

It follows that $\mathcal{B}_{DV}(A, B, C, D)_{ext} = \mathcal{C}^\infty(\mathbb{R}, \mathbb{R}^p)$ and therefore $\mathcal{B}_{DV}(A, B, C, D)_{ext}$ is controllable.

The converse of Lemma 6.4 is not true. Consider for example the system where the full behavior is equal to the solution set of

$$\left[\begin{array}{cccc} \frac{d}{dt} & -1 & 0 & 0 \\ -1 & -1 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{array} \right] \left[\begin{array}{c} x \\ v \\ w_1 \\ w_2 \end{array} \right] = 0.$$
If we apply a transformation on \hat{v} full behavior of the transformed system is given by the solution set of

$$\begin{bmatrix} \xi I - A_{11} & -A_{12} & -B_{11} & -B_{12} & 0 & 0 \\ 0 & \xi I - A_{22} & 0 & 0 & 0 & 0 \\ -C_{11} & 0 & 0 & 0 & I & 0 \\ -C_{21} & -C_{22} & 0 & -D_{22} & 0 & I \end{bmatrix} \begin{bmatrix} \frac{d}{dt} \\ x_1 \\ x_2 \\ v_1 \\ v_2 \\ w_1 \\ w_2 \end{bmatrix} = 0.$$

Let $F = -D_{22}^{-1}C_{22}$. We introduce new driving variables $\tilde{v}_2 = v_2 - Fx_2$ thus $v_2 = \tilde{v}_2 + Fx_2$. Then the full behavior of the transformed system is given by the solution set of

$$\begin{bmatrix} \xi I - A_{11} & -A_{12} & -B_{11} & -B_{12} & 0 & 0 \\ 0 & \xi I - A_{22} & 0 & 0 & 0 & 0 \\ -C_{11} & 0 & 0 & 0 & I & 0 \\ -C_{21} & -C_{22} & 0 & -D_{22} & 0 & I \end{bmatrix} \begin{bmatrix} I \\ I \\ F \\ I \\ I \\ I \end{bmatrix} \begin{bmatrix} \frac{d}{dt} \\ x_1 \\ x_2 \\ v_1 \\ \tilde{v}_2 \\ w_1 \\ w_2 \end{bmatrix} = (51)$$

As we observe the transformed system has the property $\mathcal{R} + \mathcal{N} = \mathbb{R}^n$ so the external behavior is controllable from Lemma 6.2. As we have seen in the proof of Lemma 6.4 there exists an unimodular matrix $[S \; N]$ such that the solution set of (53) is the same as in (52) where S is void iff P_Σ has full row rank.

$$\begin{bmatrix} S_1 & S_2 & S_3 & S_4 \\ N_1 & N_2 & N_3 & N_4 \end{bmatrix} \begin{bmatrix} \xi I - A_{11} & -A_{12} - B_{12}F & -B_{11} & -B_{12} & 0 & 0 \\ 0 & \xi I - A_{22} & 0 & 0 & 0 & 0 \\ -C_{11} & 0 & 0 & 0 & I & 0 \\ -C_{21} & 0 & 0 & 0 & -D_{22} & 0 \end{bmatrix} \begin{bmatrix} \frac{d}{dt} \\ x_1 \\ x_2 \\ v_1 \\ \tilde{v}_2 \\ w_1 \\ w_2 \end{bmatrix} = (53)$$

If we apply a transformation on \tilde{v}_2 such that $\tilde{v}_2 = v_2 + Fx_2$ thus $v_2 = \tilde{v}_2 - Fx_2$. Then the full
behavior of the original system is given by the solution set of

\[
\begin{bmatrix}
0 & 0 & 0 & 0 & S_3 & S_4 \\
M_1 & M_2 & M_3 & M_4 & M_5 & M_6
\end{bmatrix}
\begin{bmatrix}
I & I & -F & I & I \\
0 & 0 & 0 & 0 & 0
\end{bmatrix}
\begin{bmatrix}
\frac{dx}{dt} \\
\frac{dv}{dt} \\
\frac{dw}{dt}
\end{bmatrix} =
\begin{bmatrix}
x_1 \\
x_2 \\
H_1 \\
w_1 \\
w_2
\end{bmatrix}
\tag{55}
\]

From Lemma 6.1 we know that \(M = [M_1 \ M_2 \ M_3 \ M_4] \) has full row rank. Therefore also \([M_1 \ M_2 - M_4F \ M_3 \ M_4] \) has full row rank. Then we may conclude that the external behaviors are the same of both systems. Especially this means that \(w = (w_1, w_2) = \mathcal{B}_{DV}(A, B, C, D)_{ext} \) is controllable in the original system.

