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Abstract

When there is the desire to organize a consulting referendum in The Netherlands, a certain
number of requests needs to be collected to make sure there is enough support to organize one.
History tells us that there are people who submit more then one request, which makes all the
requests of that person invalid. Therefore, these requests need to be filtered out of the total
number of valid requests. With the use of a sample from the total number of requests, the
number of valid requests is estimated. This thesis will provide a detailed explanation of the es-
timation procedure: what sample size needs to be chosen and how the estimator is constructed.
The results will be compared to the method used before and to other known methods using
simulations. Finally, there will be a look at possibilities to extend/improve the procedure.
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Introduction

It is possible for every citizen of The Netherlands to request a consulting referendum about all laws
accepted by parliament, this is made possible by the “Wet raadgevend referendum”, [Wrr] (Advisory
referendum act). When there is the desire to organize a referendum, the initiator can start collecting
requests in the form of signatures. In order to get an introductory request, 10,000 requests have to be
collected within a term of four weeks and for checking their validity, the electoral council then has one
week to conclude whether a sufficient number of requests is indeed valid. If the introductory request
is accepted, another 300,000 requests are needed within a term of six weeks for a definitive request.
Here the electoral council has two weeks to decide whether the number of requests is sufficient. If
this definitive request is accepted, the referendum committee picks a date, on which the referendum
will be held.

The question that now arises is: why do you even need to check the requests while the total
number of requests is known? Within all the requests there appear to be invalid requests. Invalid
here means that the request lacks information, is submitted by someone who is not entitled to vote
or contains wrong information. However, these requests can be taken into account by including
an error term in the number of valid requests. The biggest problem is that the experience teaches
us that there are people who submit more than one request, which makes all the requests this
person submitted invalid. In order to check whether there are truly enough valid single requests,
the government uses a sample and a formula recorded in the “Besluit raadgevend referendum”, [Brr]
(Decision advisory referendum). However, it appears that that formula does not produce reliable
results, which will be shown in Chapter 21.

A better method has been developed in [Wit, 2016] 2. This method is able to confirm that the
number of requests is sufficient, but is not able to reject the request; instead the conclusion is that
the verdict is undecided. If the latter is the case, all requests need to be counted manually. This
thesis will discuss this method: how it is constructed, what assumptions are made, the results it
produces and how it can be improved.

Chapter 1 contains some background information, assumptions and some derivations that will
be used later on in this thesis. In Chapter 2, there will be a thorough explanation of the method
including determining the optimal sample size and defining the estimator for the number of valid
single requests.

The social relevance of this topic is very high, especially at the moment of writing. In Spain there
is a referendum on the independence of Catalonia and in the Netherlands they are in the process of
trying to organize a referendum about updating the “Wet op de inlichtingen- en veiligheidsdiensten”
(Act on Information and Security Services). One place from which we know how they determine the
number of valid requests in the process of requesting a referendum is the State of Washington, they
use the method stated in the Legislature. In Chapter 3 there will be a description of this method
and it will be compared to the results from the new and old method from the Netherlands. These
results are obtained by programming the methods in R and simulating different situations.

After contacting the government about the new method, they decided that they wanted a more
specific answer to this problem. The request is formulated as follows: can we determine the number
of valid requests in such a way that we allow ourselves a one percent chance on a wrong decision
with a error margin of two percent? In Chapter 4 there will be a look at solving this problem, which
will also result in an improvement of the existing method.

1This method will be called the ”old method” from now onwards
2This method will be called the ”new method” from now onwards
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1 Background

To know whether there are enough valid requests in the process of requesting a referendum, the main
variable of interest is the number of people who submitted a single valid request. This because it
does happen that one person submits more than one request, because that person may have forgotten
that he or she already submitted a request before, or that he or she is just so keen on the referendum
getting organized that he or she decides to submit for example 50 requests. If someone submits more
than one request, all the requests of that single person will become invalid. A referendum only gets
organized if the number of single, valid requests is more than the threshold stated in the Wrr.
In order estimate the number of people who submitted one single valid request, we define:

ηi = number of people who submitted i requests.

The total population is given by: (η1, η2, ..., ηN ) where we set the total number of requests by:

N =
∑N
i=1 i ηi. We now want to define an estimator η̂1, this represents the number of people who

submitted only one request and therefore, tells us whether there are enough requests. As stated
before, a sample will be used, because it is highly undesirable to count all the requests by hand
(since we are talking about more than 10,000 or 300,000 requests). In this sample all the requests
will be checked on validity and from the information of this sample and the upcoming method, the
request as a whole will be accepted or rejected.3

The information of the sample can be summarized as X = (X1, X2, ..., Xn), where:

Xi = the number of people who submitted i requests according to the sample of size n.

The sample is here defined as: n =
∑n
i=1 iXi.

According to article 33 of the Wrr, there can also still be requests present in the population which
lack information, contain wrong information or contain data from a person who is not entitled to
vote. These requests are summarized in the following variable:

Y = All the requests that lack information, contain wrong information or contain data from

a person who is not entitled to vote.

The V ar(Y ) is however, very small compared to V ar(Xi) and will therefore not be taken into a
count in the rest of this thesis.

1.1 Why does the old method cause trouble?

Now that all the variables are defined, let us first have a look at why the old method does not
produce reliable results.

