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Abstract

In this work, the fully-conservative symmetry preserving discretization method of
Verstappen and Veldman (2003) [1], which was later generalized to unstructured collo-
cated grids by Trias et al. (2014) [2], is implemented in open source CFD software Open-
FOAM. By upholding underlying symmetries in operators of the Navier-Stokes equa-
tions, a discretization scheme is derived that preserves energy at all length scales to
reduce numerical dissipation, and more accurately depicts turbulence. Using a Taylor-
Green vortex case, significant improvements in terms of numerical dissipation were
shown in comparison with OpenFOAM’s standard icoFoam solver. This effect was mainly
caused by the Van Kan pressure prediction method [3], in comparison to the Chorin
method [4], which does not include a pressure prediction. The spatial discretization
of the symmetry preserving method, which uses midpoint interpolation and projected
distances in its gradients, simultaneously improved stability, even on distorted grids,
while slightly under-estimating physical diffusion. By performing a temporal consis-
tency study on the lid-driven cavity flow, it was shown that the pressure prediction
method was able to increase the order of accuracy of the pressure error from O (∆t∆h2)
to O (∆t 2∆h2). Nevertheless, in a more realistic turbulent channel fow case, the low-
dissipative character of the symmetry preserving method started to show some instabil-
ities in the form of checkerboarding. Methods to damp these modes while preserving
underlying symmetries could lead to stabilizing these results while conserving energy
at all length scales, and potentially open up the way to using even higher order pressure
predictions.
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1 Introduction

In the early nineteenth century, the work of Claude-Louis Navier and George Stokes in fluid
mechanics lead to the now famous Navier-Stokes equations, as seen in equations 1 and 2,
which govern the flow of incompressible fluids.

∂~u

∂t
+ (~u·∇)~u = ν∇2~u −∇p (1)

∇·~u = 0 (2)

Analytical solutions to these equations were only obtained for some two-dimensionsonal
and some simple three-dimensional cases, as many three-dimensional vortices and turbu-
lence are too complex to predict. The equations are, however, very useful in approximating
these complex cases. A common approach in computational fluid dynamics (CFD), is to ap-
proximate these cases by subdividing the domain of a case into many small control volumes,
or cells, to which physical variables are attributed, called the finite volume method (FVM).
By applying conservation of mass, energy and momentum to each cell, a large system of
algebraic equations is created. Up until the late 1950’s this approach remained mostly theo-
retic, because of the sheer number of equations required for even very basic cases. With the
rise of computing technology, the interest in, and practical use of CFD has surged. Nowa-
days, many software packages are available that perform these calculations, accessible to
everyday engineers of almost any skill level, without much required knowledge of the un-
derlying principles.

One of these software packages is OpenFOAM, an open source software written in C++,
that stores the flow variables at the cell centers, the so-called collocated mesh approach,
figure 1 (left). Its counterpart is the staggered mesh approach, which stores velocity compo-
nents at the cell faces and the pressure variable at the cell center, figure 1 (right). The advan-
tage of collocated meshes is that conversion of grids to complex solution domains is more
straightforward than in staggered grids [5]. Moreover, the data structure required to store
the variables is simpler and more compact, leading to lower computational costs and easier
implementation of code. Therefore, many industrial and academic software packages, such
as ANSYS-FLUENT, STAR-CCM+, Code-Saturn and OpenFOAM, use this approach.

Figure 1: Collocated variable arrangement (left). Staggered variable arrangement (right)

However, this approach has two major disadvantages. First, using a collocated mesh in
combination with a central discritisation stencil leads to the checkerboard problem, see [6,
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7] for instance. This arises because cell-centered gradients are calculated using variables of
directly neighbouring cells, which causes an odd-even decoupling, creating a checkerboard-
like pattern. This problem is often circumvented by calculating gradients at the face directly
from the neighbouring cells as opposed to interpolating the decoupled gradients to the face
in between. This method was first posed by Rhie and Chow (1983) [8] and is also used in
OpenFOAM because the laplacian operator in equation 1 can be calculated on a compact
stencil, requiring a less complex data structure. This method does introduce some dissipa-
tion of kinetic energy however [6, 7, 8]. Second, the collocated mesh gives rise to a prob-
lem concerning the compressibility constraint, equation 2. Collocated meshes make use
of an auxilary velocity field to comply to the compressibility constraint, this field stores its
variables at the face centers, resulting in two separate velocity fields. The compressibility
constraint of equation 2 is posed solely onto the face-centered velocities, making the cell-
centered velocity field only approximately divergence free [9, 10].

These disadvantages lead to numerical dissipation and inaccuracies in solutions. More-
over, industrial codes often disregard fundamental properties of the differential operators
of equations 1 and 2 on unstructured grids, in favor of stability. The dissipation of energy,
caused by these inaccuracies, affects motions at the smallest length scales, i.e. turbulence
[2]. By preserving the symmetries of the underlying differential operators, Verstappen and
Veldman (2003) developed a non-dissipative discretization method, which preserves en-
ergy at all length scales to reduce numerical dissipation while also guaranteeing solution
stability [1]. Trias et al. (2014) used this philosophy and generalized the discretization to
unstructured collocated meshes [2]. In this thesis, this symmetry preserving discretization
technique is successfully implemented into the source code of OpenFOAM, to increase the
stability and accuracy of simulations of turbulence in incompressible flows of Newtonian
fluids. Using standard cases, the Taylor-Green vortex, the lid-driven cavity flow and turbu-
lent channel flow, solver stability and accuracy, order of temporal accuracy and sources of
kinetic energy dissipation were examined.

This thesis is structured as follows. In section 2 the approach to discretize and solve
the Navier-Stokes equation is discussed, in terms of the domain, symmetry requirements,
pressure-velocity coupling, and temporal and spatial discretization. In section 3 the meth-
ods to implement the solver scheme into OpenFOAM are presented, discussing the scheme
step-by-step, written in the required fundamental mathematical operations. Subsequently,
in section 4, the results are presented for tests of accuracy, order of temporal accuracy and
sources of kinetic energy dissipation using several test cases, including a Taylor-Green vor-
tex, a lid-driven cavity and a channel flow. Then, in section 5, the findings are summarised
and the conclusions are presented and discussed. Finally, recommendations for future re-
search are presented in section 6.
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2 Discretization methods

To approximate and solve the continuous Navier-Stokes equations, equations 1 and 2, they
are discretized for unstructured collocated grids using FVM, while retaining the underlying
symmetries of the differential operators, to reduce numerical dissipation and increase sta-
bility. To discretize these equations, the method of Trias et al. (2014) is closely followed [2].

2.1 Discretization of the domain

To discretize the Navier-Stokes equations using FVM with unstructured collocated grids,
definitions of the geometric variables and relations have to be established first. The cell
volumes are of a general polyhedral shape, with flat polygonal faces between two adjacent
cells, as for example figure 2.

Figure 2: Example of polyhedral cell i , depicting relation to neighbouring cell j

For cell i , the collocated physical variables are stored at its centroid, Ci , with relation to the
origin rci . Its collocated volume is given by (Ωc )i ,i . The face between cells i and j is labeled
f . For a domain with n cells and m faces, the cells are labeled C1 through Cn and the area of
the faces between them are labeled A1 through Am . The normal of face f has its direction
from Ci to C j , for i < j , and is labeled n f . In this relation, cell i is referred to as the owner cell
and cell j is referred to as the neighbour cell, labeled Co and Cn respectively. The relation

between cell centers Ci and C j is given by
−−−→
Ci C j = rci − rc j and the length of its projection

onto n f is given by δn f = |n f ·−−−→Ci C j |. Each face also has a corresponding staggered volume,
labeled (Ωs) f , f = A f δn f . This definition is discussed in section 2.6 and more extensively in
appendix, section C.
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2.2 Discretization of the Navier-Stokes equations

Using the geometric variables and relations defined in the previous section, equations 1 and
2 for FVM on unstructured collocated grids become:

Ωc
duc

d t
+C (us)uc +Duc +ΩcGc pc = 0c (3)

Mus = 0c (4)

Here, the previously discussed cell-centered and face-centered control volumes appear in
matricesΩc andΩs respectively. In three dimensions,Ωc ∈R3n×3n is a block diagonal matrix,
Ωc = I3 ⊗Ωc#, where I3 ∈ R3×3 is the identity matrix and Ωc# ∈ Rn×n is a square diagonal
matrix containing the collocated control volumes, (Ωc )i ,i , as seen in figure 2. Similarly,Ωs ∈
Rm×m is a square diagonal matrix containing the staggered control volumes, (Ωs) f , f .

uc ∈R3n gives the cell-centered velocities in three dimensions and pc ∈Rn gives the cell-
centered pressures. Vector uc is constructed as uc = (u1,u2,u3)T , where the velocity com-

ponents in each xi -direction are given by ui =
(
(ui )1, (ui )2, . . . , (ui )n

)T . Equation 4 uses the
auxiliary staggered velocity field, us ∈ Rm , containing the face normal components of the

velocities. us is constructed as us =
(
(ui )1, (ui )2, . . . , (ui )m

)T . The collocated and staggered
velocity fields are related by the linear shift transformation, Γc→s ∈Rm×3n , through:

us := Γc→suc (5)

Next, the differential operators are defined as follows. The convective operator, C (us) ∈
R3n×3n , and the diffusive operator, D ∈R3n×3n , are both block diagonal matrices constructed
similar toΩc :

C (us) = I3 ⊗C#(us) (6)

D = I3 ⊗D# (7)

where C#(us) gives the scalar convection between neighbouring cells i and j , dependent on
the velocity at the connecting face f , us . Similarly, D# gives the scalar diffusion between
neighbouring cells, though independent of the face velocity. Finally, Gc ∈ R3n×n and M ∈
Rn×m give the discretized operators for the collocated gradient and divergence, respectively.
It is important to note that vectors 0c in equations 3 and 4 are of different length, namely 3n
and n respectively.
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2.3 Operator symmetry requirements

The continuous operators of equations 1 and 2 possess energy conserving properties due to
their underlying symmetries. To spatially discretize these operators and conserve kinetic en-
ergy, it is important that these symmetries are translated to their discrete analogs, discussed
in the previous section [1]. To do so, the global kinetic energy is considered, which can be
expressed as ‖uc‖2 = uT

c Ωc uc . The evolution of this term can be obtained by left-multiplying
equation 3 by uT

c and summing the result with its transpose:

d

d t

∥∥u2
∥∥=−uT

c

(
C (us)+C T (us)

)
uc −uT

c

(
D +DT )

uc −uT
c ΩcGc pc −pT

c GT
c Ω

T
c uc (8)

When there is no diffusion, D = 0, there should be no evolution in global kinetic energy.
Therefore the convective and pressure term should obey:

uT
c

(
C (us)+C T (us)

)
uc = 0 (9)

uT
c ΩcGc pc +pT

c GT
c Ω

T
c uc = 0 (10)

Equation 9 leads to:

C (us) =−C T (us) (11)

which means operator C should be skew-symmetric to conserve global kinetic energy. To
reduce the pressure terms to 0 as in equation 10, the incompressibility constraint is consid-
ered after interpolating uc , equations 4 and 5. This leads to:

−(ΩcGc )T = MΓc→s (12)

which can be verified to reduce both parts of equation 10 to 0:

uT
c ΩcGc =−uT

c Γ
T
c→s M T =−(MΓc→suc )T = 0 (13)

GT
c Ω

T
c uc =−MΓc→suc = 0 (14)

Therefore, the equality in equation 12 leads to the pressure term vanishing in equation 10.
With both these terms in equation 8, this equation reduces to:

d

d t
‖uc‖2 =−uT

c (D +DT )uc ≤ 0 (15)

The remaining term is always less than or equal to 0 because the viscosity term should be
strictly dissipative. Therefore (D +DT ) must be positive-definite. Moreover, although not
strictly necessary, operator D is assumed to be symmetric, like its continuous analog −∆
[9]. The equalities and properties of the operators presented in this section so far, ensure a
non-dissipative scheme.
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2.4 Pressure-velocity coupling

In this section, the steps involved in solving the discretized Navier-Stokes equations, as seen
in equations 3 and 4, are presented, using discrete operators that preserve the symmetries
of their continuous analogs. Rewriting equation 3, using an explicit temporal scheme with a
pressure term at time step n +1, the scheme with which the momentum equation is solved
is obtained:

un+1
c −un

c

∆t n
= R(un

c )−Gc pn+1
c (16)

with R(un
c ) :=−Ω−1

c (C (un
s )un

c +Dun
c ) and ∆t n as the time between step n and step n+1. The

incompressibility constraint is solved implicitly:

Mun+1
s = 0c (17)

To solve the pressure-velocity coupling, the fractional step method is used [11, 12]. Using
Helmholtz-Hodge vector decomposition, the staggered predictor velocity can be decom-
posed into a divergence free vector, un+1

s and a curl-free vector corresponding to the gradi-
ent of the cell-centered correction pressure, Gp̃′

c [4]:

up
s = un+1

s +Gp̃′
c (18)

where the cell-centered correction pressure is given by:

p̃n+1
c = p̃p

c + p̃′
c (19)

where p̃p
c is the predictor pressure and p̃ includes ∆t , such that: ∆t npn+1

c =∆t npp
c +∆t np′

c .
Operator G calculates the gradient of the cell-centered pressure at the faces and is defined
using the divergence operator by:

G :=−Ω−1
s M T (20)

Because un+1
s is divergence free, taking the divergence of equation 18, leads to the discrete

Poisson equation:

Mup
s = MGp̃′

c = Lp̃′
c (21)

with:

L := MG =−MΩ−1
s M T (22)

giving the Laplacian operator, which is symmetric and negative-definite and therefore also
holds the notion that operator D =−∆ is symmetric and positive definite.