\((\Leftarrow)\) We proceed with proof by contradiction. Assume \(\mathcal{R} + \mathcal{Y}^* \neq \mathbb{R}^n \). Then we may consider the system of the form as in (5)

\[
A = \begin{bmatrix} A_{11} & A_{12} \\ 0 & A_{22} \end{bmatrix}, B = \begin{bmatrix} B_1 \\ 0 \end{bmatrix}, C = \begin{bmatrix} C_1 & C_2 \end{bmatrix}, D = D.
\tag{57}
\]

Here \(A_{22} \) is equal to the block \(A_{99} \) in (5) and \(C_2 \) is equal to \(\begin{bmatrix} C_{12} \end{bmatrix} \) as in (5). Assume now that \(P_2 \) does not have full row rank. Since the subsystem \((A_{11}, B_1, C_1, D)\) has the property \(\mathcal{R} + \mathcal{Y}^* = \mathbb{R}^n \) so we know that there exists matrix \(\begin{bmatrix} S_1 & S_2 \end{bmatrix} \) such that it is MLA of the system matrix

\[
\begin{bmatrix}
\xi I - A_{11} & -B_1 \\
-C_1 & -D
\end{bmatrix}.
\]

Also we can construct \(N_1, N_2 \) such that

\[
U = \begin{bmatrix} S_1 & 0 & S_2 \\ 0 & I & 0 \\ N_1 & 0 & N_2 \end{bmatrix}
\]

is unimodular. The full behavior of system (57) is equal to the solution set of

\[
\begin{bmatrix}
\xi I - A_{11} & -A_{12} & -B_1 & 0 \\
0 & \xi I - A_{22} & 0 & 0 \\
-C_1 & -C_2 & -D & I \\
S_1 & 0 & S_2 & 0 \\
0 & I & 0 & 0 \\
N_1 & 0 & N_2 & 0 \\
N_1(\xi I - A_{11}) - N_2C_1 & -N_1A_{12} - N_2C_2 & -N_1B_1 - N_2D & N_2
\end{bmatrix}
\begin{bmatrix}
\frac{dx}{dt} \\
\frac{dv}{dt} \\
\frac{dw}{dt}
\end{bmatrix} =
\begin{bmatrix}
x_1 \\
x_2 \\
v \\
w
\end{bmatrix}
\tag{58}
\]

\[
\begin{bmatrix}
\xi I - A_{11} & -A_{12} & -B_1 & 0 \\
0 & \xi I - A_{22} & 0 & 0 \\
-C_1 & -C_2 & -D & I \\
S_1 & 0 & S_2 & 0 \\
0 & I & 0 & 0 \\
N_1 & 0 & N_2 & 0 \\
N_1(\xi I - A_{11}) - N_2C_1 & -N_1A_{12} - N_2C_2 & -N_1B_1 - N_2D & N_2
\end{bmatrix}
\begin{bmatrix}
\frac{dx}{dt} \\
\frac{dv}{dt} \\
\frac{dw}{dt}
\end{bmatrix} =
\begin{bmatrix}
x_1 \\
x_2 \\
v \\
w
\end{bmatrix}
\tag{59}
\]

