
faculty of mathematics
and natural sciences

Kontsevich graphs
and their weights

in
deformation quantization
of Poisson structures

Master’s project Mathematics
September 2014 – February 2017

Student: R.T. Buring
Supervisor: Dr. A.V. Kiselev
Co-supervisor: Prof. dr. H.W. Broer

Abstract.

To show the existence of deformation quantizations for arbitrary Poisson
structures, M. Kontsevich gave in 1997 an explicit universal formula: a
formal power series in the deformation parameter ℏ with a sum of weighted
graphs (wherein a Poisson structure can be implanted) at each order in ℏ.
We outline a systematic and graphical approach, implemented in software,
to the problem of expanding the power series for this ⋆-product, particularly
the problem of finding the universal coefficients (weights of graphs) in terms
of as few parameters as possible, and the problem of pictorially proving the
associativity of ⋆ up to a given order in ℏ. We obtain the expansion of the
star-product up to the order 4 in ℏ in terms of 10 parameters (6 parameters
modulo gauge-equivalence) and we verify that the star-product expansion
is associative modulo ō(ℏ4) for every value of the 10 parameters. Jointly
with A. Bouisaghouane and A.V. Kiselev, we confirm at the infinitesimal
level the existence of a universal flow on the space of Poisson structures.

Contents

Summary . 4

Preface . 5

Acknowledgements . 9

Bibliography . 9

A Software modules and computer-assisted proof schemes in
the Kontsevich deformation quantization . 10

B On the Kontsevich ⋆-product associativity mechanism 71

C The Kontsevich tetrahedral flows revisited 75

3

Summary

Ist das Kunst oder kann das weg?

German proverb

In this master’s thesis we study the graphs and weights which appear in the deformation
quantization formula for Poisson structures on Rn given by M. Kontsevich in [9]. The
formula, a formal power series in the deformation parameter ℏ, looks like this:

r r⋆
f g

= r r
f g

+ℏ r r
f g

r
�
��
A
AU +ℏ2

(
1

2 r r
f g

rr��
�

B
B
BN��/SSw +

1

3 r r
f g

rr
?
@@R

@@R��	 − 1

3 r r
f g

r
@@R��	

r
?

��	
− 1

6 r r
f g

r r
??

�
)

+ o(ℏ2).

The meaning of the graphs and the general definition of the weights are given in [9],
of course, but also in [5] below. The main features of the Kontsevich ⋆-product are its
associativity – (f ⋆ g) ⋆ h = f ⋆ (g ⋆ h) – for any Poisson structure which is implanted in
the graphs, and the universality – independence of Poisson structure – of the weights.
The results of the thesis are summarized as follows:

• Calculated all the weights of Kontsevich graphs at the order 3.
See [5, Example 21] for the method and [7] for the result.

• Found an explicit mechanism for the associativity of ⋆ at the third order [7].

• Expressed all the weights at order 4 in terms of 10 parameters [5, Theorem 9].
Modulo gauge-equivalence, there remain 6 parameters [5, Theorem 14].

• Verified the associativity of ⋆ up to order 4 explicitly (as it was done in [7] for the
third order) for all values of the parameters [5, Theorem 11].

• Developed software to handle series of Kontsevich graphs [5].
This software [4] was used to obtain and/or verify the results listed here.

• Jointly with A. Bouisaghouane and A.V. Kiselev, confirmed at the infinitesimal
level the existence of a universal flow on the space of Poisson structures [1].

The articles [1], [5], and [7] cited in this summary are included in the thesis. The reader
is advised to check the arXiv links in the bibliography for the most recent versions of
these articles and/or journal references.

4

Preface

Any event, once it has occurred, can be made
to appear inevitable by a competent historian.

— Lee Simonson

As can be read on the title page, this master’s thesis was written in the course of
approximately two and a half years. The following is a brief recollection of the events.

Beginnings

The goal of the project, written in the original proposal, was to extend Kontsevich’s
deformation quantization formula to a variational (jet space) set-up, to the third order
in ℏ, for some particular examples of variational Poisson structures. To prepare me for
this – particularly the jet spaces – my supervisor Arthemy Kiselev encouraged me to
attend

The 3rd Summer School on the Geometry of Differential Equations.
September 8 – 12, 2014. Malenovice, Czech Republic.
Organized by the Mathematical Institute of Silesian University in Opava.

Participating in this summer school was a wonderful experience. Besides learning a
thing or two about jet spaces, I met some very nice people. When I returned from
Malenovice, work on the master’s thesis began in earnest. Through regular appoint-
ments with Arthemy in his office, I learned about jet spaces, the Jets package for Maple,
(variational) Poisson structures, the Kontsevich graph technique, and the extension of
the graph technique to jet spaces proposed by Arthemy. A particular problem for such a
jet space extension was that Kontsevich’s original proof of the associativity for ⋆ would
not work in the new infinite-dimensional setting. However, the ⋆-product formula is
explicit, so one should be able to check the associativity directly (up to some finite
order) by expanding both sides of the equation. The main research question became

How does the associativity for ⋆ follow from the Jacobi identity for P?

Following the direct approach, expanding the associativity equation for ⋆ by hand up
to the order 2 in ℏ and collecting similar terms, we found that associativity for ⋆ at
order 2 is exactly 2

3
times the Jacobi identity for P [2] (it was well-known that it should

be equivalent to the Jacobi identity). In the variational set-up, the same logic applied.
I also wrote some code to assign variational differential operators to graphs, by using a
combination of Sage and Jets.

5

The result of associativity up to order 2, the existence of the software, and our plans
to continue with this extension were presented at

Symmetries of Discrete Systems and Processes III.
August 3 – 7, 2015. Děč́ın, Czech Republic.
Conference organized by the Czech Technical University in Prague.

By this time Anass Bouisaghouane was also working on his master’s project under
Arthemy’s supervision. We had been working together on things related to jet spaces
and variational Poisson structures, and attended this conference together.

While I did not pursue the jet space extension of the quantization formula further,
the variational setting did inspire one of the subsequent results: the pictorial associa-
tivity mechanism for the ⋆-product at order 3 (and beyond), which is discussed below.

The star-product up to order 3

Meanwhile, there was the problem of passing to the third order in ℏ. Here already
drawing all the graphs becomes difficult to do without the aid of a computer. After
struggling for a while, I wrote some Sage code to do it. Arthemy asked me to find the
weights of these graphs in the literature, or calculate them myself. To our surprise, the
full expansion of the ⋆-product up to ℏ3 could not be found in the literature. My code to
generate graphs became the basis for the Sage package kontsevich_graph_series [3].
By using (elementary) relations found in the literature, the problem of calculating the
weights of graphs at order 3 was reduced to the calculation of just 15 graph weights.

In the absence of other relations between these 15 weights (we would later use
the associativity equation at order 4 and cyclic weight relations to determine them
exactly), I turned to numerical methods. By expressing the weight integral in Cartesian
coordinates, the integrand became a rational function of several variables. My attempts
to numerically integrate this rational function (with singularities, over an unbounded
domain) by using several different programs were unsuccessful. The numerical approach
was saved by Cauchy’s residue theorem, which let us integrate out 3 of the 6 (real)
variables symbolically, so the rest of the integral (now over a 3-dimensional domain)
could be done numerically. (This is described in more detail in [5, Appendix A].) The
numerical approximations of the weights were very close to certain rational numbers,
namely ±1/48 and ±1/24 (obtained by looking at the convergents of the continued
fraction expansions of the approximations), which led us to conjecture that these were
their true values. This method and the conjecture (which later turned out to be correct)
were reported in the brief communication [6]. Having all these weights, we could build
the ⋆-product expansion up to the third order.

Associativity at order 3

With this star product expansion in hand, the next task was to show its associativity
up to order 3. The Sage program [3] could eventually build star-product expansions
(given the weights), expand the associator (f ⋆ g) ⋆ h − f ⋆ (g ⋆ h), and collect terms

6

by using the skew-symmetry of P . Expanding the associator up to the order 3 in ℏ
and collecting terms by using the skew-symmetry of P , we were left with 39 mysterious
terms at ℏ3. They should vanish as a consequence of the Jacobi identity. But how? For
9 terms it was obvious, but the other 30 remained a mystery for several weeks. Finally
I realized how differential consequences of the Jacobi identity could be produced in a
pictorial way. The result was reported in [7] and presented at the workshop

Group Analysis of Differential Equations and Integrable Systems VIII.
June 12 – 17, 2016. Larnaca, Cyprus.
Workshop organized by the Department of Mathematics and Statistics of
the University of Cyprus and the Department of Applied Research of the
Institute of Mathematics of the National Academy of Sciences of Ukraine.

The proof in [7] is based on the lemma that states a (tri-)linear differential operator
with smooth coefficients vanishes identically if and only if its homogeneous components
vanish. My idea of a proof of this fact was to use Borel’s lemma (recalled at the
beginning of a course on jet spaces) which says that every formal power series with
real coefficients is the Taylor series of some smooth function. Arthemy quickly pointed
out that this is major overkill; just consider the value of the differential operator on
polynomial functions instead. Around this time I had translated my code to C++ (see
[4]) for efficiency reasons, and was working on proceeding to the next expansion order.

Universal flows and the ratio 1 : 6

A parallel story is about universal flows Ṗ = Qa:b(P) on the space of Poisson structures
(also proposed by M. Kontsevich) which Anass was studying. Here the approach sug-
gested by Arthemy was also to look for the explicit mechanism, first at the infinitesimal
level: why does the cocycle condition [[P,Qa:b(P)]] = 0 hold for all Poisson bi-vectors P?
Anass discovered by using explicit examples of Poisson structures that the condition
a : b = 1 : 6 is necessary for the universal flow to exist, and furthermore at this ratio
the cocycle condition is satisfied for some class of Poisson structures. The question
remained whether the cocycle condition for a : b = 1 : 6 holds in general, as a conse-
quence of the Jacobi identity [[P, P]] = 0. By writing the Schouten bracket [[P,Q1:6(P)]]
in terms of graphs, the idea of pictorial differential consequences of the Jacobi identity
from [7] could be applied. Using a perturbative approach, Anass was able to find some
of the necessary differential consequences [1, Appendix E]. In the hope of finding the
full solution, I worked together with Anass on a program reduce_mod_jacobi which
would try to reduce a sum of graphs by subtracting with undetermined coefficients all
possible pictorial differential consequences of the Jacobi identity, and solving the re-
sulting linear system. Eventually the program worked and found a solution consisting
of 27 differential consequences. By hand we collected the 27 terms into 8 terms modulo
skew-symmetry; this solution is reported in [1].

7

Software and the fourth order

After using the same strategy as in [6] for the third order, there were 149 weights of
graphs at order 4 left to be determined. Two ways to obtain weight relations which were
not covered in [6] are to use the associativity equation for particular Poisson structures
(e.g., at particular points), and the cyclic weight relations found in [8, Appendix E]. By
these methods we verified the conjecture about the values of all the weights at order 3
from [6], and we expressed all the weights at order 4 in terms of only 10 weights. This
result was presented at the

Symposium on advances in semi-classical methods in mathematics and physics.
October 19 – 21, 2016. Groningen, The Netherlands.
Jointly organized by the Johann Bernoulli Institute for Mathematics and
Computer Science (JBI) and the Van Swinderen Institute for Particle
Physics and Gravity (VSI).

This meeting was held in remembrance of Hip Groenewold, the theoretical physicist at
the University of Groningen who was the first to write down a star-product. It was an
honor to be a part of this symposium, and I enjoyed speaking with people there.

In an effort to bring the number of parameters down from 10, I tried to get more
relations by evaluating the associativity equation at higher orders (this was effective
at the previous order) and by using different Poisson structures. No new relations
were obtained. Arthemy suggested to inspect whether the star-product was already
associative up to the fourth order. Indeed, it was! Furthermore, we checked which
parameters could be gauged out, if any. It turned out that 4 of the 10 parameters could
be removed by a gauge-transformation. These results, together with explanations of
the software created to obtain these results, is contained in [5]. The process of writing
about the programs has suggested many improvements. Some manipulations which
would have to be done by hand were tedious to describe, so it was easier to modify or
extend the programs to simplify the writing (which also benefits the reader/user).

What’s next

In theory, one could go on expanding Kontsevich’s formula for ever and ever. By itself,
that is not the most interesting thing. However, the question whether all the weights
of Kontsevich graphs are rational or not is an open problem. In [8] it is proved that a
certain graph at order 7 has a weight which is, up to rationals, ζ(3)2/π6. Hence it is
interesting to keep on expanding and finding weights at least until the order 7. This can
be done in part by using the software [5], but to really determine all the weights some
new idea will be needed. I hope that my thesis inspires further work in this direction.

8

Acknowledgements

First of all I express my gratitude to my supervisor Arthemy Kiselev. Working with him
was a wonderful experience. Besides him teaching me the mathematics that I needed
to know for this project, I have learned from him a great deal about the art and craft
of writing, rewriting and typesetting articles; practicing and giving talks; persistence
in research; and the value of keeping notes. His connectedness allowed me to attend
schools and conferences not only in the Netherlands, but also in the Czech Republic and
in Cyprus. The great experiences I had there were made possible by Arthemy. When
the project went in a different direction than originally intended, he was flexible. His
dedication and hard work set an example that I have done my best to follow.

Secondly I thank Anass Bouisaghouane for all our fruitful collaboration as students
of our common supervisor. We were often able to help one another, and we always had
a good time at the faculty and at the conferences we visited abroad.

I also thank Jaap Top for his support and continued interest in the project. Thanks
are due to Mark Jeeninga for an interesting discussion about the number-theoretical
properties of the weights. Not least, I thank my family and friends for putting up
with me and encouraging me to keep going. Thanks to the Center for Information
Technology of the University of Groningen for providing access to the Peregrine high
performance computing cluster. Thanks to the Graduate School of Science of the Uni-
versity of Groningen for financial support to participate in the conference in Děč́ın and
the workshop in Larnaca.

Groningen, February 2017

9

Bibliography

[1] A. Bouisaghouane, R. Buring, and A.V. Kiselev. The Kontsevich tetrahedral flows
revisited. J. Geom. Phys (submitted), 2017. Preprint arXiv:1608.01710 [q-alg] —
26 p.

[2] R. Buring. MathOverflow question: Associativity of Kontsevich’s star product up
to second order. http://mathoverflow.net/q/200143/. Accessed: 2017-02-10.

[3] R. Buring. Package kontsevich graph series for Sage. http://github.com/

rburing/kontsevich_graph_series. Accessed: 2017-02-10.

[4] R. Buring. Software kontsevich graph series-cpp. http://github.com/

rburing/kontsevich_graph_series-cpp. Accessed: 2017-02-10.

[5] R. Buring and A.V. Kiselev. Software modules and computer-assisted proof
schemes in the Kontsevich deformation quantization. Preprint arXiv:1702.00681
[math.CO] — 60 p.

[6] R. Buring and A.V. Kiselev. The table of weights for graphs with ⩽ 3 internal
vertices in Kontsevich’s deformation quantization formula. (3rd International work-
shop on symmetries of discrete systems & processes, 3–7 August 2015, CVUT Děč́ın,
Czech Republic) — 3 p.

[7] R. Buring and A.V. Kiselev. On the Kontsevich ⋆-product associativity mech-
anism. Physics of Particles and Nuclei Letters, 14(2):403–407, 2017. Preprint
arXiv:1602.09036 [q-alg] — 4 p.

[8] G. Felder and T. Willwacher. On the (ir)rationality of Kontsevich weights. Int.
Math. Res. Not., 2010(4):701–716, 2010.

[9] M. Kontsevich. Deformation Quantization of Poisson Manifolds. Lett. Math. Phys.,
66:157–216, 2003.

10

http://mathoverflow.net/q/200143/
http://github.com/rburing/kontsevich_graph_series
http://github.com/rburing/kontsevich_graph_series
http://github.com/rburing/kontsevich_graph_series-cpp
http://github.com/rburing/kontsevich_graph_series-cpp

SOFTWARE MODULES AND COMPUTER-ASSISTED
PROOF SCHEMES IN

THE KONTSEVICH DEFORMATION QUANTIZATION

R. BURING AND A.V.KISELEV∗

Abstract. The Kontsevich deformation quantization combines Poisson dynamics,
noncommutative geometry, number theory, and calculus of oriented graphs. To ma-
nage the algebra and differential calculus of series of weighted graphs, we present
software modules: these allow generating the Kontsevich graphs, expanding the non-
commutative ⋆-product by using a priori undetermined coefficients, and deriving lin-
ear relations between the weights of graphs. Throughout this text we illustrate the
assembly of the Kontsevich ⋆-product up to order 4 in the deformation parameter ℏ.
Already at this stage, the ⋆-product involves hundreds of graphs; expressing all their
coefficients via 149 weights of basic graphs (of which 67 weights are now known ex-
actly), we express the remaining 82 weights in terms of only 10 parameters (more
specifically, in terms of only 6 parameters modulo gauge-equivalence). Finally, we
outline a scheme for computer-assisted proof of the associativity, modulo ō(ℏ4), for
the newly built ⋆-product expansion.

Contents

Introduction 2
1. Weighted graphs 5
2. The Kontsevich ⋆-product 13
3. Associativity of the Kontsevich ⋆-product 21
Conclusion 33
References 39
Appendix A. Numerical approximation of weight integrals 41
Appendix B. C++ classes and methods i
Appendix C. Encoding of the entire ⋆-product modulo ō(ℏ4) v
Appendix D. Encoding of the associator of the ⋆-product modulo ō(ℏ4) x
Appendix E. Gauge transformation that removes 4 master-parameters out of 10 xvi

Date: 1 February 2017.
2010 Mathematics Subject Classification. 05C22, 53D55, 68R10, also 05C31, 16Z05, 53D17, 81R60,

81Q30.
Key words and phrases. Associative algebra, noncommutative geometry, deformation quantization,

Kontsevich graph complex, computer-assisted proof scheme, software module, template library.
Address: Johann Bernoulli Institute for Mathematics and Computer Science, University of Gronin-

gen, P.O. Box 407, 9700 AK Groningen, The Netherlands. ∗E-mail : A.V.Kiselev@rug.nl
∗Present address: Max Planck Institute for Mathematics, Vivatsgasse 7, D-53111 Bonn, Germany.

1

2 R. BURING AND A. V. KISELEV

Introduction. On every finite-dimensional affine (i.e. piecewise-linear) manifold Nn,
the Kontsevich star-product ⋆ is an associative but not necessarily commutative defor-
mation of the usual product × in the algebra of functions C∞(Nn) towards a given
Poisson bracket {·, ·}P on Nn. Specifically, whenever ⋆ = × + ℏ {·, ·}P + ō(ℏ) is an
infinitesimal deformation, it can always be completed to an associative star-product
⋆ = ×+ℏ {·, ·}P +

∑
k⩾2 ℏkBk(·, ·) in the space of formal power series C∞(Nn)[[ℏ]]; this

was proven in [25]. An explicit calculation of the bi-linear bi-differential terms Bk(·, ·)
at high orders ℏk is a computationally hard problem. In this paper we reach the order
k = 4 in expansion of ⋆ by using software modules for the Kontsevich graph calculus,
which we presently discuss.
Convenient in practice, the idea from [25] (see also [21, 22, 24]) is to draw every de-

rivation ∂i ≡ ∂/∂xi (with respect to a local coordinate xi on a chart in the Poisson ma-
nifold Nn at hand) as decorated edge -i , so that large differential expressions become

oriented graphs. For example, the Poisson bracket {f, g}P(x) =
∑n

i,j=1(f)
←−
∂i
∣∣
x
·P ij(x) ·

−→
∂j
∣∣
x
(g) of two functions f, g ∈ C∞(Nn) is depicted by the graph (f)

i←− P ij j−→ (g); here

P ij is the skew-symmetric matrix of Poisson bracket coefficients and the summation
over i, j running from 1 to the dimension n of Nn is implicit. In these terms, the known
– from [6] – expansion of Kontsevich star-product looks as follows:1

r r⋆
f g

= r r
f g

+
ℏ1

1!
r r
f g

r
�
��
A
AU +

ℏ2

2!
r r
f g

rr��
�

B
B
BN��/SSw +

ℏ2

3

(
r r
f g

rr
?
@@R

@@R��	 + r r
f g

r
@@R��	

r
?

��	
)
+
ℏ2

6
r r
f g

r r
??

�
	

+

+
ℏ3

6

(
r r
f g

rr��
�

B
B
BN��/SSw

rr
�
�
�
���

C
C
C
CCW + r r

f g

r r
??

�
	

r

�JĴ

+ r r
f g

r r
??

�
	r
��	@@R + r r

f g

rr
?
@@R

@@R��	

r
��	

?
+ r r

f g

r
@@R��	

r
?

��	

r
@@R
?

+ r r
f g

rr
?
@@R

@@R��	

r
R

A
AU

+ r r
f g

r
@@R��	

r
?

��	

r
�
���

)
+

+
ℏ3

3

(
r r
f g

rr
?
@@R

@@R��	r���HHj + r r
f g

r
@@R��	

r
?

��	r���HHj

)
+
ℏ3

6

(
r r
f g

r r
?R?L

�
	

r
Q

QQs

U + r r
f g

r r
?R?L

�
	

r
�

��+

 + r r
f g

r
@@R��	

r
?

��	

r
?

HHHj

+ r r
f g

rr
?
@@R

@@R��	

r
?

����)
+o(ℏ3). (1)

By construction, every oriented edge carries its own index and every internal vertex
(not containing the arguments f or g) is inhabited by a copy of the coefficient matrix
P = (P ij) of the Poisson bracket {·, ·}P . This means that expansion (1) encodes the
analytic formula

f ⋆ g = f × g + ℏP ij∂if∂jg + ℏ2
(
1
2
P ijPkℓ∂k∂if∂ℓ∂jg + 1

3
∂ℓP ijPkℓ∂k∂if∂jg

− 1
3
∂ℓP ijPkℓ∂if∂k∂jg − 1

6
∂ℓP ij∂jPkℓ∂if∂kg

)
+ ℏ3

(
1
6
P ijPkℓPmn∂m∂k∂if∂n∂ℓ∂jg

1The indication L and R for Left ≺ Right, respectively, matches the indices –which the pairs of
edges carry – with the ordering of indices in the coefficients of the Poisson structure contained in the
arrowtail vertex. Note that exactly two edges are issued from every internal vertex in every graph in
formula (1); not everywhere displayed in (1), the ordering L ≺ R in each term is determined from
same object’s expansion (2).

COMPUTER-ASSISTED PROOF SCHEMES IN DEFORMATION QUANTIZATION 3

+ 1
3
∂nP ijPkℓPmn∂m∂k∂if∂ℓ∂jg − 1

3
∂nP ijPkℓPmn∂k∂if∂m∂ℓ∂jg

− 1
6
P ij∂nPkℓ∂ℓPmn∂k∂if∂m∂jg + 1

6
∂n∂ℓP ijPkℓPmn∂m∂k∂if∂jg

+ 1
6
∂n∂ℓP ijPkℓPmn∂if∂m∂k∂jg − 1

6
∂m∂ℓP ij∂nPkℓPmn∂k∂if∂jg

− 1
6
∂m∂ℓP ij∂nPkℓPmn∂if∂k∂jg − 1

6
∂nP ijPkℓ∂ℓPmn∂k∂if∂m∂jg

− 1
6
∂ℓP ij∂nPkℓPmn∂k∂if∂m∂jg + 1

6
∂n∂ℓP ij∂jPkℓPmn∂if∂m∂kg

− 1
6
∂ℓP ij∂n∂jPkℓPmn∂m∂if∂kg − 1

6
∂m∂ℓP ij∂n∂jPkℓPmn∂if∂kg

)
+ ō(ℏ3). (2)

We now see that the language of Kontsevich graphs is more intuitive and easier to
percept than writing formulae. The calculation of the associator Assoc⋆(f, g, h) =
(f ⋆ g) ⋆ h − f ⋆ (g ⋆ h) can also be done in a pictorial way (see section 2.4 on p. 18).
The coefficients of graphs at ℏk in a star-product expansion are given by the Kontsevich
integrals over the configuration spaces of k distinct points in the Lobachevsky plane H,
see [25] and [8]. Although proven to exist, such weights of graphs are very hard to
obtain in practice.2 Much research has been done on deriving helpful relations between
the weights in order to facilitate their calculation [10, 27, 14, 11, 2]. In Example 21 on
p. 25 we explain how expansion (1) modulo ō(ℏ3) was obtained in [6]. The techniques
which were then sufficient are no longer enough to build the Kontsevich ⋆-product
beyond the order ℏ3; clearly, extra mathematical concepts and computational tools
must be developed. In this paper we present the software in which several known
relations between the Kontsevich graph weights are taken into account; we express the
weights of all graphs at ℏ4 in terms of 10 master-parameters. (To be more precise, the
ten master-parameters are reduced to just 6 by taking the quotient over certain four
degrees of gauge freedom in the associative star-products.)
This paper contains three chapters. In chapter 1 we introduce the software to encode

and generate the Kontsevich graphs and operate with series of such graphs. In partic-
ular, the coefficients of graphs in series can be undetermined variables. The series are
then reduced modulo the skew-symmetry of graphs (under the swapping of Left⇄ Right
in their construction). Thirdly, a series can be evaluated at a given Poisson structure:
that is, a copy of the bracket is placed at every internal vertex.
Chapter 2 is devoted to the construction of Kontsevich ⋆-product: containing a given

Poisson structure in its leading deformation term, this bi-linear operation is not nec-
essarily commutative but it is required to be associative; hence the coefficients of a
power series for ⋆ must be specified. For example, at order k = 4 of the deformation
parameter ℏ there are 149 parameters to be found. (The actual number of graphs at ℏ4
is much greater; we here count the “basic” graphs only.) We review a number of meth-
ods to obtain the weights of Kontsevich graphs; the spectrum of techniques employed
ranges from complex analysis and direct numeric integration [7] to finding linear rela-
tions between such weights by using abstract geometric reasonings. The associativity of
Kontsevich ⋆-product is the main source of relations between the graph weights; at ℏ4
such relations are linear because everything is known about the weights up to order
three. We obtain these relations at order four in chapter 3 and we solve that system

2In fact, there are many other admissible graphs, not shown in (1), in which every internal vertex
is a tail for two oriented edges but the weights of those graphs are found to be zero.

4 R. BURING AND A. V. KISELEV

of linear algebraic equations for 149 unknowns. The solution is expressed in terms of
only 10 master-parameters, see formula (11) on pp. 33–38.
The algebraic system constructed in section 3.1 was obtained by restricting the asso-

ciativity for ⋆ to (a class of) specific Poisson structures. We want however to prove that
for the newly found collection of graph weights, the ⋆-product is associative for every
Poisson structure on all finite-dimensional affine manifolds. For that, in section 3.2 we
design a computer-assisted proof scheme that is independent of the bracket (and of a
manifold at hand). Specifically, in Theorem 11 on p. 29 we reveal how the associator
for Kontsevich ⋆-product, taken modulo ō(ℏ4), is factorised via the Jacobiator Jac(P)
or via its differential consequences that all vanish identically for Poisson structures P
on the manifolds Nn. We discover in particular that such factorisation,

Assoc⋆(f, g, h) = ♢
(
P , Jac(P), Jac(P)

)
mod ō(ℏ4),

is quadratic and has differential order two with respect to the Jacobiator. For all Poisson
brackets {·, ·}P on finite-dimensional affine manifolds Nn our ten-parameter expression
of the ⋆-product does agree up to ō(ℏ4) with previously known results about the values of
Kontsevich graph weights at some fixed values of the ten master-parameters and about
the linear relations between those weights at all values of the master-parameters.3

The software implementation [5] consists of a C++ library and a set of command line
calls. The latter are specified in what follows; a full list of new C++ subroutines and
their call syntaxis is contained in Appendix B. Whenever a command line call refers
to just one particular function in C++, we indicate that in the text. The current text
refers to version 0.16 of the software.
© The copyright for all newly designed software modules which are presented in
this paper is retained by R.Buring; provisions of the MIT free software license apply.

3From Theorem 11 we also assert that the associativity of Kontsevich ⋆-product does not carry on
but it can leak at orders ℏ⩾4 of the deformation parameter, should one enlarge the construction of ⋆ to
an affine bundle set-up of Nn-valued fields over a given affine manifold Mm and of variational Poisson
brackets {·, ·}P for local functionals F,G,H : C∞(Mm → Nn)→ k, see [16, 17, 18, 19] and [20].

COMPUTER-ASSISTED PROOF SCHEMES IN DEFORMATION QUANTIZATION 5

1. Weighted graphs

In this section we introduce the software to operate with series of graphs.

1.1. Normal forms of graphs and their machine-readable format. As it was
explained in the introduction, we consider graphs whose vertices contain Poisson struc-
tures and whose edges represent derivatives. To be precise, the class of graphs to deal
with is as follows.

Definition 1. Let us consider a class of oriented graphs on m + n vertices labelled 0,
. . ., m+ n− 1 such that the consecutively ordered vertices 0, . . ., m− 1 are sinks, and
each of the internal vertices m, . . ., m + n − 1 is a source for two edges. For every
internal vertex, the two outgoing edges are ordered using L ≺ R: the preceding edge
is labeled L (Left) and the other is R (Right). An oriented graph on m sinks and n
internal vertices is a Kontsevich graph of type (m,n). We denote by Gm,n the set of

all Kontsevich graphs of type (m,n), and by G̃m,n the subset of Gm,n consisting of all
those graphs having neither double edges nor tadpoles.

Remark 1. The class of graphs which we consider is not the most general type considered
by Kontsevich in [25]. In the construction of the Formality morphism there also appear
graphs with sources for more or fewer (than two) arrows. However, in our approach to
the problem at hand, which is the construction of a ⋆-product expansion that would
be associative modulo ℏk for some k ≫ 0, we shall only meet graphs from the class of
Definition 1.

Remark 2. There can be tadpoles or cycles in a graph Γ ∈ Gm,n, see Fig. 1.

��
��r? - r rR

I

Figure 1. A tadpole and an “eye”.

A Kontsevich graph Γ ∈ Gm,n is uniquely determined by the numbers n and m
together with the list of ordered pairs of targets for the internal vertices. For reasons
which will become clear immediately below, we now consider a Kontsevich graph Γ
together with a sign s ∈ {0,±1}, denoted by concatenation of the symbols: sΓ.

Implementation 1 (encoding). The format to store a signed graph sΓ with Γ ∈ Gm,n

is the integer number m > 0, the integer n ⩾ 0, the sign s, followed by the (possibly
empty, when n = 0) list of n ordered pairs of targets for edges issued from the internal
vertices m, . . ., m+n− 1, respectively. The full format is then (m, n, s; list of ordered
pairs).

We recall that to every Kontsevich graph one associates a polydifferential operator by
placing a copy of the Poisson bracket at each vertex. To a signed graph one associates
the polydifferential operator of the graph multiplied by the sign. The skew-symmetry of
the Poisson bracket implies that the same polydifferential operator may be represented
by several different signed graphs, all having different encodings.

6 R. BURING AND A. V. KISELEV

Example 1. Taken with the signs in the first row, the graphs in the second row all
represent the same polydifferential operator:

+1 -1 -1 +1 +1 -1 -1 +1

r rrr
?

L@@R
R

3

@@RL��	
R
2 r rrr

?
R@@R

L
3

@@RL��	
R
2 r rrr

?
L@@R

R
3

@@RR��	
L
2 r rrr

?
R@@R

L
3

@@RR��	
L
2 r rrr

?
L@@R

R
2

@@RL��	
R
3 r rrr

?
L@@R

R
2

@@RR��	
L
3 r rrr

?
R@@R

L
2

@@RL��	
R
3 r rrr

?
R@@R

L
2

@@RR��	
L
3

0 1 0 2 0 1 2 0 1 0 0 2 1 0 2 0 0 3 0 1 0 3 1 0 3 0 0 1 3 0 1 0

In the third row the target list (for internal vertices 2 and 3, respectively) is written.

We would like to know whether two (encodings of) signed graphs specify the same
topological portrait — up to a permutation of internal vertices and/or a possible swap
L ⇄ R for some pair(s) of outgoing edges. To compare two given encodings of a
signed graph, let us define its normal form. Such normal form is a way to pick the
representative modulo the action of group Sn × (Z2)

n on the space Gm,n.

Definition 2 (normal form). The list of targets of a graph Γ ∈ Gm,n can be considered
as a 2n-digit integer written in base-(n+m) notation. By running over the entire group
Sn× (Z2)

n, and by this over all the different re-labelings of Γ, we obtain many different
integers written in base-(n + m). The absolute value |Γ| of Γ is the re-labeling of Γ
such that its list of targets is minimal as a nonnegative base-(n + m) integer. For a
signed graph sΓ, the normal form is the signed graph t|Γ| which represents the same
polydifferential operator as sΓ. Here we let t = 0 if the graph is zero (see Remark 3
below).

Example 2. The minimal base-4 number in the third column of Example 1 is 0 1 0 2.
Hence the absolute value of each of the graphs in Example 1 is the first graph. The
normal form of each of the signed graphs in Example 1 is the first graph taken with the
appropriate sign ±1; the encodings of the normal forms are then 2 2 ±1 0 1 0 2.

Remark 3. The graphs Γ ∈ Gm,n for which the associated polydifferential operator
vanishes, by being equal to minus itself, are called zero. This property can be de-
tected during the calculation of the normal form of a signed graph. One starts with
the encoding of a signed graph. Obtain a “sorted” encoding (representing the same
polydifferential operator) by sorting the outgoing edges in every pair in nondecreasing
order: each swap L ⇄ R entails a reversion of the sign. Now run over the group Sn
of permutations of the internal vertices in the graph at hand, relabeling those vertices.
Should the list of targets in the sorted encoding of a relabeling be equal to the list of
targets in the original sorted encoding, but the sign be opposite, then the graph is zero.
We will see in Chapter 2 (specifically, in Lemma 2 on p. 14) that the weights of these
graphs also vanish, this time by the anticommutativity of certain differentials under the
wedge product.

Example 3. Consider the graph

-
�
�
�
��

B
B
B
BBN@@R��	

@
@
R

r r
r rr

4 3R

L

2

0 1

.

COMPUTER-ASSISTED PROOF SCHEMES IN DEFORMATION QUANTIZATION 7

with the encoding 2 3 1 0 1 0 1 2 3. For the identity permutation we obtain the
initial sorted encoding 2 3 1 0 1 0 1 2 3 (it was already sorted). For the permu-
tation 2 ⇆ 3 we obtain the encoding 2 3 1 0 1 0 1 3 2; upon sorting the pairs
it becomes 2 3 -1 0 1 0 1 2 3. The list of pairs coincides with the initial sorted
encoding but the sign is opposite; hence the graph is zero.

The notion of normal form of graphs allows one to generate lists of graphs with
different topological portraits (e.g., Kontsevich graph series, see section 1.2 below) by
using the following algorithm. Initially, the set of generated graphs is empty. For
every encoding (according to Implementation 1) in a run-through, its normal form with
sign +1 or 0 is added to the list if it is not contained there (otherwise, the offered
encoding is skipped).

Implementation 2. To generate all the Kontsevich graphs with m sinks and n internal
vertices in G̃m,n (without tadpoles or double edges), the command is

> generate_graphs n m

The procedure lists all such graphs (one per line) in the standard output. The second
argument m may be omitted: the default value is m = 2.
Similarly, to generate only normal forms (with sign +1 or 0), the call is

> generate_graphs n m --normal-forms=yes

The optional argument --with-coefficients indicates that (numbered) coefficients
should be listed along with the graphs.
(Accordingly, see KontsevichGraph::graphs in Appendix B.)

Example 4. The Kontsevich graphs in G̃m,n with one internal vertex

> generate_graphs 1

2 1 1 0 1

2 1 1 1 0

consist of the wedge with its two different labellings. We can check that the number of
Kontsevich graphs on n internal vertices and two sinks is (n(n+ 1))n:

> generate_graphs 2 | wc -l

36

> generate_graphs 3 | wc -l

1728

> generate_graphs 4 | wc -l

160000

> generate_graphs 5 | wc -l

24300000

Here, “| wc -l” counts the number of lines in the output.

Let us remember that while a graph series is generated, more options can be chosen
to restrict the graphs: e.g., only prime graphs can be taken into account, or graphs
but not their mirror copies can be allowed. On the same grounds, only those graphs in
which the sink(s) is or are the target(s) for at least one arrow per sink can be taken.
The implementation of these conventions will be explained in the next chapter (see
p. 16 below).

8 R. BURING AND A. V. KISELEV

1.2. Series of graphs: file format. We now specify how formal power series expan-
sions of graphs are implemented in software. Denote by ℏ the formal parameter; in
machine-readable format, a power series in ℏ is a list of coefficients of ℏk, k ⩾ 0. The
coefficients are formal sums of graphs (see KontsevichGraphSum in Appendix B) in
which the coefficients can be of any type, e.g.,

• integer or floating point numbers (e.g., 0.333),
• rational numbers (e.g., 1/3),
• undetermined variables (resp., OneThird).

To be precise, the library contains the class KontsevichGraphSeries which depends on
a template parameter T; it specifies the type of all the coefficients of graphs in the series.
In the command line programs, the external type GiNaC::ex, which is the expression
type of the GiNaC library [1], allows all of the above values (and combinations of them).
Hence a series under study can contain coefficients of all types at once; the coefficient
of a graph itself can be a sum of different type objects (e.g., p16+ 0.25).
In the file format for formal power series expansions, two kinds of lines are possible:

either

h^k:

or (separated by whitespace)

<encoding of a graph> <coefficient>

The precision of the formal power series expansion is indicated by the highest k occurring
in lines of the form “h^k:”. Hence one can control this bound by adding such a line
with a high k at the end of the file.

Implementation 3. The substitution of undetermined coefficients by their actual val-
ues, as well as re-expression of indeterminates via other such objects, is done by using
the program

> substitute_relations <graph-series-file> <subsitutions-file>

Its command line arguments are two file names: the first file contains the series and the
second file consists of a list of substitutions (one per line), each substitution written in
the form

<variable>==<what it is set equal to>

The command line program sends the series with all those substitutions to the standard
output.

Example 5. The Kontsevich ⋆-product (see §2) is a graph series given up to the second
order in the deformation parameter ℏ in the file star_product2_w.txt which reads

h^0:

2 0 1 1

h^1:

2 1 1 0 1 1

h^2:

2 2 1 0 1 0 1 1/2

2 2 1 0 1 0 2 w_2_1

2 2 1 0 1 1 2 w_2_2

2 2 1 0 3 1 2 w_2_3

COMPUTER-ASSISTED PROOF SCHEMES IN DEFORMATION QUANTIZATION 9

In fact, the values of the three unknowns are written in weights2.txt:

w_2_1==1/3

w_2_2==-1/3

w_2_3==-1/6

Whence the star-product is given modulo ō(ℏ2) as follows:
> substitute_relations star_product2_w.txt weights2.txt

h^0:

2 0 1 1

h^1:

2 1 1 0 1 1

h^2:

2 2 1 0 1 0 1 1/2

2 2 1 0 1 0 2 1/3

2 2 1 0 1 1 2 -1/3

2 2 1 0 3 1 2 -1/6

In practice one may encounter graph series containing many graphs and undetermined
coefficients. To split a graph series into parts, the following command is helpful.

Implementation 4. To extract the part of a graph series proportional to a given
expression, use the call

> extract_coefficient <graph-series-file> <expression>

In the standard output one obtains a modification of the original graph series: each
graph coefficient c is now replaced by the coefficient of <expression> in c. If the
coefficient of <expression> in c is identically zero, then the graph is skipped. The
special value <expression> = 1 yields the constant part of the graph series (all the
undetermined variables in the input are set to zero).

Example 6. From the file in Example 5, we extract the part proportional to w_2_1:

> extract_coefficient star_product2_w.txt w_2_1

h^0:

h^1:

h^2:

2 2 1 0 1 0 2 1

It is just one graph.

1.3. Reduction modulo skew-symmetry. Let us recall that for every internal vertex
in a Kontsevich graph, the pair of out-going edges is ordered by the relation Left
≺ Right and by a mark-up of those two edges using L and R. Starting from the
vector space of formal sums of graphs with real coefficients, we pass to its quotient.
Namely, we postulate that graphs which differ only by their internal vertex labeling are
equal. Further, we proclaim that every reversal of the edge order in any pair entails
the reversion of the graph sign. By construction, the sign is a part of the encoding for
a graph, see Implementation 1 on p. 5 above; this part of a graph’s description is used
whenever formal sums of graphs with coefficients,

+(sign)<coeff> · Γraph + (sign)<coeff> · Γraph,

10 R. BURING AND A. V. KISELEV

are reduced. In particular, we let

+(+1)<coeff> · Γ + (-1)<coeff> · Γ ≡ 0

for a graph Γ with any coefficient <coeff>.
The ordering mechanism Left ≺ Right creates graphs that equal zero because they

are equal to minus themselves (see Remark 3 and Example 3).

Remark 4. To avoid such comparison of graphs with zero all the time and so, to increase
efficiency, every graph is brought to its normal form as soon as it is constructed. It is
this moment when zero graphs acquire zero signs.

The algorithm to reduce a sum of graphs modulo skew-symmetry runs as follows.
For the starting graph or every next graph in the list, its sign (if nonzero) is set equal
to +1 and its coefficient is modified, if necessary, by using the rule

<sign>·<coeff> = (+1)·<sign·coeff>. (3)

Every graph with sign 0 is removed. Then the graph at hand (in its normal form, times
a coefficient) is compared, disregarding signs, with all the graphs which follow in the
list. A match found, its coefficient is added – using relation (3) – to the coefficient of
the graph we started with; the match itself is removed. By this reduction procedure for
graph sums, all vanishing graphs with zero signs are excluded from the list.

Implementation 5. To reduce a graph series expansion modulo skew-symmetry, call

> reduce <graph-series-file> [--print-differential-orders]

The resulting graph series is sent to the standard output. The optional argument
--print-differential-orders controls whether the differential orders of the graphs
(as operators acting on the sinks) are included in the output, with lines such as

2 1

indicating subsequent graphs have differential order (2, 1). (The corresponding methods
are KontsevichGraphSeries<T>::reduce() and KontsevichGraphSum<T>::reduce()
in Appendix B.)

Example 7. We put the zero graph from Example 3 with the coefficient +1 into a file
zerograph.txt:

h^3:

2 3 1 0 1 0 1 2 3 1

We confirm that reduce kills it:

> reduce zerograph.txt

h^3:

The output is an empty list of graphs.

Sometimes it is desirable to skew-symmetrize a graph series over the content of its
sinks. For example, one may want to do this when dealing with first-order differential
operators which represent (skew-symmetric) polyvectors (e.g., as the authors did jointly
with A. Bouisaghouane in [3]).

Implementation 6. To skew-symmetrize a graph series over the content of its sinks,
the command

COMPUTER-ASSISTED PROOF SCHEMES IN DEFORMATION QUANTIZATION 11

> skew_symmetrize <graph-series-file>

is available. The convention is that the sum over all permutations of the sinks is
taken, with the signs of those permutations, without any pre-factor (such as 1/n!).
(Accordingly, see KontsevichGraphSum<T>::skew_symmetrize() in Appendix B, as
well as KontsevichGraphSeries<T>::skew_symmetrize(), which calls the former.)

Remark 5. Sums of graphs may also be reduced modulo the (graphical) Jacobi identity
and its (pictorial) differential consequences; this is the subject of section 3.2.

1.4. Evaluate a given graph series at a given Poisson structure. Let us recall
that every Kontsevich graph contains at least one sink. Every edge (decorated with
an index, say i, over which the summation runs from 1 to n = dimNn) denotes the
derivation with respect to a local coordinate xi at a given point x of the affine man-
ifold Nn (hence the edge denotes ∂/∂xi|x). Every internal vertex (if any) encodes a
copy of a given Poisson structure P . Should the labellings of two outgoing edges be -i
and -j so that the edge with i precedes that with j, the Poisson structure in that
vertex is P ij(x) (that is, the ordering i ≺ j is preserved; moreover, the reference to a
point x is common to all vertices). Now, every Kontsevich graph (with a coefficient
after it) represents a (poly)differential operator with respect to the content of sink(s); to
build that operator, we apply the derivations (at x ∈ Nn) to objects in the arrowhead
vertices, multiply the content of all vertices at a fixed set of index values, and then sum
over all the indices.

Example 8 (Jacobi identity). For all Poisson structures P and all triples of arguments
from the algebra C∞(Nn) of functions on the Poisson manifold at hand, we have that

Jac(P)(1,2,3) = • •
�� ?BBN

1 2 3

=

�������� @@R
@

@@R
1 2 3

i j k

+

�������� @@R
@
@@R

2 3 1

j k
i

+

�������� @@R
@

@@R
3 1 2

k i
j

= 0. (4)

In formulae, by ascribing the index ℓ to the unlabeled edge, the identity reads

(∂ℓP ijPℓk + ∂ℓPjkPℓi + ∂ℓPkiPℓj)∂i(1)∂j(2)∂k(3) = 0.

Indeed, the coefficient of ∂i ⊗ ∂j ⊗ ∂k is the familiar form of the Jacobi identity.

In fact, the graph itself is the most convenient way to transcribe the formulae which
one constructs from it, see [18, §2.1] for more details.4 The computer implementation is
straightforward. We acknowledge however that it is one of the most needed instruments.

4In the variational set-up of Poisson field models, the affine manifold Nn is realised as fibre in an
affine bundle π over another affine manifold Mm equipped with a volume element. The variational
Poisson brackets {·, ·}P are then defined for integral functionals that take sections of such bundle π
to numbers. The encoding of variational polydifferential operators by the Kontsevich graphs now
reads as follows. Decorated by an index i, every edge denotes the variation with respect to the
ith coordinate along the fibre. By construction, the variations act by first differentiating their argument
with respect to the fibre variables (or their derivatives along the base Mm); secondly, the integrations
by parts over the underlying space Mm are performed. Whenever two or more arrows arrive at a graph
vertex, its content is first differentiated the corresponding number of times with respect to the jet fibre
variables in J∞(π) and only then it can be differentiated with respect to local coordinates on the base
manifold Mm. The assumption that both the manifolds Mm and Nn be affine makes the construction
coordinate-free, see [16, 20] and [17, 19].

12 R. BURING AND A. V. KISELEV

Implementation 7. The call is

> poisson_evaluate <graph-series-filename> <poisson-structure>

and options for <poisson-structure> are5

• 2d-polar,
• 3d-generic,
• 3d-polynomial,
• 4d-determinant,
• 4d-rank2,
• 9d-rank6.

The output is a list of coefficients of the differential operator that the graph series
represents, filtered by (a) powers of ℏ, (b) the differential order as an operator acting
on the sinks, and (c) the actual derivatives falling on the sinks.

Example 9. Put the graph sum for the Jacobiator Jac(P) in jacobiator.txt:

3 2 1 0 1 2 3 -1

3 2 1 0 2 1 3 1

3 2 1 0 4 1 2 -1

We evaluate it at a Poisson structure:

> poisson_evaluate jacobiator.txt 2d-polar

Coordinates: r t

Poisson structure matrix:

[[0, r^(-1)]

[-r^(-1), 0]]

h^0:

1 1 1

[r] [r] [r]

0

[r] [r] [t]

0

[r] [t] [r]

0

[r] [t] [t]

0

[t] [r] [r]

0

[t] [r] [t]

0

[t] [t] [r]

0

[t] [t] [t]

0

5The current version of the software does not allow specification of an arbitrary Poisson structure at
runtime (e.g. input as a matrix of functions); however, in the source file util/poison_structure.hpp
the list of Poisson structures (as matrices) can be extended to one’s heart’s desire.

COMPUTER-ASSISTED PROOF SCHEMES IN DEFORMATION QUANTIZATION 13

For example, the pair of lines

[r] [t] [r]

0

indicates that the coefficient of ∂r ⊗ ∂t ⊗ ∂r is zero in the polydifferential operator.

Restriction of graph series to Poisson structures will be essential in section 3.1 below
where systems of linear algebraic equations between the Kontsevich graph weights in ⋆
will be obtained by restricting the associativity equation Assoc⋆(f, g, h) = 0 to a given
Poisson bracket.

2. The Kontsevich ⋆-product

The star-product ⋆ = ×+ℏ{·, ·}P+ō(ℏ) in C∞(Nn)[[ℏ]] is an associative unital noncom-
mutative deformation of the associative unital commutative product × in the algebra
of functions C∞(Nn) on a given affine manifold Nn of dimension n <∞. The bi-linear
bi-differential ⋆-product is realized as a formal power series in ℏ by using the weighted
Kontsevich graphs. In fact, the bi-differential operator at ℏk is a sum of all Kontsevich
graphs Γ ∈ G2,k without tadpoles, with k internal vertices (and two sinks) taken with
some weights w(Γ). Let us recall their original definition [25].

Definition 3. Every Kontsevich graph Γ ∈ G̃2,k can be embedded in the closed upper
half-plane H ∪ R ⊂ C by placing the internal vertices at pairwise distinct points in H
and the external vertices at 0 and 1; the edges are drawn as geodesics with respect to
the hyperbolic metric, i.e. as vertical lines and circular segments. The angle φ(p, q)
between two distinct points p, q ∈ H is the angle between the geodesic from p to q and
the geodesic from p to ∞ (measured counterclockwise from the latter):

φ(p, q) = Arg

(
q − p
q − p̄

)
,

and it can be extended to H ∪ R by continuity. The weight of a Kontsevich graph Γ ∈
G̃2,k is given by the integral6

w(Γ) =
1

(2π)2k

∫
Ck(H)

k∧
j=1

dφ(pj, pLeft(j)) ∧ dφ(pj, pRight(j)), (5)

over the configuration space of k points in the upper half-plane H ⊂ C,
Ck(H) = {(p1, . . . , pk) ∈ Hk : pi pairwise distinct};

the integrand is defined pointwise at (p1, . . . , pk) by considering the embedding of Γ in
H that sends the jth internal vertex to pj; the numbers Left(j) and Right(j) are the
left and right targets of jth vertex, respectively.

For every Poisson bi-vector P on Nn and an infinitesimal deformation × 7→ × +
ℏ{·, ·}P + ō(ℏ) towards the respective Poisson bracket, the ℏ-linear star-product

⋆ = ×+
∑
k⩾1

ℏk

k!

