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Abstract
Basic rules and definitions for summing divergent series, regularity, linearity and stability of a
summation method. Examples of common summation methods: averaging methods, analytic
continuation of a power series, Borel’s summation methods.
Introducing a formal totally divergent power series F (x) = 0!−1!x+2!x2 −3!x3 + . . . ; the main
interest is the value at x = 1 called Wallis’ hypergeometric series (WHS). Examine the four
summation methods used by Euler to assign a finite value δ ≈ 0.59 (Euler-Gompertz constant)
to this series: (1) Solving an ordinary differential equation that has a formal power series
solution F (x); (2) Repeated application of Euler transform - a regular summation method
useful to accelerate oscillating divergent series; (4) Extrapolating a polynomial P (n) which
formally gives WHS at n = 0; (3) Expanding F (x) as a continued fraction and inspecting its
convergence.
Multiple connections among the four methods are established, mainly by notions of asymptotic
series and Borel summability. The value of δ is approximated by 3 methods, at most to a
precision of several thousand decimal places.

Keywords: Euler-Gompertz constant, Wallis’ hypergeometric series, divergent series, averaging
summation methods, Borel summation, Euler transform, asymptotic series, continued fractions
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Introduction

“Divergent series are the invention of the devil, and it is shameful to base on them any demon-
stration whatsoever.” – N. H. Abel

This quote from Abel’s letter to his friend Holmboe is a fitting description of how rigorists,
who began to dominate mathematical research towards the end of 19th century, felt about
divergent series. Despite having been investigated before by many, including Euler, Poisson or
Fourier, and by that time having lots of successful arguments in applied physics and astronomy,
they spiked controversy and were generally frowned upon. Part of the problem of assigning a
value to a series that did not converge might have been the fact that after Cauchy formally de-
fined what a sum of convergent series is, nobody yet made a proper generalisation for divergent
series.

This distaste towards divergent series was not as prominent in France. In Paris around
1886, Poincaré and Stieltjes created the theory of asymptotic series. Earlier, Frobenius and
Hölder began developing a summation method that was later completed by Cesàro. It summed
a large class of divergent series. The sums defined this way turned out to make sense both in
applications and in theoretical work†.

Nowadays, the theory of summing divergent series is fairly well-developed, one of the greatest
contributions undoubtedly being the book “Divergent Series” (1949) by G. H. Hardy. If a
summation method is well defined, consistent with convergent series and adhering to certain
reasonable rules, it may furnish a natural generalisation of the sum to divergent series that can
be manipulated in many ways typical to convergent series. Even the notion of approximating
a function can be extended to divergent series by means of asymptotic expansions.

In this thesis we will not pick apart the general theory of summing divergent series, but
rather have a look at a particular one: Wallis’ hypergeometric series. We will also consider
its many connections to a constant usually referred to as the Euler-Gompertz constant and
denoted δ.

Define a hypergeometric power series in a complex variable z

F (z) =
∞∑

n=0
(−1)nn!zn = 0!−1!z+2!z2 −3!z3 +4!z4 −5!z5 + . . . (1)

We will write F (z) for complex variable z and F (x) if we only consider x ≥ 0. Obviously
F (z) only converges for z = 0 and for z < 0 it is a series with positive unbounded terms, hence
diverging to infinity. By several summation methods this series is assigned a finite value f(z)
of the following form:

f(z) =
∞∫
0

e−t

1+ zt
dt. (2)

†More on the history of divergent series can be found in Jahnke (2003)
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At z = 1 the series is referred to by Euler as Wallis’ hypergeometric series (WHS); its formal
sum (later defined in several ways) will be denoted by δ:

δ =
∞∫
0

e−t

1+ t
dt ↔ F (1) =

∞∑
n=0

(−1)nn! = 0!−1!+2!−3!+4!−5!+ . . .

This series caught the interest of Leonhard Euler who then wrote a paper “On Divergent Series”
(1760) entirely dedicated to its summation. It is worth noting that at that time dealing with
divergent series was quite controversial, which compelled Euler to devote the first 13 paragraphs
(out of total 27) to carefully convincing the reader that what he is doing is not a complete heresy.
In spite of being hardly rigorous, his work is almost entirely correct, proving once again his
marvelous mathematical intuition.

Euler summed the series using 4 different methods; our goal will be to address and exam-
ine each of them separately and find connections among them. We will consult more recent
literature to find out more about these and other useful summation methods.

In the first chapter (Preliminaries) we acquaint ourselves with basic rules and definitions
for summing divergent series and a few well known regular summation methods. Section 1.3
introduces a powerful method developed by Borel, which is the first method capable of sum-
ming the hypergeometric series (1) and will play an important role in following chapters. The
last section of the chapter defines a class of summation methods using weighted averages to
transform a given series. One simple example is inspected more closely in subsection 1.4.1
(Midpoint method), with many examples of divergent series summed by this method.

The remaining four chapters deal with the four different approaches by Euler, listed in a
different order from his original paper for our convenience:

1. The third method: solving an ordinary differential equation that is formally satisfied by
the series (1). The first approach is by G. H. Hardy as laid out in his book Divergent Series,
after that we solve the equation in a more rigorous manner and explain the connection
between the two solutions by means of asymptotic series.

2. The first method: Euler method (E,1) or Euler transform. Its repeated application to
WHS accelerates the series and gives an approximation of δ. The generalised method
(E,q) for q > 0 and its relation to repeated application of (E,1) will be defined and it will
be shown that Borel method is consistent with each of these methods and still stronger,
being the limiting case of (E,q) as q → ∞.

3. The second method: define a polynomial P (n) = 1+(n−1)+(n−1)(n−2)+(n−1)(n−
2)(n− 3) + . . . , which has finitely many terms for each n ∈ N. Then P (0) gives WHS.
Euler used tried to extrapolate P (n) at 0 to approximate δ using Newton’s extrapolation
method. We will show that this does not work and introduce instead an extrapolating
function obtained from the Borel sum of the series. This function again assigns the value
δ to P (0).

4. The fourth method: formal continued fraction expansion of a class of series including
(1) will be shown to converge; in case of (1) to the function f(z). By means of a sim-
ple transformation we will define a proper summation method by continued fractions,
attributed to Stieltjes, and obtain another continued fraction representing WHS and δ.
This continued fraction will be used to compute 8683 decimal places of the constant.

In the conclusion there will be a short summary of all found connections between the four
methods and also all expressions representing δ.
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Chapter 1

Preliminaries

1.1 Notation and conventions
Throughout the work we will use the same notation for the following things whenever possible:

• n,m,i, j for indices starting from 0 unless specified otherwise, i.e. n,m,i, j ∈N0 =N∪{0};

• a0,a1,a2, . . . ,an, . . . for the terms of a series;

• bold letters v = {v0,v1,v2, . . . ,vn. . . .} denote (usually infinite) vectors;

• s = {s0, s1, s2, . . . , sn, . . .} is the sequence of the partial sums of a series; s can be also
treated as an infinite vector. The series itself can be referred to as series s;

• series transformations will use capital calligraphic letters M ,T , . . .. If a transformation
has a matrix representation, these will be denoted and considered the same.
If T is a series transformation, we denote T ks the series resulting from T applied on s
k-times. The partial sums will be then denoted T ks(n) or, in case there is no confusion as
to which transformation is used, s(k)

n . Similarly the n-th term of the k-times transformed
series will be denoted as a(k)

n . In agreement with the original notation for s, s(0)
n = sn and

a
(0)
n = an for all n ∈ N0;

• unless specified otherwise, z will stand for a complex variable and x for a real variable;

Standard definitions and their notations throughout the work:

• Difference operator:
For a sequence {an}n∈N0 define the differences ∆an = an+1 −an.

• Small o notation:
Let f(x), g(x) be real functions and x0 ∈ R. We say that f(x) is asymptotically smaller
than g(x) and write f(x) = o(g(x)) as x → x0 provided that for any ε > 0 there is δ > 0
such that

|f(x)| ≤ ε|g(x)|
whenever |x−x0| < δ. Equivalently, if g(x) is non-zero in some neighbourhood of x0 ∈
R∪{−∞,∞} (except possibly at x0),

lim
x→x0

f(x)
g(x)

= 0.
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Basic rules and definitions for summing divergent series Preliminaries

• Big O notation:
We say f(x) is asymptotically bounded by g(x) and write f(x) = O(g(x)) as x → x0 if
there is a constant M ∈ R+ such that

|f(x)| ≤M |g(x)|

in some neighbourhood of x0 ∈ R (or, in case x0 = ±∞, for sufficiently large x).

• We say f(x) is asymptotically equivalent to g(x) and write f(x) ∼ g(x) as x→ x0 provided
that

f(x) = g(x)+o(g(x))

as x→ x0, or equivalently, provided that g(x) ̸= 0 in some neighbourhood of x0 (resp. for
sufficiently large x in case x0 ±∞), if

lim
x→x0

f(x)
g(x)

= 1.

Unless mentioned otherwise, the series considered in the thesis are always complex. By “regular
convergence” we mean the convergence of partial sums in C with respect to the Euclidian
topology.

1.2 Basic rules and definitions for summing divergent
series†

Defining a “sum” of a divergent series sounds vague and counter-intuitive, but we can treat it
simply as an extension of the theory of convergent series. Thus intuitively we should want it
to obey some natural rules to be consistent with that theory. Most of the definitions of a sum
of a divergent series should therefore adhere to at least one of the following rules:

(I) Multiplication by a constant:
if

∞∑
n=0

an = s and c ∈ C is a constant, then
∞∑

n=0
can = cs.

(II) Term by term addition:
if

∞∑
n=0

an = s and
∞∑

n=0
bn = t then

∞∑
n=0

(an + bn) = s+ t.

(III) Subtraction of a constant:
if

∞∑
n=0

an = s then
∞∑

n=1
an = s−a0 and vice versa.

The first two rules define linearity of a method, while the third can be described as stabi-
lity. Using only these rules we can compute the “natural sum” for many divergent series. As
an example consider the series ∑∞

n=0(−1)n = 1 − 1 + 1 − 1 + 1 − . . . , that has its partial sums
oscillating between 0 and 1, therefore it is divergent. If s is the sum of this series, then by rules
3 and 1 we have:

s= 1−1+1−1+ . . .= 1+(−1+1−1+1− . . .) = 1− (1−1+1−1+ . . .) = 1− s

†This theory in this section follows Hardy, Sections 1.3 and 1.4
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Preliminaries Basic rules and definitions for summing divergent series

and so s= 1
2 .

We will naturally never write ∑∞
n=0an = s for a divergent series, as it does not have a sum

in the conventional sense, but employ the following notation instead: if A is a notation for a
summation method assigning a number s to a series ∑∞

n=0an, we say the series is A-summable
or summable (A), call s the A-sum of ∑∞

n=0an and write ∑∞
n=0an = s (A).

The following definitions explain regularity of a method.

Definition 1. (Regular method): A summation method is said to be regular if it sums every
convergent series to its ordinary sum.

Definition 2. (Totally regular method): A method is said to be totally regular if in addition
to being regular it gives s= ∞ for a series ∑∞

n=0an where an ∈ R and sn → ∞.

A regular method has the ability to transform a divergent series into a function that has
a finite limit at infinity, while not disrupting the finite limit of a sequence that is already
convergent, thus we can think of it as a “taming” transformation (Enyeart (RDSTT)).

Notice that a (totally) regular summation method must oblige rules (I)-(III) for convergent
series, but it is not granted that the same holds for divergent series summable by the given
method. As a simple example consider a method that assigns to convergent series their regular
value and a fixed constant to all other series. Similarly, a method consistent with rules (I)-(III)
might not be regular; method E defined below is one such case. The best methods are naturally
those both regular and adhering to rules (I)-(III), as they can preserve useful properties known
to convergent series.

Now we can introduce some basic summation methods which are (totally) regular and, as
can be easily verified in most cases, obey rules (I)-(III).

Definition 3. (Cesàro summation): If sn = a0 +a1 +a2 + · · ·+an for n ∈ N0 and

lim
n→∞

s0 + s1 + · · ·+ sn

n+1
= s ,

then we call s the (C ,1)-sum of ∑∞
n=0an and the (C ,1)-limit of sn.

The method of Cesàro is an example from a class of summation methods all using some
averaging process. They are addressed closely in Section 1.4.

Abel summation is consistent with but more powerful than Cesàro:

Definition 4. (Abel summation): If ∑∞
n=0anx

n is convergent for 0 ≤ x < 1 (and thus for all
|z|< 1 complex) with g(x) its sum and

lim
x→1−

g(x) = s ,

then we call s the A -sum of ∑∞
n=0an.

Some explanation is needed before we define Euler’s summation method (E,1).

Suppose ∑∞
n=0anx

n converges to g(x) for small x and let y = x
1+x , so y = 1

2 corresponds to
x= 1. Then for small x and y we have

xg(x) =
∞∑

n=0
anx

n+1 = a0
y

1−y
+a1

y2

(1−y)2 +a2
y3

(1−y)3 + . . .

=
∞∑

n=0
an

∞∑
k=0

(
n+k

k

)
yn+k+1 =

∞∑
n=0

an

∞∑
m=n

(
m

m−n

)
ym+1,

5



Borel’s summation methods Preliminaries

where the second line is derived from the Taylor expansion of 1
(1−y)n+1 =∑∞

k=0
(

n+k
k

)
yk. Chang-

ing the order of summation we find that

xg(x) =
∞∑

m=0
ym+1

m∑
n=0

(
m

m−n

)
an =

∞∑
m=0

ym+1
m∑

n=0

(
m

n

)
an =

∞∑
m=0

bmy
m+1

where b0 = a0, bm = a0 +
(

m
1

)
a1 +

(
m
2

)
+ · · ·+am.

Definition 5. (Euler’s summation): Define the power series in x and y as above. If the
y-series is convergent for y = 1

2 , that is, if ∑∞
m=0 2−m−1bm = s, then we call s the (E,1)-sum of∑∞

n=0an.

Euler’s summation is an accelerating method, as it “tames” the growth of the series. More
interestingly, even if the resulting series does not converge for y = 1

2 , it can be applied again.
This definition relies on convergence for small x and y and hence is not applicable in case

of a series like ∑∞
n=0(−1)nn!xn, which does not converge for values other than 0. However,

a weaker version called Euler transform (in essence the same transformation formally defined
and omitting the requirement of convergence for small values) can be applied to any divergent
series. It was used by Euler to approximate δ and will be closely addressed in Chapter 3,
together with the generalised Euler’s summation (E,q) for q > 0.

Definition 6. (Analytic continuation of power series): If ∑∞
n=0anz

n is convergent for
small z and converges to a function g(z) of the complex variable z, one-valued and regular in
an open and connected region containing the origin and the point z = 1, and g(1) = s, then we
call s the E-sum of ∑∞

n=0an. The value of s may depend on the region chosen.

Similarly this can be defined with paths instead of regions. This last method is consistent
with rules (I)-(III) but it is not totally regular (not even regular as s might depends on the
chosen region), and, as an interesting fact, assigns a rather confusing sum s= −1 to the series
1+2+4+8+ . . ..

The following section introduces a powerful summation method attributed to Borel, which
will be an important tool throughout this work as it connects different approaches to summing
(1) and WHS in particular.

1.3 Borel’s summation methods
We define three different gradually stronger methods, in the sense that they can be applied on
more series while being consistent with the previous ones. We prove they are regular, linear
and partially stable.

Denote A(z) a formal complex series A(z) =∑∞
n=0an(z). Define its partial sums as sn(z) =∑n

i=0ai(z).

Definition 7. (Weak Borel summability): Define the weak Borel sum for a series A(z) as

lim
x→∞e−x

∞∑
n=0

sn(z)xn

n!
.

If this converges at z ∈ C to some h(z) ∈ C, we say that the weak Borel sum of A(z) converges
at z and write ∑∞

n=0an(z) = h(z) (wB).

6



Preliminaries Borel’s summation methods

Notice the necessary condition for weak Borel sum to converge at z is that the series∑∞
n=0

sn(z)tn

n! converges at z for sufficiently large t.

Definition 8. (Integral Borel summability): For a series A(z) define its Borel transform
as

BA(z)(t) =
∞∑

n=0

an(z)tn

n!
.

If BA(z)(t) converges for t≥ 0 and the integral

∞∫
0

e−tBA(z)(t)dt

is well defined and converges at z ∈C to some h(z), we say that the Borel sum of A(z) converges
at z and write ∑∞

n=0an(z) = h(z) (B).

Definition 9. (Integral Borel transform with analytic continuation): Let the Borel
transform BA(z)(t) converge for t in some neighbourhood of the origin to an analytic function
that can be analytically continued to all t > 0 and denote this analytic continuation BcA(z)(t).
Then if the integral ∫ ∞

0
e−tBcA(z)(t)dt

converges at z ∈ C to some h(z), we say that the B∗ sum of A(z) converges at z and write∑∞
n=0an(z) = h(z) (B∗).

Remark 1. In case A(z) = ∑∞
n=0anz

n is a power series with a positive radius of convergence,
each method (if convergent) furnishes an analytic continuation of A(z).

The following lemma will be needed to prove regularity of the Borel methods and will also
be utilized multiple times throughout the thesis.

Lemma 1.1. Let In =
∫∞
0 e−wwn dw. Then In = n! for all n ∈ N0.

Proof. I0 = 1 and simple integration by parts shows that In+1 = (n+ 1)In. By induction,
In = n!.

Remark 2. This is a special case of the generalized factorial function called Gamma function,
defined as

Γ(a) =
∫ ∞

0
e−wwa−1 dw.

For a > 0 by the same approach as above we can derive the formula Γ(a+1) = aΓ(a).

Theorem 1.2. Methods B and B∗ are regular.

Proof. Assume the series A(z) =∑∞
n=0an(z) converges at z. Then using Lemma 1.1 to express

n! as an integral we write

A(z) =
∞∑

n=0
an(z) =

∞∑
n=0

an(z)
n!

∞∫
0

e−ttn dt =
∞∫
0

e−t
∞∑

n=0

an(z)tn

n!
dt =

∞∫
0

e−tBA(z)(t)dt,

where reversing the order of integration and summation is justified by convergence of A(z).

7



Borel’s summation methods Preliminaries

As can be seen in Example 1.8, the methods are not totally regular. The weak Borel’s
summation method is regular as well, but we will not need to prove this, as it is a simple
consequence of Theorem 1.5 below. Before that we will need a few prerequisites.

Lemma 1.3. Let ϕ(x) ∈ C1{(M,∞)} for some M ∈ R∪ {−∞}. If lim
x→∞(ϕ(x) +ϕ′(x)) = A,

then lim
x→∞ϕ(x) = A and lim

x→∞ϕ′(x) = 0.

Proof. Without loss of generality we can assume A = 0 (otherwise let ψ(x) = ϕ(x) −A and
continue the proof with ψ(x)). There are two possible cases:

• if the derivative ϕ′(x) keeps the same sign for large enough x, then ϕ(x) is eventually
monotone so it either converges to a finite value l or it is unbounded. For a finite limit l
ϕ′(x) must converge to 0 and at the same time to −l, therefore l= 0. For ϕ(x) unbounded
the derivative diverges with the same sign, but then the condition of the theorem is not
satisfied so this case is impossible.

• if ϕ′(x) changes signs an infinite number of times, there is a sequence of arbitrarily large
xn such that ϕ′(xn) = 0 and these are local extremes. This implies that limn→∞ϕ(xn) = 0
and so ϕ(x) converges to 0 bounded by its extremes.

The assertion is proven.

Lemma 1.4. For a sequence of complex numbers {an}n∈N0 and their corresponding partial
sums {sn}n∈N0 define formally two series

a(x) =
∞∑

n=0

anx
n

n!
, s(x) =

∞∑
n=0

snx
n

n!
.

If one series converges for all x > 0, so does the other.

Remark 3. Note that this means they converge for all z ∈ C. If the radius of convergence of
s(x) is finite, then a(x) has the same finite radius of convergence, which is clear from the proof
below.

Proof. Assume first that the series s(x) is convergent, then differentiating term-by-term yields
again a convergent series s′(x) = ∑∞

n=0
sn+1xn

n! and the difference s′(x) − s(x) = ∑∞
n=0

an+1xn

n!
converges for all x as well. Integrating term-by-term and adding a0 results in a(x), which is
therefore convergent.

The other direction is little bit more complicated. Let a(x) = ∑∞
n=0

anxn

n! converge for all
x > 0 so that a(x) is analytic and consider the linear differential equation

y′(x)−y(x) = a′(x) (1.1)
y(0) = a0. (1.2)

The general solution to (1.1)-(1.2) is

y(x) = a0e
x + ex

x∫
0

e−ta′(t)dt,

which is again an analytic function with its series centred at 0 converging to y(x) for all
x > 0, since both a′(x) and ex have that property and products, sums and integrals of analytic

8



Preliminaries Borel’s summation methods

functions are analytic again with radius of convergence at least the minimum of all radii of
convergence involved. Now that we know the solution y(x) is analytic, we can compute its
Taylor series coefficients from (1.1)-(1.2). First, notice that

a(k)(x) =
∞∑

n=0

an+k x
n

n!
hence a(k)(0) = ak ∀k ∈ N0.

From the initial condition we have

y(0) = a0 = s0

and from (1.1)
y′(0) = y(0)+a′(0) = s0 +a1 = s1.

Differentiating (1.1) gives the second derivative y′′(x) and so

y′′(0) = y′(0)+a′′(0) = s1 +a2 = s2.

In general, y(n+1)(x) = y(n)(x)+a(n+1)(x), hence if we assume that y(n)(0) = sn, then

y(n+1)(0) = y(n)(0)+a(n+1)(0) = sn +an+1 = sn+1,

proving by induction that y(n)(0) = sn for all n ∈ N0 and so the Taylor series of y(x) at x = 0
is give as

y(x) =
∞∑

n=0

snx
n

n!
= s(x),

converging for all x > 0. This concludes the proof.

Now we can prove that methods wB and B are equivalent under a certain condition.

Theorem 1.5. Let A(z) =
∞∑

n=0
an(z) be a formal series and fix z ∈ C, then:

(i) if
∞∑

n=0
an(z) = A (wB), then

∞∑
n=0

an(z) = A (B);

(ii) if
∞∑

n=0
an(z) = A (B) and lim

x→∞e−x
∞∑

n=0
an(z)xn

n! = lim
x→∞e−xBA(z)(x) = 0,

then
∞∑

n=0
an(z) = A (wB).

Proof. For simplicity we will fix z ∈ C and drop it from the notation. We define series a(x) and
s(x) as in Lemma 1.4, then the weak Borel sum converges if the limit

lim
x→∞e−xs(x)

exists and the integral Borel sum converges if the limit

lim
x→∞

x∫
0

e−ta(t)dt

9
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exists, therefore to begin with at least one of the series a(x), s(x) must converge for all x > 0.
Lemma 1.4 then asserts that both series converge for all x > 0 and we can freely differentiate
and integrate them term by term. In particular,

s′(x) =
∞∑

n=0

sn+1x
n

n!
and a′(x) =

∞∑
n=0

an+1x
n

n!
. (1.3)

Integrating the following expression by parts implies

x∫
0

e−ta′(t)dt = e−xa(x)−a(0)+
x∫

0

e−ta(t)dt = e−xa(x)−a0 +
x∫

0

e−ta(t)dt (1.4)

and utilising (1.3) yields another equivalent expression

x∫
0

e−ta′(t)dt =
x∫

0

e−t
∞∑

n=0
an+1

tn

n!
dt =

x∫
0

e−t
∞∑

n=0
(sn+1 − sn)t

n

n!
dt =

x∫
0

e−t
(
s′(t)− s(t)

)
dt

=
x∫

0

d
dt
(
e−ts(t)

)
dt = e−xs(x)− s(0) = e−xs(x)−a0. (1.5)

Hence, combining (1.4) and (1.5) we have for all x > 0

e−xs(x) = e−xa(x)+
x∫

0

e−ta(t)dt,

showing that if limx→∞ e−xa(x) = 0 and A(z) is B-summable, then it is also wB-summable
with the same value, hence (ii) is proved. Furthermore from the above equation we can deduce
that if

x∫
0

e−ta(t)dt = ϕ(x),

then ϕ(x) ∈ C1{(0,∞)} and by the Fundamental Theorem of Calculus e−xs(x) = ϕ′(x)+ϕ(x).
If the series is wB-summable to a sum A, then

lim
x→∞(ϕ′(x)+ϕ(x)) = A.