Example 1.1. Consider the case that we are trying to pass the definitive request, i.e. we need
300,000 valid single requests. If we now think of the situation where: N = 400,000, η1 = 0 and η2
= 200,000. This means that there are more than enough requests collected, but not a single one of

3A request can be accepted or rejected, with this we mean a request in the sense of an introductory or definitive
request. Such a request is supported by people who submitted requests, note that the word ”request” has two different
meanings here.
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them is valid. If we now use the method described in Brr, the sample size becomes:

n =
N · z2 · p(1− p)

z2 · p(1− p) + (N − 1) · F 2

=
400, 000 · 2.5762 · 0.5(1− 0.5)

2.576 · 0.5(1− 0.5) + (400, 000− 1) · 0.022

= 4104.

Here, z, p and F are variables with fixed values. The probability that for a randomly chosen request
in the sample the duplicate of that request occurs in the sample is 4103

399999 ≈ 0.0103. So we expect
that there are 0.0103 · 4104 ≈ 42 double requests in the sample. This means that we expect to have
approximately 4061 valid requests in the sample (X1 ≈ 4061). If we now use the given formula for
the estimator, we get:

η̂1 = X1 ·
N

n

≈ 4061 · 400, 000

4104
≈ 395, 897

This would imply that there are more than enough valid requests, and therefore the request would
be accepted, while in reality there is not a single valid request. This is without a doubt a very
undesirable situation and therefore the reason to think about a different way to tackle this problem.
In order to do this, we first need to look at some choices and assumptions that need to be made.

1.2 A conservative estimator

In order to make a good estimation of η1, we need to look at all the possible ways that the requests
were submitted. But as can be imagined, this can be done in an enormous number of ways, since
there is an enormous amount of ways that a total of, for example 10100 requests can be permuted
among the population (η1, η2, ..., ηN ). Using an algorithm on a computer can still solve this problem,
but the main problem that arises here is that this leads to an estimator with an enormous variance.
We conclude that without further assumptions the sample size needs to be very big, which is not
desirable.

Instead of trying the above, we are going to look at a “worst case scenario”, which means that
we assume that there are people who submit their requests in such a way that they try to avoid
detection. This makes the procedure easier and produces a smaller variance. The consequence of
this assumption is that we take into a count that there are more multiple requests than estimated
(this will be explained more thoroughly in Subsection 2.1). However, if this assumption fails to hold
it means that there are more single submissions than estimated. We call the estimator that relies
on the above assumption a conservative estimator.

The implication is now that we can conclude that there are enough requests if the procedure says
so, but we can not guarantee that there are not enough valid requests if the procedure concludes
there are not enough valid requests. This means that if the procedure concludes that there are not
enough valid requests, all the requests need to be counted separately by hand.

In the method that will be explained in Chapter 2, an estimator for the number of valid requests
will be created. In the process of describing the estimator, we need to define two more variables:

Ei = someone who appears in the sample and submitted i requests according to the sample

6



and

Fj = someone in the sample who submitted j requests in real life.

We need those variables, since we want to find an expression for pi, which is the probability that Ei
happens. In order to understand how to calculate pi we first need a little more information on the
so-called hypergeometric distribution.

1.3 The hypergeometric distribution

The hypergeometric distribution is a discrete distribution which describes the probability of x suc-
cesses in n draws without replacement from a population of size N which contains K successes.
It differs from the binomial distribution in the sense that the binomial distribution describes the
probability of x successes in n draws with replacement.

If a random variable X follows the following pmf:

P(X = x) =

(
K
x

)(
N−K
n−x

)(
N
n

)
where : x = 0, 1, 2, ...,K; K − (N − n) ≤ x ≤ K; N,K, n ≥ 0,

then X is hypergeometrically distributed.[Casella and Berger, 2002]

Now we can start calculating pi. In order to get an expression which we can work with, we first
need to use Bayes theorem:

pi = P(Ei) =

P(Ei∩Fj)P(Fj)
P(Fj)

P(Ei∩Fj)
P(Ei)

=
P(Ei|Fj)P(Fj)

P(Fj |Ei)

=

N∑
j=i

P(Ei|Fj)P(Fj). (1.1)

Now we want to determine the preceding probabilities, the easiest is the probability of Fj : this is
the number of requests submitted by person j divided by the total number of requests N , this leads
to:

P(Fj) =
j ηj
N

.

If we now look at the conditioning probability, we want to know the probability that we have i
successes out of n draws in a ”population” of size N with j successes. There is, however one thing
we need to take into a count, which is that the probability that someone submitted 0 requests needs
to be excluded, since it is not possible that this happens. Combining all this information gives the
following formula:

P(Ei|Fj) =

(
j
i

)(
N−j
n−i
)(

N
n

) · 1

1− (j
0)(

N−j
n )

(N
n)

.
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Which, combined with Equation (1.1) finally gives:

pi = P(Ei) =

N∑
j=i

(
j
i

)(
N−j
n−i
)(

N
n

) · 1

1− (j
0)(

N−j
n )

(N
n)

· j ηj
N

. (1.2)

Now that we know why the old method doesn’t produce reliable results, which assumptions we made,
and what the value of pi is, we can start with defining the estimator and optimal sample size.
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2 Defining the estimator and the optimal sample size

In this chapter we try to find an expression for the estimator η̂i, we will do this by using the method
of moments. Let’s start by noticing that: Xi ∼ Bin(n, pi). This implies that:

E(Xi) = n · pi i = 1, ..., n.

Now we are going to make the following assumption:

ηn+1 = ... = ηN = 0 (2.1)

which states that we assume that there are no people who submitted more requests than the chosen
sample size. This is the assumption that makes our estimator conservative. But why do we need to
make this assumption?

2.1 Why an assumption is needed

It is known that the method of moments has a similar asymptotic efficiency (up to a constant) as
the maximum likelihood estimator. Because our estimator is created using the method of moments
and the fact that the maximum likelihood estimator is efficient, we can write:

V ar(η̂) ≈ I(η)−1.