∑
Γ∈G̃2,k

w(Γ) Γ(P)(·, ·) : C∞(Nn)[[ℏ]]× C∞(Nn)[[ℏ]]→ C∞(Nn)[[ℏ]] (6)

6We omit the factor 1/k! that was written in [25], to make the weight multiplicative (see Lemma 5).

14 R. BURING AND A. V. KISELEV

is associative.

Lemma 1. Permuting the internal vertex labels of a Kontsevich graph leaves the weight
unchanged.

Proof. Such a permutation re-orders the factors in a wedge product of two-forms. □

Lemma 2. Swapping L ⇄ R at an internal vertex of a Kontsevich graph Γ ∈ G̃2,k

implies the reversal of the sign of its weight.

Proof. Anticommutativity of wedge product of two differentials in formula (5) for w(Γ).
□

Lemma 3. The weight of a graph Γ ∈ G̃2,k and its reflection Γ̄ are related by w(Γ̄) =
(−)kw(Γ).

Proof. Taking the reflection of a graph (with respect to the vertical line ℜ(z) = 1/2)
corresponds to an orientation-reversing coordinate change on each “factor” H in Cn(H).

□

Lemma 4 ([9]). For a Kontsevich graph such that at least one sink receives no edge(s),
its weight is zero.7

Lemma 5. The map w : ⊔k G̃2,k → R that assigns weights to graphs is multiplicative,

w(Γi×̄Γj) = w(Γi)× w(Γj), (7)

with respect to the product ×̄ of graphs,

Γi×̄Γj = (Γi ⊔ Γj)
/
{ath sink in Γi = ath sink in Γj, 0 ⩽ a ⩽ 1},

which identifies the respective sinks.

Proof. The integrals converge absolutely [25]; apply Fubini’s theorem and linearity. □

Example 10. Some weight relations obtained from the lemmas above:

w

(
r rrr��
�

B
B
BN��/SSw

)
= w

(
r r

r
�
��
A
AU

)2

; w

(
r r

r
�
��
L A

AU
R

)
= −w

(
r r

r
�
��
R A

AU
L

)
; w

(
r rrr
?
@@R

@@R��	

)
= w

(
r rr

@@R��	

r
?

��	
)
.

Lemma 5 motivates the following definition.

Definition 4. A Kontsevich graph Γ ∈ G̃2,k is called prime if Γ is not equal to the ×̄
product of any Kontsevich graphs on two sinks and positive number of internal vertices
in either of the co-factors. Otherwise (if such a realization is possible), the graph is
called composite.

Using Lemma 5 and induction, we obtain that the weight of a composite graph Γ =
Γ1×̄ · · · ×̄Γt is the product of the weights of its factors: w(Γ) = w(Γ1)× · · · × w(Γt).

7The fact that the differential order of ⋆ is positive with respect to either of its arguments should
be expected, in view of the required property of ⋆-product to be unital: f ⋆ 1 = f = 1 ⋆ f .

COMPUTER-ASSISTED PROOF SCHEMES IN DEFORMATION QUANTIZATION 15

2.1. Basic set of graphs. We identify a set of graphs such that the weights of those
graphs would suffice to determine all the other weights.

Definition 5. A basic set of graphs on k internal vertices is a set of pairwise distinct
normal forms (the signs of which are discarded) of only those Kontsevich graphs Γ ∈ G̃2,k

which are prime, and in which every sink receives at least one edge. By definition, the
basic set contains the normal form of a graph but not its mirror reflection if it differs
from the graph at hand. To decide whether a graph or its mirror-reflection Γ̄ ̸= Γ
is included into a basic set, we take the graph whose absolute value is minimal as a
base-(k + 2) number. Note that a basic set on k ⩾ 3 vertices does contain zero graphs.

Corollary 6. To build ⋆-product (6) up to ō(ℏk) for some power k ⩾ 1, knowing the
Kontsevich weights w(Γi) only for a basic set of graphs Γi ∈ G̃2,ℓ at all ℓ ⩽ k is enough.
Indeed, the weights of all other graphs with ℓ internal vertices are calculated from
Lemmas 1, 2, 3, 4, and 5.

Example 11. Consider the prime graph r rrr
?
@@R

@@R��	 and its mirror-reflection r rr
@@R��	

r
?

��	

. The

encodings of their normal forms are 2 2 1 0 1 0 2 and 2 2 1 0 1 1 2 respectively.
Since 0 1 0 2 < 0 1 1 2 as base-4 numbers, only the first graph is included in the

basic set. The fork graph r r
r
�
��
A
AU

is mirror-symmetric hence it is included anyway.

The basic set at order 3 is displayed in Figure 2.

-
�
�
�
��

B
B
B
BBN@@R��	

@
@
R

r r
r rr r rrr

?
@@R

@@R��	

r
R

A
AU r r

r-
A
AAU

r
?
@@Rr

@@R��	 r r
r
?
@@R

r
?

��	r
@@R��	 r rrr

?
@@R

@@R��	

r
?

����

0 w_3_1 w_3_2 w_3_3 w_3_4

r rrr
?
@@R

@@R��	

r
��	

? r r
r
@@Rr

@@R
r
@@R��	 r r

r r

�

J
Ĵ�
	r
@@R��	 r rr r

�

J
Ĵ�
	

r
?

��+ r rr
?
HHjr
��	

6
r���J
JĴ

w_3_5 w_3_6 w_3_7 w_3_8 w_3_9

r rr r
??

�
	r���

@@R r rr r
??

�
	

r
Q
QQs

U r rr r
??

�
	

r

�JĴ

r rr
��
-r

BBN

r

� r r

r
?

r r
?

w_3_10 w_3_11 w_3_12 w_3_13 w_3_14

Figure 2. Basic set at order 3, with undetermined coefficients for
nonzero graphs.

16 R. BURING AND A. V. KISELEV

Table 1. How many basic graphs there are at low orders k.

Order = k 0 1 2 3 4 5 6
#(Basic set) 0 1 2 15 156 2307 –
#(Nonzero in basic set) 0 1 2 14 149 2218 42050

2.2. “All” graphs in ⋆ mod ō(ℏ4). In Table 1 we list the number of basic graphs
at every order k ⩽ 6 in the Kontsevich ⋆-product. The actual number of graphs with
respect to which the sums in formula (6) expand is of course much greater.

Implementation 8. To obtain the list of normal forms for graphs from a basic set,
the following command is available:

> generate_graphs k --basic=yes

The list of normal forms is then sent to the standard output. This command is equiv-
alent to

> generate_graphs k --prime=yes --normal-forms=yes \

--postive-differential-order=yes --modulo-mirror-images=yes

Starting from a basic set, the ⋆-product is built up to a certain order k ⩾ 0 in ℏ.

Implementation 9. The program

> star_product <basic-set-filename>

takes as its input a graph series with a basic set of graphs at each order; the graphs go
with coefficients of any nature (i.e. number or indeterminate). The program’s output is
an expansion of the ⋆-product up to the order that was specified by the input. In other
words, all the graphs which are produced from the ones contained in a given basic set
are generated and their coefficients are (re)calculated from the ones in the input (using
Lemmas 2, 3, and 5).

Example 12. To generate the star-product up to order 3 with all weights of nonzero
basic graphs undetermined, one proceeds as follows:

$ cat > basic_graphs_undetermined3.txt

h^0:

2 0 1 1

h^1:

^D (press Ctrl+D)

$ generate_graphs 1 --basic=yes --with-coefficients=yes \

>> basic_graphs_undetermined3.txt

$ echo ’h^2:’ >> basic_graphs_undetermined3.txt

$ generate_graphs 2 --basic=yes --with-coefficients=yes \

>> basic_graphs_undetermined3.txt

$ echo ’h^3:’ >> basic_graphs_undetermined3.txt

$ generate_graphs 3 --basic=yes --with-coefficients=yes \

>> basic_graphs_undetermined3.txt

$ star_product basic_graphs_undetermined3.txt \

> star_product_undetermined3.txt

The file star_product_undetermined3.txt now contains the desired star-product.

COMPUTER-ASSISTED PROOF SCHEMES IN DEFORMATION QUANTIZATION 17

2.3. Methods to obtain the weights of basic graphs. We deduce that to build
the ⋆-product modulo ō(ℏ4) as many as 149 weights of nonzero basic graphs Γi ∈ G̃2,4

at k = 4 must be found (or at least expressed in terms of as few master-parameters as
possible). In fact, direct calculation of all of the 149 Kontsevich integrals is not needed
to solve the problem in full because there exist more algebraic relations between the
weights of basic graphs. In the following proposition we recall a class of such relations.8

Proposition 7 (cyclic weight relations [10]). Let Γ be a Kontsevich graph on m = 2
ground vertices. Let E ⊂ Edge(Γ) be a subset of edges in Γ such that for every e ∈ E,
target(e) ̸= 0. (That is, every edge from the subset E lands on the sink 1 or an internal
vertex.) For a given subset E, define the graph ΓE as follows: let its vertices be the
same as in Γ and for every edge e ∈ Edge(Γ), preserve it in ΓE if e ̸= E, but if e ∈ E
replace that edge by a new edge in ΓE going from source(e) to the sink 0. By definition,
the ordering L ≺ R of outgoing edges is inherited in ΓE from E even if the targets of
any of those edges are new. Thirdly, denote by N0(ΓE) the number of edges in ΓE such
that their target is the sink 0. Then the Kontsevich weight of a graph Γ is related to
the weights of all such graphs ΓE obtained from Γ by the formula

w(Γ) = (−)n
∑

E⊆Edge(Γ)

(−)N0(ΓE)w(ΓE). (8)

Note that this relation is linear in the weights of all graphs.

If the graph Γ or, in practice, some of the new graphs ΓE in (8) is composite, Lemma 5
provides a further, nonlinear reduction of w(Γ) by using graphs with fewer internal
vertices.

Example 13. Consider the graph Γ3,8 in Figure 2 with weight w(Γ3,8) = w_3_8. For
every non-empty subset E (with target(e) ̸= 0 for every e ∈ E) the graph (Γ3,8)E is
a zero-weight graph by virtue of one of the Lemmas at the beginning of this chapter.
Hence the only term in the sum on the right-hand side in (8) is the weight of the graph
corresponding to the empty set: w((Γ3,8)∅) = w(Γ3,8). Since n = 3 and N0(Γ3,8) = 2
we get the cyclic relation w(Γ3,8) = −w(Γ3,8); whence w(Γ3,8) = 0.

Remark 6. It is readily seen that only prime, that is, non-composite graphs Γ need be
used to generate all relations (8). Indeed, every subset E of edges for a composite graph
Γ = Γ1×̄Γ2 splits to a disjoint union E1 ⊔ E2 of such subsets for the graphs Γ1 and Γ2

separately. Therefore the re-direction of edges in a composite graph would inevitably
yield the composite graph Γ1

E1×̄Γ2
E2 . Now, the multiplicativity of Kontsevich weights

and the additivity of the count N0(ΓE) = N0(Γ
1
E1) +N0(Γ

2
E2) can be used to conclude

that the relations obtained from composite graphs are redundant.

Implementation 10. The command

> cyclic_weight_relations <star-product-file>

8A convenient approach to calculation of Kontsevich weights (5) at order 3 by using direct integration
(and for that, using methods of complex analysis such as the Cauchy residue theorem) was developed
in [7], see Appendix A on p. 41 below. However, we note that most successful at k = 3, this method
is no longer effective for all graphs at k ⩾ 4. More progress is badly needed to allow k ⩾ 5.

18 R. BURING AND A. V. KISELEV

treats the input ⋆-product as a clothesline for graphs and their weights. For each graph
Γ in the ⋆-product, it outputs the relation (8) between the weights of the respective
graphs in the form LHS - RHS == 0.

Example 14. At the order four with the ⋆-product from Table 5 in Appendix C:

> cyclic_weight_relations star_product4.txt

-1/1728 - 1/2*w_4_1==0

...

-1/3456-1/12*w_4_2==0

...

-1/384+1/8*w_4_6-1/4*w_4_8==0

Remark 7. For some (basic) graphs it happens that the weight integrand in (5), as
a differential 2k-form, vanishes identically, even if the graph is not zero due to skew-
symmetry. This is the case for 21 out of 149 nonzero basic graphs at k = 4; see also
Appendix A.

For calculations of particular weight integrals we refer to the literature in section 3.3.

Remark 8 (rationality). Willwacher and Felder [10] relate the questions of (ir)rationality
of the Kontsevich graph weights to the questions of (ir)rationality of the value ζ(3)/π3

(similarly, ζ(5) and ζ(7)) of the Riemann ζ-function. We note that if, by running all
the algorithms from the present paper, one attains the order ō(ℏ7) in the deformation
parameter (such that the associativity of the Kontsevich ⋆-product is ascertained at
least mod ō(ℏ7)) and if all the values w(Γi) of all the graphs Γi involved appear to
be rational numbers, then this result about the graph weight values would resolve the
(ir)rationality (more precisely, algebraicity) problem for ζ(3)/π3.

All the above being said about methods to obtain the values w(Γ) for Kontsevich
graph weights and about the schemes to generate linear relations between these num-
bers, we observe that the requirement of associativity for the ⋆-product modulo ō(ℏk),
whenever that structure is completely known at all orders up to ℏk, is an ample source
of relations of that kind. This will be used intensively in chapter 3 from p. 21 on-
wards. In particular, we mention here that the values weights of graphs at order k
may be restricted by the associativity requirement at orders > k, by restriction to fixed
differential orders (i, j, k) (see Lemma 10 on p. 28).

2.4. How graphs act on graphs. Let us have a closer look at the equation of asso-
ciativity for the sought-for ⋆-product:

Assoc⋆(f, g, h) = (f ⋆ g) ⋆ h− f ⋆ (g ⋆ h) = 0.

We see that the graph series f ⋆ g and g ⋆h serve as the left- and right co-multiples of h
and f , respectively, in yet another copy of the star-product. To realize the associator
by using the Kontsevich graphs, we now explain how graphs act on graphs (here, in
every composition ⋆ ◦ ⋆ the graph series acts on a graph series by linearity).
We postulate that the action of graph series on graph series is k[[ℏ]]-linear and k[G∗,∗]-

linear with respect to both the graphs that act and that become the arguments.
Recall that every Poisson bracket is a derivation in each of its arguments. In conse-

quence, every derivation falling on a sink – in a graph Γ1 that acts on a given graph Γ2

COMPUTER-ASSISTED PROOF SCHEMES IN DEFORMATION QUANTIZATION 19

taken as the new content of that sink – acts on the sink’s content via the Leibniz rule;
all the Leibniz rules for the derivations in-coming to that sink work independently from
each other.

Example 15. Consider the action of a wedge graph Λ on the two-sinks graph (••) ∈
G2,0, taken as its second argument. We have that

r r r�� ��
r
�
��
A
AU = r r r

r
�
��
A
AU

+ r rr
r
�
��
A
AU
.

The result is a sum of Kontsevich graphs of type (3, 1). Let us remember that the
sinks are distinguished by their ordering; in particular the two Kontsevich graphs on
the right-hand side are not equal.

Example 16. Now let the wedge graph act on a wedge graph (again, as the former’s
second argument):

r r r
r
�
��
AAU�
 �	r
AAU���

= r r r
r
�
��
AAUr
AAU���

+ r r r
r

�
��
A
AU

r
AAU���
+ r rr

r
�
��

r
AAU���
.

Example 17. Finally, consider a graph in which two arrows fall on the first sink and
let its content be (••) ∈ G2,0:

r r�� �� rrr
?
@@R

@@R	 = rr rrr
?
@@R

@@R��	
+ r r rrr

?
@@R

@@R��	
+ r r rrr

�
���
@@R

@@R��	
+ r r rrr

?
@@R

@@R��=
.

These three examples basically cover all the situations; we shall refer to them again,
namely, from the next chapter where the restrictions by using the total differential
orders are discussed.
So far, we have focused on graphs; under the action of a graph on a graph, their

coefficients are multiplied. (This is why the associativity of the ⋆-product is an infinite
system of quadratic equations for the coefficients of all the graphs).

Implementation 11. In the respective class, the method is

KontsevichGraphSeries<T>::operator()

and its argument is std::vector (that is, a list) of the Kontsevich graph series in ℏ;
these are the m respective arguments for a Kontsevich graph series. The method is
called for the object of the class, that is, for the graph series which is evaluated at the
m specified arguments.

2.5. Gauge transformations. At first glance, the concept of gauge transformations
for (graphs in the) ⋆-products is an extreme opposite of plugging a list of graph series as
arguments of a given graph series. Namely, the idea of a gauge transformation is that
a graph series (possibly of finite length) is towered over a single vertex • ∈ G1,0. By
definition, a gauge transformation of a vertex • is a map of the form • 7→ [•] = •+ℏ·(...)
taking G1,0 → k[G1,∗][[ℏ]].

Example 18. The map • 7→ • + ℏ2
12 rq q

���AAU3
+

is a gauge transformation of • ∈ G1,0. This

graph series is encoded in the following file:

20 R. BURING AND A. V. KISELEV

h^0:

1 0 1 +1

h^2:

1 2 1 0 2 1 0 +1/12

The construction of gauge transformations is extended from G1,0 by k[[ℏ]]- and
k[G∗,∗]-linearity. This effectively means that in the course of action by a gauge trans-
formation t on a graph series f ∈ k[G∗,∗][[ℏ]], all the arrows work over the vertices in
every graph in f via the Leibniz rule (as it has been explained in the previous section).
This is how one expands [f] ⋆ [g], that is, the Kontsevich ⋆-product (6) of two gauged
arguments [f] and [g]. Let us recall further that the shape [•] = •+ ℏ · (. . .), where the
gauge tail of • is given by some graphs from k[G1,∗][[ℏ]], guarantees the existence of a
formal left inverse t−1 to the original transformation t, so that (t−1 ◦ t)(•) = •.

Lemma 8. If • 7→ = t(•) = •+ℏΓ1(•)+. . .+ℏℓΓℓ(·)+ ō(ℏℓ) is a gauge transformation,
let

t−1() = + ℏγ1() + . . .+ ℏℓγℓ() + ō(ℏℓ)
by setting

γm() := −
m−1∑
k=0

γk(Γm−k()).

Then t−1(t(•)) = •, that is, the transformation t−1 : k[G1,∗][[ℏ]]→ k[G1,∗][[ℏ]] is the left
inverse of t up to ō(ℏ).

It is readily seen that the assembly of the entire t−1 can require infinitely many
operatioins even if the direct transformation t took only finitely many of them, e.g., as
in Example 18.
In these terms, for the Kontsevich ⋆-product (6) we obtain, by operating with gauge

transformations and their formal inverses, a class of star products ⋆′ which are defined
by the relation

t(f ⋆′ g) = t(f) ⋆ t(g), f, g ∈ C∞(Nn)[[ℏ]]. (9)

Clearly, all these gauged star-products ⋆′ remain associative (because ⋆ was) but the
coefficients of graphs at an order k ⩾ 2 in ℏ are no longer necessarily equal to the
respective values in (6). The use of gauge transformations for products allows to gauge
out some graphs, often at a certain order ℏk in the star-product expansion.

Example 19. The graph q qq q
??�

	
with a loop is gauged out from the Kontsevich ⋆-pro-

duct (6) by using the gauge transformation t : • 7→ •+ ℏ2
12 rq q

���AAU3
+

, see Example 18. Note that

taking the formal inverse t−1 does create loop-containing graphs at higher orders ℏ⩾3

in the gauged star-product ⋆′ which is specified by (9).

Remark 9. Not every graph taken in the Kontsevich star-product ⋆ at a particular
order ℏk can be gauged out. For example, such are the graphs Γ ∈ G̃2,∗ containing an
internal vertex v with edges running from it to both the ground vertices.

Implementation 12. The command for gauge transformation is

> gauge <star-product-filename> <gauge-transformation-filename>

COMPUTER-ASSISTED PROOF SCHEMES IN DEFORMATION QUANTIZATION 21

where

• the file <star-product-filename> contains a machine-format graph encoding
of star-product ⋆ truncated modulo ō(ℏk) for some k ⩾ 0;
• the content of <gauge-transformation-filename> is a gauge transformation t(•),
that is, a truncated modulo ō(ℏℓ⩾0) series in ℏ consisting of the Kontsevich
graphs built over one sink vertex •.

In the standard output one obtains the truncation, modulo ō(ℏmin(k,ℓ)), of the graph
series for the gauged star-product ⋆′ defined by f ⋆′ g = t−1(t(f) ⋆ t(g)).
(The corresponding method is KontsevichGraphSeries<T>::gauge_transform() in

Appendix B.)

Example 20. Let the gauge transformation from Example 19 be stored in the file
gaugeloop.txt, and recall the ⋆-product up to order two from Example 5 in the file
star_product2.txt. The gauge transformation kills the loop graph:

> gauge star_product2.txt gaugeloop.txt > star_product2_gauged.txt

> reduce star_product2_gauged.txt

h^0:

2 0 1 1

h^1:

2 1 1 0 1 1

h^2:

2 2 1 0 1 0 1 1/2

2 2 1 0 1 0 2 1/3

2 2 1 0 1 1 2 -1/3

Indeed, we see that the line

2 2 1 0 3 1 2 -1/6

containing the loop graph has disappeared.

Let us note at once that every gauge transformation t given by a Kontsevich graph
polynomial in ℏ of degree ℓ can clearly be viewed formally as a polynomial transfor-
mation of any degree greater or equal than ℓ. This is why by using the same software
we can actually obtain the gauged star-product ⋆′ modulo ō(ℏ4) starting with the Kon-
tsevich star-product ⋆ modulo ō(ℏ4) and applying the gauge transformation of nominal
degree ℓ = 2 from Example 18. In other words, the precision in ⋆′ with respect to ℏ is
the same as in ⋆ even though the degree of the polynomial gauge transformation t is
smaller. In practice, this is achieved by adding an empty list of graphs at powers ℏk to
a given gauge transformation of degree ℓ < k.

3. Associativity of the Kontsevich ⋆-product

In the final section of this paper we explore two complementary matters. One the
one hand, we analyse how the associativity postulate for the Kontsevich ⋆-product
contributes to finding the values of weights w(Γ) for graphs Γ in ⋆. On the other
hand, a point is soon reached when no new information can be obtained about the
values of w(Γ): specifically, neither from the fact of associativity of the ⋆-product nor
from any proven properties of the Kontsevich weights. We outline a computer-assisted

22 R. BURING AND A. V. KISELEV

scheme of reasoning that, working uniformly over the set of all Poisson structures under
study, reveals the associativity of ⋆-product on the basis of our actual knowledge about
the weights w(Γ) of graphs Γ in it.
In [6] we reported an exhaustive description of the Kontsevich ⋆-product up to ō(ℏ3).

At the next expansion order ō(ℏ4) in ⋆, we now express the weights of all the 160.000
graphs Γ ∈ G̃2,4 in terms of only 10 parameters; those ten master-parameters themselves
are the (still unknown) Kontsevich weights of the four internal vertex graphs portrayed
in Fig. 3. By following the second strategy we prove that for any values of those ten
parameters the ⋆-product expansion modulo ō(ℏ4) is associative, also up to ō(ℏ4).

r r
r
?
@@Rr
��	

6
r

��	@@R r
?

��	 r rr
?
HHjr
��	

6
r���

r
? r r

r
?

r
��	
@@I

r
@@R r

?
��	 r rr

CCW
XXzr
��	

rPPq r
?

��	 r r
r
?

r
@@R
���

r r
?

p1 = w_4_100 p2 = w_4_101 p3 = w_4_102 p4 = w_4_103 p5 = w_4_104

r r
r
?

U
r
?

�r
��

r
BBN r rr

��
r
BBN

r

�JĴr��) � r r

r
?

r���
��+
rjK r

? r r
r�

?

r
U
Ur*� r
�
K r rr

��
-r

BBN

r

�r�K

p6 = w_4_107 p7 = w_4_108 p8 = w_4_109 p9 = w_4_119 p10 = w_4_125

Figure 3. The ten graphs whose unknown weights9 are taken as the
master-parameters pi; in fact, the four graphs whose weights are under-
lined can be gauged out from ⋆ so that there remain only 6 parameters
that determine it modulo ō(ℏ4).

3.1. Restriction of the ⋆-product associativity equation Assoc⋆(f, g, h) = 0 to a
Poisson structure P. We now view the postulate of associativity for the Kontsevich
⋆-product as an equation for coefficients in the graph expansion of ⋆. Whenever an
expansion modulo ō(ℏℓ) is known for the ⋆-product, one passes to the next order ō(ℏℓ+1)
by taking all the graphs Γ ∈ G̃2,ℓ+1 with undetermined coefficients, and then expands
(with respect to graphs) the associator Assoc⋆(f, g, h) up to the order ō(ℏℓ+1). This
expansion now runs over all the graphs with at most ℓ+1 internal vertices. It is readily
seen that by construction this associativity equation Assoc⋆(f, g, h) = ō(ℏℓ+1) is always
linear 10 with respect to the coefficients of graphs from G̃2,ℓ+1.

Remark 10. One can still get linear relations between the weights w(Γ) of graphs Γ ∈
G̃2,ℓ+1 at order ℏℓ+1 in ⋆ by inspecting the associativity of ⋆ at higher orders – ranging
from ℓ+2 till 2ℓ+1– in ℏ. Indeed, a linear relation containing the unknown weights (and
the already known lower-order part of ⋆ as coefficients) but not the weights of graphs
with ⩾ ℓ + 2 internal vertices can appear whenever a properly chosen homogeneous
component of the tri-differential operator Assoc⋆(f, g, h) does not contain any weights
from higher orders. For instance, this is the component at homogeneity orders (i, j, k)

9Numerical approximations of two of these weights are listed in Table 3 in Appendix A.
10Should a graph Γ ∈ G̃2,ℓ+1 be composite so that its Kontsevich weight is factorized using for-

mula (7), the resulting nonlinearity with respect to the weights would actually involve only the graphs
with at most ℓ internal vertices.

COMPUTER-ASSISTED PROOF SCHEMES IN DEFORMATION QUANTIZATION 23

such that prime graphs Γ ∈ G̃2,⩾ℓ+2 of homogeneity orders (i+ j, k) and (i, j+k) (when
viewed as bi-differential operators) do not exist or if the weights of all such graphs are
known in advance.

3.1.1. Let us also note that in the graph equation Assoc⋆(f, g, h) = 0 that holds by
virtue of the Jacobi identity Jac(P) = 0, not every coefficient of every graph in the
expansion should be expected to vanish. Indeed, the Jacobiator is a vanishing sum
of three graphs that evaluates to zero at every Poisson structure P which we put
into every internal vertex. This is why the restriction of associativity equation to
a given Poisson structure (or to a class of Poisson structures) is a practical way to
proceed in solution of the problem of finding the coefficients of graphs in ⋆. More
specifically, after the restriction of associator Assoc⋆(f, g, h) to a structure P which
is known to be Poisson so that all the instances and all derivatives of the Jacobiator
Jac(P) are automatically trivialized, the left-hand side of the associativity equation
Assoc⋆(f, g, h)

∣∣
P = 0 mod ō(ℏℓ+1) becomes an analytic expression (linear with respect

to the unknowns w(Γ) for Γ ∈ G̃2,ℓ+1). At this point one can proceed in several ways.
We now outline three methods to obtain systems of linear equations upon the un-

known weights w(Γ) of basic graphs Γ ∈ G̃2,ℓ+1. Working in local coordinates, we ensure
that the unknowns’ coefficients in the equations which we derive are real numbers.11

The three methods which we presently describe can be compared as follows. On the
one hand, as far as maximizing the rank of the algebraic system which are obtained
by using the respective methods is concerned, Method 1 is the least effective whereas
Method 3 is the most productive. One the other hand, Method 1 is the least computa-
tionally expensive, so it can be used effectively at the initial stage, e.g., to detect the
zero values of certain graph weights: once found, such trivial values allow to decrease
the number of unknowns in the further reasoning. We finally note that the linear al-
gebraic systems which are produced by each method should be merged. Indeed, the
goal is to maximize the rank and by this, reduce the number of free parameters in the
solution.12

Method 1. Let the associator’s arguments be given functions f, g, h ∈ C∞(Nn). Re-
strict the analytic expression Assoc⋆(f, g, h)

∣∣
P to a point x of the manifold Nn equipped

with a Poisson structure P . For every choice of f, g, h ∈ C∞(Nn) and of a point x ∈ Nn,
the restriction Assoc⋆(f, g, h)

∣∣
P(x) = 0 mod ō(ℏℓ+1) yields one linear relation between

the weights of graphs at order ℏℓ+1. Taking the restriction at several points x1, . . .,
xk ∈ Nn, one obtains a system of such equations, the rank of which does not exceed
the number k of such points in Nn. Bounded by the number of unknowns w(Γ), the
rank would always stabilize as k →∞.

11From the factorization of associator for ⋆ via differential consequences of the Jacobi identity for
a Poisson structure P, which will be revealed in section 3.2 below, it will be seen in hindsight that
the construction of linear relations between the graph weights is overall insensitive to a choice of
local coordinates in a chart within a given Poisson manifold. Indeed, the factorization will have been
achieved simultaneously for all Poisson structures on all the manifolds at once, irrespective of any local
coordinates.

12If the rank of the resulting linear algebraic system is equal to the number of unknowns – and if
all the coefficients coming from lower orders ⩽ ℓ within the ⋆-product expansion with respect to ℏ are
also rational – then all the solution components are rational numbers as well, cf. [10].

24 R. BURING AND A. V. KISELEV

Examples of Poisson structures P – for instance, on the manifolds Rn – are available
from [13] (here n ⩾ 3) and [28]; from Proposition 2.1 on p. 74 in the latter one obtains
a class of Poisson (in fact, symplectic) structures with polynomial coefficients on even-
dimensional affine spaces R2k. Besides, there is a regular construction (by using the
R-matrix formalism, see [26, p. 287]) of Poisson brackets on the vector space of square

matrices Mat(R, k × k) ∼= Rk2 (e.g., in this way one has a rank-six Poisson structure
on R9).

Method 2. Now let f, g, h ∈ k[x1, . . . , xn] be polynomials referred to local coordinates
x1, . . ., xn on Nn. On that coordinate chart Uα ⊂ Nn, take a Poisson structure the
coefficients P ij(x) of which would also be polynomial. In consequence, the left-hand
side of the equation Assoc⋆(f, g, h)

∣∣
P = 0 mod ō(ℏℓ+1) then becomes polynomial as

well. Linear in the unknowns w(Γ), all the coefficients of this polynomial equation
vanish (independently from each other). Again, this yields a system of linear algebraic
equations for the unknown weights w(Γ) of the Kontsevich graphs Γ ∈ G̃2,ℓ+1 in the
⋆-product.

We observe that the linear equations obtained by using Method 2 better constrain
the set of unknowns w(Γ), that is, the rank of this system is typically higher than in
Method 1. Intuitively, this is because the polynomials at hand are not collapsed to
their values at points x ∈ N .

Method 3. Keep the associator’s arguments f, g, h unspecified and consider a class of
Poisson structures P [ψ1, . . . , ψm] depending in a differential polynomial way on func-
tional parameters ψα, that is, on arbitrary functions, whenever P is referred to local
coordinates. (For example, let n = 3 and on R3 with Cartesian coordinates x, y, z
introduce the class of Poisson brackets using the Jacobian determinants,

{u, v}P = p · det
(
∂(q, u, v)/∂(x, y, z)

)
, q ∈ C∞(R3), (10)

supposing that the density p(x, y, z) is also smooth on R3.) Now view the associator
Assoc⋆(f, g, h)

∣∣
P[ψ1,...,ψm]

as a polydifferential operator in the parameters f, g, h (with

respect to which it is linear) and in ψ1, . . ., ψm from P . By splitting the associator,
which is postulated to vanish modulo ō(ℏℓ+1), into homogeneous differential-polynomial
components, we obtain a system of linear algebraic equations upon the graph weights.

It is readily seen that, whenever the parameters ψ1, . . ., ψm are chosen to be poly-
nomials (here let us suppose for definition that the resulting Poisson structure P(x)
itself is polynomial), the rank of the algebraic system obtained by Method 3 can be
greater than the rank of an analogous system from Method 2. This is because the
analytic expression Assoc⋆(f, g, h)

∣∣
P[ψ1,...,ψm]

keeps track of all the parameters, whereas

in Method 2 they are merged to a single polynomial.

Implementation 13. To calculate the associator Assoc⋆(f, g, h) for a given ⋆-product
and ordered objects f, g, h, the call is

> star_product_associator <star-product-filename>

where the input file <star-product-filename> contains the (truncated) power series
for the ⋆-product. In the standard output one obtains a (truncated at the same order

COMPUTER-ASSISTED PROOF SCHEMES IN DEFORMATION QUANTIZATION 25

in ℏ as in the input) power series containing, at each power ℏk, the sums of graphs from
G3,k with coefficients (their admissible types were introduced in §1.2 above).

The next step – namely, restriction of the associator to a given Poisson structure –
can be performed by using a call poisson_evaluate as it has been explained in §1.4.
However, the further restriction as described in the Methods has been implemented in
a separate program (similar to poisson_evaluate) which directly outputs the desired
relations, as follows.

Implementation 14. The command

> poisson_make_vanish <graph-series-file> <poisson-structure>

sends to the standard output relations such as

-1/24+w_3_1+4*w_3_2==0

between the undetermined coefficients in the input, which must hold if the input graph
series is to vanish as a consequence of the Jacobi identity for the specified Poisson
structure. The implementation is described in the Methods above. The choice of
Poisson structure is made in the same way as in Implementation 7. If the optional
extra argument --linear-solve is specified, the program will assume that the relations
which will be obtained are linear, and attempt to solve the linear system.

Example 21. To obtain all the weights of basic graphs Γ ∈ G̃2,3 at ℏ3 in the Kontsevich
star-product ⋆, it was enough to build the linear system of algebraic equations that
combined (i) cyclic relations (8), (ii) the relations which Method 3 produces for generic
Poisson structure (10), and (iii) those linear relations between the weights of Γ ∈
G̃2,3 which – in view of Remark 10 on p. 22 – still do appear at the next power ℏ4 in
Assoc⋆(f, g, h) = 0, by using the same generic Poisson structure (10). The resulting
expansion of ⋆-product modulo ō(ℏ3) is shown in formula (1) on p. 2. This result is
achieved by using the software as follows. Starting from the sets of basic graphs up
to the order 2 (with known weights) in the file basic_graphs_2.txt, generate lists of
basic graphs (with undetermined weights) up to the order four:

$ cp basic_graphs_2.txt basic_graphs_34w.txt

$ echo ’h^3:’ >> basic_graphs_34w.txt

$ generate_graphs 3 --basic=yes --with-coefficients=yes \

>> basic_graphs_34w.txt

$ echo ’h^4:’ >> basic_graphs_34w.txt

$ generate_graphs 4 --basic=yes --with-coefficients=yes \

>> basic_graphs_34w.txt

Build the ⋆-product expansion up to the order 4 from these basic sets:

$ star_product basic_graphs_34w.txt > star_product_34w.txt

Generate cyclic weight relations:

$ cyclic_weight_relations star_product_34w.txt \

> weight_relations_34w-cyclic.txt

Build the associator expansion up to the order 4 from the ⋆-product expansion:

$ star_product_associator star_product_34w.txt > associator_34w.txt

Obtain relations from the requirement of associativity for the Poisson structure (10):

26 R. BURING AND A. V. KISELEV

$ poisson_make_vanish associator_34w.txt 3d-generic \

> weight_relations_34w-3d.txt

Merge the systems of linear relations:

$ cat weight_relations_34w-* > weight_relations_34w_all.txt

Solving the linear system in weight_relations_34w_all.txt yields the solution

w_3_1=1/24, w_3_2=0, w_3_3=0, w_3_4=-1/48, w_3_5=-1/48

w_3_6=0, w_3_7=0, w_3_8=0, w_3_9=0, w_3_10=0

w_3_11=-1/48, w_3_12=-1/48, w_3_13=0, w_3_14=0.

Instead of evaluating the associator in full, we could also have selected (e.g. by reading
the file associator_34w.txt, which also contains lines of the form “# i j k”) those
differential orders (i, j, k) at which only weights from order 3 appear, in view of Remark
10: such orders are (1, 3, 2), (2, 3, 1), (2, 1, 3), (3, 2, 1), (3, 1, 2), (1, 2, 3) and (2, 2, 2).

Remark 11. A substitution of the values of certain graph weights expressed via other
weights is tempting but not always effective. Namely, we do not advise repeated running
of any of the three methods with such expressions taken into account in the input.
Usually, the gain is disproportional to the time consumed; for instead of a coefficient to-
express the program now has to handle what typically is a linear combination of several
coefficients. This shows that the only types of substitutions which are effective are either
setting the coefficients to fixed numeric values (e.g., to zero) or the shortest possible
assignments of a weight value via a single other weight value (like w(Γ1) = −w(Γ2) for
some graphs Γ1 and Γ2).

3.1.2. The ⋆-product expansion at order four. At order four in the expansion of the Kon-
tsevich ⋆-product with respect to ℏ, there are 149 basic graphs Γ ∈ G̃2,4. The knowledge
of their coefficients would completely determine the ⋆-product modulo ō(ℏ4). By using
Methods 1–3 from §3.1, we found the exact values of 67 basic graphs and we expressed
the remaining 82 weights in terms of the 10 master-parameters (themselves the weights
of certain graphs from G̃2,4; the other 72 weights are linear functions of these ten).

Theorem 9. The weights of 27 basic Kontsevich graphs are equal to zero. Of these
27, the integrands of 21 weights are identically zero, and the other 6 weight values were
found to be equal to zero. The remaining 122 weights of basic graphs Γ ∈ G̃2,4 are
arranged as follows :

· 40 nonzero weights are known explicitly ;
· the values of the remaining 82 weights are expressed linearly in terms of the
weights of those ten graphs which are shown in Fig. 3.

• The encoding of entire ⋆-product modulo ō(ℏ4), that is, its part up to ō(ℏ3) known
from formula (1) plus ℏ4 times the sum of all the prime and composite weighted graphs
with four internal vertices, is given in Appendix C. (In that table the weights of com-
posite graphs are numbers ; for they are expressed via the known coefficients of graphs
from G̃2,⩽3.) The weights of basic graphs at ℏ4 are expressed in Table 6 in terms of the
ten master-parameters, see p. viii in Appendix C.

Moreover (as stated in Theorem 11 on p. 29 below), the associativity Assoc⋆(f, g, h) = 0
mod ō(ℏ4) is established (up to order four) for the star product ⋆ mod ō(ℏ4) at all values
of the ten master-parameters.

COMPUTER-ASSISTED PROOF SCHEMES IN DEFORMATION QUANTIZATION 27

Proof scheme (for Theorem 9). We run the software as follows. First one generates the
sets of basic graphs up to order 4, with undetermined weights at order 4 (the weights
at order 2 and 3 are known from e.g. Example 5 and Example 21):

$ cp basic_graphs_3.txt basic_graphs_4w.txt

$ echo ’h^4:’ >> basic_graphs_4w.txt

$ generate_graphs 4 --basic=yes --with-coefficients=yes \

>> basic_graphs_4w.txt

Build the ⋆-product expansion up to order 4:

$ star_product basic_graphs_4w.txt > star_product_4w.txt

Generate the linear cyclic weight relations at order 4:

$ cyclic_weight_relations star_product_4w.txt > \

> weight_relations_4w-cyclic.txt

Find relations of the form w_4_xxx==0 which hold by virtue of the weight integrand
vanishing in formula (5), by using Implementation 16 in Appendix A, and place these
relations in the file weight_relations_4w-integrandvanishes.txt.
Build the expansion of the associator for the ⋆-product up to the order 4:

$ star_product_associator star_product_4w.txt > associator_4w.txt

Obtain relations from the requirement of associativity for the Poisson structure (10):

$ poisson_make_vanish associator_4w.txt 3d-generic \

> weight_relations_4w-3d.txt

Merge the systems of linear equations:

$ cat weight_relations_4w-* > weight_relations_4w_total.txt

Solve the resulting system (contained in weight_relations_4w_total.txt) by using
any relevant software. One obtains the relations listed in Table 6 in Appendix C,
e.g. in the file weight_relations_4w_intermsof10.txt. To express the star-product
(respectively, the associator for the ⋆-product) in terms of the 10 parameters, run

$ substitute_relations star_product_4w.txt \

weight_relations_4w_intermsof10.txt

(respectively, associator_4w.txt); see Implementation 3. □

Remark 12. Numerical approximations of weights are listed in Tables 2 and 3 in Ap-
pendix A. In particular, we have the approximate values of the master-parameters
p4 = w_4_103 ≈ −1/11520 and p5 = w_4_104 ≈ 1/2880.

Remark 13. Out of the 149 weights of basic graphs in the Kontsevich ⋆-product, as many
as 28 weights do not appear in the equation Assoc⋆(f, g, h) = 0 at ℏ4. A mechanism
which works towards such disappearance is that some graphs Γ ∈ G̃2,4 which do not
show up are bi-derivations with respect to the sinks. Combined at order four in the

28 R. BURING AND A. V. KISELEV

associator with only the original undeformed product ×, every such graph is cancelled
out from (f ⋆ g) ⋆ h− f ⋆ (g ⋆ h) according to the mechanism which we illustrate here:[

r r�
��
A
AU
, • •

]
= r r�� �� r�

��
A
AU

+ r r r�
��
A
AU
− r r r�� ���

��
A
AU − r rr �

��
A
AU

= 0.

In this way the ten master-parameters are split into the six which do show up in the
associativity equation and the four weights which do not show up in Assoc⋆(f, g, h) = 0
at ℏ4 but which do appear through the cyclic weight relations (see formula (8) on p. 17).

3.2. Computer-assisted proof scheme for associativity of ⋆ for all {·, ·}P . In
practice, the methods from §3.1 stop producing linear relations that would be new
with respect to the already known constraints for the graph weights. As soon as such
“saturation” is achieved, the number of master-parameters in ⋆-product expansion can
in effect be minimal. That is, the ⋆-product, known so far up to a certain order ō(ℏk),
can in fact always be associative –modulo ō(ℏk) – irrespective of a choice of the Poisson
structure(s) P .
In this section we outline a scheme of computer-assisted reasoning that allows to re-

veal the factorization Assoc⋆(f, g, h) = ♢(P , Jac(P))(f, g, h) of associator for ⋆ via the
Jacobiator Jac(P) that vanishes by definition for every Poisson structure P . At order
k = 2 the factorization ♢(Jac(P)) is readily seen; the factorizing operator ♢(Jac(P)) =
2
3
ℏ2 Jac(P)+ ō(ℏ2) is a differential operator of order zero, acting on its argument Jac(P)

by multiplication. Involving the Jacobi identity and only seven differential conse-
quences from it at the next expansion order k = 3, the factorization Assoc⋆(f, g, h) =
♢(P , Jac(P))(f, g, h) was established by hand in [6]. For higher orders k ⩾ 4 the use
of software allows to extend this line of reasoning; the scheme which we now provide13

works uniformly at all orders ⩾ 2.
Let us first inspect how sums of graphs can vanish by virtue of differential conse-

quences of the Jacobi identity Jac(P) = 0 for Poisson structures P on finite-dimensional
affine real manifolds Nn.

Lemma 10 ([6]). A tri-differential operator C =
∑

|I|,|J |,|K|⩾0 c
IJK ∂I ⊗ ∂J ⊗ ∂K with

coefficients cIJK ∈ C∞(Nn) vanishes identically if and only if all its homogeneous
components Cijk =

∑
|I|=i,|J |=j,|K|=k c

IJK ∂I ⊗ ∂J ⊗ ∂K vanish for all differential orders

(i, j, k) of the respective multi-indices (I, J,K); here ∂L = ∂α1
1 ◦· · ·◦∂αn

n for a multi-index
L = (α1, . . . , αn).

Lemma 10 states in practice that for every arrow falling on the Jacobiator (for which,
in turn, a triple of arguments is specified), the expansion of the Leibniz rule yields
four fragments which vanish separately. Namely, there is the fragment such that the
derivation acts on the content P of the Jacobiator’s two internal vertices, and there
are three fragments such that the arrow falls on the first, second, or third argument of
the Jacobiator. It is readily seen that the action of a derivative on an argument of the
Jacobiator effectively amounts to an appropriate redefinition of its respective argument.
Therefore, a restriction to the order (1, 1, 1) is enough in the run-through over all the

13In [3] this computer-assisted scheme of reasoning and the corresponding software were applied to
solution of a similar factorization problem in the Kontsevich graph calculus.

COMPUTER-ASSISTED PROOF SCHEMES IN DEFORMATION QUANTIZATION 29

graphs which contain Jacobiator (4) and which stand on the three arguments f, g, h of
the tri-vector ♢(P , Jac(P)) at hand.
Example 22. Consider the associator Assoc⋆(f, g, h) mod ō(ℏ3) for the ⋆-product
which is fully known up to order 3. The assembly of factorizing operator ♢(P , ·) acting
on Jac(P) is explained in [6]; linear in its argument, the operator ♢ has differential
order one with respect to the Jacobiator.

Implementation 15. Let the input file <graph-series-filename> contain a graph
series S with constant (e. g., rational, real or complex) coefficients; here S is supposed
to vanish by virtue of the Jacobi identity and its differential consequences. Now run
the command

> reduce_mod_jacobi <graph-series-filename>

The program finds a particular solution ♢ of the factorization problem

S(f, g, h) = ♢(P , Jac(P), . . . , Jac(P))(f, g, h).
In the standard output one obtains the list of encodings of Leibniz graphs in ♢ that
specify differential consequences of the Jacobi identity; every such graph encoding is
followed in the output by its sought-for nonzero coefficient.14 Specifically, for a Leibniz-
rule graph with ℓ Jacobiators appearing as arguments for the Leibniz rules, and with
n−2ℓ internal vertices from the factorizing operator ♢, the target vertices n−2ℓ, . . . , n−
ℓ− 1 are the ℓ placeholders for the Jacobiators with internal vertices (n− 2ℓ, n− 2ℓ+
1), . . . , (n − 1, n), respectively. (We emphasize that the (poly)differential operator ♢
can be nonlinear in Jac(P), so that ℓ ⩾ 1.)
Two extra options can be set equal to nonnegative integer values, by passing these

two numbers as extra command-line arguments. Namely,

• the parameter max-jacobiators restricts the number of Jacobiators in each
Leibniz-rule graph, so that by the assignment max-jacobiators = 1 one has
that the right-hand side ♢

(
P , Jac(P)

)
is linear in the Jacobiator, whereas if

max-jacobiators = 2, the right-hand side ♢
(
P , Jac(P), Jac(P)

)
can be qua-

dratic in Jac(P), and so on;
• independently, the parameter max-jac-indegree restricts (from above) the
number of arrows falling on the Jacobiator(s) in each of the Leibniz-rule graphs
that constitute the factorizing operator ♢.

Furthermore, if --solve is specified as the third extra argument, the input graph series
is allowed to contain undetermined coefficients; these are then added as variables to-
solve-for in the linear system.

Theorem 11. For every component S(i) of the associator

Assoc⋆(f, g, h) mod ō(ℏ4) =: S(0) + p1S
(1) + . . .+ p10S

(10),

there exists a factorizing operator ♢(i) such that

S(i)(f, g, h) = ♢(i)
(
P , Jac(P)

)
(f, g, h), 0 ⩽ i ⩽ 10.

• At no values of the master-parameters pi would the solution ♢ =
∑

i ♢(i) of factor-
ization problem be a first-order differential operator acting on the Jacobiator.

14Sample outputs of specified type are contained in Table 8 in Appendix D.

30 R. BURING AND A. V. KISELEV

Proof scheme. Take the associator Assoc⋆(f, g, h) mod ō(ℏ4) for the ⋆-product expan-
sion modulo ō(ℏ4), in the file associator4_intermsof10.txt which was obtained in
Theorem 9. The associator is linear in the ten master-parameters. Let us split it into
the constant term (e.g., at the zero value of every parameter) plus the ten respective
components S(i):

$ extract_coefficient associator4_intermsof10.txt 1 \

> associator4_intermsof10_constantpart.txt

$ extract_coefficient associator4_intermsof10.txt w_4_100 \

> associator4_intermsof10_part100.txt

$ extract_coefficient associator4_intermsof10.txt w_4_101 \

> associator4_intermsof10_part101.txt

(and so on, for each parameter pi). In fact, four of the parameters do not show up
in the associator (see Remark 13): the corresponding files do not contain any graphs.
Now run the command reduce_mod_jacobi for each input file with S(i), e.g., for S(1):

$ reduce_mod_jacobi associator4_intermsof10_part100.txt

For each S(i) a solution is found: the series vanishes modulo the Jacobi identity. The
output for S(1) is written in Table 8 in Appendix D. For the second part of the theorem,
we run reduce_mod_jacobi with the options max-jac-indegree = 1 and --solve:

$ reduce_mod_jacobi associator4_intermsof10.txt 1 1 --solve

(Our setting of max-jacobiators = 1 here makes no difference.) No solution is found.
Inspecting the output, we find that the following term in the associator cannot be
produced by a first-order differential consequence of the Jacobi identity:

− 2
15 r r rrr

?
@@R

@@R��	

r
R

A
AU

r
A
AAU

����

Indeed one can show this graph arises only in a differential consequence of order two. □
Corollary 12 (⋆-product non-extendability from {·, ·}P to {·, ·}P at order ℏ4). Because
there are at least two arrows falling on the object Jac(P) in ♢ at every value of the ten
master-parameters pi, the associativity can be broken at order ℏ4 for extensions of the ⋆-
product to infinite-dimensional set-up4 on p. 11 of Nn-valued fields ϕ ∈ C∞(Mm → Nn)
over a given affine manifold Mm, of local functionals F,G,H taking such fields to
numbers, and of variational Poisson brackets {·, ·}P on the algebra of local functionals.

