
Performance of Web services on Mobile Phones

Sander Kikkert
Supervised by Prof. Dr. M. Aiello

February 2, 2010

1 Introduction

Smartphones are cell phones with more advanced capabilities than ordinary cell
phones. They have usually more processing power and larger screens than nor-
mal phones and they offer PC-like functionality. Last year their prices dropped
significantly which gave a boost to their market share.

A Web service is a way to call a procedure on a remote computer system
with web-related standards like SOAP and HTTP. They are becoming a de facto
standard for information exchange between different computer systems.

When one combined smartphones and Web services i.e. to run a Web service
on a mobile device one can greatly increase the functionality of mobile devices
to interact with its environment. This makes a wide range of new functionality
possible. Especially in the field of ubiquitous computing.

Some of the key challenges of running a Web service on a mobile device
includes: to host a service on a platform that is not designed to host services.
For instance Symbian OS has an extensive HTTP framework to access HTTP
based services but it is not possible to use that framework to host a service.
Another challenge is that the mobile platforms are optimised to save energy
as much as possible. In order to achieve that goal some platforms (mainly
Symbian) use low-level coding techniques to make very efficient coding possible.

Running Web services on mobile devices opens a wide range of new pos-
sibilities and solves heterogeneity and interoperability issues [7]. However the
performance characteristics are important to ensure the mobile device is able to
handle multiple requests while the device is able to function normally. I study
the performance characteristics of Web services running on the various mobile
phone platforms.

The remainder of this paper is organized as follows: The application domain
of mobile Web services and related work are discussed in section 2. Section
3 defines the concept of Web services performance testing and describes the
performance metrics used in the performance analysis. The experimental setup
and implementation are discussed in section 4. Section 5 contains the results
whereas section 6 gives a evaluation of the results. Finally the last 2 sections
discuss conclusions and further research.

Personal Web services make a new level of ubiquitous computing possible
because external systems can exchange information with the user almost without
user intervention.

1



2 Related work

Measuring the performance of Web services running on mobile devices (mobile
or personal Web services) spans diverse research fields. Of particular interest
are the new applications that mobile Web services opens up. Berger, McFaddin,
Narayanaswami and Raghunath describe a fully automatic billing system as an
application of mobile Web services[4]. When a customer goes to the check-out
with a filled shopping cart the contents of the shopping cart is automatically
determined with help of RF technology. After that the check-out establishes a
connection with the personal Web service of the customer. The mobile device
verifies the payment request and after customer approval completes the trans-
action. The article describes further the technical complications of personal
Web services. The complications range from assigning IP addresses at different
locations to security issues. Only trusted sources should be allowed to connect
to your personal wallet service.

An approach to make a mobile device easy reachable is to make use of a
home agent of the mobile device which keeps track of the current location of the
device [9]. Whenever the mobile device moves to another location it requests a
new temporary address and informs its home agents of the new address. In this
way a mobile device is always reachable with the same fixed address.

Aiello[1] shows possibilities and the feasibility of Web services at home. Ac-
cording to his work Web services will have a central role in the home of the
future as an infrastructure to ensure openness, scalability and heterogeneity
(total interoperability) among home devices. The home of the future will have
a hierarchy of devices, sensors and actuators all with different processing power
and network capabilities. As a case study the article describes an elderly home
that is capable of monitoring a fall of the inhabitant.

Work in the area of performance measuring of Web services can be found in
an article by Lencevicius and Metz [5]. The work gives an overview about how to
use performance assertions to validate performance requirements. It describes
and resolves issues in the use of performance assertions and it describes in detail
a framework that can be used to validate the performance of mobile devices.

Saddik [6] describes a way of measuring the performance of a Web service:
one measures the response time and number of successful responses per second
at different load levels (for instance 1, 5, 10, 25 agents/threads). First the
throughput increases if you increase the number of agents. But at a certain
load level the throughput will not increase any more. That throughput is the
performance of the Web service according to this article.

The performance of various solutions for realizing Web services on embedded
devices are studied by D. Schall, M. Aiello and S. Dustdar [7]. Two Web services
frameworks for Symbian OS are compared: gSOAP (C++ based) and kSOAP
(J2ME/Java based). They measured the performance with help of time stamped
messages at various layers in the Web services stack. gSOAP has a better
performance than kSOAP probably due to its C++ nature. In this work Web
services are proposed to solve heterogeneity and interoperability issues when
embedded devices wants to interact with each other in a continuously changing
environment.