Recall that I(η) is the Fischer information matrix, which is given by:

I(η) = −E
(
∂2`

∂η2

)
where ` is the full likelihood. Note that ∂`

∂η is an N × 1 vector, and therefore, ∂2`
∂η2 is an N × N

matrix (the Hessian). Since we only have n observations from the sample, rank
(
∂2`
∂η2

)
= n. Meaning

that ∂2`
∂η2 is not invertible, since it has no full rank. This in turn implies that: V ar(η̂) ≈ ∞. An

estimator with a very large variance does not provide much information, so this is why we make the
assumption stated in Equation (2.1).

2.2 Defining the estimator

Now we want to use the method of moments to define the estimator. To do this, it is convenient
to start at i = n and work from the back to the front and end at i = 1. This is convenient since
when i = n, all requests in the sample are submitted by one person only. The lower the value of i
becomes, the more different people submitted requests. The method of moments therefore gives:

Xi = n · pi.

= n ·
n∑
j=i

(
j
i

)(
N−j
n−i
)(

N
n

) · 1

1− (j
0)(

N−j
n )

(N
n)

· j ηj
N

=

n∑
j=i

ηj ·
(
j
i

)(
N−j
n−i
)(

N
n

) · 1

1− (j
0)(

N−j
n )

(N
n)

· j
N
· n
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Because we want to find an estimator for η, we define the following expression for convenience:

πi,j =

(
j
i

)(
N−j
n−i
)(

N
n

) · 1

1− (j
0)(

N−j
n )

(N
n)

· j
N
· n.

Now we can write:

Xn =

n∑
j=n

ηj · πn,j

= πn,n · ηn

⇒ η̂n =
Xn

πn,n

Xn−1 =

n∑
j=n−1

ηj · πn−1,j

= πn−1,n−1 · ηn−1 + πn−1,n · ηn

⇒ η̂n−1 =
Xn−1 − πn−1,n · η̂n

πn−1,n−1

Xn−2 =

n∑
j=n−2

ηj · πn−2,j

= πn−2,n−2ηn−2 + πn−2,n−1ηn−1 + πn−2,nηn

⇒ η̂n−2 =
Xn−2 −

∑n
j=n−1 πn−2,j η̂j

πn−2,n−2
.

...

We can proceed this way until we arrive at n = 1. This can now be generalized to the following
formula for the estimator:

η̂i =
Xi −

∑n
j=i+1 πi,j η̂j

πi,i
. (2.2)

For simplifying reasons we make one more assumption, namely that there are only people who
submitted 1 or 2 requests. This means that η3 = · · · = ηN = 0 and that our population now only
consists of η1 and η2. This assumption is still in line with the conservative nature of the estimator.
Given this, the fact that we now only observe X1 and X2 and using Equation (2.2), we can write:

η̂2 =
X2 −

∑n
j=3 π2,j η̂j

π2,2
=
X2 − 0

π2,2
=

X2

π2,2

η̂1 =
X1 −

∑n
j=2 π1,j η̂j

π1,1
=
X1 − π1,2

π2,2
X2

π1,1
.

2.3 Defining the optimal sample size

Now that we have an expression for η1 and η2, we can proceed to defining the optimal sample size.
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The assumption we made above also implies that:

X2 =
n−X1

2

where we recall that n is the sample size. Substituting the above into the equation for η̂1 we get:

η̂1 =
X1 − π1,2

π2,2
X2

π1,1

=
X1 − π1,2

π2,2
· (n−X1

2 )

π1,1

=
X1 · (1 +

π1,2

2·π2,2
)− ·nπ1,2

2·π2,2

π1,1

= X1 ·
2 · π2,2 + π1,2
2 · π1,1 · π2,2︸ ︷︷ ︸

a

−n · π1,2
2 · π1,1 · π2,2︸ ︷︷ ︸

b

= X1 · a− n · b.

In proceeding in the determination of the optimal sample size, the hypothesis we would like to test
is the following:

H0 : we haveN0 − k valid requests, i.e., we don’t have enough requests

H1 : we have more thanN0 valid requests, i.e., we have enough requests

where N0 is the number of requests needed. Under H0 we now have that: η1 = N0 − k and

η2 = N−(N0−k)
2 . Having X1 being approximately binomially distributed, we can make use of a

normal approximation for η̂1. Recall that this means that:

η̂1 ∼ N (E(η̂1), V ar(η̂1))

⇒ η̂1 ∼ N (anp1 − bn, a2n(1− p1)p1).

where p1 can be derived using Equation (1.2):

p1 =

(
N−1
n−1

)(
N
n

) · 1

1− (N−1
n )

(N
n)

· N0 − k
N

+

(
2
1

)(
N−2
n−1

)(
N
n

) · 1

1− (N−2
n )

(N
n)

· N − (N0 − k)

N

=

(
N−1
n−1

)(
N
n

)
−
(
N−1
n

) · N0 − k
N

+
2 ·
(
N−2
n−1

)(
N
n

)
−
(
N−2
n

) · N − (N0 − k)

N

note that η3, ..., ηN = 0, so we have only two nonzero terms in the summation that represents p1.
If we take a step back and look at the original problem, the most desirable situation is that the
probability of having enough valid requests while there are in reality not enough valid requests is as
small as possible. Therefore, we want that:

P(having enough valid requests | there are not enough valid requests) ≤ α

i.e.