Indeed, the Jacobiator Jac(P) ∼= 0 for a variational Poisson bi-vector P is a coho-
mologically trivial variational tri-vector on the jet space J∞(Mm → Nn), whence the
first variation of Jac(P) brought on it by a unique arrow would of course be vanishing
identically. Nevertheless, that variational tri-vector’s density is not necessarily equal
to zero on J∞(Mm → Nn) over Mm for those variational Poisson structures whose
coefficients P ij explicitly depend on the fields ϕ or their derivatives along Mm. This is
why the second and higher variations of the Jacobiator Jac(P) would not always van-
ish. (Such higher-order variations of functionals are calculated by using the techniques

COMPUTER-ASSISTED PROOF SCHEMES IN DEFORMATION QUANTIZATION 31

from [16, 20].) We know from [6] that Assoc⋆(F,G,H) ∼= 0 mod ō(ℏ3), i.e. the associ-
ator is trivial up to order ℏ3 for all variational Poisson brackets {·, ·}P but we now see
that it can contain cohomologically nontrivial terms proportional to ℏ4. Consequently,
it is the order four at which the associativity of ⋆-products can start to leak in the
course of deformation quantization of Poisson field models.
We now claim that four master-parameters can simultaneously be gauged out of the

star-product. (That is, either some of the four or all of them at once can be set equal
to zero, although this may not necessarily be their true value given by formula (5).)15

Theorem 13. For each j ∈ {2, 3, 9, 10} there exists a gauge transformation id+ℏ4pjZj
(listed in Table 9 in Appendix E) such that the master-parameter pj is reset to zero in
the deformed star-product ⋆′. This is achieved in such a way that no graph coefficients
which initially did not contain the parameter to gauge out would change at all.
• Moreover, the gauge transformation id+ ℏ4 ·

(∑
j pjZj

)
removes at once all the four

master-parameters, still preserving those coefficients of graphs in ⋆ which did not depend
on any of them.

Proof scheme. Let the ⋆-product expansion in terms of 10 parameters (obtained in
Theorem 9) be contained in star_product4_intermsof10.txt. Construct a gauge
transformation of the form id + ℏ4G, where G is the sum over all possible graphs with
four internal vertices over one sink which are nonzero, without double edges, without
tadpoles, and with positive differential order, taken with undetermined coefficients gi:

$ cat > gauge4.txt

1 0 1 1

h^4:

^D (press Ctrl+D)

$ generate_graphs 4 1 --normal-forms=yes --zero=no \

--positive-differential-order=yes \

--with-coefficients=yes >> gauge4.txt

$ sed -i ’s/w/g/’ gauge4.txt # replace coefficient prefix ’w’ by ’g’

Obtain gauged star-product expansion ⋆′ by applying the gauge transformation to ⋆:

$ gauge star_product4_intermsof10.txt gauge4.txt \

> star_product4_intermsof10_gauged.txt

Reduce the graph series for ⋆′ modulo skew-symmetry:

$ reduce star_product4_intermsof10_gauged.txt \

> star_product4_intermsof10_gauged_reduced.txt

Inspect which of the 10 parameters pj cannot be gauged out, by checking for the exis-
tence of graph coefficients containing pj but not any gi. For example, for p1 = w_4_100:

15Let us recall that the property of a parameter in a family of star-products to be removable by
some gauge transformation is not the same as setting such parameter to zero (or any other value).
Indeed, other graph coefficients, not depending on the parameter at hand, might get modified by that
gauge transformation. However – and similarly to the removal of the loop graph at ℏ2 in the Kontsevich
⋆-product (see Examples 19 and 20) – the trivialization of four parameters at no extra cost is the case
which Theorem 13 states.

32 R. BURING AND A. V. KISELEV

$ grep w_4_100 star_product4_intermsof10_gauged_reduced.txt \

| grep -v g | wc -l

17

There are 17 graphs with such coefficients, so p1 = w_4_100 cannot be gauged out.
Following this procedure for all the 10 parameters, we find that the only candidates to
be gauged out are p2 = w_4_101, p3 = w_4_102, p9 = w_4_119, and p10 = w_4_125.
Now inspect the file star_product4_intermsof10_gauged_reduced.txt for the lines
containing these pj and (necessarily, some) gi. For each pj, find a choice of gi so that pj
is completely removed from the file. (The gi will be of the form gi = αijpj for αij ∈ R.)
It turns out that this is always possible. Hence this choice of gi defines the sought-for
gauge transformation id + ℏ4pjZj which gauges out the parameter pj. The gauge-
transformations which kill the (four) parameters separately may be combined into the
gauge-transformation id + ℏ4(

∑
j pjZj) that kills all (four) of them simultaneously. □

Remark 14. The master-parameters which we can gauge out are exactly the ones which
do not show up in the associativity equation (see Remark 13).

Let us finally address a possible origin of so ample a freedom in the ten-parameter
family of star-products (now known up to ō(ℏ4)). We claim that the mechanism of
vanishing via differential consequences of the Jacobi identity, which was recalled in
Lemma 10 and used in Theorem 11, starts working for the associator built over ⋆ but
it does yet not apply to the coefficient of each master-parameter in the star-product
itself.

Theorem 14. Neither the coefficient ⋆(i) of ith master-parameter in the ⋆-product ⋆ =
· · ·+ℏ4 ·

(
⋆(0)+

∑10
i=1 pi ⋆

(i)
)
+ō(ℏ4) nor its free term ⋆(0) at order ℏ4, corresponding to the

zero value of all the ten parameters, admits a factorization ⋆(i) = ∇(i)
(
P , Jac(P)

)
∈ G2,4

through some operators ∇(i) that would store the three-sink Jacobiator Jac(P) ∈ G3,2

in the Kontsevich graphs on two sinks in ⋆.

In all the eleven cases at ℏ4 we establish the absence of such factorization by using the
same computer-assisted scheme of reasoning which worked in the proof of Theorem 11.
Nevertheless, let us keep in mind that there could already be enough room to store five-
vertex graphs (4) in the Kontsevich graphs on four internal vertices and two sinks. It
is also clear that such null spaces of graphs, not contributing to the analytic realization
of bi-differential structure ⋆ for any Poisson bi-vector P , can be added to the ⋆-product
at higher orders ℏ⩾5 of its further expansion.

3.3. Discussion. The values of weights for the Kontsevich graphs at orders ℏ3 and ℏ4
in the ⋆-product which we obtained in this paper agree with those from the literature
and numerical experiment. The vanishing of three graph weights at order 3 is stated
in [29]: they are w_3_7, w_3_13, w_3_14 in Figure 2; this agrees with our calculation
in Example 21. The graphs in the Bernoulli family have scaled Bernoulli numbers as
weights (see [2, Corollary 6.3] or [14, Proposition 4.4.1]), e.g. w_3_2 = B3/3! = 0 and
w_4_12 = B4/4! = −1/720. The weights of a family of graphs containing cycles are
obtained in [2, Corollary 6.3], e.g. w_3_9 = ±B3/(2·3!) = 0 and w_4_72 = −B4/(2·4!) =
1/1440. In Table 2 and 3 in Appendix A we list numerical approximations of weights
which are consistent with the exact weights (and relations) obtained in this paper.

COMPUTER-ASSISTED PROOF SCHEMES IN DEFORMATION QUANTIZATION 33

Conclusion

The expansion of Kontsevich star-product modulo ō(ℏ4) is (here f, g ∈ C∞(Nn))

f ⋆ g = f × g + ℏP ij∂if∂jg + ℏ2
(
1
2P

ijPkℓ∂k∂if∂ℓ∂jg + 1
3∂ℓP

ijPkℓ∂k∂if∂jg

− 1
3∂ℓP

ijPkℓ∂if∂k∂jg − 1
6∂ℓP

ij∂jPkℓ∂if∂kg
)
+ ℏ3

(
1
6P

ijPkℓPmn∂m∂k∂if∂n∂ℓ∂jg

+ 1
3∂nP

ijPkℓPmn∂m∂k∂if∂ℓ∂jg − 1
3∂nP

ijPkℓPmn∂k∂if∂m∂ℓ∂jg

− 1
6P

ij∂nPkℓ∂ℓPmn∂k∂if∂m∂jg + 1
6∂n∂ℓP

ijPkℓPmn∂m∂k∂if∂jg

+ 1
6∂n∂ℓP

ijPkℓPmn∂if∂m∂k∂jg − 1
6∂m∂ℓP

ij∂nPkℓPmn∂k∂if∂jg

− 1
6∂m∂ℓP

ij∂nPkℓPmn∂if∂k∂jg − 1
6∂nP

ijPkℓ∂ℓPmn∂k∂if∂m∂jg

− 1
6∂ℓP

ij∂nPkℓPmn∂k∂if∂m∂jg + 1
6∂n∂ℓP

ij∂jPkℓPmn∂if∂m∂kg

− 1
6∂ℓP

ij∂n∂jPkℓPmn∂m∂if∂kg − 1
6∂m∂ℓP

ij∂n∂jPkℓPmn∂if∂kg
)

+ ℏ4
(
1
6∂qP

ijPkℓPmnPpq∂p∂m∂k∂if∂n∂ℓ∂jg − 1
6∂qP

ijPkℓPmnPpq∂m∂k∂if∂p∂n∂ℓ∂jg

+ 1
6∂q∂nP

ijPkℓPmnPpq∂p∂m∂k∂if∂ℓ∂jg + 1
6∂q∂nP

ijPkℓPmnPpq∂k∂if∂p∂m∂ℓ∂jg

− 1
6∂p∂nP

ijPkℓ∂qPmnPpq∂m∂k∂if∂ℓ∂jg − 1
6∂p∂nP

ijPkℓ∂qPmnPpq∂k∂if∂m∂ℓ∂jg

− 1
6∂qP

ijPkℓPmn∂nPpq∂m∂k∂if∂p∂ℓ∂jg − 1
6∂nP

ijPkℓ∂qPmnPpq∂m∂k∂if∂p∂ℓ∂jg

+ 1
6P

ij∂q∂nPkℓ∂ℓPmnPpq∂k∂if∂p∂m∂jg − 1
6P

ij∂nPkℓ∂q∂ℓPmnPpq∂p∂k∂if∂m∂jg

− 1
6P

ij∂p∂nPkℓ∂q∂ℓPmnPpq∂k∂if∂m∂jg − 1
9∂nP

ij∂qPkℓPmnPpq∂m∂k∂if∂p∂ℓ∂jg

− 1
9∂p∂nP

ij∂qPkℓPmnPpq∂m∂k∂if∂ℓ∂jg − 1
9∂p∂nP

ij∂qPkℓPmnPpq∂k∂if∂m∂ℓ∂jg

+ 1
24P

ijPkℓPmnPpq∂p∂m∂k∂if∂q∂n∂ℓ∂jg − 1
12P

ijPkℓ∂qPmn∂nPpq∂m∂k∂if∂p∂ℓ∂jg

+ 1
18∂nP

ij∂qPkℓPmnPpq∂p∂m∂k∂if∂ℓ∂jg − 1
18∂ℓP

ijPkℓ∂qPmn∂nPpq∂m∂k∂if∂p∂jg

+ 1
18∂nP

ij∂qPkℓPmnPpq∂k∂if∂p∂m∂ℓ∂jg + 1
18∂qP

ij∂nPkℓ∂ℓPmnPpq∂k∂if∂p∂m∂jg

+ 1
72∂ℓP

ij∂jPkℓ∂qPmn∂nPpq∂m∂if∂p∂kg − 1
18∂nP

ij∂pPkℓ∂qPmnPpq∂m∂k∂if∂ℓ∂jg

− 1
18∂nP

ij∂pPkℓ∂qPmnPpq∂k∂if∂m∂ℓ∂jg + 1
30∂q∂n∂ℓP

ijPkℓPmnPpq∂p∂m∂k∂if∂jg

− 1
30∂q∂n∂ℓP

ijPkℓPmnPpq∂if∂p∂m∂k∂jg + 2
45∂n∂ℓP

ij∂qPkℓPmnPpq∂p∂m∂k∂if∂jg

− 2
45∂n∂ℓP

ij∂qPkℓPmnPpq∂if∂p∂m∂k∂jg − 1
30∂q∂n∂ℓP

ijPkℓPmnPpq∂m∂k∂if∂p∂jg

+ 1
30∂q∂n∂ℓP

ijPkℓPmnPpq∂k∂if∂p∂m∂jg − 7
90∂p∂n∂ℓP

ij∂qPkℓPmnPpq∂m∂k∂if∂jg

+ 7
90∂p∂n∂ℓP

ij∂qPkℓPmnPpq∂if∂m∂k∂jg + 1
30∂ℓP

ij∂q∂nPkℓPmnPpq∂p∂m∂k∂if∂jg

− 1
30∂ℓP

ij∂q∂nPkℓPmnPpq∂if∂p∂m∂k∂jg − 1
45∂ℓP

ij∂nPkℓ∂qPmnPpq∂p∂m∂k∂if∂jg

+ 1
45∂ℓP

ij∂nPkℓ∂qPmnPpq∂if∂p∂m∂k∂jg + 1
45∂q∂ℓP

ij∂nPkℓPmnPpq∂m∂k∂if∂p∂jg

− 1
45∂n∂ℓP

ijPkℓ∂qPmnPpq∂k∂if∂p∂m∂jg + 1
30∂ℓP

ij∂q∂nPkℓPmnPpq∂m∂k∂if∂p∂jg

− 1
30∂nP

ijPkℓ∂q∂ℓPmnPpq∂k∂if∂p∂m∂jg − 1
90∂ℓP

ij∂nPkℓ∂qPmnPpq∂m∂k∂if∂p∂jg

+ 1
90∂qP

ijPkℓ∂ℓPmn∂nPpq∂k∂if∂p∂m∂jg + 1
90∂p∂ℓP

ij∂q∂nPkℓPmnPpq∂m∂k∂if∂jg

− 1
90∂p∂ℓP

ij∂q∂nPkℓPmnPpq∂if∂m∂k∂jg − 1
30∂p∂ℓP

ij∂nPkℓ∂qPmnPpq∂m∂k∂if∂jg

+ 1
30∂p∂ℓP

ij∂nPkℓ∂qPmnPpq∂if∂m∂k∂jg − 2
45∂ℓP

ij∂p∂nPkℓ∂qPmnPpq∂m∂k∂if∂jg

34 R. BURING AND A. V. KISELEV

+ 2
45∂ℓP

ij∂p∂nPkℓ∂qPmnPpq∂if∂m∂k∂jg − 1
30∂q∂ℓP

ijPkℓPmn∂nPpq∂m∂k∂if∂p∂jg

+ 1
30∂n∂ℓP

ij∂qPkℓPmnPpq∂k∂if∂p∂m∂jg − 1
15∂ℓP

ij∂qPkℓPmn∂nPpq∂m∂k∂if∂p∂jg

+ 1
15∂nP

ij∂qPkℓ∂ℓPmnPpq∂k∂if∂p∂m∂jg − 1
30∂p∂ℓP

ij∂qPkℓPmn∂nPpq∂m∂k∂if∂jg

+ 1
30∂p∂ℓP

ij∂qPkℓPmn∂nPpq∂if∂m∂k∂jg − 1
45∂p∂ℓP

ijPkℓ∂qPmn∂nPpq∂m∂k∂if∂jg

+ 1
45∂p∂ℓP

ijPkℓ∂qPmn∂nPpq∂if∂m∂k∂jg + 1
90∂ℓP

ij∂pPkℓ∂qPmn∂nPpq∂m∂k∂if∂jg

− 1
90∂ℓP

ij∂pPkℓ∂qPmn∂nPpq∂if∂m∂k∂jg + 2
45∂p∂n∂ℓP

ij∂qPkℓPmnPpq∂k∂if∂m∂jg

− 2
45∂p∂n∂ℓP

ijPkℓ∂qPmnPpq∂k∂if∂m∂jg + 1
15∂ℓP

ij∂q∂nPkℓPmnPpq∂k∂if∂p∂m∂jg

− 1
15∂nP

ijPkℓ∂q∂ℓPmnPpq∂p∂k∂if∂m∂jg + 1
90∂ℓP

ij∂nPkℓ∂qPmnPpq∂k∂if∂p∂m∂jg

− 1
90∂qP

ijPkℓ∂ℓPmn∂nPpq∂m∂k∂if∂p∂jg + 1
90∂p∂ℓP

ijPkℓ∂qPmn∂nPpq∂k∂if∂m∂jg

− 1
90∂q∂mP

ij∂nPkℓ∂ℓPmnPpq∂k∂if∂p∂jg + 1
90∂pP

ij∂qPkℓ∂ℓPmn∂nPpq∂m∂k∂if∂jg

− 1
90∂pP

ij∂qPkℓ∂ℓPmn∂nPpq∂if∂m∂k∂jg + 1
90∂pP

ijPkℓ∂q∂ℓPmn∂nPpq∂m∂k∂if∂jg

− 1
90∂pP

ijPkℓ∂q∂ℓPmn∂nPpq∂if∂m∂k∂jg − 1
30∂mP

ij∂nPkℓ∂q∂ℓPmnPpq∂p∂k∂if∂jg

+ 1
30∂mP

ij∂nPkℓ∂q∂ℓPmnPpq∂if∂p∂k∂jg + 1
90∂qP

ij∂jPkℓ∂ℓPmn∂nPpq∂m∂k∂if∂pg

+ 1
90∂qP

ij∂jPkℓ∂ℓPmn∂nPpq∂if∂p∂m∂kg + 1
90P

ij∂q∂jPkℓ∂ℓPmn∂nPpq∂m∂k∂if∂pg

+ 1
90∂nP

ij∂q∂jPkℓ∂ℓPmnPpq∂if∂p∂m∂kg + 1
90P

ij∂jPkℓ∂q∂ℓPmn∂nPpq∂m∂k∂if∂pg

+ 1
90∂ℓP

ij∂n∂jPkℓ∂qPmnPpq∂if∂p∂m∂kg − 1
30∂nP

ij∂q∂jPkℓ∂ℓPmnPpq∂p∂k∂if∂mg

− 1
30∂nP

ij∂jPkℓ∂q∂ℓPmnPpq∂if∂p∂m∂kg − 1
45∂nP

ij∂jPkℓ∂q∂ℓPmnPpq∂p∂k∂if∂mg

− 1
45∂q∂nP

ij∂jPkℓ∂ℓPmnPpq∂if∂p∂m∂kg − 1
90∂nP

ij∂jPkℓ∂q∂ℓPmnPpq∂k∂if∂p∂mg

− 1
90P

ij∂q∂jPkℓ∂ℓPmn∂nPpq∂k∂if∂p∂mg − 1
60P

ij∂q∂n∂jPkℓ∂ℓPmnPpq∂p∂k∂if∂mg

− 1
60∂ℓP

ij∂q∂n∂jPkℓPmnPpq∂if∂p∂m∂kg − 1
45P

ij∂n∂jPkℓ∂q∂ℓPmnPpq∂p∂k∂if∂mg

− 1
45∂n∂ℓP

ij∂q∂jPkℓPmnPpq∂if∂p∂m∂kg + 1
30P

ij∂q∂n∂jPkℓ∂ℓPmnPpq∂k∂if∂p∂mg

+ 1
30∂ℓP

ij∂q∂n∂jPkℓPmnPpq∂m∂if∂p∂kg − 1
90P

ij∂n∂jPkℓ∂q∂ℓPmnPpq∂k∂if∂p∂mg

− 1
45P

ij∂jPkℓ∂q∂ℓPmn∂nPpq∂p∂k∂if∂mg − 1
45∂n∂ℓP

ij∂jPkℓ∂qPmnPpq∂if∂p∂m∂kg

− 1
20∂ℓP

ij∂q∂n∂jPkℓPmnPpq∂p∂m∂if∂kg − 1
20∂q∂n∂ℓP

ij∂jPkℓPmnPpq∂if∂p∂m∂kg

− 13
90∂n∂ℓP

ij∂qPkℓPmnPpq∂m∂k∂if∂p∂jg + 13
90∂q∂nP

ijPkℓ∂ℓPmnPpq∂k∂if∂p∂m∂jg

+ 13
90∂q∂ℓP

ij∂n∂jPkℓPmnPpq∂m∂if∂p∂kg − 16p4∂p∂m∂ℓP ij∂nPkℓ∂qPmnPpq∂k∂if∂jg

+ 16p4∂p∂m∂ℓP ij∂nPkℓ∂qPmnPpq∂if∂k∂jg − 16p5∂p∂mP ij∂nPkℓ∂q∂ℓPmnPpq∂k∂if∂jg

+ 16p5∂p∂mP ij∂nPkℓ∂q∂ℓPmnPpq∂if∂k∂jg − 16p4∂p∂mP ij∂qPkℓ∂ℓPmn∂nPpq∂k∂if∂jg

+ 16p4∂p∂mP ij∂qPkℓ∂ℓPmn∂nPpq∂if∂k∂jg + 16p4∂mP ij∂pPkℓ∂q∂ℓPmn∂nPpq∂k∂if∂jg

− 16p4∂mP ij∂pPkℓ∂q∂ℓPmn∂nPpq∂if∂k∂jg + 16p5∂pP ij∂mPkℓ∂q∂ℓPmn∂nPpq∂k∂if∂jg

− 16p5∂pP ij∂mPkℓ∂q∂ℓPmn∂nPpq∂if∂k∂jg + 16p1∂mP ij∂q∂jPkℓ∂ℓPmn∂nPpq∂k∂if∂pg

− 16p1∂mP ij∂q∂jPkℓ∂ℓPmn∂nPpq∂if∂p∂kg + 16p2∂mP ij∂jPkℓ∂q∂ℓPmn∂nPpq∂k∂if∂pg

− 16p2∂kP ij∂q∂jPkℓ∂ℓPmn∂nPpq∂if∂p∂mg + 16p3∂qP ij∂m∂jPkℓ∂ℓPmn∂nPpq∂k∂if∂pg

COMPUTER-ASSISTED PROOF SCHEMES IN DEFORMATION QUANTIZATION 35

− 16p3∂pP ij∂jPkℓ∂q∂ℓPmn∂nPpq∂if∂m∂kg + 16p4P ij∂q∂m∂jPkℓ∂ℓPmn∂nPpq∂k∂if∂pg

− 16p4∂mP ij∂q∂n∂jPkℓ∂ℓPmnPpq∂if∂p∂kg + 16p5P ij∂m∂jPkℓ∂q∂ℓPmn∂nPpq∂k∂if∂pg

− 16p5∂kP ij∂n∂jPkℓ∂q∂ℓPmnPpq∂if∂p∂mg + 16p6∂ℓP ij∂n∂jPkℓ∂qPmnPpq∂m∂if∂p∂kg

+ 16p6∂q∂ℓP ij∂jPkℓPmn∂nPpq∂m∂if∂p∂kg + 16p7∂p∂ℓP ij∂q∂n∂jPkℓPmnPpq∂m∂if∂kg

− 16p7∂p∂n∂ℓP ij∂q∂jPkℓPmnPpq∂if∂m∂kg + 16p8∂p∂ℓP ij∂n∂jPkℓ∂qPmnPpq∂m∂if∂kg

+ 16p8∂n∂ℓP ij∂p∂jPkℓ∂qPmnPpq∂if∂m∂kg + 16p9∂pP ij∂q∂jPkℓ∂ℓPmn∂nPpq∂m∂if∂kg

− 16p9∂q∂mP ij∂jPkℓ∂ℓPmn∂nPpq∂if∂p∂kg − 32p4∂mP ij∂q∂n∂jPkℓ∂ℓPmnPpq∂p∂if∂kg

+ 32p4∂q∂n∂kP ij∂jPkℓ∂ℓPmnPpq∂if∂p∂mg + 16p10∂p∂mP ij∂q∂n∂jPkℓ∂ℓPmnPpq∂if∂kg

+ 16p10∂p∂n∂kP ij∂jPkℓ∂q∂ℓPmnPpq∂if∂mg + 32p5P ij∂m∂jPkℓ∂q∂ℓPmn∂nPpq∂p∂if∂kg

+ 32p5∂q∂kP ij∂n∂jPkℓ∂ℓPmnPpq∂if∂p∂mg + (1
12 + 8p7)∂p∂m∂ℓP ij∂q∂nPkℓPmnPpq∂k∂if∂jg

+ (− 1
12 − 8p7)∂p∂m∂ℓP ij∂q∂nPkℓPmnPpq∂if∂k∂jg

+ (− 1
12 − 8p7)∂mP ij∂p∂nPkℓ∂q∂ℓPmnPpq∂k∂if∂jg

+ (1
12 + 8p7)∂mP ij∂p∂nPkℓ∂q∂ℓPmnPpq∂if∂k∂jg

+ (− 1
12 − 8p7)P ij∂p∂n∂jPkℓ∂q∂ℓPmnPpq∂k∂if∂mg

+ (1
12 + 8p7)∂p∂ℓP ij∂q∂n∂jPkℓPmnPpq∂if∂m∂kg

+ (1
45 + 8p7)∂p∂m∂ℓP ij∂q∂n∂jPkℓPmnPpq∂if∂kg

+ (− 1
60 − 24p7)∂p∂ℓP ij∂q∂nPkℓPmnPpq∂k∂if∂m∂jg

+ (1
60 + 24p7)∂p∂nP ijPkℓ∂q∂ℓPmnPpq∂k∂if∂m∂jg

+ (4
45 − 16p6)∂qP ij∂n∂jPkℓ∂ℓPmnPpq∂k∂if∂p∂mg

+ (4
45 − 16p6)∂ℓP ij∂q∂jPkℓPmn∂nPpq∂m∂if∂p∂kg

+ (1790 + 24p7)∂p∂mP ij∂q∂nPkℓPmnPpq∂k∂if∂ℓ∂jg

+ (− 1
12 + 16p6 + 48p5)∂mP ij∂pPkℓ∂qPmn∂nPpq∂k∂if∂ℓ∂jg

+ (7
90 − 16p6 − 48p5)∂pP ijPkℓ∂q∂ℓPmn∂nPpq∂k∂if∂m∂jg

+ (− 7
90 + 16p6 + 48p5)∂mP ij∂q∂nPkℓ∂ℓPmnPpq∂k∂if∂p∂jg

+ (− 1
36 + 16p4 − 16p5 − 8p7)∂pP ij∂q∂mPkℓ∂ℓPmn∂nPpq∂k∂if∂jg

+ (1
36 − 16p4 + 16p5 + 8p7)∂pP ij∂q∂mPkℓ∂ℓPmn∂nPpq∂if∂k∂jg

+ (−1
9 + 16p6 − 48p4 + 48p5)∂nP ij∂q∂jPkℓ∂ℓPmnPpq∂k∂if∂p∂mg

+ (−1
9 + 16p6 − 48p4 + 48p5)P ij∂q∂jPkℓ∂ℓPmn∂nPpq∂m∂if∂p∂kg

+ (− 1
36 + 16p4 − 16p5 − 8p7)P ij∂p∂jPkℓ∂q∂ℓPmn∂nPpq∂k∂if∂mg

+ (1
36 − 16p4 + 16p5 + 8p7)∂n∂kP ij∂jPkℓ∂q∂ℓPmnPpq∂if∂p∂mg

+ (− 13
180 + 8p6 + 24p5 − 8p1)∂m∂ℓP ij∂p∂nPkℓ∂qPmnPpq∂k∂if∂jg

+ (13
180 − 8p6 − 24p5 + 8p1)∂m∂ℓP ij∂p∂nPkℓ∂qPmnPpq∂if∂k∂jg

+ (4
45 − 16p6 + 48p4 − 48p5)∂q∂nP ij∂jPkℓ∂ℓPmnPpq∂k∂if∂p∂mg

36 R. BURING AND A. V. KISELEV

+ (4
45 − 16p6 + 48p4 − 48p5)∂nP ij∂q∂jPkℓ∂ℓPmnPpq∂p∂if∂m∂kg

+ (− 1
18 + 32p4 − 32p5 − 16p7)P ij∂p∂jPkℓ∂q∂ℓPmn∂nPpq∂m∂if∂kg

+ (− 1
18 + 32p4 − 32p5 − 16p7)∂q∂mP ij∂n∂jPkℓ∂ℓPmnPpq∂if∂p∂kg

+ (1790 − 32p6 + 96p4 − 96p5)∂qP ij∂jPkℓ∂ℓPmn∂nPpq∂k∂if∂p∂mg

+ (23
360 + 16p4 − 8p1 + 12p7)∂p∂m∂ℓP ij∂n∂jPkℓ∂qPmnPpq∂if∂kg

+ (− 23
360 − 16p4 + 8p1 − 12p7)∂m∂ℓP ij∂p∂n∂jPkℓ∂qPmnPpq∂if∂kg

+ (49
180 − 16p6 − 48p5 + 24p7)∂p∂mP ij∂nPkℓ∂qPmnPpq∂k∂if∂ℓ∂jg

+ (− 19
180 − 32p4 + 16p1 − 16p7)∂m∂ℓP ij∂p∂jPkℓ∂qPmn∂nPpq∂if∂kg

+ (− 31
180 + 32p6 − 96p4 + 96p5)∂qP ij∂jPkℓ∂ℓPmn∂nPpq∂m∂if∂p∂kg

+ (− 1
90 − 8p6 − 24p5 + 8p1 − 8p7)∂p∂mP ijPkℓ∂q∂ℓPmn∂nPpq∂k∂if∂jg

+ (1
90 + 8p6 + 24p5 − 8p1 + 8p7)∂p∂mP ijPkℓ∂q∂ℓPmn∂nPpq∂if∂k∂jg

+ (29 − 48p8 + 96p4 − 96p5 + 48p7)∂ℓP ij∂p∂nPkℓ∂qPmnPpq∂k∂if∂m∂jg

+ (29 − 48p8 + 96p4 − 96p5 + 48p7)∂nP ij∂pPkℓ∂q∂ℓPmnPpq∂k∂if∂m∂jg

+ (16 − 32p8 + 64p4 − 64p5 + 32p7)∂pP ij∂q∂n∂jPkℓ∂ℓPmnPpq∂k∂if∂mg

+ (−1
6 + 32p8 − 64p4 + 64p5 − 32p7)∂ℓP ij∂p∂n∂jPkℓ∂qPmnPpq∂if∂m∂kg

+ (−1
9 + 16p8 − 32p4 + 32p5 − 16p7)∂kP ij∂q∂n∂jPkℓ∂ℓPmnPpq∂p∂if∂mg

+ (19 − 16p8 + 32p4 − 32p5 + 16p7)∂kP ij∂q∂n∂jPkℓ∂ℓPmnPpq∂if∂p∂mg

+ (1
120 − 8p8 + 16p4 − 24p5 + 4p7)∂p∂kP ij∂q∂n∂jPkℓ∂ℓPmnPpq∂if∂mg

+ (1
120 − 8p8 + 16p4 − 24p5 + 4p7)∂kP ij∂p∂n∂jPkℓ∂q∂ℓPmnPpq∂if∂mg

+ (5
18 − 48p8 + 96p4 − 96p5 + 48p7)∂ℓP ij∂pPkℓ∂qPmn∂nPpq∂k∂if∂m∂jg

+ (5
18 − 48p8 + 96p4 − 96p5 + 48p7)∂qP ij∂mPkℓ∂ℓPmn∂nPpq∂k∂if∂p∂jg

+ (4
15 − 48p8 + 96p4 − 96p5 + 48p7)∂mP ij∂nPkℓ∂q∂ℓPmnPpq∂k∂if∂p∂jg

+ (− 4
15 + 48p8 − 96p4 + 96p5 − 48p7)∂mP ijPkℓ∂q∂ℓPmn∂nPpq∂k∂if∂p∂jg

+ (− 1
18 + 16p8 − 32p4 + 32p5 − 16p7)∂ℓP ij∂p∂n∂jPkℓ∂qPmnPpq∂m∂if∂kg

+ (− 1
18 + 16p8 − 32p4 + 32p5 − 16p7)∂p∂n∂ℓP ij∂jPkℓ∂qPmnPpq∂if∂m∂kg

+ (− 7
36 + 32p8 − 64p4 + 64p5 − 32p7)∂p∂ℓP ij∂jPkℓ∂qPmn∂nPpq∂m∂if∂kg

+ (− 7
36 + 32p8 − 64p4 + 64p5 − 32p7)∂ℓP ij∂p∂jPkℓ∂qPmn∂nPpq∂if∂m∂kg

+ (− 1
12 + 16p8 − 32p4 + 32p5 − 16p7)∂ℓP ij∂p∂jPkℓ∂qPmn∂nPpq∂m∂if∂kg

+ (− 1
12 + 16p8 − 32p4 + 32p5 − 16p7)∂p∂ℓP ij∂jPkℓ∂qPmn∂nPpq∂if∂m∂kg

+ (− 1
90 − 16p8 + 32p4 − 80p5 + 16p1)∂p∂kP ij∂n∂jPkℓ∂q∂ℓPmnPpq∂if∂mg

+ (1
360 − 16p8 − 16p3 + 32p4 − 48p5)∂p∂kP ij∂jPkℓ∂q∂ℓPmn∂nPpq∂if∂mg

+ (11
120 − 16p8 + 32p4 − 16p5 + 16p7)∂kP ij∂m∂jPkℓ∂q∂ℓPmn∂nPpq∂if∂pg

+ (1
90 + 8p6 + 16p4 + 24p5 − 8p1 + 8p7)∂m∂ℓP ij∂pPkℓ∂qPmn∂nPpq∂k∂if∂jg

COMPUTER-ASSISTED PROOF SCHEMES IN DEFORMATION QUANTIZATION 37

+ (− 1
90 − 8p6 − 16p4 − 24p5 + 8p1 − 8p7)∂m∂ℓP ij∂pPkℓ∂qPmn∂nPpq∂if∂k∂jg

+ (− 1
15 + 8p8 + 8p4 + 8p2 + 16p10 − 16p7)∂mP ij∂p∂jPkℓ∂q∂ℓPmn∂nPpq∂if∂kg

+ (− 1
15 + 8p8 + 8p4 + 8p2 + 16p10 − 16p7)∂p∂nP ij∂q∂jPkℓ∂kPmn∂ℓPpq∂if∂mg

+ (1
20 − 8p8 + 24p4 − 16p5 − 8p2 + 8p7)∂kP ij∂q∂m∂jPkℓ∂ℓPmn∂nPpq∂if∂pg

+ (− 1
20 + 8p8 − 24p4 + 16p5 + 8p2 − 8p7)∂pP ij∂q∂n∂jPkℓ∂kPmn∂ℓPpq∂if∂mg

+ (− 1
40 + 8p8 + 16p4 + 8p5 + 16p10 − 12p7)∂mP ij∂p∂n∂jPkℓ∂q∂ℓPmnPpq∂if∂kg

+ (1
40 − 8p8 − 16p4 − 8p5 − 16p10 + 12p7)∂p∂n∂kP ij∂q∂jPkℓ∂ℓPmnPpq∂if∂mg

+ (1190 + 8p6 − 16p4 + 40p5 − 8p1 + 24p7)∂p∂mP ij∂q∂nPkℓ∂ℓPmnPpq∂k∂if∂jg

+ (−11
90 − 8p6 + 16p4 − 40p5 + 8p1 − 24p7)∂p∂mP ij∂q∂nPkℓ∂ℓPmnPpq∂if∂k∂jg

+ (15 − 32p8 − 48p5 − 32p10 + 16p1 + 48p7)∂p∂nP ij∂q∂jPkℓ∂ℓPmnPpq∂k∂if∂mg

+ (15 − 32p8 − 48p5 − 32p10 + 16p1 + 48p7)∂nP ij∂p∂jPkℓ∂q∂ℓPmnPpq∂if∂m∂kg

+ (−1
6 + 16p8 − 16p3 + 32p4 − 16p1 − 32p7)∂pP ij∂jPkℓ∂q∂ℓPmn∂nPpq∂m∂if∂kg

+ (16 − 16p8 + 16p3 − 32p4 + 16p1 + 32p7)∂qP ij∂m∂jPkℓ∂ℓPmn∂nPpq∂if∂p∂kg

+ (19 − 16p8 + 16p4 − 32p5 + 16p1 + 16p7)∂mP ij∂n∂jPkℓ∂q∂ℓPmnPpq∂if∂p∂kg

+ (−1
9 + 16p8 − 16p4 + 32p5 − 16p1 − 16p7)∂n∂kP ij∂q∂jPkℓ∂ℓPmnPpq∂p∂if∂mg

+ (−1
9 + 16p8 − 32p4 + 48p5 + 16p2 − 16p7)∂mP ij∂jPkℓ∂q∂ℓPmn∂nPpq∂p∂if∂kg

+ (−1
9 + 16p8 − 32p4 + 48p5 + 16p2 − 16p7)∂nP ij∂q∂jPkℓ∂kPmn∂ℓPpq∂if∂p∂mg

+ (19 − 16p8 + 32p4 − 48p5 + 16p2 + 16p7)∂mP ij∂jPkℓ∂q∂ℓPmn∂nPpq∂if∂p∂kg

+ (−1
9 + 16p8 − 32p4 + 48p5 − 16p2 − 16p7)∂kP ij∂q∂jPkℓ∂ℓPmn∂nPpq∂p∂if∂mg

+ (7
90 − 16p8 + 40p4 − 40p5 + 8p2 + 12p7)∂kP ij∂p∂jPkℓ∂q∂ℓPmn∂nPpq∂if∂mg

+ (7
90 − 16p8 + 40p4 − 40p5 + 8p2 + 12p7)∂m∂kP ij∂jPkℓ∂q∂ℓPmn∂nPpq∂if∂pg

+ (1
180 − 16p8 − 16p4 − 16p5 − 32p10 + 8p7)∂nP ij∂p∂jPkℓ∂q∂ℓPmnPpq∂k∂if∂mg

+ (− 1
180 + 16p8 + 16p4 + 16p5 + 32p10 − 8p7)∂p∂nP ij∂jPkℓ∂q∂ℓPmnPpq∂if∂m∂kg

+ (3790 − 48p8 − 16p6 + 96p4 − 96p5 + 48p7)∂pP ij∂q∂nPkℓ∂ℓPmnPpq∂k∂if∂m∂jg

+ (−37
90 + 48p8 + 16p6 − 96p4 + 96p5 − 48p7)∂pP ij∂nPkℓ∂q∂ℓPmnPpq∂k∂if∂m∂jg

+ (29
360 − 16p8 − 16p4 − 16p10 + 8p1 + 20p7)∂p∂mP ij∂n∂jPkℓ∂q∂ℓPmnPpq∂if∂kg

+ (29
360 − 16p8 − 16p4 − 16p10 + 8p1 + 20p7)∂n∂kP ij∂p∂jPkℓ∂q∂ℓPmnPpq∂if∂mg

+ (3445 − 96p8 − 32p6 + 240p4 − 288p5 + 96p7)∂pP ij∂qPkℓ∂ℓPmn∂nPpq∂k∂if∂m∂jg

+ (−34
45 + 96p8 + 32p6 − 240p4 + 288p5 − 96p7)∂mP ij∂qPkℓ∂ℓPmn∂nPpq∂k∂if∂p∂jg

+ (− 2
45 + 8p9 + 4p6 − 8p3 + 4p5 − 4p1 − 4p7)∂pP ij∂q∂m∂jPkℓ∂ℓPmn∂nPpq∂if∂kg

+ (2
45 − 8p9 − 4p6 + 8p3 − 4p5 + 4p1 + 4p7)∂q∂m∂kP ij∂jPkℓ∂ℓPmn∂nPpq∂if∂pg

+ (1
30 + 8p6 + 32p4 + 8p5 + 32p10 − 8p1 + 8p7)∂p∂nP ij∂jPkℓ∂q∂ℓPmnPpq∂k∂if∂mg

+ (− 1
30 − 8p6 − 32p4 − 8p5 − 32p10 + 8p1 − 8p7)∂p∂nP ij∂q∂jPkℓ∂ℓPmnPpq∂if∂m∂kg

38 R. BURING AND A. V. KISELEV

+ (− 7
90 + 8p8 − 16p3 + 16p4 − 8p5 − 8p1 − 16p7)∂pP ij∂m∂jPkℓ∂q∂ℓPmn∂nPpq∂if∂kg

+ (7
90 − 8p8 + 16p3 − 16p4 + 8p5 + 8p1 + 16p7)∂q∂kP ij∂m∂jPkℓ∂ℓPmn∂nPpq∂if∂pg

+ (− 7
180 + 16p8 − 8p6 − 16p4 + 8p5 + 8p1 − 16p7)∂mP ij∂n∂jPkℓ∂q∂ℓPmnPpq∂p∂if∂kg

+ (7
180 − 16p8 + 8p6 + 16p4 − 8p5 − 8p1 + 16p7)∂n∂kP ij∂q∂jPkℓ∂ℓPmnPpq∂if∂p∂mg

+ (13
360 − 8p8 + 24p4 − 32p5 − 8p2 + 8p1 + 4p7)∂m∂kP ij∂q∂jPkℓ∂ℓPmn∂nPpq∂if∂pg

+ (− 13
360 + 8p8 − 24p4 + 32p5 + 8p2 − 8p1 − 4p7)∂pP ij∂n∂jPkℓ∂q∂kPmn∂ℓPpq∂if∂mg

+ (1
15 − 32p8 + 8p6 + 48p4 − 72p5 + 24p1 + 24p7)∂pP ij∂n∂jPkℓ∂q∂ℓPmnPpq∂k∂if∂mg

+ (− 1
15 + 32p8 − 8p6 − 48p4 + 72p5 − 24p1 − 24p7)∂p∂ℓP ij∂n∂jPkℓ∂qPmnPpq∂if∂m∂kg

+ (− 11
180 − 16p9 + 16p8 − 8p6 + 8p5 + 8p1 − 16p7)∂pP ij∂q∂jPkℓ∂kPmn∂n∂ℓPpq∂if∂mg

+ (− 17
180 + 16p8 − 8p6 − 32p4 + 40p5 − 8p1 − 16p7)∂p∂ℓP ij∂q∂jPkℓPmn∂nPpq∂m∂if∂kg

+ (17
180 − 16p8 + 8p6 + 32p4 − 40p5 + 8p1 + 16p7)∂p∂ℓP ij∂q∂jPkℓPmn∂nPpq∂if∂m∂kg

+ (61
180 − 48p8 − 8p6 + 96p4 − 120p5 + 24p1 + 48p7)∂p∂ℓP ij∂qPkℓPmn∂nPpq∂k∂if∂m∂jg

+ (− 61
180 + 48p8 + 8p6 − 96p4 + 120p5 − 24p1 − 48p7)∂q∂mP ijPkℓ∂ℓPmn∂nPpq∂k∂if∂p∂jg

+ (5390 − 96p8 − 16p6 + 192p4 − 240p5 + 48p1 + 96p7)∂n∂ℓP ij∂pPkℓ∂qPmnPpq∂k∂if∂m∂jg

+ (−49
90 + 48p8 + 24p6 − 144p4 + 168p5 − 24p1 − 72p7)∂p∂ℓP ij∂nPkℓ∂qPmnPpq∂k∂if∂m∂jg

+ (4990 − 48p8 − 24p6 + 144p4 − 168p5 + 24p1 + 72p7)∂p∂nP ij∂qPkℓ∂ℓPmnPpq∂k∂if∂m∂jg

+ (1
90 − 16p8 + 8p6 − 16p3 + 16p4 − 24p5 − 8p1 + 8p7)∂pP ij∂jPkℓ∂q∂ℓPmn∂nPpq∂k∂if∂mg

+ (− 1
90 + 16p8 − 8p6 + 16p3 − 16p4 + 24p5 + 8p1 − 8p7)∂q∂kP ij∂jPkℓ∂ℓPmn∂nPpq∂if∂p∂mg

+ (3
20 + 16p9 − 32p8 + 8p6 + 16p4 − 40p5 − 8p1 + 32p7)∂pP ij∂q∂jPkℓ∂ℓPmn∂nPpq∂k∂if∂mg

+ (− 3
20 − 16p9 + 32p8 − 8p6 − 16p4 + 40p5 + 8p1 − 32p7)∂nP ij∂jPkℓ∂q∂kPmn∂ℓPpq∂if∂p∂mg

+ (− 7
180 − 16p9 + 16p8 − 8p6 + 16p4 + 8p5 − 8p1 − 16p7)∂q∂mP ij∂jPkℓ∂ℓPmn∂nPpq∂k∂if∂pg

+ (7
180 + 16p9 − 16p8 + 8p6 − 16p4 − 8p5 + 8p1 + 16p7)∂pP ij∂q∂jPkℓ∂ℓPmn∂nPpq∂if∂m∂kg

+ (7
120 + 16p9 − 8p8 + 8p6 + 16p4 + 16p10 − 8p1 + 12p7)∂p∂mP ij∂q∂jPkℓ∂ℓPmn∂nPpq∂if∂kg

+ (− 7
120 − 16p9 + 8p8 − 8p6 − 16p4 − 16p10 + 8p1 − 12p7)∂p∂nP ij∂jPkℓ∂q∂kPmn∂ℓPpq∂if∂mg

+ (8p9 − 8p8 + 4p6 − 8p3 − 8p4 + 4p5 − 8p2 − 4p1 + 4p7)∂p∂kP ij∂q∂jPkℓ∂ℓPmn∂nPpq∂if∂mg

+ (−8p9 + 8p8 − 4p6 + 8p3 + 8p4 − 4p5 + 8p2 + 4p1 − 4p7)∂pP ij∂jPkℓ∂q∂kPmn∂n∂ℓPpq∂if∂mg
+ (23

360 + 8p9 − 16p8 + 4p6 − 8p3 + 8p4 − 20p5 + 8p2 − 16p10 − 4p1 + 16p7)

∂p∂mP ij∂jPkℓ∂q∂ℓPmn∂nPpq∂if∂kg
+ (− 23

360 − 8p9 + 16p8 − 4p6 + 8p3 − 8p4 + 20p5 − 8p2 + 16p10 + 4p1 − 16p7)

∂nP ij∂p∂jPkℓ∂q∂kPmn∂ℓPpq∂if∂mg
)
+ ō(ℏ4). (11)

The ten master-parameters in (11) are the still unknown weights of the prime graphs
which are portrayed in Fig. 3 on p. 22. The four underlined parameters can be gauged
out (without modifying the coefficients of any other Kontsevich graphs with four internal
vertices), see Theorem 13 on p. 31. At all values of the ten master-parameters, that

COMPUTER-ASSISTED PROOF SCHEMES IN DEFORMATION QUANTIZATION 39

is, irrespective of their true values given by formula (5), the ⋆-product is proven in
Theorem 11 to be associative modulo ō(ℏ4).

Acknowledgements. This research was supported in part by JBI RUG project 106552
(Groningen, The Netherlands). The authors also thank the Center for Information
Technology of the University of Groningen for providing access to Peregrine high per-
formance computing cluster. A part of this research was done while AVK was visiting
at the IHÉS in Bures-sur-Yvette, France and at the MPIM Bonn, Germany; warm hos-
pitality and partial financial support by these institutions are gratefully acknowledged.

References

[1] Bauer C., Frink A., Kreckel R. (2002) Introduction to the GiNaC Framework for
Symbolic Computation within the C++ Programming Language. J. Symb. Comp.
33, 1–12. See also http://www.ginac.de.

[2] Ben Amar N. (2007) A comparison between Rieffel’s and Kontsevich’s deformation
quantizations for linear Poisson tensors. Pac. J. Math. 229:1, 1–24.

[3] Bouisaghouane A., Buring R., Kiselev A.V. (2016) The Kontsevich tetrahedral
flows revisited, Preprint arXiv:1608.01710 [q-alg], 26 p.

[4] Bouisaghouane A., Kiselev A.V. (2016) Do the Kontsevich tetrahedral flows pre-
serve or destroy the space of Poisson bi-vectors ? Preprint arXiv:1609.06677

[q-alg], 10 p.
[5] Buring R. Software package kontsevich-graph-series-cpp, see link:

https://github.com/rburing/kontsevich_graph_series-cpp

[6] Buring R., Kiselev A.V. (2017) On the Kontsevich ⋆-product associativity
mechanism, Physics of Particles and Nuclei Letters 14:2, 403–407. (Preprint
arXiv:1602.09036 [q-alg])

[7] Buring R., Kiselev A.V. (2015) The table of weights for graphs with ⩽ 3 inter-
nal vertices in Kontsevich’s deformation quantization formula. (3rd International
workshop on symmetries of discrete systems & processes, 3–7 August 2015, CVUT
Děč́ın, Czech Republic), see Appendix A in this paper.

[8] Cattaneo A. S., Felder G. (2000) A path integral approach to the Kontsevich quan-
tization formula, Comm. Math. Phys. 212:3, 591–611.

[9] Dito G. (1999) Kontsevich star product on the dual of a Lie algebra, Lett. Math.
Phys. 4, 291–306.

[10] Felder G., Willwacher T. (2010) On the (ir)rationality of Kontsevich weights, Int.
Math. Res. Not. 2010:4, 701–716.

[11] Felder G., Shoikhet B. (2000) Deformation quantization with traces, Lett. Math.
Phys. 53, 75–86.

[12] Gerstenhaber M. (1964) On the deformation of rings and algebras, Ann. Math. 79,
59–103.

[13] Grabowski J., Marmo G., Perelomov A.M. (1993) Poisson structures: towards a
classification, Mod. Phys. Lett. A8:18, 1719–1733.

[14] Kathotia V. (1998) Kontsevich’s universal formula for deformation quantiza-
tion and the Campbell–Baker–Hausdorff formula, I. Preprint arXiv:9811174 (v2)
[math.QA]

40 R. BURING AND A. V. KISELEV

[15] Kiselev A.V. (2012) The twelve lectures in the (non)commutative geometry of
differential equations, Preprint IHÉS/M/12/13 (Bures-sur-Yvette, France), 140 p.

[16] Kiselev A. V. (2013) The geometry of variations in Batalin–Vilkovisky formal-
ism, J. Phys.: Conf. Ser. 474, Paper 012024, 1–51. (Preprint arXiv:1312.1262

[math-ph])
[17] Kiselev A.V. (2014) The Jacobi identity for graded-commutative variational

Schouten bracket revisited, Physics of Particles and Nuclei Letters 11:7, 950–953.
(Preprint arXiv:1312.4140 [math-ph])

[18] Kiselev A.V. (2015) Deformation approach to quantisation of field models, Preprint
IHÉS/M/15/13 (Bures-sur-Yvette, France), 37 p.