S. N. Srirama, M. Jarke, and W. Prinz[8] describes a similar set-up. They
propose to use resource constrained smartphones to host Web services (called
Mobile Hosts in the article) to host services in a true mobile peer-to-peer envi-

2



ronment. As an example, the work describes a guided parcel service, where a
delivery-van equipped with a mobile host can send detailed location information
to the client. They show the feasibility of Mobile Hosts with a prototype based
on the kSOAP framework running on a Sony-Ericsson P800 Smart Phone and
they perform a performance analysis. Their performance analysis uses times-
tamps and it turns out that total Web service processing time is a small fraction
of the total request-response time (< 10%) the rest being transmission delay.

Baranov[2] points the importance and the advantages of performance testing
during the developing of a Web service. For instance performance-related bugs
are easier to caught and to solve. Web services should be tested with invalid
SOAP requests and valid requests with unusual or unexpected values as well
as valid requests preferable in a real world mix. If a Web service is stateful
then requests are dependable of each other i.e. in a ticket reservation system
(first you login and then you make a reservation). In this context the virtual
user emulation mode are recommended to test the performance. But in the case
of a stateless Web service the request per second method is recommended to
use. If a load test can sustain only the scheduled number of users, the effective
requests injection rate may decrease dramatically if the server response time is
long. The paper concludes with some tips about performance measuring. The
response time of a request might depend heavily on the network environment. If
the network is slow then the response time is not an accurate figure, it is better
to monitor the server time as well. Take care that the PC running the test
software has enough resources in order to get proper results. A last suggestion
is that your network settings of Windows could affect the test results.

Tian, Voigt, Naumowicz, Ritter and Schiller[10] describes a way to increase
the performance of mobile Web services by compression of the messages. Ac-
cording to this article the increase in performance is high whenever the connec-
tion is slow and the messages are big.

An extensive overview of the Android platform is done in an article by
Speckmann [3]. In his Master’s thesis he compares in detail Windows Mobile,
Symbian OS and Android. Android is the best OS for mobile phones. He stated
that Android is able to run unmodified Java code. That is incorrect; Android is
not able to run neither Java SE nor Java ME but Android code does has a Java
like syntax. A mistake which suggests that the writer did not take a critical
look at Android.

A better comparison is found in a article by Wei et al.[12]. It turns out that
differences between the platforms are relatively small.

3 Concept

Scalability is a capability of a Web service that describes how well a Web ser-
vice performs under different load conditions. Scalability is closely tight to the
performance of a Web service. A Web service that serves thousands of requests
is not of much use if half of them are error responses [6].

In order to measure the performance and scalability of a Web service I need
to identify some metrics that characterize Web service performance:

• Total number of Responses

• Number of succesfull responses and Succesfull responses per second

3



• Percentage of error responses

• Average execution time: The time from the last byte sent to the first byte
received in milliseconds

• Average server time: The time from the first byte sent to the last byte
received in milliseconds

In the following performance study the above metrics will be measured at 4
different load levels: 1, 5, 10 and 25 clients. The measure time will be set to
2 minutes. Each measurement will be repeated 3 times and averaged in order
to lower the measurement error. At a certain point the throughput of the Web
service will not increase and that is the maximum throughput (performance) of
the Web service [6].

4 Experimental Setup and Implementation

There are multiple operating systems for mobile devices. The most popular
operating system for smartphones is still Symbian OS. But Iphone OS and
especially Android are growing fast. Microsoft has also its own operating system
for mobile devices called Windows Mobile. However Iphone OS is not freely
available thus limiting my performance study to Symbian OS, Windows Mobile
and Android. In the following performance study I will compare the Web service
runnning on a Windows Mobile 5.0 PDA with the emulated versions.

4.1 Implementation

To test the performance of a mobile Web service a Web service needs to be
constructed. The Web service needs to do some processing in order to try
to increase the test result differences. An echo service simply replies the input
without any processing and therefore the CPU is busy with making and breaking
up of connections. To let the CPU do some actual work the test Web service
determines if an IP address is inside the Netherlands. To speed up that search
process the Web service makes use of the binary search algorithm.

All the three Web services function in the same way. First the Web service
listens for incoming connections. The HTTP frameworks incorporated into the
different APIs support outgoing connections only. To make an incoming con-
nection possible you have to create a TCP socket yourself and start listening on
it. After an incoming connection is made another socket is created to handle
this connection. First the request is parsed and adequate action is taken. Five
different responses are possible:

• Get-request for geoip.wsdl. Returns the WSDL-file. That is an XML
description of the Web service.