P(η̂1 > (1 +m)N0 |H0 is true) ≤ α. (2.3)
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Where (1 +m)N0 is the decision margin, which will be explained more in Chapter 3. Shortly, it is
a correction which depends on the allowed error margin m, which can be chosen by the user of this
method. It makes sure that the chance of accepting the request as a whole, while in reality there
are not enough requests, is as small as the user desires.
It is, however undesirable that Equation (2.3) involves an inequality, the Karlin-Rubin Theorem
helps with creating an equality we can work with.

Theorem 1 (Karlin-Rubin). Consider testing H0 : θ ≤ θ0 versus H1 : θ > θ0. Suppose that T is a
sufficient statistic for θ and the family of pdfs or pmfs {g(t|θ) : θ ∈ Θ} of T has an MLR (monotone
likelihood ratio). Then for any t0, the test that rejects H0 if and only if T > t0 is a UMP (uniformly
most powerful) level α test, where α = P(T > t0 |H0 is rejected).[Casella and Berger, 2002]

Since η̂1 is normally distributed, we know that it has an MLR. Now using Karlin-Rubin and
Equation (2.3) we arrive at the following expression:

P(η̂1 > (1 +m)N0 |N0 valid requests) = α.

Using the normal approximation of η̂1, the preceding equation can be solved for sample size n:

α = P(η̂1 > (1 +m)N0 |N0valid requests)

= P(
η̂1 − (anp1 − bn)√
a2n(1− p1)p1

>
(1 +m)N0 − (anp1 − bn)√

a2n(1− p1)p1
|N0 valid requests).

Using that η̂1−(anp1−bn)√
a2n(1−p1)p1

∼ N (0, 1):

α = P(Z > Z1−α/2|(1 +m)N0 valid requests)

⇒ Z1−α/2 =
N0 − n(ap1 − b)√
a2n(1− p1)p1

⇒ Z1−α/2a
2np1(1− p1) = N2

0 + n2(ap1 − b)2 − 2 · nN0(ap1 − b)
⇒ n2 (ap1 − b)2︸ ︷︷ ︸

β

+n (2N0(b− ap1)− Z2
1−α/2a

2p1(1− p1))︸ ︷︷ ︸
γ

+ N2
0︸︷︷︸
δ

= 0.

The last expression is just a quadratic equation with regard to n, solving this results in the following
expression for n:

n =
−γ ±

√
γ2 − 4βδ

2β

=
−γ +

√
γ2 − 4βδ

2β
(n > 0)

=
−Z2

1−α/2(N −N0)2 +
√
Z4
1−α/2(N −N0)4 + 4m2N2

0N
2Z2

1−α/2(N −N0)

2m2N2
0

. (2.4)
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3 Different methods and their corresponding results

As mentioned in the introduction, the State of Washington also developed a method to tackle the
same problem, explained in the Legislature. Their method, together with the method present in the
Wrr and the newly developed method are implemented in the software program R. In this chapter,
the different methods will be compared by seeing what happens if we all apply them to the same
situation.

3.1 The Washington procedure

In this subsection, there will be a brief discussion on how the Washington method works. The method
consists of 9 points, these points are listed below. We first start by noticing that the assumption has
been made that the number of pairs in the sample (X2) is distributed as a Poisson random variable.
This is needed to understand where the formula at 7. comes from.

1. Start by taking a random sample (of size n) of at least three percent of the total number of
requests (N).

2. Check each signature in the sample on validity and check the number of duplicate requests.
A request is invalid if it is not in proper from or if the individual who signed did not have
the right to do so. The number of valid requests in the sample is denoted by nv, where the
number of invalid requests is denoted by ni.

3. Start by determining the error allowance, this is defined as follows:

allowance =
√
ni · 1.5.

4. Now, an upper limit is determined for the number of invalid signatures in the population,
which is:

upper limit =
ni + allowance

n
N

.

5. Determine the maximum allowable number of pairs of signatures in the sample as follows:

maximum allowable number of pairs = N −N0 − upper limit.

Where N0 is the number of signatures required by Article II, Section 1 of the Washington state
Constitution. The latter can, of course, also be replaced by the number of signatures required
in the Netherlands (which is 10,000 or 300,000 for respectively an introductory request or
definitive request).

6. The expected number of pairs of signatures in the sample is given by:

E(X2) =

(
n

N

)2

·maximum allowable number of pairs

=
n2(1− N0

N )−√ni(
√
ni + 1.5)

N
.

Recall that it is assumed that X2 is distributed as a Poisson random variable, this means that
the value calculated above is equal to the parameter λ which is then also equal to V ar(X2).

13



However, it appears that stating that V ar(X2) = λ is an assumption that is not reasonable,
and also the reason that this method does not produce the most reliable results. From the
simulations that will be done in this chapter it appears that this method works good when η2
is small, but when η2 is big, it does not estimate the valid number of requests very well.

7. Finally, the acceptable number of pairs of signatures in the sample (a) is is given by:

a = E(X2)− 1.65 ·
√
E(X2).

To see where the formula above comes from, we derive it below.
Start by stating that:

α = P(a > E(X2))

= P(a > λ)

= P(2 · a > 2 · λ)

= P(a− λ > λ− a)

= P
(
a− λ√
λ

>
λ− a√
λ

)
.

Using that a−λ√
λ
∼ N (0, 1):

α = P(Z > Z1−α/2)

⇒ Z1−α/2 =
λ− a√
λ

⇒ a = λ− Z1−α/2
√
λ.

Now, setting α equal to 0.10 means that Z1−α/2 = 1.65. This altogether now results in:

a = λ− 1.65 ·
√
λ

= E(X2)− 1.65 ·
√
E(X2).

8. If the situation arises that:

number of pairs of signatures in the sample ≥ acceptable number of pairs in the sample

it means that there there is a possibility that there are too many invalid requests, all re-
quests need to be checked separately on their validity to determine the exact number of valid
signatures.