\[
\begin{bmatrix}
0 & -S_1A_{12} - S_2C_2 & 0 & S_2 \\
0 & \xi I - A_{22} & 0 & 0 \\
0 & 0 & -S_1A_{12} - S_2C_2 & 0 \\
0 & 0 & -C_1 & -C_2 \\
N_1(\xi I - A_{11}) - N_2C_1 & -N_1A_{12} - N_2C_2 & -N_1B_1 - N_2D & N_2
\end{bmatrix}
\begin{bmatrix}
\frac{dx}{dt} \\
\frac{dv}{dt} \\
\frac{dw}{dt}
\end{bmatrix} =
\begin{bmatrix}
x_1 \\
x_2 \\
v \\
w
\end{bmatrix} = 0.
\tag{60}
\]
Since the quadruple \((A_{22}, 0, C_2, D)\) is strongly observable in (57) it follows that \(w = 0\) implies \(x_2 = 0\). From (60) it then follows that if \(w = 0\) then

\[
\begin{bmatrix}
-S_1 A_{12} - S_2 C_2 \\
\xi I - A_{22}
\end{bmatrix} x_2 = 0 \implies x_2 = 0.
\]

Thus \(\begin{bmatrix} -S_1(\lambda) A_{12} - S_2(\lambda) C_2 \end{bmatrix}\) has full column rank for all \(\lambda \in \mathbb{C}\), therefore \((S_1 A_{12} + S_2 C_2)(\xi I - A_{22})^{-1}\) is a right coprime factorization over \(\mathbb{R}[\xi]\). Since \((\xi I - A_{22})\) is not unimodular \((S_1 A_{12} + S_2 C_2)(\xi I - A_{22})^{-1}\) is not a polynomial matrix. Now let \(L_2^{-1} L_1 = (S_1 A_{12} + S_2 C_2)(\xi I - A_{22})^{-1}\) be a left coprime factorization. Because \((S_1 A_{12} + S_2 C_2)(\xi I - A_{22})^{-1}\) is not a polynomial matrix \(L_2\) is not unimodular. Since \(\begin{bmatrix} L_1 & L_2 \\ M_1 & M_2 \end{bmatrix}\) is left prime we can construct matrices \(M_1, M_2\) such that

\[
\begin{bmatrix}
L_1 & L_2 & 0 \\
M_1 & M_2 & 0 \\
0 & 0 & 1
\end{bmatrix}
\]

is unimodular. Then the solution set of (60) is equal to the solution set of

\[
\begin{bmatrix}
L_1 & L_2 & 0 \\
M_1 & M_2 & 0 \\
0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
0 & -S_1 A_{12} - S_2 C_2 & 0 & S_2 \\
\xi I - A_{22} & 0 & 0 & 0 \\
N_1(\xi I - A_{11}) - N_2 C_1 & -N_1 A_{12} - N_2 C_2 & -N_1 B_1 - N_2 D & N_2
\end{bmatrix}
\begin{pmatrix}
x_1 \\
x_2 \\
v \\
w
\end{pmatrix}
\]

\[
\begin{bmatrix}
L_2 & L_1 & 0 \\
0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
0 & 0 & 0 & L_2 S_2 \\
0 & M & 0 & 0 \\
N_1(\xi I - A_{11}) - N_2 C_1 & -N_1 A_{12} - N_2 C_2 & -N_1 B_1 - N_2 D & N_2
\end{bmatrix}
\begin{pmatrix}
x_1 \\
x_2 \\
v \\
w
\end{pmatrix}
= 0.
\]

Where \(M = -M_1(S_1 A_{12} + S_2 C_2) + M_2(\xi I - A_{22})\). It can be verified that matrix

\[
\begin{bmatrix}
0 & M \\
N_1(\xi I - A_{11}) - N_2 C_1 & -N_1 A_{12} - N_2 C_2 & -N_1 B_1 - N_2 D & N_2
\end{bmatrix}
\]

has full row rank. Thus after elimination of \(x_1, x_2, v\) we find that the external behavior is equal to \(\ker (L_2 S_2)(\frac{d}{dt})\). Because \(L_2\) is not unimodular \(L_2(\lambda)S_2(\lambda)\) does not have full row rank for all \(\lambda \in \mathbb{C}\) thus \(\mathcal{B}_{DV}(A, B, C, D)_{ext}\) is not controllable.

In case that \(P_\Sigma\) does have full row rank we know from [6] that \(\mathcal{Y}^* + \mathcal{Y}^{**} = \mathbb{R}^n\), hence \(\mathcal{R} + \mathcal{Y}^{**} = \mathbb{R}^n\).