By Lemma 1.3 ϕ(x) converges to A, thus the series is B-summable to the same value, concluding
the proof of (i).

Corollary 1.6. Method wB is regular.

For an example of a series that is B-summable but not wB-summable see Hardy (1949),
p.183.

Apart from being regular, Borel’s methods maintain their good behaviour for divergent
series too, as indicated by the following corollary.

Corollary 1.7. All three Borel methods are consistent with rules (I) and (II) and partially with
rule (III), in the sense that if a1 +a2 +a3 + . . .=A−a0 (B) then a0 +a1 +a2 + . . .=A (B) but
the converse is not true. The assertion is analogous for wB and B∗.

10
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Proof. Conditions (I) and (II), i.e. linearity, are straightforward from the definition of each
method, since integrals, sums and limits are linear. Thanks to the uniqueness of analytic
continuation on a connected domain, the same argument works even for method B∗. For (III),
observe from (1.5) that the following assertions are equivalent:

a0 +a1 +a2 + . . . = A (wB) ⇐⇒ a1 +a2 +a3 + . . . = A−a0 (B). (1.6)

Using this equivalence and Theorem 1.5(i) we deduce the following:

a1 +a2 + . . .= A−a0 (B) (1.6)==⇒ a0 +a1 +a2 + . . .= A (wB)
1.5(i)===⇒ a0 +a1 +a2 + . . .= A (B), (1.7)

and similarly for wB

a1 +a2 + . . .= A−a0 (wB) 1.5(i)===⇒ a1 +a2 + . . .= A−a0 (B)
(1.6)==⇒ a0 +a1 +a2 + . . .= A (wB).

To see that the converse is not always true, assume a series ∑∞
n=0an is B-summable but not

wB-summable. If a0 + a1 + a2 + . . . = A (B) would imply a1 + a2 + . . . = A− a0 (B), then by
(1.6) a0 +a1 +a2 + . . .= A (wB), contradicting the assumption.

Similarly, let a series ∑∞
n=1an be B-summable but not wB-summable. By (1.6) then a0 +

a1 + a2 + . . . = A (wB), but if this would imply that a1 + a2 + . . . = A− a0 (wB), then by
Theorem 1.5(i) also a1 +a2 + . . .= A−a0 (B), which contradicts our assumption.

To prove (III) for method B∗, notice that in the case that s(x) (and so a(x) as well) has only
finite positive radius of convergence, the equations (1.4)-(1.5) are still true for their analytic
continuations to x > 0, since it is a connected domain. Therefore all the steps leading to the
proof of (III) for method B can be used for method B∗ as well.

Example 1.8. Consider the geometric series A(z) = ∑∞
n=0 z

n, convergent only for |z| < 1 to
the analytic function 1

1−z . The Borel transform of the series is

BA(z)(t) =
∞∑

n=0

(zt)n

n!
= ezt

for any z ∈ C and t≥ 0, so the Borel sum is defined as
∞∫
0

e−teztdt = lim
x→∞

e(z−1)x

1− z
− 1
z−1

,

convergent for Re(z)< 1 to function h(z) = 1
1−z .

Furthermore, since the limit limx→∞ e−xezx = 0 for Re(z) < 1, the weak Borel sum should
converge on the same domain. Indeed,

lim
x→∞e−x

∞∑
n=0

sn(z)xn

n!
= lim

x→∞e−x
∞∑

n=0

1− zn+1

1− z

xn

n!
= lim

x→∞
e−x

1− z
(ex −zezx) = lim

x→∞
1− zex(z−1)

1− z
,

which converges to h(z) for Re(z)< 1. ▲

11
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Example 1.9. It should not come as a surprise that Borel’s method is powerful enough to
sum the series F (z) =∑∞

n=0(−1)nn!zn. Its Borel transform is

BF (z)(t) =
∞∑

n=0
(−zt)n,

which converges at any z complex and |t| < 1/|z| to the analytic function 1
1+zt . This can be

analytically continued to t > 0 and so the B∗-sum of the series is the function (2), i.e.

f(z) =
∞∫
0

e−t

1+ zt
dt (B∗),

convergent for all z not real and negative. In particular, the Borel sum at z = 1 converges to∫∞
0

e−t

1+t dt. This integral is connected with WHS in many ways and will appear several times
throughout this work, always denoted as f(z) (or f(x)). ▲

1.4 Averaging methods
The definitions and theorems in this section can be found in Enyeart (RDSTT).

As mentioned earlier, Cesàro summation is an example of a particular class of summation
methods. They are all characterized by taking a (weighted) average of the partial sums in some
manner, which is closely explained in the following definition.

Definition 10. For every m ∈ N0 consider the sequence of weights
w(m) = {w0(m),w1(m),w2(m),w3(m), . . .} satisfying

wn(m) ≥ 0, ∀m,n ∈ N0 and
∞∑

n=0
wn(m) = 1, ∀m ∈ N0.

Given any sequence s = {s0, s1, s2, s3, . . .} we define a sequence of transformations T s as

T s(m) = w0(m)s0 +w1(m)s1 +w2(m)s3 + . . . =
∞∑

n=0
wn(m)sn.

If limm→∞T s(m) = c is a finite constant, we say that the sequence s is T -convergent and thus
the series ∑∞

n=0an is T -summable with T -sum c.

This transformation can be expressed by an infinite matrix of weights. It is defined as
follows:

Definition 11. (Averaging matrix): Let M = (wn(m)) be an infinite matrix with rows
numbered m ∈ N0 and columns n ∈ N0. We call it an averaging matrix if the terms are non-
negative and the sum of each row is 1.

The corresponding transformation is then obtained by multiplying an infinite vector s by
an averaging matrix M , i.e. M is the matrix representation of T :

T s = M s =


w1(1) w2(1) w3(1) · · ·
w1(2) w2(2) w3(2) · · ·
w1(3) w2(3) w3(3) · · ·

... ... ... . . .



s1
s2
s3
...


From now on, we will refer to M as both the transformation and its matrix representation.
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Example 1.10. Identity summation method
The weights are simply wn(m) = δnm and are represented by the (infinite) identity matrix I .
This method is the usual summation and its domain is therefore the set of convergent series. ▲

Example 1.11. Cesàro method
With the weights

wn(m) =
{ 1

m+1 if n≤m

0 otherwise
the averaging matrix will become

C =



1 0 0 0 · · ·
1
2

1
2 0 0 · · ·

1
3

1
3

1
3 0 · · ·

... ... ... ... · · ·
1
n

1
n

1
n

1
n · · ·

... ... ... ... . . .


One can verify easily that multiplying vector s by this matrix gives the Cesàro averages. ▲

More examples can be found in Enyeart (RDSTT), as well as the details and proofs of the
following theorems.

Theorem 1.12. If A and B are both lower triangular averaging matrices, then AB will also
be a lower triangular averaging matrix.

To clarify the importance of this statement, notice that it shows that higher order Hölder
summations (H,k), which are in essence k-times repeated Cesàro summations (C ,1), are again
averaging summations represented by matrices C k.

The following two theorems give conditions on the regularity of an averaging summation
method:

Theorem 1.13. Suppose T is a summation method given by averaging matrix M = (wn(m)).
Then this method is regular if and only if

lim
m→∞wn(m) = 0, ∀n ∈ N0.

Theorem 1.14. If A ,B are both regular averaging matrices, then AB will be a regular matrix
as well.

Hence we can see all the above mentioned methods and their iterations are regular. Another
simple example is covered in the following subsection.

1.4.1 Midpoint method
Definition 12. Define matrix P as follows:

P =



1 0 0 0 0 · · ·
1
2

1
2 0 0 0 · · ·

0 1
2

1
2 0 0 · · ·

0 0 1
2

1
2 0 · · ·

... ... ... ... ... . . .


The summation method represented by P will be called the midpoint method.
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This summation method and all its iterations (P ,k) represented by P k for any k ∈ N are
regular as an immediate consequence of the previous theorems.
Remark 4. This method represents how I see the “sum” of a divergent series intuitively: a limit
of the line connecting the points that are equally distanced from two subsequent partial sums.
If this limit does not exist, the process will be repeated again with the newly created points
(possibly an infinite number of times). Figure 1.1 illustrates this approach.

0

1

2

3

4

5

−1

−2

−3

−4

−5

−6

s0

s1

s2

s3

s4

s5

1st iteration

2nd iteration

Figure 1.1: Midpoint method applied twice to series
∞∑

n=0
(−1)n(2n+1)

It works for (oscillating) divergent series with up to a certain magnitude of oscillation growth
(i.e. the growth of the terms an in an alternating series ∑∞

n=0(−1)nan), as will be shown later.
Let us first list a few examples of divergent series with their sum computed by this method

applied a finite number of times. Computations were done in Maxima (the source code can be
found in Appendix B, Example B.1).

Example 1.15.
∞∑

n=0
(−1)n = 1−1+1−1+1−1+ . . .

The partial sums are s = {1,0,1,0,1,0, . . .} with their midpoints P s = {1
2 ,

1
2 ,

1
2 , . . .}. The limit

is then 1
2 , which is therefore the (M,1)-sum of the series. ▲

Example 1.16.
∞∑

n=0
(−1)n(2n+1) = 1−3+5−7+9− . . .

The sequence of partial sums is s = {1,−2,3,−4,5,−6, . . .}. After the first iteration we get
P s = {1,−1

2 ,
1
2 ,−

1
2 ,

1
2 , . . .} which still does not have a limit, but looks very similar to the first

example. Indeed, applying the method second time we get P 2s = {1, 1
4 ,0,0,0, . . .} with the

(M,2)-limit 0. ▲

Example 1.17.
∞∑

n=0
(−1)nn= 1−2+3−4+5−6+ . . .

with its partial sums s = {1,−1,2,−2,3,−3, . . .}. Again, applying the method twice, we first
get P s = {1,0, 1

2 ,0,
1
2 ,0, . . .} and then P 2s = {1, 1

2 ,
1
4 ,

1
4 ,

1
4 , . . .} with the (M,2)-limit 1

4 . ▲

Example 1.18.
∞∑

n=0
(−1)n(2n+1)7 = 1−37 +57 −77 +97 − . . .= 0 (P ,8)

More generally,
∞∑

n=0
(−1)n(2n+1)p needs p+1 iterations to give a finite result (s(p+1)

n being all

14
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equal for large enough n) and for p odd the (P ,p+ 1)-sum is always 0 (computed for p up to
20). This leads to an interesting identity (1.9) addressed at the end of this chapter. ▲

These results are consistent with the results in Hardy (1949) computed by several methods
(in Chapter 1).

It is easy to see that each iteration reduces the oscillation of a series by the factor 1
2 , so

(P ,k) tames the growth at least by the factor 1
2k , which will be shown properly in the following

proposition.

Proposition 1.19. For a given divergent alternating series ∑∞
n=0(−1)nan with an+1 ≥ an ≥ 0,

the oscillation after k-th iteration is reduced by factor at least 1
2k , that is, for k ≥ 1∣∣∣∣s(k)

n+1 − s(k)
n

∣∣∣∣< an+1
2k

.

Proof. First we establish that after each iteration k the resulting series will still be alternating
with non-decreasing terms, i.e. P ks =∑∞

n=0(−1)na
(k)
n with a

(k)
n+1 ≥ a

(k)
n ≥ 0 for all n ∈ N0. For

k = 0 this is true by assumption. Now assume this holds for some k, then for k+ 1 and any
n ∈ N0 the difference between two consecutive partial sums is

= s
(k+1)
n+1 − s(k+1)

n =
s

(k)
n+1 + s

(k)
n

2
−
s

(k)
n + s

(k)
n−1

2
=

s
(k)
n+1 − s

(k)
n−1

2

=
(−1)n+1a

(k)
n+1 +(−1)na

(k)
n

2
= (−1)n+1a

(k)
n+1 −a

(k)
n

2
=: (−1)n+1a

(k+1)
n+1 ,

which means that P k+1s(n) =∑n
i=0(−1)na

(k+1)
n with the terms a(k+1)

n+1 ≥ 0 and non-increasing
since

a
(k+1)
n+1 −a(k+1)

n =
a

(k)
n+1 −a

(k)
n

2
−
a

(k)
n −a

(k)
n−1

2
=
a

(k)
n+1 −a

(k)
n−1

2
≥ 0,

hence P k+1s is an alternating divergent series again. By induction, this holds for all k ∈ N0.
The oscillation for iteration k is then bounded as follows:

∣∣∣∣s(k)
n+1 − s(k)

n

∣∣∣∣ = a
(k)
n+1 =

a
(k−1)
n+1 −a

(k−1)
n

2
<

a
(k−1)
n+1
2

,

so by induction ∣∣∣∣s(k)
n+1 −s(k)

n

∣∣∣∣ < a
(0)
n+1
2k

= an+1
2k

.

The estimate is still quite rough and the following examples imply that the actual value lies
somewhere between an+1

2k and an+1
22k .

By the proposition, the method should work (after a finite number of iterations) for those
series with magnitude of oscillation growth smaller than 2k. What about the series with the
magnitude of growth approximately the same as 2k?

Example 1.20.
∞∑

n=0
(−1)n2n = 1−2+4−8+16 − . . .≈ 1

3 (P ,2500)
Clearly, no finite number of iterations will give a convergent sequence, since (P ,k) will reduce
the terms an(k) by factor 2k and the terms greater than that will oscillate without a bound.
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However, applying the method enough times can yield a good estimate of the sum. Using 5000
terms and approximately 2500 iterations resulted in an estimate close to 1

3 with precision to 100
decimal places. This agrees with the results in Hardy (1949) and with the formal generalization
of the formula for summing geometric series:
∞∑

n=0
(−2)n ↔ 1

1−(−2) = 1
3 . ▲

Example 1.21.
∞∑

n=0
(−1)nn2n = 0×1−1×2+2×4−3×8+4×16− . . .≈ −0.22 = −2

9 (P ,1523)
3000 terms used, precision 10 decimal places. This series is a term-by-term derivative of the
geometric series 2∑∞

n=0(−2)n, and the result agrees with the derivative of its formal sum, that
is, d

dx
2

1−x

∣∣∣
x=−2

= −2
9 . ▲

Example 1.22.
∞∑

n=0
(−1)n22n = 1−4+16−64+256− . . .≈ 1

5 (P ,4252)

The method still seems to work for this series (the oscillation growth being 22n), with less
precision than the previous example. Summing 3000 terms to a precision of 10 decimal places
requires 4252 iterations and the result converges to 1

5 in agreement with the geometric series
formula. ▲

Example 1.23.
∞∑

n=0
(−1)n23n = 1−16+256− . . . not summable,

After a number of iterations the result converges to the first term of the series, instead of the
expected result 1

9 . The same happens when the first term is replaced by an arbitrary number.
This seems to imply that the growth of the oscillation should be of the magnitude less than
22n to allow summation or approximation by this method. ▲

Example 1.24.
∞∑

n=0
(−n)n = 1−1+4−27+256− . . . not summable with the same result as in

the previous example.
▲

What exactly is happening and why, for series with too steep a growth, the iterations
converge to the value of the first term? To clarify this, let us take a closer look at matrices
P k:

P =



1 0 0 0 0 · · ·
1
2

1
2 0 0 0 · · ·

0 1
2

1
2 0 0 · · ·

0 0 1
2

1
2 0 · · ·

... ... ... ... ... . . .


, P 2 =



1 0 0 0 0 · · ·
3
4

1
4 0 0 0 · · ·

1
4

2
4

1
4 0 0 · · ·

0 1
4

2
4

1
4 0 · · ·

... ... ... ... ... . . .


,

P 3 =



1 0 0 0 0 · · ·
7
8

1
8 0 0 0 · · ·

4
8

3
8

1
8 0 0 · · ·

1
8

3
8

3
8

1
8 0 · · ·

0 1
8

3
8

3
8

1
8 · · ·

0 0 1
8

3
8

3
8 · · ·

... ... ... ... ... . . .


, P 4 =



1 0 0 0 0 0 · · ·
15
16

1
16 0 0 0 0 · · ·

11
16

4
16

1
16 0 0 0 · · ·

5
16

6
16

4
16

1
16 0 0 · · ·

1
16

4
16

6
16

4
16

1
16 0 · · ·

0 1
16

4
16

6
16

4
16

1
16 · · ·

... ... ... ... ... ... . . .
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The pattern is fairly simple and easy to prove by induction: fix k and consider the binomial
coefficients

(
k
0

)
,
(

k
1

)
,
(

k
3

)
, . . . ,

(
k
k

)
. Their sum is established by the binomial identity

k∑
m=0

(
k

m

)
= 2k, (1.8)

so divided by 2k the new sum will be exactly 1. The matrix P k is constructed as follows:
in each row, distribute these numbers (divided by 2k) one by one starting from the diagonal
and continuing to the left; when reaching the first column, add all the remaining coefficients
and let this be the value of the first element in the row. The (k+ 1)-st row will be the first
complete row listing all the coefficients separately, the following rows will then be identical but
always shifted by one to the right. Identity (1.8) above guarantees that the sum of each row is 1.

In general, P k =

1
2k



2k 0 0 0 0 · · · 0 · · · 0 0 0 · · ·
2k −

(
k
0

) (
k
0

)
0 0 0 · · · 0 · · · 0 0 0 · · ·

2k −
(

k
1

)
−
(

k
0

) (
k
1

) (
k
0

)
0 0 · · · 0 · · · 0 0 0 · · ·

2k −
(

k
2

)
−
(

k
1

)
−
(

k
0

) (
k
2

) (
k
1

) (
k
0

)
0 · · · 0 · · · 0 0 0 · · ·

... ... ... ... ... · · · ... · · · ... ... ... · · ·
0

(
k
k

) (
k

k−1

) (
k

k−2

) (
k

k−4

)
· · ·

(
k
m

)
· · ·

(
k
1

) (
k
0

)
0 · · ·

0 0
(

k
k

) (
k

k−1

) (
k

k−3

)
· · ·

(
k

m−1

)
· · ·

(
k
2

) (
k
1

) (
k
0

)
· · ·

... ... ... ... ... · · · ... · · · ... ... ... . . .


Because of the accumulation of the coefficients in the first term of the first k rows, each

iteration puts more weight on s1. If the oscillation growth of the series is much faster than that
of 2n, it forces the summation to be iterated too many times, i.e. the number of iterations k
is significantly larger than that of terms (n) used. In the meantime the first term of the series
will gradually take over all the other terms. The result is that the partial sums of the k-th
iteration will all converge to the value of the first term faster than the oscillation error a(k)

n will
converge to 0.

More precisely, notice the value of the n-th component of P ks:

s(k)
n =

2k −
(

k
n−1

)
− . . .−

(
k
1

)
−
(

k
0

)
2k

s0 − . . . =

1−

n−1∑
m=0

(
k
m

)
2k

s0 + . . . .

The term in the brackets can get arbitrarily close to 1 depending on choice of k. Because of
the distribution of binomial numbers in each line of Pascal’s triangle (increasing towards the
middle) and the fact that there are k+ 1 numbers in k-th line summing to 2k, it is certainly
true that (as long as n < k

2 )
n−1∑
m=0

(
k
m

)
2k

<
n−1
k+12k

2k
<

n

k
,

therefore a suitable choice of k can make s(k)
n arbitrarily close to s0. (In reality it converges a

lot faster than our very crude estimate).
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Averaging methods Preliminaries

Now let’s say we want to use 100 terms of the Wallis’ hypergeometric series to approxi-
mate its sum using this method. As 100! has approximately the same magnitude as 2525, we
will need at least 525 iterations to make the oscillation error small. After only 300 iterations,
s100(300) ≈ 0.999999996s0 and subsequent iterations will decrease the influence of other terms
drastically. By the 500-th iteration all the terms are roughly equal to 1 (value of s0), with error
at most 10−5. As the number of iterations needed will only increase with more terms added,
the problem persists.

Notice in the previous examples that the number of iterations was lower than the number of
terms used when the method worked, the borderline example being ∑∞

n=0(−1)n22n where k > n
but still k < 2n so the first term has a small influence on the result. All the preceding examples
had oscillation growth less than 22n and those not summable at all had a greater growth.
Remark 5. The plausibility of these results is relying heavily on the fact that the series are
given by an explicit and non-changing formula for all terms, without a sudden change later
on. In other words, the approximation will be accurate if the “pattern” of the series will not
change. This is an interesting result, as it indicates a property known to convergent series: in
order to get arbitrarily close to the limit it is sufficient to sum up a finite number of terms
(provided the series has an eventual pattern).
Remark 6. Recall Example 1.18. Based on the trials run for odd p up to p= 21, it is proposed
that the series ∑∞

n=0(−1)n(2n+ 1)p is P p+1-summable to 0, with an additional property that
the (p+1)-times transformed sequence of the partial sums is eventually constant, i.e.:

s
(p+1)
N = 0 for N > p+1.

If we write this result in the explicit form, that is, as the vector of the partial sums multiplied
by the N -th line of the matrix P p+1, the proposition is as follows:

For any p odd and all N > p+1

p+1∑
i=0

(
p+1

i

)
2p+1

N+i∑
n=N

(−1)n(2n+1)p = 0,

which is equivalent to
p+1∑
j=0

(−1)j(2j+2N +1)p
p+1∑
i=j

(
p+1
i

)
= 0. (1.9)
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Chapter 2

Euler’s third method: ODE

As we defined earlier, Wallis’ hypergeometric series that Euler got intrigued by is the series
∞∑

n=0
(−1)nn! = 0!−1!+2!−3!+4!−5!+ . . .

which is the case z = 1 of the hypergeometric power series (1)

F (z) =
∞∑

n=0
(−1)nn!zn = 1−1!z+2!z2 −3!z3 +4!z4 −5!z5 + . . . ,

that converges only for z = 0. It is not summable by any of the methods mentioned so far due
to its fast growth except for the Borel method, as demonstrated in Example 1.9. At the time
of Euler’s life this method was not yet invented, but Euler arrived at the “right” result in a
few different ways. One of them was solving an ordinary differential equation that the series
formally satisfies.

First, we will follow the process as it is outlined in Hardy (1949), section 2.4, filling in the
details. This approach can hardly be considered rigorous as it relies heavily on formal operations
with series and integrals, leaving out many details that need to be properly addressed. That
might prove to be quite difficult though, so we will instead propose a slightly different solution
in section 2.2 that utilises the results from the previous part but avoids most of its issues.

Throughout this section we will differentiate between a series that formally solves a given
equation (denoted by a capital letter) and a well defined function that is a solution to the same
equation (denoted by the corresponding small letter).

2.1 Outline of the method as described in Hardy (1949)
For x > 0 define formally a function

Φ(x) = xF (x) =
∞∑

n=0
(−1)nn!xn+1 = x−1!x2 +2!x3 −3!x4 + . . . .

Term-by-term differentiation suggests that Φ(x) formally solves the equation

x2Φ′(x)+Φ(x) = x2(1!−2!x+3!x2 − . . .)+x−1!x2 +2!x3 −3!x4 + . . . = x. (2.1)

Let ϕ(x) be a solution to this equation, that is, x2ϕ′(x)+ϕ(x) = x. It has an integrating factor
x−2e− 1

x which transforms it into a separable equation

ϕ′(x)e− 1
x + ϕ(x)e− 1

x

x2 = e− 1
x

x
⇐⇒

[
ϕ(x)e− 1

x

]′
= e− 1

x

x
.
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Integrating both sides yields

ϕ(x)e− 1
x =

x∫
0

e− 1
t

t
dt =⇒ ϕ(x) = e

1
x

x∫
0

e− 1
t

t
dt.

In accordance with the original series ϕ(x) vanishes with x, as can be proven by integrating by
parts (differentiating t and integrating e− 1

t t−2):∣∣∣∣∣∣e 1
x

x∫
0

e− 1
t

t
dt

∣∣∣∣∣∣ =

∣∣∣∣∣∣e 1
x

[te− 1
t

]x

0
−

x∫
0

e− 1
t dt

∣∣∣∣∣∣ =

∣∣∣∣∣∣x− e
1
x

x∫
0

e− 1
t dt

∣∣∣∣∣∣
≤ |x|+

∣∣∣∣∣∣e 1
x

x∫
0

e− 1
t dt

∣∣∣∣∣∣ = x+ e
1
x

x∫
0

e− 1
t dt,

the last equality true because the exponential function is positive. Now since t takes values
between 0 and x (positive), we have t≤ x thus −1

t ≤ − 1
x . Hence the integrand can be bounded

by e− 1
x resulting in the estimate

|ϕ(x)| ≤ x+
x∫

0

e
1
x e− 1

x dt = x+(x−0) = 2x.