9. If the situation arises that:

number of pairs of signatures in the sample < acceptable number of pairs in the sample

it means that there is a sufficient amount of valid requests. The conclusion that will now be
drawn is that there is enough support to organize a (consulting) referendum.

3.2 Decision margin

Since the estimator is normally distributed, it has the property that half of the time its estimation is
too high, and therefore the other half of the time its estimation is too low. This causes some trouble
if we look at situations in which the true value lies very close to N0, in this case it will conclude
half the time that there are enough valid requests and half the time that there are not enough valid
requests.
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Figure 1: Visual representation of the decision mar-
gin

To make sure that “acceptance while there
are in reality not enough valid requests” will oc-
cur as rarely as possible, we introduce a decision
margin (1 + m)N0, where m can be chosen by
the user of this method. The margin will be
a number higher than N0 and ensures that the
situation above happens as rarely as desired.

3.3 Results

All the preceding methods, which are: the old
method, the new method and the Washington method have been implemented in the statistical
programing language R (Appendix A-D). Different situations are simulated by creating a population
and then using one of the methods to calculate a sample size and estimate the number of single valid
requests. In this section we will look at different situations and the differences in output they produce
among the different methods. The way this is done is by running the same simulation 500 times
with a different random sample out of the total population. The 500 estimators are then plotted in
a histogram. Here we make the side note that there is no estimator for the Washington method, for
the number of single valid requests there is only an accept or reject. Therefore, for the Washington
method, the percentage of accepted requests will be displayed.

3.3.1 An easy situation

Let’s start with the following situation to visualize the result of a simulation:

Situation:

N = 400, 000

N0 = 300, 000

η1 = 260, 000

α = 0.05

m = 0.05

n = 13, 811

We see that indeed the method approximates the true number of single requests very accurately
(in this case: 260,000) and we clearly see the bell-shaped normal curve. The latter because we know
from Chapter 2 that η̂1 is normally distributed. In this case it is know that there are not enough
requests and as we see, all 500 times the the estimator lies left of the decision margin, and therefore,
the request would be rejected. In this situation, the Washington method would accept 100 percent
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of requests, this is in line with the statement made earlier in this chapter: that the Washington
method works very badly when η2 is big.

3.3.2 The case where the old method breaks down

As discussed in the beginning of this article, there is a particular situation which very clearly indicates
that there is something wrong with the old method. A simulation of this situation resulted in the
following plots:

Situation:

N = 400, 000

N0 = 300, 000

η1 = 0

η2 = 200, 000

α = 0.05

m = 0.05

nnew = 13, 811

nold = 4, 105

These two plots clearly visualize the problem of the old method, we see that it always estimates
the number of single submissions around approximately 398,000, where the new method would
always conclude that there are way to less single requests. Notable is that the Washington method
accepts 0 percent of the requests here, so in this case it works perfectly.

Observe that the new method makes use of a much bigger sample size than the old method;
however, changing the sample size to 13,811 just as the new method does, results in:

Situation:

N = 400, 000

N0 = 300, 000

η1 = 0

η2 = 200, 000

α = 0.05

m = 0.05

n = 13, 811

Not a better result than with a sample size of 4,105.
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3.3.3 A difficult situation

Next, we are going to look at the situation where we need 1 more single request to make the request
valid:

Situation:

N = 13, 000

N0 = 10, 000

η1 = 9999

α = 0.05

m = 0.05

nnew = 2, 294

nold = 3, 144

This case very clearly indicates why we need to include the decision margin. As we see, without
the decision margin, 50 percent of the times the method would accept the request, while in reality
there are not enough requests. The latter is of course a very undesirable situation since the whole
point of doing this estimation is to prevent invalid requests from passing. If we look at the old
method we see that it estimates the number of single requests way too high. The Washington
method rejects around 50 percent of the times the request, also not a very desirable result.

3.3.4 Very few double requests

In the example of Section 3.3.3 there were still a lot of double requests (namely: 13000−9999
2 = 1500).

If we now look at the situation where there are only a couple of double requests, we get to the
following results:

Situation:

N = 10, 100

N0 = 10, 000

η1 = 9800

α = 0.05

m = 0.05

nnew = 332

nold = 2, 940

We see now that the number of bars in the plot is very low, only three bars. We also note that we
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have a sample size of 332 requests, this explains why there are only three bars. The sample probably
includes not a single double request most of the times, which results in the high right bar. About
70 times the sample includes only 1 double request, which results in the middle bar. Almost all the
times there will be an estimated number of valid requests of 10,100, which would imply that there
are enough valid requests, which there are not (there are only 9999 valid requests). This example
again shows the importance of the decision margin, as long ad this is chosen big enough, the request
will be rejected as it is supposed to be.

The old method estimates too high, and because of the lack of a decision margin, the request
would have been accepted. Furthermore, it is also important to note that the old method uses a way
bigger sample size than the new one, but does not produce a much better result. The Washington
procedure has an acceptance percentage of 0 percent, a good result which is in line with the statement
made before that when η2 is small, the Washington procedure works good.

3.4 The impact of the sample size

Untill now, all the examples used the sample size determined by Equation (2.4). But what happens
if we increase or decrease the sample size? How much does that influence the estimator?
To answer this question we are going to look at the situation from Section 3.3.3. We see that in this
case, n = 2294. To see how many of the 500 simulated requests get accepted we are going to look
at the following percentage:

percentage of accepted requests =

500∑
i=1

1

500
· Iη1,i>(1+m)·N0

where i is the ith simulation. This is the percentage of estimators η1 that is higher than the decision
margin. In other words: this are all the bars that are right of the decision margin.