On the controllability of a behavior represented driving variable representation we conclude the following:

Proposition 6.7. Consider \(\mathcal{B}_{DV}(A, B, C, D)\) to be the full behavior induced by the driving variable representation (10). Then the following statements can be proven.

1. \(\mathcal{B}_{DV}(A, B, C, D)\) is controllable if and only if \(\mathcal{R} = \mathbb{R}^n\).

2. \(\mathcal{B}_{DV}(A, B, C, D)_{(v, w)} := \{(v, w) \mid \exists x, s.t. (x, v, w) \in \mathcal{B}_{DV}(A, B, C, D)\}\) is controllable if and only if \(\mathcal{R} + N = \mathbb{R}^n\).

3. \(\mathcal{B}_{DV}(A, B, C, D)_{ext}\) is controllable if and only if \(\mathcal{R} + \mathcal{Y}^{**} = \mathbb{R}^n\).

Proof.

1. The full behavior induced by the driving variable representation is equal to

\[
\ker R(\frac{d}{dt}) = \ker \begin{bmatrix} \xi I - A & -B \\ -C & -D & I \end{bmatrix} \frac{d}{dt}
\]

\[17\]
Then \(\mathcal{B}_{DV}(A, B, C, D) \) is controllable if and only if \(R(\lambda) \) has full row rank for all \(\lambda \in \mathbb{C} \) if and only if \([\lambda I - A \quad -B] \) has full row rank for all \(\lambda \in \mathbb{C} \) if and only if the pair \((A, B)\) is controllable if and only if \(R = \mathbb{R}^n \).

2. Assume the system is controllable form 1. Then the full behavior induced by the driving variable representation is equal to

\[
\ker R\left(\frac{d}{dt}\right) = \ker \begin{bmatrix} \xi I - A_{11} & -A_{12} & -B_1 & 0 \\ 0 & \xi I - A_{22} & 0 & 0 \\ -C_1 & -C_2 & -D & I \end{bmatrix} \left(\frac{d}{dt}\right).
\]

Let \(L_2^{-1}L_1 = C_1(\xi I - A_{11})^{-1} \) and \(K_2^{-1}K_1 = (L_1A_{12} + L_2C_2)(\xi I - A_{22})^{-1} \) be left coprime factorizations over \(\mathbb{R}[\xi] \). From Theorem 3.5 in [4] it can be proven that after elimination of \(x \) the \((v, w)\) behavior is represented by \(R_1(\frac{d}{dt})\left[\begin{array}{c} v \\ w \end{array} \right] = 0 \), where \(R_1 = K_2 \begin{bmatrix} -(L_1B_1 + L_2D) & \quad L_2 \end{bmatrix} \). It can be proven that \(\begin{bmatrix} -(L_1B_1 + L_2D) & \quad L_2 \end{bmatrix} \) is left prime. We therefore conclude that \(\mathcal{B}_{DV}(A, B, C, D)_{(v, w)} \) is controllable if and only if \(R_1(\lambda) \) has full row rank for all \(\lambda \in \mathbb{C} \) if and only if \(K_2 \) is unimodular and from Proposition 5.5 \(K_2 \) is unimodular if and only if \(R + N = \mathbb{R}^n \).

3. This follows from Theorem 6.6.

7 Conclusion

In this paper we have dealt with the relationship between external behavior of state representations and rational representations of behaviors. In particular, in section 5 we found sufficient conditions under which, given a behavior induced by a proper rational kernel representation, a realization of this matrix yields an output nulling representation of this behavior. Also under the assumption that this matrix has full row rank we concluded that this condition is also necessary.

In section 6 we found sufficient conditions under which, given a behavior induced by a proper rational image representation, a realization of this matrix yields a driving variable representation of this behavior. We also have found necessary and sufficient conditions under which a (full/external) behavior induced by a driving variable representation is controllable.

In future research interesting subjects are such as finding necessary and sufficient conditions under which a behavior induced by an output nulling behavior is controllable. Further the other interesting subject is to find necessary conditions under which, given a behavior induced by a rational kernel representation, a realization of this matrix yields an output nulling representation of this behavior without the assumption that this matrix has full row rank.

References