This shows for small x that ϕ(x) =O(x) and therefore vanishes with x.
For our original series F (x) = Φ(x)/x we then have a corresponding function

f(x) = ϕ(x)
x

= e
1
x

x

x∫
0

e− 1
t

t
dt,

which we can rewrite as

f(x) =
x∫

0

e
t−x
xt

xt
dt.

Using a somewhat unintuitive but valid substitution t= x
1+xw (with dt= −x2

(1+xw)2 dw and x−t
xt =

w, changing limits to ∞ and 0) we get

f(x) =
0∫

∞

e−w

x2
1+xw

−x2

(1+xw)2 dw =
∞∫
0

e−w

1+xw
dw, (2.2)

the very same function as the Borel sum of the series (1) in Example 1.9. This form is interesting
at least for one reason - expanding the integrand as a geometric series (formally, since |xw|< 1
will not be always satisfied) and integrating term-by-term brings us back to the original series,
as is shown next:

∞∫
0

e−w

1+xw
dw =

∞∫
0

e−w
∞∑

n=0
(−xw)n dw =

∞∑
n=0

∞∫
0

e−w(−xw)n dw =
∞∑

n=0
(−x)n

∞∫
0

e−wwn dw

=
∞∑

n=0
(−x)nn! = 1−1!x+2!x2 −3!x3 +4!x4 − . . . ,

where we utilized Lemma 1.1.
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Euler’s third method: ODE Rigorous approach to the ODE method

2.2 Rigorous approach to the ODE method
.

Let us start by defining an ordinary differential equation for the original series
F (x) = 1 − x+ 2!x2 + 3!x3 − 4!x4 + . . . with x ≥ 0. Either by substituting Φ(x) = xF (x) in
equation (2.1) or by direct computation with the series we find that F (x) formally (term by
term) satisfies the differential equation

(1+x)F (x)+x2F ′(x) = 1 (2.3)
F (0) = 1, (2.4)

with the initial condition agreeing with the original series. First, the equation will be solved
by the power series method and later by finding the general solution.

Proposition 2.1. The power series solution to (2.3)-(2.4) is
∞∑

n=0
(−1)nn!xn.

Proof. Assume there is a solution in the form of a power series
∞∑

n=0
anx

n and plug it into (2.3).
Then

(1+x)
∞∑

n=0
anx

n +x2
∞∑

n=1
annx

n−1 =
∞∑

n=0
anx

n +
∞∑

n=1
an−1x

n +
∞∑

n=2
an−1nx

n

= a0 +
∞∑

n=1
[an +an−1 +(n−1)an−1]xn = a0 +

∞∑
n=0

(an +nan−1)xn = 1

and matching the coefficients implies

a0 = 1, an = −nan−1 for n ∈ N,

resulting, as expected, in the original series where an = (−1)nn! for n ∈ N0.

Now let us find a general solution to (2.3)-(2.4) which we will call f(x). First we solve the
homogeneous equation: if x= 0 then fh(0) = 0. For x > 0 the equation is separable:

f ′
h

fh
= −1+x

x2 .

Integrating both sides w.r.t. x we get

ln |fh| = −1
2

ln
∣∣∣x2
∣∣∣+ 1

x
+ c = ln

(
x2
)− 1

2 + 1
x

+ c = ln 1
x

+lne
1
x +lnD = lnDe

1
x

x

(where c ∈ R and D = ec > 0), hence fh(x) = Ce
1
x

x for C ∈ R including the trivial solution.
As a particular solution we will conveniently use the improper integral form from (2.2), so

the function f(x) defined in (2):

fp(x) =
∞∫
0

e−w

1+xw
dw, (2.5)

showing by direct substitution into (2.3) that it indeed gives the desired result (notably for all
x≥ 0 since this integral is defined for all such x). Before that, however, we need to show that
this function is well-behaved, allowing us to differentiate under the integral sign. Let us recall
the following theorem for differentiating under the improper integral sign:
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Theorem 2.2. Let g(w,x) be a function defined on D= [a,∞)× [c,d] with g and gx continuous
on D. Suppose the improper integrals

∫∞
a g(w,x)dw and

∫∞
a gx(w,x)dw are both absolutely

convergent. Then h(x) =
∫∞
a g(w,x)dw is differentiable and

h′(x) =
∞∫
a

gx(w,x)dw.

A proof can be found in Zorich (2002), Chapter 17.

Corollary 2.3. Function f(x) defined in (2) is infinitely many times differentiable and

f (k)(x) =
∞∫
0

(−1)kk!wke−w

(1+xw)k+1 dw.

Proof. Define g(w,x) = e−w

1+xw with a = 0 and d ≥ c ≥ 0 arbitrary. The first two conditions of
the theorem are clearly satisfied. The derivatives can be computed inductively as

∂k

∂xk
g(w,x) = (−1)kk!wke−w

(1+xw)k+1 .

Each of these is bounded by k!wke−w, which is an integrable majorant with a finite integral
(Lemma 1.1), therefore all integrals

∫∞
0

∂k

∂xk g(w,x)dw converge uniformly and absolutely. Ap-
plying Theorem 2.2 inductively implies that f(x) is infinitely many times differentiable on any
closed interval [c,d] with c, d≥ 0, therefore as well on [0,∞), which concludes the proof.

Now we can verify equation (2.3) for fp(x) = f(x):

(1+x)fp +x2f ′
p = (1+x)

∞∫
0

e−w

1+xw
dw + x2

∞∫
0

−e−ww

(1+xw)2 dw

=
∞∫
0

e−w

1+xw
dw +

∞∫
0

e−wx

(1+xw)2 dw.

Integrating the second integral by parts (differentiating e−w and integrating x
(1+xw)2 ) will result

in

(1+x)fp +x2f ′
p =

∞∫
0

e−w

1+xw
dw+ lim

R→∞

[
−e−w

1+xw

]R

0
−

∞∫
0

e−w

1+xw
dw = lim

R→∞

−e−R

1+xR
+1

= 1,

proving that fp(x) is indeed a particular solution for (2.3).
The general solution of (2.3) is then defined as

fh(x)+fp(x) =


∞∫
0
e−w = 1 for x= 0,

C e
1
x

x +
∞∫
0

e−w

1+xw dw, C ∈ R for x > 0.

The only choice of C satisfying the auxiliary condition and making the solution continuous on
[0,∞) is C = 0, since e

1
x

x is unbounded. Hence we have proved the following proposition:
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Proposition 2.4. The unique solution to (2.3)-(2.4) is

f(x) =
∞∫
0

e−w

1+xw
dw.

Since the power series solution was ∑∞
n=0(−1)nn!xn, these two solutions are, in a sense,

equivalent. The actual link between the two solutions will be clarified in the next section,
where we define asymptotic series and prove that ∑∞

n=0(−1)nn!xn is an asymptotic series for
f(x) and solves the same equation not just by coincidence.

At x= 1 the value of this integral f(1) = δ corresponds to WHS. An approximate value of
f(1) will be computed by multiple methods:

• Chapter 2, equation (2.7) below (4 decimal places),

• Chapter 3, Table 3.1 (2 decimal places),

• Chapter 5, Table 5.1 (272 decimal places) and Table 5.2 (8683 decimal places).

The first method that we include here is one that Euler mentioned in a letter to Niklaus
Bernoulli but did not include in his paper Euler (1760). It makes use of the following form of
f(x):

f(1) =
∞∫
0

e−w

1+w
dw =

1∫
0

1
1+ lnv

dv.

Since lnv is analytic at v = 1 and 1
1+x is analytic at x= 0, the composition of the two functions

is analytic at v = 1, hence the Taylor series of the integrand at v = 1 with coefficients

cn = dn

dvn

1
1− lnv

∣∣∣∣∣
v=1

will converge for v = (0,1]. Moreover the limit

lim
x→0

1∫
x

1
1+ lnv

dv

is finite, so the Taylor series can be integrated term by term:

1∫
0

1
1+ lnv

dv =
1∫

0

∞∑
n=0

cn(v−1)n

n!
dv =

∞∑
n=0

cn

1∫
0

(v−1)n

n!
dv =

[ ∞∑
n=0

cn(v−1)n+1

(n+1)!

]1

0

=
∞∑

n=0

(−1)ncn

(n+1)!
. (2.6)

Euler computed only the first few derivatives cn and since there seems to be no simple enough
explicit pattern, we used Maxima to compute the first 1000 derivatives (see the source code in
Appendix B, Example B.2). The series converges quite slowly and the approximate value of δ
after adding the terms from n= 0 to n= 1000 is

δ ∼ 0.596358, (2.7)

which agrees with the known decimal expansion of δ to 4 (underlined) decimal places.
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2.3 Asymptotic series and f (x)

An asymptotic expansion describes the asymptotic behaviour of a function in terms of a se-
quence of gauge functions. It has the property that truncating the series after a finite number
of terms provides an approximation to the given function as the argument of the function tends
towards a particular point (as opposed to the usual concept of a limit of a series at a fixed
point). A convergent Taylor series of a continuous function at x = 0 fits this definition, and
so is the convergent case of an asymptotic series, but the definition is more general as it also
allows divergent series (which are usually meant by the name asymptotic series). Moreover, the
same asymptotic series represents infinitely many functions, although there are some uniqueness
theorems that depend on exact bounds of the error terms.

The definition was introduced by Poincaré and it is introduced here as the real case (the
complex case is analogous). Let us first define the gauge functions:

Definition 13. (Asymptotic scale): If {φn}n∈N0 is a sequence of continuous functions on
some domain D ⊆ R, L a limit point of D (possibly infinity), and for every n ∈ N0 we have
φn+1(x) = o(φn(x)) as x → L, we call the sequence {φn} an asymptotic scale or asymptotic
sequence. The functions φn are called gauge functions.

An example of such a sequence would be φn(x) = xn. Since limx→0
φn+1(x)

φn(x) = limx→0
xn+1

xn =
0, it satisfies the condition φn+1(x) = o(φn(x)) as x → 0. Similarly the functions {x−n}n∈N
form an asymptotic scale for x→ ∞.

Definition 14. (Asymptotic series): If {φn}n∈N0 is an asymptotic scale on domain D and
g : D → R a function continuous on D, then we say g has an asymptotic (series) expansion∑∞

n=0anφn(x) and write

g(x) ∼
∞∑

n=0
anφn(x)

if

g(x)−
N∑

n=0
anφn(x) = o(φN ) as x→ L

or g(x)−
N∑

n=0
anφn(x) = O(φN+1) as x→ L.

We call RN (x) = g(x)−∑N
n=0anφn(x) the error term or the remainder.

Proposition 2.5. If a function g(x) has an asymptotic expansion (for a given asymptotic scale
{φn}n∈N0), this expansion is unique.

Proof. We assume the gauge functions do not vanish in some punctured neighbourhood of L
(which is usually the case). Then the coefficients of the series are uniquely determined as
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follows:

a0 = lim
x→L

f(x)
φ0(x)

,

a1 = lim
x→L

f(x)−a0φ0(x)
φ1(x)

,

...

an = lim
x→L

f(x)−
n−1∑
k=0

akφk(x)

φn(x)
.

Asymptotic series have many desirable properties that make them a useful tool for solving
ordinary differential equations: linearity is obvious from the definition, i.e.

g1(x) ∼
∞∑

n=0
anφn(x) and g2(x) ∼

∞∑
n=0

bnφn(x) as x→ L,

implies

αg1(x)+βg2(x) ∼
∞∑

n=0
(αan +βbn)φn(x) as x→ L

for any α,β complex. Moreover, in case the gauge functions are (positive or negative) powers
of x, the product of the two functions is asymptotically represented by the Cauchy product of
their respective asymptotic expansions. Similar results hold for a composition of two functions
g2(g1(x)) and a reciprocal of a function 1

g(x) , with the necessary conditions so that the functions
and their expansions are well defined.

Asymptotic expansions of a (complex) function g(x) that is analytic in a sector S = {x ∈
C : 0 < |x| ≤ M, α ≤ argx ≤ β} where M > 0 and β > α, can be integrated term by term
to get an asymptotic expansion of

∫ x
0 g(t)dt. Similarly, term-wise differentiation is possible

and the resulting expansion represents g′(x) in every proper subsector S∗ of S, that is, for
S∗ = {x ∈ C : 0< |x| ≤M, α∗ ≤ argx≤ β∗}, where α < α∗ ≤ β∗ < β.

More interesting theory about asymptotic solutions to ODEs can be found in Wasow (1987).
Proofs of the above results are in Section 8 and the following important theorem can be found
in Section 12.

Theorem 2.6. (Main Asymptotic Existence Theorem): Let S be an open sector of the
complex plane with vertex at the origin and a positive central angle not exceeding π

q+1 (q a non-
negative integer). Let g(x,y) (x and y both complex) be a function with the following properties:

(i) g(x,y) is a polynomial in y with coefficients that are analytic in the region

0< |x| ≤M, x ∈ S (M constant);

(ii) the coefficients of the polynomial g(x,y) have asymptotic series in powers of x as x→ 0,
in S;

(iii) the limit

lim
x→0
x∈S

 ∂g
∂y

∣∣∣∣∣
y=0


is different from zero;
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(iv) The differential equation
xqy′ = g(x,y) (2.8)

is formally satisfied by a power series of the form ∑∞
n=0anx

n.

Then there exists, for sufficiently small x ∈ S, a solution y = ϕ(x) of (2.8) such that in every
proper subsector of S ϕ(x) ∼∑∞

n=0anx
n as x→ 0.

If we examine differential equation (2.3) from the previous section, it is easy to see it can
be written as x2y′ = 1 − (1 +x)y. Then according to the theorem above, q = 2 and so S can
be taken as S = {x ∈ C : 0 < |x| ≤ M,−π

6 < argx < π
6 } for any M > 0. The right side of the

equation, g(x,y) = 1 − (1 +x)y, is a polynomial in y with coefficients 1 and 1 +x, which are
both analytic in S and trivially are their own asymptotic series, since they are polynomials.
The third condition is satisfied as well:

lim
x→0
x∈S

1+x = 1 ̸= 0.

Lastly, we know that the equation is formally satisfied by the series (1). The theorem then
implies this series is an asymptotic expansion to the known solution of the equation, which,
together with the initial condition (2.4), is the function f(x) =

∞∫
0

e−w

1+xw dw.

Remark 7. Although we have solved (2.3)-(2.4) only for nonnegative x, Theorem 2.2 of Wasow
(1987) implies there is a unique analytic solution to the equation in the above defined sector
S. Since f(x) is analytic in this sector and solves the equation for x > 0, it must be the unique
solution in S.

The consequence of the above theorem can be also shown directly from the definition of
asymptotic series:

Proposition 2.7. The asymptotic series for f(x) =
∞∫
0

e−w

1+xw dw at x= 0 is
∞∑

n=0
(−1)nn!xn, that

is,

f(x) ∼
∞∑

n=0
(−1)nn!xn.

Proof. We will consider only real positive x, the proof for complex x (x ∈ C \R−) is similar.
The integrand can be expanded as follows:

f(x) =
∞∫
0

e−w

(
1−xw+(xw)2 −·· ·+(−xw)n + (−xw)n+1

1+xw

)
dw

=
∞∫
0

e−w
(
1−xw+(xw)2 −·· · +(−xw)n

)
dw +

∞∫
0

e−w (−xw)n+1

1+xw
dw

= 1−1!x+2!x2 −3!x3 + · · ·+(−1)nn!xn +Rn(x),

where Rn(x) can be bounded since x,w are positive, hence by Lemma 1.1

|Rn(x)| ≤
∞∫
0

∣∣∣∣∣e−w (−xw)n+1

1+xw

∣∣∣∣∣dw ≤ xn+1
∞∫
0

e−wwn+1dw = xn+1(n+1)! = o(xn).

This concludes the proof.
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Remark 8. One can easily verify that the Taylor series of f(x) at x= 0 is again the series (1),
which is convergent only for x= 0.

Now the relation between the two solutions of the ODE, a formal divergent power series and
an analytic function, is explained. As an interesting fact we note that asymptotic expansions
can be used to find, or at least approximate solutions to many linear and nonlinear differential
equations and systems of differential equations, including boundary value problems with small
parameters.

The main difference between convergent series and asymptotic series is the parameter in
the limit; while the convergence is inspected as n → ∞ for a fixed x, asymptoticity at x = L
inspects the behaviour of a (fixed) partial sum as x→ L. With asymptotic series, after adding
finitely many terms (as a rule of thumb truncating the series after the smallest term) we get
the best possible approximation, as opposed to increasing precision with increasing number of
terms added from a convergent series.

This means that the leading term in the series ∑∞
n=0(−1)nn!xn is the best approximation

for f(x) in a neighbourhood of 0, but applying some acceleration method to the series could
improve this. One example, Euler series transform, is described in Chapter 3 (see also Table
3.1 for approximation of f(1) by this method).

2.3.1 Borel’s summation method and asymptotic series

Recall Example 1.9, where the Borel sum of F (z) was found to be f(z) =
∞∫
0

e−t

1+ztdt. It is the
same function as in the ODE method, whose asymptotic series is exactly the original series to
which the method was applied. This is not a coincidence, as Borel’s methods can, under certain
conditions, give a function that has the original series as its asymptotic expansion. Watson’s
recovery theorem, which is a consequence of Watson’ uniqueness theorem, describes this result.

Theorem 2.8. (Watson’s uniqueness theorem): Let {a0,a1,a2, . . .} be a sequence of com-
plex numbers and let h(z) be a function satisfying the conditions

(i) h(z) is analytic and single-valued in the sector S(α,β) = {z ∈ C : 0< |z|<∞, α < argz <
β} with β−α > π,

(ii) for all z ∈ S(α,β) and every n ∈ N

|Rn−1(z)| =

∣∣∣∣∣∣h(z)−
n−1∑
i=0

aiz
i

∣∣∣∣∣∣ ≤ cn+1n!|z|n,

where the positive constant c does not depend on z and n but may depend on h(z).

Then the function h(z) is uniquely determined on S(α,β).

Theorem 2.9. (Watson’s recovery theorem): Assume that the function h(z) satisfies con-
ditions (i) and (ii) of Watson’s uniqueness theorem in a sector S(−π

2 − ε, π
2 + ε) for some

ε ∈ (0, π
2 ). Then

(i) the Borel transform of the (formal) series A = ∑∞
n=0an given as BA(t) = ∑∞

n=0
antn

n! is
absolutely convergent and represents an analytic function H(t) in the disk Dc with radius
a and centre at the origin;
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(ii) the function H(t) can be continued analytically from the disk Dc to the region Dc ∪ {t ∈
C : |arg t|< ε};

(iii) the function h(z) can be expressed as the Borel sum of its asymptotic series

h(z) =
∞∫
0

e−tH(zt)dt,

where the integral is absolutely convergent for z ∈ S(−π
2 ,

π
2 ).

The details and proofs of these theorems can be found in Watson (1912), Sections 8 and 9.
In this sense, a function satisfying the properties in this theorem is the most suitable function
for its asymptotic series among infinitely many functions with the same asymptotic series.

Since the function f(z) =
∫∞
0

e−t

1+zt dt satisfies the conditions of the theorem, as a consequence
it is equal to the Borel sum of its asymptotic series ∑∞

n=0(−1)nznn!, which was already clear
from the previous section.
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Chapter 3

Euler’s first method: Euler series
transform

In a convergent alternating series, the partial sums after adding a positive term bound the
sum from above, while those where the last term added was negative bound the sum from
below. If we extend this notion to divergent alternating series as well, the sequence of partial
sums again gives alternating lower and upper bounds for the value we wish to assign to the
series. These will not get more accurate as the series progresses, however, and can possibly
grow without bound. The best bounds are then those pairs of partial sums closest to each
other. This correlates with the rule of truncating an asymptotic series after adding the smallest
term, which was addressed in Section 2.3.

Of course, in case of WHS, these bounds are always increasing, so to begin with we can
only tell that the value will be between 0 and 1. Provided we can define a transformation that
will result again in an alternating series equivalent to the original one under this definition but
slower in its divergence, we may be able to improve these bounds. In other words, we accelerate
the series. One such transformation is motivated by the Euler summation method defined by
Definition 5; called Euler transform, it is defined in the very same way, only now dropping the
requirement of the series being convergent for small values of x. It can be therefore considered
a weaker version, but it will be shown that it is totally regular nevertheless and even obeys
rules (I)-(III). Its repeated application to WHS results in approximations of δ, listed in Table
3.1.

In Section 3.2 we define the generalised Euler’s summation (E,q) for q > 0 and its corre-
sponding generalised Euler transform and prove regularity and consistency with rules (I)-(III)
and the connection to repeated Euler transform. In the last section the connection to Borel’s
summation method is explained.

3.1 Euler transform and its application on WHS
We begin with definition of the Euler transform E that corresponds to Euler’s summation
(E,1).

Definition 15. (Euler series transform): For a series ∑∞
n=0an define its Euler transform E

as
∞∑

n=0

1
2n+1 bn, where bn =

n∑
i=0

(
n

i

)
ai. (3.1)
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Remark 9. In an alternative definition, reserved for alternating series ∑∞
n=0(−1)nan with an ≥ 0,

the transform is given as
∞∑

n=0

(−1)n

2n+1 bn, with bn =
n∑

i=0
(−1)i

(
n

i

)
an−i.

Using the difference operator the coefficients can be expressed as

bn = ∆na0,

which is a consequence of the following Lemma.

Lemma 3.1. For any sequence {am}m∈N0 with non-negative terms it is true for any n ∈ N0
and any m ∈ N0 that

∆nam =
n∑

i=0
(−1)i

(
n

i

)
an+m−i.

Proof. For n = 0 trivially am = ∆0am for any m and for n = 1 am+1 − am = ∆1am. Assume
that for some n ∈ N0 the following holds:

∀m ∈ N0 : ∆nam =
n∑

i=0
(−1)i

(
n

i

)
an+m−i,

then for n+1 and an arbitrary m we get

∆n+1am = ∆nam+1 −∆nam =
n∑

i=0
(−1)i

(
n

i

)
an+m+1−i −

n∑
i=0

(−1)i

(
n

i

)
an+m−i

=
n∑

i=0
(−1)i

(
n

i

)
an+m+1−i +

n+1∑
i=1

(−1)i

(
n

i−1

)
an+m+1−i =

n+1∑
i=0

(−1)i

(
n+1
i

)
an+1+m−i,

as a consequence of the binomial identity
(

n
i

)
+
(

n
i−1

)
=
(

n+1
i

)
. By induction, the assertion

holds for all n ∈ N0.

It is possible to represent the Euler transform by a matrix. It is derived in Hardy (1949),
Section 8.2, but here we will instead use a simpler approach to prove the relation. Another proof
will be given in Section 3.2 as a consequence of the matrix representation of the generalised
Euler transform.

Proposition 3.2. The matrix representation of the Euler series transform is given as E =
(cm,n) with

cm,n =


1

2m+1

(
m+1
n+1

)
if n≤m,

0 otherwise.

Proof. Denote sn = ∑n
k=0ak the partial sums of the original series and tm = ∑m

k=0
1

2k+1 bk the
partial sums of the transformed series. For m= 0 it is trivially true that t0 = 1

2b0 = 1
2a0 = 1

2s0
and so c0,0 = 1

2 and c0,n = 0 for all n > 0.
Assume that for some m it is true that tm =∑m

n=0
1

2m+1

(
m+1
n+1

)
sn, thus cm,n = 1

2m+1

(
m+1
n+1

)
if

n≤m and 0 otherwise. Then using this assumption,

tm+1 =
m+1∑
n=0

1
2n+1 bn =

m∑
n=0

1
2n+1 bn + 1

2m+2 bm+1 =
m∑

n=0

1
2m+1

(
m+1
n+1

)
sn + 1

2m+2 bm+1.
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We expand bm+1 and divide the first sum by 2 to lay out the formula sn = sn−1 +an:

tm+1 =
m∑

n=0

1
2m+1

(
m+1
n+1

)
sn +

m+1∑
n=0

1
2m+2

(
m+1
n

)
an

=
m∑

n=0

1
2m+2

(
m+1
n+1

)
sn +

m∑
n=0

1
2m+2

(
m+1
n+1

)
sn +

m+1∑
n=0

1
2m+2

(
m+1
n

)
an

=
m∑

n=0

1
2m+2

(
m+1
n+1

)
sn +

m+1∑
n=1

1
2m+2

(
m+1
n

)
sn−1 +

m+1∑
n=0

1
2m+2

(
m+1
n

)
an

and after adding the last two terms we can use the binomial identity
(

k
l

)
+
(

k
l+1

)
=
(

k+1
l+1

)
:

tm+1 =
m∑

n=0

1
2m+2

(
m+1
n+1

)
sn +

m+1∑
n=0

1
2m+2

(
m+1
n

)
sn

=
m+1∑
n=0

1
2m+2

(
m+2
n+1

)
sn,

implying that cm+1,n = 1
2m+2

(
m+2
n+1

)
for n ≤ m+ 1 and 0 otherwise. By induction, this is true

for all m ∈ N0, concluding the proof.

