
Bachelors thesis

Speeding up the computation of parallel
curve segments in DTI data

Stage 2

Author:
Klaas Mussche

Supervisor:
Dr. H. Bekker

Abstract:
Diffusion Tensor Imaging can give insight in the brain’s internal

structure. Multi-Scale Fiber Tract Bundling is a recently developed
technique used to visualize Diffusion Tensor Imaging data. This

technique requires some expensive computations. It was believed that
a grid search method could do some of this computations faster, but

it turned out that this was not the case. However, a fast
implementation is possible which can do some of these computations

faster then naive implementations can do.

August, 2010

Contents

1 Introduction 4

2 Diffusion Tensor Imaging 6

2.1 Magnetic Resonance Imaging 6

2.2 Diffusion Tensor Imaging . 7

2.3 Tractography . 8

3 Multi-Scale Fiber Tract Bundling 10

3.1 Introduction . 10

3.2 Analysis . 11

3.3 Bundling . 12

3.4 Visualization . 13

4 Naive approach 15

4.1 Introduction . 15

4.2 Distance condition . 16

4.3 Angle condition . 16

4.4 Mutual indices condition . 17

4.5 Conclusion . 17

5 Grid-Search approach 18

5.1 Introduction . 18

5.2 Grid search algorithms . 18

5.3 The distance condition . 20

5.4 The angle conditions . 21

5.5 Conclusion . 21

6 Sorted Data approach 22

6.1 Introduction . 22

6.2 Algorithm Overview . 23

6.3 The distance condition . 23

6.4 The angle condition . 24

6.5 The mutual indices condition 29

6.6 Conclusion . 32

2

CONTENTS 3

7 Test results 34

8 Conclusions 35

Chapter 1

Introduction

Figure 1.1: A typical neuron

The smallest building blocks of our brain are the neurons. A typical neuron is
depicted in figure 1.1. It shows a nucleus on the left and an axon leaving the
neuron. Neurons communicate with each other by using the axon terminals
of the sending neuron and the dendrites of the receiving one.

The axons are surrounded with a white-colored matter called myelin.
Because of this, people often refer to the brain as a combination of white
and gray matter. Here the white matter refers to the structure used for the
communication throughout the brain, while the gray matter is made up of
the neurons doing the actual computations.

It is estimated in [6] that the human brain contain 50-100 billion (1011)
neurons, of which about 10 billion (1010) pass signals to each other using
as many as 1000 trillion (1015) synaptic connections. Many axons are used
for communication between different parts of the brain, for example between

4

5

the left and right half. Because of this the axons are often bundled. Bundles
of axons are sometimes called fibers.

Neuroscientists discovered that a damaged brain fiber structure proba-
bly causes conditions like schizophrenia and autism[5][4]. But understand-
ing the brain fiber structure can also be useful for understanding learning
processes[7].

To understand the brain structure, it is necessary that we can measure
and visualize the fiber structure. In chapter 2 we will have a closer look at
the Diffusion Tensor Imaging (or DTI) technique, which can be used for
measuring the fiber structure.

These measurements however aren’t ready for direct interpretation. Some
kind of filtering and visualization is required in order to be able to under-
stand and see the fiber structure of the brain. At the University of Groningen
a technique to do this - called Multi-Scale Fiber Tract Bundling - has been
developed[3]. In chapter 3 we will have a closer look at this technique.

This technique requires some time-consuming computations. The goal of
my bachelor project was to find out if it is possible to speed up some of these
computations. In a separate bachelor project Jorn van de Beek did similar
research, however we did look at different ways to increase the performance.

Figure 1.2: The human brain

Chapter 2

Diffusion Tensor Imaging

2.1 Magnetic Resonance Imaging

Figure 2.1: MRI Scanner

Magnetic Resonance Imaging (or
MRI) is a technique used to capture
3D images of living tissues. Differ-
ent types of living tissue will have a
different magnetic resonance. It is
possible, based upon the differences
in magnetic resonance, to make a 3-
D image of a body part. This image
will contain the amount of magnetic
resonance for every voxel. Using a
filtering technique it is possible to
get only the voxels with a magnetic
resonance corresponding to the type
of living tissue you are interested in.