• Get-request for any other file. Returns a HTTP 404 file not found error
response.

• Valid post-request to invoke the Web service. Returns a SOAP message
with either true or false.

• Invalid post-request. Returns a invalid SOAP request error response.

4



• Invalid HTTP request. Returns a HTTP 400 bad request error response.

In the case of a valid post request the IP address is extracted from the request.
The IP address is in the dot-decimal notation (xxx.xxx.xxx.xxx) and needs to
be converted to a 32 bit unsigned integer. After this conversion the unsigned
integers is looked up in an array with the Dutch IP ranges. This array is so
constructed that all even places (array[2*t]) corresponds to a start value and
all odd places (array[2*t+1]) corresponds to an end value of a range. Because
it is an ordered array we can use binary search to speed up the search process.
If the integer value turns out to be inside a range true is returned otherwise
false is returned.

4.2 Implementation differences

C# and the Java-like programming language of Android are high-level program-
ming languages which use managed code, have garbage collection and have an
extensive function library. Symbian OS on the other hand has a C++ like pro-
gramming language which is more low-level, does not have a garbage collector
and makes use of special techniques such as descriptors and the cleanup stack.
In 1990s when Symbian is designed those techniques were necessary to get a
reasonable performance on the then powerless hardware. Nowadays it is ques-
tionable if the low-level techniques of Symbian are still beneficial. It introduces
extra complexity because programmers have to concentrate on low-level tech-
niques instead of application specific logic. One of those very efficient techniques
is Active Objects. An Active Objects is a very lightweight non-pre-emptive kind
of thread which runs inside a thread. Because they are non-pre-emptive there is
no need to use mutexes, semaphores, critical section or other kinds of synchro-
nization to protect against the activities of other threads. An Active Object is
about 100 times lighter than a thread in a normal language.

4.3 Experimental Setup

To test the performance of the Web services, Parasoft SOAtest 6.1 and Loadtest
6.1 will be used. In Loadtest 6.1 it is possible to define an amount of threads/-
clients that concurrently sends requests to the Web service for a certain amount
of time. 129.125.102.100 will be used as an input value for the Web service
which is a RuG IP-address so true should be returned. When the tests are done
the metrics mentioned in the concept section will be displayed.

The Symbian version of the Web service is targeted at Symbian OS 9.3 (S60
3rd edition FP2), currently the most used version of Symbian OS. Symbian
support Java (J2ME) and a C++ dialect which runs faster because it can be
compiled into native machine code instead of byte code. I will choose Sym-
bian C++ for the Symbian Web service. The Android version is targeted to
a Android 1.5 r3 device. Android supports one language: a Java-like language
with an extensive function library, which is not compatible with J2SE or J2ME.
Windows Mobile supports multiple programming languages ranging from C#
to C++. The Windows Mobile Web service will be written in C#, the most
common language to use for Windows Mobile.

The test software and emulators will run on a modern PC running Windows
XP (Core 2 Duo E8400, Intel P43 Chipset, 4GB main memory) to ensure that

5



the PC is not a bottleneck. While the performance tests are running the CPU
usage will be monitored to confirm that the host PC has enough computational
power. The real Windows Mobile device is running Windows Mobile 5.0 and will
be connected to the same PC by either a USB 2.0-cable or a Wi-Fi connection
(IEEE 802.11b/g) to a wireless AP with a built-in switch which has a 100MBit
connection with the PC.

5 Results

5.1 Symbian OS (Emulator)

Load level
Total Number Number of Successfull Percentage of Succesfull Avg. Exec. Avg. Server
of Responses Responses Error Responses Responses p/s Time (ms) Time (ms)

1 Client 2277 2277 0.0% 18.9 2.0 2.0
2 Clients 3234 3234 0.0% 26.9 3.0 3.0
3 Clients 3820 3797 0.6% 31.6 4.0 4.0
4 Clients 5084 3868 23.9% 32.2 7.0 6.0
5 Clients 7804 3914 49.8% 32.6 10.0 8.0
10 Clients 9561 3998 58.2% 33.3 17.5 16.0
25 Clients 12483 4057 67.5% 33.8 54.7 92.0