The following theorems will be used to show that this method is totally regular.

Theorem 3.3. (Toeplitz): A summation method represented by matrix T = (cm,n) is regular
if and only if:

(i) there is a number H ≥ 0 such that
∞∑

n=0
|cm,n|<H for all m in N0,

(ii) lim
m→∞cm,n = 0 for all n in N0 and

(iii) lim
m→∞

∞∑
n=0

cm,n = 1.

A proof can be found in Hardy (1949), Section 3.3.

Definition 16. We call a transformation T = (cm,n) positive if there is n0 ∈ N0 such that
cm,n ≥ 0 for all m ∈ N0 and n≥ n0.

Theorem 3.4. A transformation T = (cm,n) is totally regular if it is positive, regular and lower
triangular, i.e. cm,n = 0 for n >m.

This theorem was proved by W.A. Hurwitz, in PLMS (1926), pages 231-248.

Corollary 3.5. The Euler series transform and its iterations are totally regular summation
methods.

Proof. Notice that cm,n ≥ 0 ∀m,n ∈ N0 and cm,n = 0 for n >m, hence the matrix is positive,
lower triangular and

(i)
∞∑

n=0
|cm,n| =

m∑
n=0

1
2m+1

(
m+1
n+1

)
< 1

2m+1

m+1∑
n=0

(
m+1
n+1

)
= 1 for all m,
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(ii) lim
m→∞cm,n = lim

m→∞
(m+1)!

2m+1(m−n)!(n+1)!
< lim

m→∞
(m+1)!

2m+1(m−n)!
< lim

m→∞
(m+1)n+1

2m+1

= lim
m→∞

(n+1)!
2m+1(ln2)n+1 = 0

after applying L’Hospital’s rule (n+1)-times, and

(iii) lim
m→∞

∞∑
n=0

cm,n = lim
m→∞

1
2m+1

m∑
n=0

(
m+1
n+1

)
= lim

m→∞

(
1− 1

2m+1

)
= 1.

The conditions of both theorems are satisfied, hence the method is totally regular.

Next we show that these properties are preserved for all powers of E . Since E has only
positive terms, all its powers will trivially be positive as well. Also, due to Theorem 1.12, E k

will be lower triangular for all k. It remains to prove properties (i), (ii) and (iii) for E k = (c(k)
m,n).

All three parts are proved by induction.
Case k = 1 is true and if we assume E ,E 2, . . . ,E k have the said properties, then for k+ 1

we have E k+1 = E ×E k, thus c(k+1)
m,n =∑m

i=0 cm,ic
(k)
i,n .

(i) Fix m ∈ N0.
∞∑

n=0
c(k+1)

m,n =
m∑

n=0

m∑
i=0

cm,ic
(k)
i,n =

m∑
i=0

cm,i

m∑
n=0

c
(k)
i,n ,

where the second sum is less than 1 based on the assumption, hence

∞∑
n=0

c(k+1)
m,n <

m∑
i=0

cm,i < 1

for all m ∈ N0.

(ii) Fix n ∈ N0 and ε > 0. From the assumption for E k there is an N ∈ N0 such that c(k)
i,n <

ε
2

for all i≥N , so

c(k+1)
m,n =

m∑
i=0

cm,ic
(k)
i,n <

N−1∑
i=0

cm,ic
(k)
i,n +

m∑
i=N

cm,i
ε

2
<

N−1∑
i=0

cm,ic
(k)
i,n + ε

2

since the sum of each row of E is less than 1 from (i).
Now for each i = 0,1, . . . ,N − 1 we can choose mi so that cm,i <

ε
2N for all m ≥ mi and

take M = max{m0,m1, . . . ,mN−1}. Then, taking into account that all terms c(k)
m,n are less

than 1, we have

c(k+1)
m,n <

N−1∑
i=0

ε

2N
+ ε

2
= ε for m≥M,

hence the limit for m→ ∞ is 0 for any n ∈ N0, as required.

(iii) Define a sequence

{rm}m∈N0 =
{

m∑
n=0

c(k+1)
m,n

}
m∈N0

.

From (i) we have for all m ∈ N0
rm < 1. (3.2)
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Fix an arbitrary ε > 0. From the assumption (iii) for E k there is N ∈ N0 s.t. ∑∞
n=0 c

(k)
i,n >

1− ε whenever i > N . Then

∞∑
n=0

c(k+1)
m,n =

m∑
n=0

m∑
i=0

cm,ic
(k)
i,n =

m∑
n=0

N∑
i=0

cm,ic
(k)
i,n +

m∑
i=N+1

cm,i

m∑
n=0

c
(k)
i,n >

m∑
i=N+1

cm,i(1− ε)

where the first finite sum was neglected since all terms are positive. Since cm,i are just
(scaled) binomial coefficients 1

2m+1

(
m+1
n+1

)
, we can use an argument similar to that in

Subsection 1.4.1 to choose m big enough so that the missing first N + 1 coefficients sum
up to less than ε. Thus for this m (and all m greater than that)

rm =
∞∑

n=0
c(k+1)

m,n > (1− ε)(1− ε)> 1−3ε. (3.3)

Inequalities (3.2) and (3.3) together show that for all ε > 0 and sufficiently large m

1−3ε < rm < 1,

hence the limit lim
m→∞rm exists and is equal to 1, concluding the proof.

Euler transform applied to Wallis’ hypergeometric series (repeatedly) gives a rough approx-
imation of δ. With each iteration, we will truncate the sum after the smallest term, resulting in
the closest approximation of f(1) (with f(x) as defined in (2)) in the sense of asymptotic series.
Table 3.1 lists the results computed by Maxima after each iteration (k), with the number of
terms of the series used (m) in the second column and the truncated sum in the third (E ks(m)).
The decimal places that agree with known decimals of δ are underlined. (The source code of
the script can be found in Appendix B, Example B.3.)

Table 3.1: Iterations of Euler transform applied to WHS
k m E ks(m)
1 1 0.5
2 7 0.5726. . .
3 21 0.5854. . .
4 49 0.58867. . .
5 105 0.58981. . .
6 219 0.59051. . .
7 447 0.59082. . .
8 907 0.59107. . .
9 1825 0.59116. . .

As can be seen from the table, subsequent iterations do not improve the value much even
though the number of terms they require grows quite fast and makes computations very time
consuming. Even with a computer, Euler’s estimate computed by hand (≈ 0.58) was only
improved by one decimal place.
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3.2 Generalised Euler’s summation† (E,q)
As in Definition 5, we start with the motivation behind the definition of the method. Assume
the series g(x) =∑∞

n=0anx
n+1 converges for small x and let

x = y

1− qy
, y = x

1+ qx

for a q > 0. Then for small x and corresponding y we have

g(x) =
∞∑

n=0
anx

n+1 =
∞∑

n=0
any

n+1
(

1
1− qy

)n+1
=

∞∑
n=0

any
n+1

∞∑
i=0

(
n+ i

i

)
(qy)i,

where in the last equality we used the Taylor series for 1
(1−z)n+1 . Substituting m for n+ i and

subsequently changing the order of summation yields

g(x) =
∞∑

n=0
an

∞∑
m=n

(
m

n

)
qm−nym+1 =

∞∑
m=0

ym+1
m∑

n=0

(
m

n

)
qm−nan

=
∞∑

m=0
[y(1+ q)]m+1︸ ︷︷ ︸

=:zm+1

1
(1+ q)m+1

m∑
n=0

(
m

n

)
qm−nan︸ ︷︷ ︸

=:a(q)
m

=
∞∑

m=0
a(q)

n zm+1,

with z = y(1+ q) = x+xq
1+xq and so x= z

1+q−qz . If x is small, so is z no matter the choice of q.

Definition 17. (Generalised Euler’s summation): Let q > 0 and assume that the series∑∞
n=0anx

n+1 converges for x in some neighbourhood of 0. If the series

∞∑
m=0

a(q)
m =

∞∑
m=0

1
(1+ q)m+1

m∑
n=0

(
m

n

)
qm−nan

converges to a value A, we call A the (E,q)-sum of the series ∑∞
n=0an and write

∞∑
n=0

an = A (E,q).

Remark 10. For q = 1 this is the previously defined Euler’s summation. Taking q = 0 yields the
regular summation that works only for convergent series.
Remark 11. The same way as Euler transform E was defined as (E,1) only without the require-
ment of convergence for small x, we can define the Generalised Euler transform of ∑∞

n=0an

for any q > 0 (q-th Euler transform) as ∑∞
m=0a

(q)
m and write ∑∞

n=0an = A (E,q) whenever∑∞
m=0a

(q)
m = A.

Example 3.6. Let an = zn with z complex. The (E,q)-sum of the series ∑∞
n=0 z

n is ∑∞
m=0a

(q)
m

with

a(q)
m =

m∑
n=0

(
m
n

)
qm−nzn

(1+ q)m+1 = 1
1+ q

(z+ q)m

(1+ q)m

†The outline of this section follows Hardy (1949), Sections 8.2 and 8.3, filling in the details.
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and so for |z+ q|< 1+ q the series converges to the (E,q)-sum
∞∑

m=0
a(q)

m =
∞∑

m=0

1
1+ q

(
z+ q

1+ q

)m

= 1
1+ q

1
1− z+q

1+q

= 1
1− z

,

valid for z in the circle with centre at −q and radius 1 + q. For q → ∞ this region approaches
the half-plane {z : Rez < 1}, which is the same as the region of summability of this series by
Borel methods B and wB, that also assign to it the same sum (see Example 1.8). As will be
explained in Section 3.3, this is not a coincidence, since the Borel methods can be considered
the limiting case of (E,q) when q → ∞. ▲

Next we will find the matrix representation of (E,q) as a first step to prove the regularity
of q-th Euler transform.
Proposition 3.7. The matrix representation of (E,q) is given as E(q) = (cm,n) with

cm,n =


1

(1+q)m+1

(
m+1
n+1

)
qm−n if n≤m,

0 otherwise.

Proof. Denote s(q)
m = a

(q)
0 +a

(q)
1 + . . .+a

(q)
m the partial sums of the transformed series. Our aim

is to find the representation of these partial sums in the form

s(q)
m =

∞∑
n=0

cm,nsn,

with sn = a0 +a1 + . . .+an the partial sums of the original series. For this purpose we define
the shift operator U as Uan = an+1 for any n ∈ N0, therefore an = Una0 and so, keeping in
mind linearity of U ,

s(q)
m =

m∑
n=0

a(q)
n =

m∑
n=0

1
(1+ q)n+1

n∑
i=0

(
n

i

)
qn−iai =

m∑
n=0

1
(1+ q)n+1

n∑
i=0

(
n

i

)
qn−iU ia0

=
m∑

n=0

1
(1+ q)n+1 (q+U)na0 = 1

(1+ q)m+1

m∑
n=0

(
(1+ q)m−n(q+U)n

)
a0,

where in the second line we used the binomial formula ∑m
n=0

(
m
n

)
xm−nyn = (x+y)m. The last

expression is in the form of amb0 +am−1b1 + . . .+a0bm which is equal to am+1−bm+1

a−b . Thus using
these two formulas a number of times we derive

s(q)
m = 1

(1+ q)m+1

(
(1+ q)m+1 − (q+U)m+1

(1+ q)− (q+U)

)
a0

= 1
(1+ q)m+1


m+1∑
i=0

(
m+1

i

)
qm+1−i1i −

m+1∑
i=0

(
m+1

i

)
qm+1−iU i

1−U

a0

= 1
(1+ q)m+1

m+1∑
i=0

(
m+1
i

)
qm+1−i

(
1−U i

1−U

)
a0

= 1
(1+ q)m+1

m+1∑
i=1

(
m+1
i

)
qm+1−i

i−1∑
k=0

Uka0 = 1
(1+ q)m+1

m+1∑
i=1

(
m+1
i

)
qm+1−i

i−1∑
k=0

ak

= 1
(1+ q)m+1

m+1∑
i=1

(
m+1
i

)
qm+1−isi−1 = 1

(1+ q)m+1

m∑
n=0

(
m+1
n+1

)
qm−nsn, (3.4)
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proving that cm,n = 1
(1+q)m+1

m∑
n=0

(
m+1
n+1

)
qm−n for n≤m and 0 otherwise.

Since in the above expression we used the inverse (q−U)−1 in the form 1
(q−U) , it should be

shown that this operation was valid. That can be justified by proving that the expressions in the
numerators (in particular U) can be multiplied by (q−U)−1 from left or from right, giving the
same result in both cases. Indeed, for anym∈N0 we have (q−U)(q−U)−1Uam = Uam = am+1
and (q−U)U(q−U)−1am = U(q−U)(q−U)−1am = Uam = am+1, hence also

(q−U)−1Uam = U(q−U)−1am ∀m ∈ N0,

proving the assertion.

Theorem 3.8. Methods (E,q) are totally regular for all q > 0.

Proof. Since the matrix E(q) = (cm,n) is positive and lower triangular, we only need to show
properties (i)-(iii) of Theorem 3.3. For (i) we have

∞∑
n=0

|cm,n| =
m∑

n=0

1
(1+ q)m+1

(
m+1
n+1

)
qm−n = 1

(1+ q)m+1

m+1∑
i=1

(
m+1
i

)
qm+1−i1i

= 1
(1+ q)m+1

(
(1+ q)m+1 − qm+1

)
= 1−

(
q

1+ q

)m+1
< 1

and since the limit lim
m→∞1−

(
q

1+q

)m+1
= 1, (iii) is also satisfied. Lastly,

lim
m→∞cm,n = lim

m→∞
1

(1+ q)m+1

(
m+1
n+1

)
qm

qn
= lim

m→∞
(m+1)m.. .(m+1−n)

(n+1)!qn(1+ q)

(
q

1+ q

)m

< lim
m→∞C

(
q

1+ q

)m

(m+1)n+1 = 0,

because C is a constant independent of m and an exponential function xm with |x|< 1 converges
to 0 faster than the polynomial (m+1)n+1 grows to infinity, proving (ii).

The following theorem is an important result that will be the key to proving the connection
between Euler’s summations and Borel methods.

Theorem 3.9. A composition of two Euler’s summations (E,q) and (E,r) is again an Euler’s
summation (E,q+ r+ qr). In particular for the transforms, for any sequence of partial sums
s = {s0, s1, . . .} and any q,r > 0

E(r)
(
E(q)s

)
= E(q+r+qr)s.

Proof. If the original series is denoted as s = ∑∞
n=0anx

n+1, its (E,q)-summation as s(q) =∑∞
m=0a

(q)
m zm+1 as in the Definition 17 and the (E,r)-summation of that as

(
s(q)

)(r)
=

∞∑
m=0

b(r)
m wm+1, with b(r)

m = 1
(1+ r)m+1

m∑
n=0

(
m

n

)
rm−na(q)

n and z = w

1+ r− rw
,

then it needs to be shown that b(r)
m = a

(q+r+qr)
m for all m ∈ N0 and x= w

1+(q+r+qr)−(q+r+qr)w .
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The second assertion is fairly simple, for

x = z

1+ q− qz
=

w
1+r−rw

1+ q− qw
1+r−rw

= w

1+(q+ r+ qr)− (q+ r+ qr)w
,

as required.
For the first assertion, notice that for any n,m,i ∈ N0 such that m≥ n≥ i it follows that(

m

n

)(
n

i

)
= m!n!

(m−n)!n! (n− i)! i!
= m! (m− i)!

(m−n)! (m− i)! (n− i)! i!
=
(
m

i

)(
m− i

n− i

)

and therefore for any a,b ∈ R

m∑
n=i

(
m

n

)(
n

i

)
am−nbn−i =

m∑
n=i

(
m

i

)(
m− i

n− i

)
am−nbn−i =

(
m

i

)
m−i∑
k=0

(
m− i

k

)
am−i−kbk

=
(
m

i

)
(a+ b)m−i,

where k = n− i was substituted. Using this equality and after some rearranging we will find
that

b(r)
m = 1

(1+ r)m+1

m∑
n=0

(
m

n

)
rm−na(q)

n = 1
(1+ r)m+1

m∑
n=0

(
m

n

)
rm−n 1

(1+ q)n+1

n∑
i=0

(
n

i

)
qn−iai

=
m∑

i=0

m∑
n=i

1
(1+ r)m+1

(1+ q)m−n

(1+ q)m+1

(
m

n

)(
n

i

)
rm−nqn−iai

=
m∑

i=0

1
[(1+ r)(1+ q)]m+1 ai

m∑
n=i

(
m

n

)(
n

i

)
[(1+ q)r]m−n qn−i

=
m∑

i=0

1
(q+ r+ qr+1)m+1

(
m

i

)
(q+ r+ qr)m−iai = a(q+r+qr)

m ,

as expected.

As a consequence, repeated application of q-th transform is again totally regular and, in
general, (E,q) form a group of methods increasing in strength with q:

Corollary 3.10. If a series is (E,q′)-summable and q > q′, then it is also (E,q)-summable to
the same number.

Proof. Follows from Theorem 3.9 and regularity of (E,q) for any q > 0.

Corollary 3.11. For Euler transform (E,1) with its matrix representation E , for any k ∈ N

E k = E(2k−1)

and all properties proved for (E,q) in this section trivially hold for E and all its iterations.

Euler transforms are even more well-behaved than just totally regular - they obey the rules
we described in the first chapter:

Theorem 3.12. For any q > 0, the summation method (E,q) is consistent with rules (I)-(III).
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Proof. Linearity is trivial so we only need to show that stability is satisfied. If we denote
bn = an+1, then the assertion is as follows:

∞∑
n=0

a(q)
n = A ⇐⇒

∞∑
n=0

b(q)
n = A−a0.

Since (E,q) is linear, we can assume without the loss of generality that a0 = 0. Denote as usual
sn the partial sums ∑n

i=0ai and tn the partial sums ∑n
i=0 bi, then tn = sn+1. Hence by (3.4)

t(q)
m = 1

(1+ q)m+1

m+1∑
n=1

(
m+1
n

)
qm+1−ntn−1 = 1

(1+ q)m+1

m+1∑
n=1

(
m+1
n

)
qm+1−nsn,

and it follows that

t(q)
m − s(q)

m = 1
(1+ q)m+1

m+1∑
n=1

(
m+1
n

)
qm+1−n(sn − sn−1) = 1

(1+ q)m+1

m+1∑
n=1

(
m+1
n

)
qm+1−nan.

Since a0 = 0, this is the same as

t(q)
m − s(q)

m = (1+ q) 1
(1+ q)m+2

m+1∑
n=0

(
m+1
n

)
qm+1−nan = (1+ q)a(q)

m+1. (3.5)

Now assume ∑∞
n=0a

(q)
n = A, then a

(q)
m must converge to 0 (and s

(q)
m to A) and so

lim
m→∞ t(q)

m = lim
m→∞s(q)

m + lim
m→∞(1+ q)a(q)

m+1 = A,

proving the first part.
For the other direction, rewrite (3.5) as t(q)

m = s
(q)
m + (1 + q)

(
s

(q)
m+1 − s

(q)
m

)
= (1 + q)s(q)

m+1 −

qs
(q)
m , so that

s
(q)
m+1 = 1

1+ q
t(q)
m + q

1+ q
s(q)

m .

Remembering that s(q)
0 = a

(q)
0 = a0 = 0, this means that

s
(q)
1 = t

(q)
1

1+ q
, s

(q)
2 = t

(q)
2

1+ q
+ qt

(q)
1

(1+ q)2 , . . . , s
(q)
m+1 = t

(q)
m

1+ q
+

qt
(q)
m−1

(1+ q)2 + . . .+ qmt
(q)
0

(1+ q)m+1 .

This can be treated as a transformation with matrix representation M = (dm,n), where

dm,n =


qm−n

(1+q)m−n+1

(
m+1
n+1

)
if n≤m,

0 otherwise.

If this transformation is regular and t
(q)
m converges to A, so does s(q)

m , therefore it remains to
prove properties (i)-(iii) of Theorem 3.3 for dm,n. For (i) we have

∞∑
n=0

|dm,n| =
m∑

n=0

qm−n

(1+ q)m−n+1 = 1
1+ q

m∑
n=0

(
q

1+ q

)m−n

= 1
1+ q

m∑
n=0

(
q

1+ q

)n

= 1
1+ q

1−
(

q
1+q

)m

1− q
1+q

= 1−
(

q

1+ q

)m

< 1
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for all m ∈ N0, and also

lim
m→∞

∞∑
n=0

dm,n = lim
m→∞1−

(
q

1+ q

)m

= 1,

proving (iii). Lastly, (ii) is satisfied as well since

lim
m→∞dm,n = lim

m→∞
1

1+ q

(
q

1+ q

)m−n

= 0,

which concludes the proof.

As a consequence, sn →A (E,q) is equivalent to sn+1 →A (E,q), so from (3.4) the following
are also equivalent:

s
(q)
m−1 = 1

(1+ q)m

m∑
n=1

(
m

n

)
qm−nsn−1 → A

⇐⇒ 1
(1+ q)m

m∑
n=1

(
m

n

)
qm−nsn → A

⇐⇒ 1
(1+ q)m

m∑
n=0

(
m

n

)
qm−nsn → A,

since the 0-th term
(

q
1+q

)m
s0 vanishes with m→ ∞. Owing to this equivalence we can modify

the partial sums to a more symmetric formula

ŝ(q)
m = 1

(1+ q)m

m∑
n=0

(
m

n

)
qm−nsn = 1

(1+ q)m

m∑
n=0

(
m

n

)
qm−nUns0 =

(
q+U

1+ q

)m

s0, (3.6)

while preserving the convergence, i.e.
∞∑

n=0
an = A (E,q) ⇐⇒ lim

n→∞ ŝ(q)
n = A. (3.7)

3.3 Connection to Borel methods
In the previous section we have built up all the necessary tools needed to show that Borel
methods are consistent with but stronger than Euler methods (E,q), and can therefore be
considered a limiting case of (E,q) as q → ∞. Apart from that we will introduce the necessary
condition for a series to be (E,q)-summable and thus clarify why it is not applicable to the
hypergeometric series (1) for any q > 0. A formal connection between summing (1) by both
methods concludes the chapter.

Theorem 3.13. If ∑∞
n=0an is (E,q)-summable for some q > 0, then it is wB-summable (and

therefore also B-summable) to the same number.

Proof. Recall the Cauchy product of two power series:( ∞∑
n=0

anx
n

)( ∞∑
m=0

bmx
m

)
=

∞∑
k=0

ckx
k with ck =

k∑
i=0

aibk−i.
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Taking sn the partial sums of ∑∞
n=0an, the following product of two sums can then be expressed

as

eqx
∞∑

m=0

smx
m

m!
=
( ∞∑

n=0

(qx)n

n!

)( ∞∑
m=0

smx
m

m!

)
=

∞∑
k=0

xk
k∑

i=0

qisk−i

i! (k− i)!
=

∞∑
k−0

xk

k!

k∑
i=0

(
k

i

)
qisk−i

=
∞∑

k−0

xk

k!
(1+ q)kŝ

(q)
k

with ŝ
(q)
k as defined in (3.6). Then the weak Borel sum can be expressed as

lim
x→∞e−x

∞∑
n=0

snx
n

n!
= lim

x→∞e−x(1+q)eqx
∞∑

n=0

snx
n

n!
= lim

x→∞e−x(1+q)
∞∑

n=0

ŝ
(q)
n [x(1+ q)]n

n!