To find an expression for Gc from G , an opposite operator corresponding to Γc→s is
needed. This interpolation in the case of pressure gradients leads to a definition for the
collocated gradient, from equation 20 :

Gc =−Γs→cΩ
−1
s M T (23)

The combination of equations 12 and 23 lead to an expression for for Γs→c :
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(ΩcΓs→cΩ
−1
s M T )T = MΓc→s (24)

and therefore:

Γs→c :=Ω−1
c ΓT

c→sΩs (25)

so that equation 23 becomes:

Gc :=Ω−1
c ΓT

c→s M T (26)

An important observation to make now is that Γs→cΓc→s does not exactly equal I . It intro-
duces a small error and therefore: Γs→cΓc→s ≈ I , which means that interpolating a variable
from centroid to face and back leads to an error factor, which is further discussed in the
appedix, section A. This is necessary to uphold equation 12, so that the pressure term in the
evolution of global kinetic energy vanishes.

Now that the relevant discrete operators have been defined, an expression for the cell-
centered predictor velocity, up

c , is constructed, which in turn will be used to find the stag-
gered predictor velocity, up

s , as used in equation 21. To find this predictor velocity, an esti-
mate of equation 16 is made, using the gradient of the predictor pressure, Gc p̃p

c :

up
c = un

c +∆tR(un
c )−Gc p̃p

c (27)

Next, the Poisson equation is posed to find the correction pressure, p̃′
c , using equations 5

and 21:

Lp̃′
c = Mup

s = MΓc→sup
c (28)

The predictor pressure in equation 27 will be given by p̃n
c , to give a good estimate which

can be used in explicit calculations. This method corresponds to the van Kan projection
method [3], in contrast to the Chorin projection method which takes 0 as its prediction [4].
When formulating this equation, the choice for the prediction pressure becomes impor-
tant, as the Laplacian on the left-hand side (LHS) of equation 28 is evaluated on a compact
stencil, whereas the pressure term on the right-hand side (RHS) is interpolated back and
forth, thereby creating a broad stencil. By choosing pn

c as a predictor, a larger part of pn+1
c

is calculated explicitly. The LHS implicitly introduces a small error term to the momentum
equation, similar to the approach by Rhie and Chow (1983) and is sufficient to eliminate the
checkerboard problem introduced by the broad stencil on the RHS [8]. After this, equation
18 can be used in combination with the interpolation of equation 25 to find an expression
for un+1

c . When calculating up
s , the velocities are interpolated from cell to face, whereas here

they are interpolated back from face to cell. Instead of writing Γs→cΓc→sup
c , up

c is directly
used, to avoid the small error that is introduced when interpolating from cell to face and
back. The final expression then becomes:

un+1
c = up

c −Γs→cGp̃′
c (29)

With the full expression written out this becomes:

un+1
c = up

c +Ω−1
c ΓT

c→s M T L−1MΓc→sup
c = (I −Ω−1

c P )up
c (30)
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with P =−ΓT
c→sΩ

−1
c M T L−1MΓc→s , which is symmetric and positive-definite. This matrix is

however not an exact projector, unless Γs→cΓc→s = I . This could give rise to spurious modes
and non-physical components in the solution. This problem is related to the checkerboard
problem and requires the elimination of these spurious modes. One way to do so is by lin-
earising the convective term, to prevent the emergence of these modes [2]. A symmetry-
preserving regularisation, which was first posed by Verstappen, is discussed in the appendix,
section B [13, 14, 15]. As a result of the steps taken in this section we are able to calculate
un+1

c and pn+1
c from their corresponding previous time step values. In short, the following

steps are taken in order to find the pressure and velocity terms at the next time step:

1. Find the predictor velocity:
up

c = un
c −∆t nΩ−1

c (C (un
s )un

c +Dun
c )−Gc p̃n

c

2. Find the correction pressure by solving the Poisson equation:
Lp̃′

c = MΓc→sup
c

3. Update the velocity:
un+1

c = up
c −Γs→cGp̃′

c

4. Update the pressure:
p̃n+1

c = p̃n
c + p̃′

c
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2.5 Implicit time discretization

Up to this point, only explicit time integration was considered in the solver. Implicit time
integration methods are generally more stable and more practical because larger time steps
can be used [16]. Therefore the solver scheme in the previous section will be slightly edited
to fit implicit calculation. In this formulation, the RHS terms of equation 16 will be taken
at time step n + 1. To solve this implicit formulation, the "pressure-implicit with splitting
of operators" (PISO) approach by Issa (1986) is followed [17]. The momentum and com-
pressibility equations, equations 16 and 17, are again the starting point, but the momentum
equation is also formulated implicitly:

un+1
c −un

c

∆t n
= R(un+1

c )−Gc pn+1
c (31)

PISO uses an iterative process to approximate the terms at time step n +1. When iterated
sufficiently, the solution becomes equal to equation 31. The iterative levels are denoted by
k:

uk
c −un

c

∆t n
= H(uk

s )uk
c −Gc pk

c (32)

where H is an operator as a function of uk
s , that includes the convective and diffusive oper-

ators, given by:

H(uk
s ) =−Ω−1

c (C (uk
s )+D) (33)

To avoid non-linearity in the convective term we will approach operator H(uk
s ) by making it

independent of uk
s and instead dependent on un

s which stays constant during the iterative
process:

H =−Ω−1
c (C (un

s )+D) (34)

Equation 32 now implicitly calculates the prediction of uk
c . To calculate u1

c , equation 32 is
further simplified by taking the RHS terms at time step n:

u1
c −un

c

∆t n
= H(un

s )un
c −Gc pn

c (35)

PISO now moves on to the corrector step, which is the part that is iterated until the value of
uk+1

c has converged, it is given by:

uk+1
c −un

c

∆t n
= Huk

c −Gc pk
c (36)

In order to solve this, operator H is split into a diagonal part, Ad , which operates on uk+1
c

and an off-diagonal part, H od , which operates on uk
c :

uk+1
c =∆t n Ad uk+1

c +∆t n H od uk
c +un

c −Gc p̃k
c (37)

where ∆t np = p̃. This can be rewritten as:

Buk+1
c =∆t n H od uk +un

c −Gc p̃k
c (38)
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in which B = I −∆t n Ad . This leads to:

uk+1
c = B−1(∆t n H od uk

c +un
c )−B−1Gc p̃k

c (39)

The incompressibility constraint is imposed onto uk+1
c :

MΓc→suk+1
c = 0c (40)

to equate the right-hand side terms of equation 39:

MΓc→sB−1(∆t n H od uk
c +un

c ) = MΓc→sB−1Gc p̃k
c (41)

Then p̃k
c is split using: p̃k

c = p̃n
c + p̃′

c and the explicit part is taken to the LHS:

MΓc→sB−1(∆t n H od uk
c +un

c −Gc p̃n
c ) = MΓc→sB−1Gc p̃′

c (42)

In the explicit solver,Γc→sΓs→c ≈ I is used to rewrite MΓc→sGc p̃′
c = MΓc→sΓs→cGp̃′

c ≈ MGp̃′
c =

Lp̃′
c , to avoid checkerboarding and move the Poisson equation to a compact stencil. In the

implicit case however, multiplication of Gp̃′
c by B−1 happens after interpolation to the cell

centers. To avoid this, the cell-centered scalar values on the diagonal of B−1 are interpolated
to the faces, so that multiplication with Gp̃′

c takes place without back and forth interpola-
tion. This leads to:

MΓc→sB−1(∆t n H od uk
c +un

c −Gc p̃n
c ) = MB−1

s Gp̃′
c (43)

Where Bs ∈ Rm×m is also a square diagonal matrix. To construct its diagonal, diag(Bs) ∈ Rm ,
one of the repeating diagonals in B , diag(B#) ∈ Rn is taken. Where B# and B are related by
B = I3 ⊗B#, for the 3 dimensional case. The values of diag(B#) are interpolated to the faces
using weights of 1

2 , resulting in diag(Bs). The operation for this step, Πc→s , is described in
the next section.
This Poisson equation, equation 43, can be solved in a similar fashion to the method used
in the explicit case, to find p̃′

c . We use p̃k
c with: p̃k

c = p̃n
c + p̃′

c and equation 37 to find our
value for uk+1

c . This concludes the correction step. This step can be iterated until uk+1
c has

converged to approximate un+1
c . Using this scheme the implicitly discretized Navier-Stokes

equations can be solved.
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2.6 Discretization of the operators

In this section, the spatial discretization of the variables and operators is discussed, using
the relations and constraints discussed in the previous sections. A simple case is used to ex-
plicitly show examples of the entries of each vector or matrix. A two-dimensional structured
Cartesian grid with n = 6 and m = 17, as seen in figure 3, will be used. In this section only
general operations and variables inside the domain are of interest, therefore values at do-
main boundary faces are simply denoted by "BC f ". Starting from the physical variables in
equation 3 and 4, constraints for symmetry will be used to derive the remaining operators.

Figure 3: Cartesian structured grid with n = 6 and m = 17

Matrix Ωc ∈ R2n×2n is block diagonal and contains the cell volumes Ω#. In the example
with n = 6 it is given by:

Ωc = I2 ⊗Ω# =
(
Ω# 0
0 Ω#

)
, Ω# =


(Ωc )1,1 0 . . . 0

0
. . . . . .

...
...

. . . . . . 0
0 . . . 0 (Ωc )6,6

 (44)

where I2 ∈R2×2 is the identity matrix.
Vector pc ∈ Rn contains the scalar pressures at the cell centers, vector uc ∈ R2n contains the
scalar x- and y-components of the velocities at the cell centers and vector us ∈Rm contains
the scalar projections of the interpolated velocities at the faces to the face normals:

pc =

p1
...

p6

 , uc =



ux,1
...

ux,6

uy,1
...

uy,6


, us =



u⊥1
...

u⊥7

uBC 8
...

uBC 17


(45)
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The values of us , the auxiliary velocity field, are constructed by interpolating the veloci-
ties at the face centers using equation 18, where matrix Γc→s ∈Rm×2n , is a linear shift trans-
formation. It is given by:

Γc→s = NsΠ (46)

In 2D, matrix Ns ∈ Rm×2m consists of two diagonal matrices, Ns,x ∈ Rm×m and Ns,y ∈ Rm×m ,
which contain the x- and y- components of the face normals respectively. In the example
Ns is given by:

Ns =
(
Ns,x Ns,y

)
, Ns,x =



1 0 0 0 0 0 0 0 . . . 0
0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 . . . 0

0 0 0 0 0 0 0 nBC 8
. . .

...
...

...
. . . . . . 0

0 0 0 0 0 0 0 . . . 0 nBC 17



(47)

All components are either 1 or 0 in this example with a structured cartesian grid. Ns,y is
constructed similarly, but with the y-components of the face normals.
Matrix Π ∈ R2m×2n is a block diagonal matrix constructed with two times matrix Πc→s ∈
Rm×n , where Πc→s interpolates scalars stored at the cell centers to the faces. To construct
Πc→s , the interpolation weights from the cell-centers to the faces need to be known. These
weights are chosen such that matrix C becomes skew-symmetric which is necessary to con-
serve global kinetic energy, as seen in equation 11. For the symmetry constraint of the con-
vective term to hold, the weights need to be 1

2 each. This is discussed below, in the dis-
cretization of operator C . In conclusion, this gives:

Π= I2 ⊗Πc→s =
(
Πc→s 0

0 Πc→s

)
(48)

with:

Πc→s =



1
2

1
2 0 0 0 0

1
2 0 0 1

2 0 0
0 1

2
1
2 0 0 0

0 1
2 0 0 1

2 0
0 0 1

2 0 0 1
2

0 0 0 1
2

1
2 0

0 0 0 0 1
2

1
2

ΠBC 8,1 ΠBC 8,1 ΠBC 8,1 ΠBC 8,1 ΠBC 8,1 ΠBC 8,1
...

...
ΠBC 8,1 ΠBC 8,1 ΠBC 8,1 ΠBC 8,1 ΠBC 8,1 ΠBC 8,1



(49)
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In summary, Π and Ns combined result in an interpolation operator, Γc→s , that is used to
interpolate cell-centered vectors to their adjacent faces, retaining the normal components
to the faces such that:

[
Γc→suc

]
f =

[
Ns(Πuc )

]
f =

1

2

(
[uc ]i + [uc ] j

)·n f (50)

Since the opposing transformation operator, Γs→c , is defined by equation 25, a definition
for the staggered control volumes,Ωs is also needed. MatrixΩs ∈Rm×m is a diagonal matrix
that contains these staggered control volumes. It is given by:

Ωs =



(Ωs)1,1 0 . . . . . . . . . 0

0
. . . . . .