0 5 10 15 20 25
0

5

10

15

20

25

30

35
Symbian OS (emulator)

clients

hi
ts

 p
/s

Figure 1: Performance Symbian OS (emulator)

6



Figure 2: Error rate Symbian OS (emulator) (5 clients)

5.2 Android Web service (Emulator) - Single-threaded

Load level
Total Number Number of Successfull Percentage of Succesfull Avg. Exec. Avg. Server
of Responses Responses Error Responses Responses p/s Time (ms) Time (ms)

1 Client 111 111 0.0% 0.92 28 27
5 Clients 122 122 0.0% 0.98 24 24
10 Clients 124 124 0.0% 0.95 30 30
25Clients 141 141 0.0% 0.97 66 66

0 5 10 15 20 25
0

0.2

0.4

0.6

0.8

1
Android emulator (Single−threaded)

clients

hi
ts

 p
/s

Figure 3: Android Web service (Emulator) - Single-threaded

5.3 Android Web service (Emulator) - Multi-threaded

Load level
Total Number Number of Successfull Percentage of Succesfull Avg. Exec. Avg. Server
of Responses Responses Error Responses Responses p/s Time (ms) Time (ms)

1 Client 107 107 0.0% 0.89 23 22
5 Clients 119 119 0.0% 0.95 26 26
10 Clients 127 127 0.0% 0.98 32 31
25 Clients 139 139 0.0% 0.96 69 75

7



0 5 10 15 20 25
0

0.2

0.4

0.6

0.8

1
Android emulator (Multi−hreaded)

clients

hi
ts

 p
/s

Figure 4: Android Web service (Emulator) - Multi-threaded

5.4 Windows Mobile Web service (Emulator)

Load level
Total Number Number of Successfull Percentage of Succesfull Avg. Exec. Avg. Server
of Responses Responses Error Responses Responses p/s Time (ms) Time (ms)

1 Client 554 554 0.0% 4.61 132 131
5 Clients 967 957 1.67% 7.97 416 382
10 Clients 1283 1141 11.9% 9.51 647 464
25 Clients 1601 1153 36.3% 9.6 1511 618

0 5 10 15 20 25
0

2

4

6

8

10
Windows Mobile (emulator)

clients

hi
ts

 p
/s

Figure 5: Windows Mobile Web service (Emulator)

8



5.5 Windows Mobile Web service - PDA (Cable connected)

Load level
Total Number Number of Successfull Percentage of Succesfull Avg. Exec. Avg. Server
of Responses Responses Error Responses Responses p/s Time (ms) Time (ms)

1 Client 1551 1550 0.06% 12.92 16 16
5 Clients 3516 3514 0.06% 29.28 84 83
10 Clients 3704 3558 4.13% 29.65 176 134
25 Clients 4236 3511 19.76% 29.26 421 156

0 5 10 15 20 25
0

5

10

15

20

25

30
Windows Mobile − PDA (cable)

clients

hi
ts

 p
/s

Figure 6: Windows Mobile - PDA (cable)

5.6 Windows Mobile Web service - PDA (Wi-Fi)

Load level
Total Number Number of Successfull Percentage of Succesfull Avg. Exec. Avg. Server
of Responses Responses Error Responses Responses p/s Time (ms) Time (ms)

1 Client 1670 1670 0.02% 14.1 16 15
5 Clients 5657 4968 13.8% 41.4 35 29
10 Clients 6349 5409 17.5% 45.1 59 43
25 Clients 6373 5490 15.7% 45.7 156 53

9



0 5 10 15 20 25
0

10

20

30

40

50
Windows Mobile − PDA (WiFi)

clients

hi
ts

 p
/s

Figure 7: Windows Mobile - PDA (Wi-Fi)

5.7 Platform comparison

Platform Performance Percentage of Error Avg. Exec. Time Avg. Server Time
(Hits p/s) Responses (25 Clients) (25 Clients) (25 Clients)

Symbian OS 33 67.5% 54.7 92
Android ST 0.95 0% 66 66
Android MT 0.95 0% 69 75
WM emulator 9.6 36.3% 1511 618
WM PDA - cable 29 19.70% 421 156
WM PDA - WiFi 45 15.7% 156 53