= lim
y→∞e−y

∞∑
n=0

ŝ
(q)
n yn

n!
,

with y = x(1+q). If ∑∞
n=0an =A (E,q), then by (3.7) ŝ(q)

n →A and so by regularity of wB the
above limit is equal to A as well, implying that the series is wB-summable (and by Theorem
1.5(i) also B-summable) to A.

We have seen examples of series that are summable by a Borel method but not by Euler
methods for any q, one of them being series (1). Moreover, methods (E,q) increase in strength
with increasing q, as stated in Corollary 3.10 and demonstrated on power series ∑∞

n=0 z
n in

Example 3.6. While Borel methods retain total regularity and other properties essential to
Euler methods, there is one property that is lost as a price for a stronger use - recall that
while (E,q) is consistent with rules (I)-(III) (Theorem 3.12) for all q > 0, only part of rule (III)
is satisfied by Borel methods (Corollary 1.7). Also note that Borel methods are not totally
regular, but this might not be considered a bad property, since assigning a finite value to a
series that diverges to infinity has useful applications in physics.

The following proposition describes the necessary condition for the terms of a series summable
by (E,q).

Proposition 3.14. If a series ∑∞
n=0an is (E,q)-summable for some q > 0, then

an = o((2q+1)n).

Proof. If ∑∞
n=0an = A (E,q), then a

(q)
m → 0 and so (1 + q)a(q)

m → 0 as n → ∞, or alternatively
put,

(1+ q)a(q)
m = o(1).

From the definition of a(q)
m then we get

(1+ q)a(q)
m = 1

(1+ q)m

m∑
n=0

(
m

n

)
qm−nan = 1

(1+ q)m

m∑
n=0

(
m

n

)
qm−nUna0 = (q+U)ma0

(1+ q)m
→ 0,

thus (q+U)ma0 = o((1+ q)m). For the terms an we can now derive the following estimate:

an = Una0 = (U − q+ q)na0 =
m∑

i=0

(
m

i

)
(q+U)m−ia0(−q)i = o

(
m∑

i=0

(
m

i

)
(1+ q)m−iqi

)
= o((2q+1)n),
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as required. Example 3.6 shows that the series ∑∞
n=0 z

n is summable for z such that |z+ q| <
q+ 1, which for real z implies −(2q+ 1) < z < 1, showing that an = o((2q+ 1)n) is the lowest
possible estimate.

It is obvious from this proposition that WHS cannot be summed by Euler method E k =
(E,2k −1) for any (finite) k. Nevertheless, by applying it enough times, a good approximation
of δ can be obtained. Since WHS is B∗-summable, it implies that applying Euler transform
an infinitely number of times should work. The following procedure shows (formally!) why it
should be true.

Write WHS as follows:

∞∑
n=0

(−1)nn! =
∞∑

n=0
(−1)n

∞∫
0

e−ttndt =
∞∑

n=0

∞∑
p=0

(−1)n

αp+1∫
αp

e−ttndt,

where α0 = 0 and αp = 2p +2p−1 −1 for p > 0. Formally switch the two sums and consider the
resulting series

∞∑
p=0

∞∑
n=0

(−1)nan,p with an,p =
αp+1∫
αp

e−ttndt. (3.8)

Proposition 3.15. For each p ∈ N0 the series sp =∑∞
n=0(−1)nan,p is (E,2p+1 −1)-summable

and
∞∑

n=0
(−1)nan,p =

αp+1∫
αp

e−t

1+ t
dt (E,2p+1 −1).

Remark 12. Recall from Corollary 3.11 that (E,2p+1 − 1) is (E,1) applied p+ 1 times, so we
can write

E p+1sp =
αp+1∫
αp

e−t

1+ t
dt.

Proof. The (2p+1 −1)-th Euler transform of sp is

E p+1sp =
∞∑

m=0

1
(2p+1)m+1

m∑
k=0

(
m

k

)(
2p+1 −1

)m−k
(−1)k

αp+1∫
αp

e−ttkdt

=
∞∑

m=0

1
(2p+1)m+1

αp+1∫
αp

e−t
m∑

k=0

(
m

k

)
(−t)k

(
2p+1 −1

)m−k
dt

=
∞∑

m=0

1
(2p+1)m+1

αp+1∫
αp

e−t
(
2p+1 −1− t

)m
dt

=
∞∑

m=0

αp+1∫
αp

e−t

2p+1

(
2p+1 −1− t

2p+1

)m

dt. (3.9)

For a fixed p ∈ N0, t ∈ (αp,αp+1) implies that (2p+1 −1− t) ∈ (−2p,2p−1), therefore

αp+1∫
αp

∣∣∣∣∣ e−t

2p+1

(
2p+1 −1− t

2p+1

)m∣∣∣∣∣dt ≤ CpM
m
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where Cp is a constant independent of m and M < 1. Since the series ∑∞
m=0CpM

m converges,
we can interchange the sum an integral above to get

E p+1sp =
αp+1∫
αp

e−t

2p+1

∞∑
m=0

(
2p+1 −1− t

2p+1

)m

dt =
αp+1∫
αp

e−t

2p+1
1

1− 2p+1−1−t
2p+1

dt =
αp+1∫
αp

e−t

1+ t
dt,

which concludes the proof.

As a consequence, the sum of the series (3.8) after applying Euler transform an infinite
number of times is

∞∑
p=0

E p+1sp =
∞∫
0

e−t

1+ t
dt = δ,

consistent with the B∗-sum of WHS.
We can also show that applying Euler transform only a finite number of times and taking

only finitely many terms of the first few resulting series gives a good approximation of δ.
Proposition 3.16. The error after adding the first N terms of the first P transformed series
sp can be estimated as

δ−
P −1∑
p=0

N−1∑
n=0

E p+1sp(n) = O
(
2−N

)
+O

(
2−P e−2P

)
.

Proof. Fix a p ∈ N0. The missing terms of the transformed series are then (from (3.9))

∞∑
n=N

E p+1sp(n) =
αp+1∫
αp

e−t

2p+1

∞∑
n=N

(
2p+1 −1− t

2p+1

)n

dt =
αp+1∫
αp

e−t

2p+1

(
2p+1−1−t

2p+1

)N

1+ t
dt

<

αp+1∫
αp

e−t

(
2p+1 −1− t

2p+1

)N

dt,

Since both 2p+1 and 1+ t are greater than 1. For t ∈ (αp,αp+1) the numerator
∣∣∣2p+1 −1− t

∣∣∣ is
bounded by 2p, hence∣∣∣∣∣∣

∞∑
n=N

E p+1sp(n)

∣∣∣∣∣∣ ≤ 1
2N

αp+1∫
αp

e−tdt = 1
2N

e1−2p
(
e−2p−1

− e−2p+1
)

︸ ︷︷ ︸
<1

= O
(
2−Ne−2p)

. (3.10)

Furthermore, the Euler sums of sp for p > P that are not accounted for can be bounded as well
(since 1

1+t ≤ 1
2p for t ∈ (αp,αp+1)):

∣∣∣E p+1sp
∣∣∣ =

αp+1∫
αp

e−t

1+ t
dt ≤ 1

2p

αp+1∫
αp

e−tdt = O
(
2−pe−2p)

. (3.11)

Combining (3.10) and (3.11) the bound for the total error is

δ−
P −1∑
p=0

N−1∑
n=0

E p+1sp(n) =
P −1∑
p=0

∞∑
n=N

E p+1sp(n)+
∞∑

p=P

E p+1sp

=
P −1∑
p=0

O
(
2−Ne−2p)

+
∞∑

p=P

O
(
2−pe−2p)

= O
(
2−N

)
+O

(
2−P e−2P

)
,
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as desired.

This result, although the procedure above is not exactly the same process as applying Euler
transform repeatedly to WHS, explains why it can still approximate the sum using only finitely
many terms of the p-th transform.
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Chapter 4

Euler’s second method: Extrapolation
of a polynomial

In a sense, this method is perhaps the most interesting, since Euler’s approach was not entirely
justified and yet it yielded a sufficiently convincing result. He defined an infinite polynomial

P (n) = 1+(n−1)+(n−1)(n−2)+(n−1)(n−2)(n−3)+ . . .

which has the property that formally

P (0) = 1−1!+2!−3!+4! . . . ,

and therefore he tried to extrapolate it at n = 0 to get an estimate on the value of δ. We will
first describe his approach and give evidence that it most likely does not work, then we will
introduce a different method of extrapolation through Borel summation (introduced in Section
1.3), following an outline in Barbeau (1979). As a preparation we briefly introduce Newton’s
extrapolation formula and factorial series.

For any sequence {an}n∈N the successor is given as an+1 = (1+∆)an, hence the relation

an = (1+∆)n−1a1 =
n−1∑
k=0

(
n−1
k

)
∆ka1

holds for any n ∈ N, and so we can define a function for z complex (where defined)

A(z) = a1 +(z−1)∆a1 + (z−1)(z−2)
2!

∆2a1 + (z−1)(z−2)(z−3)
3!

∆3a1 + · · · (4.1)

with the property A(n) = an for n ∈ N. This is called Newton’s extrapolation formula and the
series above is in the form of a factorial series of the second type, defined as follows:

S(z) = u0 + (z−1)
1!

u1 + (z−1)(z−2)
2!

u2 + · · · =
∞∑

n=0

Γ(z)
Γ(z−n−1)n!

un

where un are real or complex coefficients.
Such a series has some useful properties, provided it converges on some interval:

(i) it converges for Rez > θ0 for some finite θ0, absolutely for Rez > θ1 where 0 ≤ θ1 −θ0 ≤ 1
and uniformly to an analytic function on any compact subset of this domain;
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(ii) if A(z), B(z) are factorial series extrapolating sequences {an}, {bn} respectively, then
cA(z), A(z) +B(z), A(z)B(z) (expanded in ascending factorial powers) extrapolate se-
quences {can}, {an + bn}, {anbn}, respectively;

(iii) if Φ is a rational function and A(z) extrapolates {an}, then Φ◦A(z) extrapolates {Φ(an)}.
In particular, 1

A(z) extrapolates
{

1
an

}
.

Properties (ii) and (iii) naturally depend on domains of convergence specified in (i). A detailed
theory for factorial series of the second type can be found in Nörlund (1926).

4.1 Euler’s approach
Euler defined a sequence Pn as

P1 = 1 and Pn+1 = nPn +1,

so that {P1,P2,P3, . . .} = {1,2,5,16,65,326, . . .}. This sequence is related to WHS owing to the
following property:

Lemma 4.1. For the sequence {Pn}n∈N defined above we have for any n ∈ N0

∆nP1 = n! .

Proof. For n = 0 trivially ∆0P1 = P1 = 1 = 0!. Assume that ∆nP1 = n! . Using Lemma 3.1,
the recurrent relation for Pn and then the binomial identity 0 = (1−1)n+1 =∑n+1

i=0
(

n+1
i

)
(−1)i,

we derive

∆n+1P1 =
n+1∑
i=0

(−1)i

(
n+1
i

)
Pn+2−i =

n∑
i=0

(−1)i

(
n+1
i

)
(n+1− i)Pn+1−i +

n+1∑
i=0

(−1)i

(
n+1
i

)

=
n∑

i=0
(−1)i (n+1)!(n+1− i)

(n+1− i)! i!
Pn+1−i = (n+1)

n∑
i=0

(−1)i

(
n

i

)
Pn+1−i = (n+1)∆nP1

= (n+1)!,

concluding the proof by induction.

Hence by Newton’s extrapolation formula a factorial series P (z) extrapolating the sequence
{Pn} is given as

P (z) = P1 +(z−1)1!+ (z−1)(z−2)
2!

2!+ (z−1)(z−2)(z−3)
3!

3!+ · · ·

= 1+(z−1)+(z−1)(z−2)+(z−1)(z−2)(z−3)+ . . . ,

with P (0) formally equal to WHS. Unfortunately, it is convergent only for positive integer
values, for which it truncates after finitely many terms, and divergent everywhere else, hence
the properties (i)-(iii) might not apply.

Euler was interested in the extrapolated value at z = 0 and tried to obtain it by implicitly
using properties like the one described in (iii). His first attempt was taking a new sequence
{an} with an = 1/Pn and computing the extrapolated term a0 from (4.1) with n= −1:

a0 = a−1+1 = a1 −∆a1 +∆2a1 −∆3a1 + . . . . (4.2)

46



Euler’s second method: Extrapolation of a polynomial Euler’s approach

k

delta
iterations
extremes

-7

-6

-5

-4

-3

-2

-1

 0

 1

 2

 0  50  100  150  200  250  300

Figure 4.1: Iterations of P0(k) (on the vertical axis) for k ∈ {0,1, ...,300} using Newton’s extrapola-
tion of the sequence {an} = {1/Pn}

After adding 6 terms, his estimate for a0 was 1.65174, implying that the value of P0 is 1/a0 ≈
0.6 (the exact value after adding 6 terms is 169520

280003 ≈ 0.605422). However, computing more
terms with the help of a computer (the source code of the Maxima script can be found in
Appendix B, Example B.4) implies this was rather a lucky coincidence; if k is the number of
terms used in (4.2) yielding a result a0(k), and P0(k) is its inverted value, then the data for
k = {1,2, . . . ,10000} imply the following:

• P0(9) is the result closest to the actual value of δ, with the difference ≈ 0.004;

• P0(74) is the result that differs from δ the most, with the error ≈ 6.78. These two extremes
can be seen in Figure 4.1 where the first 300 iterations are plotted;

• the sequence {a0(k)}10000
k=1 forms blocks of numbers with the same sign which are similar

in size within the same block. These blocks oscillate and grow steadily with small per-
tubations where the sign changes, implying that the sequence {a0(k)} does not converge
but P0(k)} converges to 0. Iterations 1000 to 10 000 can be seen in Figure 4.2.

Similarly, Euler tried to use {an} = {log10Pn} and computed 6 terms to approximate a0, with
the result a0(6) ≈ 1.7779089 and thus P0(6) ≈ 0.59966 (the actual figure should be P0(6) ≈
0.586636). Computing the first 1000 terms, we see that again, this is more of a coincidence.
The term closest to δ is P0(7) ≈ 0.59448758 with the difference ≈ 0.00186. After iteration 190
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Figure 4.2: Iterations of P0(k) (on the vertical axis) for k ∈ {1000,1001, ...,10000} using Newton’s
extrapolation of the sequence {an} = {1/Pn}

the terms start growing rapidly and are grouped in blocks of alternatively extremely small or
extremely large numbers (magnitudes greater than 1010100 or smaller than 10−10100), indicating
no convergence.

Iterations for k from 1 to 100 can be seen in Figure 4.3 and iterations up to k = 180 in
Figure 4.4.

4.2 Borel sum of P (z)
It is obvious that Euler’s approach is not successful and another way of extrapolating the
polynomial should be found, preferably an at least continuous function h(z) with the properties
h(n) = P (n) for n ∈ N and h(z+1) = zh(z)+1 for all complex z in some region containing the
real positive line. It turns out that a suitable function is given by the Borel sum of the series
P (z): the Borel transform of P (z) is

BP (z)(t) =
∞∑

n=0

(z−1)(z−2) . . .(z−n)tn

n!
,

which, as can be easily verified, is the Taylor series of g(t) = (1+t)z−1, convergent for t∈ (−1,1)
for any z ∈ C and its analytic continuation to t≥ 0 is the same function. Then the Borel sum
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Figure 4.3: Iterations of P0(k) (on the vertical axis) for k ∈ {0,1, ...,100} using Newton’s extrapola-
tion of the sequence {an} = {log10 Pn}

of P (z) is given as

h(z) =
∞∫
0

e−t(1+ t)z−1dt,

convergent for all z complex to an entire function. We can confirm that h(z) is a suitable
extrapolation of P (z):

Proposition 4.2. The function h(z) defined as above has the following properties:

(i) h(z+1) = zh(z)+1 for all z ∈ C;

(ii) h(n) = P (n) for all n ∈ N;

(iii) formal expansion of h(z) yields the original series P (z).

Proof. Integration by parts shows

h(z+1) =
∞∫
0

e−t(1+ t)zdt =
[
−e−t(1+ t)z

]∞
0

+
∞∫
0

ze−t(1+ t)z−1dt = 1+ z

∞∫
0

e−t(1+ t)z−1

= zh(z)+1,
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Figure 4.4: Iterations of P0(k) (on the vertical axis) for k ∈ {0,1, ...,190} using Newton’s extrapola-
tion of the sequence {an} = {log10 Pn}

proving (i). Evaluating h(z) at one we find that

h(1) =
∞∫
0

e−tdt = 1 = P (1),

so together with (i) this proves (ii). For (iii), we note that the process is simply reversing the
Borel summation, which involves integrating term by term a series that is not convergent for
z /∈ N.

Of most interest is the value of h(z) at z = 0, as an extrapolated value of P (0). Again the
value is the same as the one acquired in the previous chapters, that is,

h(0) = f(1) =
∞∫
0

e−t

1+ t
dt = δ

(with f(z) as in (2)), establishing yet another connection between WHS and δ, and also between
the methods of summation used for series (1) so far.

A more sophisticated relation between the series and the function in terms of asymptotic
series can be found as a consequence of the following lemma.
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Lemma 4.3. Define the incomplete Gamma function as

Γ(z,x) =
∞∫
x

e−ttz−1dt.

Then for any fixed complex z, eΓ(z,x) has an asymptotic expansion with gauge functions
φn(x) = x−(n+1−z) at x= ∞:

eΓ(z,x) ∼
∞∑

n=0

e1−x(z−1)(z−2) . . .(z−n)
xn+1−z

as x→ ∞.

Proof. The integral expansion for eΓ(z,x) can be rewritten as

eΓ(z,x) =
∞∫

x−1

e−t(1+ t)z−1dt.

Integrating repeatedly by parts we derive the relation

eΓ(z,x) =
[
−e−t(1+ t)z−1

]∞
x−1

+
∞∫

x−1

e−t(z−1)(1+ t)z−2dt

= e1−xxz−1 +
[
−(z−1)e−t(1+ t)z−2

]∞
x−1

+
∞∫

x−1

e−t(z−1)(z−2)(1+ t)z−2dt = . . .

= e1−x
n∑

k=0

(z−1) . . .(z−n)
xn+1−z

+(z−1) . . .(z−n−1)
∞∫

x−1

e−t(1+ t)z−n−2dt,

thus the remainder Rn(x) (with n≥ z) vanishes as x→ ∞:

lim
x→∞ |Rn(x)| = lim

x→∞

∣∣∣∣∣∣∣(z−1) . . .(z−n−1)
∞∫

x−1

e−t(1+ t)z−n−2dt

∣∣∣∣∣∣∣
≤ lim

x→∞C

∞∫
x−1

1
(1+ t)n+2−z

dt = C

(n+1− z)xn+1−z
= o(φn(x))

(with C some positive constant), for any fixed z ∈ C and any n≥ z, concluding the proof.

Notice that h(z) = eΓ(z,1), so each value of h(z) can roughly be estimated by the asymptotic
expansion above with x= 1. In particular, for z = 0 we have the expansion

∞∫
x−1

e−t

1+ t
dt ∼

∞∑
n=0

e1−x(−1)nn!
xn+1 as x→ ∞,

where for x= 1 the right hand side yields WHS and the left hand side is equal to δ, as expected.
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Chapter 5

Euler’s fourth method: Continued
fraction

In his paper On Divergent Series (Euler (1760)) Euler first attempts to express series (1), i.e.

F (x) =
∞∑

n=0
(−1)nn!xn = 0!−1!x+2!x2 −3!x3 +4!x4 −5!x5 + . . .

with x ≥ 0 as a continued fraction by setting it equal to a fraction 1
1+A and expressing A

formally by comparing the coefficients of powers of x. Then he sets A = 1
1+B and repeats the

process with B = x
1+C , C = x

1+D etc., revealing one by one the coefficients of the continued
fraction and assuming the pattern continues.

He later derives a more general formula for a whole class of series (including (1)) using the
same approach, shows that a related class of functions and solutions to a class of ODEs have
the same continued fraction expansion and also computes the value of the continued fraction
at x = 1 to a precision of 9 decimal places, improving his earlier estimate of δ resulting from
repeated Euler’s transformation.

Instead of this somewhat vague approach used by Euler, we will use the techniques described
in Wall (1967), Chapter XVIII, but in terms more specific to our case and leaving out theorems
with complicated proofs that would require a lot of additional theory for the sake of being more
general. Therefore we restrict our attention to results specific to a class of series including
(1). It will turn out that both the series (1) and the function f(x) have the same convergent
continued fraction expansion (in case of the series only formal, since it is divergent).

In Section 5.3, a proper summation method by continued fractions attributed to Stieltjes
will be introduced that also leads to another continued fraction representation of δ. Both
representations are used to approximate δ and the results can be found in Table 5.1 and Table
5.2.

For a small introduction into notation and basics of continued fraction theory see Appendix
A.

5.1 Continued fraction representation of (1)

We start by deriving the continued fraction representation for a class of divergent series includ-
ing (1). First, define a class of power series as follows:
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Definition 18. For any pair a,b of real (or complex) numbers define a formal series

Ω(a,b;x) := 1−abx+ a(a+1)b(b+1)
2!

x2 −·· · =
∞∑

n=0

(−1)nΓ(a+n)Γ(b+n)
Γ(a)Γ(b)

xn (5.1)

where x is a real (or complex) variable.

Notice that for a or b equal to 0 or any negative integer the series becomes a polynomial.
For any other pair of parameters a,b the series is divergent everywhere except for x = 0. Also
the series is symmetric in a,b, i.e. for any pair a,b ∈ C,

Ω(a,b;x) = Ω(b,a;x). (5.2)

This will be an important tool to derive the continued fraction representation of the series. We
start by deriving the following identities:

Proposition 5.1. For any pair a,b ∈ C and all n ∈ N0 the identities

Ω(a+n,b+n+1;x)
Ω(a+n,b+n;x)

=
1

1+(a+n)x
Ω(a+n+1, b+n+1;x)

Ω(a+n,b+n+1;x)

(5.3)

and
Ω(a+n+1, b+n+1;x)

Ω(a+n,b+n+1;x)
=

1

1+(b+n+1)x
Ω(a+n+1, b+n+2;x)
Ω(a+n+1, b+n+1;x)

(5.4)

hold for all x real (or complex) (provided that the denominators are not 0).

Proof. For n = 0 we have from the definition of Ω(a,b;x) the following power series identity
(found by comparing the coefficients by each power of x):

Ω(a,b+1;x)−Ω(a,b;x) = −axΩ(a+1, b+1;x),

or, equivalently, provided that Ω(a,b;x) ̸= 0,

Ω(a,b+1;x)
Ω(a,b;x)

= Ω(a,b;x)−axΩ(a+1, b+1;x)
Ω(a,b;x)

=
1

1+
axΩ(a+1, b+1;x)

Ω(a,b;x)−axΩ(a+1, b+1;x)

=
1

1+
axΩ(a+1, b+1;x)

Ω(a,b+1;x)

,

which is true for any a,b ∈ C. Thus replacing a with a+n and b+1 with b+n+1 yields

Ω(a+n,b+n+1;x)
Ω(a+n,b+n;x)

=
1

1+
(a+n)xΩ(a+n+1, b+n+1;x)

Ω(a+n,b+n+1;x)

,

proving identity (5.3) for all n ∈ N0. Replacing again a+n with a+n+1 implies

Ω(a+n+1, b+n+1;x)
Ω(a+n+1, b+n;x)

=
1

1+
(a+n+1)xΩ(a+n+2, b+n+1;x)

Ω(a+n+1, b+n+1;x)

.
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Thanks to the symmetry of Ω(a,b;x) (5.2), we can switch the parameters in the above equality
and then rename them again (b to a and vice versa) to get

Ω(a+n+1, b+n+1;x)
Ω(a+n,b+n+1;x)

=
1

1+
(b+n+1)xΩ(a+n+1, b+n+2;x)

Ω(a+n+1, b+n+1;x)

,

proving the second identity (5.4) for all n ∈ N0 and concluding the proof.