...
...

. . . (Ωs)7,7
. . .

...
...

. . . ΩBC 8
. . .

...
...

. . . . . . 0
0 . . . . . . . . . 0 ΩBC 17


(51)

where the individual control volumes of the faces f are given by:

(Ωs) f , f = A f δn f (52)

This definition of the control volumes is necessary to assure a conservation of total domain
control volume, when interpolating between collocated and staggered formulation. In other
words, to make sure the trace of Ωc is equal to the trace of Ωs , even for unstructured grids.
This is shown in the appendix, section C.

To calculate the convection per cell using C (us)uc the flux at each face is multiplied by
the interpolated velocity at each face and the result is summed. Matrix entry ci j then con-
tains the flux from cell i to cell j , at face f , given by φi j , multiplied by interpolation weight
w j f with which u j is interpolated to face f . Entry c j i then contains the flux from cell j to
i , at face f , given by φ j i =−φi j multiplied by interpolation weight wi f with which ui is in-
terpolated to face f . Since C has to be skew symmetric, w j f = wi f . Also, because we are
interpolating two values: wi f = 1−w j f . Therefore skew-symmetry is only preserved when
interpolation from cell to face occurs with weights 1

2 , regardless of spatial coordination and
Γc→s is constructed with weights 1

2 , as seen before. Matrix C (us) can now be constructed.
Matrix C (us) ∈ R2n×2n , the convective matrix, is a block diagonal matrix and contains two
times square matrix C# ∈Rn×n :

C = I2 ⊗C# =
(
C# 0
0 C#

)
, C# =



c1,1 c1,2 0 c1,4 0 0
c2,1 c2,2 c2,3 0 c2,5 0

0 c3,2 c3,3 0 0 c3,6

c4,1 0 0 c4,4 c4,5 0
0 c5,2 0 c5,4 c5,5 c5,6

0 0 c6,3 0 c6,5 c6,6

 (53)

where the off-diagonal terms are non-zero for entries ci , j when i and j are neighbouring
cells. The off-diagonal terms are given by half the fluxes through the faces f between neigh-
bouring cells i and j :
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ci , j =
φi j

2
(54)

where the fluxes are given by:

φi j = A f [us] f (n−→
i j
·n f ) (55)

Where n−→
i j

is the face normal vector pointing outward of cell i to face j . The term (n−→
i j
·n f )

ensures that fluxes are positive when us is pointing outwards of the cell and negative when
pointing inwards. Components ci , j and c j ,i are constructed similarly, except that n−→

i j
=−n−→

j i
,

therefore they give oposite flux values. Finally, the diagonal terms, ci ,i are given by:

ci ,i = 1

2

∑
f ∈F f (i )

φ f (56)

Where F f (i ) is the set of faces bordering cell i . The sum of fluxes through all faces is equal
to the divergence of a cell, according to the divergence theorem. The divergence of a cell is
given by equation 4 and is 0 because of incompressibility. Therefore the diagonal becomes
0 and C is skew-symmetric, hence does not contribute to global evolution of kinetic energy.

From the incompressibility constraint which is used to define the convective operator,
the divergence operator can also be defined. Since the sum of all outward fluxes should be
zero and the fluxes are given by equation 55, the entries of the divergence operator are given
by:

mi , f = (n−→
i j
·n f )A f (57)

when face f is adjacent to cell i and zero otherwise. n−→
i j
·n f = 1 when the normal vector and

the outward face normal vector of cell i align and n−→
i j
·n f = −1 when they are in opposite

directions i.e. 1 and −1 for owner and neighbour cells respectively. In the example this leads
to:

M =



A1 A2 0 0 0 0 0 mBC 1,8 . . . mBC 1,17

−A1 0 A3 A4 0 0 0 mBC 2,8 mBC 2,17

0 0 −A3 0 A5 0 0 mBC 3,8 mBC 3,17

0 −A2 0 0 0 A6 0 mBC 4,8 mBC 4,17

0 0 0 −A4 0 −A6 A7 mBC 5,8 mBC 5,17

0 0 0 0 −A5 0 −A7 mBC 6,8 . . . mBC 6,17

 (58)

Subsequently, the center-to-face staggered gradient operator, G ∈Rm×n , can be discretized
using equation 20. MatricesΩs and M are given in turn by equations 51 and 57. The result-
ing combination leads to the entries of G :

g f ,i =−
(n−→

i j
·n f )A f

δn f A f
=−

n−→
i j
·n f

δn f
(59)

when cells i and j are adjacent and zero otherwise. Then, matrix G is constructed as follows:
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− 1
δn f

1
δn f

0 0 0 0

− 1
δn f

0 0 1
δn f

0 0

0 − 1
δn f

1
δn f

0 0 0

0 − 1
δn f

0 0 1
δn f

0

0 0 − 1
δn f

0 0 1
δn f

0 0 0 − 1
δn f

1
δn f

0

0 0 0 0 − 1
δn f

1
δn f

gBC 8,1 gBC 8,2 gBC 8,3 gBC 8,4 gBC 8,5 gBC 8,6
...

...
gBC 17,1 gBC 17,2 gBC 17,3 gBC 17,4 gBC 17,5 gBC 17,6



(60)

From this, the center to center gradient Gc ∈R2n×n , as used in equation 3 can be easily found
by:

Gc = Γs→cG (61)

Operators M and G , in turn, constitute the Laplacian operator, which is defined by equa-
tion 22. Finally, the diffusive operator, D , is a block diagonal matrix consisting of two times
square matrix D# ∈Rn×n . Each block given by:

D# =−νL (62)

where ν is the kinematic viscosity. This leads to D being constructed as:

D = I2 ⊗D# =
(
D# 0
0 D#

)
, D# =



d1,1 d1,2 0 d1,4 0 0
d2,1 d2,2 d2,3 0 d2,5 0

0 d3,2 d3,3 0 0 d3,6

d4,1 0 0 d4,4 d4,5 0
0 d5,2 0 d5,4 d5,5 d5,6

0 0 d6,3 0 d6,5 d6,6

 (63)

where the off-diagonal terms are non-zero for entries di , j when i and j are neighbouring
cells. The off-diagonal terms are given by:

di , j =−νA f

δn f
(64)

The diagonal terms are given by the negative of the sum of the off-diagonal terms:

di i =−
i−1∑
j=1

di , j −
n∑

j=i+1
di , j (65)

Notice that di , j = d j ,i and di , j < 0, therefore di i > 0 and D is symmetric and positive definite.
This makes sense as the Laplacian operator, L =∆=∇·∇ is negative definite and symmetric.
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3 Implementation into OpenFOAM

Using the methods of pressure-velocity coupling of sections 2.4 and 2.5 in combination with
the discretization presented in section 2.6, a solver scheme is composed for the simple For-
ward Euler time integration. For this, the steps at the end of section 2.4 are followed, with
additional steps in between for clarity.

Step 1a: un
s = Γc→sun

c

To find the staggered velocities at time step n at face f , [us]n
f , interpolate the cell-centered

velocities of owner and neighbour cell at time step n, [uc ]n
o and [uc ]n

n respectively, to the
faces, with weights 1

2 , then take the component normal to the face:

[us]n
f =

1

2
([uc ]n

o + [uc ]n
n)·n f (66)

Step 1b: Calculate C (un
s )un

c

The convective term, C (un
s )un

c , is calculated for all dimensional components of un
c sepa-

rately. For each dimensional component, calculate the convection over every face and sum
them to find the total convection of cell i in the respective dimensional component. To cal-
culate the convection over face f in dimension xi at time step n, [C (us)uc ]n

f ,xi
, take half of

the sum of the respective cell-centered velocity components of the owner and neigbhour
cells, 1

2 ([un
c ]o,xi + [un

c ]n,xi ) and the flux at face f and time step n, φn
f :

[C (us)uc ]n
f ,xi

= [uc ]n
o,xi

+ [uc ]n
n,xi

2
φn

f (67)

Where φn
f is given by the face area, A f , the staggered velocity at face f at time step n as cal-

culated in step 1a, [us]n
f , and the dot product of the face normal of face f pointing outward

of cell i and the normal of face f , n−→
i j
·n f :

φn
f = A f (n−→

i j
·n f )[us]n

f (68)

Then, sum over all faces bordering cell i to get the convection in dimensional component xi

at time step n for cell i :

[C (us)uc ]n
i ,xi

= ∑
f ∈F f (i )

[C (us)uc ]n
f ,xi

(69)

Where F f (i ) is the set of faces bordering cell i .

Step 1c: Calculate Dun
c

The diffusive term, Dun
c , is also calculated separately for each dimensional component of

uc . For each dimensional component, calculate the diffusion over every face and sum them
to find the total diffusion of cell i in the respective dimensional component. To calculate the
diffusion over face f in dimension xi at time step n, [Duc ]n

f ,xi
, take the difference between

the respective cell-centered velocity components of the owner and neighbour cell at time
step n, [uc ]o,xi − [uc ]n

n,xi
, the viscosity, ν, the face area, A f , and divide by the length of the
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normal component of the vector connecting the centroids of the owner and neighbour cells,
δn f , then correct the sign for owner and neighbour cells with (n−→

i j
·n f ):

[Duc ]n
f ,xi

= ([uc ]n
n,xi

− [uc ]n
o,xi

)
νA f

δn f
(n−→

i j
·n f ) (70)

with:

δn f = |n f ·−−→cocn | (71)

Then, sum over all faces bordering cell i to get the diffusion in dimensional component xi

at time step n for cell i :

[Duc ]n
i ,xi

= ∑
f ∈F f (i )

[Duc ]n
f ,xi

(72)

Step 1d: up1
c = un

c −∆tΩ−1
c (C (un

s )un
c +Dun

c )

A simple operation to calculate an intermediate cell-centered predictor velocity, up1
c , which

uses the collocated velocities at time step n, un
c , the size of the time step, ∆t , the cell vol-

umes, Ωc , the convection term as calculated in step 1a, C (un
s )un

c , and the diffusion term as
calculated in step 1c, Dun

c , for each dimensional component at cell i :

[up1
c ]i ,xi = [uc ]n

i ,xi
−∆t n[Ωc ]−1

i ([C (us)uc ]n
i ,xi

+ [Duc ]n
i ,xi

) (73)

Step 1e: up
c = up1

c −Gc p̃n
c

To find the cell-centered predictor velocity, up
c , correct the first predictor velocity, up1

c , with
the cell centered pressure gradient, Gc p̃n

c . Operation Gc calculates the cell-centered gra-
dient between cell-centered scalars. This operator is given by a sequence of operations,
−Ω−1

c ΓT
c→s M T , as seen in equation 23. This sequence will be followed in order to find Gc p̃n

c .
The first operation, M T p̃n

c , calculates a value at every face f and time step n, using the face
area, A f , and the difference between the cell-centered pressures of the owner and neighbour
cells, p̃n

c,o − p̃n
c,n :

[M T p̃c ]n
f = A f (p̃n

c,o − p̃n
c,n) (74)

Subsequently, these face values are interpolated back to the cells for each dimensional com-
ponent, as a result of the first and second operations, ΓT

c→s M T p̃n
c . To do so we calculate

the values for each face separately and then sum over all of them. The value of face f in
dimensional component xi at time step n, [ΓT

c→s M T p̃c ]n
f ,xi

, takes the xi -component of the

face normal, n f ,xi , and half of the scalar value stored at the face, 1
2 [M T p̃c ]n

f :

[ΓT
c→s M T p̃c ]n

f ,xi
=

n f ,xi [M T p̃c ]n
f

2
(75)

To find the total value in dimensional component xi for each cell i at time step n, we sum
over all faces:
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[ΓT
c→s M T p̃c ]n

i ,xi
= ∑

f ∈F f (i )
[ΓT

c→s M T p̃c ]n
f ,xi

(76)

Finally, these cell-centered values in each dimensional component are divided by the cell
volumes, Ωc , and negated as a result of all three operations, −Ω−1

c ΓT
c→s M T p̃n

c . This results
in the cell-centered pressure gradient, Gc p̃n

c , of cell i for each dimensional component xi at
time step n:

[Gc p̃c ]n
i ,xi

=−[Ω−1
c ]i [ΓT

c→s M T p̃c ]n
i ,xi

(77)

Which can then be used to correct the first predictor velocity, up1
s , to find the cell-centered

predictor velocity for cell i in dimensional component xi :

[up
c ]i ,xi = [up1

c ]i ,xi − [Gc p̃c ]n
i ,xi

(78)

Step 2a: up
s = Γc→sup

c

To find the staggered predictor velocities, up
s , interpolate the cell-centered predictor veloci-

ties, up
c to the faces, similar to step 1, for face f :

[up
s ] f =

1

2
([up

c ]o + [up
c ]n)·n f (79)