[19] Kiselev A.V. (2016) The right-hand side of the Jacobi identity: to be naught or
not to be ? J. Phys.: Conf. Ser. 670 Proc. XXIII Int. conf. ‘Integrable Systems
and Quantum Symmetries’ (23–27 June 2015, CVUT Prague, Czech Republic),
Paper 012030, 1–17. (Preprint arXiv:1410.0173 [math-ph])

[20] Kiselev A.V. (2016) The calculus of multivectors on noncommutative jet spaces.
Preprint arXiv:1210.0726 (v4) [math.DG], 53 p.

[21] Kontsevich M. (1993) Formal (non)commutative symplectic geometry, The
Gel’fand Mathematical Seminars, 1990-1992 (L.Corwin, I.Gelfand, and J. Lepow-
sky, eds), Birkhäuser, Boston MA, 173–187.

[22] Kontsevich M. (1994) Feynman diagrams and low-dimensional topology. First Eu-
rop. Congr. of Math. 2 (Paris, 1992), Progr. Math. 120, Birkhäuser, Basel, 97–121.

[23] Kontsevich M. (1995) Homological algebra of mirror symmetry. Proc. Intern.
Congr. Math. 1 (Zürich, 1994), Birkhäuser, Basel, 120–139.

[24] Kontsevich M. (1997) Formality conjecture. Deformation theory and symplectic
geometry (Ascona 1996, D. Sternheimer, J. Rawnsley and S.Gutt, eds), Math. Phys.
Stud. 20, Kluwer Acad. Publ., Dordrecht, 139–156.

[25] Kontsevich M. (2003) Deformation quantization of Poisson manifolds, Lett. Math.
Phys. 66:3, 157–216. (Preprint q-alg/9709040)

[26] Laurent–Gengoux C., Picherau A., Vanhaecke P. (2013) Poisson structures. Gründ-
lehren der mathematischen Wissenschaften 347, Springer–Verlag, Berlin.

[27] Polyak M. (2003) Quantization of linear Poisson structures and degrees of maps.
Lett. Math. Phys. 66:1, 15–35.

[28] Vanhaecke P. (1996) Integrable systems in the realm of algebraic geometry, Lect.
Notes Math. 1638, Springer–Verlag, Berlin.

[29] Willwacher T. (2014) The obstruction to the existence of a loopless star product.
C. R. Math. Acad. Sci. Paris 352:11, 881–883.

COMPUTER-ASSISTED PROOF SCHEMES IN DEFORMATION QUANTIZATION 41

Appendix A. Numerical approximation of weight integrals

The material presented here is an expanded version of section 3 of the note [7] by the
authors.

A.1. The weight integral in Cartesian coordinates. Recall the integral formula
for the weight of a graph Γ ∈ G̃2,k (see section 2):

w(Γ) =
1

(2π)2k

∫
Ck(H)

k∧
j=1

dφ(pj, pLeft(j)) ∧ dφ(pj, pRight(j)), (5)

such that the integral is taken over the configuration space of k points in the upper
half-plane H ⊂ C,

Ck(H) = {(p1, . . . , pk) ∈ Hk : pi pairwise distinct},

and where φ : C2(H)→ [0, 2π) was defined by φ(p, q) = Arg
(
q−p
q−p̄

)
.

For nonzero z = x + iy in H we have Arg(x + iy) ∼= arctan(y/x), where ∼= denotes
equality of functions up to a constant. Since d

dt
arctan(t) = 1/(1 + t2), the weight

integrand is a rational function of the Cartesian coordinates: for p = a+ib and q = x+iy,

φ(p, q) ∼= arctan

(
2b(a− x)

(a− x)2 + (y + b)(y − b)

)
. (12)

In Cartesian coordinates (x1, y1, . . . , xk, yk), the weight integrand can now be written
as the Jacobian determinant of the map ΦΓ : Ck(H)→ [0, 2π)2k defined by16

ΦΓ(p1, . . . , pk) = (φ(p1, pLeft(1)), φ(p1, pRight(1)), . . . , φ(pk, pLeft(k)), φ(pk, pRight(k)))

considered as a function of the (xj, yj) through pj = xj + iyj.

Implementation 16. The command

> weight_integrands <graph-series-file>

takes as input a list of graphs Γ ∈ G̃2,k with (possibly undetermined) coefficients, and
sends to the standard output lines of the following form:

(* <graph encoding> <coefficient> *)

<weight integrand of the graph above>

where the weight integrands are written in Mathematica format, as Det[...].

We can take integration domain to be Hk, since for any i ̸= j the set {(p1, . . . , pk) ∈
Ck : pi = pj} is a strict linear subspace of Ck, which has measure zero. The weight
integral is absolutely convergent [25], so by the Fubini–Tonelli theorem we may evaluate
it as an iterated integral in any order. We can use the residue theorem17 to integrate
out the Cartesian coordinates corresponding to the k real parts, halving the dimension.
It then remains to integrate the result (a function of the k imaginary parts) over Rk.

16Called a Gauss map by M. Polyak [27].
17G. Dito used the residue method for one graph [9] at k = 2, and remarked that that it becomes

unpractical for k ≥ 3.

42 R. BURING AND A. V. KISELEV

Example 23. For the wedge graph Λ we have the Cartesian coordinates x+ iy in the
upper half-plane and the integrand (obtained using Implementation 16)

f(x, y) =
4y

((x− 1)2 + y2)(x2 + y2)
.

To apply the residue theorem we interpret f(x, y) as a rational function in a single
complex variable x. Its poles are then ±iy and 1 ± iy, so the poles in the upper half-
plane are iy and 1 + iy (since y > 0). The residues at these poles are r1 = 2/(i + 2y)
and r2 = −2/(2y − i) respectively. Hence the residue theorem yields that the integral
of f(x, y) with respect to x over the real line is 2πi(r1 + r2) = 8π/(1 + 4y2). When we
integrate this over y > 0 and divide by (2π)2 we obtain 1/2, as desired.

This is of course a toy example. For higher k the expressions become larger, but also
one has to consider more carefully which poles are in the upper half-plane. From the
expression (12) for φ one can see that this issue depends on the relative position of the
coordinates on the imaginary axis (y and b in that formula).
For k = 3 with coordinates on H3 given by

a+ bi, c+ di, e+ fi,

let us agree to call a, c, e the real coordinates and b, d, f the imaginary coordinates. We
now split the integral into a sum of integrals over 3! = 6 regions, one for each possible
ordering of the imaginary coordinates:

b < d < f ; b < f < d; d < b < f ; d < f < b; f < b < d; f < d < b.

In each such region it is known for every (complexified) real coordinate which poles are
in the upper half-plane, so we can apply the residue theorem three times. The result can
be numerically integrated more effectively than the original expression, for one because
we have halved the dimension of the integration domain.

Remark 15. To integrate over the region of H3 defined by b < d < f , one can choose

integration bounds as follows:
∫∞
0

db
∫∞
b

df
∫ f
b
dd (and similarly for the other permu-

tations). For the region of H4 defined by b < d < f < h one can choose the integration

bounds
∫∞
0

db
∫∞
b

dh
∫ h
b
dd
∫ h
d
df , and so on.

Implementation 17. The strategy above is implemented by the followingMathematica
code (for the order 4, but it can be adapted for others), whereW is the weight integrand.

W = ...

integrationvariables = {a, b, c, d, e, f, g, h};

imaginaryvariables =

integrationvariables[[2 #1]] & /@

Range[1, Length[integrationvariables]/2];

realvariables =

integrationvariables[[2 #1 - 1]] & /@

Range[1, Length[integrationvariables]/2];

basicAssumptions =

COMPUTER-ASSISTED PROOF SCHEMES IN DEFORMATION QUANTIZATION 43

Element[a, Reals] && Element[c, Reals] && Element[e, Reals] &&

Element[g, Reals] && b > 0 && d > 0 && f > 0 && h > 0;

ContourIntegrate[function_, variable_, assumptions_] :=

2*Pi*I*Total[

Map[

Function[{p}, (Numerator[Together[function]]/

D[Denominator[Together[function]], variable]) /. {variable ->

p}],

Select[

ReplaceList[variable,

Assuming[assumptions,

Flatten[FullSimplify[

Solve[Denominator[Together[function]] == 0, variable,

Complexes]]]]],

Function[{r}, Simplify[ComplexExpand[Im[r]] > 0, assumptions]]]]]

IteratedContourIntegrate[function_, variables_, assumptions_] :=

Fold[ContourIntegrate[Together[#1], #2, assumptions] &, function,

variables]

integrals = Map[

NIntegrate[

Simplify[

IteratedContourIntegrate[W, realvariables,

basicAssumptions && #1[[1]] < #1[[2]] < #1[[3]] < #1[[4]]]

TimeConstraint -> Infinity],

Evaluate[

Sequence @@

{{#1[[1]], 0, Infinity}, {#1[[3]], #1[[1]],

Infinity}, {#1[[2]], #1[[1]], #1[[3]]}, {#1[[4]], #1[[3]],

Infinity}}

],

Method -> {GlobalAdaptive, MaxErrorIncreases -> 10^4}

] &, Permutations[imaginaryvariables]]

Print[integrals]

Print[Total[integrals]]

Print[Total[integrals]/N[(2 Pi)^8]]

Remark 16. This strategy allows effective numerical integration of all weights up to
order 3. At the order 4, it works for some weights but not others: see Tables 2 and 3.
The call(s) to Map may be replaced by ParallelMap to parallelize the computation.

44 R. BURING AND A. V. KISELEV

Example 24. The second Bernoulli graph r r
r-
A
AAU

r
?
@@Rr

@@R��	 [10] has the weight integrand

64bfd
(
c
(
(a− c)2 + b2

)
+ d2(c− 2a)

) (
f2(e− 2c) + e

(
(e− c)2 + d2

))
(a2 + b2) (f2 + (e− 1)2) (f2 + e2) (c2 + d2) ((a− c)2 + (b− d)2) ((a− c)2 + (b+ d)2) ((f + d)2 + (e− c)2)

The residue calculation followed by the numerical integration leads to the estimate
5.71871× 10−9 − 5.92495× 10−21i of the weight; this leads to the guess that it is zero
and in fact it is true.

Table 2. Verified values

Weight Approximation True value
w_4_1 −0.0069444401170± 0.000000906189 −1/144 ≈ −0.00694444

Table 3. Conjectured values

Weight Approximation Conjectured true value
w_4_103 −0.000086894703± 0.000000681076 −1/11520 ≈ 0.000086805
w_4_104 0.000347214860± 0.000000371598 1/2880 ≈ 0.000347222
w_4_112 −0.000347219933± 0.000000042901 −1/2880 ≈ −0.000347222
w_4_113 0.000694441623± 0.000000093136 1/1440 ≈ 0.000694444
w_4_133 0.000694443060± 0.000000078774 1/1440 ≈ 0.000694444
w_4_138 −0.001041664533± 0.000000095465 −1/960 ≈ −0.001041666
w_4_147 −0.000043376821± 0.000000095465 ?
w_4_148 0.000173611294± 0.000000015063 1/5760 ≈ 0.000173611

In particular, this table lists the approximate value of the master-parameters p4 =
w_4_103 and p5 = w_4_104. The relation w_4_133 = 2 · w_4_104 which was found in
Theorem 9 and listed in Table 6 of Appendix C is satisfied approximately. Furthermore,
the relation w_4_103 = 2 · w_4_147 seems to hold approximately.

COMPUTER-ASSISTED PROOF SCHEMES IN DEFORMATION QUANTIZATION i

Appendix B. C++ classes and methods

Class KontsevichGraph

Summary: a (signed) Kontsevich graph.

Data members (private):

size_t d_internal = 0;

size_t d_external = 0;

std::vector< std::pair<char, char> > d_targets;

int d_sign = 1;

Public typedefs:

typedef char Vertex;

typedef std::pair<Vertex, Vertex> VertexPair;

Constructors:

KontsevichGraph() = default;

KontsevichGraph(size_t internal, size_t external,

std::vector<VertexPair> targets,

int sign = 1, bool normalized = false);

Accessor methods:

std::vector<VertexPair> targets() const;

VertexPair targets(Vertex internal_vertex) const;

int sign() const;

int sign(int new_sign);

size_t internal() const;

size_t external() const;

Methods to obtain numerical information:

size_t vertices() const;

std::vector<Vertex> internal_vertices() const;

std::pair< size_t, std::vector<VertexPair> > abs() const;

size_t multiplicity() const;

size_t in_degree(KontsevichGraph::Vertex vertex) const;

std::vector<size_t> in_degrees() const;

std::vector<Vertex> neighbors_in(Vertex vertex) const;

KontsevichGraph mirror_image() const;

std::string as_sage_expression() const;

std::string encoding() const;

std::vector< std::tuple<KontsevichGraph, int, int> > permutations() const;

Methods that modify the graph:

void normalize();

KontsevichGraph& operator*=(const KontsevichGraph& rhs);

Methods that test for graph properties:

bool operator<(const KontsevichGraph& rhs) const;

bool is_zero() const;

ii R. BURING AND A. V. KISELEV

bool is_prime() const;

bool positive_differential_order() const;

bool has_cycles() const;

bool has_tadpoles() const;

bool has_multiple_edges() const;

bool has_max_internal_indegree(size_t max_indegree) const;

Static methods:

static std::set<KontsevichGraph> graphs(size_t internal,

size_t external = 2, bool modulo_signs = false,

bool modulo_mirror_images = false,

std::function<void(KontsevichGraph)> const& callback = nullptr,

std::function<bool(KontsevichGraph)> const& filter = nullptr);

Private methods:

friend std::ostream& operator<<(std::ostream &os, const KontsevichGraph& g);

friend std::istream& operator>>(std::istream& is, KontsevichGraph& g);

friend bool operator==(const KontsevichGraph &lhs, const KontsevichGraph& rhs);

friend bool operator!=(const KontsevichGraph &lhs, const KontsevichGraph& rhs);

Functions defined outside the class:

KontsevichGraph operator*(KontsevichGraph lhs, const KontsevichGraph& rhs);

std::ostream& operator<<(std::ostream &os, const KontsevichGraph::Vertex v);

Class KontsevichGraphSum<T>

• Template parameter T: type of the coefficients (e.g. KontsevichGraphSum<int>).
• Publically extends: std::vector< std::pair<T, KontsevichGraph> >.

Summary: a sum of Kontsevich graphs, with method to reduce modulo skew-symmetry.

Data members: inherited.
Public typedefs:

typedef std::pair<T, KontsevichGraph> Term;

Constructors (inherited):

using std::vector< std::pair<T, KontsevichGraph> >::vector;

Accessor methods:

using std::vector< std::pair<T, KontsevichGraph> >::operator[];

KontsevichGraphSum<T> operator[](std::vector<size_t> indegrees) const;

T operator[](KontsevichGraph) const;

Arithmetic operators:

KontsevichGraphSum<T> operator()(std::vector< KontsevichGraphSum<T> > args) const;

KontsevichGraphSum<T>& operator+=(const KontsevichGraphSum<T>& rhs);

KontsevichGraphSum<T>& operator-=(const KontsevichGraphSum<T>& rhs);

KontsevichGraphSum<T>& operator=(const KontsevichGraphSum<T>&) = default;

Methods:

COMPUTER-ASSISTED PROOF SCHEMES IN DEFORMATION QUANTIZATION iii

std::vector< std::vector<size_t> > in_degrees(bool ascending = false) const;

KontsevichGraphSum<T> skew_symmetrization() const;

Methods that modify the graph sum:

void reduce();

Comparison operators:

bool operator==(const KontsevichGraphSum<T>& other) const;

bool operator==(int other) const;

bool operator!=(const KontsevichGraphSum<T>& other) const;

bool operator!=(int other) const;

Friend operators:

friend std::ostream& operator<< <>(std::ostream& os,

const KontsevichGraphSum<T>::Term& term);

friend std::ostream& operator<< <>(std::ostream& os,

const KontsevichGraphSum<T>& gs);

friend std::istream& operator>> <>(std::istream& is,

KontsevichGraphSum<T>& sum);

Functions defined outside the class:

KontsevichGraphSum<T> operator+(KontsevichGraphSum<T> lhs,

const KontsevichGraphSum<T>& rhs);

KontsevichGraphSum<T> operator-(KontsevichGraphSum<T> lhs,

const KontsevichGraphSum<T>& rhs);

KontsevichGraphSum<T> operator*(T lhs,

KontsevichGraphSum<T> rhs);

std::ostream& operator<<(std::ostream&, const std::pair<T, KontsevichGraph>&);

std::ostream& operator<<(std::ostream&, const KontsevichGraphSum<T>&);

std::istream& operator>>(std::istream&, KontsevichGraphSum<T>&);

Class KontsevichGraphSeries<T>

• Template parameter T: type of the coefficients (e.g. KontsevichGraphSeries<int>).
• Publically extends: std::map< size_t, KontsevichGraphSum<T> >

Summary: a formal power series expansion; sums of Kontsevich graphs as coefficients.

Data members: inherited, plus (private):

size_t d_precision = std::numeric_limits<std::size_t>::max();

Constructors (inherited):

using std::map< size_t, KontsevichGraphSum<T> >::map;

Accessor methods:

size_t precision() const;

size_t precision(size_t new_precision);

Arithmetic operators:

iv R. BURING AND A. V. KISELEV

KontsevichGraphSeries<T> operator()(std::vector< KontsevichGraphSeries<T> >) const;

KontsevichGraphSeries<T>& operator+=(const KontsevichGraphSeries<T>& rhs);

KontsevichGraphSeries<T>& operator-=(const KontsevichGraphSeries<T>& rhs);

Methods:

KontsevichGraphSeries<T> skew_symmetrization() const;

KontsevichGraphSeries<T> inverse() const;

KontsevichGraphSeries<T> gauge_transform(const KontsevichGraphSeries<T>& gauge);

Comparison operators:

bool operator==(int other) const;

bool operator!=(int other) const;

Methods that modify the graph series:

void reduce();

Static methods:

static KontsevichGraphSeries<T> from_istream(std::istream& is,

std::function<T(std::string)> const& parser,

std::function<bool(KontsevichGraph, size_t)> const& filter = nullptr);

Friend methods:

friend std::ostream& operator<< <>(std::ostream& os,

const KontsevichGraphSeries<T>& series);

Functions defined outside the class:

KontsevichGraphSeries<T> operator+(KontsevichGraphSeries<T> lhs,

const KontsevichGraphSeries<T>& rhs);

KontsevichGraphSeries<T> operator-(KontsevichGraphSeries<T> lhs,

const KontsevichGraphSeries<T>& rhs);

std::ostream& operator<<(std::ostream&, const KontsevichGraphSeries<T>&);

COMPUTER-ASSISTED PROOF SCHEMES IN DEFORMATION QUANTIZATION v

Appendix C. Encoding of the entire ⋆-product modulo ō(ℏ4)

In the following two tables, containing the sets of basic graphs and the ⋆-product
expansion respectively, encodings of graphs (see Implementation 1 on p. 5) are followed
by their coefficients.

Table 4. Basic sets of Kontsevich graphs, up to order 4, including zero graphs.

h^0:
2 0 1 1
h^1:
2 1 1 0 1 1/2
h^2:
2 2 1 0 1 0 2 1/12
2 2 1 0 3 2 1 1/24
h^3:
2 3 1 0 1 0 2 3 2 1/48
2 3 1 0 1 0 2 0 2 1/24
2 3 1 0 1 2 1 0 3 1/48
2 3 1 0 3 2 1 2 1 1/48
2 3 1 0 3 2 1 2 3 1/48
2 3 0 0 1 0 1 2 3 0
h^4:
2 4 1 0 1 0 1 0 2 2 3 w_4_1
2 4 1 0 1 0 1 0 2 3 4 w_4_2
2 4 0 0 1 0 1 0 5 2 3 0
2 4 1 0 1 0 1 2 3 2 3 w_4_3
2 4 1 0 1 0 1 2 3 2 4 w_4_4
2 4 1 0 1 0 1 2 5 3 4 w_4_5
2 4 1 0 1 0 2 0 2 0 2 w_4_6
2 4 1 0 1 0 2 0 2 0 3 w_4_7
2 4 1 0 1 0 2 0 2 1 2 w_4_8
2 4 1 0 1 0 2 0 2 1 3 w_4_9
2 4 1 0 1 0 2 0 2 2 3 w_4_10
2 4 0 0 1 0 2 0 2 3 4 0
2 4 1 0 1 0 2 0 3 0 3 w_4_11
2 4 1 0 1 0 2 0 3 0 4 w_4_12
2 4 1 0 1 0 2 0 3 1 2 w_4_13
2 4 1 0 1 0 2 0 3 1 3 w_4_14
2 4 1 0 1 0 2 0 3 1 4 w_4_15
2 4 1 0 1 0 2 0 3 2 3 w_4_16
2 4 1 0 1 0 2 0 3 2 4 w_4_17
2 4 1 0 1 0 2 0 3 3 4 w_4_18
2 4 1 0 1 0 2 0 5 1 2 w_4_19
2 4 1 0 1 0 2 0 5 1 3 w_4_20
2 4 1 0 1 0 2 0 5 2 3 w_4_21
2 4 1 0 1 0 2 0 5 2 4 w_4_22
2 4 1 0 1 0 2 0 5 3 4 w_4_23
2 4 1 0 1 0 2 1 2 2 3 w_4_24
2 4 1 0 1 0 2 1 2 3 4 w_4_25
2 4 1 0 1 0 2 1 3 1 3 w_4_26
2 4 1 0 1 0 2 1 3 1 4 w_4_27
2 4 1 0 1 0 2 1 3 2 3 w_4_28
2 4 1 0 1 0 2 1 3 2 4 w_4_29
2 4 1 0 1 0 2 1 3 3 4 w_4_30
2 4 1 0 1 0 2 1 5 2 3 w_4_31
2 4 1 0 1 0 2 1 5 2 4 w_4_32
2 4 1 0 1 0 2 1 5 3 4 w_4_33
2 4 1 0 1 0 2 2 3 2 3 w_4_34
2 4 1 0 1 0 2 2 3 2 4 w_4_35
2 4 1 0 1 0 2 2 3 3 4 w_4_36
2 4 1 0 1 0 2 2 5 2 4 w_4_37
2 4 1 0 1 0 2 2 5 3 4 w_4_38
2 4 1 0 1 0 2 3 5 3 4 w_4_39
2 4 1 0 1 0 4 0 3 2 3 w_4_40

2 4 1 0 1 0 4 0 5 2 3 w_4_41
2 4 1 0 1 0 4 0 5 2 4 w_4_42
2 4 1 0 1 0 4 1 3 2 3 w_4_43
2 4 1 0 1 0 4 1 5 2 3 w_4_44
2 4 1 0 1 0 4 1 5 2 4 w_4_45
2 4 1 0 1 0 4 2 3 0 4 w_4_46
2 4 1 0 1 0 4 2 3 1 4 w_4_47
2 4 1 0 1 0 4 2 3 2 3 w_4_48
2 4 1 0 1 0 4 2 3 2 4 w_4_49
2 4 1 0 1 0 4 2 3 3 4 w_4_50
2 4 1 0 1 0 4 2 5 2 3 w_4_51
2 4 1 0 1 0 4 2 5 2 4 w_4_52
2 4 1 0 1 0 4 2 5 3 4 w_4_53
2 4 1 0 1 0 4 3 5 2 3 w_4_54
2 4 1 0 1 0 4 3 5 2 4 w_4_55
2 4 1 0 1 2 4 2 3 2 3 w_4_56
2 4 0 0 1 2 4 2 3 3 4 0
2 4 1 0 1 2 4 2 5 2 3 w_4_57
2 4 1 0 1 2 4 2 5 3 4 w_4_58
2 4 0 0 1 2 4 3 5 2 4 0
2 4 1 0 1 2 4 3 5 3 4 w_4_59
2 4 1 0 3 0 2 0 2 1 2 w_4_60
2 4 1 0 3 0 2 0 2 1 3 w_4_61
2 4 1 0 3 0 2 0 2 1 4 w_4_62
2 4 1 0 3 0 2 0 5 1 2 w_4_63
2 4 1 0 3 0 2 1 2 1 2 w_4_64
2 4 1 0 3 0 2 1 2 1 3 w_4_65
2 4 1 0 3 0 2 1 2 1 4 w_4_66
2 4 1 0 3 0 2 1 2 2 3 w_4_67
2 4 1 0 3 0 2 1 2 2 4 w_4_68
2 4 1 0 3 0 2 1 2 3 4 w_4_69
2 4 0 0 3 0 2 1 5 2 3 0
2 4 1 0 3 0 2 1 5 2 4 w_4_70
2 4 1 0 3 0 4 0 2 1 2 w_4_71
2 4 1 0 3 0 4 0 5 1 2 w_4_72
2 4 1 0 3 0 4 0 5 1 3 w_4_73
2 4 1 0 3 0 4 0 5 1 4 w_4_74
2 4 1 0 3 0 4 1 2 0 3 w_4_75
2 4 1 0 3 0 4 1 2 0 4 w_4_76
2 4 1 0 3 0 4 1 2 1 2 w_4_77
2 4 1 0 3 0 4 1 2 1 3 w_4_78
2 4 1 0 3 0 4 1 2 1 4 w_4_79
2 4 1 0 3 0 4 1 2 2 3 w_4_80
2 4 1 0 3 0 4 1 2 2 4 w_4_81
2 4 1 0 3 0 4 1 2 3 4 w_4_82
2 4 1 0 3 0 4 1 3 0 3 w_4_83
2 4 1 0 3 0 4 1 3 0 4 w_4_84
2 4 1 0 3 0 4 1 3 1 2 w_4_85
2 4 1 0 3 0 4 1 3 1 3 w_4_86
2 4 1 0 3 0 4 1 3 1 4 w_4_87
2 4 1 0 3 0 4 1 3 2 3 w_4_88
2 4 1 0 3 0 4 1 3 2 4 w_4_89
2 4 1 0 3 0 4 1 3 3 4 w_4_90
2 4 1 0 3 0 4 1 5 0 4 w_4_91
2 4 1 0 3 0 4 1 5 1 2 w_4_92
2 4 1 0 3 0 4 1 5 2 3 w_4_93
2 4 1 0 3 0 4 1 5 2 4 w_4_94

2 4 1 0 3 0 4 1 5 3 4 w_4_95
2 4 1 0 3 0 4 2 3 1 2 w_4_96
2 4 1 0 3 0 4 2 3 1 3 w_4_97
2 4 1 0 3 0 4 2 3 1 4 w_4_98
2 4 1 0 3 0 4 2 5 1 2 w_4_99
2 4 1 0 3 0 4 2 5 1 3 w_4_100
2 4 1 0 3 0 4 2 5 1 4 w_4_101
2 4 1 0 3 0 4 3 5 1 2 w_4_102
2 4 1 0 3 0 4 3 5 1 3 w_4_103
2 4 1 0 3 0 4 3 5 1 4 w_4_104
2 4 1 0 3 1 2 0 3 0 3 w_4_105
2 4 1 0 3 1 2 0 3 1 2 w_4_106
2 4 1 0 3 1 2 0 3 1 4 w_4_107
2 4 1 0 3 1 2 0 3 2 3 w_4_108
2 4 1 0 3 1 2 0 3 2 4 w_4_109
2 4 1 0 3 1 2 0 3 3 4 w_4_110
2 4 1 0 3 1 2 0 5 2 3 w_4_111
2 4 1 0 3 1 2 0 5 2 4 w_4_112
2 4 1 0 3 1 2 0 5 3 4 w_4_113
2 4 1 0 3 1 2 2 3 2 3 w_4_114
2 4 1 0 3 1 2 2 3 2 4 w_4_115
2 4 1 0 3 1 2 2 5 2 4 w_4_116
2 4 1 0 3 1 2 2 5 3 4 w_4_117
2 4 1 0 3 1 4 0 5 1 2 w_4_118
2 4 1 0 3 1 4 0 5 2 3 w_4_119
2 4 1 0 3 1 4 0 5 2 4 w_4_120
2 4 1 0 3 1 4 0 5 3 4 w_4_121
2 4 1 0 3 1 4 2 3 0 3 w_4_122
2 4 1 0 3 1 4 2 3 0 4 w_4_123
2 4 1 0 3 1 4 2 3 1 4 w_4_124
2 4 1 0 3 1 4 2 3 2 3 w_4_125
2 4 1 0 3 1 4 2 3 2 4 w_4_126
2 4 1 0 3 1 4 2 3 3 4 w_4_127
2 4 0 0 3 1 4 2 5 0 3 0
2 4 1 0 3 1 4 2 5 0 4 w_4_128
2 4 1 0 3 1 4 2 5 1 4 w_4_129
2 4 1 0 3 1 4 2 5 2 3 w_4_130
2 4 1 0 3 1 4 2 5 2 4 w_4_131
2 4 1 0 3 1 4 2 5 3 4 w_4_132
2 4 1 0 3 1 4 3 5 0 4 w_4_133
2 4 1 0 3 1 4 3 5 1 4 w_4_134
2 4 1 0 3 1 4 3 5 2 3 w_4_135
2 4 1 0 3 1 4 3 5 2 4 w_4_136
2 4 1 0 3 1 4 3 5 3 4 w_4_137
2 4 0 0 3 2 4 0 3 1 3 0
2 4 1 0 3 2 4 1 3 0 3 w_4_138
2 4 1 0 3 2 4 1 3 2 3 w_4_139
2 4 1 0 3 2 4 1 3 2 4 w_4_140
2 4 1 0 3 2 4 1 5 2 3 w_4_141
2 4 1 0 3 2 4 1 5 2 4 w_4_142
2 4 1 0 3 2 4 1 5 3 4 w_4_143
2 4 1 0 3 2 4 2 3 1 3 w_4_144
2 4 1 0 3 2 4 2 3 1 4 w_4_145
2 4 1 0 3 2 4 2 5 1 3 w_4_146
2 4 1 0 3 2 4 3 5 1 3 w_4_147
2 4 1 0 3 2 4 3 5 1 4 w_4_148
2 4 1 0 3 4 5 1 5 2 3 w_4_149

vi R. BURING AND A. V. KISELEV

Table 5. Kontsevich’s star product up to order 4.

h^0:
2 0 1 1
h^1:
2 1 1 0 1 1
h^2:
2 2 1 0 1 0 1 1/2
2 2 1 0 1 0 2 1/3
2 2 1 0 1 1 2 -1/3
2 2 1 0 3 1 2 -1/6
h^3:
2 3 1 0 1 0 1 0 1 1/6
2 3 1 0 1 0 1 0 2 1/3
2 3 1 0 1 0 1 1 2 -1/3
2 3 1 0 1 0 4 1 3 -1/6
2 3 1 0 1 0 2 0 2 1/6
2 3 1 0 1 1 2 1 2 1/6
2 3 1 0 1 0 2 2 3 -1/6
2 3 1 0 1 1 2 2 3 -1/6
2 3 1 0 1 0 4 1 2 -1/6
2 3 1 0 1 0 2 1 3 -1/6
2 3 1 0 3 1 2 1 2 1/6
2 3 1 0 3 1 2 0 3 -1/6
2 3 1 0 3 1 2 2 3 -1/6
h^4:
2 4 1 0 1 0 1 0 1 0 1 1/24
2 4 1 0 1 0 1 0 1 0 2 1/6
2 4 1 0 1 0 1 0 1 1 2 -1/6
2 4 1 0 1 0 1 0 5 1 4 -1/12
2 4 1 0 1 0 1 0 2 0 2 1/6
2 4 1 0 1 0 1 1 2 1 2 1/6
2 4 1 0 1 0 1 0 2 2 4 -1/6
2 4 1 0 1 0 1 1 2 2 4 -1/6
2 4 1 0 1 0 1 0 5 1 2 -1/6
2 4 1 0 1 0 1 0 2 1 4 -1/6
2 4 1 0 1 0 4 1 3 1 3 1/6
2 4 1 0 1 0 4 1 3 0 4 -1/6
2 4 1 0 1 0 4 1 3 3 4 -1/6
2 4 1 0 1 0 1 0 2 0 3 1/18
2 4 1 0 1 0 1 0 2 1 3 -1/9
2 4 1 0 1 0 2 0 5 1 4 -1/18
2 4 1 0 1 0 1 1 2 1 3 1/18
2 4 1 0 1 0 4 1 3 1 2 1/18
2 4 1 0 3 1 2 0 5 1 4 1/72
2 4 1 0 1 0 1 0 2 2 3 16*w_4_1
2 4 1 0 1 0 1 1 2 2 3 16*w_4_1
2 4 1 0 1 0 1 0 2 3 4 16*w_4_2
2 4 1 0 1 0 1 1 2 3 4 16*w_4_2
2 4 1 0 1 0 1 2 3 2 3 4*w_4_3
2 4 1 0 1 0 1 2 3 2 4 16*w_4_4
2 4 1 0 1 0 1 2 5 3 4 8*w_4_5
2 4 1 0 1 0 2 0 2 0 2 8/3*w_4_6
2 4 1 0 1 1 2 1 2 1 2 -8/3*w_4_6
2 4 1 0 1 0 2 0 2 0 3 16*w_4_7
2 4 1 0 1 1 2 1 2 1 3 -16*w_4_7
2 4 1 0 1 0 2 0 2 1 2 8*w_4_8
2 4 1 0 1 0 2 1 2 1 2 -8*w_4_8
2 4 1 0 1 0 2 0 2 1 3 16*w_4_9
2 4 1 0 1 0 4 1 2 1 2 -16*w_4_9
2 4 1 0 1 0 2 0 2 2 3 16*w_4_10
2 4 1 0 1 1 2 1 2 2 3 -16*w_4_10
2 4 1 0 1 0 2 0 3 0 3 8*w_4_11
2 4 1 0 1 1 2 1 3 1 3 -8*w_4_11
2 4 1 0 1 0 2 0 3 0 4 16*w_4_12
2 4 1 0 1 1 2 1 3 1 4 -16*w_4_12
2 4 1 0 1 0 2 0 3 1 2 16*w_4_13
2 4 1 0 1 0 2 1 2 1 4 -16*w_4_13
2 4 1 0 1 0 2 0 3 1 3 16*w_4_14
2 4 1 0 1 0 4 1 2 1 4 -16*w_4_14
2 4 1 0 1 0 2 0 3 1 4 16*w_4_15
2 4 1 0 1 0 4 1 5 1 2 -16*w_4_15
2 4 1 0 1 0 2 0 3 2 3 16*w_4_16
2 4 1 0 1 1 2 1 3 2 3 -16*w_4_16
2 4 1 0 1 0 2 0 3 2 4 16*w_4_17
2 4 1 0 1 1 2 1 3 2 4 -16*w_4_17
2 4 1 0 1 0 2 0 3 3 4 16*w_4_18
2 4 1 0 1 1 2 1 3 3 4 -16*w_4_18
2 4 1 0 1 0 2 0 5 1 2 16*w_4_19
2 4 1 0 1 0 2 1 2 1 3 -16*w_4_19
2 4 1 0 1 0 2 0 5 1 3 16*w_4_20
2 4 1 0 1 0 4 1 2 1 3 -16*w_4_20
2 4 1 0 1 0 2 0 5 2 3 16*w_4_21

2 4 1 0 1 1 2 1 5 2 3 -16*w_4_21
2 4 1 0 1 0 2 0 5 2 4 16*w_4_22
2 4 1 0 1 1 2 1 5 2 4 -16*w_4_22
2 4 1 0 1 0 2 0 5 3 4 16*w_4_23
2 4 1 0 1 1 2 1 5 3 4 -16*w_4_23
2 4 1 0 1 0 2 1 2 2 3 16*w_4_24
2 4 1 0 1 0 2 1 2 2 4 -16*w_4_24
2 4 1 0 1 0 2 1 2 3 4 16*w_4_25
2 4 1 0 1 0 2 1 3 1 3 8*w_4_26
2 4 1 0 1 0 4 1 2 0 4 -8*w_4_26
2 4 1 0 1 0 2 1 3 1 4 16*w_4_27
2 4 1 0 1 0 4 0 5 1 2 -16*w_4_27
2 4 1 0 1 0 2 1 3 2 3 16*w_4_28
2 4 1 0 1 0 4 1 2 2 4 -16*w_4_28
2 4 1 0 1 0 2 1 3 2 4 16*w_4_29
2 4 1 0 1 0 4 1 2 2 3 -16*w_4_29
2 4 1 0 1 0 2 1 3 3 4 16*w_4_30
2 4 1 0 1 0 4 1 2 3 4 16*w_4_30
2 4 1 0 1 0 2 1 5 2 3 16*w_4_31
2 4 1 0 1 0 4 2 5 1 2 -16*w_4_31
2 4 1 0 1 0 2 1 5 2 4 16*w_4_32
2 4 1 0 1 0 4 2 3 1 2 -16*w_4_32
2 4 1 0 1 0 2 1 5 3 4 16*w_4_33
2 4 1 0 1 0 4 3 5 1 2 16*w_4_33
2 4 1 0 1 0 2 2 3 2 3 8*w_4_34
2 4 1 0 1 1 2 2 3 2 3 -8*w_4_34
2 4 1 0 1 0 2 2 3 2 4 16*w_4_35
2 4 1 0 1 1 2 2 3 2 4 -16*w_4_35
2 4 1 0 1 0 2 2 3 3 4 16*w_4_36
2 4 1 0 1 1 2 2 3 3 4 -16*w_4_36
2 4 1 0 1 0 2 2 5 2 4 8*w_4_37
2 4 1 0 1 1 2 2 5 2 4 -8*w_4_37
2 4 1 0 1 0 2 2 5 3 4 16*w_4_38
2 4 1 0 1 1 2 2 5 3 4 -16*w_4_38
2 4 1 0 1 0 2 3 5 3 4 8*w_4_39
2 4 1 0 1 1 2 3 5 3 4 -8*w_4_39
2 4 1 0 1 0 4 0 3 2 3 16*w_4_40
2 4 1 0 1 1 4 1 3 2 3 -16*w_4_40
2 4 1 0 1 0 4 0 5 2 3 16*w_4_41
2 4 1 0 1 1 4 1 5 2 3 -16*w_4_41
2 4 1 0 1 0 4 0 5 2 4 16*w_4_42
2 4 1 0 1 1 4 1 5 2 4 -16*w_4_42
2 4 1 0 1 0 4 1 3 2 3 16*w_4_43
2 4 1 0 1 0 4 1 3 2 4 -16*w_4_43
2 4 1 0 1 0 4 1 5 2 3 16*w_4_44
2 4 1 0 1 0 4 2 5 1 3 -16*w_4_44
2 4 1 0 1 0 4 1 5 2 4 16*w_4_45
2 4 1 0 1 0 4 2 3 1 3 -16*w_4_45
2 4 1 0 1 0 4 2 3 0 4 16*w_4_46
2 4 1 0 1 1 4 2 3 1 4 -16*w_4_46
2 4 1 0 1 0 4 2 3 1 4 16*w_4_47
2 4 1 0 1 0 4 2 5 1 4 -16*w_4_47
2 4 1 0 1 0 4 2 3 2 3 16*w_4_48
2 4 1 0 1 1 4 2 3 2 3 -16*w_4_48
2 4 1 0 1 0 4 2 3 2 4 16*w_4_49
2 4 1 0 1 1 4 2 3 2 4 -16*w_4_49
2 4 1 0 1 0 4 2 3 3 4 16*w_4_50
2 4 1 0 1 1 4 2 3 3 4 -16*w_4_50
2 4 1 0 1 0 4 2 5 2 3 16*w_4_51
2 4 1 0 1 1 4 2 5 2 3 -16*w_4_51
2 4 1 0 1 0 4 2 5 2 4 16*w_4_52
2 4 1 0 1 1 4 2 5 2 4 -16*w_4_52
2 4 1 0 1 0 4 2 5 3 4 16*w_4_53
2 4 1 0 1 1 4 2 5 3 4 -16*w_4_53
2 4 1 0 1 0 4 3 5 2 3 16*w_4_54
2 4 1 0 1 1 4 3 5 2 3 -16*w_4_54
2 4 1 0 1 0 4 3 5 2 4 16*w_4_55
2 4 1 0 1 1 4 3 5 2 4 -16*w_4_55
2 4 1 0 1 2 4 2 3 2 3 16*w_4_56
2 4 1 0 1 2 4 2 5 2 3 16/3*w_4_57
2 4 1 0 1 2 4 2 5 3 4 16*w_4_58
2 4 1 0 1 2 4 3 5 3 4 16*w_4_59
2 4 1 0 3 0 2 0 2 1 2 16*w_4_60
2 4 1 0 3 1 4 1 3 1 3 16*w_4_60
2 4 1 0 3 0 2 0 2 1 3 16*w_4_61
2 4 1 0 3 1 4 1 3 1 4 16*w_4_61
2 4 1 0 3 0 2 0 2 1 4 16*w_4_62
2 4 1 0 3 1 4 1 5 1 4 16*w_4_62
2 4 1 0 3 0 2 0 5 1 2 16*w_4_63
2 4 1 0 3 1 4 1 3 1 2 16*w_4_63
2 4 1 0 3 0 2 1 2 1 2 8*w_4_64
2 4 1 0 3 1 4 1 3 0 3 8*w_4_64

COMPUTER-ASSISTED PROOF SCHEMES IN DEFORMATION QUANTIZATION vii

Table 5 (continued).

2 4 1 0 3 0 2 1 2 1 3 8*w_4_65
2 4 1 0 3 1 4 1 3 0 4 8*w_4_65
2 4 1 0 3 0 2 1 2 1 4 16*w_4_66
2 4 1 0 3 0 4 1 5 1 4 16*w_4_66
2 4 1 0 3 0 2 1 2 2 3 16*w_4_67
2 4 1 0 3 1 4 1 3 3 4 16*w_4_67
2 4 1 0 3 0 2 1 2 2 4 16*w_4_68
2 4 1 0 3 1 4 1 3 2 3 -16*w_4_68
2 4 1 0 3 0 2 1 2 3 4 16*w_4_69
2 4 1 0 3 1 4 1 3 2 4 -16*w_4_69
2 4 1 0 3 0 2 1 5 2 4 16*w_4_70
2 4 1 0 3 2 4 1 5 1 4 -16*w_4_70
2 4 1 0 3 0 4 0 2 1 2 16*w_4_71
2 4 1 0 3 1 4 1 5 1 3 16*w_4_71
2 4 1 0 3 0 4 0 5 1 2 16*w_4_72
2 4 1 0 3 1 4 1 5 1 2 16*w_4_72
2 4 1 0 3 0 4 0 5 1 3 16*w_4_73
2 4 1 0 3 1 4 1 2 1 3 16*w_4_73
2 4 1 0 3 0 4 0 5 1 4 16*w_4_74
2 4 1 0 3 1 2 1 3 1 4 16*w_4_74
2 4 1 0 3 0 4 1 2 0 3 16*w_4_75
2 4 1 0 3 1 4 1 2 1 4 16*w_4_75
2 4 1 0 3 0 4 1 2 0 4 16*w_4_76
2 4 1 0 3 1 4 1 2 1 2 16*w_4_76
2 4 1 0 3 0 4 1 2 1 2 16*w_4_77
2 4 1 0 3 1 4 1 2 0 3 16*w_4_77
2 4 1 0 3 0 4 1 2 1 3 16*w_4_78
2 4 1 0 3 1 4 0 5 1 3 16*w_4_78
2 4 1 0 3 0 4 1 2 1 4 16*w_4_79
2 4 1 0 3 0 4 1 5 1 3 16*w_4_79
2 4 1 0 3 0 4 1 2 2 3 16*w_4_80
2 4 1 0 3 1 4 1 2 3 4 16*w_4_80
2 4 1 0 3 0 4 1 2 2 4 16*w_4_81
2 4 1 0 3 1 4 1 2 2 3 -16*w_4_81
2 4 1 0 3 0 4 1 2 3 4 16*w_4_82
2 4 1 0 3 1 4 1 2 2 4 -16*w_4_82
2 4 1 0 3 0 4 1 3 0 3 8*w_4_83
2 4 1 0 3 1 2 1 3 1 3 8*w_4_83
2 4 1 0 3 0 4 1 3 0 4 16*w_4_84
2 4 1 0 3 1 2 1 2 1 3 16*w_4_84
2 4 1 0 3 0 4 1 3 1 2 16*w_4_85
2 4 1 0 3 1 2 0 5 1 3 16*w_4_85
2 4 1 0 3 0 4 1 3 1 3 16*w_4_86
2 4 1 0 3 1 2 0 3 1 3 16*w_4_86
2 4 1 0 3 0 4 1 3 1 4 16*w_4_87
2 4 1 0 3 0 4 1 3 2 3 16*w_4_88
2 4 1 0 3 1 2 1 3 3 4 -16*w_4_88
2 4 1 0 3 0 4 1 3 2 4 16*w_4_89
2 4 1 0 3 1 2 1 3 2 4 -16*w_4_89
2 4 1 0 3 0 4 1 3 3 4 16*w_4_90
2 4 1 0 3 1 2 1 3 2 3 -16*w_4_90
2 4 1 0 3 0 4 1 5 0 4 16*w_4_91
2 4 1 0 3 1 2 1 2 1 4 16*w_4_91
2 4 1 0 3 0 4 1 5 1 2 16*w_4_92
2 4 1 0 3 0 4 1 5 2 3 16*w_4_93
2 4 1 0 3 4 5 1 2 1 4 -16*w_4_93
2 4 1 0 3 0 4 1 5 2 4 16*w_4_94
2 4 1 0 3 2 4 1 5 1 2 -16*w_4_94
2 4 1 0 3 0 4 1 5 3 4 16*w_4_95
2 4 1 0 3 2 4 1 2 1 4 -16*w_4_95
2 4 1 0 3 0 4 2 3 1 2 16*w_4_96
2 4 1 0 3 1 4 1 5 3 4 16*w_4_96
2 4 1 0 3 0 4 2 3 1 3 16*w_4_97
2 4 1 0 3 1 4 3 5 1 3 -16*w_4_97
2 4 1 0 3 0 4 2 3 1 4 16*w_4_98
2 4 1 0 3 4 5 1 3 1 4 -16*w_4_98
2 4 1 0 3 0 4 2 5 1 2 16*w_4_99
2 4 1 0 3 1 4 1 5 2 3 -16*w_4_99
2 4 1 0 3 0 4 2 5 1 3 16*w_4_100
2 4 1 0 3 1 4 2 5 1 3 -16*w_4_100
2 4 1 0 3 0 4 2 5 1 4 16*w_4_101
2 4 1 0 3 2 4 1 5 1 3 -16*w_4_101
2 4 1 0 3 0 4 3 5 1 2 16*w_4_102
2 4 1 0 3 1 4 1 5 2 4 -16*w_4_102
2 4 1 0 3 0 4 3 5 1 3 16*w_4_103
2 4 1 0 3 1 4 2 3 1 3 -16*w_4_103
2 4 1 0 3 0 4 3 5 1 4 16*w_4_104
2 4 1 0 3 2 4 1 3 1 4 -16*w_4_104
2 4 1 0 3 1 2 0 3 0 3 8*w_4_105
2 4 1 0 3 1 2 1 2 1 2 8*w_4_105
2 4 1 0 3 1 2 0 3 1 2 16*w_4_106
2 4 1 0 3 1 2 0 3 1 4 16*w_4_107

2 4 1 0 3 1 2 0 5 1 2 16*w_4_107
2 4 1 0 3 1 2 0 3 2 3 16*w_4_108
2 4 1 0 3 1 2 1 2 2 3 -16*w_4_108
2 4 1 0 3 1 2 0 3 2 4 16*w_4_109
2 4 1 0 3 1 2 1 2 3 4 16*w_4_109
2 4 1 0 3 1 2 0 3 3 4 16*w_4_110
2 4 1 0 3 1 2 1 2 2 4 16*w_4_110
2 4 1 0 3 1 2 0 5 2 3 16*w_4_111
2 4 1 0 3 1 2 1 5 2 3 -16*w_4_111
2 4 1 0 3 1 2 0 5 2 4 16*w_4_112
2 4 1 0 3 1 2 1 5 3 4 16*w_4_112
2 4 1 0 3 1 2 0 5 3 4 16*w_4_113
2 4 1 0 3 1 2 1 5 2 4 16*w_4_113
2 4 1 0 3 1 2 2 3 2 3 8*w_4_114
2 4 1 0 3 1 2 2 3 2 4 16*w_4_115
2 4 1 0 3 1 2 2 3 3 4 -16*w_4_115
2 4 1 0 3 1 2 2 5 2 4 8*w_4_116
2 4 1 0 3 1 2 3 5 3 4 8*w_4_116
2 4 1 0 3 1 2 2 5 3 4 16*w_4_117
2 4 1 0 3 1 4 0 5 1 2 8*w_4_118
2 4 1 0 3 1 4 0 5 2 3 16*w_4_119
2 4 1 0 3 1 4 2 5 1 2 -16*w_4_119
2 4 1 0 3 1 4 0 5 2 4 16*w_4_120
2 4 1 0 3 1 4 3 5 1 2 -16*w_4_120
2 4 1 0 3 1 4 0 5 3 4 16*w_4_121
2 4 1 0 3 1 4 2 3 1 2 16*w_4_121
2 4 1 0 3 1 4 2 3 0 3 16*w_4_122
2 4 1 0 3 2 4 1 2 1 2 -16*w_4_122
2 4 1 0 3 1 4 2 3 0 4 16*w_4_123
2 4 1 0 3 2 4 1 2 1 3 -16*w_4_123
2 4 1 0 3 1 4 2 3 1 4 16*w_4_124
2 4 1 0 3 2 4 1 2 0 3 -16*w_4_124
2 4 1 0 3 1 4 2 3 2 3 16*w_4_125
2 4 1 0 3 2 4 1 2 2 4 16*w_4_125
2 4 1 0 3 1 4 2 3 2 4 16*w_4_126
2 4 1 0 3 2 4 1 2 3 4 16*w_4_126
2 4 1 0 3 1 4 2 3 3 4 16*w_4_127
2 4 1 0 3 2 4 1 2 2 3 -16*w_4_127
2 4 1 0 3 1 4 2 5 0 4 16*w_4_128
2 4 1 0 3 4 5 1 2 1 3 16*w_4_128
2 4 1 0 3 1 4 2 5 1 4 16*w_4_129
2 4 1 0 3 2 4 1 5 0 3 -16*w_4_129
2 4 1 0 3 1 4 2 5 2 3 16*w_4_130
2 4 1 0 3 4 5 1 2 2 4 -16*w_4_130
2 4 1 0 3 1 4 2 5 2 4 16*w_4_131
2 4 1 0 3 4 5 1 2 3 4 -16*w_4_131
2 4 1 0 3 1 4 2 5 3 4 16*w_4_132
2 4 1 0 3 4 5 1 2 2 3 16*w_4_132
2 4 1 0 3 1 4 3 5 0 4 16*w_4_133
2 4 1 0 3 2 4 1 3 1 2 16*w_4_133
2 4 1 0 3 1 4 3 5 1 4 16*w_4_134
2 4 1 0 3 2 4 0 3 1 2 16*w_4_134
2 4 1 0 3 1 4 3 5 2 3 16*w_4_135
2 4 1 0 3 2 4 2 5 1 2 -16*w_4_135
2 4 1 0 3 1 4 3 5 2 4 16*w_4_136
2 4 1 0 3 2 4 3 5 1 2 -16*w_4_136
2 4 1 0 3 1 4 3 5 3 4 16*w_4_137
2 4 1 0 3 2 4 2 3 1 2 16*w_4_137
2 4 1 0 3 2 4 1 3 0 3 16*w_4_138
2 4 1 0 3 2 4 1 3 1 3 -16*w_4_138
2 4 1 0 3 2 4 1 3 2 3 16*w_4_139
2 4 1 0 3 2 4 1 3 3 4 16*w_4_139
2 4 1 0 3 2 4 1 3 2 4 16*w_4_140
2 4 1 0 3 2 4 1 5 2 3 16*w_4_141
2 4 1 0 3 4 5 1 5 2 4 -16*w_4_141
2 4 1 0 3 2 4 1 5 2 4 16*w_4_142
2 4 1 0 3 2 4 1 5 3 4 16*w_4_143
2 4 1 0 3 2 4 2 5 1 4 16*w_4_143
2 4 1 0 3 2 4 2 3 1 3 16*w_4_144
2 4 1 0 3 4 5 1 3 3 4 -16*w_4_144
2 4 1 0 3 2 4 2 3 1 4 16*w_4_145
2 4 1 0 3 4 5 1 5 3 4 -16*w_4_145
2 4 1 0 3 2 4 2 5 1 3 16*w_4_146
2 4 1 0 3 4 5 1 3 2 4 -16*w_4_146
2 4 1 0 3 2 4 3 5 1 3 16*w_4_147
2 4 1 0 3 4 5 1 3 2 3 -16*w_4_147
2 4 1 0 3 2 4 3 5 1 4 16*w_4_148
2 4 1 0 3 4 5 1 5 2 3 16*w_4_149

viii R. BURING AND A. V. KISELEV

Table 6. Relations between weights of ℏ4-basic graphs: 149 via 10.