Taking a closer look at the identities (5.3) and (5.4), we see that the last fraction in the RHS
of each identity is in the from of the LHS of the other identity. Hence these, used alternatively,
give rise to a formula unfolding the continued fraction expansion for Ω(a,b+1;x)

Ω(a,b;x) :

Ω(a,b+1;x)
Ω(a,b;x)

= 1

1+
axΩ(a+1, b+1;x)

Ω(a,b+1;x)

= 1

1+
ax

1+
(b+1)xΩ(a+1, b+2;x)

Ω(a+1, b+1;x)

= · · · ,

so, formally (as the series is almost nowhere convergent),

Ω(a,b+1;x)
Ω(a,b;x)

↔ 1
1+

ax

1+
(b+1)x

1+
(a+1)x

1+
(b+2)x

1+
· · · (a+n)x

1+
(b+n+1)x

1+
· · · (5.5)

for any a,b∈C and all x real (or complex) such that Ω(a,b;x) ̸= 0. Notice that taking a negative
integer for a or b or a= 0 would produce a rational function on the LHS and the process would
halt after finitely many steps, resulting in a finite continued fraction, equal to the LHS.

We will further inspect convergence properties of this continued fraction. First we state a
theorem describing convergence in general terms for complex coefficients a,b and variable x,
referring to a proof in Wall (1967). For our more specific real case with some restrictions we
will prove a slightly stronger result.

Theorem 5.2. (Wall) Let a,b be arbitrary complex constants. Let G be any closed bounded
region in C\{(−∞,0)}. Then the continued fraction in (5.5) converges on G except possibly at
certain isolated points, and uniformly on the region obtained from G by removing the interiors
of small discs with centres at these points. The value of the continued fraction is an analytic
function having these points as poles.

The theorem with a proof can be found in Wall (1967) on page 351 (Theorem 92.2).

Proposition 5.3. Let a ≥ 0 and b ≥ −1. Then the continued fraction in (5.5) converges
uniformly on [0,∞) if a ≥ b+ 1. For a < b+ 1 it converges uniformly on any closed bounded
interval [0,K].

Proof. Cases a = 0 and b = −1 are trivial, therefore we assume a > 0 and b > −1. Notice for
this choice of coefficient that for all x> 0 the continued fraction has positive partial numerators
and denominators, hence by Lemma A.6 its series representation will be an alternating series,
for which convergence is easy to check and, if convergent, the limit is a positive number.

To start, we will transform the continued fraction by an equivalence transformation defined
by sequence

{cn}n∈N =
{

1, 1
ax
,
a

b+1
,

b+1
a(a+1)x

,
a(a+1)

(b+1)(b+2)
, . . .

}
,

55



Continued fraction representation of (1) Euler’s fourth method: Continued fraction

resulting in

1
1+

ax

1+
(b+1)x

1+
(a+1)x

1+
(b+2)x

1+
· · · = 1

1+
1

1
ax+

1
a

b+1+
1

b+1
a(a+1)x+

1
a(a+1)

(b+1)(b+2)+
· · ·

From this form it is easy to compute the series representation

∞∑
n=1

(−1)n−1a1(x)a2(x) . . .an(x)
Bn(x)Bn−1(x)

of the continued fraction, since the partial numerators an(x) are all equal to 1 for all x and for
Bn(x) we utilize the recursive formula Bn(x) = bn(x)Bn−1(x)+an(x)Bn−2(x) with B−1(x) = 0,
B0(x) = 1 and bn(x) the partial denominators given by

bn(x) =


a(a+1)...(a+k−1)
(b+1)(b+2)...(b+k) if n= 2k+1,

(b+1)(b+2)...(b+k−1)
a(a+1)...(a+k−1)x if n= 2k.

We will treat the two cases in the theorem separately.
First assume that a≥ b+1. Inspecting the coefficients bn(x) we see that bn(x)> 1 for odd

n regardless of the choice of x. Computing the first few coefficients yields

B1(x) = 1×1+0 = 1,
B2(x) = b2(x)×B1(x)+B0(x) > B0(x) = 1,
B3(x) = b3(x)×B2(x)+B1(x) > 1×1+1 = 2,
B4(x) = b4(x)×B3(x)+B2(x) > B2(x) > 1,
B5(x) = b5(x)×B4(x)+B3(x) > 1×1+2 = 3,
B6(x) = b6(x)×B5(x)+B4(x) > B4(x) > 1,
...

implying that Bn(x) > 1 for n even and Bn(x) > n+1
2 for n odd, which is easily verifiable

by induction on n. Hence the series representation of the continued fraction is given as an
alternating series ∑∞

n=1
(−1)n−1

Bn(x)Bn−1(x) with Bn(x)Bn−1(x) > n
2 for all n ∈ N and all x positive,

supplying the conditions for uniform convergence on (0,∞): given arbitrary ε > 0, there is an
N ∈ N such that ∣∣∣∣∣∣

∞∑
n=N

(−1)n−1

Bn(x)Bn−1(x)

∣∣∣∣∣∣ ≤ 1
BN (x)BN−1(x)

≤ 2
N

< ε

for all x ∈ (0,∞).
As for x= 0 the fraction is finite, so trivially convergent. In conclusion, the continued frac-

tion converges uniformly on the union of the two sets, that is, on [0,∞).

For the second case where a < b we can notice that bn(x)> 1
aK for n even and all x ∈ (0,K].
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Similarly then the coefficients Bn(x) can be bounded:

B1(x) = 1×1+0 = 1,

B2(x) = b2(x)×B1(x)+B0(x) > 1
aK

×1+1 = 1+ 1
aK

,

B3(x) = b3(x)×B2(x)+B1(x) > B1(x) = 1,

B4(x) = b4(x)×B3(x)+B2(x) > 1
aK

×1+1+ 1
aK

= 1+ 2
aK

,

B5(x) = b5(x)×B4(x)+B3(x) > B3(x) > 1,

B6(x) = b6(x)×B5(x)+B4(x) > 1
aK

×1+1+ 2
aK

= 1+ 3
aK

,

...

Again, inductively we can prove that Bn(x) > 1 for n odd and Bn(x) > 1 + n
2aK for n even on

(0,K], which makes Bn(x)Bn−1(x) unbounded and proves uniform convergence of the series on
(0,K] by the same argument as in the first case. As before, the convergence extends trivially
to [0,K].

Setting a= 1 and b= 0 in (5.5) yields series (1) and its continued fraction expansion, which
converges uniformly on [0,∞) by the previous proposition. In particular, for x= 1 we can get
an estimate for the series representation of the continued fraction of WHS, namely

∞∑
n=0

(−1)nn! ↔ 1
1+

1
1+

1
1+

2
1+

2
1+

3
1+

· · · = 1
1+

1
1+

1
1+

1
1
2+

1
1+

1
1
3+

· · · =
∞∑

n=1

(−1)n−1

BnBn−1
(5.6)

with Bn > n for n odd and Bn > 2n for n even, thus 1
BnBn−1

< 1
2n2−2n

, which gives us some
bound on the error when approximating the sum, although in reality the convergence is faster.
The results of computing the convergents of (5.6) in Maxima and a description of the method
can be found at the end of Section 5.2 (Table 5.1).

Notice that by formally assigning power series (1) to its continued fraction representation
and expressing the latter in a series form, we have linked the two alternating series, one di-
vergent and the other convergent, and assigned the sum of the convergent one to its divergent
counterpart. As such, this way we defined a summation method that can be applied to the
class of divergent series Ω(a,1;x). This can be generalized, since Ω(a,b;x) is a variation of a
bigger class of series called the Gauss hypergeometric series and defined as

F (a,b,c;z) =
∞∑

n=0

Γ(a+n)Γ(b+n)Γ(c)
Γ(a)Γ(b)Γ(c+n)n!

zn

for a,b,c ∈ C, z real or complex variable. Using the very same approach for finding the con-
tinued fraction representation of the quotient F (a,b+1,c+1;z)

F (a,b,c;z) leads to a similar result, called the
continued fraction of Gauss. Class Ω(a,b;x) can be derived from F (a,b,c;z) by substituting cx
for z and letting c→ ∞. For details we refer to Chapter XVIII of Wall (1967). In Section 5.3
we define Stieltjes summability, which includes the techniques used in this section and defines
the method properly.

A fair question is about the regularity of this method. It is obviously linear, thus rules
(I) and (II) are obeyed. Moreover, Theorem 89.1 of Wall (1967) states that the continued
fraction representing the quotient F (a,b+1,c+1;z)

F (a,b,c;z) defines its analytic continuation throughout the
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complex plane (excluding a cut along (1,∞) and possibly some isolated points) and converges
to the quotient uniformly in some neighbourhood of the origin. Although this does not imply
regularity, a fair number of convergent series is covered in this class with their sum equal to
the value of their corresponding continued fraction.

5.2 Continued fraction expansion of f (x)
We will now prove that the same continued fraction that represents Ω(a,b;x) is also an expansion
of a related function f(a,b;x), defined as follows:

Definition 19. Let a > 0 and b≥ 0, then we define for x≥ 0 a function

f(a,b;x) = 1
Γ(a)

∞∫
0

e−wwa−1

(1+xw)b
dw.

Notice that for any choice of a,b the function is positive and well-defined, as the integral is
finite for any x≥ 0. Moreover, f(1,0;x) ≡ 1.

As in the previous section, we will prove the following two identities:

Proposition 5.4. For any pair a > 0, b≥ 0 and any n ∈ N0 the identities

f(a+n,b+n+1;x)
f(a+n,b+n;x)

=
1

1+
(a+n)xf(a+n+1, b+n+1;x)

f(a+n,b+n+1;x)

(5.7)

and
f(a+n+1, b+n+1;x)
f(a+n,b+n+1;x)

=
1

1+
(b+n+1)xf(a+n+1, b+n+2;x)

f(a+n+1, b+n+1;x)

(5.8)

hold for all x≥ 0.

Proof. For x = 0 both equalities are trivial, so let x > 0. Recall that Γ(a+ 1) = aΓ(a) for any
real positive number a. Then we have

f(a+n,b+n+1;x)+(a+n)xf(a+n+1, b+n+1;x)

= 1
Γ(a+n)

∞∫
0

e−wwa+n−1

(1+xw)b+n+1 dw+ a+n

Γ(a+n+1)

∞∫
0

e−wwa+n

(1+xw)b+n+1 dw

= 1
Γ(a+n)

∞∫
0

e−wwa+n−1

(1+xw)b+n+1 dw+xw

∞∫
0

e−wwa+n−1

(1+xw)b+n+1 dw


= 1

Γ(a+n)

∞∫
0

e−wwa+n−1

(1+xw)b+n
dw = f(a+n,b+n;x),
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which, after a bit of rearranging, gives the first identity. For the second one we employ inte-
gration by parts to get

f(a+n+1, b+n+2;x) = 1
Γ(a+n+1)

∞∫
0

e−wwa+n

(1+xw)b+n+2 dw

= 1
Γ(a+n+1)

−
∞∫
0

e−wwa+n

(b+n+1)x(1+xw)b+n+1 dw+(a+n)
∞∫
0

e−wwa+n−1

(b+n+1)x(1+xw)b+n+1 dw


= −1

(b+n+1)x
f(a+n+1, b+n+1;x)+ 1

(b+n+1)x
f(a+n,b+n+1;x),

and again we rearrange to get the desired form.

It is obvious that identities (5.3) and (5.4) are analogous with the new identities (5.7)
and (5.8) respectively, and therefore generate the same continued fraction, representing both
Ω(a,b+1;x)

Ω(a,b;x) and f(a,b+1;x)
f(a,b;x) . We do know that the series defined by the first expression is divergent

and therefore only equal to its continued fraction representation formally, however the second
expression is well-defined and finite, prompting the question of its true equality to the continued
fraction. This is indeed the case.
Proposition 5.5. The continued fraction

1
1+

ax

1+
(b+1)x

1+
(a+1)x

1+
(b+2)x

1+
· · · (a+n)x

1+
(b+n+1)x

1+
· · · (5.9)

converges to the function f(a,b+1;x)
f(a,b;x) uniformly on the regions defined in Proposition 5.3.

Proof. Uniform convergence has already been proven in Proposition 5.3, it remains to show
that the convergents approximate f(a,b+1;x)

f(a,b;x) . For x= 0 this is trivially true, so we assume x> 0.
Unfolding identities (5.7) and (5.8) alternatively n-times yields a finite continued fraction

that is equal to f(a,b+1;x)
f(a,b;x) and can be expressed using the recurrent relation for the convergents:

f(a,b+1;x)
f(a,b;x)

= An(x)+kn+1(x)An−1(x)
Bn(x)+kn+1(x)Bn−1(x)

,

where An(x),Bn(x) are the numerators and denominators of the convergents of (5.9) and
kn+1(x) are the last terms in these finite continued fractions, given as

kn+1(x) =


(a+n)xf(a+n+1,b+n+1;x)

f(a+n,b+n+1;x) for n odd,

(b+n+1)xf(a+n+1,b+n+2;x)
f(a+n+1,b+n+1;x) for n even.

Since the convergents An(x)
Bn(x) form an oscillating sequence, assume An(x)

Bn(x) <
An−1(x)
Bn−1(x) , then, since

all terms An(x),Bn(x),kn(x) are positive (for any x on a corresponding region), we have
f(a,b+1;x)
f(a,b;x)

− An(x)
Bn(x)

= kn+1(x) [An−1(x)Bn(x)−An(x)Bn−1(x)]
B2

n(x)+kn+1(x)Bn(x)Bn−1(x)
> 0

and
f(a,b+1;x)
f(a,b;x)

− An−1(x)
Bn−1(x)

= An(x)Bn−1(x)−An−1(x)Bn(x)
Bn(x)Bn−1(x)+kn+1(x)B2

n−1(x)
< 0

(or analogously for the case An(x)
Bn(x) >

An−1(x)
Bn−1(x)), implying that f(a,b+1;x)

f(a,b;x) always lies between two
subsequent convergents of (5.9). This concludes the proof.
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For the particular choice a = 1 and b = 0 the continued fraction (5.9) converges uniformly
to the function f(x) from (2), since

f(1,1;x)
f(1,0;x)

=
∞∫
0

e−w

(1+xw)
dw = f(x),

strengthening yet again the connection between the hypergeometric series (1) and f(x) and,
in particular, their value at x = 1. The corresponding continued fraction (5.6) at this point
represents δ:

δ = 1
1+

1
1+

1
1+

2
1+

2
1+

3
1+

3
1+

4
1+

4
1+

5
1+

5
1+

6
1+

· · ·

See the table below for results of approximating δ by the convergents An/Bn of (5.6). Number
n indicates the index of the convergent An/Bn used, the second and fourth column indicate the
number of correct digits. Computations were done in Maxima (the source code can be found

Table 5.1: Precision of approximating δ by convergents of (5.6)
n # of digits n # of digits

5 0 15 000 148
10 2 20 000 172
50 7 25 000 192

100 10 30 000 211
500 24 35 000 227

1 000 37 40 000 243
5 000 85 45 000 258

10 000 120 50 000 272

in Appendix B, Example B.5) and the numerators An and the denominators Bn were taken to
precision of 100000 digits, resulting in small errors that did not influence the precision of the
results.

δ ≈ A49755
B49755

≈ 0.5963473623 2319407434 1078499369 2793760741 7786015254 8781573484

9104823272 1911487441 7470430497 0936127603 4423703474 8428623689
8120782995 2905719661 7369222665 8940243185 1351436829 3763296254
7711879740 2524323020 5211788573 7856177283 6523651378 5594867425
3562181300 8120833784 2384485959 8084,

correct to 272 decimal places which are underlined.

5.3 Stieltjes continued fraction of δ
Recall again the continued fraction expansion of f(a,b;x) from the previous section with a > 0
arbitrary and b= 1:

f(a,1;x) = 1
1+

ax

1+
1x
1+

(a+1)x
1+

2x
1+

(a+2)x
1+

· · · ,

valid for x ∈ [0,∞) and converging uniformly on this set. For x ̸= 0 it is then possible to
substitute x = 1

z and divide both sides by z while maintaining the equality, defining a new
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function that will be denoted as g(a;z) with the following expansion:

g(a;z) := 1
Γ(a)

∞∫
0

e−wwa−1

z+w
dw = 1

z

1
1+

a/z

1+
1/z
1+

(a+1)/z
1+

2/z
1+

(a+2)/z
1+

3/z
1+

· · ·

= 1
z+

a

1+
1/z
1+

(a+1)/z
1+

2/z
1+

(a+2)/z
1+

3/z
1+

· · ·

= 1
z+

a

1+
1
z+

a+1
1+

2
z+

a+2
1+

3
z+

· · ·

(5.10)

for z ∈ (0,∞), the last line resulting from the equivalence transformation given by {cn}n∈N =
{1,1, z,1, z,1, z,1 . . .}. The corresponding power series is attained by the same procedure from
Ω(a,1;x):

Φ(a;z) := 1
z

Ω(a,1;1/z) =
∞∑

n=0

(−1)nΓ(a+n)
Γ(a)zn+1 = 1

z
− a

z2 + a(a+1)
z3 − a(a+1)(a+2)

z4 + · · ·

As in the original continued fraction, for any z > 0 the convergents of (5.10) will oscillate, so
by taking only even convergents we create an increasing converging sequence. This is possible
to do within the continued fraction itself:

Proposition 5.6. Given two continued fractions

1
z+

a

1+
1
z+

a+1
1+

2
z+

a+2
1+

3
z+

· · ·

and 1
z+a−

1a
z+a+2−

2(a+1)
z+a+4−

3(a+2)
z+a+6−

·· · (5.11)

with convergents An(z)
Bn(z) and Cn(z)

Dn(z) respectively, for all z > 0 it is true that A2n(z)
B2n(z) = Cn(z)

Dn(z) for
n ∈ N.

Remark 13. This means the two continued fractions converge to the same number for each
z > 0.

Proof. For n= 1 it is easy to see that

A2(z)
B2(z)

= 1
z+a

= C1(z)
D1(z)

and for n= 2 similarly

A4(z)
B4(z)

=
1

z+
a

1+
1

z+a+1

=
1

z+
a(z+a+1)
z+a+2

=
1

z+a−
1a

z+a+2

= C2(z)
D2(z)

.

We will prove by induction that A2n(z) = Cn(z), the proof for B2n(z) and Dn(z) is analogous.
For better readability we omit the argument z for the rest of the proof.

Assume A2n =Cn and A2n−2 =Cn−1. From the recurrent formulas we have A2n+1 = zA2n +
nA2n−1, A2n+2 =A2n+1 +(a+n)A2n and Cn+1 = (z+a+2n)Cn −n(a+n−1)Cn−1, hence using
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the assumption

Cn+1 = (z+a+2n)A2n −n(a+n−1)A2n−2

= zA2n +nA2n−1︸ ︷︷ ︸−nA2n−1 +(a+2n)A2n −n(a+n−1)A2n−2

= A2n+1 +(a+n)A2n︸ ︷︷ ︸+nA2n −nA2n−1 −n(a+n−1)A2n−2︸ ︷︷ ︸
= A2n+2 +nA2n −nA2n

= A2n+2,

as desired.

Hence (5.11) is a continued fraction expansion for g(a;z) and in particular for a= 1, x= 1
we have a new continued fraction representation of δ:

δ = g(1;1) =
∞∫
0

e−w

1+w
dw = 1

2−
12

4−
22

6−
32

8−
42

10−
52

12−
·· · (5.12)

This continued fraction was found by Stieltjes in 1895 and the approach can be generalized to
a summability method using J-fractions. It is defined below. Approximation of δ by Stieltjes’s
continued fraction can be found at the end of this section in Table 5.2.
Remark 14. Stieltjes continued fraction (5.12) gives another sequence of rational approximations
Cn(1)
Dn(1) of δ, converging twice as fast as those of (5.6). In Aptekarev (2009) the asymptotic
behaviour of the coefficients Cn(1), Dn(1) is mentioned, namely

Dn(1) = n! e
2
√

n

4√n

(
1

2
√
πe

+O
(
n−1/2

))
,

Cn(1)− δDn(1) = O

n! e
−2

√
n

4√n


as n→ ∞, which gives us the asymptotic bound for the approximations:

Cn(1)
Dn(1)

− δ = O
(
e−4

√
n
)
.

Remark 15. Another interesting result mentioned in Aptekarev (2009) stems from a new integral
representation of δ:

δ =
∞∫
0

e−w

1+w
dw =

∞∫
1

e1−v

v
dv = e

∞∫
1

e−t

t
dt = −eEi(−1), (5.13)

where Ei(x) is the exponential integral defined for x ∈ R\ {0} as Ei(x) = −
∫∞
−x

e−t

t dt and has
a series representation involving Euler-Mascheroni constant γ:

Ei(x) = γ+ln |x|+
∞∑

n=1

xn

nn!
.

Together with (5.13) this leads to the following identity at x= −1:

δ = −eγ− e
∞∑

n=1

(−1)n

nn!
. (5.14)
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If δ and γ were both rational, then e and ∑∞
n=1

(−1)n

nn! would solve a polynomial in two variables
with rational coefficients, therefore they would be algebraically dependent. However, it was
shown that these two numbers are algebraically independent (see Shidlovskii (1989), Chapter
7, Theorem 1) and so at least one of the constants δ, γ has to be irrational. Irrationality (and
also transcendentality) of each of the constants separately is still an open problem.

Definition 20. A continued fraction fraction of the form

a1
b1 + z−

a2
b2 + z−

a3
b3 + z−

a4
b4 + z−

·· ·

with an, bn constants and z a complex variable is called a J-fraction.

For every J-fraction there is a uniquely determined power series

P (1/z) =
∞∑

i=0

ci

zi+1 = c0
z

+ c1
z2 + c2

z3 + c3
z4 · · ·

such that it agrees term-by-term with the expansion of each convergent An(z)
Bn(z) in powers of 1/z

for the first 2n terms, i.e. if
An(z)
Bn(z)

=
∞∑

i=0

d
(n)
i

zi+1 ,

then ci = d
(n)
i for i ∈ {0,1,2, . . . ,2n}. This is called the equivalent power series of a J-fraction.

The exact algorithm to find the corresponding power series P (1/z) to a J-fraction and vice
versa can be found in §51 of Wall (1967). By this algorithm (5.11) is the J-fraction of the
power series Φ(a;z).

The J-fraction might converge even if its corresponding power series is totally divergent
(i.e. its radius of convergence is 0), furnishing a generalized sum of the divergent power series.
This process of summing a divergent series by means of its J-fraction (provided the series has
such representation) is called Stieltjes summability (see Wall (1967), Chapter XIX). Nat-
urally we then ask about the properties of the function represented by the converging J-fraction.

Below we examine the properties of g(a;z); from Section 5.2 we already know that g(a;z) is
the limit (or at least the point-wise limit) of the J-fraction (5.11) and that Φ(a;z) is the unique
power series corresponding to J-fraction (5.11). It is expected that there is also a connection
between g(a;z) and Φ(a;z):

Proposition 5.7. The series Φ(a;z) is the asymptotic series of g(a;z) at z= ∞ for the sequence
of gauge functions φn(z) = 1/zn+1, i.e.

1
Γ(a)

∞∫
0

e−wwa−1

z+w
dw ∼

∞∑
n=0

(−1)nΓ(a+n)
Γ(a)zn+1 as z → ∞.

Proof. According to Definition 14 we need to show that the remainder

Rn(z) = g(a;z)−
n∑

i=0

(−1)iΓ(a+ i)
Γ(a)zi+1 = o(φn(z))
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as z → ∞. Using the formula for the Gamma function Γ(a) =
∫∞
0 e−wwa−1dw for a > 0, we can

expand g(a;z) as follows:

1
Γ(a)

∞∫
0

e−wwa−1

z+w
dw = 1

Γ(a)

∞∫
0

e−w

wa−1

z
− wa

z2 + · · ·+ (−1)n−1wa+n−1

zn+1 + (−1)nwa+n

zn+2
(
1+ w

z

)
dw

= 1
z

− Γ(a+1)
Γ(a)z2 + · · ·+ (−1)n−1Γ(a+n)

Γ(a)zn+1 + (−1)n

Γ(a)

∞∫
0

e−wwa+n

zn+2
(
1+ w

z

) ,

thus, since z > 0 and so w > 0 as well,

|Rn(z)| = 1
Γ(a)

∞∫
0

e−wwa+n

zn+2
(
1+ w

z

) ≤ 1
Γ(a)zn+2

∞∫
0

e−wwa+ndw = Γ(a+n+1)
Γ(a)zn+2 = o(φn(z))

as z → ∞, concluding the proof.