Step 2b: p̃′
c = L−1Mup

s

To find the cell-centered correction pressure, p̃′
c , we have to solve a Poisson equation, Lp̃′

c =
Mup

s . To calculate the divergence of the staggered predictor velocities, Mup
s , sum the diver-

gence of the predictor velocity at each face f , [Mup
s ] f . This is found by taking the staggered

predictor velocity at face f , [up
s ] f , the face area, A f and the dot product of the outward

pointing normal to face f and the normal to face f , n−→
i j
·n f :

[Mup
s ] f = [up

s ] f A f (n−→
i j
·n f ) (80)

Then sum these face values to find the total divergence of the staggered predictor velocities
of cell i :

[Mup
s ]i =

∑
f ∈F f (i )

[Mup
s ] f (81)

Finally, solve for the Poisson equation implicitly to find the correction pressure at the cell
centers for each cell i :

[p̃′
c ]i = L−1[Mup

s ]i (82)

Where operation L−1 solves the Poisson equation implicitly for p̃′
c , using one of the standard

conventional standard OpenFOAM Poisson solvers, listed in the OpenFOAM User Guide
[18].
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Step 3a: Calculate Gp̃′
c

To find the gradient of the cell-centered correction pressure at face f , [Gp̃′
c ] f , substract the

cell-centered correction pressure of the owner cell, [p̃′
c ]o from the cell-centered correction

pressure of the neighbour cell, [p̃c ]n , and divide by the length of the normal component of
the vector connecting the centroids of the owner and neighbour cells, δn f :

[Gp̃′
c ] f =

[p̃′
c ]n − [p̃′

c ]o

δn f
(83)

Step 3b: un+1
c = up

c −Γs→cGp̃′
c

The cell-centered velocities at time step n +1 are calculated for each dimensional compo-
nent of uc separately. To find the cell-centered velocity at cell i at time step n + 1 in di-
mensional component xi , [uc ]n+1

i ,xi
, interpolate the gradient of the cell-centered correction

pressure at face f , [Gp̃′
c ] f , back to the cell centers, using Γs→c , and substract the result from

the cell-centered predictor velocity at cell i in dimensional component xi as calculated in
step 1e, [up

c ]i ,xi . Operator Γs→c is defined by a sequence of operators,Ω−1
c ΓT

c→sΩs , as seen in
equation 25. We will follow this sequence to calculate the cell-centered correction pressure
at cell i , [Gp̃′

c ]i . First, take the cell-centered correction pressure at face f and the staggered
volume at face f , [Ωs] f = A f δn f :

[ΩsGp̃′
c ] f = [Gp̃′

c ] f A f δn f (84)

Subsequently, interpolate these face values back to the cell centers, for each dimensional
component as a result of the first two operations, ΓT

c→sΩsGp̃′
c . Calculate this for each face f

and dimensional component xi and then sum the resulting terms. To find the value of each
face, take the xi -component of the face normal and half of [ΩsGp̃′

c ] f :

[ΓT
c→sΩsGp̃′

c ] f ,xi =
n f ,xi [ΩsGp̃′

c ] f

2
(85)

Then sum these values at the faces to find the values for cell i in dimensional component xi :

[ΓT
c→sΩsGp̃′

c ]i ,xi =
∑

f ∈F f (i )
[ΓT

c→sΩsGp̃′
c ] f ,xi (86)

The final step in the interpolation is to divide the cell-centered values by Ωc , to find the
cell-centered correction pressure at cell i in dimensional component xi , [Gp̃′

c ]i ,xi

[Gp̃′
c ]i ,xi = [Ω−1

c ]i [ΓT
c→sΩsGp̃′

c ]i ,xi (87)

To find the cell-centered velocity at cell i at time step n +1 in dimensional component xi ,
[uc ]n+1

i ,xi
, substract the cell-centered correction pressure at cell i in dimensional component

xi , [Gp̃′
c ]i ,xi , from the cell-centered predictor velocity at cell i in dimensional component xi

as calculated in step 1e, [up
c ]i ,xi :

[uc ]n+1
i ,xi

= [up
c ]i ,xi − [Gp̃′

c ]i ,xi (88)

This concludes the operations to find the cell-centered velocities at time step n+1. un+1
c will

be used as input to calculate the cell-centered pressures and velocities at the next time step.
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Step 4: pn+1
c = p̃n

c + p̃′
c

To find the cell-centered pressure for cell i at time step n +1, [p̃c ]n+1
i , add the cell-centered

pressure of cell i at time step n, [p̃c ]n
i , and the correction pressure at cell i as calculated in

step 2b, [p̃′
c ]i :

[p̃c ]n+1
i = [p̃c ]n

i + [p̃′
c ]i (89)

This concludes the operations to find the cell-centered pressures at time step n+1. p̃n+1
c will

be used as input to calculate the cell-centered pressures and velocities at the next time step.

Summary

In summary, the fully discretised equations that need to be solved per step are presented,
expressed in the basic variables that are necessary to solve them: [uc ]n

i , [p̃c ]n
i , [Ωc ]i , A f ,−−→cocn , n f , n−→

i j
, ν and ∆t n .

1a. Interpolate to find the staggered velocity at every face

[us]n
f =

1

2
([uc ]n

o + [uc ]n
n)·n f (90)

1b. Calculate the convective term at every cell for every component

[C (us)uc ]n
i ,xi

= ∑
f ∈F f (i )

[uc ]n
o,xi

+ [uc ]n
n,xi

2
A f (n−→

i j
·n f )[us]n

f (91)

1c. Calculate the diffusive term at every cell for every component

[Duc ]n
i ,xi

= ∑
f ∈F f (i )

([uc ]n
o,xi

− [uc ]n
n,xi

)
νA f

|n f ·−−→cocn |
(n−→

i j
·n f ) (92)

1d. Calculate the cell-centered first predictor velocity at every cell for every component

[up1
c ]i ,xi = [uc ]n

i ,xi
−∆t n[Ωc ]−1

i ([C (us)uc ]n
i ,xi

+ [Duc ]n
i ,xi

) (93)

1e. Calculate the cell-centered predictor velocity using the cell-centered pressure gradient
at every cell for every component

[up
c ]i ,xi = [up1

c ]i ,xi + [Ω−1
c ]i

∑
f ∈F f (i )

n f ,xi A f (p̃n
c,o − p̃n

c,n)

2
(94)

2a. Interpolate to find the staggered predictor velocity at every face

[up
s ] f =

1

2
([up

c ]o + [up
c ]n)·n f (95)

2b. Solve the Poisson equation to find the cell-centered correction pressure at every cell

[p′
c ]i = L−1

∑
f ∈F f (i )

[up
s ] f A f (n−→

i j
·n f ) (96)

3a. Calculate the gradient of the cell-centered correction pressure at each face
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[Gp̃′
c ] f =

[p̃′
c ]n − [p̃′

c ]o

δn f
(97)

3b. Correct the cell-centered correction pressure with the gradient of the cell-centered cor-
rection pressure at every cell to find the cell-centered velocity at the next time step at every
cell for every component

[uc ]n+1
i ,xi

= [up
c ]i ,xi − [Ω−1

c ]i
∑

f ∈F f (i )

n f ,xi [Gp̃′
c ] f A f δn f

2
(98)

4 Calculate the cell-centered pressure at the next time step at every cell

[p̃c ]n+1
i = [p̃c ]n

i + [p̃′
c ]i (99)
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4 Results

In this section the solver that was built in the previous sections is tested and compared to
standard OpenFOAM solvers and literature. First, the evolution of kinetic energy by physical
and numerical dissipation is examined using a standard Taylor-Green vortex. The symme-
try preserving solver is compared to a standard incompressible solver in OpenFOAM. Next,
effects of the pressure prediction and spatial discretization, which are specific to the sym-
metry preserving scheme, are examined using the same case. Effects of temporal and spatial
discretization will be discussed subsequently. Once a solid basic understanding of the solver
is attained, several higher order temporal schemes, widely used in literature, are introduced
and tested as well. Subsequently, temporal consistency is examined using a standard lid-
driven cavity case and origins of errors in the solver are discussed. Finally, after gaining
a thorough understanding of the symmetry preserving solver, numerous different simula-
tions of a channel flow case are presented, for a representation of the solver’s performance
in more realistic problems.

4.1 Kinetic energy dissipation - Taylor Green vortex

To test solver performance a Taylor-Green vortex case was used to examine evolution of ki-
netic energy. The case consists of vortices in a domain with cyclic boundaries. The initial
velocity and pressure profiles are described by continuous functions, which allows analyti-
cal calculation of the evolution of kinetic energy through time, to which several solvers are
bench-marked. The analytical functions of the Taylor-Green vortex are given by:

ux(x, y, t ) = sin(x)cos(y)e−2νt (100)

uy (x, y, t ) =−cos(x)sin(y)e−2νt (101)

p(x, y, t ) = 1

4
(cos(2x)+cos(2y))e−4νt (102)

The case was set up on a two-dimensional domain with 0 ≤ x ≤ 2π, 0 ≤ y ≤ 2π. The initial
velocity field is depicted in figure 4. The Reynold’s number was given by 1

ν
. The case was

simulated with in the inviscid limit withν= 0 and withν= 0.001, leading to Re =∞ and Re =
1000 respectively. The inviscid case should stay steady over time, as no energy is dissipated
by the diffusive term. In the viscous case the energy should decay according to the analytical
solution given by:

Ea = E0e−4νt (103)

which is obtained from integrating |u|2 over the whole domain.
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Figure 4: Initial velocity field of the Taylor-Green vortex case

The case was run on a two-dimensional regular Cartesian grid with 64x64 cells and on a
skew grid, to view the effect of meshing on numerical dissipation. The skew grid was created
such that the edges of the domain contain regular spaced grid cells and cell edge lengths
decrease with a constant stretching ratio towards the middle of the domain in such a way
that the largest edges of the domain are four times larger than the smallest ones, see figure
5 for an example of a skew 8x8 grid.

Figure 5: Example of an 8x8 skew grid

The case was run for three full rotational periods, corresponding to 2π∗ 3 ≈ 18.85, with
∆t = 0.01, chosen such that, even on skew grids, the CFL-number remained low enough
everywhere in the domain (CFL < 0.25).
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In figure 6 a comparison is made between the implicit symmetry preserving method and
a standard solver in OpenFOAM for incompressible flow, icoFoam. The case was set up
on both a 64x64 Cartesian and skew grid, with either Re=∞ or Re=1000. The evolution of
the kinetic energy through time of each solver is corrected by the analytical solution of the
evolution of kinetic energy over time, to give a relative performance indication.
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Figure 6: icoFoam solver and symmetry preserving solver for combinations of a [Cartesian,
skew] grid and [Re =∞,Re = 1000]

It can be seen that the symmetry preserving method performs much better in all different
cases. The icoFoam solver seems especially inaccurate on the skew grids, with introduction
of physical diffusion slightly improving performance. This is because the solver introduces
a lot of numerical dissipation in favour of stability but in spite of accuracy. All symmetry
preserving methods seem to perform very accurately, with some small dissipation in the
viscid case on a skew grid.

To further investigate the solver, a deeper look is taken into two of the main differences
between the symmetry preserving solver and a standard solving scheme. The first difference
is the pressure predictor term, which is taken using the Van Kan method, with p̃p

c = p̃n
c , in

contrast to the Chorin method which uses p̃p
c = 0 [3, 4]. The former method is referred to

with Lp ′
c (p ′

c is the pressure correction), the latter is referred to with Lpc (pc is the full pres-
sure). The second difference is the spatial discretization method. Midpoint interpolation
is used as well as projected distances between centroids for calculation of the gradients, in
contrast to using linear interpolation and the actual distances. These variables were exam-
ined using combinations of Cartesian and skew grids, with Re=∞ and Re=1000, using both
Forward and Backward Euler time integration methods.

On the Cartesian grid without viscosity, figure 7a, it can be seen that the pressure pre-
diction method is of the highest importance. The Van Kan method seems to give a good
prediction of the pressure, leaving a relatively smaller term that is calculated using the com-
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pact stencil Laplacian in the Poisson equation, leading to a more accurate prediction of the
dissipation of kinetic energy. The time integration method does not seem to play any roll
in this case. Both Forward Euler and Backward Euler methods are of a first-order temporal
accuracy, with their biggest difference in the stability, which does not seem to play a role
here. Finally, the graphs for the linear discretization method and the symmetry preserving
method overlap because the symmetry preserving method simplifies to the linear method
on regular Cartesian grids.