w_4_1==-1/144
w_4_2==-1/288
w_4_3==17/360 + 6*w_4_108
w_4_4==49/2880 - 3*w_4_104 - w_4_107 + (3*w_4_108)/2
w_4_5==-1/96 + 6*w_4_104 + 2*w_4_107
w_4_6==1/80
w_4_7==1/360
w_4_8==-1/240
w_4_9==-13/1440
w_4_10==-7/1440
w_4_11==1/240
w_4_12==-1/720
w_4_13==1/720
w_4_14==1/480
w_4_15==-1/1440
w_4_16==1/1440
w_4_17==-1/480
w_4_18==-1/360
w_4_19==-1/480
w_4_20==-1/240
w_4_21==-1/480
w_4_22==-1/720
w_4_23==1/1440
w_4_24==1/360
w_4_25==53/1440 + 3*w_4_100 + 12*w_4_103 - 15*w_4_104 - w_4_107 + 6*w_4_108 - 6*w_4_109
w_4_26==1/120
w_4_27==1/1440
w_4_28==-1/960 - (3*w_4_108)/2
w_4_29==-49/1440 - (3*w_4_100)/2 - 9*w_4_103 + (21*w_4_104)/2 + (3*w_4_107)/2 - (9*w_4_108)/2 + 3*w_4_109
w_4_30==1/72 + 6*w_4_103 - 6*w_4_104 + 3*w_4_108 - 3*w_4_109
w_4_31==61/2880 + (3*w_4_100)/2 + 6*w_4_103 - (15*w_4_104)/2 - w_4_107/2 + 3*w_4_108 - 3*w_4_109
w_4_32==1/1440
w_4_33==5/288 + 6*w_4_103 - 6*w_4_104 + 3*w_4_108 - 3*w_4_109
w_4_34==1/96 + w_4_108
w_4_35==-w_4_103
w_4_36==-13/2880 - w_4_100/2 + (3*w_4_104)/2 + w_4_107/2
w_4_37==0
w_4_38==1/1440 - w_4_100/2 + w_4_103 + (3*w_4_104)/2 + w_4_107/2 + w_4_108/2
w_4_39==0
w_4_40==0
w_4_41==1/1440
w_4_42==1/1440
w_4_43==37/1440 + 6*w_4_103 - 6*w_4_104 - w_4_107 + 3*w_4_108 - 3*w_4_109
w_4_44==17/360 + 15*w_4_103 - 18*w_4_104 - 2*w_4_107 + 6*w_4_108 - 6*w_4_109
w_4_45==7/1440 - 3*w_4_104 - w_4_107
w_4_46==-1/480
w_4_47==1/60 + 6*w_4_103 - 6*w_4_104 + 3*w_4_108 - 3*w_4_109
w_4_48==11/1440 - w_4_100/2 - w_4_103 + (5*w_4_104)/2 + w_4_107/2 + (3*w_4_108)/2
w_4_49==-w_4_104
w_4_50==-1/192 - w_4_108/2
w_4_51==-w_4_103
w_4_52==-1/1440 + w_4_100/2 - (3*w_4_104)/2 - w_4_107/2 - w_4_108/2
w_4_53==w_4_103
w_4_54==-1/576 + w_4_103 - w_4_104 - w_4_108/2
w_4_55==w_4_104
w_4_56==0
w_4_57==0
w_4_58==0
w_4_59==0
w_4_60==0
w_4_61==0
w_4_62==0
w_4_63==0
w_4_64==0
w_4_65==0
w_4_66==0
w_4_67==0
w_4_68==0
w_4_69==0
w_4_70==0
w_4_71==0
w_4_72==1/1440
w_4_73==1/1440
w_4_74==1/1440
w_4_75==-1/480
w_4_76==-1/720
w_4_77==1/180 + 3*w_4_103 - 3*w_4_104 - w_4_107
w_4_78==-1/144 - 3*w_4_103 + 3*w_4_104 + w_4_107
w_4_79==-1/1440
w_4_80==1/80 + w_4_100 - 3*w_4_104 + 3*w_4_108 - 2*w_4_109 - 2*w_4_125
w_4_81==1/480 - w_4_100/2 + 2*w_4_103 + w_4_104/2 + w_4_107/2 + w_4_108/2 + 2*w_4_125

COMPUTER-ASSISTED PROOF SCHEMES IN DEFORMATION QUANTIZATION ix

Table 6 (continued).
w_4_82==1/2880 - w_4_103 - w_4_104 + w_4_108/2 - w_4_109 - 2*w_4_125
w_4_83==-1/480
w_4_84==-1/720
w_4_85==1/180 - w_4_107
w_4_86==1/480
w_4_87==-1/1440
w_4_88==1/96 + 4*w_4_103 - 4*w_4_104 + 2*w_4_108 - 2*w_4_109
w_4_89==1/240 + (3*w_4_100)/2 + 3*w_4_103 - (9*w_4_104)/2 + w_4_107/2 + (3*w_4_108)/2 - 2*w_4_109
w_4_90==-1/192 - w_4_108/2
w_4_91==-1/720
w_4_92==17/1440 + 6*w_4_103 - 6*w_4_104 - 2*w_4_107
w_4_93==3/320 - w_4_100/2 + w_4_103 - (5*w_4_104)/2 + w_4_107/2 + 2*w_4_108 - 2*w_4_109 + w_4_119
w_4_94==1/1440 - w_4_100/2 - w_4_102 + w_4_103 - (3*w_4_104)/2 + w_4_107/2 + w_4_108/2 - w_4_109
w_4_95==-1/576 + w_4_103 - w_4_104 - w_4_108/2
w_4_96==0
w_4_97==0
w_4_98==0
w_4_99==-7/2880 - w_4_100/2 + w_4_103 + w_4_104/2 - w_4_107/2 - w_4_108 + w_4_109 - w_4_119
w_4_105==-1/160
w_4_106==13/1440
w_4_110==-1/288 - 2*w_4_103 + 2*w_4_104 - w_4_108 + w_4_109
w_4_111==-17/2880 - w_4_100/2 - 2*w_4_103 + (5*w_4_104)/2 - w_4_107/2 - w_4_108 + w_4_109
w_4_112==-7/576 - 4*w_4_103 + 4*w_4_104 - 2*w_4_108 + 2*w_4_109
w_4_113==-1/192 - 2*w_4_103 + 2*w_4_104 - w_4_108 + w_4_109
w_4_114==1/360 + w_4_108
w_4_115==23/5760 - w_4_100/2 + w_4_103 + (3*w_4_108)/4
w_4_116==0
w_4_117==-19/2880 + w_4_100 - 2*w_4_103 - w_4_108
w_4_118==-31/1440 - 12*w_4_103 + 12*w_4_104 + 4*w_4_107
w_4_120==-1/96 - w_4_100 - w_4_102 + 2*w_4_103 - 2*w_4_108 + w_4_109
w_4_121==-1/288 + 2*w_4_103 - 2*w_4_104 - w_4_108
w_4_122==-2*w_4_103
w_4_123==-7/2880 + w_4_100/2 - w_4_103 + w_4_104/2 - w_4_107/2 - w_4_108 + w_4_109
w_4_124==1/144 + w_4_100 + w_4_103 - 2*w_4_104 + w_4_108 - w_4_109
w_4_126==29/5760 + w_4_100/2 - w_4_103 + (5*w_4_108)/4 - w_4_109 - w_4_125
w_4_127==-1/640 + w_4_103 + w_4_104/2 - (3*w_4_108)/4 + w_4_109/2 + w_4_125
w_4_128==-1/144 + w_4_101 - 2*w_4_103 + 3*w_4_104 - w_4_108 + w_4_109
w_4_129==1/144 + w_4_101 + 2*w_4_103 - 3*w_4_104 + w_4_108 - w_4_109
w_4_130==7/1920 - w_4_100/2 + w_4_103 + w_4_107/2 + (3*w_4_108)/4 - w_4_109/2 + w_4_119 + w_4_125
w_4_131==23/5760 - w_4_100/4 + w_4_101/2 - w_4_102/2 + w_4_103/2 - (5*w_4_104)/4 + w_4_107/4 + w_4_108 - w_4_109 +

w_4_119/2 - w_4_125
w_4_132==-1/240 + w_4_101/2 + w_4_103/2 - w_4_108 + w_4_109/2 + w_4_125
w_4_133==2*w_4_104
w_4_134==0
w_4_135==-1/360 - w_4_100/4 - w_4_102/2 + w_4_104/4 + w_4_107/4 - w_4_108/4 + w_4_119/2
w_4_136==-7/1440 - w_4_100/2 - w_4_102 + w_4_103 - w_4_104/2 - w_4_108 + w_4_109/2
w_4_137==0
w_4_138==-1/144 - 2*w_4_103 + 2*w_4_104 - w_4_108 + w_4_109
w_4_139==1/1920 + w_4_103 - (3*w_4_104)/2 + w_4_108/4 - w_4_109/2
w_4_140==-1/1440 + w_4_100 + 2*w_4_103 - 5*w_4_104 - w_4_109
w_4_141==-w_4_100/4 - w_4_101/2 - w_4_102/2 - w_4_103/2 + w_4_104/4 + w_4_107/4 + w_4_108/4 - w_4_109/2 + w_4_119/2
w_4_142==1/5760 - w_4_102 + 2*w_4_103 - 3*w_4_104 - w_4_109
w_4_143==7/1440 + w_4_101/2 + (5*w_4_103)/2 - (5*w_4_104)/2 + (3*w_4_108)/4 - w_4_109
w_4_144==0
w_4_145==0
w_4_146==13/5760 + w_4_100/2 - w_4_101/2 + (3*w_4_103)/2 - 2*w_4_104 + w_4_108/4 - w_4_109/2
w_4_147==1/320 - w_4_101/2 + (3*w_4_103)/2 - w_4_104 + w_4_108/2 - w_4_109/2
w_4_148==11/1920 + 2*w_4_103 - w_4_104 + w_4_108 - w_4_109
w_4_149==-11/2880 + w_4_100/2 + w_4_104/2 - w_4_107/2 - w_4_108 + w_4_109 - w_4_119

x R. BURING AND A. V. KISELEV

Appendix D. Encoding of the associator of the ⋆-product modulo ō(ℏ4)

Encodings of graphs (see Implementation 1 on p. 5) are followed by their coefficients,
in the following table containing the expansion of the associator (f ⋆g)⋆h−f ⋆ (g ⋆h).

Table 7. The associator of ⋆ up to order 4 in terms of 149 parameters.

h^0:
h^1:
h^2:
1 1 1
3 2 1 0 1 2 3 -2/3
3 2 1 0 2 1 3 2/3
3 2 1 0 4 1 2 -2/3
h^3:
1 2 2
3 3 1 0 1 1 2 2 3 -2/3
3 3 1 0 2 1 2 1 3 2/3
3 3 1 0 4 1 2 1 2 -2/3
2 1 2
3 3 1 0 1 0 2 2 3 -2/3
3 3 1 0 2 0 2 1 3 2/3
3 3 1 0 2 0 5 1 2 -2/3
2 2 1
3 3 1 0 1 0 1 2 3 -2/3
3 3 1 0 1 0 2 1 4 2/3
3 3 1 0 1 0 5 1 2 -2/3
1 2 1
3 3 1 0 1 1 3 2 4 1/3
3 3 1 0 1 1 5 2 3 -1/3
3 3 1 0 4 1 5 1 2 -1/3
3 3 1 0 4 1 2 1 3 1/3
1 1 1
3 3 1 0 4 1 3 2 4 1/6
3 3 1 0 1 2 3 3 4 -1/6
3 3 1 0 1 2 5 3 4 -1/6
3 3 1 0 4 1 2 3 4 -1/6
3 3 1 0 4 2 3 1 4 -1/6
3 3 1 0 4 1 5 2 4 1/6
3 3 1 0 4 3 5 1 2 -1/6
3 3 1 0 4 2 3 1 3 -1/6
1 1 2
3 3 1 0 1 2 3 2 3 1/3
3 3 1 0 1 2 3 2 4 1/3
3 3 1 0 2 1 5 2 3 -1/6
3 3 1 0 4 2 5 1 2 1/6
3 3 1 0 2 1 3 2 4 -1/6
3 3 1 0 4 1 2 2 3 1/6
3 3 1 0 4 1 2 2 4 1/3
3 3 1 0 2 1 2 3 4 -1/3
3 3 1 0 2 1 3 2 3 -1/3
2 1 1
3 3 1 0 1 0 3 2 3 -1/3
3 3 1 0 1 0 3 2 4 -1/6
3 3 1 0 1 0 2 3 4 1/3
3 3 1 0 1 0 5 2 3 -1/6
3 3 1 0 2 0 3 1 3 1/3
3 3 1 0 4 1 2 0 4 -1/3
3 3 1 0 4 0 5 1 2 -1/3
3 3 1 0 2 0 5 1 3 1/6
3 3 1 0 2 0 3 1 4 1/6
h^4:
3 3 1
3 4 1 0 1 0 1 0 1 2 3 -1/3
3 4 1 0 1 0 1 0 2 1 5 1/3
3 4 1 0 1 0 1 0 6 1 2 -1/3
3 2 2
3 4 1 0 1 0 1 0 2 2 3 -2/3
3 4 1 0 1 0 2 0 2 1 4 2/3
3 4 1 0 1 0 2 0 6 1 2 -2/3
3 1 3
3 4 1 0 1 0 2 0 2 2 3 -1/3
3 4 1 0 2 0 2 0 2 1 3 1/3
3 4 1 0 2 0 2 0 6 1 2 -1/3
2 3 2
3 4 1 0 1 0 1 1 2 2 3 -2/3
3 4 1 0 1 0 2 1 2 1 4 2/3
3 4 1 0 1 0 5 1 2 1 2 -2/3
1 3 3
3 4 1 0 1 1 2 1 2 2 3 -1/3

3 4 1 0 2 1 2 1 2 1 3 1/3
3 4 1 0 4 1 2 1 2 1 2 -1/3
2 2 3
3 4 1 0 1 0 2 1 2 2 3 -2/3
3 4 1 0 2 0 2 1 2 1 3 2/3
3 4 1 0 2 0 5 1 2 1 2 -2/3
1 3 2
3 4 1 0 1 1 2 1 3 2 5 1/3
3 4 1 0 1 1 2 1 4 2 3 -2/9
3 4 1 0 1 1 2 1 6 2 3 -1/3
3 4 1 0 2 1 2 1 3 1 4 2/9
3 4 1 0 4 1 2 1 2 1 5 -2/9
3 4 1 0 4 1 5 1 2 1 2 -1/3
3 4 1 0 4 1 2 1 2 1 3 1/3
2 3 1
3 4 1 0 1 0 1 1 3 2 4 2/9
3 4 1 0 1 0 1 1 3 2 5 1/3
3 4 1 0 1 0 1 1 6 2 3 -1/3
3 4 1 0 1 0 2 1 3 1 4 -2/9
3 4 1 0 1 0 5 1 2 1 3 2/9
3 4 1 0 1 0 5 1 6 1 2 -1/3
3 4 1 0 1 0 5 1 2 1 4 1/3
2 1 3
3 4 1 0 1 0 2 2 3 2 3 1/3
3 4 1 0 1 0 2 2 3 2 4 2/9
3 4 1 0 1 0 2 2 3 2 5 1/3
3 4 1 0 2 0 2 1 6 2 3 -1/6
3 4 1 0 2 0 5 2 6 1 2 1/6
3 4 1 0 2 0 2 1 3 2 5 -1/6
3 4 1 0 2 0 5 1 2 2 4 1/6
3 4 1 0 2 0 2 1 3 2 4 -2/9
3 4 1 0 2 0 5 1 2 2 3 2/9
3 4 1 0 2 0 5 1 2 2 5 1/3
3 4 1 0 2 0 2 1 2 3 5 -1/3
3 4 1 0 2 0 2 1 3 2 3 -1/3
3 2 1
3 4 1 0 1 0 1 0 3 2 3 -1/3
3 4 1 0 1 0 1 0 3 2 4 -2/9
3 4 1 0 1 0 1 0 3 2 5 -1/6
3 4 1 0 1 0 1 0 2 3 5 1/3
3 4 1 0 1 0 1 0 6 2 3 -1/6
3 4 1 0 1 0 2 0 3 1 4 2/9
3 4 1 0 1 0 3 0 6 1 2 -2/9
3 4 1 0 1 0 2 0 4 1 4 1/3
3 4 1 0 1 0 5 1 2 0 5 -1/3
3 4 1 0 1 0 5 0 6 1 2 -1/3
3 4 1 0 1 0 2 0 6 1 4 1/6
3 4 1 0 1 0 2 0 4 1 5 1/6
3 1 2
3 4 1 0 1 0 2 0 3 2 3 -1/3
3 4 1 0 1 0 2 0 3 2 5 -1/6
3 4 1 0 1 0 2 0 2 3 4 1/3
3 4 1 0 1 0 2 0 4 2 3 -2/9
3 4 1 0 1 0 2 0 6 2 3 -1/6
3 4 1 0 2 0 2 0 3 1 3 1/3
3 4 1 0 2 0 5 1 2 0 5 -1/3
3 4 1 0 2 0 2 0 3 1 4 2/9
3 4 1 0 2 0 3 0 6 1 2 -2/9
3 4 1 0 2 0 5 0 6 1 2 -1/3
3 4 1 0 2 0 2 0 6 1 3 1/6
3 4 1 0 2 0 2 0 3 1 5 1/6
1 2 3
3 4 1 0 1 1 2 2 3 2 3 1/3
3 4 1 0 1 1 2 2 3 2 4 2/9
3 4 1 0 1 1 2 2 3 2 5 1/3
3 4 1 0 2 1 2 1 6 2 3 -1/6
3 4 1 0 4 2 5 1 2 1 2 1/6
3 4 1 0 2 1 2 1 3 2 5 -1/6
3 4 1 0 4 1 2 1 2 2 3 1/6
3 4 1 0 2 1 2 1 3 2 4 -2/9
3 4 1 0 4 1 2 1 2 2 5 2/9
3 4 1 0 4 1 2 1 2 2 4 1/3
3 4 1 0 2 1 2 1 2 3 4 -1/3

3 4 1 0 2 1 2 1 3 2 3 -1/3
2 2 2
3 4 1 0 1 0 1 2 3 2 3 1/3
3 4 1 0 1 0 1 2 3 2 4 4/9
3 4 1 0 1 0 3 1 2 2 3 -1/3
3 4 1 0 1 0 3 1 2 2 4 -1/6
3 4 1 0 1 0 2 1 3 2 5 1/3
3 4 1 0 1 0 1 2 3 2 5 1/3
3 4 1 0 1 0 2 1 2 3 4 1/3
3 4 1 0 1 0 2 1 4 2 3 -4/9
3 4 1 0 1 0 2 1 6 2 3 -1/3
3 4 1 0 1 0 5 2 3 1 2 -1/6
3 4 1 0 1 0 2 1 6 2 4 -1/6
3 4 1 0 1 0 5 2 6 1 2 1/6
3 4 1 0 1 0 2 1 4 2 5 -1/6
3 4 1 0 1 0 5 1 2 2 4 1/6
3 4 1 0 2 0 3 1 2 1 3 1/3
3 4 1 0 4 1 2 0 4 1 2 -1/3
3 4 1 0 2 0 5 1 2 1 3 4/9
3 4 1 0 4 1 2 0 6 1 2 -4/9
3 4 1 0 2 0 5 1 6 1 2 -1/3
3 4 1 0 1 0 5 1 2 2 5 1/3
3 4 1 0 4 0 5 1 2 1 2 -1/3
3 4 1 0 1 0 2 1 2 4 5 -1/3
3 4 1 0 2 0 5 1 2 1 4 1/3
3 4 1 0 2 0 5 1 3 1 2 1/6
3 4 1 0 2 0 3 1 2 1 4 1/6
3 4 1 0 1 0 2 1 4 2 4 -1/3
1 3 1
3 4 1 0 1 1 3 1 3 2 3 -1/6+8*w_4_6
3 4 1 0 1 1 3 1 3 2 4 -1/3+16*w_4_7
3 4 1 0 1 1 2 1 3 3 4 2/9
3 4 1 0 1 1 2 1 3 4 5 1/9
3 4 1 0 1 1 3 1 6 2 3 1/9+16*w_4_7
3 4 1 0 1 1 3 1 6 2 4 1/9+16*w_4_12
3 4 1 0 1 1 2 1 4 3 4 2/9
3 4 1 0 1 1 5 2 3 1 5 -1/6+8*w_4_11
3 4 1 0 2 1 3 1 3 1 3 16/3*w_4_6
3 4 1 0 4 1 2 1 4 1 4 -1/6+8*w_4_6
3 4 1 0 2 1 3 1 3 1 4 32*w_4_7
3 4 1 0 4 1 2 1 3 1 4 1/9+16*w_4_7
3 4 1 0 4 1 2 1 4 1 5 16*w_4_7
3 4 1 0 4 1 5 1 2 1 5 -1/3+16*w_4_7
3 4 1 0 2 1 3 1 4 1 4 16*w_4_11
3 4 1 0 4 1 2 1 3 1 3 -1/6+8*w_4_11
3 4 1 0 4 1 5 1 2 1 4 16*w_4_11
3 4 1 0 2 1 3 1 4 1 5 32*w_4_12
3 4 1 0 4 1 2 1 3 1 5 16*w_4_12
3 4 1 0 4 1 5 1 2 1 3 1/9+16*w_4_12
3 4 1 0 4 1 5 1 6 1 2 16*w_4_12
3 4 1 0 1 1 2 1 4 3 5 -1/9
3 4 1 0 1 1 3 1 4 2 3 16*w_4_7
3 4 1 0 1 1 3 1 4 2 4 16*w_4_11
3 4 1 0 1 1 3 1 4 2 5 16*w_4_12
3 4 1 0 1 1 5 1 6 2 3 16*w_4_12
3 1 1
3 4 1 0 1 0 3 0 3 2 3 -1/6-8*w_4_8
3 4 1 0 1 0 3 0 3 2 4 -1/3-16*w_4_9
3 4 1 0 1 0 2 0 3 3 4 1/9-16*w_4_1
3 4 1 0 1 0 2 0 3 4 5 -1/9-16*w_4_2
3 4 1 0 1 0 3 0 6 2 3 -1/9-16*w_4_19
3 4 1 0 1 0 3 0 6 2 4 -1/9-16*w_4_20
3 4 1 0 1 0 2 0 4 3 4 1/3+16*w_4_1
3 4 1 0 1 0 5 2 3 0 5 -1/6+8*w_4_26
3 4 1 0 2 0 3 0 3 1 3 -8*w_4_8+8*w_4_6
3 4 1 0 4 1 2 0 4 0 4 -1/6+8/3*w_4_6
3 4 1 0 2 0 3 0 3 1 4 -16*w_4_9+16*w_4_7
3 4 1 0 2 0 3 0 4 1 3 -16*w_4_13+16*w_4_7
3 4 1 0 2 0 3 0 6 1 3 -16*w_4_19+16*w_4_7
3 4 1 0 4 0 5 1 2 0 5 -1/3+16*w_4_7
3 4 1 0 2 0 3 0 4 1 4 16*w_4_11-16*w_4_14
3 4 1 0 2 0 5 1 3 0 5 8*w_4_11+8*w_4_26
3 4 1 0 4 0 5 1 2 0 4 -1/6+8*w_4_11

COMPUTER-ASSISTED PROOF SCHEMES IN DEFORMATION QUANTIZATION xi

Table 7 (part 2).

3 4 1 0 2 0 3 0 4 1 5 -16*w_4_15+16*w_4_12
3 4 1 0 2 0 3 0 6 1 4 16*w_4_12-16*w_4_20
3 4 1 0 2 0 5 0 6 1 3 16*w_4_12+16*w_4_27
3 4 1 0 4 0 5 0 6 1 2 16*w_4_12
3 4 1 0 1 0 2 0 4 3 5 -16*w_4_2
3 4 1 0 1 0 3 0 4 2 3 -16*w_4_13
3 4 1 0 1 0 3 0 4 2 4 -16*w_4_14
3 4 1 0 1 0 3 0 4 2 5 -16*w_4_15
3 4 1 0 1 0 5 0 6 2 3 16*w_4_27
1 1 3
3 4 1 0 1 2 3 2 3 2 3 -1/6+8/3*w_4_6
3 4 1 0 1 2 3 2 3 2 4 -1/3+16*w_4_7
3 4 1 0 1 2 3 2 4 2 4 -1/6+8*w_4_11
3 4 1 0 2 1 2 2 3 3 4 1/3+16*w_4_1
3 4 1 0 2 1 2 2 4 3 4 1/9-16*w_4_1
3 4 1 0 2 1 2 2 3 4 5 16*w_4_2
3 4 1 0 2 1 2 2 4 3 5 1/9+16*w_4_2
3 4 1 0 2 1 3 2 3 2 3 -8*w_4_8+8*w_4_6
3 4 1 0 4 1 2 2 4 2 4 -1/6-8*w_4_8
3 4 1 0 2 1 5 2 3 2 3 -16*w_4_9+16*w_4_7
3 4 1 0 4 2 5 1 2 2 5 -1/3-16*w_4_9
3 4 1 0 2 1 3 2 3 2 5 -16*w_4_13+16*w_4_7
3 4 1 0 4 1 2 2 4 2 5 -16*w_4_13
3 4 1 0 2 1 5 2 3 2 5 16*w_4_11-16*w_4_14
3 4 1 0 4 2 5 1 2 2 4 -16*w_4_14
3 4 1 0 2 1 5 2 6 2 3 -16*w_4_15+16*w_4_12
3 4 1 0 4 2 5 2 6 1 2 -16*w_4_15
3 4 1 0 2 1 3 2 3 2 4 -16*w_4_19+16*w_4_7
3 4 1 0 4 1 2 2 3 2 4 -1/9-16*w_4_19
3 4 1 0 2 1 5 2 3 2 4 16*w_4_12-16*w_4_20
3 4 1 0 4 2 5 1 2 2 3 -1/9-16*w_4_20
3 4 1 0 2 1 3 2 4 2 4 8*w_4_11+8*w_4_26
3 4 1 0 4 1 2 2 3 2 3 -1/6+8*w_4_26
3 4 1 0 2 1 3 2 4 2 5 16*w_4_12+16*w_4_27
3 4 1 0 4 1 2 2 3 2 5 16*w_4_27
3 4 1 0 1 2 3 2 4 2 5 16*w_4_12
2 2 1
3 4 1 0 1 0 5 1 4 2 3 1/9
3 4 1 0 1 0 5 1 4 2 5 1/6
3 4 1 0 1 0 5 1 3 2 3 1/6+16*w_4_9
3 4 1 0 1 0 5 1 3 2 4 1/6+16*w_4_20
3 4 1 0 1 0 5 1 3 2 5 1/6+16*w_4_14
3 4 1 0 1 0 3 1 4 2 3 1/6+16*w_4_19
3 4 1 0 1 0 3 1 4 2 4 1/6-16*w_4_26
3 4 1 0 1 0 3 1 4 2 5 1/6-16*w_4_27
3 4 1 0 1 0 1 2 3 3 5 -1/6
3 4 1 0 1 0 1 2 3 4 5 -1/3-16*w_4_2
3 4 1 0 1 0 3 1 2 3 5 1/9
3 4 1 0 1 0 3 1 2 4 5 -1/18
3 4 1 0 1 0 3 1 6 2 3 -1/9+16*w_4_13
3 4 1 0 1 0 3 1 6 2 4 -1/9-16*w_4_27
3 4 1 0 1 0 2 1 3 3 4 -1/9-16*w_4_1
3 4 1 0 1 0 2 1 3 4 5 1/9-16*w_4_2
3 4 1 0 1 0 5 2 3 1 3 1/9+16*w_4_9
3 4 1 0 1 0 5 2 6 1 3 1/9+16*w_4_15
3 4 1 0 2 0 5 1 4 1 3 -1/9
3 4 1 0 4 1 2 0 6 1 5 1/9
3 4 1 0 1 0 1 2 6 3 5 -1/6
3 4 1 0 1 0 2 1 4 3 4 1/3+16*w_4_1
3 4 1 0 1 0 5 2 3 1 5 -1/3+16*w_4_14
3 4 1 0 1 0 5 1 2 4 5 -1/6
3 4 1 0 1 0 5 2 4 1 5 -1/6
3 4 1 0 2 0 3 1 3 1 3 8*w_4_8+8*w_4_6
3 4 1 0 4 1 2 0 4 1 4 -1/6+8*w_4_6
3 4 1 0 2 0 3 1 3 1 4 16*w_4_19+16*w_4_7
3 4 1 0 2 0 3 1 3 1 5 16*w_4_13+16*w_4_7
3 4 1 0 2 0 5 1 3 1 3 16*w_4_9+16*w_4_7
3 4 1 0 4 1 2 0 4 1 3 1/3+16*w_4_7
3 4 1 0 4 0 5 1 2 1 5 -1/9+16*w_4_7
3 4 1 0 4 1 2 0 6 1 4 -1/3+16*w_4_7
3 4 1 0 2 0 3 1 4 1 4 8*w_4_11-8*w_4_26
3 4 1 0 2 0 5 1 3 1 5 16*w_4_11+16*w_4_14
3 4 1 0 4 0 5 1 2 1 4 16*w_4_11
3 4 1 0 4 1 5 1 2 0 4 -1/6+8*w_4_11
3 4 1 0 2 0 3 1 4 1 5 16*w_4_12-16*w_4_27
3 4 1 0 2 0 5 1 3 1 4 16*w_4_12+16*w_4_20
3 4 1 0 2 0 5 1 6 1 3 16*w_4_15+16*w_4_12
3 4 1 0 4 0 5 1 2 1 3 1/6+16*w_4_12
3 4 1 0 4 1 2 0 6 1 3 1/6+16*w_4_12
3 4 1 0 4 0 5 1 6 1 2 -1/9+16*w_4_12
3 4 1 0 1 0 5 1 6 2 5 1/6
3 4 1 0 1 0 5 4 6 1 2 -1/6
3 4 1 0 1 0 5 3 6 1 2 -1/6
3 4 1 0 1 0 5 2 4 1 4 -1/6

3 4 1 0 1 0 1 2 3 3 4 -16*w_4_1
3 4 1 0 1 0 2 1 4 3 5 -16*w_4_2
3 4 1 0 1 0 3 1 3 2 3 16*w_4_8
3 4 1 0 1 0 3 1 3 2 5 16*w_4_13
3 4 1 0 1 0 5 1 6 2 3 16*w_4_15
3 4 1 0 1 0 3 1 3 2 4 16*w_4_19
3 4 1 0 1 0 5 2 3 1 4 16*w_4_20
1 2 2
3 4 1 0 1 1 3 2 3 2 3 -1/6+8*w_4_6
3 4 1 0 1 1 3 2 3 2 4 -1/3+16*w_4_7
3 4 1 0 1 1 3 2 4 2 4 -1/6+8*w_4_11
3 4 1 0 4 1 3 1 2 2 4 1/6
3 4 1 0 1 1 3 2 3 2 5 -1/9+16*w_4_7
3 4 1 0 1 1 3 2 4 2 5 -1/9+16*w_4_12
3 4 1 0 1 1 2 2 3 3 5 -1/6
3 4 1 0 1 1 5 2 3 2 3 1/3+16*w_4_7
3 4 1 0 1 1 2 2 6 3 5 -1/6
3 4 1 0 1 1 5 2 4 2 3 1/9
3 4 1 0 1 1 2 2 4 3 5 -1/18
3 4 1 0 1 1 5 2 6 2 3 1/6+16*w_4_12
3 4 1 0 1 1 2 2 6 3 4 -1/6
3 4 1 0 1 1 5 2 3 2 4 1/6+16*w_4_12
3 4 1 0 4 1 2 1 2 3 4 -1/6
3 4 1 0 4 2 3 1 2 1 4 -1/6
3 4 1 0 2 1 3 1 6 2 5 -1/9
3 4 1 0 4 1 2 1 6 2 5 1/9
3 4 1 0 2 1 2 1 3 3 4 1/3+16*w_4_1
3 4 1 0 2 1 2 1 4 3 4 -1/9-16*w_4_1
3 4 1 0 4 1 2 1 2 4 5 16*w_4_1
3 4 1 0 2 1 2 1 3 4 5 16*w_4_2
3 4 1 0 2 1 2 1 4 3 5 -1/9+16*w_4_2
3 4 1 0 4 1 2 1 2 3 5 -1/3-16*w_4_2
3 4 1 0 2 1 3 1 3 2 3 8*w_4_8+8*w_4_6
3 4 1 0 4 1 2 1 4 2 4 16*w_4_8
3 4 1 0 2 1 3 1 3 2 4 16*w_4_9+16*w_4_7
3 4 1 0 4 1 2 1 4 2 3 1/9+16*w_4_9
3 4 1 0 4 1 2 1 4 2 5 1/6+16*w_4_9
3 4 1 0 2 1 3 1 4 2 3 16*w_4_13+16*w_4_7
3 4 1 0 4 1 2 1 3 2 4 -1/9+16*w_4_13
3 4 1 0 4 1 5 1 2 2 5 16*w_4_13
3 4 1 0 2 1 3 1 4 2 4 16*w_4_11+16*w_4_14
3 4 1 0 4 1 2 1 3 2 3 -1/3+16*w_4_14
3 4 1 0 4 1 5 1 2 2 4 1/6+16*w_4_14
3 4 1 0 2 1 3 1 4 2 5 16*w_4_15+16*w_4_12
3 4 1 0 4 1 2 1 3 2 5 16*w_4_15
3 4 1 0 4 1 5 1 2 2 3 1/9+16*w_4_15
3 4 1 0 2 1 3 1 6 2 3 16*w_4_19+16*w_4_7
3 4 1 0 4 1 2 1 6 2 4 1/6+16*w_4_19
3 4 1 0 4 2 5 1 2 1 5 16*w_4_19
3 4 1 0 2 1 3 1 6 2 4 16*w_4_12+16*w_4_20
3 4 1 0 4 1 2 1 6 2 3 16*w_4_20
3 4 1 0 4 2 5 1 6 1 2 1/6+16*w_4_20
3 4 1 0 2 1 5 2 3 1 5 8*w_4_11-8*w_4_26
3 4 1 0 4 2 5 1 2 1 4 1/6-16*w_4_26
3 4 1 0 2 1 5 1 6 2 3 16*w_4_12-16*w_4_27
3 4 1 0 4 1 5 2 6 1 2 1/6-16*w_4_27
3 4 1 0 4 2 5 1 2 1 3 -1/9-16*w_4_27
3 4 1 0 4 1 5 2 4 1 2 1/6
3 4 1 0 1 1 2 2 4 3 4 1/9
3 4 1 0 4 3 5 1 2 1 2 -1/6
3 4 1 0 4 2 3 1 2 1 3 -1/6
3 4 1 0 1 1 5 2 3 2 5 16*w_4_11
2 1 2
3 4 1 0 1 0 3 2 3 2 3 1/6+8*w_4_8
3 4 1 0 1 0 3 2 3 2 4 1/3+16*w_4_19
3 4 1 0 1 0 3 2 4 2 4 1/6-8*w_4_26
3 4 1 0 2 0 5 1 4 2 5 1/6
3 4 1 0 1 0 3 2 3 2 5 1/9+16*w_4_13
3 4 1 0 1 0 3 2 4 2 5 1/9-16*w_4_27
3 4 1 0 1 0 2 2 3 3 4 -1/3-16*w_4_1
3 4 1 0 1 0 2 2 3 3 5 -1/6
3 4 1 0 1 0 5 2 3 2 3 1/3+16*w_4_9
3 4 1 0 1 0 2 2 6 3 5 -1/6
3 4 1 0 1 0 5 2 4 2 3 1/9
3 4 1 0 1 0 2 2 4 3 5 -1/6-16*w_4_2
3 4 1 0 1 0 5 2 6 2 3 1/6+16*w_4_15
3 4 1 0 1 0 2 2 6 3 4 -1/6
3 4 1 0 1 0 5 2 3 2 4 1/6+16*w_4_20
3 4 1 0 2 0 5 1 2 4 5 -1/6
3 4 1 0 2 0 5 2 4 1 5 -1/6
3 4 1 0 2 0 5 2 4 1 3 -1/9
3 4 1 0 4 1 2 0 6 2 5 1/9
3 4 1 0 2 0 3 1 2 3 5 16*w_4_1
3 4 1 0 2 0 5 1 2 3 5 -1/3-16*w_4_1

xii R. BURING AND A. V. KISELEV

Table 7 (part 3).

3 4 1 0 2 0 3 1 2 4 5 -1/6-16*w_4_2
3 4 1 0 2 0 5 1 2 3 4 16*w_4_2
3 4 1 0 2 0 3 1 3 2 3 32*w_4_8
3 4 1 0 4 1 2 0 4 2 4 1/6+8*w_4_8
3 4 1 0 2 0 3 1 3 2 4 16*w_4_9+16*w_4_19
3 4 1 0 2 0 3 1 3 2 5 16*w_4_9+16*w_4_13
3 4 1 0 4 1 2 0 4 2 3 1/3+16*w_4_9
3 4 1 0 2 0 3 1 4 2 3 16*w_4_19+16*w_4_13
3 4 1 0 2 0 5 1 3 2 3 16*w_4_9+16*w_4_13
3 4 1 0 4 0 5 1 2 2 5 1/9+16*w_4_13
3 4 1 0 2 0 3 1 4 2 4 -16*w_4_26+16*w_4_14
3 4 1 0 2 0 5 1 3 2 5 32*w_4_14
3 4 1 0 4 0 5 1 2 2 4 16*w_4_14
3 4 1 0 2 0 3 1 4 2 5 16*w_4_15-16*w_4_27
3 4 1 0 2 0 5 1 3 2 4 16*w_4_15+16*w_4_20
3 4 1 0 4 0 5 1 2 2 3 1/6+16*w_4_15
3 4 1 0 2 0 3 1 6 2 3 16*w_4_19+16*w_4_13
3 4 1 0 2 0 5 2 3 1 3 16*w_4_9+16*w_4_19
3 4 1 0 4 1 2 0 6 2 4 1/3+16*w_4_19
3 4 1 0 2 0 3 1 6 2 4 16*w_4_20-16*w_4_27
3 4 1 0 2 0 5 2 6 1 3 16*w_4_15+16*w_4_20
3 4 1 0 4 1 2 0 6 2 3 1/6+16*w_4_20
3 4 1 0 2 0 5 2 3 1 5 -16*w_4_26+16*w_4_14
3 4 1 0 4 2 5 1 2 0 4 1/6-8*w_4_26
3 4 1 0 2 0 5 1 6 2 3 16*w_4_15-16*w_4_27
3 4 1 0 2 0 5 2 3 1 4 16*w_4_20-16*w_4_27
3 4 1 0 4 0 5 2 6 1 2 1/9-16*w_4_27
3 4 1 0 2 0 5 1 6 2 5 1/6
3 4 1 0 2 0 5 4 6 1 2 -1/6
3 4 1 0 2 0 5 3 6 1 2 -1/6
3 4 1 0 2 0 5 2 4 1 4 -1/6
3 4 1 0 1 0 2 2 4 3 4 16*w_4_1
3 4 1 0 1 0 2 2 3 4 5 -16*w_4_2
3 4 1 0 1 0 5 2 3 2 5 16*w_4_14
1 2 1
3 4 1 0 1 1 3 2 3 3 4 1/6+16*w_4_10
3 4 1 0 1 1 3 2 4 3 4 1/6+16*w_4_16
3 4 1 0 1 1 3 2 6 3 4 1/6+16*w_4_21
3 4 1 0 4 1 3 1 3 2 3 -1/6-16*w_4_105+16*w_4_60
3 4 1 0 4 1 3 1 3 2 4 -1/6+16*w_4_61-16*w_4_84
3 4 1 0 4 1 3 1 3 2 5 -1/6-16*w_4_91+16*w_4_62
3 4 1 0 1 1 3 2 3 3 5 1/9+16*w_4_10
3 4 1 0 1 1 3 2 3 4 5 1/9
3 4 1 0 1 1 3 2 4 3 5 1/9+16*w_4_17
3 4 1 0 1 1 3 2 4 4 5 1/9+16*w_4_18
3 4 1 0 4 1 3 1 2 3 5 1/9-16*w_4_40
3 4 1 0 4 1 3 1 2 4 5 -1/18-16*w_4_40
3 4 1 0 4 1 3 1 6 2 3 1/18+16*w_4_63-16*w_4_91
3 4 1 0 4 1 3 1 6 2 4 1/18+16*w_4_63-16*w_4_74
3 4 1 0 1 1 3 2 6 3 5 1/18+16*w_4_22
3 4 1 0 1 1 3 2 6 4 5 1/18+16*w_4_23
3 4 1 0 1 1 5 2 3 3 5 -1/3+16*w_4_16
3 4 1 0 1 1 2 3 4 4 5 -1/6
3 4 1 0 1 1 5 2 3 4 5 -1/6-16*w_4_18
3 4 1 0 1 1 5 2 4 3 5 -1/9+16*w_4_40
3 4 1 0 1 1 5 2 6 3 5 -1/6+16*w_4_42
3 4 1 0 2 1 3 1 3 3 4 32*w_4_10
3 4 1 0 4 1 2 1 4 3 4 -1/9-16*w_4_10
3 4 1 0 4 1 2 1 4 4 5 1/6+16*w_4_10
3 4 1 0 2 1 3 1 4 3 4 32*w_4_16
3 4 1 0 4 1 2 1 3 3 4 1/3-16*w_4_16
3 4 1 0 4 1 5 1 2 4 5 -1/6-16*w_4_16
3 4 1 0 2 1 3 1 4 3 5 32*w_4_17
3 4 1 0 4 1 2 1 3 4 5 16*w_4_17
3 4 1 0 4 1 5 1 2 3 5 -1/9-16*w_4_17
3 4 1 0 2 1 3 1 4 4 5 32*w_4_18
3 4 1 0 4 1 2 1 3 3 5 1/6+16*w_4_18
3 4 1 0 4 1 5 1 2 3 4 -1/9-16*w_4_18
3 4 1 0 2 1 3 1 6 3 4 32*w_4_21
3 4 1 0 4 1 2 1 6 3 4 -16*w_4_21
3 4 1 0 4 5 6 1 2 1 5 1/6+16*w_4_21
3 4 1 0 2 1 3 1 6 3 5 32*w_4_22
3 4 1 0 4 1 2 1 6 4 5 16*w_4_22
3 4 1 0 4 3 5 1 2 1 5 -1/18-16*w_4_22
3 4 1 0 2 1 3 1 6 4 5 32*w_4_23
3 4 1 0 4 1 2 1 6 3 5 16*w_4_23
3 4 1 0 4 3 5 1 6 1 2 -1/18-16*w_4_23
3 4 1 0 2 1 5 1 4 3 4 32*w_4_40
3 4 1 0 2 1 5 1 6 3 4 32*w_4_41
3 4 1 0 4 1 5 3 6 1 2 -16*w_4_41
3 4 1 0 4 5 6 1 2 1 3 16*w_4_41
3 4 1 0 2 1 5 1 6 3 5 32*w_4_42
3 4 1 0 4 1 5 4 6 1 2 -16*w_4_42
3 4 1 0 4 3 5 1 2 1 3 1/6-16*w_4_42

3 4 1 0 2 1 5 3 4 1 5 32*w_4_46
3 4 1 0 4 3 5 1 2 1 4 -16*w_4_46
3 4 1 0 4 5 6 1 2 1 4 16*w_4_46
3 4 1 0 4 1 3 1 4 2 4 16*w_4_60-16*w_4_83
3 4 1 0 4 1 3 1 4 2 3 16*w_4_61-16*w_4_84
3 4 1 0 4 1 3 1 4 2 5 -16*w_4_74+16*w_4_62
3 4 1 0 4 1 5 1 4 2 3 -16*w_4_63+16*w_4_62
3 4 1 0 4 2 5 1 6 1 5 16*w_4_63-16*w_4_62
3 4 1 0 4 1 5 1 3 2 3 -16*w_4_76+16*w_4_71
3 4 1 0 4 1 5 1 3 2 5 16*w_4_71-16*w_4_75
3 4 1 0 4 1 5 1 3 2 4 -16*w_4_73+16*w_4_71
3 4 1 0 4 1 5 1 6 2 4 16*w_4_73-16*w_4_71
3 4 1 0 4 1 5 2 3 1 3 -16*w_4_76+16*w_4_73
3 4 1 0 4 2 5 1 3 1 5 16*w_4_73-16*w_4_75
3 4 1 0 4 1 5 1 6 2 5 16*w_4_74-16*w_4_62
3 4 1 0 4 1 5 2 4 1 3 -1/18-16*w_4_63+16*w_4_74
3 4 1 0 4 2 3 1 3 1 5 16*w_4_74-16*w_4_91
3 4 1 0 4 1 5 2 3 1 4 -16*w_4_73+16*w_4_75
3 4 1 0 4 2 5 1 3 1 3 -16*w_4_76+16*w_4_75
3 4 1 0 4 1 5 2 6 1 4 -16*w_4_71+16*w_4_75
3 4 1 0 4 1 5 2 3 1 5 16*w_4_76-16*w_4_75
3 4 1 0 4 2 5 1 3 1 4 16*w_4_76-16*w_4_73
3 4 1 0 4 2 5 1 6 1 4 16*w_4_76-16*w_4_71
3 4 1 0 4 1 5 2 4 1 4 -16*w_4_60+16*w_4_83
3 4 1 0 4 2 3 1 3 1 3 -8*w_4_105+8*w_4_83
3 4 1 0 4 1 5 2 4 1 5 1/6-16*w_4_61+16*w_4_84
3 4 1 0 4 2 5 1 4 1 5 -16*w_4_61+16*w_4_84
3 4 1 0 4 1 5 2 6 1 5 1/6+16*w_4_91-16*w_4_62
3 4 1 0 4 2 5 1 4 1 3 -1/18-16*w_4_63+16*w_4_91
3 4 1 0 4 2 3 1 4 1 5 -16*w_4_74+16*w_4_91
3 4 1 0 4 2 3 1 4 1 4 8*w_4_105-8*w_4_83
3 4 1 0 4 2 5 1 4 1 4 1/6+16*w_4_105-16*w_4_60
3 4 1 0 4 1 2 1 4 3 5 -1/9
3 4 1 0 1 1 5 2 4 3 4 1/18+16*w_4_40
3 4 1 0 1 1 2 3 4 3 5 -1/6
3 4 1 0 1 1 5 2 3 3 4 16*w_4_17
3 4 1 0 1 1 5 3 6 2 3 16*w_4_21
3 4 1 0 1 1 5 3 4 2 3 16*w_4_22
3 4 1 0 1 1 5 4 6 2 3 -16*w_4_23
3 4 1 0 1 1 5 2 6 3 4 16*w_4_41
3 4 1 0 1 1 5 3 6 2 4 16*w_4_41
3 4 1 0 1 1 5 3 4 2 4 16*w_4_42
3 4 1 0 1 1 5 3 4 2 5 16*w_4_46
3 4 1 0 1 1 5 3 6 2 5 16*w_4_46
2 1 1
3 4 1 0 1 0 3 2 3 3 4 1/6-16*w_4_24
3 4 1 0 1 0 3 2 4 3 4 1/6-16*w_4_28
3 4 1 0 1 0 3 2 6 3 4 1/6-16*w_4_31
3 4 1 0 4 1 3 0 4 2 3 1/6-16*w_4_106+16*w_4_61
3 4 1 0 4 1 3 0 4 2 4 1/6+16*w_4_60-16*w_4_86
3 4 1 0 4 1 3 0 4 2 5 1/6-16*w_4_107+16*w_4_62
3 4 1 0 1 0 3 2 3 3 5 -1/9+16*w_4_24
3 4 1 0 1 0 3 2 3 4 5 -1/9-16*w_4_25
3 4 1 0 1 0 3 2 4 3 5 -1/9-16*w_4_29
3 4 1 0 1 0 3 2 4 4 5 -1/9-16*w_4_30
3 4 1 0 2 0 5 1 4 3 4 1/18+16*w_4_40-16*w_4_43
3 4 1 0 2 0 5 1 4 3 5 1/18+16*w_4_40+16*w_4_43
3 4 1 0 4 1 3 0 6 2 3 1/18+16*w_4_63-16*w_4_107
3 4 1 0 4 1 3 0 6 2 4 1/18+16*w_4_63-16*w_4_85
3 4 1 0 1 0 3 2 6 3 5 -1/18-16*w_4_32
3 4 1 0 1 0 3 2 6 4 5 -1/18-16*w_4_33
3 4 1 0 1 0 2 3 4 3 4 1/6-8*w_4_3
3 4 1 0 1 0 5 2 3 3 5 -1/3+16*w_4_28
3 4 1 0 1 0 2 3 4 4 5 -1/6+16*w_4_4
3 4 1 0 1 0 5 2 3 4 5 -1/6-16*w_4_30
3 4 1 0 1 0 5 2 4 3 5 -1/6+16*w_4_43
3 4 1 0 1 0 5 2 6 3 5 -1/6-16*w_4_45
3 4 1 0 2 0 3 1 3 3 4 -16*w_4_24+16*w_4_10
3 4 1 0 2 0 3 1 3 3 5 16*w_4_24+16*w_4_10
3 4 1 0 4 1 2 0 4 3 4 -1/3-16*w_4_10
3 4 1 0 2 0 3 1 4 3 4 -16*w_4_28+16*w_4_16
3 4 1 0 2 0 5 1 3 3 5 16*w_4_28+16*w_4_16
3 4 1 0 4 0 5 1 2 4 5 -16*w_4_16
3 4 1 0 2 0 3 1 4 3 5 -16*w_4_29+16*w_4_17
3 4 1 0 2 0 5 1 3 3 4 16*w_4_29+16*w_4_17
3 4 1 0 4 0 5 1 2 3 5 -1/6-16*w_4_17
3 4 1 0 2 0 3 1 4 4 5 16*w_4_18-16*w_4_30
3 4 1 0 2 0 5 1 3 4 5 -16*w_4_18-16*w_4_30
3 4 1 0 4 0 5 1 2 3 4 -1/6-16*w_4_18
3 4 1 0 2 0 3 1 6 3 4 16*w_4_21-16*w_4_31
3 4 1 0 2 0 5 3 6 1 3 16*w_4_21+16*w_4_31
3 4 1 0 4 1 2 0 6 3 4 -1/6-16*w_4_21
3 4 1 0 2 0 3 1 6 3 5 16*w_4_22-16*w_4_32
3 4 1 0 2 0 5 3 4 1 3 16*w_4_22+16*w_4_32
3 4 1 0 4 1 2 0 6 4 5 1/6+16*w_4_22

COMPUTER-ASSISTED PROOF SCHEMES IN DEFORMATION QUANTIZATION xiii

Table 7 (part 4).