In particular we have

g(1;z) =
∞∫
0

e−w

z+w
dw ∼

∞∑
n=0

(−1)nn!
zn+1 as z → ∞,

agreeing formally with the asymptotic series of f(x) at x= 0 from the relation f(x) = xg(1;1/x).
Moreover, as it was the case with F (z) and f(z), the series Φ(1;z) is the Borel sum of g(1;z):

Proposition 5.8. The series Φ(1;z) is Borel-summable for z ∈ C\{(−∞,0]} and

Φ(1;z) =
∞∑

n=0

(−1)nn!
zn+1 =

∞∫
0

e−t

z+ t
dt (B∗) = g(1;z) (B∗).

Proof. The Borel transform of Φ(1;z)

B Φ(1;z)(t) =
∞∑

n=0

(−1)ntn

zn+1 = 1
z

∞∑
n=0

(−t
z

)n

converges for any z ̸= 0 in the neighbourhood |t|< |z| to an analytic function 1
z

1
1+ t

z
= 1

z+t , which
can be analytically extended to t > 0. Then the Borel sum is equal to

∞∫
0

e−t

z+ t
dt,

which is convergent for all z not real and negative or zero.

In the following table approximations of δ are obtained from the convergents An/Bn of the
Stieltjes continued fraction (5.12), where An,Bn were taken to a precision of 400000 digits.
The last computed approximation computed from the 25000000-th convergent was still not
influenced by the rounding and is correct to 8683 decimal places. The decimal expansion can
be found in Appendix C.

64



Euler’s fourth method: Continued fraction Stieltjes continued fraction of δ

Table 5.2: Precision of approximating δ by convergents of (5.12)
n # of digits n # of digits n # of digits

5 2 15 000 211 2 500 000 2 745
10 4 20 000 243 5 000 000 3 882
50 10 25 000 273 10 000 000 5 492

100 16 50 000 386 15 000 000 6 725
500 37 100 000 547 20 000 000 7 767

1 000 52 250 000 867 25 000 000 8 683
5 000 120 500 000 1226

10 000 172 1 000 000 1 735

Remark 16. Notice that the numbers of correct decimal places at n in Table 5.2 correlate to
those in Table 5.1 at 2n. This is because the convergents of Stieltjes continued fraction (5.12)
are the even convergents of the original continued fraction (5.6).

On the whole, this section describes another example of a well defined summation method
that assigns the value δ to WHS and in general a well defined function g(1;z) to its asymptotic
series at infinity, that is formally related to the hypergeometric series (1) the same way as the
function g(1;z) is related to f(x). Moreover, this summation method includes the approach
used in the previous sections of this chapter to find the continued fraction expansion of f(x)
and the series (1), in the following sense:

Let an(x) be the convergents of the formal continued fraction expansion of a series A(x)
obtained by the technique described in Section 5.1, that converges to a function a(x). Then
it is possible to convert this expansion to a J-fraction with convergents bn(y), a corresponding
series B(y) and the limit b(x), such that the relation between a(x) and b(y) is the same as the
relation between (possibly a subsequence of) the convergents an(x) and convergents bn(y) and
also the same as the formal relation between series A(x) and B(y). (More information can be
found in Wall (1967), Chapter XIX.)

As a conclusion, the summation method described in Section 5.1 is also well defined and
thus it is yet another example of a method that assigns the function f(x) to the hypergeometric
series (1).
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Conclusion

Throughout the thesis we introduced 4 different summation methods used by Euler and one
newer method, all assigning the same number δ to Wallis’ hypergeometric series 0! − 1! + 2! −
3!+4!−5!+ . . . in various forms.

Relations between f (z) and F (z)
A formally defined power series

F (z) =
∞∑

n=0
(−1)nn!zn = 0!−1!z+2!z2 −3!z3 +4!z4 −5!z5 + . . .

that is totally divergent, and the function

f(z) =
∞∫
0

e−t

1+ zt
dt,

analytic for z ∈D = C\R−, are connected in several ways:

• The Borel sum of F (z) for z ∈ D is f(z). The method is totally regular and consistent
with rules (I) and (II), and partially with rule (III).

• The asymptotic series of f(z) in D at z = 0 is F (z). This has connection to the Borel
sum of F (z) - the function f(z) behaves well enough (in accordance with conditions of
Watson’s recovery Theorem), so that it is equal to the Borel sum of its own asymptotic
series F (z). Since the same series represents infinitely many functions, such function can
be considered the most natural choice for said asymptotic series.

• Although F (1) is not (E,q)-summable for any finite q > 0, repeated Euler transform
applied to F (1) converges to the value of f(z) at z = 1. The reason is that (E,q) form
a chain of increasingly stronger methods and the Borel methods are consistent with but
stronger than all of them, and formally can be considered the limiting case of (E,q) as
q → ∞.
Repeated Euler transform is another totally regular method consistent with rules (I)-
(III). It accelerates series F (1), and thus decreases the error when estimating f(1) by its
asymptotic series F (z).

• A linear ODE for x ≥ 0 whose power series solution is F (x) has a general solution f(x).
Both the series and the function vanish at x= 0, which is the initial condition of the ODE.
Since the equation satisfies the properties of Main Asymptotic Existence Theorem, the
formal power series solution F (x) approximates the actual solution f(x) in the asymptotic
sense as x→ 0.
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• A formal continued fraction expansion of F (x) converges to f(x) uniformly on [0,∞).
This is a particular case of a bigger class of series with convergent continued fractions that
furnish an analytic continuation of the corresponding series. The approach, although we
have not proved it is regular, can be defined properly as a summation method attributed
to Stieltjes.

Relations between g(1;z) and Φ(1;z)
A series formally defined by substituting 1

z in F (z) and dividing by z, i.e.

Φ(1;z) = 0!
z

− 1!
z2 + 2!

z3 − 3!
z4 + 4!

z5 − 5!
z5 + · · · ,

again totally divergent, and the function obtained from f(z) in the same way,

g(1;z) =
∞∫
0

e−t

z+ t
dt,

analytic for z not negative or zero, are also connected in similar ways (and their value at z = 1
is again WHS and δ, respectively):

• The Borel sum of Φ(1;z) for z ∈ C\{(−∞,0]} is g(1;z).

• The asymptotic series of g(1;z) at z = ∞ is Φ(1;z).

• The series Φ(1;z) is Stieltjes summable by means of J-fraction, to g(1;z). The corre-
sponding continued fraction is obtained from the continued fraction of f(x) by the same
relation as above (substituting 1

z and dividing by z), then transformed into an equivalent
J-fraction.

Relations between h(z) and P (z)
An infinite polynomial defined as

P (z) = 1+(z−1)+(z−1)(z−2)+(z−1)(z−2)(z−3)+ . . .

convergent only for positive integers, and an entire function

h(z) =
∞∫
0

e−t(1+ t)z−1dt

correspond to WHS and δ respectively for z = 0. Again, there are connections between the two:
• The Borel sum of P (z) converging for all z ∈ C is h(z). This function extrapolates P (z),

agreeing with the values at z = n, n∈N and preserving the recurrent relation of the terms
in the sequence {P (n)}n∈N.

• h(z) can be expressed as h(z) = eΓ(z,1), where eΓ(z,x) has an asymptotic expansion at
x= ∞ related to series P (z). In particular for z = 0,

eΓ(0,x) =
∞∫

x−1

e−t

1+ t
dt ∼

∞∑
n=0

e1−x(−1)nn!
xn+1 as x→ ∞,

which yields δ and WHS at x= 1.
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Expressions representing δ

All four methods used by Euler are therefore connected and even follow one from another, with
their strongest links being the Borel summation method and asymptotic expansions. Through
these methods we came to various functions and series representing delta in some way. To
summarise, δ was expressed as

• the value of f(1), g(1;1) or h(0) in the integral forms:

δ =
∞∫
0

e−t

1+ t
dt =

1∫
0

e− 1
t

t
dt =

1∫
0

1
1+ ln t

dt = e

∞∫
1

e−t

t
dt,

where the last form involves the exponential integral Ei(t)

• a convergent series representation of the third integral above obtained from the Taylor
series of 1

1+lnv :

δ =
∞∑

n=0

(−1)ncn

(n+1)!
with cn = dn

dvn

1
1− lnv

∣∣∣∣
v=1

• a convergent sequence of Euler transforms of WHS, or equivalently, the limit

δ = lim
q→∞aq, where aq =

Mq∑
m=0

1
(1+ q)m+1

m∑
n=0

(
m

n

)
qm−n(−1)nn! ,

i.e. the partial sum cut off after the smallest term with coefficient Mq

• a convergent continued fraction

δ = 1
1+

1
1+

1
1+

2
1+

2
1+

3
1+

3
1+

4
1+

4
1+

5
1+

5
1+

6
1+

· · ·

• the sequence of convergents of the above continued fraction

δ = lim
n→∞

An

Bn
where A0 = 0, A1 = 1, An = An−1 +

⌊
n

2

⌋
An−2,

B0 = 1, B1 = 1, Bn =Bn−1 +
⌊
n

2

⌋
Bn−2,

which are the partial sums of the series

δ =
∞∑

n=1

(−1)n−1

BnBn−1

• the Stieltjes continued fraction

δ = 1
2−

12

4−
22

6−
32

8−
42

10−
52

12−
62

14−
72

16−
82

18−
·· ·

• the sequence of convergents of the Stieltjes continued fraction

δ = lim
n→∞

An

Bn
where A0 = 0, A1 = 1, An = 2nAn−1 − (n−1)2An−2,

B0 = 1, B1 = 2, Bn = 2nBn−1 − (n−1)2Bn−2,

69



Stieltjes continued fraction of δ Euler’s fourth method: Continued fraction

which are the partial sums of the series

δ =
∞∑

n=1

(−1)n−1∏n
i=1(i−1)2

BnBn−1

All of the above expressions represent WHS in a well defined manner. In particular, each
expression is either a Borel sum of a series at the particular value that represents WHS, or
the particular value of a function with an asymptotic expansion that represents WHS at that
value. Both of these concepts are well defined and consistent with the theory of convergent
series. Asymptotic series in particular are an important tool for solving various differential
equations. Using these tools, we have formed a well defined and strong link between Wallis’
hypergeometric series and δ.

In addition, we used some of the representations to compute the digits of δ. The most useful
for this purpose proved to be the Stieltjes continued fraction, whose convergents allowed us to
approximate to a precision of 8683 decimal places.
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Continued Fractions

We will define simple and generalised continued fractions, some basic operations and theorems.

Definition A.1. A continued fraction is an expression of the form

b0 +
a1

b1 +
a2

b2 +
a3

b3 +
a4

b4 + . . .

where an, bn are rational, real or complex numbers. The leading term b0 is called the integer
part of the continued fraction, an are the partial numerators and bn (n ∈ N) are the partial
denominators.

As a compact form of a continued fraction we will use one of the following notations:

b0 +
∞
K

n=1

an

bn
, b0 + a1

b1+
a2
b2+

a3
b3+

a4
b4+

· · ·

Definition A.2. A simple continued fraction has b0 ∈ Z and an ∈ {0,1}, bn ∈ N ∀n ∈ N.

Notice that if an = 0 for some n, the continued fraction is finite. This form in case of a
simple continued fraction is very important as it characterises rational and irrational numbers
in a way superior to that of fractions. The following theorem explains why.

Theorem A.3. Every number x ∈ R has a unique simple continued fraction expansion which
is finite if and only if x is rational.

Proof. If a simple continued fraction is finite, it is trivially a rational number since all the
coefficients are integers. The other direction utilises the Euclidean algorithm of finding the
greatest common divisor to find the unique simple continued fraction for any given rational
number x= p

q :
First assume p

q is positive and smaller than 1 (otherwise set b0 = ⌊x⌋, then continue with
p
q = x− b0). Since p < q, we can rewrite it as 1

q
p
. For q > p there are unique b1 ∈ N, r1 ∈ N0

s.t. q = b1p+ r1 with r1 < p, or equivalently q
p = b1 + r1

p . If r1 ̸= 0, then p
q = 1

b1+ 1
p

r1

and the

procedure can be repeated again with r1 and p replacing p and q:

find the unique b2 ∈ N, r2 ∈ N0, r2 < r1 s.t. p= b2r1 + r2, hence p

r1
= b2 + r2

r1
,
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find the unique b3 ∈ N, r3 ∈ N0, r3 < r2 s.t. r1 = b3r2 + r3, hence r1
r2

= b3 + r3
r2
,

...

Since r1 > r2 > r3 > .. . are whole non-negative numbers, the algorithm will halt with rn = 0
for some n. The resulting simple finite continued fraction is then

p

q
= 1

b1+
1
b2+

· · · 1
bn−2+

1
bn−1 + rn

rn−1

= 1
b1+

1
b2+

· · · 1
bn−2+

1
bn−1

.

For an irrational number x the algorithm is analogous: x can be expressed as its nearest
smaller whole part and the remainder in a form of a reciprocal, i.e. x= ⌊x⌋+ 1

y1
, y1 > 1. Repeat

with y1, i.e. y1 = ⌊y1⌋+ 1
y2
, y2 > 1 etc.

In case x was rational, this is exactly the same as the Euclidian algorithm, so the process
would halt after finitely many steps. For irrational x the continued fraction in this form is unique
since in each step the floor function and the remainder determines the coefficients uniquely: if
⌊yn⌋ is replaced by a smaller natural number for some n, the remainder 1

yn+1
will be smaller

than 1 and so bn+1 = 0, which is undesirable. On the other hand, if ⌊yn⌋ is replaced by a greater
number, the following remainder will be negative, which is again undesirable. Therefore the
continued fraction representation in this form is unique for each x ∈ R.

The simple continued fraction representation of a real number is even more remarkable
when we look at the fractions resulting from truncating the continued fraction after each step.
These are called convergents (defined below) and they are the best rational approximations for
the given number, that is: p

q is the best rational approximation for x if for any other rational
number r

s with s≤ q the distance |x− r
s | is greater than |x− p

q |. This makes approximation of
irrational numbers by their continued fractions very convenient.

We will not need this result as the continued fractions we use unfortunately are not simple.
A proof can be easily found in many texts on continued fractions.

Definition A.4. The convergents {xn}n∈N0 of a continued fraction are the numbers resulting
from truncating the continued fraction after n steps:

xn = b0 +
n
K

i=1

ai

bi
.

Computing the convergents from this formula would be very time consuming. Fortunately
it is possible to derive a recursive formula that simplifies the process. Let us express the first
few convergents as simple fractions:

x0 = b0, x1 = b1b0 +a1
b1

, x2 = b2(b1b0 +a1)+a2b0
b2b1 +a2

, · · ·

The pattern is easy to spot and is proved as a following lemma.

Lemma A.5. The convergents {xn}n∈N0 of a given continued fraction b0 +
∞
K

n=1
an
bn

can be com-
puted recursively as follows:

xn = An

Bn
with A−1 = 1, A0 = b0, An = bnAn−1 +anAn−2,

B−1 = 0, B0 = 1, Bn = bnBn−1 +anBn−2 for n ∈ N.
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Proof. Cases n= 0 and n= 1 are trivially true. Assume that for xn = b0 + a1
b1+

a2
b2+ · · · an−1

bn−1+
an

bn
it

is true that xn = bnAn−1+anAn−2
bnBn−1+anBn−2

for any choice of an, bn, in particular, xn = bnAn−1+anAn−2
bnBn−1+anBn−2

= An
Bn

.
Then xn+1 can be rewritten as follows:

xn+1 = b0 + a1
b1+

a2
b2+

· · · an−1
bn−1+

an

bn+
an+1
bn+1

= b0 + a1
b1+

a2
b2+

· · · an−1
bn−1+

bn+1an

bn+1bn +an+1
.

The last expression is in the form of xn with coefficients an = bn+1an and bn = bn+1bn +an+1,
so by the assumption on xn it can be expressed as

xn+1 = (bn+1bn +an+1)An−1 + bn+1anAn−2
(bn+1bn +an+1)Bn−1 + bn+1anBn−2

= bn+1(bnAn−1 +anAn−2)+an+1An−1
bn+1(bnBn−1 +anBn−2)+an+1Bn−1

= bn+1An +an+1An−1
bn+1Bn +an+1Bn−1

= An+1
Bn+1

,

which is the desired result for n+1. By induction the assertion is true for all n ∈ N0.

If a continued fraction converges to a (real or complex) number x, the sequence of conver-
gents {xn}n∈N0

converges to x and, in case the coefficients an, bn are all rational, is a sequence
of rational approximations of x.

By computing the differences between consecutive convergents, it is also possible to express
x as a series:

Lemma A.6. Given a continued fraction b0 + K∞
n=1

an
bn

, the sequence of its convergents An
Bn

is

the sequence of partial sums of the series b0 +
∞∑

n=1
(−1)n−1a1a2...an

BnBn−1
= b0 +

∞∑
n=1

(−1)n−1∏n
i=1 ai

BnBn−1
.

Proof. To show: An
Bn

− An−1
Bn−1

= (−1)n−1a1a2...an

BnBn−1
for all n ∈ N. Since An

Bn
− An−1

Bn−1
= AnBn−1−An−1Bn

BnBn−1
,

it suffices to show the numerators are equal, which will be done by induction.
Case n = 1: A1B0 −A0B1 = (b1b0 + a1) − b0b1 = a1 = (−1)0a1, as desired. Now assume

AnBn−1 −An−1Bn = (−1)n−1∏n
i=1ai for some n ∈ N, then for n+ 1 we utilise the recursive

formula for An+1, Bn+1:

An+1Bn −AnBn+1 = (bn+1An +an+1An−1)Bn −An(bn+1Bn +an+1Bn−1)

= −an+1(AnBn−1 −An−1Bn) = −an+1(−1)n−1
n∏

i=1
ai = (−1)n

n+1∏
i=1

ai,

which proves the assertion for n+1. By induction the formula holds for all n ∈ N.

From this form a few things can be seen immediately: if the coefficients an, bn are positive,
the series ∑∞

n=1
(−1)n−1a1a2...an

BnBn−1
is an alternating series and, in case it converges, the continued

fraction converges to a positive number x. Moreover, the even convergents create an increasing
sequence converging to x from below and the odd convergents create a decreasing sequence
converging to x from above. The terms of the series also provide an estimate on the error when
approximating x by its convergents. This is always true and especially convenient in case of a
simple continued fraction.

As an important tool for working with continued fractions let us introduce the equivalence
transformation:
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Definition A.7. (Equivalence transformation): Given any sequence {cn}n∈N of non-zero
real (complex) numbers, define for a continued fraction b0 + a1

b1+
a2

b2+
a3

b3+ · · · an
bn+ · · · its transfor-

mation as
b0 + c1a1

c1b1+
c1c2a2
c2b2+

c2c3a3
c3b3+

· · · cn−1cnan

cnbn+
· · · .

Lemma A.8. The transformation defined above is an equivalence transformation, in the sense
that all convergents of the transformed continued fraction are equal to the convergents of the
original continued fraction.

The proof is easily done by induction on n.

At last we introduce an interesting theorem stating sufficient conditions for irrationality of
a convergent continued fraction. Unfortunately the theorem or any of its variations are not
applicable to our case, however they can be used to prove irrationality of π, e and related
constants.

Theorem A.9. If an, bn are positive integers and there is N ∈ N such that ak ≤ bk for all
k ≥N , then the continued fraction b0 +

∞
K

n=1
an
bn

converges to an irrational number x.

The proof is fairly simple and can be found together with some variations and corollaries
in Angell (2007), Chapter 7.
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Appendix B

Maxima scripts’ source codes

Example B.1. Midpoint method: The script for applying the midpoint method on a given
series until a given precision of the results is obtained. In the script, the series from Example
1.18 is used.
midptmethod ( ) :=(
/∗ asks f o r d , n ,m and k , then echoes them back ∗/

d : read ( " ente r # o f decimal p l a c e s " ) ,
n : read ( " ente r # o f e lements f o r the computation " ) ,

/∗ m: read ( " ente r # o f i t e r a t i o n s " ) , ∗/ /∗ f o r an a l t e r n a t i v e c y c l e
with a f i x e d number i f i t e r a t i o n s ∗/

k : read ( " ente r p r e c i s i o n as k in 10^(−k ) " ) ,
p r i n t ( "d =" ,d , " n =" ,n , " k =" , k ) ,
fpprec : d , /∗ s e t s p r e c i s i o n o f b i g f l o a t s ∗/
p:10^( −k ) ,
i t : 0 ,
array (a , flonum , n) , /∗ e lements o f the s e r i e s ∗/
array ( s , flonum , n) , /∗ p a r t i a l sums ∗/
a [ 0 ] : 1 ,
for i from 1 thru n do ( a [ i ] : ( −1) ^ i (2∗ i +1)^7) ,
save ( " s e r i e s . txt " , a ) ,
s [ 0 ] : a [ 0 ] ,
for i from 1 thru n do ( s [ i ] : s [ i −1]+a [ i ] ) ,
/∗ c y c l e o f i t e r a t i o n s cond i t i oned by the g iven p r e c i s i o n ,

r e tu rn s the number o f performed i t e r a t i o n s ∗/
for j : 1 while ( abs ( s [ n]− s [ n−1])>p) do (

/∗ f o r j : 1 thru m do ( ∗/ /∗ a l t e r n a t i v e c y c l e with a f i x e d number
o f i t e r a t i o n s m ∗/

for i from 1 thru n do ( a [ i ] : ( s [ i −1]+s [ i ] ) /2) ,
f i l l a r r a y ( s , a ) ,
save ( " nr_of_iter s . txt " , j ) ) ,

save ( " m idpt s e r i e s . txt " , s ) , /∗ saves the i t e r a t e d s e r i e s ∗/
/∗ l i s t a r r a y ( s ) ∗/ /∗ output on screen , whole array ∗/

p r i n t ( " l a s t r e s u l t : " , b f l o a t ( s [ n ] ) ) /∗ output on screen , only the
l a s t r e s u l t in g iven p r e c i s i o n d ∗/

) $

▲

Example B.2. Computing decimals of δ from the series (2.6):
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d e r i v s ( ) :=(
n : read ( " ente r # o f e lements f o r the computation " ) ,
d : read ( " ente r the decimal p r e c i s i o n " ) ,
p r i n t ( "n= " ,n , "d= " ,d) ,
fpprec : d ,
d e f i n e ( f ( x ) ,1/(1 − l og ( x ) ) ) ,
c [ 0 ] : f ( 1 ) ,
s : c [ 0 ] ,
for i from 1 thru n do (

c [ i ] : b f l o a t ( at ( d i f f ( f ( x ) , x , i ) , x=1) ) , /∗ compute i t h
d e r i v a t i v e at 1 to a g iven p r e c i s i o n d ∗/

s : s +((−1)^ i ∗c [ i ] / ( i +1) ! ) ) , /∗ add the i t h term o f the
Taylor s e r i e s ∗/

save ( " d e r i v s . txt " , c ) ,
p r i n t ( " s (n)= " , s )

) $

▲

Example B.3. Computing decimals of δ by repeated application of Euler transform:
The script computes a given number of terms of the series and applies Euler transform until
the last term is also the smallest.
eu l e r t r an s f o rm ( ) :=(
/∗ asks f o r d , n and m, then echoes them back ∗/

d : read ( " ente r # o f decimal p l a c e s " ) , /∗ p r e c i s i o n o f b i g f l o a t s ∗/
n : read ( " ente r # o f e lements f o r the computation " ) ,