When viscosity is introduced, see figure 7b, the results are almost identical, with the
biggest difference that the Van Kan method graphs all slightly tilt upwards. This implies a
slight underestimation of the physical dissipation. Since the only difference with figure 7a
is the introduction of viscosity, the difference in the output has to lie in the effect of the
diffusive term. This term is based on estimations of the velocity gradients. The velocity gra-
dients are calculated using a projected distance between centroids, |n f ·−−→cocn |, which varies
from the actual distance depending on mesh orthogonality. Therefore, it is expected to see
differences when the case is run on a skew grid. Also, if the upward tilt is a product of spa-
tial discretization, positive changes are expected to be found in the grid-refinement study,
where the gradients are more accurately captured.
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(c) Skew grid with Re =∞
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(d) Skew grid with Re = 1000

Figure 7: Effects of changing temporal scheme (Forward Euler, Backward Euler), Poisson
equation (Lp ′

c ,Lpc ) and interpolation method (symmetric, linear) on kinetic energy evolu-
tion on Cartesian and skew grids with Re =∞ and Re = 1000
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When the case is run on a skew grid without viscosity, see figure 7c, the effects of all
components of the symmetry preserving solver can be examined even better. The Chorin
methods still overestimate the dissipation of energy, however, some of the Van Kan methods
seem to become unstable. The absence of dissipation in the solvers make them suscepti-
ble for the creation of spurious modes, which are not damped by any form of dissipation.
The linear interpolation seems to introduce some kinetic energy in this case. In the Chorin
method this leads to a more accurate solution. This seems to be a compensation of errors,
because the Van Kan method with symmetry preserving interpolation is very accurate. In
the Van Kan method, the linear interpolation seems to lead to instability. The symmetry
preserving method seems to introduce more stability, which is one of the main reasons to
use this spatial discretization technique, although a slight upward tilt can also be seen, hint-
ing to some remaining instability. Lastly, a slight difference can be seen between Forward
and Backward Euler time integration, where Backward Euler seems to lead to a more stable
solution.

Finally, viscosity was introduced to the case on the skew grid, see figure 7d. With this
combination, all solvers show overestimation of the dissipation of kinetic energy. The same
pattern can be seen as in the previous figures, with the most notable difference that the
linear discritisation leads to a better estimate in both the Chorin as the Van Kan methods.
Again, the only difference with the previous figure is the introduction of viscosity, and there-
fore the effects of the diffusive term. The choice of method of calculation of the gradients in
the linear discretization seems to give a better estimate and therefore lead to a more accu-
rate solution. As mentioned before, the symmetry preserving method does not give the best
estimate of dissipation on skew grids, it does however warrant stability.

In addition to these cases, the case on a Cartesian grid with Re=1000 was used again for
temporal and spatial refinement, to get a feeling for the effects of the discretization of the
case. To examine the temporal discretization error, the case was run with ∆t = {0.01,0.005,
0.0025,0.00125}, respectively with CFL = {0.1,0.05,0.025,0.125}. In figure 8a, the resulting
evolutions of kinetic energy were plotted, relative to the reference case with ∆t = 0.00125.
It can be seen that higher temporal precision leads to a slight upward tilt in the solution,
meaning temporal inaccuracy leads to overestimation of dissipation. This effect is, however,
very small, as the relative differences are of order 10−7.
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Figure 8: Temporal and spatial convergence studies for the Taylor-Green case on Cartesian
grids, varying CFL-numbers and number of grid cells

Additionaly, spatial refinement was done using grids of NxN = {64x64, 128x128, 256x256,
512x512}. To comply with the CFL-number requirements, the cases were all run with ∆t =
0.00125, leading to C F L ≈ 0.1 on the finest grid. In figure 8b, the different results were plot-
ted relative to the reference case on the 512x512 grid. It can be seen that spatial refinement
leads to a downward trend in dissipation of kinetic energy, suggesting coarseness in the spa-
tial discretization leads to an underestimation of energy dissipation. This is in line with the
findings of figures 7a and 7b, which suggested that the inaccuracy arises from the diffusive
term and could be solved by better estimates of the velocity gradient, for example by using
grid refinement. This effect is also approximately three orders of magnitude greater than the
effect of temporal refinement. When sufficiently refined both temporally and spatially, the
solution in figure 7b can be lowered down to the analytical solution (not shown).

The overestimation of dissipation by the Chorin method and the underestimation of dis-
sipation caused by the diffusive term, could potentially cancel each other out. This was
shown using a variety of cases with differing Reynold’s numbers using the Van Kan and
Choring method. The results are shown in figure 9a. Here, a higher order temporal scheme,
Runge-Kutta 3, was used to decrease the effects of the temporal error, this scheme will be
explained in the next paragraph. When looking at the Chorin method results, an increase in
Reynold’s number causes the ratio between the kinetic energy of the simulation and the an-
alytical solution to shift down. At the inviscid limit, the underestimation of dissipation has
completely dissapeared and overestimation is taking place. In contrast, the Van Kan method
shows similar underestimation for low Reynold’s numbers, but converges to a dissipation
free solution in the inviscid limit. It can be seen that some cases of the Chorin method, for
example with Re=100, give excellent results in the sense that they seem to be low-dissipative.
However, upon decreasing viscosity in the case, Re=1000 and inviscid, it can be seen that the
error in the diffusive term was in fact cancelling the error of the pressure term. This should
be kept in mind, especially in the Channel Flow case, where the Reynold’s number becomes
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lower when approaching the wall. To further investigate the effects, a higher order diffu-
sive term was discretized, see appendix, section D. This method effectively increases the
accuracy of the gradients in the diffusive term from second (D2) to fourth (D4) order. The
resulting tilts in the numerical dissipation for the Chorin method can be seen in figure 9b. It
can be seen that all graphs creep towards the inviscid solution, thereby changing the error
cancellation effect which was seen in figure 9a. For the Van Kan method, see figure 9c, the
graphs also tilt downward towards the inviscid limit, but because the effect of error cancella-
tion is not significant, the solutions give better predictions of the true dissipation of kinetic
energy.
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Figure 9: Balancing effect of the diffusive term and pressure prediction method, shown with
regular (D2) and higher order (D4) diffusive terms at different Reynold’s numbers.

Several other temporal schemes were also tested on these grids, in addition to the For-
ward and Backward Euler methods, to see the how the solver functions with higher order
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temporal discretization schemes. These schemes can be subdivided into explicit and im-
plicit Runge-Kutta schemes, with Runge-Kutta 3 and 4 (RK3 and RK4) in the former category
and Diagonally Implicit Runge Kutta 2 and 3 (DIRK2 and DIRK3) in the latter. Similar to the
Forward Euler method, the Runge-Kutta method uses information at the current time step
to extrapolate the solution at the next overesttime step. Runge-Kutta, however, uses inter-
mediate points to get a higher order estimation of the solution at the next overesttime step.
To do so, the method makes use of so-called Butcher tableaus to assign weights to the inter-
mediate steps, as first described by Butcher [19]. The difference between the RK methods
and DIRK methods is that the diagonal of the RHS of the momentum equation is solved im-
plicitly, similar to the PISO method. The number in the name of the method signifies the
amount of intermediate steps taken. Further descriptions of the methods can be found in
[7], [20] and [21]. In this thesis, an implementation method of RK in OpenFOAM was used
similar to the one used by Vuorinen et al. [22].

In most of the previous test cases the differences between Forward Euler and Backward
Euler were negligible, except on the skew grid with no viscosity. It was also found that the
higher order schemes gave similar results in most cases, therefore only the skew case with-
out viscosity is shown here, see figures 10a and 10b. Figure 10a shows that the difference
between the Forward Euler and the higher order schemes are most pronounced when using
the Chorin method. The differences between RK3 and RK4 appear to be of less significance.
Lastly, the small instability that occurs in the Van Kan method with Forward Euler seems to
be stabilised much more with the higher order schemes. However, the symmetry preserving
method does not seems to be able to warrant stability on highly distorted grids when using
Forward and Backward Euler. This stems from the pressure gradient interpolation, since the
convective term should not introduce energy and the diffusive term is absent. The increase
in temporal order of the solver does seem to positively affect this.
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Figure 10: Taylor-Green case solved with higher order implicit and explicit temporal
schemes on a skew grid with Re =∞

In figure 10b almost identical results to figure 10a can be seen, showing again that the
higher order shemes perform better mostly for the Chorin method. The difference between
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Backward Euler and DIRK2 is much greater than the difference between DIRK2 and DIRK3.
Finally, the inaccuracy that lead to the Backward Euler Van Kan method to give some slight
numerical dissipation, seems to be absent in higher order schemes.

4.2 Temporal consistency - Lid-driven cavity

A self-convergence study was performed on a lid-driven cavity case to study the order of
accuracy of a range of temporal schemes. The lid-driven cavity case is a widely used case
to assess solver performance. It consists of a two-dimensional square domain with four
walls of an arbitrary length L. The top wall, the lid, moves with a velocity of UL and thereby
creates a vortex inside the domain, a developed lid-driven cavity flow can be seen in figure
11. The boundary conditions are no-slip for the velocity and zero-gradient for the pressure.
The temporal error of the simulation, taken at the final overesttime step, is given by the
difference between the kinetic energy of the solution and the kinetic energy of the reference
case, which is run using a very small time step. The relationship between this relative error
and the size of the time step results in the order of accuracy of each method. In the used
case the length of the domain was chosen as L = 1 and the velocity of the lid as UL = 1. The
viscosity was set to ν= 0.001 leading to a Reynold’s number of Re =ULL/ν= 1000. The case
was run up to 2048·10−6 time units (UL/L) with time steps ∆t = 2k ·10−6 with k = {0, . . . ,10}.
The study was performed on both a 64x64 and a 512x512 regular Cartesian grid. Also, the
effects of the Van Kan and Chorin methods for the pressure predictor were analysed. The
same time schemes are used for this case as for the Taylor-Green Vortex, with their order of
temporal accuracy between brackets: Backward Euler O (∆t 1), DIRK2 O (∆t 2), DIRK3 O (∆t 3),
Forward Euler O (∆t 1), RK3 O (∆t 3), RK4 O (∆t 4) [5].

Figure 11: Velocity field of a developed lid-driven cavity flow

Two main causes of errors are expected from this study. Firstly, a temporal discretiza-
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tion error is expected, O (∆t n), with n the temporal order of the applied temporal integra-
tion scheme. Secondly, the pressure error, O (∆t∆h2), that results from the non-exact con-
servation of mass by the cell center velocities [9]. This error is expected to be reduced to
O (∆t 2∆h2) when the Van Kan method is applied, because a part of the total pressure is cal-
culated on a wide stencil reducing the error [3]. Because of the ∆h2 term in the pressure er-
ror, the pressure error is expeted to be dominant on the coarser 64x64 grid and the temporal
error to be more dominant on the 512x512 grid, especially when using the Chorin method,
because the pressure error term is larger and therefore the effect of grid refinement should
be more prevalent.

Figure 12a shows the relative error in the kinetic energy of the case for the explicit time
integration schemes run on a 64x64 grid, comparing the Chorin and Van Kan method at
Re = 1000. It can be seen that the results for the Chorin method lead to a first order tem-
poral accuracy, which is to be expected as the pressure term dominates on a coarse grid. It
is given by O (∆t∆h2) for the Chorin method. For the Van Kan method a distinction can be
seen between the Forward Euler scheme and the higher-order schemes. This is because the
pressure term is in this case given by O (∆t 2∆h2). The Forward Euler result is dominated by
its temporal order of O (∆t ), whereas the higher order time schemes show a second order
temporal accuracy. The results for the implicit schemes lead to the same conclusions, fig-
ure 12b, the Chorin method is restricting the solvers to first order because the pressure term
is leading on a coarse grid, whereas the Van Kan method raises the accuracy to second or-
der, given that the temporal order of the scheme is higher than first order as well. Schemes
of a temporal order of accuracy higher than 2, still only show a second order of accuracy,
suggesting that the pressure term is still dominant.
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(c) Explicit solvers on 512x512 grid
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Figure 12: Temporal consistency in a lid-driven cavity case for a range of explicit and im-
plicit solvers on a 64x64 and a 512x512 Cartesian grid. Reference energy (Er ) is taken as the
solution with ∆t = 10−6.
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Refining the grid to a 512x512 grid shows that the pressure term becomes less dominant.
This can be seen in figures 12c and 12d. Even when using the Chorin method, it can be seen
that the higher order temporal schemes, such as RK4 and DIRK3, tilt upwards to second
order. While Forward and Backward Euler show their first order temporal accuracy. The
fact that the higher order schemes are not fully showing their temporal order as the order
of accuracy, suggests that the pressure term still plays a significant role. Finally, using the
Van Kan method on a fine grid, the third or higher order schemes can be seen to become
even third order of accuracy, whereas Forward and Backward Euler stay first order. However,
fourth order of accuracy for RK4 was not fully attained, suggesting that both the pressure and
temporal effects are still playing a part to reach a combined temporal order of accuracy.

4.3 Kinetic energy assessment - Channel Flow

As a more complex test case, a turbulent channel flow was examined. The characteristics of
the flow were analysed by looking at the budget terms that contribute to the mean kinetic
energy (MKE) and the mean turbulent kinetic energy (TKE) of the flow. As a reference, data
of Vreman and Kuerten was used [23]. A similar method was used as in [5].

Case set-up

The channel flow case consists of two plates, separated by height 2h, between which a
lengthwise fully-developed turbulent flow moves. Boundaries at the beginning and the end
of the channel as well as the front and the back are periodic. The length of the channel was
chosen as 4π, the height as 2 and the depth as 4π/3, to resemble the dimensions used by [5]
and [23], see figure 13.