3 4 1 0 2 0 3 1 6 4 5 16*w_4_23-16*w_4_33
3 4 1 0 2 0 5 4 6 1 3 -16*w_4_23-16*w_4_33
3 4 1 0 4 1 2 0 6 3 5 16*w_4_23
3 4 1 0 4 0 3 1 2 3 5 -16*w_4_40
3 4 1 0 2 0 5 1 6 3 4 -16*w_4_44+16*w_4_41
3 4 1 0 2 0 5 3 6 1 4 16*w_4_44+16*w_4_41
3 4 1 0 4 0 5 3 6 1 2 -16*w_4_41
3 4 1 0 2 0 5 1 6 3 5 -16*w_4_45+16*w_4_42
3 4 1 0 2 0 5 3 4 1 4 16*w_4_45+16*w_4_42
3 4 1 0 4 0 5 4 6 1 2 -16*w_4_42
3 4 1 0 2 0 5 3 4 1 5 -16*w_4_47+16*w_4_46
3 4 1 0 2 0 5 3 6 1 5 16*w_4_47+16*w_4_46
3 4 1 0 4 3 5 1 2 0 4 -1/6-16*w_4_46
3 4 1 0 4 0 3 1 3 2 3 16*w_4_60-16*w_4_64
3 4 1 0 4 0 5 1 4 2 4 16*w_4_60-16*w_4_86
3 4 1 0 4 0 3 1 3 2 4 16*w_4_61-16*w_4_65
3 4 1 0 4 0 5 1 4 2 5 16*w_4_61-16*w_4_87
3 4 1 0 4 0 3 1 3 2 5 -16*w_4_66+16*w_4_62
3 4 1 0 4 0 5 1 4 2 3 16*w_4_62-16*w_4_85
3 4 1 0 4 0 3 1 6 2 3 -16*w_4_66+16*w_4_63
3 4 1 0 4 0 5 1 3 2 3 -16*w_4_77+16*w_4_71
3 4 1 0 4 0 5 1 3 2 4 16*w_4_71-16*w_4_78
3 4 1 0 4 0 5 1 3 2 5 -16*w_4_79+16*w_4_71
3 4 1 0 4 0 5 1 6 2 3 -16*w_4_92+16*w_4_72
3 4 1 0 4 1 5 0 6 2 3 -16*w_4_118+16*w_4_72
3 4 1 0 4 0 5 2 6 1 3 -16*w_4_92+16*w_4_72
3 4 1 0 4 0 5 1 6 2 4 -16*w_4_79+16*w_4_73
3 4 1 0 4 1 5 0 6 2 4 16*w_4_73-16*w_4_78
3 4 1 0 4 0 5 2 3 1 3 16*w_4_73-16*w_4_77
3 4 1 0 4 0 5 1 6 2 5 1/18-16*w_4_66+16*w_4_74
3 4 1 0 4 1 5 0 6 2 5 16*w_4_74-16*w_4_107
3 4 1 0 4 0 5 2 4 1 3 16*w_4_74-16*w_4_85
3 4 1 0 4 0 5 2 3 1 4 -16*w_4_78+16*w_4_75
3 4 1 0 4 1 5 2 3 0 4 -16*w_4_77+16*w_4_75
3 4 1 0 4 0 5 2 6 1 4 -16*w_4_79+16*w_4_75
3 4 1 0 4 0 5 2 3 1 5 -16*w_4_79+16*w_4_76
3 4 1 0 4 1 5 2 3 0 5 16*w_4_76-16*w_4_78
3 4 1 0 4 2 5 1 3 0 4 16*w_4_76-16*w_4_77
3 4 1 0 4 0 5 2 4 1 4 -16*w_4_86+16*w_4_83
3 4 1 0 4 1 5 2 4 0 4 1/12+8*w_4_83-8*w_4_64
3 4 1 0 4 0 5 2 4 1 5 -16*w_4_87+16*w_4_84
3 4 1 0 4 1 5 2 4 0 5 1/6+16*w_4_84-16*w_4_65
3 4 1 0 4 2 3 0 4 1 3 -16*w_4_106+16*w_4_84
3 4 1 0 4 0 5 2 6 1 5 1/18-16*w_4_66+16*w_4_91
3 4 1 0 4 1 5 2 6 0 5 16*w_4_91-16*w_4_85
3 4 1 0 4 2 3 0 4 1 5 -16*w_4_107+16*w_4_91
3 4 1 0 4 2 3 0 4 1 4 16*w_4_105-16*w_4_86
3 4 1 0 4 2 5 1 4 0 4 1/12+8*w_4_105-8*w_4_64
3 4 1 0 1 0 2 3 4 3 5 -16*w_4_4
3 4 1 0 1 0 2 3 6 4 5 -16*w_4_5
3 4 1 0 2 0 3 1 3 4 5 -16*w_4_25
3 4 1 0 1 0 5 2 3 3 4 16*w_4_29
3 4 1 0 1 0 5 3 6 2 3 16*w_4_31
3 4 1 0 1 0 5 3 4 2 3 16*w_4_32
3 4 1 0 1 0 5 4 6 2 3 -16*w_4_33
3 4 1 0 1 0 5 2 4 3 4 -16*w_4_43
3 4 1 0 1 0 5 2 6 3 4 -16*w_4_44
3 4 1 0 1 0 5 3 6 2 4 16*w_4_44
3 4 1 0 1 0 5 3 4 2 4 16*w_4_45
3 4 1 0 1 0 5 3 4 2 5 -16*w_4_47
3 4 1 0 1 0 5 3 6 2 5 16*w_4_47
1 1 2
3 4 1 0 4 1 3 2 3 2 3 -1/12-8*w_4_105+8*w_4_64
3 4 1 0 4 1 3 2 3 2 4 -1/6-16*w_4_84+16*w_4_65
3 4 1 0 4 1 3 2 4 2 4 -1/12-8*w_4_83+8*w_4_64
3 4 1 0 4 1 3 2 3 2 5 -1/18+16*w_4_66-16*w_4_91
3 4 1 0 4 1 3 2 4 2 5 -1/18+16*w_4_66-16*w_4_74
3 4 1 0 1 2 3 2 3 3 4 1/3+16*w_4_10
3 4 1 0 1 2 3 2 6 3 5 1/6+16*w_4_22
3 4 1 0 1 2 3 2 4 4 5 1/6+16*w_4_18
3 4 1 0 1 2 3 2 4 3 5 1/6+16*w_4_17
3 4 1 0 1 2 3 2 6 3 4 1/6+16*w_4_21
3 4 1 0 1 2 5 3 4 2 5 1/6+16*w_4_46
3 4 1 0 2 1 2 3 4 3 4 -1/6+8*w_4_3
3 4 1 0 2 1 2 3 4 3 5 -1/6+16*w_4_4
3 4 1 0 2 1 2 3 4 4 5 -16*w_4_4
3 4 1 0 2 1 2 3 6 4 5 16*w_4_5
3 4 1 0 2 1 3 2 3 3 4 16*w_4_24+16*w_4_10
3 4 1 0 4 1 2 2 4 3 4 1/9-16*w_4_24
3 4 1 0 2 1 3 2 3 3 5 -16*w_4_24+16*w_4_10
3 4 1 0 4 1 2 2 4 4 5 1/6-16*w_4_24
3 4 1 0 2 1 3 2 3 4 5 16*w_4_25
3 4 1 0 4 1 2 2 4 3 5 1/9+16*w_4_25
3 4 1 0 2 1 3 2 4 3 4 16*w_4_28+16*w_4_16
3 4 1 0 4 1 2 2 3 3 4 1/3-16*w_4_28

3 4 1 0 2 1 5 2 3 3 5 -16*w_4_28+16*w_4_16
3 4 1 0 4 2 5 1 2 4 5 -1/6+16*w_4_28
3 4 1 0 2 1 3 2 4 3 5 16*w_4_29+16*w_4_17
3 4 1 0 4 1 2 2 3 4 5 16*w_4_29
3 4 1 0 2 1 5 2 3 3 4 -16*w_4_29+16*w_4_17
3 4 1 0 4 2 5 1 2 3 5 1/9+16*w_4_29
3 4 1 0 2 1 3 2 4 4 5 16*w_4_18+16*w_4_30
3 4 1 0 4 1 2 2 3 3 5 1/6+16*w_4_30
3 4 1 0 2 1 5 2 3 4 5 -16*w_4_18+16*w_4_30
3 4 1 0 4 2 5 1 2 3 4 1/9+16*w_4_30
3 4 1 0 2 1 3 2 6 3 4 16*w_4_21+16*w_4_31
3 4 1 0 4 1 2 2 6 3 4 -16*w_4_31
3 4 1 0 2 1 5 3 6 2 3 16*w_4_21-16*w_4_31
3 4 1 0 4 5 6 1 2 2 5 1/6-16*w_4_31
3 4 1 0 2 1 3 2 6 3 5 16*w_4_22+16*w_4_32
3 4 1 0 4 1 2 2 6 4 5 16*w_4_32
3 4 1 0 2 1 5 3 4 2 3 16*w_4_22-16*w_4_32
3 4 1 0 4 3 5 1 2 2 5 1/18+16*w_4_32
3 4 1 0 2 1 3 2 6 4 5 16*w_4_23+16*w_4_33
3 4 1 0 4 1 2 2 6 3 5 16*w_4_33
3 4 1 0 2 1 5 4 6 2 3 -16*w_4_23+16*w_4_33
3 4 1 0 4 3 5 2 6 1 2 1/18+16*w_4_33
3 4 1 0 2 1 5 2 4 3 4 1/18+16*w_4_40+16*w_4_43
3 4 1 0 4 2 3 1 2 3 5 1/6-16*w_4_43
3 4 1 0 2 1 5 2 4 3 5 1/18+16*w_4_40-16*w_4_43
3 4 1 0 4 2 3 1 2 4 5 16*w_4_43
3 4 1 0 2 1 5 2 6 3 4 16*w_4_44+16*w_4_41
3 4 1 0 4 2 5 3 6 1 2 -16*w_4_44
3 4 1 0 2 1 5 3 6 2 4 -16*w_4_44+16*w_4_41
3 4 1 0 4 5 6 1 2 2 3 -16*w_4_44
3 4 1 0 2 1 5 2 6 3 5 16*w_4_45+16*w_4_42
3 4 1 0 4 2 5 4 6 1 2 -16*w_4_45
3 4 1 0 2 1 5 3 4 2 4 -16*w_4_45+16*w_4_42
3 4 1 0 4 3 5 1 2 2 3 1/6+16*w_4_45
3 4 1 0 2 1 5 3 4 2 5 16*w_4_47+16*w_4_46
3 4 1 0 4 3 5 1 2 2 4 -16*w_4_47
3 4 1 0 2 1 5 3 6 2 5 -16*w_4_47+16*w_4_46
3 4 1 0 4 5 6 1 2 2 4 -16*w_4_47
3 4 1 0 4 2 5 2 4 1 4 -16*w_4_60+16*w_4_64
3 4 1 0 4 2 5 2 4 1 5 -16*w_4_61+16*w_4_65
3 4 1 0 4 1 5 2 6 2 5 16*w_4_66-16*w_4_62
3 4 1 0 4 2 5 2 4 1 3 16*w_4_66-16*w_4_63
3 4 1 0 4 1 5 2 3 2 3 -16*w_4_76+16*w_4_77
3 4 1 0 4 2 5 1 3 2 5 16*w_4_77-16*w_4_75
3 4 1 0 4 2 5 2 3 1 4 -16*w_4_73+16*w_4_77
3 4 1 0 4 2 5 2 6 1 4 16*w_4_77-16*w_4_71
3 4 1 0 4 1 5 2 3 2 4 -16*w_4_73+16*w_4_78
3 4 1 0 4 2 5 1 3 2 3 -16*w_4_76+16*w_4_78
3 4 1 0 4 2 5 1 6 2 4 -16*w_4_71+16*w_4_78
3 4 1 0 4 2 5 2 3 1 5 16*w_4_78-16*w_4_75
3 4 1 0 4 1 5 2 3 2 5 16*w_4_79-16*w_4_75
3 4 1 0 4 2 5 1 3 2 4 16*w_4_79-16*w_4_73
3 4 1 0 4 1 5 2 6 2 4 16*w_4_79-16*w_4_71
3 4 1 0 4 2 5 2 3 1 3 16*w_4_79-16*w_4_76
3 4 1 0 4 1 5 2 4 2 3 -1/18-16*w_4_63+16*w_4_85
3 4 1 0 4 2 3 1 3 2 5 -16*w_4_91+16*w_4_85
3 4 1 0 4 2 3 1 6 2 4 -16*w_4_74+16*w_4_85
3 4 1 0 4 2 5 2 6 1 5 -16*w_4_62+16*w_4_85
3 4 1 0 4 1 5 2 4 2 4 -1/6-16*w_4_60+16*w_4_86
3 4 1 0 4 2 3 1 3 2 3 -16*w_4_105+16*w_4_86
3 4 1 0 4 2 3 1 4 2 4 16*w_4_86-16*w_4_83
3 4 1 0 4 2 5 1 4 2 4 -16*w_4_60+16*w_4_86
3 4 1 0 4 1 5 2 4 2 5 -16*w_4_61+16*w_4_87
3 4 1 0 4 2 3 1 3 2 4 16*w_4_87-16*w_4_84
3 4 1 0 4 1 5 2 6 2 3 16*w_4_92-16*w_4_72
3 4 1 0 4 2 5 2 6 1 3 16*w_4_92-16*w_4_72
3 4 1 0 4 2 3 1 4 2 3 16*w_4_106-16*w_4_84
3 4 1 0 4 2 5 1 4 2 5 -1/6+16*w_4_106-16*w_4_61
3 4 1 0 4 2 3 1 4 2 5 -16*w_4_74+16*w_4_107
3 4 1 0 4 2 5 1 4 2 3 -1/18-16*w_4_63+16*w_4_107
3 4 1 0 4 2 3 1 6 2 3 16*w_4_107-16*w_4_91
3 4 1 0 4 2 5 1 6 2 5 -1/6+16*w_4_107-16*w_4_62
3 4 1 0 4 2 5 1 6 2 3 16*w_4_118-16*w_4_72
3 4 1 0 1 2 3 2 4 3 4 16*w_4_16
3 4 1 0 1 2 3 2 6 4 5 16*w_4_23
3 4 1 0 1 2 5 2 4 3 4 16*w_4_40
3 4 1 0 1 2 5 2 6 3 4 16*w_4_41
3 4 1 0 1 2 5 2 6 3 5 16*w_4_42
1 1 1
3 4 1 0 4 1 3 2 3 3 4 1/6+16*w_4_108+16*w_4_67
3 4 1 0 4 1 3 2 4 3 4 1/6-16*w_4_67+16*w_4_90
3 4 1 0 4 1 3 2 6 3 4 1/6+16*w_4_111
3 4 1 0 4 1 3 2 3 3 5 1/18-16*w_4_110+16*w_4_68
3 4 1 0 4 1 3 2 3 4 5 1/18-16*w_4_109+16*w_4_69
3 4 1 0 4 1 3 2 4 3 5 1/18+16*w_4_89+16*w_4_69
3 4 1 0 4 1 3 2 4 4 5 1/18+16*w_4_68+16*w_4_88

xiv R. BURING AND A. V. KISELEV

Table 7 (part 5).

3 4 1 0 4 1 3 2 6 3 5 1/36+16*w_4_70-16*w_4_113
3 4 1 0 4 1 3 2 6 4 5 1/36-16*w_4_112+16*w_4_70
3 4 1 0 1 2 3 3 4 3 4 -1/6+8*w_4_34
3 4 1 0 1 2 3 3 4 4 5 1/6+16*w_4_36
3 4 1 0 1 2 5 3 4 3 4 -1/6+16*w_4_48
3 4 1 0 1 2 5 3 4 4 5 1/6+16*w_4_50
3 4 1 0 2 1 3 3 4 3 4 16*w_4_34
3 4 1 0 4 1 2 3 4 3 4 -1/6+8*w_4_34
3 4 1 0 2 1 3 3 4 3 5 32*w_4_35
3 4 1 0 4 1 2 3 4 4 5 -16*w_4_35
3 4 1 0 2 1 3 3 4 4 5 32*w_4_36
3 4 1 0 4 1 2 3 4 3 5 -1/6-16*w_4_36
3 4 1 0 2 1 3 3 6 3 5 16*w_4_37
3 4 1 0 4 1 2 4 6 4 5 8*w_4_37
3 4 1 0 2 1 3 3 6 4 5 32*w_4_38
3 4 1 0 4 1 2 3 6 4 5 16*w_4_38
3 4 1 0 2 1 3 4 6 4 5 16*w_4_39
3 4 1 0 4 1 2 3 6 3 5 8*w_4_39
3 4 1 0 2 1 5 3 4 3 4 32*w_4_48
3 4 1 0 4 3 5 1 2 3 5 -1/6+16*w_4_48
3 4 1 0 2 1 5 3 4 3 5 32*w_4_49
3 4 1 0 4 3 5 1 2 4 5 16*w_4_49
3 4 1 0 2 1 5 3 4 4 5 32*w_4_50
3 4 1 0 4 3 5 1 2 3 4 -1/6-16*w_4_50
3 4 1 0 2 1 5 3 6 3 4 32*w_4_51
3 4 1 0 4 5 6 1 2 3 5 -16*w_4_51
3 4 1 0 2 1 5 3 6 3 5 32*w_4_52
3 4 1 0 4 5 6 1 2 4 5 -16*w_4_52
3 4 1 0 2 1 5 3 6 4 5 32*w_4_53
3 4 1 0 4 5 6 1 2 3 4 16*w_4_53
3 4 1 0 2 1 5 4 6 3 4 32*w_4_54
3 4 1 0 4 3 5 3 6 1 2 -16*w_4_54
3 4 1 0 2 1 5 4 6 3 5 32*w_4_55
3 4 1 0 4 3 5 4 6 1 2 -16*w_4_55
3 4 1 0 4 1 5 2 3 3 4 16*w_4_80+16*w_4_81
3 4 1 0 4 2 5 1 3 3 5 -16*w_4_80+16*w_4_82
3 4 1 0 4 1 5 2 3 3 5 16*w_4_81+16*w_4_82
3 4 1 0 4 2 5 1 3 4 5 -16*w_4_80-16*w_4_81
3 4 1 0 4 1 5 2 3 4 5 -16*w_4_80+16*w_4_82
3 4 1 0 4 2 5 1 3 3 4 16*w_4_81+16*w_4_82
3 4 1 0 4 1 5 2 4 3 4 1/18+16*w_4_68+16*w_4_88
3 4 1 0 4 2 3 1 3 3 5 -16*w_4_110-16*w_4_88
3 4 1 0 4 1 5 2 4 3 5 1/18+16*w_4_89+16*w_4_69
3 4 1 0 4 2 3 1 3 4 5 -16*w_4_89-16*w_4_109
3 4 1 0 4 1 5 2 4 4 5 1/6-16*w_4_67+16*w_4_90
3 4 1 0 4 2 3 1 3 3 4 16*w_4_108+16*w_4_90
3 4 1 0 4 1 5 2 6 3 4 16*w_4_99+16*w_4_93
3 4 1 0 4 2 5 3 6 1 3 -16*w_4_93+16*w_4_119
3 4 1 0 4 1 5 2 6 3 5 16*w_4_102+16*w_4_94
3 4 1 0 4 2 5 4 6 1 3 -16*w_4_94+16*w_4_120
3 4 1 0 4 1 5 2 6 4 5 16*w_4_95-16*w_4_96
3 4 1 0 4 2 5 3 4 1 3 16*w_4_95-16*w_4_121
3 4 1 0 4 1 5 3 4 2 3 -16*w_4_121+16*w_4_96
3 4 1 0 4 3 5 1 3 2 5 16*w_4_95-16*w_4_96
3 4 1 0 4 1 5 3 4 2 4 16*w_4_103+16*w_4_97
3 4 1 0 4 3 5 1 3 2 3 16*w_4_122-16*w_4_97
3 4 1 0 4 1 5 3 4 2 5 16*w_4_98-16*w_4_124
3 4 1 0 4 3 5 1 3 2 4 16*w_4_123-16*w_4_98
3 4 1 0 4 1 5 3 6 2 3 16*w_4_99+16*w_4_119
3 4 1 0 4 5 6 1 3 2 5 16*w_4_99+16*w_4_93
3 4 1 0 4 1 5 3 6 2 4 32*w_4_100
3 4 1 0 4 5 6 1 3 2 3 16*w_4_100
3 4 1 0 4 1 5 3 6 2 5 -16*w_4_129+16*w_4_101
3 4 1 0 4 5 6 1 3 2 4 -16*w_4_128+16*w_4_101
3 4 1 0 4 1 5 4 6 2 3 16*w_4_102+16*w_4_120
3 4 1 0 4 3 5 2 6 1 3 16*w_4_102+16*w_4_94
3 4 1 0 4 1 5 4 6 2 4 16*w_4_103+16*w_4_97
3 4 1 0 4 3 5 2 3 1 3 16*w_4_122+16*w_4_103
3 4 1 0 4 1 5 4 6 2 5 -16*w_4_134+16*w_4_104
3 4 1 0 4 3 5 2 4 1 3 -16*w_4_133+16*w_4_104
3 4 1 0 4 2 3 1 4 3 4 16*w_4_108+16*w_4_90
3 4 1 0 4 2 5 1 4 4 5 -1/6-16*w_4_108-16*w_4_67
3 4 1 0 4 2 3 1 4 3 5 16*w_4_89+16*w_4_109
3 4 1 0 4 2 5 1 4 3 5 1/18-16*w_4_109+16*w_4_69
3 4 1 0 4 2 3 1 4 4 5 16*w_4_110+16*w_4_88
3 4 1 0 4 2 5 1 4 3 4 1/18-16*w_4_110+16*w_4_68
3 4 1 0 4 2 3 1 6 3 4 32*w_4_111
3 4 1 0 4 5 6 1 6 2 5 1/6+16*w_4_111
3 4 1 0 4 2 3 1 6 3 5 16*w_4_112-16*w_4_113
3 4 1 0 4 3 5 1 6 2 5 1/36-16*w_4_112+16*w_4_70
3 4 1 0 4 2 3 1 6 4 5 -16*w_4_112+16*w_4_113
3 4 1 0 4 3 5 2 6 1 5 1/36+16*w_4_70-16*w_4_113
3 4 1 0 4 2 5 1 6 3 4 16*w_4_99+16*w_4_119
3 4 1 0 4 5 6 1 6 2 3 -16*w_4_93+16*w_4_119
3 4 1 0 4 2 5 1 6 3 5 16*w_4_102+16*w_4_120

3 4 1 0 4 3 5 1 6 2 3 16*w_4_94-16*w_4_120
3 4 1 0 4 2 5 1 6 4 5 16*w_4_121-16*w_4_96
3 4 1 0 4 3 5 2 3 1 5 16*w_4_95-16*w_4_121
3 4 1 0 4 2 5 3 4 1 4 16*w_4_122+16*w_4_103
3 4 1 0 4 2 5 4 6 1 4 -16*w_4_122+16*w_4_97
3 4 1 0 4 2 5 3 4 1 5 16*w_4_123-16*w_4_124
3 4 1 0 4 5 6 1 6 2 4 16*w_4_123-16*w_4_98
3 4 1 0 4 3 5 2 3 1 4 16*w_4_123-16*w_4_124
3 4 1 0 4 5 6 1 4 2 5 16*w_4_98-16*w_4_124
3 4 1 0 4 2 5 3 6 1 5 16*w_4_128-16*w_4_129
3 4 1 0 4 3 5 1 6 2 4 -16*w_4_128+16*w_4_101
3 4 1 0 4 3 5 2 6 1 4 -16*w_4_129+16*w_4_101
3 4 1 0 4 5 6 1 4 2 3 16*w_4_128-16*w_4_129
3 4 1 0 4 2 5 4 6 1 5 -16*w_4_134+16*w_4_133
3 4 1 0 4 3 5 2 4 1 5 -16*w_4_133+16*w_4_104
3 4 1 0 4 3 5 1 4 2 3 16*w_4_134-16*w_4_133
3 4 1 0 4 3 5 1 4 2 5 -16*w_4_134+16*w_4_104
3 4 1 0 4 3 5 2 4 1 4 32*w_4_138
3 4 1 0 4 5 6 1 4 2 4 16*w_4_138
3 4 1 0 1 2 3 3 4 3 5 16*w_4_35
3 4 1 0 1 2 3 3 6 3 5 8*w_4_37
3 4 1 0 1 2 3 3 6 4 5 16*w_4_38
3 4 1 0 1 2 3 4 6 4 5 8*w_4_39
3 4 1 0 1 2 5 3 4 3 5 16*w_4_49
3 4 1 0 1 2 5 3 6 3 4 16*w_4_51
3 4 1 0 1 2 5 3 6 3 5 16*w_4_52
3 4 1 0 1 2 5 3 6 4 5 16*w_4_53
3 4 1 0 1 2 5 4 6 3 4 16*w_4_54
3 4 1 0 1 2 5 4 6 3 5 16*w_4_55
3 4 1 0 4 2 5 3 6 1 4 16*w_4_100
3 4 1 0 4 3 5 1 4 2 4 16*w_4_138

COMPUTER-ASSISTED PROOF SCHEMES IN DEFORMATION QUANTIZATION xv

The table below contains the output of the command

$ reduce_mod_jacobi associator4_intermsof10_part100.txt

as described in Implementation 15.

Table 8. Sample output of reduce_mod_jacobi.

3 4 1 0 1 0 3 2 6 3 4 -24+c_1_1221_211
3 4 1 0 4 1 3 2 6 3 4 -8+c_1_1240_111
3 4 1 0 1 0 3 2 3 4 5 -48+c_1_1221_211

-c_1_513_211
3 4 1 0 1 0 3 2 4 3 5 24-c_1_1221_211
3 4 1 0 4 1 3 2 4 3 5 24-c_1_1240_111

-c_1_540_111
3 4 1 0 1 2 3 3 4 4 5 -8-c_1_1228_111
3 4 1 0 1 2 5 3 4 3 4 -8-c_1_1228_111
3 4 1 0 2 0 3 1 4 3 5 24-c_1_1005_211
3 4 1 0 2 0 5 1 3 3 4 -24-c_1_516_211
3 4 1 0 2 0 3 1 6 3 4 -24+c_1_1005_211
3 4 1 0 2 0 5 3 6 1 3 24+c_1_516_211
3 4 1 0 2 1 3 2 3 4 5 48+c_1_1230_112

-c_1_1008_112
3 4 1 0 4 1 2 2 4 3 5 48-c_1_525_112

-c_1_1239_112
3 4 1 0 2 1 3 2 4 3 5 -24-c_1_1230_112
3 4 1 0 4 1 2 2 3 4 5 -24+c_1_1239_112
3 4 1 0 2 1 5 2 3 3 4 24-c_1_1008_112
3 4 1 0 4 2 5 1 2 3 5 -24+c_1_525_112
3 4 1 0 2 1 3 2 6 3 4 24+c_1_1230_112
3 4 1 0 4 1 2 2 6 3 4 -24+c_1_1239_112
3 4 1 0 2 1 5 3 6 2 3 -24+c_1_1008_112
3 4 1 0 4 5 6 1 2 2 5 -24+c_1_525_112
3 4 1 0 2 1 3 3 4 4 5 -16-c_1_1012_111
3 4 1 0 4 1 2 3 4 3 5 8+c_1_529_111
3 4 1 0 2 1 3 3 6 4 5 -16-c_1_1012_111
3 4 1 0 4 1 2 3 6 4 5 -8-c_1_529_111
3 4 1 0 2 1 5 3 4 3 4 -16-c_1_1012_111
3 4 1 0 4 3 5 1 2 3 5 -8-c_1_529_111
3 4 1 0 2 1 5 3 6 3 5 16+c_1_1012_111
3 4 1 0 4 5 6 1 2 4 5 -8-c_1_529_111
3 4 1 0 4 1 5 2 3 3 4 8-c_1_1023_111
3 4 1 0 4 2 5 1 3 3 5 -16+c_1_540_111
3 4 1 0 4 1 5 2 3 3 5 -8-c_1_538_111
3 4 1 0 4 2 5 1 3 4 5 -8+c_1_1021_111
3 4 1 0 4 1 5 2 3 4 5 -16+c_1_1242_111
3 4 1 0 4 2 5 1 3 3 4 -8-c_1_1245_111
3 4 1 0 4 1 5 2 4 3 5 24-c_1_536_111

-c_1_1242_111
3 4 1 0 4 2 3 1 3 4 5 -24-c_1_1245_111

+c_1_1019_111
3 4 1 0 4 1 5 2 6 3 4 -16+c_1_1242_111
3 4 1 0 4 2 5 3 6 1 3 8+c_1_1245_111
3 4 1 0 4 1 5 2 6 3 5 -8-c_1_538_111
3 4 1 0 4 2 5 4 6 1 3 -8+c_1_1021_111
3 4 1 0 4 1 5 3 4 2 5 -16+c_1_1242_111
3 4 1 0 4 3 5 1 3 2 4 8+c_1_1245_111

3 4 1 0 4 1 5 3 6 2 3 -8+c_1_1023_111
3 4 1 0 4 5 6 1 3 2 5 -16+c_1_540_111
3 4 1 0 4 1 5 3 6 2 4 32-c_1_1242_111

-c_1_540_111
3 4 1 0 4 5 6 1 3 2 3 16-c_1_1023_111

+c_1_1245_111
3 4 1 0 4 1 5 4 6 2 3 -16+c_1_1242_111
3 4 1 0 4 3 5 2 6 1 3 -8-c_1_1245_111
3 4 1 0 4 2 3 1 4 3 5 24+c_1_538_111

-c_1_1019_111
3 4 1 0 4 2 3 1 6 3 4 -16+c_1_1019_111
3 4 1 0 4 5 6 1 6 2 5 -8+c_1_536_111
3 4 1 0 4 2 5 1 6 3 4 -8+c_1_1021_111
3 4 1 0 4 5 6 1 6 2 3 8+c_1_538_111
3 4 1 0 4 2 5 1 6 3 5 -16+c_1_540_111
3 4 1 0 4 3 5 1 6 2 3 8-c_1_1023_111
3 4 1 0 4 2 5 3 4 1 5 -8+c_1_1021_111
3 4 1 0 4 5 6 1 6 2 4 8+c_1_538_111
3 4 1 0 4 3 5 2 3 1 4 -8+c_1_1023_111
3 4 1 0 4 5 6 1 4 2 5 -16+c_1_540_111
3 4 1 0 2 0 3 1 3 4 5 -48+c_1_1005_211-c_1_516_211
3 4 1 0 1 0 5 2 3 3 4 -24-c_1_513_211
3 4 1 0 1 0 5 3 6 2 3 24+c_1_513_211
3 4 1 0 1 2 3 3 6 4 5 -8-c_1_1228_111
3 4 1 0 1 2 5 3 6 3 5 8+c_1_1228_111
3 4 1 0 4 2 5 3 6 1 4 16+c_1_538_111-c_1_1021_111
3 4 1 0 4 1 3 2 3 4 5 -c_1_1023_111+c_1_1240_111
3 4 1 0 4 2 5 1 4 3 5 c_1_536_111-c_1_1021_111

3 4 1 0 1 2 3 0 3 5 4 c_1_513_211==-24
3 4 1 0 2 1 3 0 3 5 4 c_1_516_211==-24
3 4 1 1 2 2 3 0 3 5 4 c_1_525_112==24
3 4 1 1 2 3 5 0 3 5 4 c_1_529_111==-8
3 4 1 1 4 2 3 0 3 5 4 c_1_536_111==8
3 4 1 1 4 2 5 0 3 5 4 c_1_538_111==-8
3 4 1 1 5 2 3 0 3 5 4 c_1_540_111==16
3 4 1 0 2 0 3 1 3 5 4 c_1_1005_211==24
3 4 1 0 2 2 3 1 3 5 4 c_1_1008_112==24
3 4 1 0 2 3 5 1 3 5 4 c_1_1012_111==-16
3 4 1 0 4 2 3 1 3 5 4 c_1_1019_111==16
3 4 1 0 4 2 5 1 3 5 4 c_1_1021_111==8
3 4 1 0 5 2 3 1 3 5 4 c_1_1023_111==8
3 4 1 0 1 0 3 2 3 5 4 c_1_1221_211==24
3 4 1 0 1 3 5 2 3 5 4 c_1_1228_111==-8
3 4 1 0 2 1 3 2 3 5 4 c_1_1230_112==-24
3 4 1 0 4 1 2 2 3 5 4 c_1_1239_112==24
3 4 1 0 4 1 3 2 3 5 4 c_1_1240_111==8
3 4 1 0 4 1 5 2 3 5 4 c_1_1242_111==16
3 4 1 0 5 1 3 2 3 5 4 c_1_1245_111==-8

The first part of the output lists the graph series S(1) − ♢, reduced modulo skew-
symmetry, wherein the coefficients of ♢ are still undetermined. The second part of
the ouput (after the blank line) specifies the coefficients such that S(1) = ♢. Every
coefficient in the second part is preceded by the encoding of the graph that specifies a
differential consequence of the Jacobi identity. Such a differential consequence expands
into a sum of graphs that can be read in the first part of the output.

xvi R. BURING AND A. V. KISELEV

Appendix E. Gauge transformation that removes
4 master-parameters out of 10

Encodings of graphs (see Implementation 1 on p. 5) built over one sink vertex are
followed by their coefficients, in the following table containing the gauge transformation
which was claimed to exist in Theorem 13.

Table 9. Gauge transformation that removes 4 master-parameters out of 10.

h^0:
1 0 1 1
h^4:
1 4 1 0 2 0 3 1 4 0 3 16*w_4_101
1 4 1 0 2 0 3 1 4 1 3 8*w_4_101
1 4 1 0 2 0 3 1 4 2 3 8*w_4_101
1 4 1 0 2 1 3 0 4 1 2 -8*w_4_101
1 4 1 0 2 1 3 0 4 2 3 8*w_4_101
1 4 1 0 2 1 3 1 4 0 2 -8*w_4_101
1 4 1 0 2 1 3 2 4 0 2 -8*w_4_101
1 4 1 0 2 0 3 0 4 1 3 -16*w_4_102
1 4 1 0 2 0 3 1 4 1 3 -8*w_4_102
1 4 1 0 2 0 3 2 4 1 2 -8*w_4_102
1 4 1 0 2 0 3 2 4 1 3 -16*w_4_102
1 4 1 0 2 1 3 0 4 1 2 -8*w_4_102
1 4 1 0 2 1 3 0 4 1 3 -8*w_4_102
1 4 1 0 2 0 3 0 4 1 2 16*w_4_119
1 4 1 0 2 0 3 1 4 1 2 16*w_4_119
1 4 1 0 2 0 3 1 4 1 3 8*w_4_119
1 4 1 0 2 0 3 2 4 1 2 8*w_4_119
1 4 1 0 2 1 3 0 4 1 2 8*w_4_119
1 4 1 0 2 3 4 0 4 1 2 -8*w_4_119
1 4 1 0 2 0 3 0 1 1 2 -32*w_4_125
1 4 1 0 2 0 3 1 2 1 2 16*w_4_125
1 4 1 0 2 0 3 1 2 1 3 -16*w_4_125
1 4 1 0 2 0 3 1 2 2 3 16*w_4_125
1 4 1 0 2 0 3 1 4 1 2 16*w_4_125
1 4 1 0 2 0 3 1 4 1 3 -16*w_4_125
1 4 1 0 2 0 3 1 4 2 3 16*w_4_125

On the Kontsevich ⋆-product associativity mechanism

R. Buring∗, A. V. Kiselev∗,§

Abstract

The deformation quantization by Kontsevich is a way to construct an associative non-
commutative star-product ⋆ = ×+ ℏ { , }P + ō(ℏ) in the algebra of formal power series
in ℏ on a given finite-dimensional affine Poisson manifold: here × is the usual multi-
plication, { , }P ̸= 0 is the Poisson bracket, and ℏ is the deformation parameter. The
product ⋆ is assembled at all powers ℏk⩾0 via summation over a certain set of weighted
graphs with k+2 vertices; for each k>0, every such graph connects the two co-multi-
ples of ⋆ using k copies of { , }P . Cattaneo and Felder interpreted these topological
portraits as genuine Feynman diagrams in the Ikeda–Izawa model for quantum gravity.

By expanding the star-product up to ō(ℏ3), i.e., with respect to graphs with at most
five vertices but possibly containing loops, we illustrate the mechanism Assoc = ♢ (Pois-
son) that converts the Jacobi identity for the bracket { , }P into the associativity of ⋆.

Denote by × the multiplication in the commutative associative unital algebra C∞(Nn → R)
of scalar functions on a smooth n-dimensional real manifold Nn. Suppose first that a non-
commutative deformation ⋆ = ×+O(ℏ) of × is still unital (f ⋆1 = f = 1⋆f) and associative,
(f ⋆ g) ⋆ h = f ⋆ (g ⋆ h) for f, g, h ∈ C∞(Nn)[[ℏ]]. By taking 3! = 6 copies of the associati-
vity equation for the star-product ⋆, we infer that the skew-symmetric part of the leading
deformation term, {f, g}⋆ := 1

ℏ

(
f ⋆ g − g ⋆ f

)∣∣
ℏ:=0

, is a Poisson bracket.1

Now the other way round: can the multiplication × on a Poisson manifold Nn be de-
formed using the bracket { , }P such that the k[[ℏ]]-linear star-product ⋆ = ×+ℏ { , }P+ ō(ℏ)
stays associative? Kontsevich proved [1] that on finite-dimensional affine2 Poisson manifolds,
this is always possible: from { , }P one obtains the bi-differential terms Bk(·, ·) at all powers
of ℏk⩾0 in the formal series for ⋆. This associative unital ⋆-product was constructed in [1]
using a pictorial language: the operators Bk =

∑
{Γ}w(Γ) × BΓ

k (·, ·) are encoded by the
weighted oriented graphs Γ with k + 2 vertices and 2k edges but without tadpoles or multi-
ple edges; in every such Γ, there are k internal vertices (each of them is a tail for two edges)
and 2 sinks (no issued edges). The Poisson bracket { , }P with coefficients P ij(u) at u ∈ Nn

provides the “building block” ∧∧∧ =
i←−−

Left
• j−−−→

Right
in which

∑n
i,j=1 is implicit and the vertex

contains P ij(u). To indicate the ordering of indexes in P ij = −Pji, the out-going edges

∗Johann Bernoulli Institute for Mathematics & Computer Science, University of Groningen, P.O. Box 407,
9700 AK Groningen, The Netherlands. § Partially supported by JBI RUG project 103511 (Groningen).

1The left-hand side of the Jacobi identity
∑

⟳{{f, g}⋆, h}⋆ = 0 is an obstruction to the associativity of
the star-product: whenever the Jacobi identity is violated, one cannot have that (f ⋆ g) ⋆ h = f ⋆ (g ⋆ h).

2On affine manifolds Nn, the only shape of coordinate changes is ũ = A ·u+ c⃗. Yet no loss of generality
occurs if the space Nn is the fibre in an affine bundle π of physical fields {u = ϕ(x)} over the space-
time Mm ∋ x; the Jacobians ∂ũ/∂u = A(x) are then constant over Nn. (The arguments of ⋆ are local
functionals of sections, ϕ ∈ Γ(π)→ k; the ⋆-product is marked by the variational Poisson brackets { , }P on
the jet space J∞(π).) The deformation quantization from [1] is lifted to the gauge field set-up in [2].

1

are ordered by Left ≺ Right. The edges carry the derivatives ∂i ≡ ∂/∂ui and ∂j ≡ ∂/∂uj,
respectively. Every such derivation acts on the content of the vertex at the arrowhead via
the Leibniz rule (and it does so independently from the other in-coming arrows, if any).3

The weights4 w(Γ) ∈ R of such graphs Γ are given by the integrals over configuration
spaces of k distinct points in the hyperbolic plane H2 (e.g., in its upper half-plane model).5

The associativity postulate for ⋆ yields the infinite system of quadratic algebraic equations
for the weights w(Γ) of graphs.6 Kontsevich shows [1] that the left-hand side JacP(·, ·, ·) :=∑

⟳{{·, ·}P , ·}P of the Jacobi identity for { , }P is the only obstruction to the balance As-
soc (f, g, h) := (f ⋆ g) ⋆ h− f ⋆ (g ⋆ h) = 0 at all powers ℏk of the deformation parameter at
once.7 The core question that we address in this note is how the mechanism Assoc = ♢ (Pois-
son) works explicitly, making the star-product ⋆ = ×+ ℏ { , }P + ō(ℏ) associative by virtue
of Jacobi identity for the Poisson bracket { , }P . Expanding the Kontsevich ⋆-product in ℏ
up to ō(ℏ3) and with respect to all the graphs Γi such that w(Γi) ̸= 0, we obtain8

r r⋆
f g

= r r
f g

+
ℏ1

1!
r r
f g

r
�
��
A
AU +

ℏ2

2!
r r
f g

rr��
�

B
B
BN��/SSw +

ℏ2

3

(
r r
f g

rr
?
@@R

@@R��	 + r r
f g

r
@@R��	

r
?

��	
)

+
ℏ2

6
r r
f g

r r
??

�
	

L R

“eye”

+

+
ℏ3

6

(
r r
f g

rr��
�

B
B
BN��/SSw

rr
�
�
�
���

C
C
C
CCW + r r

f g

r r
??

�
	

r

�JĴ

L R + r r
f g

r r
??

�
	r
��	@@R

R

L

+ r r
f g

rr
?
@@R

@@R��	

r
��	

?
+ r r

f g

r
@@R��	

r
?

��	

r
@@R
?

+ r r
f g

rr
?
@@R

@@R��	

r
R

A
AU

+ r r
f g

r
@@R��	

r
?

��	

r
�
���

)
+

+
ℏ3

3

(
r r
f g

rr
?
@@R

@@R��	r���HHj + r r
f g

r
@@R��	

r
?

��	r���HHj

)
+
ℏ3

6

(
r r
f g

r r
??

�
	

r
Q
QQs

U L R + r r
f g

r r
??

�
	
r

�
��+

L R + r r
f g

r
@@R��	

r
?

��	

r
?

HHHj

+ r r
f g

rr
?
@@R

@@R��	

r
?

����)
+ o(ℏ3). (1)

3For example, {f, g}P(u) = f
i←−−

Left
• j−−−→

Right
g = (f)

←−
∂i
∣∣
u
· Pij(u) ·

−→
∂j
∣∣
u
(g), see (1) above.

4Willwacher and Felder (2010) conjecture that the weights can be irrational numbers for some graphs.
5The wedge factors within the integrand in the formula for w(Γ) are copies of the kernel of the singular

linear integral operator (d ∗d)−1 in the hyperbolic geometry of H2, see [3]. Cattaneo and Felder also showed
that the ⋆-product of two functions f, g ∈ C∞(Nn → C) amounts to the Feynman path integral calculation
of the correlation function,

(
f ⋆ g

)
(u) =

∫
X(∞)=u

DXDη f
(
X(0)

)
× g
(
X(1)

)
× exp

(
i
ℏS
(
P, [X, η]

))
, in the

Ikeda–Izawa topological open string model on a disk D ≃ H2 with boundary ∂D ∋ 0, 1,∞; here X : D → Nn

and η : D → T ∗D ⊗ X∗(T ∗Nn). All details and further references are found in [3, 4]; still let us remember
that within the Ikeda–Izawa model, the perturbative expansions in ℏ run, in particular, over the graphs
with tadpoles (which must be regularized by hand) but at the same time, those path integral calculations
reproduce only the weighted oriented graphs without “eyes” (e.g., as in ← ·⇄· →, see Eq. (1) above).
Because, to the best of our knowledge, the eye-containing graphs Γi such that w(Γi) ̸= 0 cannot all at once
be eliminated from the star-product ⋆ via gauge transformations of its arguments and of its output, see
Remark 1 on p. 4 and [1], many graphs in the original construction of ⋆ were not recovered in [3]. Hence
there is an open problem to extend or modify the Ikeda–Izawa Poisson σ-model such that in the new set-up,
the correlation functions would expand with respect to all the Kontsevich graphs Γi with w(Γi) ̸= 0.

6That system solution is not claimed unique: one is provided by the Kontsevich integrals. Number-theo-
retic properties of those weights were explored by Kontsevich in the context of motives and by Willwacher–
Felder in the context of Riemann ζ-function.

7Ensuring the associativity Assoc (f, g, h) = 0, the tri-vector JacP(·, ·, ·) is not necessarily (indeed, far not
always!) evaluated at the three arguments f, g, h of the associator for ⋆.

8Balancing the associativity of a star-product order-by-order up to ō(ℏ3), Penkava and Vanhaecke (1998)
derived a set of weights for the (k + 2)-vertex Kontsevich graphs without loops. Yet no loops are destroyed
in either of the copies of ⋆ when the composition ⋆ ◦ ⋆ is taken; the associativity of loopless star-products is
only a part of the full claim for ⋆. So, we integrate over the configuration spaces of k ⩽ 3 points in H2 for
all the Kontsevich graphs (e.g., with loops).

2

In every composition ⋆ ◦ ⋆ the sums of graphs act on sums of graphs by linearity; each
incoming edge acts via the Leibniz rule (see above). The mechanism for Assoc (f, g, h) to
vanish is two-step: first, the sums in ⋆◦⋆ are reduced using the antisymmetry of the Poisson
bi-vector P . The output is then reduced modulo the (consequences of) Jacobi identity,9

JacP(f, g, h) = r r r
f g h

r
@@R��	

r
@

@@R
��	

− r r r
f g h

rHHHj����

r
��	�
���

L
R

− r r r
f g h

r
@@R��	

r
�

��	
@@R

= 0. (2)

For ⋆ given by (1), the associator contains 6 terms at ℏ, 38 terms ∼ ℏ2, and 218 terms ∼ ℏ3.
After the use of P ij = −Pji, we infer that Assoc (f, g, h) starts at ℏ2 with 2/3 times (2).
Next, there are 39 terms at ℏ3; we now examine how their sum A vanishes by virtue of (2)
and its differential consequences.10 Of them, three which are the easiest to recognize are11

2
3
P ij JacP(∂if, ∂jg, h) =

2

3
·

(
r r rr@@R��	

r
@

@@R
��	
r
? W

− r r rrHHHj����

r
��	�
���

r
? W

L
R − r r rr@@R��	

r
�

��	
@@R
r
? W

)
= 0, (3)

as well as 2
3
P ij JacP(f, ∂ig, ∂jh) = 0 and 2

3
P ij JacP(∂if, g, ∂jh) = 0. So, there remain 30

terms which vanish via (2) in a way more intricate than (3). It is clear that

Sf := P ij∂j JacP(∂if, g, h) =
i r r rr@@R��	

r
@

@@R
��	

#
"

!

r
A
A
AU

HHj

−
i r r rrHHHj����

r
��	�
���

#
"

!

r
A
A
AU

HHj L
R −

i r r rr@@R��	

r
�

��	
@@R

#
"

!

r
A
A
AU

HHj

= 0. (4)

Working out the Leibniz rule in (4), we collect the graphs according to the number of
derivatives falling on each of (f, g, h). The edge -j provides the differential orders12 (3, 1, 1),
(2, 2, 1), (2, 1, 2), and (2, 1, 1) twice. Likewise, we see (1, 1, 1) in (2) and (2, 2, 1) in (3).