Sample size Percentage of accepted requests
1000 38
1147 26.4
2000 13.2
2294 9.8
3000 2.8
4000 0.6
4588 0

Table 1: Different sample sizes and their corresponding percentage of accepted requests

From Table 1 we see that halving the sample size means that 16.6 percent more requests will be
falsely accepted. And by doubling the sample size we do have a 0 percentage of falsely accepting a
request, but here we only gain 9.8 percent while 2294 more requests need to be checked.

Choosing a sample size is, of course, not only a statistical problem, but also a matter of policy,
how much effort do you want to put in checking all the requests in the sample and how certain do
you want to be? But from the results of Table 1 we see that the new method does a very good job
in finding a balance between accuracy and sample size.
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4 Improvement of the method

Now that the new method is defined, and the simulations in Chapter 3 have shown that we have
a significant increase in accuracy, it is now time to look at possibilities to improve the method. In
the process of developing this method, the Dutch government came up with a slightly more specific
question they want answered, which is:

A 1 percent acceptable chance on rejecting H0 incorrectly with an error margin of 2 percent.

Formally, this means that we want to find a sample size n that satisfies:

P(η̂1 ≥ N0 | η1 = (1−m) ·N0) = α (4.1)

where: α = 0.02 and m = 0.01. Recall that α is the allowed probability on an error and m is
the decision margin, a boundary to make sure that we do not falsely accept an invalid request. If
we look back at the examples from Chapter 3 we see that when N � N0 this accuracy is easily
reached with the new method, the sample size will then be chosen big enough to ensure this level of
accuracy. Unfortunately, we run into trouble when N ∼ N0. Because of the fact that η̂1 is normally
distributed, η̂1 lies 50 percent of the times above the true value of η1 and 50 percent of the times
below the true value of η1. This means that we cannot ensure the accuracy that is desired in this
request.

The most problematic case we can think of is when N = N0, we can reason that in this case
the biggest sample size is needed to ensure the foregoing accuracy. What will be done now is that
a sample size is calculated so that it ensures the desired level of accuracy when N = N0, since this
sample size then ensures the accuracy for our worst case N = N0, it definitely works for all other
cases.

4.1 Determining the sample size

First of all, we note that if N = N0, X1 = n, which in turn implies that:

η̂1 =
2π2,2 + π1,2

2π1,1π2,2
·X1 −

π1,2n

2π1,1π2,2

=
n

π1,1

=
n

(1
1)(

N−1
n−1)

(N
n)

· 1

1− (1
0)(

N−1
n )

(N
n)

· nN

=
n

n
N

1−N−n
N

· nN

=
N

n
· n

= N.

With this information in mind, we can read Equation (4.1) as: what is the probability that X1 = n,
given that η1 = (1−m) ·N0. Formally:

P(X1 = n | η1 = (1−m) ·N0) = α. (4.2)
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Before we proceed, we make a visualization of the situation in the form of a number line. All the
single requests (η1 (= (1 −m) · N0)) will be arranged on the left side of a number line and all the
double requests (η2 (= mN0

2 )) on the right side. This gives the following picture:

0 (1−m) ·N0 (1− m
2 ) ·N0 N0

success failure

Figure 2: A visual representation of the distribution of the requests, where the single requests are positioned
on the left and the double requests on the right

From Equation (4.2) we know that we are interested in the probability that we pick n single
requests, in other words: n out of n successes. From Figure 2 we conclude that a there is a success
when a request is taken out of the first (1− m

2 ) ·N0 requests, and a failure if a request is picked out
of the last m

2 ·N0 requests. With this estimation procedure we arrive at the following inequality:

α = P(X1 = n | η1 = (1−m) ·N0)

≤ P
(

n out of n successes |
(

1− m

2

)
·N0 successes in N = N0

)
This can be calculated using the hypergeometric distribution, which means we want to solve the
following equality: (

(1−m
2 )·N0

n

)(
N0

n

) ≤ α

With the use of Matlab (Appendix E) , we get the following results:

Introductory request:

(
9900
n

)(
10000
n

) ≤ 0.01

⇒ n ≥ 448

Definitive request:

(
29,7000

n

)(
30,0000

n

) ≤ 0.01

⇒ n ≥ 458

Where these sample sizes are approximations, since Matlab is not able to calculate an analytic
solution for these equations. The problem that now arises is that the conclusion arises that we
have a lower bound for the sample size, which is not very informative. Also, the sample sizes are
quite small compared to the sample sizes from Chapter 3. It may be a good idea to take a different
approach.

4.2 The birthday problem

The birthday problem [Johnson, 1997] is a well-known problem in probability theory, where the
following question needs to be answered:

Given a group of n people, what is the probability that at least two will have the same birthday?
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Going back to the question we would like to answer, it can be seen that this can also be transformed
into a birthday problem:

α = P(X1 = n | η1 = (1−m) ·N0)

= P(No two people have the same birthday | η1 = (1−m) ·N0).