/∗ m: read ( " ente r # o f i t e r a t i o n s " ) , ∗/ /∗ f o r an a l t e r n a t i v e c y c l e
with a f i x e d # of i t e r a t i o n s ∗/

p r i n t ( "d =" ,d , " n =" ,n) ,
fpprec : d ,

/∗ p:10^( −k ) , ∗/
i t e r a t e : true ,
array (a , flonum , n) ,
array (b , flonum , n) ,
array ( minterm , fixnum , n) ,
s [ 0 ] : 0 ,
minterm [ 0 ] : 1 ,
for i from 0 thru n do ( a [ i ] : ( −1) ^ i ∗ i ! ) , /∗ inputs the o r i g i n a l

s e r i e s ∗/
/∗ f o r k from 1 thru m do ( ∗/ /∗ a l t e r n a t i v e c y c l e with a f i x e d #

of i t e r a t i o n s ∗/
for k : 1 while i t e r a t e do ( /∗ makes the trans form u n t i l i t uses

up the a v a i l a b l e e lements ∗/
b [ 0 ] : a [ 0 ] / 2 ,
for i from 1 thru n do ( /∗ computes the va lue s o f the

transformed s e r i e s b ∗/
b [ i ] : a [ 0 ] ,
for j from 1 thru i do

b [ i ] : b [ i ]+(( a [ j ] ∗ i ! ) / ( ( i−j ) ! ∗ j ! ) ) ,
b [ i ] : b [ i ] /2^( i +1) ) ,

i f ( abs (b [ n ] )<=abs (b [ n−1]) and i t e r a t e ) then ( i t e r a t e :
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fa l se ) , /∗ checks i f the l a s t e lements i s the s m a l l e s t
and t h e r e f o r e no more i t e r a t i o n s are needed ∗/

f i l l a r r a y (a , b) , /∗ r e w r i t e s the o ld s e r i e s with the new
one so i t can be used again in the next i t e r a t i o n ∗/

s [ k ] : b f l o a t (b [ 0 ] ) ,
for l : 1 while ( l<=n and abs (b [ l ] )<=abs (b [ l −1]) ) do ( /∗

sums the transformed s e r i e s u n t i l the s m a l l e s t term ,
in g iven p r e c i s i o n d ∗/

s [ k ] : b f l o a t ( s [ k]+b [ l ] ) ,
minterm [ k ] : l /∗ saves index o f the s m a l l e s t term

a f t e r each i t e r a t i o n ∗/
) ) ,

save ( " trans form . txt " ,b ) ,
save ( " sums . txt " , s ) ,
save ( " nr_elmnts_usd . txt " , minterm ) ,
l i s t a r r a y ( s ) /∗ output on sc r e en ∗/

) $

▲

Example B.4. Newton’s extrapolation of the sequence {Pn}n∈N: The script computes
approximations of P0 using extrapolation of an = log10Pn to a0. The last part of the script
provides an output file with a plot of the results.
extrpo l_log ( ) :=(

/∗ asks f o r d , n , then echoes them back ∗/
d : read ( " ente r # o f decimal p l a c e s " ) , /∗ s e t s the p r e c i s i o n o f

b i g f l o a t s ∗/
n : read ( " ente r # o f e lements f o r the computation " ) ,
p r i n t ( "d =" ,d , " n =" ,n) ,
fpprec : d ,
d e c l a r e ( de l ta , constant ) ,
d e l t a :0 .596347362323194074341078499369279376074177860152548) ,
/∗ i n i t i a l va lue s and c o n t r o l va lue s : ∗/
P: 1 ,
a [ 1 ] : b f l o a t ( l og (1 ) / log (10) ) ,
da1 [ 0 ] : a [ 1 ] ,
sum [ 0 ] : da1 [ 0 ] ,
s [ 0 ] : 1 0 ^ ( sum [ 0 ] ) ,
dmin : 1 , kmin : 0 ,
dmax : 0 , kmax : 0 ,
prec : 1 , kprec : 0 ,
dprec : 1 , kdprec : 0 ,
e r r : 0 , ke r r : 0 ,
for i from 2 thru n do (P : ( i −1)∗P+1, a [ i ] : b f l o a t ( l og (P) / log (10) ) )

, /∗ computes sequence ai = log10 Pi

in g iven p r e c i s i o n d ∗/
for i from 1 thru (n−1) do (

for j from 1 thru (n−i ) do (
b [ j ] : a [ j +1]−a [ j ] ,
a [ j ] : b [ j ] ) , /∗ computes i−th d i f f e r e n c e s

∆iaj ∗/
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da1 [ i ] : a [ 1 ] , /∗ ∆ia1 ∗/
sum [ i ] : sum [ i −1]+(−1)^ i ∗da1 [ i ] , /∗ sum of the terms ai

from 0 to i , g i v e s an approximation o f log(P0) ∗/
s [ i ] : b f l o a t (10^(sum [ i ] ) ) , /∗ approximation o f P0 ∗/
i f ( abs ( da1 [ i ] )<dmin ) then ( dmin : abs ( da1 [ i ] ) , kmin : i ) , /∗

check f o r the s m a l l e s t term added ∗/
i f ( abs ( da1 [ i ] )>dmax and i >5) then (dmax : abs ( da1 [ i ] ) ,

kmax : i ) , /∗ check f o r the b i g g e s t term added ∗/
i f ( prec>abs ( s [ i ]− s [ i −1]) ) then ( prec : abs ( s [ i ]− s [ i −1]) ,

kprec : i ) , /∗ check f o r the most p r e c i s e term u n t i l i−
th sum ( in case o f comvergence ) ∗/

i f ( dprec>abs ( s [ i ]− de l t a ) ) then ( dprec : abs ( s [ i ]− de l t a ) ,
kdprec : i ) , /∗ check f o r the term c l o s e s t to δ

u n t i l i−th sum ∗/
i f ( err<abs ( s [ i ]− s [ i −1]) ) then ( e r r : abs ( s [ i ]− s [ i −1]) ,

ke r r : i ) ) , /∗ check f o r the b i g g e s t e r r o r from δ
u n t i l i−th sum ∗/

with_stdout ( " de l tak_log . txt " , for i : 1 thru (n−1) do pr in t ( i ,
da1 [ i ] ) ) ,

with_stdout ( " sk_log . txt " , for i : 1 thru (n−1) do pr in t ( i , s [ i ] ) )
,

with_stdout ( " sumk_log . txt " , for i : 1 thru (n−1) do pr in t ( i , sum [
i ] ) ) ,

p r i n t ( " min =" ,dmin , " at index " , kmin , " max=" ,dmax , " at index " ,
kmax , " p r e c i s i o n=" , prec , " at index " , kprec , " d e l t a c l o s e s t=" ,
dprec , " at index " , kdprec , " e r r o r=" , err , " at index " , kerr , " sum
=" , s [ n−1]) ,

data : read_matrix ( " sk_log . txt " ) ,
xy : [ [ kdprec , s [ kdprec ] ] , [ kerr , s [ ke r r ] ] ] ,
p lot2d ( [ [ d i s c r e t e , [ 0 , n ] , [ de l ta , d e l t a ] ] , [ d i s c r e t e , t ranspose ( data )

[ 1 ] , t ranspose ( data ) [ 2 ] ] , [ d i s c r e t e , xy ] ] , [ s t y l e , l i n e s , l i n e s ,
po in t s ] , [ co lo r , green , blue , red ] , [ point_type , t imes ] , [ legend , "
d e l t a " , " r e s u l t s " , " extremes " ] , [ x l abe l , " number o f terms used " ] , [
y l abe l , " r e s u l t ( s ) " ] , [ p s_f i l e , " graph . ps " ] ) /∗ p l o t s a graph ∗/

) $

▲

Example B.5. Computing decimals of δ from a continued fraction: This particular
script uses the Stieltjes continued fraction. First script starts from the first convergent and
saves the coefficients of the last two computed convergents in output files. Those are used as
input for the second script that continues from there and can be repeated in the same way as
necessary.
c o n t f r ( ) :=(

/∗ asks f o r d , dest , n then echoes them back : ∗/
d : read ( " ente r # o f d i g i t s f o r c o e f f i c i e n t s " ) , /∗ the numerators

and denominators o f the convergents w i l l be kept with t h i s
p r e c i s i o n ∗/

dest : read ( " ente r upper es t imate on the p r e c i s i o n o f r e s u l t s " ) , /∗
the convergents w i l l be computed with t h i s p r e c i s i o n ∗/

n : read ( " ente r the t o t a l # o f e lements to be used " ) ,
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pr in t ( "d =" ,d , " des t = " , dest , " n =" ,n) ,
fpprec : d ,
a1 : 0 , a2 : 1 ,
b1 : 1 , b2 : 2 ,
s [ 0 ] : 0 , s [ 1 ] : 1 / 2 ,
for i from 2 thru n do (

a3 : b f l o a t (2∗ i ∗a2−a1 ∗( i −1)^2) , /∗ numerators o f the
S t i e l t j e s con . f r a c t i o n ∗/

b3 : b f l o a t (2∗ i ∗b2−b1 ∗( i −1)^2) , /∗ denominators −||− ∗/
fpprec : dest ,
s [ i ] : b f l o a t ( a3/b3 ) ,
fpprec : d ,
a1 : a2 , a2 : a3 ,
b1 : b2 , b2 : b3 ,
k : i ,
save ( " s t e p _ s t i e l t . txt " , k ) ) ,

p : abs ( s [ n]− s [ n−1]) , /∗ p r e c i s i o n o f the l a s t convergent ∗/
j : 5 ,
while (p<1) do (

j : j +1,
p : p∗10 ) ,

fpprec : j ,
with_stdout ( " c o n f r _ s t i e l t _ r e s u l t s 0 . txt " , for i : 1 thru n do pr in t

( i , b f l o a t ( s [ i ] ) ) ) ,
save ( " num1_stie lt . txt " , a1 ) ,
save ( " num2_stie lt . txt " , a2 ) ,
save ( " denom1_stie lt . txt " , b1 ) ,
save ( " / denom2_stie lt . txt " , b2 ) ,
p r i n t ( " s =" , b f l o a t ( s [ n ] ) , " p r e c i s i o n =" , j )

) $

cont fr_cont ( ) :=(
/∗ asks f o r d , dest , n then echoes them back : ∗/
d : read ( " ente r # o f d i g i t s f o r c o e f f i c i e n t s " ) , /∗ the numerators

and denominators o f the convergents w i l l be kept with t h i s
p r e c i s i o n ∗/

dest : read ( " ente r the upper es t imate on the p r e c i s i o n o f r e s u l t s " )
, /∗ the convergents w i l l be computed with t h i s p r e c i s i o n ∗/

n : read ( " ente r the t o t a l # o f e lements to be used " ) ,
p r i n t ( "d =" ,d , " des t = " , dest , " n =" ,n) ,
fpprec : d , /∗ s e t s p r e c i s i o n o f b i g f l o a t s ∗/
f a i l : false ,
/∗ l oads c o e f f i c i e n t s o f the l a s t 2 convergents a1 , b1 , a2 , b2 and

the index k o f the l a s t one ∗/
load ( " num1_stie lt . txt " ) ,
load ( " num2_stie lt . txt " ) ,
load ( " denom1_stie lt . txt " ) ,
load ( " denom2_stie lt . txt " ) ,
load ( " s t e p _ s t i e l t . txt " ) ,
for i from ( k+1) thru n do (
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a3 : b f l o a t (2∗ i ∗a2−a1 ∗( i −1)^2) , /∗ numerators o f the
S t i e l t j e s con . f r a c t i o n ∗/

b3 : b f l o a t (2∗ i ∗b2−b1 ∗( i −1)^2) , /∗ denominators −||− ∗/
a1 : a2 , a2 : a3 ,
b1 : b2 , b2 : b3 ,
k : i ,
i f i n t eg e rp ( k/100) then save ( " s t e p _ s t i e l t . txt " , k ) ,
i f ( i n t eg e rp ( k/100) and not f a i l ) then ( /∗ check i f

rounding the c o e f f i c i e n t s i n f l u e n c e s the r e s u l t s ∗/
acut : b f l o a t (2∗ i ∗a3−a3 ∗( i −1)^2) , /∗ es t imate on

rounding ∗/
bcut : b f l o a t (2∗ i ∗b3−b3 ∗( i −1)^2) ,
fpprec : dest ,
p : abs ( b f l o a t ( a1/b1 )−b f l o a t ( a2/b2 ) ) , /∗ computes

p r e c i s i o n o f the l a s t r e s u l t ∗/
scut : b f l o a t ( acut / bcut ) ,
e r : abs ( b f l o a t ( a2/b2 )−scut ) , /∗ computes the

d i f f e r e n c e between the l a s t r e s u l t and the
rounded l a s t r e s u l t ∗/

i f ( er ∗(10^10)>p) then ( /∗ compares the two ∗/
f a i l : true ,
save ( " f a i l a t _ s t i e l t . txt " , k ) ,
save ( " n u m f a i l _ s t i e l t . txt " , a3 ) ,
save ( " d e n o m f a i l _ s t i e l t . txt " , b3 ) ) ,

fpprec : d ) ) ,
fpprec : dest ,
s : b f l o a t ( a2/b2 ) ,
p : abs ( b f l o a t ( a1/b1 )−s ) , /∗ p r e c i s i o n o f the l a s t r e s u l t ∗/
j : 5 ,
while (p<1) do (

j : j +1,
p : p∗10 ) ,

fpprec : j ,
with_stdout ( " c o n f r _ s t i e l t _ r e s u l t s 0 1 . txt " , p r i n t (n , b f l o a t ( s ) ) ) ,

/∗ rename a f t e r every new s e s s i o n ∗/
save ( " num1_stie lt . txt " , a1 ) ,
save ( " num2_stie lt . txt " , a2 ) ,
save ( " denom1_stie lt . txt " , b1 ) ,
save ( " denom2_stie lt . txt " , b2 ) ,
p r i n t ( " s =" , b f l o a t ( s ) , " p r e c i s i o n =" , j −8)

) $

▲
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Appendix C

Decimal Expansion of δ

Decimal expansion of delta obtained from the 25000000-th convergent of the Stieltjes continued
fraction, correct to 8683 decimal places (the incorrect digits are underlined). The small numbers
at the end of each line indicate the number of digits listed so far.

δ ≈ 0.5963473623 2319407434 1078499369 2793760741 7786015254 8781573484 9104823272 70

1911487441 7470430497 0936127603 4423703474 8428623689 8120782995 2905719661 140

7369222665 8940243185 1351436829 3763296254 7711879740 2524323020 5211788573 210

7856177283 6523651378 5594867425 3562181300 8120833784 2384485959 8066698359 280

3217826489 6860472310 9996451085 5581415383 5206162575 0083188741 8701758151 350

8579310050 6116043552 9456710340 1503666363 5029755807 1419646592 0537060256 420

3858754392 2397638393 2709618635 5595420814 1117245933 8654652495 5277108782 490

9990958035 0929917916 2163896356 9135506973 1255489979 5693719307 1784387014 560

6967280775 1781700499 1066054484 7225494624 4137072561 3792849019 7549983003 630

7495298303 8426547682 4531113896 6510460616 0569870635 0683471618 9312449123 700

0526414991 8184343827 7456488042 8194626569 1438208018 6774444601 7483136989 770

5915267564 7833695487 1867400992 5960221310 7786153781 8589021632 2629566420 840

7851298732 5163348487 5883402568 4438975074 7943861531 4792993932 8077843998 910

8176958921 9826357740 6237721682 2805716991 6069633006 6837801738 2783396325 980

4442620979 9414229337 3856284907 9664290058 4404467939 4103198964 1229605940 1050

2188104681 3200793890 9285851600 9893724636 3442959532 5880103042 4171949405 1120

9628245482 4845791789 3316493231 2014080888 4897296704 2503970136 4868161454 1190

4244863208 9912951968 8768323599 1546987126 4650070157 8596184914 6474855159 1260

7300740389 1357349352 4087701290 4840348891 1297313193 0354162042 9817394774 1330

7522854785 3151009041 4721686651 6435383892 5806468199 6549154712 4910777086 1400

9596251886 3064364330 8475384344 3776568445 6857595015 8071119575 8812339849 1470

3684566043 5670823252 1556970704 7170587946 0986929923 9983515885 1763646468 1540

4626732195 3042921057 4912631465 8757803341 5479274265 7682394695 9522147835 1610

7682775355 8220257758 3297219115 5493205311 3617131688 5370672920 9200350672 1680

4618108994 8021533146 2574019993 8906476942 4836888926 9551372630 3264341436 1750

9373631123 6836867005 2138550537 2046761735 3145794883 2369049764 2944018711 1820
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2212427989 9942534175 6279416685 1447989648 2817985999 5269467279 3688814865 1890

5348171017 9361591503 4707793259 2921832770 6191285391 9701755059 0894948585 1960

4382490303 0218858807 8814277749 4203468132 0864965990 6462235396 0569276564 2030

8578076625 7918124411 7296126281 1837227238 1809811451 8608364338 8784014815 2100

2408582073 5771588554 8103115831 7045870758 0852370603 7026700738 8706559964 2170

5493589086 2965177931 1383546351 3282466680 6648762443 7400197621 4014436567 2240

8894673770 6291586690 5944363721 4055274253 3688765324 0520153727 9995394903 2310

4234736717 7111642130 0701668938 3413312914 3522989797 1633891280 7325202941 2380

0979782410 1475725699 0947516316 5742286788 4438684050 3336242993 1053732413 2450

1791669847 5200785900 6217158324 1113071797 9955671483 8789378797 2174930211 2520

2778002250 3270996144 7974296851 3727272482 5628939533 9580416242 3846270737 2590

0444043691 3475547699 9593394158 7031931047 4882201040 3461340993 1851583023 2660

3642364247 3156566511 4572633593 8714353777 4024981849 5745727876 3691496163 2730

2313940900 1071439528 0160135939 0970587860 2806115009 8760385727 8685574094 2800

2119688086 8181078365 2376108062 4395711236 8282149987 8271239485 1935368520 2870

1121801652 1607376178 8354169160 6672712916 2768878433 0612941901 1363629989 2940

4677446344 2646132959 6802631405 9497618435 1257473768 6229882899 6919429870 3010

6552509315 4308727709 0351147958 6932177993 6409225376 5616414593 8929657054 3080

0661981703 9514545740 9313628790 9292879192 6770013077 0866978175 8653251327 3150

8287128354 0209700702 2936574675 5878877776 2146010404 3226958557 4890140204 3220

9381630073 8192301521 5832356070 5193088075 3698575339 1071829764 3109144648 3290

5021876307 9810286918 0169094485 6080472522 7277485567 2921775189 2324210772 3360

4107655843 8606623977 0988222874 9293646009 6613258195 9712957886 8090043022 3430

5621140282 7492198642 5329362829 9484775280 7360682021 5825394680 9553107076 3500

2496687421 0801088812 7328032334 9096623899 3204248389 5768720442 8416481618 3570

6444817230 8180237359 2613761732 1137798896 9651156543 2883519380 1024483349 3640

6600422046 4182473189 0045066729 6069855356 4926820495 0756874810 2155989784 3710

4995223268 5428554527 3257648335 5868387722 3728041533 1602800970 9031027241 3780

3887845093 7413496323 1672453899 4891096490 4529255057 3760361233 6926694218 3850

0470305086 3748479510 9938736908 8373329438 6143941569 6919418257 4585707022 3920

3288019094 1956949150 1645177458 2883857379 4557065100 9413988918 4524244095 3990

2328349471 3606768112 8615660538 2880483052 4535669931 9567558548 5212911551 4060

7108258580 7001008155 4386421114 5261960608 4905894639 0276337137 7225934523 4130

1001206580 9145133430 9639018523 2188769766 4771156525 5911251226 6755813718 4200

0828050177 1168537702 1754044634 8194465555 9324672032 8533825315 9090846153 4270

0410935602 1872594830 6518737197 5511988380 1553709784 0372480323 7367994244 4340

0685194440 7810349703 7884504251 8153220796 2660028141 2943495656 1819035867 4410

8000604887 4596777107 8923323243 5746562718 6410546804 9241467465 3235183500 4480

2776955393 0816469226 9671402900 4530635211 3480060519 0854064733 7429513415 4550

5881111001 4015779919 4375528077 5441386894 5103890029 2042635502 1610762885 4620
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4353589467 8231453892 0302777155 2766201963 6705612171 2780199472 5507788386 4690

2228729896 6763252833 3772144833 5093175909 3294812417 9348200903 0031105559 4760

9224129569 1256147843 8881601701 6681973442 9910827310 3141072557 7463594960 4830

6853411472 5131113696 9764619894 2696549121 5163892426 8952121045 5276781036 4900

4113925372 8864304004 6225932909 0868980845 5468075385 3319338671 5263083082 4970

4289113176 7490268872 2554256269 0573490361 2110366863 4203675160 7665840136 5040

5143317891 3575448294 9221348029 1912369821 2574278014 8752791036 3055138144 5110

3433523325 1642875976 0338506329 6306190525 0376312178 3050140290 7166845955 5180

6018219874 4680436356 3180316643 1076707313 4289781651 3795761471 4211566985 5250

9474667164 5972764133 0761819534 2080600401 4674188231 6375268406 5108838073 5320

7753917003 1149363664 3927309204 5249587936 9861003762 8234518802 9982953442 5390

5536073038 7713745787 5568562403 8204220976 1843598782 8505373881 7176736432 5460

9353242240 0931395593 4578791852 0675757137 5444173486 4674127278 2985172728 5530

3096763045 0450432778 8529595045 6310397203 9802558009 2046171801 8836894143 5600

6092075788 6484971090 9262563859 1265336615 2618625091 9812832696 9455357980 5670

5401429348 3075736438 0805279941 2098410002 2036752535 8364728951 6916279368 5740

5725232273 7506308197 1038131678 1249222142 9916943393 2326239807 0858410176 5810

9184342127 9430859251 3598655846 9640764196 4049825976 0600768744 9285445750 5880

0102874617 8217957026 5244605208 0705843902 6501530040 5428886435 7871624340 5950

1612382057 9066438215 3722324699 6912547371 9045180697 1027414793 9726002013 6020

1096257366 1321035062 4023242844 7273662863 8488113388 6642834897 6623526755 6090

9488541807 4266358292 9637505213 9846233188 0275715703 1307583256 4492123077 6160

5833170430 7496679536 1453225059 5205382177 6210020145 4784001591 2149318071 6230

2711434358 4558621590 0806553801 4617356980 3346415296 4880684129 8403471119 6300

4985535234 3898455188 1764525798 4085341868 6488949804 6437561209 6479006942 6370

0469041114 6439862353 1074800393 7289913532 8406816222 3272162502 6389123257 6440

1709438676 9282187477 6523567776 3904909757 4734433145 9929699640 2227542867 6510

0923165440 8988146460 9104347722 2412664986 6925870602 8490008823 3032842205 6580

3443517270 3737735087 2711480527 9495102284 9598111805 2575025004 7532957696 6650

8495117056 2589907870 7999441990 1635788451 1948831406 3368701720 6364808991 6720

0319811457 2351997758 9642555247 0519424126 4139758497 7679059541 8683763296 6790

2431942643 2559145705 1807171012 1930270653 4194862912 8697865249 5067631195 6860

7888504203 8667774277 2048579327 3799464588 6708716156 8446350166 1721466377 6930

6238476829 9097503676 3363487572 3886810739 7426110155 0335885979 2769152077 7000

2875513264 6952024277 6421173795 2670788717 7900301847 8554149242 4910855955 7070

7666694571 4730212012 8575452193 4520133316 6007157527 3309782883 1665980276 7140

2767680431 4354196120 5947751926 1890795142 0892514257 0700505309 2486508014 7210

6706371310 1316936893 0936677167 3178219758 5661108064 0996663782 6808692539 7280

3827330713 0911717371 7877663824 1271187409 4340671511 8980604697 1350361869 7350

1800478904 9070901900 8965349086 3512928732 9143405307 1751538877 1198481746 7420
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8284750742 2269416017 3442726482 2123510755 4405993975 2283678558 0344861353 7490

1092759396 3833787697 3302668809 8415240516 9818973498 4717834299 1925807869 7560

2188881574 0333771883 2571331900 5293875271 3489528788 7961890350 9282629677 7630

2218439241 7197373748 0185263215 1192230059 0826452664 4928185659 7890617383 7700

1675705843 1996750145 1473212177 8187275268 5006042555 1367274980 7007211563 7770

0564936056 5751755026 3517463458 1485649562 5080044772 9042507058 9442760733 7840

3963634347 1616628294 1060858833 1905667079 2477743799 4432479792 4403605591 7910

5579239946 2626698306 4456923531 2822654968 6811655899 7837213892 4281577395 7980

8366208746 9582164224 4449767721 1348440867 3730439329 8408065836 9038608178 8050

0627557462 7052799104 0710516347 6782855454 6415339985 7177409497 7910282508 8120

4019385007 2053248787 5128542812 5470235158 1662694723 8844269302 3562991801 8190

0240071606 5790565430 7017255450 5812887944 6151030594 7292779788 9892772979 8260

3559377111 7559985397 9791641758 9595480776 6872327086 2449718208 4316630576 8330

1754959411 2471957065 2947705941 0551395627 5808400992 3342654585 1901907348 8400

9088833397 2338821385 1948356807 3433131999 9578751864 0289136776 1264973972 8470

9296019535 8773843404 3708785282 7241972194 2153485407 2599542780 8411822780 8540

6695800548 1325946489 0008002215 9877181192 7682123991 9899507328 3586252427 8610

4665331510 5848681767 5497079693 2824512108 9344004472 6811492082 6785385615 8680

433696 8686
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