Lemma. A tri-differential operator
∑

|I|,|J |,|K|⩾0 c
IJK ∂I ⊗ ∂J ⊗ ∂K vanishes identically

iff all its homogeneous components vanish: cIJK = 0 for every triple (I, J,K) of multi-
indices; here ∂L = ∂α1

1 ◦ · · · ◦ ∂αn
n for a multi-index L = (α1, . . . , αn). Moreover, the sums∑

|I|=i,|J |=j,|K|=k c
IJK ∂I ⊗ ∂J ⊗ ∂K are then zero for all (i, j, k); in a vanishing sum X of

graphs, we denote by Xijk its vanishing restriction13 to a fixed differential order (i, j, k).
The Poisson bi-vector components P ij can also serve as arguments of the Jacobiator:14

If := ∂j
(
JacP(P ij, g, h)

)
∂if =

�
��
r r rr@@R��	

r
@

@@R
��	

#
"

!?

� rj

−

�
��
r r rrHHHj����

r
��	�
���

#
"

!?

� r
R

j

−

�
��
r r rr@@R��	

r
�

��	
@@R

#
"

!?

� rj

= 0.

Likewise, Ig := ∂i
(
JacP(f,P ij, h)

)
∂jg = 0 and Ih := ∂i

(
JacP(f, g,P ij)

)
∂jh = 0. It is the

expansion of If , Ig, Ih via the Leibniz rule that produces the graphs with “eyes”. It also
yields an order (1, 1, 1) differential operator on (f, g, h) which cannot be obtained from (4).

9By default, the L ≺ R edge ordering equals the left ≺ right direction in which edges start on these pages.
10Within the variational geometry of Poisson field models (cf. [2]), a tiny leak of the associativity for ⋆

may occur, if it does at all, only at orders ℏ⩾4 because at most one arrow falls on JacP(·, ·, ·) in the balance
Assoc (f, g, h) = ō(ℏ3). But unlike the always vanishing first variation of a homologically trivial functional
JacP(·, ·, ·) ∼= 0, its higher-order variations can be nonzero.

11We use the Einstein summation convention; a sum over all indices is also implicit in the graph notation.
12In fact, the double edge to f contributes with zero at (3, 1, 1) due to the skew-symmetry Pij = −Pji.
13For example, relation (3) is the consequence of (4) at order (2, 2, 1); restriction of (4) to (2, 1, 1) yields(
r r rr@@R��	

r
@

@@R
��	rXXz

CCW
R

+ r r rr@@R��	

r
@

@@R
��	
rXXz
�
�
�

)
−

(
r r rrHHHj����

r
��	�
���

rXXz�
�
��

R + r r rrHHHj����

r
��	�
���

r
AAU�

�
��

R

)
−

(
r r rr@@R��	

r
�

��	
@@R
rXXz
�
�
�

+ r r rr@@R��	

r
�

��	
@@R
rXXXXzC
CW

R
)

= 0.

Similarly, we have Sg := Pij∂j JacP(f, ∂ig, h) = 0 and Sh := Pij∂j JacP(f, g, ∂ih) = 0.
14The three tadpoles produce JacP(∂iPij , g, h) ∂jf = 0, which plays its rôle in A111 (see the claim below).

3

Claim. The sum A of 39 terms at ℏ3 in Assoc (f, g, h) vanishes by virtue of restriction of
Sf , Sg, Sh and If , Ig, Ih to the orders (i, j, k) that are present in A. Indeed, we have15 A221

[3]
=

2
3
(Sf)221, A122

[3]
=2

3
(Sg)122, and A212

[3]
=− 2

3
(Sh)212, see (3). Finally, we deduce that A111

[8]
=1

6
(If −

Ih)111, A112
[9]
=
(
1
6
If +

1
6
Ig − 1

3
Sh

)
112

, A121
[4]
=1

3
(If − Ih)121, and A211

[9]
=
(
1
3
Sf − 1

6
Ig − 1

6
Ih
)
211

. The
total number of terms which we thus eliminate equals (3 + 3 + 3) + 8 + 9 + 4 + 9 = 39. □
Remark 1. The deformation quantization is a gauge theory: each argument • of ⋆marks its
gauge class [•] under the linear maps t : • 7→ [•] = •+ℏ

(
I∅ ∂i∂j(P ij)≡0×•+I⟳ ∂iP ij ∂j(•)

)
+

ℏ2
(0)

I tr r���A
AU
3

+
+ ℏ3

[
(1)

I tr
r≡0r�

SSw���
s
96 +

(2)

I tr
rr�

SSw���
s
9
?

+
(3)

I t r
≡0r r

�
��

A
AU

�SSw
* Y

+
(4)

I t rr
r
�
��

A
AU

�SSw
*
�

+
(5)

I tr r
≡0

�
��

A
AU
3

+
r

��/SSw
+

(6)

I tr r
r
ZZ~

?

B
B
BN

�
��

j
Y +

(7)

I t
rr r
?

�SSw

�JĴ
�

]
+o(ℏ3), where the constants

(α)

I ∈ k can be arbitrary16 and t is formally invertible over k[[ℏ]].
In turn, the star-products are gauged17 by using t: f ⋆′ g := t−1

(
t(f) ⋆ t(g)

)
. This degree of

freedom extends the uniqueness problem for Kontsevich’s solution ⋆ of Assoc (f, g, h) = 0.
Namely, not the exact balance of power series but an equivalence [=] of gauge classes (up to
unrelated transformations at all steps) can be sought in

[
[f] ⋆ [g]

]
⋆ [h] [=] [f] ⋆

[
[g] ⋆ [h]

]
.

Remark 2. Each graph Γ in (1) encodes the polydifferential operator of scalar arguments
in a coordinate-free way. The Jacobians ∂u/∂ũ of affine mappings appear on the edges
but then they join the content ℏP ij of internal vertices at the arrowtails,18 forming P̃αβ

from P ij. Independent from u ∈ Nn, these Jacobians stay invisible to all in-coming arrows
(if any). So, the operator given by a graph Γ with ℏP(u) in its vertices is equal to the one for
ℏP̃
(
ũ(u)

)
there. This reasoning works for the variational Poisson brackets { , }P on J∞(π)

for affine bundles π with fibre Nn over points x ∈ Mm, see [2]. The graphs Γ then yield
local variational polydifferential operators yet the pictorial language of [1] is the same.19

Acknowledgements. A.V.K. thanks the organizers of international workshop SQS’15 (August
3–8, 2015 at JINR Dubna, Russia) for stimulating discussions and partial financial support.

References

[1] Kontsevich M. Deformation quantization of Poisson manifolds. I // Lett. Math. Phys. 2003. V. 66, n. 3.
P. 157–216. arXiv:q-alg/9709040

[2] Kiselev A.V. Deformation approach to quantisation of field models. Preprint IHÉS/M/15/13. Bures-sur-
Yvette: IHÉS, 2015. P. 1–37.

[3] Cattaneo A. S., Felder G. A path integral approach to the Kontsevich quantization formula // Comm.
Math. Phys. 2000. V. 212, n. 3. P. 591–611. arXiv:q-alg/9902090

[4] Ikeda N. Two-dimensional gravity and nonlinear gauge theory // Ann. Phys. 1994. V. 235, n. 2. P. 435–
464. arXiv:hep-th/9312059

15By using the symbol
[m]
= we indicate the number m of terms that are eliminated at each step.

16The view [3] on ⋆-products as ℏ-expansions of path integrals shows that the graphs Γi in (1) are genuine
Feynman diagrams for the channel marked by P. The weights w(Γi) integrate over the energy of each
intermediate vertex. Quite naturally, a particle • shares its energy-mass with the interaction carriers P as
it gets coated by them. But no object • can spend more energy on growing its gauge tail than the amount
it actually has; hence every set [•] is bounded in the space of parameters I.

17For example, the loop graph at ℏ2/6 in (1) is gauged out by t(•) = •+ ℏ2

12 qp p�U3+ , see [1] for further details.
18E.g.,

←−
∂′
αP̃αβ

∣∣
ũ

−→
∂′
β =
←−
∂i

∂ui

∂ũα P̃αβ
∣∣
ũ(u)

∂uj

∂ũβ

−→
∂j =

←−
∂i · Pij

∣∣
u
·
−→
∂j so that {f, g}P(u)(u) = {f, g}P̃(ũ(u))

(
ũ(u)

)
.

19A sought-for extension of the Ikeda–Izawa topological open string geometry – namely, its lift from the
Poisson manifolds

(
Nn, { , }P

)
in [3, 4] to the variational set-up

(
J∞(π), { , }P

)
of jet spaces in [2] – is a

mechanism to quantize Poisson field models. This will be the object of another paper.

4

THE KONTSEVICH TETRAHEDRAL FLOWS REVISITED

A. BOUISAGHOUANE, R. BURING, AND A. KISELEV∗

Abstract. We prove that the Kontsevich tetrahedral flow Ṗ = Qa:b(P), the right-
hand side of which is a linear combination of two differential monomials of degree four
in a bi-vector P on an affine real Poisson manifold Nn, does infinitesimally preserve
the space of Poisson bi-vectors on Nn if and only if the two monomials in Qa:b(P) are
balanced by the ratio a : b = 1 : 6. The proof is explicit; it is written in the language
of Kontsevich graphs.

Introduction. The main question which we address in this paper is how Poisson struc-
tures can be deformed in such a way that they stay Poisson. We reveal one such method
that works for all Poisson structures on affine real manifolds; the construction of that
flow on the space of bi-vectors was proposed in [14]: the formula is derived from two dif-
ferently oriented tetrahedral graphs over four vertices. The flow is a linear combination
of two terms, each quartic-nonlinear in the Poisson structure. By using several examples
of Poisson brackets with high polynomial degree coefficients, we demonstrated in [1] that
the ratio 1 : 6 is the only possible balance at which the tetrahedral flow can preserve the
property of the Cauchy datum to be Poisson. But does the Kontsevich tetrahedral flow
Ṗ = Q1:6(P) with ratio 1 : 6 actually preserve the space of all Poisson bi-vectors? In
dimension 3 the description of Poisson brackets with smooth coefficients is known from
[6]; a brute force calculation then verifies the claim. In this paper we prove the claim
in full generality, namely, for all Poisson structures on all affine manifolds of arbitrary
finite dimension. The proof is graphical: namely, to prove that equation (1) holds, we
find an operator ♢, encoded by using the Kontsevich graphs, that solves the equation
(8). (As soon as solution (9) is obtained, verifying that it does satisfy the determining
equation (8) is elementary though tedious.1) The first by-product of our proof is that
there is no universal mechanism (that would involve the language of Kontsevich graphs)
for the tetrahedral flow to be trivial in the respective Poisson cohomology. Secondly,
the factorization mechanism, on which the proof of Theorem 3 is based, explains in
hindsight why the proven property of tetrahedral flows is false for the variational Pois-
son brackets. (This was observed empirically in [1]; the geometry of Poisson structures
over jet bundles is known from [19].)

Date: 31 October 2016.
2010 Mathematics Subject Classification. 53D55, 58E30, 81S10; secondary 53D17, 58Z05, 70S20.
Key words and phrases. Poisson bracket, affine manifold, graph complex, tetrahedral flow, Poisson

cohomology.
Address: Johann Bernoulli Institute for Mathematics and Computer Science, University of Gronin-

gen, P.O. Box 407, 9700 AK Groningen, The Netherlands. ∗E-mail : A.V.Kiselev@rug.nl.
1Having a solution ♢ to equation (8) is analogous to having a rational point on an elliptic curve:

finding either is hard, though verifying that it does satisfy the equation at hand is almost immediate.

1

2 A. BOUISAGHOUANE, R. BURING, AND A. V. KISELEV

The text is structured as follows. In section 1 we recall how oriented graphs can be
used to encode differential operators acting on the space of multivectors. In particular,
differential polynomials in a given Poisson structure are obtained in the frames of this
approach as soon as a copy of that Poisson bi-vector is placed in every internal vertex
of a graph. Specifically, the right-hand side Qa:b = a · Γ1 + b · Γ2 of the Kontsevich
tetrahedral flow Ṗ = Qa:b(P) on the space of bi-vectors on an affine Poisson manifold(
Nn,P

)
is a linear combination of two differential monomials, Γ1(P) and Γ2(P), of

degree four in the bi-vector P that evolves.
In this paper we find out at which balance a : b the Kontsevich tetrahedral flow
Ṗ = Qa:b(P) infinitesimally preserves the space of Poisson bi-vectors, that is, the bi-
vector P + ϵQa:b(P) + ō(ϵ) satisfies the equation

[[P + ϵQa:b(P) + ō(ϵ),P + ϵQa:b(P) + ō(ϵ)]] = ō(ϵ) via [[P ,P]] = 0;

here we denote by [[·, ·]] the Schouten bracket (see formula (11) on page 17; relevant
cohomological techniques are reviewed in Appendix A). Expanding, we obtain the
cocycle condition,

[[P ,Q1:6(P)]]
.
= 0 via [[P ,P]] = 0, (1)

with respect to the Poisson differential ∂P = [[P , ·]]. Viewed as an equation with respect
to the ratio a : b, condition (1) is the main object of our study.
Recent counterexamples [1] show that the bi-vector P + εQa:b(P) + ō(ε) stays in-

finitesimally Poisson only if the balance a : b in Qa:b is equal to 1 : 6. (Without extra
assumptions, the infinitesimal deformation P + εQa:b(P) + ō(ε) can be completed to
a finite deformation P(ε) at ε > 0 if the third Poisson cohomology group H3

P(N
n)

with respect to the differential ∂P = [[P , ·]] vanishes for the Poisson manifold
(
Nn,P

)
.

Therefore, unlike the Kontsevich formula for the flow Ṗ = Qa:b(P) which is universal
for all Nn and P , the integration issue is Poisson model-dependent.)
We now prove that the balance a : b = 1 : 6 in the Kontsevich tetrahedral flow is

universal in the above sense: for all Poisson bi-vectors P on every affine manifold Nn,
the deformation P + εQ1:6(P) + ō(ε) is infinitesimally Poisson. The proof is explicit:
in section 2 we reveal the mechanism of factorization – via the Jacobi identity – in (1)
at a : b = 1 : 6. Specifically, we find a linear polydifferential operator ♢(P , ·) that acts
on the filtered components (see below) of the Jacobiator Jac (P) := [[P ,P]] = 0 for the
bi-vector P ; the operator ♢ provides the factorization [[P ,Q1:6(P)]] = ♢(P , Jac (P)) of
the ∂P-cocycle condition, see (1), through the Jacobiator Jac (P) = 0. On the one side
of factorization problem (1) we expand the Poisson differential of the Kontsevich tetra-
hedral flow at the balance 1 : 6 into the sum of 39 graphs (see Figure 3 on page 6 and
Table 1 in Appendix D). On the other side of that factorization, we take the sum that
runs with undetermined coefficients over all those fragments of differential consequences
of the Jacobi identity [[P ,P]] = 0 which are known to vanish independently. In our rea-
soning the differential consequences of the identity Jac (P) := [[P ,P]] = 0 for Poisson
bi-vectors are filtered up to order three according to the differential orders (k, ℓ,m),
k + ℓ +m ⩾ 3, with respect to the arguments of the tri-vector [[P ,P]]. We recall that
every differential consequence of order (k, ℓ,m) for the Jacobi identity Jac (P) = 0 then
vanishes. To describe the differential operators that produce such consequences of the
Jacobi identity, we use the pictorial language of graphs: every internal vertex contains
a copy of the bi-vector P and the operators are reduced by using its skew-symmetry.

UNIVERSAL INFINITESIMAL DEFORMATION OF POISSON STRUCTURES 3

The resulting sum of graphs is reduced modulo the skew-symmetry of the bi-vector at
hand; there remain 7, 025 graphs, the coefficients of which are linear in the unknowns.
We now solve the arising inhomogeneous linear algebraic system. Its solution yields the
polydifferential operator ♢, encoded using graphs (see p. 11), that provides the sought-
for factorization [[P ,Q1:6]] = ♢(P , Jac(P)). It is readily seen from formula (9) that
the operator ♢ is completely determined by only 8 nonzero coefficients (out of 1132,
see their count in Appendix C). Therefore, although finding the operator ♢ was hard,
verifying that it does solve the factorization problem has become almost immediate.
This completes the proof of Theorem 3 and establishes the main result (namely, Corol-
lary 4 on page 4). In section 3 we analyze the properties of the solution at hand. (The
maximally detailed description of that solution ♢ is contained in Appendix D.) The
paper concludes with a list of open problems and five appendices.
In Appendix E we outline a different method to tackle the factorization problem,

namely, by making the Jacobi identity visible in (1) by perturbing the original structure
P so that it stops being Poisson. Hence it contributes to the right-hand side of (1) such
that the respectively perturbed bi-vector Q1:6(P) stops being compatible (in the sense
of (1)) with the perturbed Poisson structure. The first-order balance of both sides of
perturbed equation (1) then suggests the coefficients of those differential consequences
of the Jacobiatior which are actually involved in the factorization mechanism. The
coefficients of operators realized by graphs which were found by following this scheme
are reproduced in the full run-through that gave us the solution ♢ in section 2.

1. The main problem: From graphs to multivectors

1.1. The language of graphs. Let us formalise a way to encode polydifferential op-
erators – in particular multivectors – using oriented graphs. In an affine real manifold
Nn (here 2 ⩽ n < ∞), consider a chart Uα ↪→ Rn and denote the Cartesian coordi-

nates by x = (x1, . . . , xn). By definition, the decorated edge • i−→ • denotes at once
the derivation ∂/∂xi ≡ ∂i (that acts on the content of the arrowhead vertex) and the
summation

∑n
i=1 (over the index i in the object which is contained within the arrow-

tail vertex). As it has been explained in [8, 10, 15], the operator which every graph
encodes is equal to the sum (running over all the indexes) of products (running over all
the vertices) of those vertices content (differentiated by the in-coming arrows, if any).

For example, the graph (1)
i←−
L
P ij(x)

j−→
R

(2) encodes the bi-differential operator∑n
i,j=1(1)

←−
∂i ·P ij(x)·

−→
∂j (2). It then specifies the Poisson bracket on the chart Uα ⊂ Nn.

The bracket satisfies the Jacobi identity

Jac(P)(1,2,3) = • •
�� ?BBN

1 2 3

=

�������� @@R
@

@@R
q q

1 2 3

i j k

+

�������� @@R
@
@@R
q q

2 3 1

j k
i

+

�������� @@R
@

@@R
q q

3 1 2

k i
j

= 0. (2)

In our notation this encodes a sum over all (i, j, k); instead restricting to fixed (i, j, k)
corresponds to taking a coefficient of the differential operator (cf. Lemma 5), which
yields the respective component of the Jacobiator. Clearly, the Jacobiator Jac(P) is
totally skew-symmetric with respect to its arguments 1, 2, 3 .
From now on, let us consider only the oriented graphs whose vertices are either sinks

(with no issued edges) like the vertices 1, 2, 3 in (2) or tails for an ordered pair of

4 A. BOUISAGHOUANE, R. BURING, AND A. V. KISELEV

arrows, each decorated with its own index. (We refer to Jacobi identity (2), Figure 2
on p. 5, and to the graphical formulae on pp. 4, 10, 11, and 14). By definition, the
arrowtail vertices are called internal. For each internal vertex •, the pair of out-going
edges is ordered L ≺ R. Next, every internal vertex • carries a copy of a given Poisson
bi-vector P = P ij(x) ∂i ∧ ∂j with its own pair of indices. The ordering L ≺ R of
decorated out-going edges coincides with the ordering “first ≺ second” of the indexes
in the coefficients of P . Namely, the left edge (L) carries the first index and the other
edge (R) carries the second index. Moreover, we let the sinks be ordered (like 1, 2, 3

above), so that every such graph defines a polydifferential operator: its arguments are
thrown into the respective sinks.

Remark 1. In principle, we allow the presence of both the tadpoles and cycles over two
vertices (or “eyes”); see Figure 1. However, in hindsight there will be neither tadpoles
nor eyes in the solution which we shall have found in section 2 below.

��
��r? - r rR

I

Figure 1. A tadpole and an “eye”.

Remark 2. Under the above assumptions, there exist inhabited graphs that encode zero
differential operators. Namely, consider the graph with a double edge:

ra rz
i

L

j

R

R
�

= ra rz
j

L

i

R

R
�

= − ra rz
j

R

i

L

R
�

flip
= − ra rz.

i

L

j

R

R
�

By first relabelling the summation indices and then swapping L ⇄ R (and redrawing)
we evaluate the operator acting at z to

∑n
i,j=1 a

ij∂i∂j(z) = −
∑n

i,j=1 a
ij∂i∂j(z); whence

the operator is zero. In the same way, any graph containing a double edge encodes a
zero operator. Graphs can also encode zero differential operators in a more subtle way.
For example consider the wedge on two wedges:

-
�
�
�
��

B
B
B
BBN@@R��	

@
@
R

r r
r rr

3 2R

L

1

f g

= 0.
(3)

Swapping the labels 1 ⇄ 2 of the lower wedges does not change the operator. On the
other hand, doing the same in a different way, namely, by swapping ‘left’ and ‘right’ in
the top wedge introduces a minus sign. Hence the graph encodes a differential operator
equal to minus itself, i.e. zero. Proving that a graph which contains the left-hand side
of (3) as a subgraph equals zero is an elementary exercise (cf. Example 2 on p. 22).

Besides the trivial vanishing mechanism in Remark 2, there is Jacobi identity (2)
together with its differential consequences, which will play a key role in what follows.

UNIVERSAL INFINITESIMAL DEFORMATION OF POISSON STRUCTURES 5

1.2. The Kontsevich tetrahedral flow. In the paper [14], Kontsevich proposed the
construction of flows Ṗ = Q(P) on the spaces of Poisson structures on affine real
manifolds. In particular, he associated one such flow on the space of Poisson bi-vectors
P with the full graph over four vertices, that is, the tetrahedron. Up to symmetry,
there are two essentially different ways, resulting in Γ1 and Γ′

2, to orient its edges,
provided that every vertex is a source for two arrows and, as an elementary count
suggests, there are two arrows leaving the tetrahedron that act on the arguments of
the bi-differential operator which the tetrahedral graph encodes. The two oriented
tetrahedral graphs are shown in Fig. 2. Unlike the operator encoded by Γ1, that of Γ

′
2

�
�
�

����
�
�

��>
}b
bC
C
C
C
CCW
A
A
AU

�
�
��

PPPPq

�
�
�
��Γ1 =

R

L

R

L
R

L

L R

�
�

�
���

�
�

�
��=

}b
bC
C
C
C
CCW

?
?

PPPPq

�
�
�
�

�

Γ′
2 =

k′

ℓ

m′

j
ℓ′

k
m

i

Figure 2. The Kontsevich tetrahedral graphs encode two bi-linear bi-
differential operators on the product C∞(Nn)× C∞(Nn).

is generally speaking not skew-symmetric with respect to its arguments. By definition,
put Γ2 := 1

2
(Γ′

2(1 , 2) − Γ′
2(2 , 1)) to extract the antisymmetric part, that is, the bi-

vector encoded by Γ′
2. Explicitly, the quartic-nonlinear differential polynomials Γ1(P)

and Γ2(P), depending on a Poisson bi-vector P , are given by the formulae

Γ1(P) =
n∑

i,j=1

(n∑
k,ℓ,m,k′,ℓ′,m′=1

∂3P ij

∂xk∂xℓ∂xm

∂Pkk′

∂xℓ′

∂Pℓℓ′

∂xm′

∂Pmm′

∂xk′

)
∂

∂xi
∧ ∂

∂xj
(4a)

and

Γ2(P) =
n∑

i,m=1

(n∑
j,k,ℓ,k′,ℓ′,m′=1

∂2P ij

∂xk∂xℓ

∂2Pkm

∂xk′∂xℓ′

∂Pk′ℓ

∂xm′

∂Pm′ℓ′

∂xj

)
∂

∂xi
∧ ∂

∂xm
, (4b)

respectively. To construct a class of flows on the space of bi-vectors, Kontsevich sug-
gested to consider linear combinations, balanced by using the ratio a : b, of the bi-
vectors Γ1 and Γ2. We recall from section 1.1 that every internal vertex of each graph is
inhabited by a copy of a given Poisson bi-vector P , so that the linear combination of two
graphs encodes the bi-vector Qa:b(P) = a ·Γ1(P)+ b ·Γ2(P), quartic in P and balanced
using a : b. We now inspect at which ratio a : b the bi-vector P + εQa:b(P) + ō(ε) stays
infinitesimally Poisson for ε > 0, that is (cf. Appendix A),

[[P + εQa:b(P) + ō(ε),P + εQa:b(P) + ō(ε)]] = ō(ε). (5)

Expanding the left-hand side of equation (5), using the shifted-graded skew-symmetry
of the Schouten bracket [[·, ·]], and taking into account that [[P ,P]] = 0 if and only if
P is Poisson, we extract the equation

[[P ,Qa:b(P)]]
.
= 0 via [[P ,P]] = 0. (1)

The left-hand side of equation (1) can be seen in terms of graphs:

6 A. BOUISAGHOUANE, R. BURING, AND A. V. KISELEV

[[P , a · Γ1 + b · Γ2]] =

t
A
AAU

�
���

, a ·
�
�
���

��>
}bbC
C
CCW
AAU���

PPPq

�
���
+

b

2
·

(
�
�
��

�
��=

}bbC
C
CCW
??

PPPq

�
��
� −

�
�
��

�
��=

}bbC
C
CCW

=~

PPPq

�
��
�

)|
(6)

Remark 3. The graphical calculation of the Schouten bracket [[,]] of two arguments
amounts to the action – via the Leibniz rule – of every out-going edge in an argument
on all the internal vertices in the other argument. For the Schouten bracket of a k-vector
with an ℓ-vector, the rule of signs is this. For the sake of definition, enumerate the sinks
in the first and second arguments by using 0, . . ., k − 1 and 0, . . ., ℓ − 1, respectively.
Then the arrow into the jth sink in the second argument acts on the internal vertices of
the first argument, acquiring the sign factor (−)j; here 0 ⩽ j < ℓ. On the other hand,
the arrow to the ith sink in the first argument acts on the second argument’s internal
vertices with the sign factor −(−)(k−1)−i for 0 ⩽ i ⩽ k−1. We finally recall that having
a totally antisymmetric tri-vector in (6) means that a full skew-symmetrization over
the three sinks’ content is taken by using 1

3!

∑
σ∈S3

(−)σ.

For example, let a : b = 1 : 6 (specifically, a = 1 and b = 6). Then the left-hand
side of (1) takes the shape depicted in Figure 3. After the skew-symmetrization and

�
�
���
��>
}bbC
C
CCW
AAU

�PPPq

�
���

AAU���

−
�
�
���

��>
}bbC
C
CCW -
���

PPPq

�
���

AAU���

+
6

2

�
�
��

�
��=

}bbC
C
CCW
?

?PPPq

�
��
�

AAU���

− 6

2

�
�
��

�
��=

}bbC
C
CCW -

?

PPPq

�
��
�

AAU���

+
6

2

�
�
��

�
��=

}bbC
C
CCW�

~

PPPq

�
��
�

AAU���

− 6

2

�
�
��

�
��=

}bbC
C
CCWj

�

PPPq

�
��
�

AAU���

−
�

�
���

��>
}bbC
C
CCW
AAU���

PPPq

�
���

#
"

!

AAU�
�

�
�
��

+

�
�
���
��>
}bbC
C
CCW
AAU���

PPPq

�
���

#
"

!
A
A
A
A
AU

���
− 6

2

�
�
��

�
��=

}bbC
C
CCW
??

PPPq

�
��
�

#
"

!

AAU�
�
�
�
��

+
6

2

�
�
��

�
��=

}bbC
C
CCW
??

PPPq

�
��
�

#
"

!
A
A
A
A
AU

���

− 6

2

�
�
��

�
��=

}bbC
C
CCW

=~

PPPq

�
��
�

#
"

!

AAU�
�

�
�
��

+
6

2

�
�
��

�
��=

}bbC
C
CCW

=~

PPPq

�
��
�

#
"

!
A
A
A
A
AU

���

Figure 3. Incoming arrows act on the content of boxes via the Leibniz
rule; to obtain the tri-vector, the entire picture must be skew-symmetrized
over the content of three sinks.

expansion of all Leibniz rules, the sum in Figure 3 simplifies to 39 graphs; they are
listed in Table 1 on p. 21 below.
The reason why we are particularly concerned with the ratio a : b = 1 : 6 is that this

condition is necessary for equation (1) to hold.

UNIVERSAL INFINITESIMAL DEFORMATION OF POISSON STRUCTURES 7

Proposition 1 ([1]). The tetrahedral flow Ṗ = Qa:b(P) preserves the property of
P + εQa:b(P) + ō(ε) to be infinitesimally Poisson for all Poisson bi-vectors P on all
affine real manifolds Nn only if the ratio is a : b = 1 : 6.

Our proof amounts to producing at least one counterexample when any ratio other than
1 : 6 violates equation (1) for a given Poisson bi-vector P .

Proof. Let x, y, z be the Cartesian coordinates on R3. Consider the Poisson bracket
{u, v}P = x · det

(
∂(xyz + y, u, v)

/
∂(x, y, z)

)
given by the Jacobian, so that the coeffi-

cient matrix is

P ij =

(
0 x2y −x(xz+1)

−x2y 0 xyz

−x(xz+1) −xyz 0

)
.

The coefficient matrices of both bi-vectors are

Γ1(P) = 6 ·

(
0 −x5y −x4(xz+1)

x5y 0 −x3y

x4(xz+1) x3y 0

)
, Γ2(P) =

(
0 x5y x4(xz+2)

−x5y 0 −2x3y

−x4(xz+2) 2x3y 0

)
.

It is readily seen that no non-trivial linear combination a · Γ1(P) + b · Γ2(P) of the two
flows vanishes everywhere on R3 ∋ (x, y, z) for this example. Acting on the bi-vectors Γ1

and Γ2 by the Poisson differential [[P , ·]], we obtain two tri-vectors which are completely
determined by one component each. Namely, we have that

[[P ,Γ1(P)]]123 = 36x6yz + 48x5y, [[P ,Γ2(P)]]123 = −6x6yz − 8x5y.

Clearly, the balance a : b = 1 : 6 is the only ratio at which the non-trivial linear
combination Qa:b(P) = a · Γ1(P) + b · Γ2(P) solves the equation [[P ,Qa:b(P)]] ≡ 0. □

1.3. Main result. In fact, more is known — this time, about the sufficiency of the
condition a : b = 1 : 6. First, let us recall from [6] that on R3 with coordinates x, y,
and z (almost) all Poisson brackets amount to

{u, v}P = f · det
(
∂(g, u, v)

∂(x, y, z)

)
for u, v ∈ C∞(R3), (7)

where the free parameter g is a function and the parameter f is a density so that

f(x, y, z) · det
(
∂(g, u, v)

∂(x, y, z)

)
dxdydz = f(x, y, z)

∣∣∣∣∣x=x(x′,y′,z′)
y=y(x′,y′,z′)
z=z(x′,y′,z′)

· det
(

∂(g, u, v)

∂(x′, y′, z′)

)
dx′dy′dz′.

In any given coordinate system the parameter f can be chosen freely; then it is recal-
culated as shown above.

Proposition 2 (R3,{·, ·}P). The tetrahedral flow Ṗ = Q1:6(P) does preserve the prop-
erty of P + εQa:b(P) + ō(ε) to be infinitesimally Poisson for all Poisson structures (7)
on R3.

We use Proposition 2 merely as an heuristic motivation to our main Theorem 3 (see
below) in which the claim from Proposition 2 is extended to all Poisson structures
on all finite-dimensional affine real manifolds. Therefore, in hindsight, Proposition 2
above will have been proven rigorously as soon as Theorem 3 is established by the end

8 A. BOUISAGHOUANE, R. BURING, AND A. V. KISELEV

of the next section. (In the meantime, a computer-assisted proof by direct calculation
is provided for Proposition 2 in Appendix B.)
So, let us no longer restrict the tetrahedral flowQ1:6(P) to any specific class of Poisson

bi-vectors P but let us work in the full generality. We now examine the mechanism for
the tri-vector [[P ,Q1:6(P)]] in (1) to vanish by virtue of the Jacobi identity Jac(P) :=
[[P ,P]] = 0 for a given Poisson bi-vector P on Nn of any dimension n ⩾ 3. The task is
to factorize the content of Figure 3 through the Jacobi identity in (2).

Theorem 3. There exists a polydifferential operator

♢ ∈ PolyDiff
(
Γ(
∧2

TNn)× Γ(
∧3

TNn)→ Γ(
∧3

TNn)
)

which solves the factorization problem

[[P ,Q1:6(P)]] = ♢
(
P , Jac(P)

)
. (8)

The polydifferential operator ♢ is realised using graphs in formula (9), see p. 11 below.

Remark 4. Whenever a solution ♢ of (8) is found – and if it contains a reasonably small
number of Leibniz-rule graphs as, e.g., our solution (9), see page 11 below – one can
verify the factorization in (8) by a straightforward calculation. Indeed, by expanding
the Leibniz rules and collecting similar terms, one obtains 39 graphs from the left-hand
side (see Figure 3 and the encoding of those graphs in Table 1 on page 21).

Corollary 4 (Main result). Whenever a bi-vector P on an affine real manifold Nn is
Poisson, the deformation P + εQ1:6(P) + ō(ε) using the Kontsevich tetrahedral flow is
infinitesimally Poisson.

Remark 5. It is readily seen that the Kontsevich tetrahedral flow Ṗ = Q1:6(P) is well
defined on the space of Poisson bi-vectors on a given affine manifold Nn. Indeed, it does
not depend on a choice of coordinates up to their arbitrary affine reparametrisations.
In other words, the velocity Ṗ

∣∣
u∈Nn does not depend on the choice of a chart U ∋ u

from an atlas in which only affine changes of variables are allowed. (Let us remember
that affine manifolds can of course be topologically nontrivial.)
Suppose however that a given affine structure on the manifold Nn is extended to a

larger atlas on it; for the sake of definition let that atlas be a smooth one. Assume that
the smooth structure is now reduced – by discarding a number of charts – to another
affine structure on the same manifold. The tetrahedral flow Ṗ = Q1:6(P) which one

initially had can be contrasted with the tetrahedral flow ˙̃P = Q1:6(P̃) which one finally
obtains for the Poisson bi-vector P̃

∣∣
ũ(u)

= P
∣∣
u
in the course of a nonlinear change of

coordinates on Nn. Indeed, the respective velocities Ṗ and ˙̃P can be different whenever
they are expressed by using essentially different parametrisations of a neighbourhood of
a point u in Nn. For example, the tetrahedral flow vanishes identically when expressed
in the Darboux canonical variables on a chart in a symplectic manifold. But after a
nonlinear canonical transformation, the right-hand side Q1:6(P̃) can become nonzero at
the same points of that Darboux chart.
This shows that an affine structure on the manifold Nn is a necessary part of the

input data for construction of the Kontsevich tetrahedral flows Ṗ = Q1:6(P).

UNIVERSAL INFINITESIMAL DEFORMATION OF POISSON STRUCTURES 9

2. Solution: From graphs to polydifferential operators

Expanding the Leibniz rules in [[P ,Q1:6(P)]], we obtain the sum of 39 graphs with
5 internal vertices and 3 sinks (so that from Figure 3 we produce Table 1, see page 21
below). By construction, the Schouten bracket [[P ,Q1:6(P)]] ∈ Γ(

∧3 TNn) is a tri-
vector on the underlying manifold Nn, that is, it is a totally antisymmetric tri-linear
polyderivation C∞(Nn)×C∞(Nn)×C∞(Nn)→ C∞(Nn). At the same time, we seek to
recognize the tri-vector [[P ,Q1:6(P)]] as the result of application of the (poly)differential
operator ♢ (see (8) in Theorem 3) to the Jacobiator Jac(P) (see (2) on p. 3).
We now explain how the operator ♢ is found by using the method of undetermined

coefficients in an expansion of all relevant graphical differential consequences of the Ja-
cobi identity.2 By construction, the left-hand side of every such differential consequence
is a sum of graphs with 5 internal vertices, of which 2 belong to the Jacobiator Jac(P).
We recall that for strictly positive differential order consequences of the Jacobi identity
Jac(P) = 0, the mechanism for operator ♢ to attain zero value at Jac(P) = 0 is non-
trivial. In fact, it refers to a (possibility of) splitting of every such consequence into the
fragments which vanish independently from each other.

Lemma 5 ([2]). A tri-differential operator C =
∑

|I|,|J |,|K|⩾0 c
IJK ∂I ⊗ ∂J ⊗ ∂K with

coefficients cIJK ∈ C∞(Nn) vanishes identically iff all its homogeneous components
Cijk =

∑
|I|=i,|J |=j,|K|=k c

IJK ∂I ⊗ ∂J ⊗ ∂K vanish for all differential orders (i, j, k) of

the respective multi-indices (I, J,K); here ∂L = ∂α1
1 ◦ · · · ◦ ∂αn

n for a multi-index L =
(α1, . . . , αn).

In practice, Lemma 5 states that for every arrow falling on the Jacobiator (for which,
in turn, a triple of arguments is specified), the expansion of the Leibniz rule yields
four fragments which vanish separately. Namely, there is the fragment such that the
derivation acts on the content P of the Jacobiator’s two internal vertices, and there
are three fragments such that the arrow falls on the first, second, or third argument of
the Jacobiator. It is readily seen that the action of a derivative on an argument of the
Jacobiator effectively amounts to an appropriate redefinition of its respective argument.
Therefore, a restriction to the order (1, 1, 1) is enough in the run-through over all the
graphs which contain Jacobiator (2) and which stand on the three arguments f, g, h of
the tri-vector ♢(P , Jac(P)).
Remark 6. In all the above reasoning, the set {1 , 2 , 3} of three arguments of the Ja-
cobiator need not coincide with the set {f, g, h} of the arguments of the tri-vector
♢(P , Jac(P)). Of course, the two sets can intersect; this will provide a natural fil-
tration for the components of solution (9). Namely, the number of elements in the
intersection runs from three for the first term to zero in the second or third graph.

In fact, Remark 6 reveals a highly nontrivial role of the operator ♢ in (8). Indeed,
some of the three internal vertices of its graphs can be arguments of Jac(P) whereas
some of the other such vertices (if any) can be tails for the arrows falling on Jac(P).
In retrospect, the two subsets of such vertices of ♢ do not intersect; every vertex in the
intersection, if it were nonempty, would produce a two-cycle, but there are no “eyes”
in (9).

2Another method for solving the factorization problem is outlined in Appendix E.

10 A. BOUISAGHOUANE, R. BURING, AND A. V. KISELEV

By ordering the Leibniz-rule graphs in the operator ♢ according to the number
of Jacobiator’s arguments which simultaneously are the arguments of (totally skew-
symmetric) tri-vector [[P ,Q1:6(P)]] = ♢(P , Jac(P)), we count the number of variants in
the run-through over all the admissible graphs. (With reference to Fig. 4 below, this is
done in Appendix C, see p. 19.) In total, there are 1132 variants.

“3”:
s s s
• •

�
��� ?

A
AAU

() () ()

“2”:
s s s
• •

?

A
AAU

() () ()

^

“1”(1):
s s s

• •
A
A
AU

() () ()

^ R

“1”(2):
s s s

• •

() () ()

�
�
��U U

“0”(1):
s s s

() () ()

�
�
�
�
�
��

C
C
C
C
C
CW R

• •
“0”(2):
s s s

() () ()

U U U

• •

Figure 4. This is the list of all different types of differential consequ-
ences of the Jacobi identity which are linear in the Jacobiator and which
are totally skew-symmetric with respect to the sinks. The list is ordered
by the number of ground vertices on which the Jacobiator stands. The
number of graphs for each type is deduced in Appendix C: namely, from
top-left to bottom-right, there are 216, 432, 108, 288, 24, and 64 Leibniz-
rule graphs. The total number of differential consequences is 1132.

We now split all these differential consequences of the Jacobi identity Jac(P) = 0
by using Lemma 5 (with respect to the total differential order (i, j, k) for arguments
of Jac(P) if more than one arrow falls on it), ascribing an undetermined coefficient
to every such separately vanishing fragment. That is, we do not restrict only to the
differential order (1,1,1) with respect to the arguments of Jac(P) for every number of
derivations acting on the Jacobiator; we agree that this way to introduce the undeter-
mined coefficients is not minimal. However, we always restrict to the order (1, 1, 1) with
respect to (f, g, h). We thus have 28, 202 unknowns introduced (counted with possible
repetitions of graphs which they refer to).3 Now we expand all the Leibniz rules that
run over the internal vertices in every Jacobiator; simultaneously, the object Jac(P) is
expanded using formula (2). As soon as we take into account the order L ≺ R and
the antisymmetry of graphs under the reversion of that ordering at an internal vertex,
the graphs that encode zero differential operators are eliminated. There remain 7, 025
admissible graphs with 5 internal vertices and 3 sinks; the coefficient of every such
graph is a linear combination of the undetermined coefficients of the splinters which the

3The relevant algebra of sums of graphs modulo skew-symmetry and the Jacobi identity has been
realized in software by the second author. An implementation of those tools in the problem of high-
order expansion of the Kontsevich ⋆-product will be explained in a separate paper [3].

UNIVERSAL INFINITESIMAL DEFORMATION OF POISSON STRUCTURES 11

Leibniz-rule graphs (see Figure 4) produced from Jac(P). In conclusion, we view (8)
as the system of 7025 linear inhomogeneous equations for the coefficients of graphs in
the operator ♢. Solving this linear system is a way towards a proof of our main results
(which is expressed in Corollary 4); The process of finding a solution ♢ itself does not
constitute that proof. Therefore, the justification of the claim in Theorem 3 will be
performed separately.
In the meantime, using software tools, we solve this linear algebraic system at hand.

The duplications of graph labellings are conveniently eliminated by our request for the
program to find a solution with a minimal number of nonzero components. Totally
antisymmetric in tri-vector’s arguments, the solution consists of 27 Leibniz-rule graphs,
which are assimilated into the sum of 8 manifestly skew-symmetric terms as follows:

♢ =
• •

� ? JĴ
() () ()

?

@
@R�

��
�

? ?

rr r
+ 3

∑
τ∈S2

(−)τ

?
�

? ?
�
�
��@

@
@R

B
B
B
BBN

?�
�
�
��

• •

[() ()] ()

rr
r

+ 3
∑
⟳

?
�HHHj ?

�
�

�	

@
@
@R

B
B
B
BBN

?�
�
�
��

• •

() () ()

rr
r

+ 3
∑
⟳

{
@@R
���	 @@R

• •

AAU

?

�
�
�
��

() () ()

??

rr r +
• •

@@R HHHY�
��*

?

�
�
�

?

?

??

r rr
() () ()

+

?
�

�= HHHY
����

?
?

@@R�
�
�
���

() () ()

• •
?

r rr

}

+ 3
∑
σ∈S3

(−)σ
{

�
��

HHHj
?

����
?

?

@@R�
�

�
�
��
() ()()

• •
?

r rr
+

C
CW HHHY�
��*

?
?

@@R�
�
�
���

() ()()

• •
?

?

r rr

}
.

(9)

To display the L ≺ R ordering at every internal vertex and to make possible the
arithmetic and algebra of graphs, we use the notation which is explained in Appendix D
below.

Proof of Theorem 3. So far, we have constructed operator (9); We emphasize that it
is completely determined by as few as only eight integer coefficients. This permits a
rigorous proof of our main claim: namely, let us show that operator (9) does satisfy
equation (8).
First expand the sums in (9), which gives us 27 Leibniz graphs. Now expand all the

Leibniz rules; this yields the sum of 201 Kontsevich graphs with 3 sinks and 5 internal

12 A. BOUISAGHOUANE, R. BURING, AND A. V. KISELEV

vertices: together with their coefficients, they are listed in Table 3 in Appendix D, see
page 20. Clearly, manipulating that number of graphs is still possible for man.
Because we are free to enumerate the five internal vertices in every graph in a way we

like, and because the ordering of every pair of outgoing edges is also under our control,
at once do we bring all the graphs to their normal form.4

It is readily seen that there are many repetitions in Table 3. Now, collect the similar
terms. There remain only 39 terms with nonzero coefficients. One verifies that those 39
terms are none other than the entries of Table 1, that is, realizations of the 39 graphs
in the left-hand side of (8). This shows that equation (8) holds for the operator ♢
contained in (9). The proof is complete. □

3. Properties of the found solution

Remark 7. Let us recall that equation (1) yields the linear system of 7,025 inhomoge-
neous equations for the coefficients of 1132 patterns from Fig. 4. This shows that the
algebraic system at hand is extremely overdetermined. Moreover, out of those 1132 ad-
missible totally antisymmetric graphs, solution (9) involves only 8 of them. In this
sense, the factorising operator ♢ in (1) is special; for it expands via (9) over a very
low dimensional affine subspace in the affine space of unknowns in that inhomogeneous
linear algebraic system.

Property 1. The relevant Leibniz-rule graphs, with respect to which the solution
♢(P , ·) expands, do not contain tadpoles nor two-cycles (or “eyes”, see Fig. 1 on p. 4).
• None of the arrows that act back on the Jacobiator is issued from any of its argu-
ments.
• In all the graphs the source vertices (if any), on which no arrows fall after all the
Leibniz rules are expanded, belong to the Jacobiator (cf. (2) on p. 3).

Property 2. The found solution ♢ does contain the graphs in which two or three
arrows fall on the Jacobiator.5

It has been explained in [8, 10] that the existence of two or more such arrows falling
on the equation [[P ,P]] = 0 is an obstruction to an extension of the main claim,

[[P ,Q1:6(P)]]
·
= 0 via [[P ,P]] = 0, (1)

to the infinite-dimensional geometry of jet spaces J∞(π) for affine bundles over a man-
ifold Mm or jet spaces J∞(Mm → Nn) of maps from Mm, and of variational Poisson
brackets { , }P for functionals on such jet spaces (see [19, 7] and [9, 10]). Namely, it
can then be that

[[P ,Q1:6(P)]] ≇ 0 through [[P ,P]] ∼= 0. (10)

4The normal form of a graph is obtained by running over the group S5× (Z2)
5 of all the relabellings

of internal vertices and swaps L ⇄ R of orderings at each vertex. (We recall that every swap negates
the coefficient of a graph; the permutations from S5 are responsible for encoding a given topological
profile in seemingly “different” ways.) By definition, the normal form of a graph is the sign (times
coefficient) followed by the minimal sequence of five ordered pairs of target vertices viewed as 10-digit
base-(3 + 5) numbers. (By convention, the three ordered sinks are enumerated 0, 1, 2 and the internal
vertices are the octonary digits 3, . . . , 7.)

5For instance, the first term in ♢ is the tripod standing on Jac(P).

UNIVERSAL INFINITESIMAL DEFORMATION OF POISSON STRUCTURES 13

We denote here by [[,]] the variational Schouten bracket; the variational bi-vector Q1:6

is constructed from the variational Poisson bi-vector P by using techniques from the
geometry of iterated variations of functionals (see [8, 9, 10]). An explicit counterexample
of (10) is known from [1] for the variational Poisson structure of the Harry Dym partial
differential equation.
The reason why the obstruction arises is that in the variational setting, the second

and higher order variations of a trivial integral functional Jac(P) ∼= 0 in the horizontal
cohomology can still be nonzero (although its first variation would of course vanish).6

Remark 8. Uniqueness is currently not claimed for the found solution ♢(P , ·). The
eight graphs in (9) represent a linear differential operator with respect to the Jacobiator
Jac(P). However, a quadratic nonlinearity with respect to the two-vertex argument
Jac(P) could be hidden in the five-vertex graphs in formula (9), so that it would in
fact encode a bi-differential operator ♢(P , · , ·). If this be the case, expansion of one or
the other copy of the Jacobiator using (2) in such a polydifferential operator ♢(P , · , ·)
would produce two seemingly distinct linear differential operators ♢(P , ·).

The scenarios to build the bi-linear, bi-differential terms in the operator ♢ are drawn
in Figure 5 below. We consider – in fact, without any loss of generality – only those
8 Leibniz-rule graphs in which

• the three arguments of each copy of Jacobiator (2) are different; in particular,
• neither of the Jacobiators acts on the other copy by two or three arrows (so that
only none or one such arrow is possible).

We recall that known solution (9) is the sum of 39 graphs from which a linear dependence
on the Jacobiator Jac(P) is retrieved by using the 27 Leibniz-graphs (see Table 2 on
p. 22). Let us inspect whether solution (9) is just linear in Jac(P) or there is a bi-linear
dependence in Jac(P) hidden in (9).
To this end, we took (with undetermined coefficients) the 27 Leibniz-graphs from (9),

which are linear in Jac(P), and the 8 skew-symmetrized new patters from Fig. 5 (resp.,
quadratic in Jac(P)). By equating their sum to zero and expanding all the Leibniz rules
using the tool [3], we examined the arising system of linear algebraic equations. Due to
the presence of homogeneous equations which involve only one unknown, specifically,
the coefficient of a new Leibniz-graph from Fig. 5, and by noting that such is the case
for every graph from that set, we conclude that the general solution of the homogeneous
problem is necessarily linear in the Jacobiator, whence the non-existence of a quadratic
part in (9) is manifest. Our computer-assisted reasoning motivates the following claim.

Conjecture 6. There is no quadratic part in all the solutions of equation

[[P ,Q1:6(P)]] = ♢
(
P , Jac(P), Jac(P)

)
(8′)

that expand with respect to the 39 graphs in (9).

6The same effect has been foreseen for a variational lift of deformation quantisation [15]: it has
been argued in [10] why the associativity of noncommutative star-product ⋆ = × + ℏ{ · , · }P + ō(ℏ)
can leak and it has been shown in [2] that if it actually does at O(ℏk), the order k at which this leak
of associativity can occur is high: k ⩾ 4.