Figure 13: Velocity field in a fully developed channel flow

The flow has a frictional Reynolds number of Reτ = uτh/ν = 180. With ν the kinematic
viscosity and the frictional velocity, uτ, given by:

uτ =
√
τw

ρ
=

√
ν
(∂〈u〉
∂y

)
w all

(104)

In which τw is the wall shear stress and 〈u〉 is the mean stream-wise velocity. To drive the
flow, a fixed pressure gradient is used in the momentum equation. The initial field was es-
tablished with the method of [24]. The orthogonal 60-grid mesh, as introduced by [5], was
used for the present case. In this mesh, cell sizes are represented in wall units, calculated
using:

∆+
i =∆i

uτ
ν

, i = x, y, z (105)
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with ∆i = x, y, z representing the cell sizes in stream-wise, wall normal and span-wise direc-
tion. The cell sizes are presented in table 1.

∆x+ ∆y+
w all ∆y+

bulk ∆z+ Nx Ny Nz Ntot al

60 0.35 10 20 38 108 38 155,952
30 0.35 5 10 75 116 75 652,500

Table 1: grid specifics for the turbulent channel flow at Reτ = 180 for the 60- and 30-grids. A
stretch ratio of 1.05 is used between the cells at the wall and the bulk

The case was run using the RK3 time scheme, as it was found in the previous sections that it
gave nearly identical results to RK4 and implicit schemes, while having a significantly lower
computational cost.

Quantification methods

To quantify the results in terms of numerical dissipation, the kinetic energy of the flow aver-
aged over time was studied. The averaged kinetic energy can be decomposed into MKE and
TKE as follows [25]:

〈K E〉 = 1

2
〈u2〉 = 1

2

〈〈u〉〈u〉〉+〈〈u〉u′〉+ 1

2
〈u′u′〉 (106)

where the velocity, u, is decomposed in a mean, 〈u〉, and a fluctuating component, u’, fol-
lowing the Reynolds decomposition of instantaneous velocity, ui = 〈ui 〉+u′

i . The first term
on the RHS corresponds to the MKE, the middle term vanishes due to averaging and the last
term corresponds to the TKE.

Quantification of the TKE was based on the turbulent kinetic energy per unit mass, 〈k〉,
given by: 〈k〉 = 1

2Σi 〈u′
i u′

i 〉, and its individual components 〈u′u′〉, 〈v ′v ′〉 and 〈w ′w ′〉. Fol-
lowing [26] and [27], a transport equation for the 〈u′

i u′
j 〉 component of the Reynolds stress

tensor for isothermal incompressible flow can be derived as:

D〈u′
i u′

j 〉
Dt

=
∂〈u′

i u′
j 〉

∂t
+〈uk〉

∂〈u′
i u′

j 〉
∂xk

= 〈P t
i j 〉+〈εt

i j 〉+〈T t
i j 〉+〈Πs,t

i j 〉+〈Πd ,t
i j 〉+〈D t

i j 〉, (107)

leading to the following budget terms on the RHS:

Production rate, 〈P t
i j 〉 =−〈u′

j u′
k〉
∂〈ui 〉
∂xk

−〈u′
i u′

k〉
∂〈u j 〉
∂xk

, (108)

dissipation rate, 〈εt
i j 〉 =−2ν

〈∂u′
i

∂xk

∂u′
j

∂xk

〉
, (109)

turbulent transport rate, 〈T t
i j 〉 =− ∂

∂xk
〈u′

k u′
i u′

j 〉, (110)
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pressure strain rate, 〈Πs,t
i j 〉 =

〈p ′

ρ

(∂u′
i

∂x j
+
∂u′

j

∂xi

)〉
, (111)

pressure diffusion rate, 〈Πd ,t
i j 〉 =− 1

ρ

(∂〈u′
i p ′〉

∂x j
+
∂〈u′

j p ′〉
∂xi

)
, (112)

and molecular diffusion, 〈D t
i j 〉 =

∂

∂xk
ν
∂

∂xk
〈u′

i u′
j 〉. (113)

From the continuity constraint, it follows that the pressure strain rate does not change the
total amount of mean turbulent kinetic energy, it merely redistributes it in other directions.
On a collocated grid arrangement, however, the velocity field is not exactly divergence free,
therefore this term should also be assessed. All budget terms together should cancel each
other out to be exactly zero, any residue will be due to numerical errors, such as spatial
and temporal discretization errors, iteration errors, computational errors in determining
the budget terms and finally due to Reynolds-averaging [25]. In summation, this numerical
inaccuracy is then given by:

〈P t
∆〉+〈εt

∆〉+〈T t
∆〉+〈Πs,t

∆ 〉+〈Πd ,t
∆ 〉+〈D t

∆〉 =∆t
num (114)

Similarly, the MKE budget terms can derived from the transport equation for the 〈ui u j 〉
terms of the total kinetic energy [28]:

D〈ui u j 〉
Dt

= ∂〈ui u j 〉
∂t

+〈uk〉
∂〈ui u j 〉
∂xk

= 〈P m
u 〉+〈T m

u 〉+〈Dm
u 〉+〈Vu〉 (115)

leading to the following budget terms on the RHS:

Production rate, 〈P m
u 〉 =− 1

ρ
〈ui 〉∂〈p〉

∂xi
, (116)

transport rate, 〈T m
u 〉 = ∂

∂x j

(−〈ui 〉〈u′
i u′

j 〉
)
, (117)

deformation, 〈Dm
u 〉 = 〈u′

i u′
j 〉
∂〈ui 〉
∂x j

, (118)

and viscous diffusion, 〈V m
u 〉 = ν〈ui 〉 ∂

∂x j

(∂〈ui 〉
∂x j

)
. (119)

Again, these terms should cancel out and sum to be zero, leading to the numerical error to
be given by:

〈P m
∆ 〉+〈T m

∆ 〉+〈Dm
∆ 〉+〈V m

∆ 〉 =∆m
num (120)
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Post-processing

To calculate the terms involved in the TKE and MKE, 100 flow through times (FTT) of the
channel were considered, with F T T = L/umean , ranging between t = 100 and t = 200, to
assure that the flow was fully developped. Every 0.25 temporal unit of the simulation the
instantaneous fields were stored, so the required temporal and spatial averaging could be
done as part of post-processing, this overesttime step is chosen such that the fields are taken
as close to each other as possible without statistical correlation. This value is found by t+ =
tuτ/h = 0.25 [23]. The field was averaged in the x- and z- direction, because of periodicity,
leaving the budgets as a function of channel width, in units of y+.

It was found that calculating the gradient and Laplacian terms with first order accuracy
lead to a significant numerical error. A set of higher order stencils was developped, using
the method of Veldman for higher order spatial discretizations on non-uniform grids [16].
With the use of Taylor expansions, methods were developped for stencils with 3, 5, 7 and 9
points. Given below are the resulting schemes to calculate the gradient and the Laplacian at
cell 0, using figure 14:

Figure 14: Supportive figure for determining higher order gradient and Laplacian schemes

3 point gradient: (∂u

∂x

)
0
= u+−u−

h++h−
(121)

5 point gradient: (∂u

∂x

)
0
= −u+++8u+−8u−+u−−

8(h++h−)− (h+++h−−)
(122)

7 point gradient: (∂u

∂x

)
0
= u+++−9u+++45u+−45u−+9u−−−u−−−

45(h++h−)−9(h+++h−−)+ (h++++h−−−)
(123)

9 point gradient:(∂u

∂x

)
0
= −3u+++++32u+++−168u+++672u+−672u−+168u−−−32u−−−+3u−−−−

672(h++h−)−168(h+++h−−)+32(h++++h−−−)−3(h+++++h−−−−)
(124)

And similarly:
3 point Laplacian: (∂2u

∂x2

)
0
=

u+−u0
h+ − u0−u−

h−
1
2 (h++h−)

(125)

5 point Laplacian: (∂2u

∂x2

)
0
=

8( u+−u0
h+ − u0−u−

h− )− ( u++−u0
h++ − u0−u−−

h−− )
8
2 (h++h−)− 1

2 (h+++h−−)
(126)

7 point Laplacian:(∂2u

∂x2

)
0
=

45( u+−u0
h+ − u0−u−

h− )−9( u++−u0
h++ − u0−u−−

h−− )+ ( u+++−u0
h+++ − u0−u−−−

h−−− )
45
2 (h++h−)− 9

2 (h+++h−−)+ 1
2 (h++++h−−−)

(127)
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9 point Laplacian:(∂2u

∂x2

)
0
=

[
672(

u+−u0

h+
− u0 −u−

h−
)−168(

u++−u0

h++
− u0 −u−−

h−−
)+ (128)

32(
u+++−u0

h+++
− u0 −u−−−

h−−−
)−3(

u++++−u0

h++++
− u0 −u−−−−

h−−−−
)
]/

[672

2
(h++h−)− 168

2
(h+++h−−)+ 32

2
(h++++h−−−)− 3

2
(h+++++h−−−−)

]
where hn gives the distance between 0 and point n. Basically, these stencils are all combi-
nations of second order stencils with different widths, with weights following from Taylor
expansions for gradients, as if performed on uniform grids. In figure 15, the convergence of
the terms for the sum of all the TKE budgets is shown. It is clear that the difference is signif-
icant for the sum term. It was found that this difference is caused mainly by the calculation
of the dissipation rate, with small differences also seen in calculation of the pressure strain
rate. In the rest of the results, the widest (9 point) stencil is used.
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Figure 15: Sum of TKE terms for Lp ′
c on the 60-grid, using different width stencils for the

gradient and laplacian

Results

Below, the flow characteristics and budget terms are shown for the channel flow on the 60-
grid with Lpc and Lp ′

c methods and OpenFOAM’s icoFoam solver. Reference data is shown
in black, labeled "Vreman", where pseudo-spectral DNS methods were used, retrieved from
[23].

In figure 16 the results for the flow characteristics are shown. It can be seen that the mean
velocity, figure 16a, is slightly overestimated by all solvers, with the Lp ′

c giving the best esti-
mation. In turn, the velocity fluctuations, figures 16b, 16c and 16d, show an overestimation
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of the root mean square velocity in the x-direction for all solvers, as opposed to underes-
timation in both the y- and z-directions. Finally, figure 16e, shows that all solvers have an
overestimation of the kinetic energy, with Lp ′

c having the highest estimate and Lpc and ico-
Foam showing similar values. It can also be seen that close to the wall, around y+ = 18, the
highest discrepancies in the characteristics can be seen, in the form of peaks, as this is the
transition layer between the more viscous flow near the wall and more developed flow in the
center of the channel.
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Figure 16: Channel flow characteristics on the 60-grid, showing methods Lpc , Lp ′
c and ico-

Foam with reference data of Vreman
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In figure 17 the different TKE budget terms are presented. In general, the results show
curves similar to the reference case, except for the pressure strain rate. The production rate,
figure 17a, is overestimated near the wall for the Lp ′

c method, whereas all solvers underesti-
mate the dissipation rate, figure 17b, with Lp ′

c again showing the largest error. Similar results
showing slight over- and underestimation can be seen for the turbulent transport, pressure
diffusion and molecular diffusion rates, figures 17c, 17e and 17f. The pressure strain rate,
figure 17d, is more interesting. As mentioned before, this term should be zero due to the in-
compressibility constraint. The graphs for all solvers show non-zero results, partially due to
incompressibility of the velocity field, but also due to the method of calculating these terms.
In post-processing, cell-centered field values are used to calculate budget terms involving
transport terms. When using staggered values for these terms the results might give results
closer to the reference case. This should be kept in mind when drawing conclusions from
these results.
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(c) TKE Turbulent transport rate
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(e) TKE Pressure diffusion rate

0 50 100 150
y +

0.10

0.05

0.00

0.05

0.10

0.15

0.20

Di
ffu

sio
n 

(D
t ij

)

RK3-Lpc-60
RK3-Lpc -60
icoFoam-60
Vreman

(f) TKE Molecular diffusion

Figure 17: TKE budget terms on the 60-grid, showing methods Lpc , Lp ′
c and icoFoam with

reference data of Vreman
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In figure 18 the MKE budget terms are shown. The production rate, 18a shows that all
solvers overestimate the production, especially in the center of the channel. Transport, de-
formation and viscous diffusion rates, figures 18b, 18c and 18d, show very good agreement
for all solvers, although the Lp ′

c method shows larger peaks in the transition layer for all
budget terms.
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Figure 18: MKE budget terms on the 60-grid, showing methods Lpc , Lp ′
c and icoFoam with

reference data of Vreman

Sums of all budget terms in TKE and MKE are shown in figure 19. All summing results are
very close to zero, in the order of 10−2, which means the budget terms overall cancel each
other out to a good degree. However, when compared to the reference case, the inaccuracies
are still quite significant. The Lpc method and icoFoam show similar results close to zero,
whereas the Lp ′

c method shows a large peak in the TKE sum in the transition area, figure 19a,
and a large valley in the same are for the MKE sum, figure 19b. However, when the sums are
plotted together with the seperate budget terms, figure 20, a better indication of the relative
inaccuracy can be obtained. The order of inaccuracy of the sum of the terms is almost non-
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visible compared to the order of the separate terms. This is to show that slight errors in
individual terms can heavily affect the sum. These slight errors include, for instance, the
order of accuracy with which the gradients and Laplacians are calculated or the choice of
method to calculate transport terms, as discussed before.
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Figure 19: Sum of budget terms for TKE and MKE on the 60-grid, showing methods Lpc , Lp ′
c

and icoFoam with reference data of Vreman
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(c) TKE budget terms for Lp ′
c
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Figure 20: Seperate TKE and MKE budget terms compared for Lp ′
c and Lpc