In this situation the total sample size is n, so there are n people in the birthday problem. Saying
that X1 = n is equivalent to saying that we don’t want to have a double request in our sample. This
is in turn equivalent to saying that we don’t want two people having the same birthday. Define:

p = The probability that two randomly chosen people have the same birthday

( = two randomly chosen requests form a double request)

=
mN0

2

N0
·

mN0

2

N0 − 1

Which implies:

α = P(No two people have the same birthday | η1 = (1−m) ·N0)

= (1− p)(
n
2)

=

(
1− mN0

2
· 1

N0 · (N0 − 1)

)(n
2)

Solving for n: (
n

2

)
=

log(α)

log(1− mN0

2N0·(N0−1) )

⇒n2 − n− 2log(α)

log(1− mN0

2N0·(N0−1) )
= 0

⇒n =
1

2
±

√
1 + 8log(α)

log
(
1− mN0

2N0(N0−1)

)
2

⇒n =
1

2
+

√
1 + 8log(α)

log
(
1− mN0

2N0(N0−1)

)
2

(n > 0)

Filling in with the desired values gives:

Introductory request: n = 3035

Definitive request: n = 16, 623
(4.3)

These two sample sizes now work respectively for all N ≥ 10, 000 and N ≥ 300, 000. The sample sizes
are bigger than the sample sizes determined before (from Chapter 3 we know that for N = 13, 000
we had n = 2294 and for N = 400, 000 we had n = 13, 811). This makes sense, since the sample
sizes from Equation (4.3) are determined using the worst case N = N0. For all cases where N > N0

we can now pick the corresponding sample size and it will now always give the desired accuracy.
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Concluding remarks

In this thesis, we have seen that the method used to estimate the number of valid requests for the
past few years had some serious problems and could have made requests pass which should have
been rejected. The new method, with a new way to define the estimated number of valid requests
and the sample size shows with the use of simulations a big improvement over the old method and
the Washington method. The new request from the government that required a higher accuracy has
been answered with a different determined sample size. Depending on whether we want to check an
introductory request or definitive request, for both situations there is now a fixed sample size that
gives the desired accuracy.

Of course, assumptions were needed and deciding that there are only single and double requests
present in the population makes the estimator conservative, which is also the biggest limitation of
the method. The fact that the estimator is normally distributed makes situations where there are
barely enough valid requests hard to judge. For the future it may therefore be interesting to see if
there is a way to get rid of the conservative nature of the estimator, although there are probably
other assumptions that can cause other limitations.

For now, we can be very sure that the next request for a referendum in the Netherlands can be
rejected or accepted with a lot more confidence than before.
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Appendix

For all the code listed below, R studio version 1.0.153 was used.

A The different situations

N <− c (13000 , 13000 , 13000 , 13000 , 400000 , 400000 , 400000 , 400000 , 400000
, 10100)

N0 <− c (10000 , 10000 , 10000 , 10000 , 300000 , 300000 , 300000 , 300000 , 300000
, 10000)

eta1 <− c (10000 , 12000 , 9999 , 10100 , 300000 , 260000 , 340000 , 300100 , 0
, 9999)

s i t u a t i o n <− c ( ” Exactly enough s i n g l e reques t s , 10 .000 needed”
,”More than enough s i n g l e reques t s , 10 .000 needed”
,” Almost enough s i n g l e reques t s , 10 .000 needed”
,” Just enough s i n g l e reques t s , 10 .000 needed”
,” Exactly enough s i n g l e reques t s , 300 .000 needed”
,”Way too l i t t l e s i n g l e reques t s , 300 .000 needed”
,”More than enough s i n g l e reques t s , 300 .000 needed”
,” Just enough s i n g l e reques t s , 300 .000 needed”
,” Not a s i n g l e v a l i d reques t s , 300 ,000 needed”
,” Very few double reques t s , 10 ,000 needed ”)

m <− 0 .05
n . i t e r <− 500
alpha1 <− 0 .10
alpha <− alpha1 / 2
n . sim <− l ength (N)
n <− NULL
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B New method

vr <− f unc t i on ( sample , t o t a a l . r e q u e s t s ){
sample <− rank ( s o r t ( sample ) )
prob <− f unc t i on ( i , j , n , N){

n ∗ dhyper ( i , j , N−j , n ) ∗ j / N / (1 − dhyper (0 , j , N−j , n ) )
}
N <− t o t a a l . r e q u e s t s
n <− l ength ( sample )
X <− tabu la t e ( tabu la t e ( sample ) )
m <− l ength (X)
i f (m == 1){

X. pseudo <− c (X, 0)
} e l s e {

X. pseudo <− c (X[ 1 ] , sum(X[ 2 : m] ∗ ( 2 :m) / 2) )
}
X = X. pseudo
m = 2
eta <− rep (NA, 2)
eta [ 2 ] <− X[ 2 ] / prob (m, m, n , N)
eta [ 1 ] <− (X[1]− prob (1 , 2 , n , N) ∗ eta [ 2 ] ) / prob (1 , 1 , n , N)
re turn ( l i s t ( observed=X, e s t imate s=round ( eta , 1 ) , v a l i d=max( eta [ 1 ] , 0 ) ) )

}

s i z e <− f unc t i on (N, N0 , m, alpha ){
za <− qnorm(1 − alpha )
a <− mˆ2 ∗ N0ˆ2
b <− za ˆ2 ∗ (N − N0)ˆ2
c <− −Nˆ2 ∗ (N − N0)∗ za ˆ2
n <− c (n , round((−b + s q r t (bˆ2 − 4 ∗ a ∗ c ) ) / (2 ∗ a ) ) )
re turn (n)

}

new method <− f unc t i on ( ) {
r e s <− NULL
f o r ( i in 1 : n . sim ) {

# make populat ion
Pop <− c ( ( 1 : eta1 [ i ] ) , eta1 [ i ] + rep ( 1 : ( (N[ i ] − eta1 [ i ] ) / 2) , each =2))
# determine sample s i z e
n <− c (n , s i z e (N[ i ] , N0 [ i ] , m, alpha ) ) # add new s i z e to n
x <− NULL
e s t <− NULL
es t2 <− NULL
f o r ( j in 1 : n . i t e r ) {

smpl <− sample (Pop , n [ i ] , r e p l a c e=FALSE)
sim . vr <− vr ( smpl , N[ i ] ) # f i n d the number o f v a l i d r e q e u s t s
x <− cbind (x , sim . vr$observed [ 1 ] )
e s t <− cbind ( est , sim . v r$e s t imate s [ 1 ] ) # add sim . vv$est imates [ 1 ] to e s t
e s t2 <− cbind ( est2 , sim . v r$va l i d ) # add sim . vv$va l id toe aan e s t2