6 Discussion

6.1 Symbian OS (Emulator)

Figure 1 shows us that the throughput of the Web service running on a Sym-
bian device emulator is at most about 33 requests per seconds. This is a very
reasonable performance (for an emulator). The scalability however is disap-
pointing. The loss of requests is enormously by 5 clients (49.8%) consequently I
repeated the test with 2, 3 and 4 clients. It turns out that up to 3 clients there
is some processing power left. But from 4 clients and onwards there are more
requests coming in than the Web service can handle. In that case the failure
count increases dramatically and the Web service becomes useless in a normal
(production) environment. The bottleneck of the Web service is not the host
PC. The Web service running on the emulator uses 6 seconds CPU power (5
threads) which is just a fraction of the processing power of the host PC (5%).
The process list of the Symbian OS emulator reports 1 second CPU time. Mak-
ing and destroying connections must be very time consuming in comparing to
the actual work. That is the most probable explanation for the (relatively) low
performance of this Web service.

10



A possible explanation for enormous error rate from 4 clients and onwards is
that Symbian OS buffers too much incoming connections. When the Web service
performs at its maximum it does not have time to process all those requests.
The error rate confirms that assumption. In the first part of the graph of figure
2 the error rate is zero because many requests have been sent and they could
be returned. However after about a minute the time-out timer expires of all
outstanding requests and at that moment the error rate explodes.

6.2 Android Web service (Emulator) - Single-threaded

The normal - single threaded - version of the Android Web service has very low
performance. Although the performance is bad with one thread, increasing the
number of threads does not improve the performance. Increasing the number
of threads only increases the average execution and server time. The scalability
is practically non-existent because the performance does not enlarge with the
number of threads. However all request are being processed; the failure count
is - independent of the load - 0.

6.3 Android Web service (Emulator) - Multi-threaded

In order to improve the performance the single threaded version has been rewrit-
ten to make use of multiple-threads. Normally making a program multi-threaded
improves the performance. But it does not make a significant difference on the
performance. It is as low as the single threaded version. The performance of
both version is about 1 request per second.

I could not find a plausible explanation for low performance of this Web
service. The emulator uses at most 6 seconds CPU time of the host PC (CPU
usage: 5%) so that is not a limit in any way. It takes the emulator one second to
process a single request which is long that you would expect that the program
is waiting most of the time.

6.4 Windows Mobile Web service (Emulator)

The performance of the Windows Mobile emulator is better than the Android
emulator but still low (about 10 requests per second). The performance scales
disappointing with the number of threads. A loss of 36.3% is unacceptable high.
The emulator does not draw a noticable amount of system resources of the host
PC. But let us see how the Web service performs on a real device.

6.5 Windows Mobile Web service - PDA (Cable connected)

The performance of the Web service running on a real device is pretty decent (30
requests per second). It processes more requests per second than the Windows
Mobile emulator. However the failure count is too high in the case of 25 threads.

Another interesting notion is that the device performed twice as much when
it was connected to a power outlet instead of running on battery power. The
clock of the CPU is probably clocked down when running on battery power so
we may conclude that the CPU is fully utilised.

11



6.6 Windows Mobile Web service - PDA (Wi-Fi)

It is interesting to see if the connection method of the device to the test machine
has an influence on the performance. In the first test the device was connected
with help of a standard USB-cable. In this case the PDA is connected through
Wi-Fi. And the figures are higher than by the cable method. The bandwidth
of the USB-cable is not the explanation for this difference. Sending 30 request
per second takes about 20KB/s which does not come close to the maximum
transfer rate of USB 2.0 (480 MBit). The cable connection is probably largely
driven by the CPU of the PDA while the Wi-Fi is probably driven by a separate
microprocessor.

6.7 Platform comparison

The most obvious difference is the performance of the emulators: The Symbian
OS emulator is by far the fastest and about three times faster than the Windows
Mobile emulator and about thirty times faster than the Android emulator. This
difference in performance could be explained by the efficient low-level nature of
Symbian.

A similarity between the three emulators is that they all use very little
processing power of the host PC. So processing power is not the bottleneck but
opening/closing connections are probably the bottleneck.

The scalability differs enormously. The Android version has a zero error
rate at a load of 25 clients probably caused by the low performance. The real
Windows Mobile device handles 25 clients quite well with an error rate of about
15% till 20% despite of the limited hardware. The Windows Mobile emulator
however losses way too much requests at a load of 25 clients and Symbian OS
emulator has a very bad scalability (67.5% clients).

The real Windows Mobile PDA is performing much better than the emula-
tors. The emulators seem to be not fully optimised to take full power of the
host PC.