To explain the reason why the Lp ′
c method performed relatively poor, a qualitative look

was taken at the pressure fields in the xz-plane in the transition area at y+ = 18, using Par-
aview. The results are shown in figure 21. When looking at the pressure field for the Lpc

method, some checkerboarding can be seen in the form of alternating colours. These pat-
terns are not present in the Lpc case. To overcome the checkerboarding, grid refinement to
the 30-grid was applied. Qualitative results for the pressure fields taken at the same height
can be seen at the bottom of figure 21, where some checkerboarding can still be seen in the
Lp ′

c method, however in far less extent and in fewer areas of the plane.
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Figure 21: Slices of the channel flow cases at y=0.1 in the xz-plane, qualitatively showing
pressure difference per cell. Checkerboarding can be seen in the Lp ′

c case on the 60-grid in
the z-direction

The budget analyses were again performed for the solvers on the 30-grid, the results for
the sum of all terms are shown in figure 22. It can immediately be seen that the Lp ′

c method
now shows similar results to the Lpc method for the TKE sum, whereas the icoFoam solver
appears to move further away from zero, figure 22a. On the MKE side, figure 22b, it can
be seen that the Lp ′

c method still shows the least accurate results, however it does show
improvement, whereas the other solvers stay similar to their results on the 60-grid.
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Figure 22: Comparison of sum of budget terms for TKE and MKE on the 60-grid and the
30-grid, showing methods Lp ′

c and Lpc with reference data of Vreman

Finally, a closer look was taken into the method of calculating the budget terms. In the
definitions of the budget terms, equations 108-113 and 116-119, many iterations of the indi-
vidual terms, such as 〈u′

x〉, should in principle be zero due to averaging, although in practice
do not have to be exactly zero in the channel flow results. To see the effect of these terms,
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post-processing was performed again, excluding these zero terms and only keeping the non-
zero terms. Results for this method can be seen in figure 23, where the suffix "NZT" denotes
post-processing with only the mathematical non-zero terms. It can be seen clearly that the
TKE sums, figure 23a, move even closer to zero, mainly due to the pressure strain term drop-
ping out, as it should mathematically be exactly zero. On the MKE side, 23b, only slight
changes can be seen. The large influence of many post-processing choices that have to be
made on the results of post-processing, raises the question of whether the results are depict-
ing numerical artefacts of post-processing or true results from which hard conclusions can
be drawn. This question becomes even more important when noting that the budget terms
are already very close to zero and have entered the realm where statistical errors also start
playing a larger role again. Although this section does show that the Lpc method performs
similar to icoFoam and the Lp ′

c is hindered by instabilities due to checkerboarding, an im-
portant take-away should also be that the quantification methods of kinetic energy in the
turbulent channel flow are of high significance and should be considered thoroughly before
drawing hard conclusions from the results they produce.
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Figure 23: Comparison of sum of budget terms for TKE and MKE summing all terms or only
non-zero terms, on the 30-grid, showing methods Lpc , Lp ′

c and icoFoam with reference data
of Vreman
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5 Conclusions

The general formulation of the symmetry preserving method for collocated unstructured
grids was successfully implemented into OpenFOAM. When comparing the solver to Open-
FOAM’s standard solver, icoFoam, in a Taylor-Green vortex case, the solver shows signifi-
cantly less numerical dissipation and therefore higher accuracy. The choice of the pressure
prediction method was shown to be the most important factor in this method, showing that
the Van Kan method is much less dissipative than the Chorin method. Choices in spatial
discritisation showed that the symmetry preserving method mostly favours stability in this
case, whereas the linear interpolation method shows slightly higher accuracy due to better
estimation of the diffusive term. The symmetry preserving method showed slight under-
estimation of the diffusive term. It was shown by improving the order of accuracy of the
diffusive term that this can potentially cancel out dissipation caused by the pressure pre-
diction method, which should be kept in mind when assessing evolution of kinetic energy.
On very distorted grids with no diffusion, some instability was still seen across all symmetry
preserving methods. The temporal consistency study in the lid-driven cavity flow showed
that the pressure error term increased from O (∆t∆h2) to O (∆t 2∆h2) by applying the Van Kan
method for the pressure prediction. In this case, grid refinement showed that the pressure
error becomes less dominant on fine grids, where a mixture between temporal and pressure
error was seen. Finally, the turbulent channel flow showed that, in more realistic test cases,
checkerboarding instabilities start hindering the symmetry preserving method on coarse
grids, where a lower order pressure prediction was enough to avoid the spurious modes. By
assessing kinetic energy budget terms, it was shown that the solver is in agreement with ref-
erence solutions for this case. However, it was found that these results are highly affected
by choices in post-processing methods, including calculation of gradients and Laplacians
and choice of calculating budget terms with collocated or staggered variables. In general,
the symmetry preserving method has shown great value in academic test cases, due to its
mathematically sound fundamentals. But its low-dissipative characteristics leading to its
high accuracy inevitably lead to some instability in more realistic cases, where filtering of
spurious modes becomes a necessity.
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6 Future recommendations

For future work, some strategies to avoid checkerboarding could be considered. First of all,
as already shortly discussed in this work, a symmetry preserving linear filter can be further
developed to damp the spurious modes in the convective term, without introducing any
non-physical dissipation. Another approach would be to modify the pseudo projection of
the prediction velocity to remove the spurious modes that lie on its kernel, of which exam-
ples can be found in [29] and [30]. In this work, the Van Kan method and Chorin method
were tested for the pressure prediction, showing two opposites in terms of accuracy and
stability. Other definitions for the pressure predictor could be examined, to find a good bal-
ance between these two factors. When stability is warranted by removing spurious modes,
even higher order predictors could potentially be of interest. Concerning the spatial dis-
cretizations of the symmetry preserving method, midpoint interpolation was found based
on symmetry requirements for the convective term. However, no such requirements are
strict for other interpolations in the scheme. Therefore other interpolation methods should
be examined and tested for their accuracy and stability. Finally, the methods for analyzing
kinetic energy in the turbulent channel flow should be further developed. Order of accuracy
in calculation of the involved terms, as well as the choice to use collocated or interpolated
staggered variables should be reviewed for each term, before more solid conclusions can be
drawn from this method.
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Appendices

A Error term in pressure-velocity coupling due to back-and-
forth interpolation

One of the most important relations that have to be defined is the relation between staggered
and collocated variables, given by Γs→c and Γc→s . As noted in section 2.4, interpolating from
cell to face and back only approximately returns the original value:

uc ≈ Γs→cΓc→suc , Γs→cΓc→s ≈ I (129)

This can be shown most intuitively on a simple one-dimensional grid with three uniform
cells and periodic boundaries, as seen in figure 24.

Figure 24: Simple one-dimensional structured grid with periodic boundaries

SinceΩs andΩc are both a simple matrix given by: Ωs =Ωc =−−−→
C1C2⊗ I3, equation 25 reduces

to: Γs→c = ΓT
c→s , when midpoint interpolation is chosen, with equal weights of 1

2 . Therefore,
Γc→s and Γs→c = ΓT

c→s are given by:

Γc→s =
1

2
1
2 0

0 1
2

1
2

1
2 0 1

2

 , Γs→c =
1

2 0 1
2

1
2

1
2 0

0 1
2

1
2

 (130)

Given uc1 , uc2 and uc3 the following equations hold for interpolating uc2 to faces and then
back to the cell:

u f1,c→s =
uc1 +uc2

2
, u f2,c→s =

uc2 +uc3

2
(131)

uc2,c→s→c =
u f1,c→s +u f2,c→s

2
= uc1 +2uc2 +uc3

4
≈ uc2 (132)

Which is in line with equation 129, given that neighbouring cells have comparable velocities.
When expanding to a three-dimensional unstructured grid, this approximation will remain
and interpolating back and forth will always result in a small error, because it includes in-
formation from its neighbouring cells. This error leads to a difference in the terms for un+1

s
and Γc→sun+1

c , which can be calculated using their definitions. Starting from equation 29
the error term can be derived:

un+1
c = up

c −Γs→cGp̃′
c (133)

Using up
c = un

c +∆tR(un
c )−Gc p̃n

c and Γs→cG =Gc which gives:

un+1
c +Gc p̃′

c = un
c +∆tR(un

c )−Gc p̃n
c (134)
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Using un+1
s = up

s −Gp̃′
c and up

s = Γc→sup
c to find:

un+1
s = Γc→s

(
un

c +∆tR(un
c )−Gc p̃n

c

)−Gp̃′
c (135)

Interpolating equation 134 using Γc→s and combining it with 135, gives:

un+1
s = Γc→sun+1

c +Γc→sGc p̃′
c −Gp̃′

c (136)

The error term given by the difference in un+1
s and Γc→sun+1

c is then given by:

un+1
s −Γc→sun+1

c = (Γc→sGc −G)p̃′
c = (Γc→sΓs→c − I )Gp̃′

c (137)

This means that the cell-centered velocity field, un+1
c is not exactly divergence free, as there

is a small difference with un+1
s , which is divergence free.
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B Symmetric linear filter

The convective term in the Navier-Stokes equation is a source of non-physical spurious
modes. To stop the production of these modes the non-linearity can be approximated by
regularization methods. These methods alter the convective term by restraining production
of motion at the smaller scales. One method of regularization is the C4 method, where the
convective term is replaced by a fourth order accurate approximation [13]:

C4(us ,uc ) =C (us
p )uc +F (C (us

p )u′
c +C ((up

s )′)uc ). (138)

In which uc = F uc and u′
c = uc −uc , with F , the filter operation. The idea behind this filter is

that it is also skew-symmetric, therefore the kinetic energy of this term is also conserved.
Construction and application of this filter were accurately described by two algorithms pre-
sented by Trias et al. [31]. In this paper, the filter, F , is constructed in the first algorithm, after
which C4(us ,uc ) is calculated in the second one. Just like operator D , F is a block diagonal
matrix and is constructed with square block filters, F#:

F = I2 ⊗F# (139)

In which the blocks are given by:

F# = I +
A∑

a=1
(D̃a)a (140)

where Trias et al. found that A = 2 is sufficient to properly filter the convective term [31]. D̃a

is given by:

D̃a =−Ω−1
c M(Λa)1/a J 2Ω−1

s M T (141)

in which J and Λa are diagonal matrices in Rm×m with entries [J ] f , f = δn f and [Λa] f , f =
(da) f . It is evident from equation 141 that the symmetry of D is preserved in D̃a , since both
Λa and J are diagonal matrices. Values for da are in turn given by:

d1 =−
ˆGkc −1

2(2Ĝkc +1)
, d2 =

2Ĝ2
kc
−3Ĝkc +1

16(2Ĝkc +1)
, if 0 ≤ Ĝkc < 1/2

d1 = 1

4
− Ĝkc

4
, d2 = 0, if 1/2 ≤ Ĝkc ≤ 1

(142)

Ĝkc , finally, is the value of the transfer function at the smallest grid scale. In [31] this value
is updated through time, however, [2] states that a sufficive choice of the filter length results
in Ĝkc = 0.1. This value is assumed to be appropriate in this study as well, leading to d1 = 3

8
and d2 = 3

80 .
The full expression for F# can be written as:

F# = I + 3

8
Ω−1

c M J 2G + 3

80
Ω−1

c M J 2GΩ−1
c M J 2G (143)

The next step is to calculate the filtered convective term, C4. To do so we follow the remain-
ing steps of the second algorithm of [31], given by:
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1. copmute uc and its residual: uc = F uc and u′
c = uc −uc .