14 A. BOUISAGHOUANE, R. BURING, AND A. V. KISELEV

“3”:
s

• • • •
�

�
�	

�
�
�� ?

() () ()

“2”(1):
s

• • • •

?

�
�
�� ?

() () ()

“2”(2):
s

• • • •

U

�
�

�	

�
�
��

() ()()

“1”(1):
s

• • • •

U ? ?
() ()()

“1”(2):
s

• • • •

U R

�
�

�	
()()()

Figure 5. The Leibniz-graphs by using which a quadratic –with respect
to the Jacobiator – part ♢(P , ·, ·) of the factorizing operator could be
sought for in (8); such quadratic part (if any) itself is necessarily totally
skew-symmetric with respect to the three sinks ().

Still it could be for equation (8′) that a quadratic dependence of ♢ on Jac(P) is
established for a solution ♢ which differs from any operator ♢ (P , ·) that expands only
with respect to the graphs contained in (9).

4. Discussion

4.1. For the factorisation [[P ,Q1:6(P)]] = ♢
(
P , Jac(P)

)
to guarantee that the equality

∂P
(
Q1:6(P)

)
= 0 holds if Jac(P) = 0, its mechanism is nontrivial. Relying on Lemma 5

(see [2]), it tells us how the differential consequences of Jacobi identity are split into
separately vanishing expressions. This mechanism works not only in the construction
of flows that satisfy (1) but also in the associativity,

AssocP(f, g, h) := (f ⋆ g) ⋆ h− f ⋆ (g ⋆ h)
·
= 0 via [[P ,P]] = 0,

of the non-commutative unital star-product ⋆ = ×+ ℏ{ · , · }P + o(ℏ). The formula for
⋆-products was given in [15], establishing the deformation quantisation × 7→ ⋆ of the
usual product × in the algebra C∞(Nn) ∋ f, g, h on a finite-dimentional affine Poisson
manifold (Nn,P), see also [2, 10]. In fact, the construction of graph complex and the
pictorial language of graphs [14, 15] that encode polydifferential operators is common
to all these deformation procedures (cf. [3], also [18]).

Open problem 1. Consider the Kontsevich star-product ⋆ = × + ℏ{ · , · }P + o(ℏ) in
the algebra C∞(Nn)[[ℏ]] on a finite-dimensional affine Poisson manifold (Nn,P). Given

UNIVERSAL INFINITESIMAL DEFORMATION OF POISSON STRUCTURES 15

by the tetrahedra Γ1 and Γ′
2 (see Fig. 2 on p. 5), the infinitesimal deformation P 7→ P+

εQ1:6(P)+o(ε) induces the infinitesimal deformation ⋆ 7→ ⋆+ℏε [[[[Q1:6(P), ·]], ·]]+o(ε)
of the star-product. What are the properties of this infinitesimally deformed ⋆(ε)-
product ? In particular, is the condition that Q1:6(P) be ∂P-trivial necessary for the
⋆(ε)-product to be gauge-equivalent to the unperturbed ⋆-product at ε = 0?

We recall that the theory of (infinitesimal) deformations of associative algebra struc-
tures is very well studied in the broadest context (e.g., of the Yang–Baxter equation,
Witten–Dijkgraaf–Verlinde–Verlinde (WDVV) equation, Frobenius manifolds and F-
structures, etc.), see [17]. We expect that in that theory’s part which is specific to the
deformation of associative structures on finite-dimensional affine Poisson manifolds Nn,
there must be a dictionary between the construction of Kontsevich flows for spaces of
Poisson bi-vectors and other instruments to deform the associative product in the al-
gebra C∞(Nn).

4.2. The Kontsevich tetrahedral flow Ṗ = Q1:6(P) is a universal procedure to deform
a given Poisson bi-vector P on any finite-dimensional affine real manifold Nn (i. e. not
necessarily topologically trivial). The infinitesimal deformation P 7→ P+εQ1:6(P)+o(ε)
can be completed to the construction of Poisson bi-vector P(ε) such that P(ε = 0) = P
and d

dε

∣∣
ε=0
P(ε) = Q1:6(P) if the third Poisson cohomology group H3

P(N
n) with respect

to the Poisson differential ∂P = [[P , ·]] vanishes for the manifold Nn (see Appendix A
below). In the symplectic case, i. e. for n even and bracket { · , · }P nondegenerate, the
Poisson complex is known to be isomorphic to the de Rham complex for Nn (see [16]).
We are not yet aware of any way to constrain the Poisson cohomology groups Hk

P(N
n)

for degenerate Poisson brackets { · , · }P on real manifolds Nn of not necessarily even
dimension n < ∞. (E.g., the algorithm for construction of cubic Poisson brackets on
the basis of a class of R-matrices, which is explained in [16], yields a rank-six bracket
on N9 ⊂ R9.)

4.3. The second Poisson cohomology group H2
P(N

n) of the manifold Nn, if nonzero,
provides room for the ∂P-nontrivial deformations of P usingQ1:6(P) such thatQ1:6(P) ̸=
[[P ,X]] for all globally defined 1-vectors X on Nn. In particular, this implies that there
are no ∂P-nontrivial tetrahedral graph flows on even-dimensional star-shaped domains
equipped with nondegenerate Poisson brackets.
A possibility for the right-hand side Q1:6(P) of the tetrahedral flow to be ∂P-trivial

is thus a global, topological effect; it cannot always be seen within a single chart in Nn.
Moreover, it is not universal with respect to the calculus of graphs.

Claim 7. In contrast with Theorem 3, there is no dimension-independent ∂P-triviality
mechanism which would be expressed for the tetrahedral flow Ṗ = Q1:6(P) in terms of
the Kontsevich graphs (see §1.1 and [14, 15]) and hence, which would be universal 7 with
respect to all Poisson structures P on all finite-dimensional affine manifolds Nn.

7Kontsevich notes [14] that if n = 2 so that every bi-vector P on N2 is Poisson and every flow

Ṗ = Qa:b(P) preserves this property, the tetrahedron Γ1 (or, equivalently, the velocity Q1:0(P)) is
always ∂P -exact. The required 1-vector field X(P) in the coboundary statement Q1:0(P) = [[P,X]]

can be expressed in terms of the bi-vector P, e.g., by the Leibniz-rule graph X = p pp
?

�
R	

?
�
�
�
�I. (This is a

particular, not general solution.) We recall that after the dimension n is fixed (here n = 2), a given

16 A. BOUISAGHOUANE, R. BURING, AND A. V. KISELEV

Proof. Indeed, consider the ∂P-coboundary equation,

Γ1(P) + 6Γ2(P) = [[
q
�
��
A
AU , X]],

where the graphs Γ1 and Γ′
2, inhabited by a copy of the Poisson bi-vector P in every

internal vertex, are shown in Fig. 2 on p. 5. Because there are four copies of P in each
tetrahedron and the Λ-graph in ∂P = [[P , ·]] contains one copy of the bi-vector P , the
number of internal vertices in the 1-vector Xmust be equal to 3. Likewise, we recall that
neither there are tadpoles in both P and Q(P) nor does the Poisson differential [[P , ·]]
destroy any tadpoles (cf. Remark 3 on page 6); Therefore, the graph that encodes X

may not contain any tadpoles. The only such Kontsevich graph with three internal
vertices but without tadpoles is

X = const · q qq ?
�
@@R���

?
� .

Now it is readily seen that the Schouten bracket of X with the Poisson bi-vector P
does contain a source vertex (to which no arrows arrive). But there is no such vertex
in either of the tetrahedra within the bi-vector Q1:6(P) in the left-hand side of the
∂P-cocycle equation Q1:6(P) = ∂P(X). This shows that there is no universal solution
X(P) expressed for all P in terms of graphs. □

Remark 9. The same reasoning works for all the Kontsevich graph flows such that none
of the graphs besides the bi-vector P itself contains a source vertex (that is, neither
any graph in the flow nor the 1-vector X).

Open problem 2. The formalism developed in [14] suggests that there are, most likely,
infinitely many Kontsevich graph flows on the spaces of Poisson bi-vectors on finite-
dimensional affine Poisson manifolds. Forming an example Q1:6(P) of such a cocycle
in the graph complex, the tetrahedra Γ1 and Γ′

2 in Fig. 2 are built over four internal
vertices. What is or are the next – with respect to the ordering of natural numbers –
Kontsevich graph cocycle(s) built over five or more internal vertices ?

4.4. The tetrahedral flow Ṗ = Q1:6(P) preserves the space {P ∈ Γ(
∧2 TNn) | [[P ,P]] =

0} of Poisson bi-vectors; this is guaranteed by Theorem 3 that asserts ∂P(Q1:6)
·
=

0 within the (graded-)commutative geometry of finite-dimensional affine real mani-
folds Nn.

Open problem 3. Does the proven property,

[[P ,Q1:6(P)]]
·
= 0 via [[P ,P]] = 0, (1)

generalize to the formal noncommutative symplectic supergeometry [11], to the calcu-
lus of multivectors performed by using their necklace brackets (see [9] and references
therein), and to Poisson structures on the commutative non-associative unital algebras
of cyclic words (e. g., see [20]) ?

differential polynomial in P can be encoded by the Kontsevich graphs in non-unique way. Details will
be discussed elsewhere.

UNIVERSAL INFINITESIMAL DEFORMATION OF POISSON STRUCTURES 17

Appendix A. The Poisson cohomology

Let us recall several necessary facts from the deformation theory; this material is stan-
dard [5]. Denote by ξi the parity-odd canonical conjugate of the variable xi for every
i = 1, . . ., n (see [9] for discussion about the reverse parity symplectic duals). Every
bi-vector is then realised in terms of the local coordinates xi and ξi on ΠT ∗Nn by using
P = 1

2
⟨ξiP ij(x) ξj⟩. We denote by [[·, ·]] the Schouten bracket, i.e. the parity-odd Pois-

son bracket which is locally determined on ΠT ∗Rn by the canonical symplectic structure
dx ∧ dξ (see [8] for details). Our working formula is8

[[P ,Q]] = (P)
←−
∂

∂xi
·
−→
∂

∂ξi
(Q)− (P)

←−
∂

∂ξi
·
−→
∂

∂xi
(Q). (11)

To be Poisson, a bi-vector P must satisfy the master-equation [[P ,P]] = 0, of which
formula (2) is the component expansion with respect to the indices (i, j, k) in the tri-
vector [[P ,P]](x, ξ).
Under an infinitesimal deformation P(ε) = P+εQ+ ō(ε) of the bi-vector P satisfying

[[P ,P]] = 0, the bi-vector P(ε) remains Poisson only if [[P(ε),P(ε)]] = ō(ε), whence
[[P ,Q]] = 0.

Remark 10. For a Poisson bi-vector P , the operator ∂P = [[P , ·]] is readily seen to be a
differential: by virtue of the Jacobi identity for the Schouten bracket [[·, ·]] we have that
∂2

P = 0. Therefore, the leading order terms Q in the deformations P(ε) = P+εQ+ ō(ε)
can be trivial in the second ∂P-cohomology, meaning that Q = [[P ,X]] for some one-
vector X (whence [[P , [[P ,X]]]] ≡ 0). Alternatively, for the ∂P-cocycles Q which are not
∂P-coboundaries, the flows P(ε) stay infinitesimally Poisson but leave the ∂P-cohomo-
logy class of the Poisson bi-vector P at ε = 0.

For consistency, let us recall that generally speaking, not every infinitesimal defor-
mation P 7→ P + εQ + ō(ε) of a Poisson bi-vector P can be completed to a Poisson
deformation P 7→ P + Q(ε) at all orders in ε. The obstructions are contained in the
third ∂P-cohomology group H3

P =
{
T ∈ Γ

(∧3 TN
)
| ∂P(T) = 0

} / {
T = ∂P(R),

R ∈ Γ
(∧2 TN

)}
. Indeed, cast the master-equation [[P +Q(ε),P +Q(ε)]] = 0 for the

Poisson deformation to the coboundary statement [[Q(ε),Q(ε)]] = ∂P(−P − 2Q(ε)),
whence ∂P([[Q(ε),Q(ε)]] ≡ 0 by ∂2

P = 0. Therefore, the vanishing of the third ∂P-
cohomology group guarantees the existence of a power series solution Q(ε) to the co-
cycle-coboundary equation [[Q(ε),Q(ε)]] = −2∂P(Q(ε)): known to be a cocycle, the
left-hand side has been proven to be a coboundary as well.

Remark 11. Nowhere above should one expect that the leading deformation term Q
in P(ε) = P + εQ + ō(ε) itself would be a Poisson bi-vector. This may happen for Q
only incidentally.

8In the set-up of infinite jet spaces J∞(π) (see [19] and [8, 9, 10]) the four partial derivatives in
the formula for [[·, ·]] become the variational derivatives with respect to the same variables, which now
parametrise the fibres in the Whitney sum π ×Mm Ππ̂ of (super-)bundles over the m-dimensional
base Mm.

18 A. BOUISAGHOUANE, R. BURING, AND A. V. KISELEV

Appendix B. Computer-assisted proof of Proposition 2

To verify the claim in Proposition 2 by direct calculation, it would take years for man
still only a few seconds for a computer.9 A computer-assisted proof of Proposition 2 is
realized through running the script in Maple (see below). (All computations are done
with the coefficient matrices of bi-vectors at hand. The bi-vectors are computed by
using working formulas (4a) and (4b).) For the balanced flow we have:

FlowQ := proc (P, y, a, b)

description "Eval flow Q_a:b of q-dim bi-vector P.";

local i, j, q, A, F, G, B, T, C;

q := op(P)[1];

F := proc (i, j, k, l, m, n, p, r) options operator, arrow;

a*(diff(P[i, j], y[k], y[l], y[m]))*(diff(P[k, n], y[p]))

(diff(P[l, p], y[r]))(diff(P[m, r], y[n])) end proc;

G := proc (i, j, k, l, m, n, p, r) options operator, arrow;

b*(diff(P[i, j], y[k], y[l]))*(diff(P[k, m], y[n], y[p]))

(diff(P[n, l], y[r]))(diff(P[r, p], y[j])) end proc;

B := Array(1 .. q, 1 .. q);

T := combinat:-cartprod([seq([seq(1 .. q)], i = 1 .. 8)]);

while not T[finished] do

C := op(T[nextvalue]());

B[C[1], C[2]] := B[C[1], C[2]]+F(C);

B[C[1], C[5]] := B[C[1], C[5]]+G(C);

end do;

A := Array(1 .. q, 1 .. q);

for i from 1 to q do

for j from 1 to q do

A[i, j] := simplify((1/2)*B[i, j]-(1/2)*B[j, i]);

end do;

end do;

Matrix(A);

end proc:

To implement the Schouten bracket of two bi-vectors A and B, we use a component
expansion (cf. [4]):

[[A,B]]ijk =
n∑

s=1

AskBij
s +BskAij

s + AsjBki
s +BsjAki

s + AsiBjk
s +BsiAjk

s ,

where superscripts and subscripts denote the bi-vector components and partial deriva-
tives with respect to the coordinates ys, respectively.

SchoutenBracket := proc (A, B, y)

description "Evaluate the Schouten-bracket of A and B.";

local T, t, F, n, res, cnt;

n := op(A)[1];

F := proc (i, j, k) options operator, arrow;

9Running the script below took us approximately 5 seconds.

UNIVERSAL INFINITESIMAL DEFORMATION OF POISSON STRUCTURES 19

A[s, k]*(diff(B[i, j], y[s]))+B[s, k]*(diff(A[i, j], y[s]))+

A[s, j]*(diff(B[k, i], y[s]))+B[s, j]*(diff(A[k, i], y[s]))+

A[s, i]*(diff(B[j, k], y[s]))+B[s, i]*(diff(A[j, k], y[s])) end proc;

T := combinat:-choose(n, 3);

for t in T do

print([[t[1], t[2], t[3]],simplify(add(F(t[1], t[2], t[3]), s = 1 .. n))]);

end do;

end proc:

Finally, the following script provides a computer-assisted proof of Proposision 2.

All 3-dimensional Poisson bi-vectors are of the following form.

> P:=<<0,-f(x,y,z)*(diff(g(x,y,z),z)),f(x,y,z)*(diff(g(x,y,z),y))>|

<f(x,y,z)*(diff(g(x,y,z),z)),0,-f(x,y,z)*(diff(g(x,y,z),x))>|

<-f(x,y,z)*(diff(g(x,y,z),y)),f(x,y,z)*(diff(g(x,y,z),x)),0>>:

We evaluate the balanced flow Q_{1:6} on the above bi-vector.

> Q:=FlowQ(P,{x,y,z},1,6)

[Length of output exceeds limit of 1000000]

If so, let us inspect whether the flow Q_{1:6} vanishes.

> LinearAlgebra:-Equal(Q,Matrix(1..3,1..3,0))

false

Still, let us act on this Q_{1:6} by the Poisson differential.

> SchoutenBracket(P,Q,{x,y,z})

[[1,2,3], 0]

This reasoning hints us that the condition a : b = 1 : 6 could be sufficient for equation (1)
to hold for all Poisson structures on all finite dimensional affine real manifolds. A
rigorous proof of the respective claim in Theorem 3 is provided in section 2.

Appendix C. The count of Leibniz-rule graphs in Fig. 4

We count all possible differential consequences of the Jacobi identity, that is, we consider
the differential operators acting on the Jacobiator. We do this by constructing all
possible graphs that encode trivector-valued differential consequences (see Lemma 5 on
p. 9). The graphs that encode such differential consequences have 3 ground vertices.
The Schouten bracket [[P ,Q1:6(P)]] consists of graphs with 5 internal vertices. Since
two of these internal vertices are accounted for by the Jacobi identity, there remain
3 spare internal vertices.

First, let the Jacobiator stand, with all its three edges, on the 3 ground vertices. The
only freedom that remains is how the 3 free internal vertices act on each other and on
the Jacobiator. With its first edge, every free internal vertex can act on itself, on its 2
neighbouring free vertices, or on the Jacobiator; there are 4 possible targets. No second
edge can meet the first edge at the same target (as this would yield no contribution due
to the anti-symmetry, which is explained in Remark 2). Hence there are only 3 possible
targets for this second edge. Finally, again due to anti-symmetry, every possibility is
constructed exactly twice this way. Swapping the targets of the first and second edge
only contributes to the sign of the graph. The total number of this type of differential

20 A. BOUISAGHOUANE, R. BURING, AND A. V. KISELEV

consequence is therefore
(
4·3
2

)3
= 216 graphs. This type of graph is drawn first from

the top-left in Figure 4.
Now let the Jacobiator stand on only 2 of the ground vertices. The remaining edge

of the Jacobiator has only 3 possible targets, as the third edge cannot fall back onto the
Jacobiator itself. One of the free internal vertices acts with an edge on the remaining
ground vertex. The other edge has 4 candidates as its target, namely the vertex itself,
the neighbouring 2 free internal vertices, and the Jacobiator. The 2 internal vertices not
falling on a ground vertex have each 4·3

2
possible targets. The total number of graphs is

therefore equal to 3 · 4 ·
(
4·3
2

)2
= 432. This type of graph is the second from the top-left

in Figure 4.
Next, let the Jacobiator stand on only 1 ground vertex. We distinguish between

two cases: namely, the case where 1 free internal vertex stands on both the remaining
ground vertices and the case where two different internal vertices act by one edge each
on the remaining two ground vertices. These are the third and fourth graphs from the
top-left in Figure 4, respectively.
• In the first case, the remaining 2 internal vertices each have 4·3

2
possible targets.

The Jacobiator must act with its two remaining free edges on two different targets out
of the 3 available, yielding 3 possibilities. The number of graphs in the first case is

3 ·
(
4·3
2

)2
= 108.

• For the second case, two internal vertices can each act on themselves, on the neigh-
bouring 2 internal vertices, or on the Jacobiator. With two of its edges, the Jacobiator
can act in 3 different ways on the 3 internal vertices. The third internal vertex has
4·3
2

possible targets. This brings the total number of graphs for the second case to

4 · 4 · 4·3
2
· 3 = 288.

The last case to consider is where the Jacobiator does not act on any of the ground
vertices. Again, since the outgoing edges of the Jacobiator must have different targets,
it is clear that the Jacobiator acts in a unique way on all 3 internal vertices. We now
distinguish two cases: namely, the case where 1 free internal vertex stands on 2 ground
vertices, 1 free internal vertex acts on 1 ground vertex, and 1 free internal vertex falling
on no ground vertex, and the second case where each internal vertex acts with one edge
on one ground vertex. These two cases are represented by the last 2 graphs in Figure 4,
respectively.
• In the first case, there is a free internal vertex with one free edge, which has 4
possible targets. The remaining free internal vertex with two free edges has 4·3

2
possible

targets. The total number of graphs for this case is 4 · 4·3
2

= 24.
• In the second case, each internal vertex can act on itself, on its 2 neighbouring
internal vertices, and on the Jacobiator. This results in a total of 43 = 64 graphs.
Summarizing, the total number of all trivector-valued Leibniz-rule graphs, linear in

the Jacobiator and containing five internal vertices, is 1132.

Appendix D. Encoding of the solution

Let Γ be a labelled Kontsevich graph with n internal and m external vertices. We
assume the ground vertices of Γ are labelled [0, . . ., m − 1] and the internal vertices
are labelled [m, . . ., m + n − 1]. We define the encoding of Γ to be the prefix (n,m),

UNIVERSAL INFINITESIMAL DEFORMATION OF POISSON STRUCTURES 21

followed by a list of targets. The list of targets consists of ordered pairs where the
kth pair (k ⩾ 0) contains the two targets of the internal vertex number m+ k.
The expansion of the Schouten bracket [[P ,Qa:b]] for the ratio a : b = 1 : 6 depicted

in Figure 3 simplifies to a sum of 39 graphs with coefficients ±1,±3. The encodings of
these graphs, followed by their respective coefficients, are listed in Table 1. The graphs

Table 1. Machine-readable encoding of Figure 3 on p. 6.

1.1 3 5 4 2 0 1 4 6 4 7 4 5 1 7.1 3 5 6 2 7 0 1 4 4 5 5 6 3
1.2 3 5 4 0 1 2 4 6 4 7 4 5 1 7.2 3 5 6 0 7 1 2 4 4 5 5 6 3
1.3 3 5 4 1 2 0 4 6 4 7 4 5 1 7.3 3 5 6 1 7 2 0 4 4 5 5 6 3

2.1 3 5 7 0 3 5 3 6 3 4 1 2 1 8.1 3 5 7 2 7 0 1 4 4 5 5 6 3
2.2 3 5 7 1 3 5 3 6 3 4 2 0 1 8.2 3 5 7 0 7 1 2 4 4 5 5 6 3
2.3 3 5 7 2 3 5 3 6 3 4 0 1 1 8.3 3 5 7 1 7 2 0 4 4 5 5 6 3

3.1 3 5 5 2 0 1 4 6 4 7 4 5 3 9.1 3 5 4 2 7 1 0 4 4 5 5 6 −3
3.2 3 5 5 0 1 2 4 6 4 7 4 5 3 9.2 3 5 4 0 7 2 1 4 4 5 5 6 −3
3.3 3 5 5 1 2 0 4 6 4 7 4 5 3 9.3 3 5 4 1 7 0 2 4 4 5 5 6 −3

4.1 3 5 6 7 0 3 3 4 4 5 1 2 3 10.1 3 5 5 2 7 1 0 4 4 5 5 6 −3
4.2 3 5 6 7 1 3 3 4 4 5 2 0 3 10.2 3 5 5 0 7 2 1 4 4 5 5 6 −3
4.3 3 5 6 7 2 3 3 4 4 5 0 1 3 10.3 3 5 5 1 7 0 2 4 4 5 5 6 −3

5.1 3 5 4 2 7 0 1 4 4 5 5 6 3 11.1 3 5 6 2 7 1 0 4 4 5 5 6 −3
5.2 3 5 4 0 7 1 2 4 4 5 5 6 3 11.2 3 5 6 0 7 2 1 4 4 5 5 6 −3
5.3 3 5 4 1 7 2 0 4 4 5 5 6 3 11.3 3 5 6 1 7 0 2 4 4 5 5 6 −3

6.1 3 5 5 2 7 0 1 4 4 5 5 6 3 12.1 3 5 7 2 7 1 0 4 4 5 5 6 −3
6.2 3 5 5 0 7 1 2 4 4 5 5 6 3 12.2 3 5 7 0 7 2 1 4 4 5 5 6 −3
6.3 3 5 5 1 7 2 0 4 4 5 5 6 3 12.3 3 5 7 1 7 0 2 4 4 5 5 6 −3

13.1 3 5 6 0 7 3 3 4 4 5 1 2 −3
13.2 3 5 6 1 7 3 3 4 4 5 2 0 −3
13.3 3 5 6 2 7 3 3 4 4 5 0 1 −3

are collected into groups of three, consisting of the skew-symmetrization – by a sum
over cyclic permutations – of a single graph. Within the encodings in the groups of
three, the lists of targets only differ by a cyclic permutation of the target vertices 0, 1, 2.
Consisting of 8 skew-symmetric terms, the solution (see (9) on p. 11) is encoded

in Table 2: the sought-for values of coefficients are written after the encoding of the
respective 27 Leibniz-rule graphs. Here the sums over permutations of the ground ver-
tices are expanded (thus making the 27 Leibniz-rule graphs out of the 8 skew-symmetric
groups). In every entry of Table 2, the sum of three graphs in Jacobiator (2) is repre-
sented by its first term. For all the in-coming arrows, the vertex 6 is the placeholder for

22 A. BOUISAGHOUANE, R. BURING, AND A. V. KISELEV

Table 2. Machine-readable encoding of solution (9) on p. 11.

1.1 3 5 4 6 5 6 3 6 0 1 6 2 −1 6.1 3 5 1 2 3 5 3 6 0 3 6 4 3
6.2 3 5 0 2 3 5 3 6 1 3 6 4 −3

2.1 3 5 0 4 1 5 2 3 3 4 6 5 −3 6.3 3 5 4 6 0 1 3 4 2 4 6 5 −3
2.2 3 5 0 4 2 5 1 3 3 4 6 5 3

7.1 3 5 1 5 3 5 2 6 0 3 6 4 −3
3.1 3 5 0 4 1 2 3 4 3 4 6 5 −3 7.2 3 5 1 5 3 5 0 6 2 3 6 4 3
3.2 3 5 0 1 2 3 3 4 3 4 6 5 −3 7.3 3 5 0 5 3 5 2 6 1 3 6 4 3
3.3 3 5 0 2 1 3 3 4 3 4 6 5 3 7.4 3 5 2 5 3 5 1 6 0 3 6 4 3

7.5 3 5 2 5 3 5 0 6 1 3 6 4 −3
4.1 3 5 4 5 1 6 4 6 0 2 6 3 −3 7.6 3 5 0 5 3 5 1 6 2 3 6 4 −3
4.2 3 5 4 5 0 6 4 6 1 2 6 3 3
4.3 3 5 5 6 3 5 2 6 0 1 6 4 −3 8.1 3 5 1 4 2 5 3 6 0 3 6 4 −3

8.2 3 5 1 5 2 3 4 6 0 3 6 4 −3
5.1 3 5 1 4 5 6 3 6 0 2 6 3 3 8.3 3 5 0 4 2 5 3 6 1 3 6 4 3
5.2 3 5 0 4 5 6 3 6 1 2 6 3 −3 8.4 3 5 0 5 2 3 4 6 1 3 6 4 3
5.3 3 5 5 6 2 3 4 6 0 1 6 4 −3 8.5 3 5 4 6 0 5 1 3 2 4 6 5 −3

8.6 3 5 4 6 1 5 0 3 2 4 6 5 3

the Jacobiator (again, see (2) on p. 3); in earnest, the Jacobiator contains the internal
vertices 6 and 7. This convention is helpful: for every set of derivations acting on the
Jacobiator with internal vertices 6 and 7, only the first term is listed, namely the one
where each edge lands on 6.

Example 1. The first entry of Table 2 encodes a graph containing a three-cycle over
internal vertices 3, 4, 5. Issued from each of these three, the other edge lands on the
vertex 6: the placeholder for the Jacobiator. This entry is the first term in (9) on p. 11.

Example 2. The entry 3.1 is one of three terms produced by the third graph in solu-
tion (9); the Jacobiator in this entry is expanded using formula (2), resulting in three
terms (by definition). It is easy to see that the first term contains picture (3) from
Remark 2 as a subgraph. Hence the polydifferential operator encoded by this graph
vanishes due to skew-symmetry. However, the other two terms produced in the en-
try 3.1 by formula (2) do not vanish by skew-symmetry. Likewise, there is one term
vanishing by the same mechanism in the entry 3.2 and in 3.3.

The proof of Theorem 3 amounts to expanding the Leibniz rules on Jacobiators in
Table 2 according to the rules above (resulting in Table 3 on pp. 23–24, where the prefix
“3 5” of each graph has been omitted for brevity), simplifying by collecting terms, and
seeing that one obtains Table 1.

Appendix E. Perturbation method

In section 2 above, the run-through method gave all the terms at once in the operator ♢
that establishes the factorization [[P ,Q1:6]] = ♢(P , Jac(P)). At the same time, there
is another method to find ♢; the operator ♢ is then constructed gradually, term after

UNIVERSAL INFINITESIMAL DEFORMATION OF POISSON STRUCTURES 23

Table 3. Expansion of Leibniz rules on Jacobiators in Table 2.

0 1 2 3 3 6 3 7 3 5 −1

0 1 2 3 3 6 3 7 4 5 −1
0 1 2 3 3 6 3 7 4 5 −1

0 1 2 3 3 6 4 7 4 5 −1

0 1 2 3 3 6 3 7 4 5 −1
0 1 2 3 3 6 4 7 4 5 −1

0 1 2 3 3 6 4 7 4 5 −1

0 1 2 3 4 6 4 7 4 5 −1
0 4 1 2 4 6 4 7 4 5 −1

0 4 1 2 3 6 4 7 4 5 −1

0 4 1 2 3 6 4 7 4 5 −1
0 4 1 2 3 6 3 7 4 5 −1

0 4 1 2 3 6 4 7 4 5 −1
0 4 1 2 3 6 3 7 4 5 −1

0 4 1 2 3 6 3 7 4 5 −1

0 4 1 2 3 6 3 7 3 5 −1
0 2 1 3 3 6 3 7 3 5 1

0 2 1 3 3 6 3 7 4 5 1

0 2 1 3 3 6 3 7 4 5 1
0 2 1 3 3 6 4 7 4 5 1

0 2 1 3 3 6 3 7 4 5 1

0 2 1 3 3 6 4 7 4 5 1
0 2 1 3 3 6 4 7 4 5 1

0 2 1 3 4 6 4 7 4 5 1
0 1 2 5 3 6 3 4 3 4 −3

0 1 2 5 3 6 4 7 3 4 3

0 1 2 5 6 7 3 4 3 4 −3
0 1 2 5 6 7 3 4 4 6 3

0 4 1 5 2 6 4 7 4 5 3

0 4 1 5 2 6 4 7 3 5 3
0 4 1 5 2 6 3 7 4 5 3

0 4 1 5 2 6 3 7 3 5 3

0 4 2 5 3 6 3 4 1 3 −3
0 4 2 5 3 6 4 7 1 3 3

0 4 2 5 6 7 1 3 3 4 −3
0 4 2 5 6 7 1 3 4 6 3

0 1 2 3 3 4 3 7 4 5 −3

0 1 2 5 3 6 4 7 3 4 −3
0 1 2 3 3 6 4 7 4 5 3

0 1 2 5 3 6 4 7 4 5 3

0 4 1 5 6 7 2 4 4 6 3
0 4 1 5 6 7 2 3 4 6 3

0 4 1 5 6 7 2 4 3 6 3

0 4 1 5 6 7 2 3 3 6 3
0 4 5 6 2 3 3 5 1 3 −3

0 4 5 6 2 7 3 5 1 3 −3
0 4 5 6 2 3 5 7 1 3 3

0 4 5 6 2 7 5 7 1 3 3

0 2 1 5 3 6 3 4 3 4 3
0 2 1 5 3 6 4 7 3 4 −3

0 2 1 5 6 7 3 4 3 4 3

0 2 1 5 6 7 3 4 4 6 −3
0 4 2 5 1 6 4 7 4 5 −3

0 4 2 5 1 6 4 7 3 5 −3

0 4 2 5 1 6 3 7 4 5 −3
0 4 2 5 1 6 3 7 3 5 −3

0 4 1 5 3 6 3 4 2 3 3
0 4 1 5 3 6 4 7 2 3 −3

0 4 1 5 6 7 2 3 3 4 3

0 4 1 5 6 7 2 3 4 6 −3

0 4 2 5 6 7 1 3 3 6 −3

0 4 5 6 1 3 3 5 2 3 3
0 4 5 6 1 3 5 7 2 3 −3

0 4 5 6 1 7 3 5 2 3 3
0 4 5 6 1 7 5 7 2 3 −3

0 4 1 2 3 4 3 7 4 5 −3

0 4 1 2 3 6 4 7 4 5 3
0 4 5 6 1 2 5 7 4 5 3

0 4 5 6 1 2 5 7 3 5 3

0 4 5 6 1 2 3 5 3 5 3
0 4 5 6 1 2 5 7 3 5 −3

0 4 1 5 2 6 3 4 3 5 3

0 4 1 5 2 6 4 7 3 5 −3
0 4 5 6 1 6 2 7 4 5 −3

0 4 5 6 1 6 2 7 3 5 −3
0 4 2 5 3 6 1 4 3 6 −3

0 4 2 5 6 7 1 4 3 6 3

0 4 1 5 3 6 2 4 3 6 3
0 4 1 5 6 7 2 4 3 6 −3

0 4 5 6 1 7 2 5 4 6 −3

0 4 5 6 1 7 2 5 3 6 −3
0 4 2 5 1 6 3 4 3 5 −3

0 4 2 5 1 6 4 7 3 5 3

0 4 1 5 2 3 3 7 4 5 −3
0 4 1 5 2 6 3 7 4 5 −3

0 4 5 6 1 7 5 7 2 4 3
0 4 5 6 1 7 5 7 2 3 3

0 4 5 6 1 6 2 3 3 5 3

0 4 5 6 1 6 2 7 3 5 3
0 4 2 5 1 3 3 7 4 5 3

0 4 2 5 1 6 3 7 4 5 3

0 4 5 6 2 7 5 7 1 4 −3
0 4 5 6 2 7 5 7 1 3 −3

0 4 5 6 1 3 2 5 3 6 3

0 4 5 6 1 7 2 5 3 6 3
0 4 5 6 1 2 3 5 3 5 −3

0 4 5 6 1 2 3 7 3 5 −3
0 4 5 6 3 7 3 7 1 2 −3

0 4 5 6 3 6 3 7 1 2 3

0 4 5 6 2 3 3 5 1 5 −3
0 4 5 6 2 3 3 7 1 5 −3

0 4 5 6 1 7 3 7 2 3 −3

0 4 5 6 1 7 3 5 2 3 −3
0 4 5 6 1 3 3 5 2 5 3

0 4 5 6 1 3 3 7 2 5 3

0 4 5 6 2 7 3 7 1 3 3
0 4 5 6 2 7 3 5 1 3 3

0 4 1 2 3 4 3 5 4 6 3
0 4 1 2 3 6 3 7 4 5 3

0 4 5 6 1 2 3 7 3 5 3

0 4 5 6 1 2 3 7 3 4 3
0 4 2 5 3 6 3 4 1 4 −3

0 4 2 5 3 6 3 7 1 4 −3

0 4 1 5 2 6 3 7 3 5 −3
0 4 1 5 2 6 3 7 3 4 −3

0 4 1 5 3 6 3 4 2 4 3

0 4 1 5 3 6 3 7 2 4 3
0 4 2 5 1 6 3 7 3 5 3

0 4 2 5 1 6 3 7 3 4 3
0 2 1 3 3 4 3 5 4 6 −3

0 4 2 5 3 6 3 4 1 6 −3
0 4 2 5 3 6 1 7 3 4 −3

0 4 2 5 3 6 1 4 3 6 3

0 4 2 5 3 6 3 7 1 4 3
0 4 5 6 1 3 2 3 5 6 −3

0 4 5 6 2 3 5 7 1 3 −3

0 4 5 6 2 3 3 5 1 6 −3
0 4 5 6 1 7 2 3 3 6 3

0 4 5 6 1 6 2 3 3 5 −3
0 4 5 6 2 3 3 7 1 5 3

0 4 2 5 1 3 3 4 5 6 3

0 4 2 5 6 7 1 3 3 4 3
0 4 2 5 3 6 3 4 1 5 −3

0 4 2 5 1 6 3 7 3 4 −3

0 4 2 5 1 6 3 4 3 5 3
0 4 2 5 3 6 1 7 3 4 3

0 4 1 5 2 3 3 5 4 6 3

0 4 5 6 1 7 3 7 2 3 3
0 4 5 6 2 3 3 5 1 4 −3

0 4 1 5 6 7 2 3 3 6 −3
0 4 1 5 3 6 2 3 4 6 −3

0 4 5 6 1 7 2 3 3 6 −3

0 4 1 5 2 3 3 4 5 6 −3
0 4 1 5 6 7 2 3 3 4 −3

0 4 1 5 3 6 3 4 2 5 3

0 4 1 5 2 6 3 7 3 4 3
0 4 1 5 2 6 3 4 3 5 −3

0 4 1 5 3 6 2 7 3 4 −3

0 4 2 5 1 3 3 5 4 6 −3
0 4 5 6 2 7 3 7 1 3 −3

0 4 5 6 1 3 3 5 2 4 3
0 4 2 5 6 7 1 3 3 6 3

0 4 2 5 3 6 1 3 4 6 3

0 4 5 6 1 3 2 7 3 5 −3
0 1 2 3 3 4 3 5 4 6 3

0 1 2 3 3 6 3 7 4 5 3

0 1 2 5 3 6 3 7 3 5 −3
0 1 2 5 3 6 3 7 3 4 −3

0 1 2 5 3 6 3 4 3 4 3

0 1 2 5 3 6 3 7 3 4 3
0 4 1 5 3 6 2 3 4 6 3

0 4 1 5 3 6 4 7 2 3 3
0 4 1 5 3 6 3 4 2 6 3

0 4 1 5 3 6 2 7 3 4 3

0 4 1 5 3 6 2 4 3 6 −3
0 4 1 5 3 6 3 7 2 4 −3

0 4 5 6 1 3 2 5 3 6 −3

0 4 5 6 1 3 3 7 2 5 −3
0 4 5 6 1 3 3 5 2 6 3

0 4 5 6 1 3 2 7 3 5 3

0 4 5 6 1 3 2 3 5 6 3
0 4 5 6 1 3 5 7 2 3 3

0 1 2 3 3 4 3 4 5 6 −3
0 1 2 3 3 4 3 7 4 5 3

0 1 2 3 3 4 3 5 4 6 −3

0 2 1 3 3 4 3 4 5 6 3
0 2 1 3 3 4 3 7 4 5 −3

0 2 1 3 3 4 3 5 4 6 3

0 4 1 2 3 4 3 4 5 6 −3
0 4 1 2 3 4 3 7 4 5 3

24 A. BOUISAGHOUANE, R. BURING, AND A. V. KISELEV

Table 3 (continued).
0 2 1 3 3 4 3 7 4 5 3

0 2 1 3 3 6 4 7 4 5 −3
0 2 1 5 3 6 4 7 3 4 3

0 2 1 5 3 6 4 7 4 5 −3

0 4 2 5 6 7 1 4 4 6 −3
0 4 2 5 6 7 1 4 3 6 −3

0 4 2 5 6 7 1 3 4 6 −3

0 2 1 3 3 6 3 7 4 5 −3

0 2 1 5 3 6 3 7 3 5 3
0 2 1 5 3 6 3 7 3 4 3

0 2 1 5 3 6 3 4 3 4 −3

0 2 1 5 3 6 3 7 3 4 −3
0 4 2 5 3 6 1 3 4 6 −3

0 4 2 5 3 6 4 7 1 3 −3

0 4 1 2 3 4 3 5 4 6 −3

0 4 1 5 2 3 3 4 5 6 3
0 4 1 5 2 3 3 7 4 5 3

0 4 1 5 2 3 3 5 4 6 −3

0 4 2 5 1 3 3 4 5 6 −3
0 4 2 5 1 3 3 7 4 5 −3

0 4 2 5 1 3 3 5 4 6 3

term in (9), by starting with a zero initial approximation for ♢. This is the perturbation
scheme which we now outline.
In fact, the perturbation method was tried first, revealing the typical graph patterns

and their topological complexity. From Proposition 2 we already know that [[P ,Q1:6]] =
0 for Poisson brackets on R3. The difficulty is that because the condition [[P ,Q1:6]] = 0
and the Jacobi identity [[P ,P]] = 0 are valid, it is impossible to factorize one through
the other; both are invisible. So, we first make both expressions visible by perturbing
the Poisson bi-vector P 7→ Pϵ = P + ϵ∆ in such a way that the tri-vector [[Pϵ,Q1:6(Pϵ)]]
and the Jacobiator [[Pϵ,Pϵ]] stop vanishing identically:

[[Pϵ,Q1:6(Pϵ)]] ̸= 0 and [[Pϵ,Pϵ]] ̸= 0.

To begin with, put ♢ := 0. Now consider the description [6] of Poisson brackets on R3

by using the pre-factor f(x, y, z) and arbitrary function g(x, y, z) in the formula

{u, v}P = f · det
(
∂(g, u, v)

∂(x, y, z)

)
;

it is helpful to start with some very degenerate dependencies of f and g of their ar-
guments (see [1] and [21]). The next step is to perturb the coefficients of the Poisson
bracket {·, ·}P at hand; in a similar way, one starts with degenerate dependency of the
perturbation ∆. The idea is to take perturbations which destroy the validity of Jacobi
identity for Pϵ in the linear approximation in the deformation parameter ϵ. It is readily
seen that the expansion of (8) in ϵ yields the equality

[[Pϵ,Q1:6]](ϵ) = (♢+ ō(1)) ([[Pϵ,Pϵ]]) = 2ϵ ·(♢+ ō(1)) ([[P ,∆]])+(♢+ ō(1)) ([[P ,P]])+ ō(ϵ).

Knowing the left-hand side at first order in ϵ and taking into account that [[P ,P]] ≡ 0
for the Poisson bi-vector P which we perturb by ∆, we reconstruct the operator ♢ that
now acts on the known tri-vector 2[[P ,∆]]. In this sense, the Jacobiator [[P ,P]] shows
up through the term [[P ,∆]].
For each pair (P ,∆), the above balance at ϵ1 contains sums over indexes that mark

the derivatives falling on the Jacobiator. By taking those formulae, we guess the candi-
dates for graphs that form the next, yet unknown, part of the operator ♢. Specifically,
we inspect which differential operator(s), acting on the Jacobi identity, become visible
and we list the graphs that provide such differential operators via the Leibniz rule(s).
For a while we keep every such candidate with an undetermined coefficient. By repeat-
ing the iteration, now for a different Poisson bi-vector P or its new, less degenerate
perturbation ∆, we obtain linear constraints for the already introduced undetermined
coefficients. Simultaneously, we continue listing the new candidates and introducing
new coefficients for them.

UNIVERSAL INFINITESIMAL DEFORMATION OF POISSON STRUCTURES 25

Remark 12. By translating formulae into graphs, we convert the dimension-dependent
expressions into the dimension-independent operators which are encoded by the graphs.
An obvious drawback of the method which is outlined here is that, presumably, some
parts of the operator ♢ could always stay invisible for all Poisson structures over R3 if
they show up only in the higher dimensions. Secondly, the number of variants to con-
sider and in practice, the number of irrelevant terms, each having its own undetermined
coefficient, grows exponentially at the initial stage of the reasoning.

By following the loops of iterations of this algorithm, we managed to find two non-
zero coefficients and five zero coefficients in solution (9). Namely, we identified the
coefficient ±1 for the tripod, which is the first term in (9), and we also recognized the
coefficient ±3 of the sum of ‘elephant’ graphs, which is the second to last term in (9).

Remark 13. Because of the known skew-symmetry of the tri-vector [[P ,Q1:6]] with re-
spect to its arguments f, g, h, finding one term in a sum within formula (9) for ♢ means
that the entire such sum is reconstructed. Indeed, one then takes the sum over a sub-
group of S3 acting on f, g, h, depending on the actual skew-symmetry of the term which
has been found.
For instance, the first term in (9), itself making a sum running over {id} ≺ S3, is

obviously totally antisymmetric with respect to its arguments. The other graph which
we found by using the perturbation method (see the last graph in the second line of
formula (9) on p. 11) is skew-symmetric with respect to its second and third arguments
but it is not yet totally skew-symmetric with respect to the full set of its arguments.
This shows that is suffices to take the sum over the group ⟳ = A3 ≺ S3 of cyclic
permutations of f, g, h, thus reconstructing the sixth term in solution (9).

Acknowledgements. A.K. thanks M.Kontsevich for posing the problem; the authors
are grateful to P.Vanhaecke and A.G. Sergeev for stimulating discussions.
This research was supported in part by JBI RUG project 106552 (Groningen). A.B.

and R.B. thank the organizers of the 8th international workshop GADEIS VIII on
Group Analysis of Differential Equations and Integrable Systems (12–16 June 2016,
Larnaca, Cyprus) for partial financial support and warm hospitality. A.B. and R.B. are
also grateful to the Graduate School of Science (Faculty of Mathematics and Natural
Sciences, University of Groningen) for financial support. We thank the Center for
Information Technology of the University of Groningen for providing access to the
Peregrine high performance computing cluster.

References

[1] Bouisaghouane A., Kiselev A.V. (2016) Do the Kontsevich tetrahedral flows pre-
serve or destroy the space of Poisson bi-vectors ? Preprint IHÉS/M/16/12 (Bures-
sur-Yvette, France), arXiv:1602.09036 [q-alg], 10 p.

[2] Buring R., Kiselev A.V. (2017) On the Kontsevich ⋆-product associativity mecha-
nism, PEPAN Letters 14:2 (accepted), 4 p. (Preprint arXiv:1602.09036 [q-alg])

[3] Buring R., Kiselev A.V. (2016) Software modules and computer-assisted proof
schemes in the Kontsevich deformation quantization (in preparation), see link:
https://github.com/rburing/kontsevich_graph_series-cpp

26 A. BOUISAGHOUANE, R. BURING, AND A. V. KISELEV

[4] Dubrovin B. (2005) Bihamiltonian structures of PDE’s and Frobenius mani-
folds, Summer School ICTP, http://indico.ictp.it/event/a04198/session/
47/contribution/26/material/0/0.pdf.

[5] Gerstenhaber M. (1964) On the deformation of rings and algebras, Ann. Math. 79,
59–103.

[6] Grabowski J., Marmo G., Perelomov A.M. (1993) Poisson structures: towards a
classification, Mod. Phys. Lett. A8:18, 1719–1733.

[7] Kiselev A.V. (2012) The twelve lectures in the (non)commutative geometry of dif-
ferential equations, Preprint IHÉS/M/12/13 (Bures-sur-Yvette, France), 140 pp.

[8] Kiselev A. V. (2013) The geometry of variations in Batalin–Vilkovisky formalism,
J. Phys.: Conf. Ser. 474, Paper 012024, 1–51. (Preprint 1312.1262 [math-ph])

[9] Kiselev A.V. (2015) The calculus of multivectors on noncommutative jet
spaces. Preprint IHÉS/M/14/39 (Bures-sur-Yvette, France), arXiv:1210.0726

(v3) [math.DG], 41 p.
[10] Kiselev A.V. (2015) Deformation approach to quantisation of field models, Preprint

IHÉS/M/15/13 (Bures-sur-Yvette, France), 37 p.
[11] Kontsevich M. (1993) Formal (non)commutative symplectic geometry, The

Gel’fand Mathematical Seminars, 1990-1992 (L.Corwin, I.Gelfand, and J. Lepow-
sky, eds), Birkhäuser, Boston MA, 173–187.

[12] Kontsevich M. (1994) Feynman diagrams and low-dimensional topology. First Eu-
rop. Congr. of Math. 2 (Paris, 1992), Progr. Math. 120, Birkhäuser, Basel, 97–121.

[13] Kontsevich M. (1995) Homological algebra of mirror symmetry. Proc. Intern.
Congr. Math. 1 (Zürich, 1994), Birkhäuser, Basel, 120–139.

[14] Kontsevich M. (1997) Formality conjecture. Deformation theory and symplectic
geometry (Ascona 1996, D. Sternheimer, J. Rawnsley and S.Gutt, eds), Math. Phys.
Stud. 20, Kluwer Acad. Publ., Dordrecht, 139–156.

[15] Kontsevich M. (2003) Deformation quantization of Poisson manifolds, Lett. Math.
Phys. 66:3, 157–216. (Preprint q-alg/9709040)

[16] Laurent–Gengoux C., Picherau A., Vanhaecke P. (2013) Poisson structures. Gründ-
lehren der mathematischen Wissenschaften 347, Springer–Verlag, Berlin.

[17] Manin Yu. I. (1999) Frobenius manifolds, quantum cohomology, and moduli spaces.
AMS Colloquium publications 47, Providence RI.

[18] Merkulov S.A. (2010) Exotic automorphisms of the Schouten algebra of polyvector
fields. Preprint arXiv:0809.2385 (v6) [q-alg], 37 p.

[19] Olver P. J. (1993) Applications of Lie groups to differential equations, Grad. Texts
in Math. 107 (2nd ed.), Springer–Verlag, NY.

[20] Olver P. J., Sokolov V.V. (1998) Integrable evolution equations on associative al-
gebras, Comm. Math. Phys. 193:2, 245–268;
Olver P. J., Sokolov V.V. (1998) Non-abelian integrable systems of the derivative
nonlinear Schrödinger type, Inverse Prob. 14:6, L5–L8.

[21] Vanhaecke P. (1996) Integrable systems in the realm of algebraic geometry, Lect.
Notes Math. 1638, Springer–Verlag, Berlin.

	Summary
	Preface
	Acknowledgements
	Bibliography
	Software modules and computer-assisted proof schemes in the Kontsevich deformation quantization
	On the Kontsevich -product associativity mechanism
	The Kontsevich tetrahedral flows revisited