}
# save r e s u l t s in r e s
r e s [ [ i ] ] <− l i s t (N. N1 . N0 . n=c (N[ i ] , eta1 [ i ] , N0 [ i ] , n [ i ] ) ,

x=round ( c (mean( x ) , sd ( x ) ) , 1 ) ,
e s t . a l l=est2 ,
e s t=round ( c (mean( e s t ) , sd ( e s t ) ) , 1 ) ,
e s t 2=round ( c (mean( e s t2 ) , sd ( e s t2 ) ) , 1 ) ,
prob=sum( e s t > (1 + m) ∗ N0 [ i ] ) / n . i t e r )

}
r e turn ( r e s ) ;

}
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new res = new method ( )

#code f o r h istograms

dec new <− NULL
f o r ( i in 1 : 10) { #change s i t u a t i o n here

dev . new ( )
h i s t ( new res [ [ i ] ] $ e s t . a l l , breaks =15, xlab=”Estimated number o f v a l i d s i n g l e

r e q u e s t s ” , main=paste (”New method . ” , s i t u a t i o n [ i ] ) , yl im=c (0 , 500)
, xl im=c (6000 ,12000))

dec new [ i ] <− (1 + m) ∗ N0 [ i ]

l i n e s ( c ( dec new [ i ] , dec new [ i ] ) , c ( 0 , 500 ) , c o l=”red ”)
t ext ( bdec new [ i ] , 500 , ” Dec i s i on margin ” , pos=4)

}

C Old method

r o ld method <− f unc t i on ( ) {
r e s <− NULL
f o r ( i in 1 : n . sim ) {

# make populat ion
Pop <− c ( ( 1 : eta1 [ i ] ) , eta1 [ i ] + rep ( 1 : ( (N[ i ] − eta1 [ i ] ) / 2) , each =2))
# determine sample s i z e
n = (N ∗ 2.576ˆ2 ∗ 0 . 2 5 ) / (2 .576ˆ2 ∗ 0 .5 ∗ 0 .5 + (N − 1) ∗ 0 .02ˆ2)
x <− NULL
e s t <− NULL
es t2 <− NULL
f o r ( j in 1 : n . i t e r ) {

smpl <− sample (Pop , n [ i ] , r e p l a c e=FALSE)
x <− cbind (x , l ength ( unique ( smpl ) ) )
e s t [ j ] <− x [ j ] ∗ N[ i ] / n [ i ]

}
# save r e s u l t s in r e s
r e s [ [ i ] ] = l i s t (N. N1 . N0 . n=c (N[ i ] , eta1 [ i ] , N0 [ i ] , n [ i ] ) , e s t = e s t )

}
r e turn ( r e s ) ;

}

r o l d r e s = r old method ( )

#code f o r h istograms

dec o ld <− NULL
f o r ( i in 1 : 10) { #change s i t u a t i o n here

dev . new ( )
h i s t ( r o l d r e s [ [ i ] ] , breaks =15, xlab=”Estimated number o f v a l i d s i n g l e
r e q u e s t s ” , main=paste (” Old method . ” , s i t u a t i o n [ i ] ) , yl im=c (0 , 300))
dec o ld [ i ] <− (1 + m) ∗ N0 [ i ] #d e c i s i o n margin

l i n e s ( c ( dec o ld [ i ] , d e c o ld [ i ] ) , c ( 0 , 260 ) , c o l=”red ”)
t ext ( dec o ld [ i ] , 270 , ” Dec i s i on margin ” , pos=4)

}
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D The Washington method

f o r ( i in 1 : 10) { #Change the s i t u a t i o n here
number accepted = 0
n <− N[ i ] ∗ 0 .06
eta2 <− (N[ i ] − eta1 [ i ] ) / 2
Pop <− c ( ( 1 : eta1 [ i ] ) , eta1 [ i ] + rep ( 1 : eta2 , each =2))
f o r ( j in 1 : n . i t e r ) {

washsample <− sample (Pop , n , r e p l a c e=FALSE)
X <− tabu la t e ( tabu la t e ( washsample ) )

max . a l lowed . p a i r s <− N[ i ] − N0 [ i ]
expected . p a i r s <− (n / N[ i ] ) ˆ 2 ∗ max . a l lowed . p a i r s
acceptab l e . p a i r s <− expected . p a i r s − 1 .65 ∗ s q r t ( expected . p a i r s )

i f ( l ength (X) == 1) {
X = c (X, 0)

}
i f (X[ 2 ] < acceptab l e . p a i r s ) {

number accepted <− number accepted + 1
} e l s e {

number accepted <− number accepted
}

}

percentage accepted <−number accepted / n . i t e r ∗ 100
p r in t ( pe rcentage accepted )

}

E Calculating the sample size

For the code below, Matlab R2017a - EDU was used.

syms n
b = nchoosek (9900 , n)
c = nchoosek (10000 , n)

eqn = b/c == 0 . 0 1 ;
s o ln = s o l v e ( eqn , n)

syms n
b = nchoosek (297000 , n)
c = nchoosek (300000 , n)

eqn = b/c == 0 . 0 1 ;
s o ln = s o l v e ( eqn , n)
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