6.8 Results comparison - Van der Hoorn

H. van der Hoorn did a comparable research as his Master graduation project[11].
He compares 5 mobile platforms (Android, BlackBerry, iPhone OS, Symbian
and Windows Mobile) and he performs 3 performance tests: AES encryption,
AES decryption and XML parsing. The Symbian emulator is significant faster
than the Windows Mobile emulator which in turn is significant faster than the
Android emulator in all 3 tests. That is conform my research.

The tests are repeated on 3 real devices: an Android, Iphone OS and Sym-
bian OS device. The Android device has more or less the same performance as
the emulator while the Iphone OS and Symbian OS device has significant lower
performance than the emulators. In my research however the Windows Mobile
device is faster than the emulator. This difference can be explained by the fact
that the test Web service handles a lot of connections while Van der Hoorn is
mainly testing computional power. We both conclude that device emulators are
not a suitable tool for performance measurements.

An interesting notion of Van der Hoorn is that the bad performance of the
Android emulator could be explained by the lack of a JIT compiler. Which

12



means that no runtime optimizations are done resulting in bad performance.

7 Summary

It is certainly possible to run a Web service on a mobile device although they are
not designed for running services. The performance of the emulators is much
lower than expected and the differences in performance between the 3 platforms
are huge. The emulators use just a fraction of the processing power of the host
pc, so making/destroying an emulated connection must take a lot of time. The
Web service running on a real device performs quite well and far better than
the emulators.

8 Future work

Some ideas for future research includes: find out the bottleneck of the emulators
and try to investigate what can be done to improve the performance. In the
far future is probably possible to run multiple mobile operating systems on the
same mobile device. And then it is possible to reveal the real difference between
the different mobile platforms.

But before taking advantage of Web services on mobile devices a lot of work
has to be done. First major security issues have to be solved and then the
public has to be convinced to use Web services on their mobile devices. If that
succeeds then a whole new level of ubiquitous computing is possible.

References

[1] Marco Aiello. The role of web services at home. In AICT-ICIW ’06:
Proceedings of the Advanced Int’l Conference on Telecommunications and
Int’l Conference on Internet and Web Applications and Services, page 164,
Washington, DC, USA, 2006. IEEE Computer Society.

[2] Sergei Baranov. Performance testing web services. WebSphere Journal
(http://websphere.sys-con.com/node/46513), September 2004.

[3] S. Benjamin. The android mobile platform. Master’s thesis, Eastern Michi-
gan University, April 2008.

[4] Stefan Berger, Scott McFaddin, Chandra Narayanaswami, and Mandayam
Raghunath. Web services on mobile devices - implementation and expe-
rience. Mobile Computing Systems and Applications, IEEE Workshop on,
0:100, 2003.

[5] Raimondas Lencevicius and Edu Metz. Performance assertions for mobile
devices. In ISSTA ’06: Proceedings of the 2006 international symposium on
Software testing and analysis, pages 225–232, New York, NY, USA, 2006.
ACM.

[6] Abdulmotaleb Saddik. Performance measurements of web services-based
applications. IEEE Transactions on Instrumentation & Measurement,
55(5):1, 2006. Physical description: p. 5chart, 3diag.

13



[7] Daniel Schall, Marco Aiello, and Schahram Dustdar. Web services on
embedded devices. International Journal of Web Information Systems,
2(1):43–48, 2006.

[8] Satish Narayana Srirama, Matthias Jarke, and Wolfgang Prinz. Mobile web
service provisioning. In AICT-ICIW ’06: Proceedings of the Advanced Int’l
Conference on Telecommunications and Int’l Conference on Internet and
Web Applications and Services, page 120, Washington, DC, USA, 2006.
IEEE Computer Society.

[9] Andrew S. Tanenbaum and Maarten van Steen. Distributed Systems: Prin-
ciples and Paradigms (2nd Edition). Prentice-Hall, Inc., Upper Saddle
River, NJ, USA, 2006.

[10] M. Tian, T. Voigt, T. Naumowicz, H. Ritter, and J. Schiller. Perfor-
mance considerations for mobile web services. Computer Communications,
27:1097, 2004.

[11] Hielko van der Hoorn. A survey of mobile platforms for pervasive comput-
ing. Master’s thesis, Rijksuniversiteit Groningen, 2010.

[12] M. Wei, A. Chandran, H. Chang, J Chang, and Nichols C. Comprehensive
analysis of smartphone os capabilities and performance. Technical report,
University of Southern California, April 2009.

14