2. Solve the following Poisson equation: −MΩ−1
s M T qc = MΓc→suc .

3. Compute the projected (divergence-free, Mus
p = 0c ) velocity field, us

p = Γc→suc+Ω−1
s M T qc

and its residual (up
s )′ = Γc→suc −us

p .
4. Copmute C4 in a discrete sense:

C4(Γc→suc ,uc ) =C (us
p )uc +F (C (us

p )u′
c +C ((up

s )′)uc ). (144)

The computational costs of this filter are considerable, as F has to be calculated for both
steps two and five. Moreover, in step 4, the convective term is calculated three times in
stead of once. Finally, the most expensive step is step three, in which an additional Poisson
equation has to be solved. All in all, this filtering method for regularization has been found
to be twice more expensive [31].
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C Total volume for staggered and collocated discretization

When interpolating a system from collocated to staggered notation or vice versa, physical
attributes of the system should not be altered. One of the requirements for this is that the
total volume of the system remains the same in both notations, i.e. the total volumes rep-
resented by Ωc and Ωs . When looking at the definition of the staggered to collocated shift
operator, Γs→c , equation 25, this makes sense intuitively. Since both matrices for volume are
diagonal, their traces should be equal in any number of dimensions:

Tr (Ωc ) = Tr (Ωs) (145)

This can be shown by looking at an adaptation of figure 2, in which the staggered volume
of one of the faces is shown, figure 25. The volume of (Ωs) f , f will be split in two parts, a part
overlapping with the volume of cell i and a part overlapping with the volume of cell j , which
are not necessarily of equal size. Let the part of the face volume of f that overlaps with i be
given byΩs f ,i = d⊥ f ,i A f . Where d⊥ f ,i is the perpendicular distance between centroid Ci and
face A f . By constructing this partial volume for every face adjacent to cell i , the sum of the
face volumes can be compared to the volume of cell i . This sum is given by:

ΩsΣi =
∑

f ∈F f (i )
d⊥ f ,i A f (146)

where
∑

f ∈F f (i ) sums over all faces adjacent to cell i . On the other hand, let cell i be divided
by connecting the centroid to every vertex, into pyramids spanned by bases A f and apex Ci .
The volume of each pyramid is given by Ωc f ,i = 1

3 d⊥ f ,i A f . The total volume of cell i can be
expressed similar to the previous expression:

(Ωc )i ,i =
∑

f ∈F f (i )

1

3
d⊥ f ,i A f (147)
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Figure 25: Construction of the staggered control volumes in three dimensions

When summing these volumes for all the cells, it is evident that the total volume in the stag-
gered notation will be three times as big:

ΩsΣi = 3(Ωc )i ,i (148)

But since Ωc is a block diagonal matrix, which, in three dimensions, consists of three equal
blocks that contain all cell volumes, it is evident that the sums of their traces are equal,
i.e. equation 145 holds. This is under the trivial implication that the staggered volumes
at the boundary of the domain are given by d⊥ f ,i A f and not δn f A f , since there is no δn f

when there is no neighbouring centroid. Moreover, this proof also holds in two dimensions,
since the rectangles formed by d⊥ f ,i A f , that construct the staggered volumes, have a surface
two times bigger than the triangles spanned by the centroids and faces that construct the
collocated volumes. Simultaneously, block diagonal matrix Ωc consists of only two blocks,
again resulting in equal traces ofΩc andΩs
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D Higher order discretizations

Higher order diffusive term

To find a higher order discretization of the diffusive term, a higher order gradient of the
velocity is necessary. To do so, a one-dimensional case is considered with regular spaced
grid points, as seen in figure 26.

Figure 26: 1-dimensional regular grid

Taylor expansions is used on all four points:

u−− = u0 −
u(1)

0

1

3h

2
+ u(2)

0

2

9h2

4
− u(3)

0

6

27h3

8
+ u(4)

0

24

81h4

16
(149)

u− = u0 −
u(1)

0

1

h

2
+ u(2)

0

2

h2

4
− u(3)

0

6

h3

8
+ u(4)

0

24

h4

16
(150)

u+ = u0 +
u(1)

0

1

h

2
+ u(2)

0

2

h2

4
+ u(3)

0

6

h3

8
+ u(4)

0

24

h4

16
(151)

u++ = u0 +
u(1)

0

1

3h

2
+ u(2)

0

2

9h2

4
+ u(3)

0

6

27h3

8
+ u(4)

0

24

81h4

16
(152)

Where u(n) gives the n-th spatial derivative of u. The following notation is then used:

u0 = T0

u(1)
0

1

h

2
= T1

u(2)
0

2

h2

4
= T2

u(3)
0

6

h3

8
= T3

u(4)
0

24

h4

16
= T4

(153)
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To rewrite equations 149-152:

u−− = T0 −3T1 +9T2 −27T3 +81T4 (154)

u− = T0 −T1 +T2 −T3 +T4 (155)

u+ = T0 +T1 +T2 +T3 +T4 (156)

u++ = T0 +3T1 +9T2 +27T3 +81T4 (157)

Which are summed with unknown weights A, B, C and D:

Au−−+Bu−+Cu++Du++ = (A+B +C +D)T0

+ (−3A−B +C +3D)T1

+ (9A+B +C +9D)T2

+ (−27A−B +C +27D)T3

+ (81A+B +C +81D)T4

(158)

Only terms of order u(1) should remain in this sum, therefore:

A+B +C +D = 0

−3A−B +C +3D = 1

9A+B +C +9D = 0

−27A−B +C +27D = 0

81A+B +C +81D = 0

(159)

Which is solved by: 
1 1 1 1
−3 −1 1 3
9 1 1 9

−27 −1 1 27
81 1 1 81




A
B
C
D

=


0
1
0
0
0

 (160)
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Leading to: A = 1
48 , B = −27

48 , C = 27
48 , D = −1

48 :

1

48
u−−− 27

48
u−+ 27

48
u+− 1

48
u++ = 1

48
T0 − 27

48
T0 + 27

48
T0 − 1

48
T0 (= 0T0)

− 3

48
T1 + 27

48
T1 + 27

48
T1 − 3

48
T1 (= T1)

+ 9

48
T2 − 27

48
T2 + 27

48
T2 − 9

48
T2 (= 0T2)

− 27

48
T3 + 27

48
T3 + 27

48
T3 − 27

48
T3 (= 0T3)

+ 81

48
T4 − 27

48
T4 + 27

48
T4 − 81

48
T4 (= 0T4)

+O (h5)

= T1 +O (h5)

= 1

2
hu(1)

0 +O (h5)

The higher order gradient scheme is then found to be:

u−−−27u−+27u+−u++
24h

= u(1)
0 +O (h4) (161)

To construct this scheme in OpenFOAM, possibly a combination between a cell-centered
gradient and a face gradient can be used. In one dimension, a broad gradient, GB , at + is
defined to be:

[GB u]+ = u++−u−
2h

(162)

And similarly:

[GB u]− = u+−u−−
2h

(163)

Using midpoint interpolation, Γc→s , this gives:

[Γc→sGB u]0 = −u−−−u−+u++u++
4h

(164)
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So that:

−1

6
[Γc→sGB u]0 = u−−+u−−u+−u++

24h
(165)

Similarly the face gradient, Gs , at 0 is given by:

[Gsu]0 = u+−u−
h

(166)

So that:

28

24
[Gsu]0 = 28u+−28u−

24h
(167)

Equations 165 and 167 are then summed to find:

7

6
[Gsu]0 + −1

6
[Γc→sGB u]0 = u−−−27u−+27u+−u++

24h
= u(1)

0 +O (h4) (168)

Which is a fourth order gradient scheme written in terms that can be implemented in Open-
FOAM using a more general notation for unstructured grids. Using this notation on carte-
sian structured grids should however simplify to equation 168.
The cell-centered gradient that is used in OpenFOAM is a Gaussian gradient, it sums a gra-
dient over each face similar to Gauss’s theorem. The cell-centered velocity gradient at cell i ,
[GB (uc )]i , is given by the following expression:

[GB (uc )]i = 1

Ωi ,i

∑
f ∈F f (i )

[uo +un

2

]
⊗n f A f (n−→

i j
·n f ) (169)

To demonstrate that equation 168 holds with this definition of GB , a two-dimensional regu-
lar cartesian grid is considered, as seen in figure 27.
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Figure 27: 2-dimensional cartesian grid containing the relevant cells for calculating the
higher order gradient at face 2

First, the cell-centered gradients will be considered, [GB (uc )]w specifically. Of this cell, the
term considering face 4 is given by tensor:

[GB (uc ]w,4 =
(

uw,x+unw,x
2

uw,y+unw,y

2

)(
n4,x n4,y

)
A4

[(
n−−−−→w,nw ,x n−−−−→w,nw ,y

) ·(n4,x

n4,y

)]
=

(
uw,x+unw,x

2
uw,y+unw,y

2

)(
0 1

)
A4

[(
0 1

) ·(0
1

)]
= A4

(
0

uw,x+unw,x
2

0
uw,y+unw,y

2

) (170)

Similarly, the term for face 1 is given by:

[GB (uc ]w,1 =−A1

(
uw w,x+uw,x

2 0
uw w,y+uw,y

2 0

)
(171)

The cell-centered gradient is then given by the sum of the four face tensors divided by the
cell volume:

[GB (uc )]w = 1

Ωw,w

(
−A1

uw w,x+uw,x
2 + A2

uw,x+ue,x
2 A4

uw,x+unw,x
2 − A6

usw,x+uw,x
2

−A1
uw w,y+uw,y

2 + A2
uw,y+ue,y

2 A4
uw,y+unw,y

2 − A6
usw,y+uw,y

2

)
(172)

The cell-centered gradients of w and e are then interpolated to face 2:
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[Γc→sGB (uc )]2 = [GB (uc )]w

2
·n2 + [GB (uc )]e

2
·n2

=
(− A1

Ωw,w

uw w,x+uw,x
4 + A2

Ωw,w

uw,x+ue,x
4 − A2

Ωe,e

uw,x+ue,x
4 + A3

Ωe,e

ue,x+uee,x
4

− A1
Ωw,w

uw w,y+uw,y

4 + A2
Ωw,w

uw,y+ue,y

4 − A2
Ωe,e

uw,y+ue,y

4 + A3
Ωe,e

ue,y+uee,y

4

) (173)

This expression can be simplified by noticing A1 = A2 = A3 = A f , Ωe,e = Ωw,w = A2
f and

A f = h, with h the distance between two cell centers:

[Γc→sGB uc ]2 = −uw w −uw +ue +uee

4h
(174)

which agrees with equation 164. Notice that the contributions from cells nw , ne, sw and se
all vanish. This is because the faces over which these contributions have to be carried are
orthogonal. The dot product of the interpolation step cancels the outer product that was
taken when calculating the cell-centered gradient.
The face gradient in OpenFOAM is calculated by:

[Gs(uc )]2 = ue −uw

|n2·−−→w,e| (175)

which in this example simplifies to:

[Gs(uc )]2 = ue −uw

h
(176)

just like equation 166. Both components of equation 168 have now been established. Using
the right combination of weights, this leads to the higher order discretization of the diffusive
term.

Higher order interpolation method

Similarly, a higher order interpolation (HOI) can be calculated using Taylor expansions. A
derivation of u0 then has to be made, in contrast with u(1)

0 needed for the HOD. The deriva-
tion is similar, but equation 159 is replaced by:

A+B +C +D = 1

−3A−B +C +3D = 0

9A+B +C +9D = 0

−27A−B +C +27D = 0

(177)

and: 
1 1 1 1
−3 −1 1 3
9 1 1 9

−27 −1 1 27




A
B
C
D

=


1
0
0
0

 (178)
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Leading to: A = −1
16 , B = 9

16 , C = 9
16 , D = −1

16 , and:

−u−−+9u−+9u+−u++
16

= u0 +O (h4) (179)

This closely resembles a variant of the cubic interpolation scheme in OpenFOAM:

u0 = u(1−λ) =λu−+ (1−λ)u++λ(1−λ)(1−2λ)(u+−u−)−λ2(λ−1)∇−−λ(1−λ)2∇+ (180)

To preserve symmetry in the interpolation, λ= 1
2 is taken, so that this method simplifies to:

u0 = 1

2
u−+ 1

2
u++h0

1

8
[∇u]cor,0 (181)

Where the correcting gradient terms for the face, [∇u]cor , are found by interpolating seper-
ate gradients for owner and neighbour cells, for each dimensional component of u, xi .
These dimensional components are subsequently summed.

[∇u]cor =
∑

i

[
[∇u]xi ,o − [∇u]xi ,n

] ·n f (182)

With gradients of each cell, k, calculated as:

[∇u]xi ,k = ∑
f ∈F f (Ck )

uxi ,o −uxi ,n
−−−→
CoCn

(183)

On a three dimensional Cartesian grid, vectors
−−−→
CoCn in the y- and z-direction cancel out

with n f0 , leaving:

[∇u]cor = 1

2

[ (u−−u−−)

h−
− (u++−u+)

h+

]
(184)

When there is also no stretching, h− = h0 = h+, the complete expression for the interpolated
variable becomes:

u0 = 9

16
u−+ 9

16
u+− 1

16
u−−− 1

16
u++ (185)

Which is higher order midpoint.

It should be noted that λ =
−−→
C−0
h0

, equals 1
2 on Cartesian grids. Therefore, this method is ex-

actly the same as the cubic method on Cartesian grids, analogous to a linear interpolation
on a Cartesian grid becoming equal to a midpoint interpolation. These higher order dis-
cretizations offer interesting alternatives to the ones used in this work, although first results
did not prove these methods to lead to large differences in the examined cases.
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E Disclaimer

EU DuC=N

Goods labeled with an EU DuC (European Dual-use Codification) not equal to ‘N’ are sub-
ject to European and national export authorization when exported from the EU and may be
subject to national export authorization when exported to another EU country as well. Even
without an EU DuC, or with EU DuC ‘N’, authorization may be required due to the final des-
tination and purpose for which the goods are to be used. No rights may be derived from the
specified EU DuC or absence of an EU DuC.
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