MRI is widely used, both in clin-
ics and research, and makes it possi-
ble to image body parts like spines,
joints, abdomen, pelvis, blood ves-
sels and the brain. While MRI is
an interesting and useful technique,
it isn’t really suitable for measuring
and visualizing the fiber structure of
our brains. However, there is a variation on MRI, called Diffusion Tensor
Imaging, which can be used to obtain information about the structure of
our brains.

6

2.2. DIFFUSION TENSOR IMAGING 7

2.2 Diffusion Tensor Imaging

Axons are used for one-way communication between different neurons. They
are bundled in nerve fibers, and the water in this fibers will diffuse more
rapidly in the longitudinal direction of the fiber. In most tissues, like grey
matter, the water molecules diffuse equally in all directions. This is called
isotropic diffusion. But in nerve fibers, the diffusion is preferentially along
the axis of the nerve. This is called anisotropic diffusion[1].

Using magnetic fields, it is possible to measure for every voxel the anisotropic
diffusion. By directing a magnetic field through the body, it is possible to
measure signal decay caused by diffusion.

Figure 2.2: Isotropic and anisotropic diffusion

By measuring the degree of anisotropic diffusion in every voxel for the
three principal directional axes, it is possible to calculate the dominant di-
rection of anisotropic diffusion as a tensor. However, this doesn’t contain
enough information for DTI. For DTI it is necessary to know both the di-
rection and the magnitude of the anisotropy in each voxel. This information
can be used in two different ways. The first way is to make a cross section
of the data and assign a color to every voxel based upon the relative amount
of anisotropy.

The second way is to use mathematical algorithms to trace paths through
the tensor field. For every path, a 3-D curve can be created and stored as
a sequence of points. This is called tractography. If we want to reconstruct
the structure of nerve fibers using tractography, then seven different mea-
surements are needed[1]: six for measuring the actual diffusion, and one

8 CHAPTER 2. DIFFUSION TENSOR IMAGING

baseline measurement. Because a vector can’t be used to store the informa-
tion necessary for tractography, a mathematical concept known as a tensor
is used to describe the anisotropy in each voxel.

In the context of diffusion tensor imaging, a scalar number can be seen as
a tensor of rank 0, and a vector as a tensor of rank 1. A tensor of rank 2 can
be described as a 3×3 matrix and each tensor of rank 2 can be described by
nine measurements. Due to symmetry we only needed seven measurements
for the tractography, so a tensor of rank 2 is enough.

2.3 Tractography

Tractography is a method used for reconstructing the trajectories of the
fibers using the tensor field as measured by the DTI scanner. A possible
tractography algorithm is described in [2].

One of the simplest possible tractography methods has been called Prin-
cipal Diffusion Direction. This method starts tracking from user defined seed
voxels and it follows the principal eigenvalue direction to trace a path until
some stopping criterions are met. There are other comparable algorithms,
but most of these algorithms result in errors due to discretization[2].

Tractography gives a set of tracts, where each tract is represented as
a sequence of points (also called vertices) in space. The tract can be re-
constructed by connecting this points. With standard tractography, the
distance between each pair of consecutive points on the same tract might
differ. On long straight tracts or subtracts it is possible to represent this
with only two vertices. However, the algorithms following in this thesis as-
sume that the tracts are equidistant sampled: the distance between every
pair of consecutive vertices is constant. If this isn’t the case, then the tracts
have to be resampled before processing them.

2.3. TRACTOGRAPHY 9

Figure 2.3: Results of tractography

Chapter 3

Multi-Scale Fiber Tract
Bundling

3.1 Introduction

The Multi-Scale Fiber Tract Bundling technique as described in [3] is a
visualization technique for brain fiber tracts from DTI data that provides
insight into the structure of white matter. This technique analyzes the
direction of all tracts and searches for tract segments close to each other
with a similar direction. Those locally similar tract segments are bundled
together. This leads to an abstraction of the global white matter structure
and creates voids in between the data. Those voids decrease the mutual
occlusion of tracts. The goal of this technique is to visualize entire DTI fiber
tracts so that the depictions assist viewers in understanding the structure
of white matter.

This technique starts by subdividing the tracts into small equal-sized
subsegments. The process of subdividing the tracts into equal-sized subseg-
ments is called resampling. Now each vertex will have one or two incident
segments and for every pair of vertices it is possible to compute the similar-
ity by looking at the directions of the corresponding incident segments. This
computation will only be done when the distance between both vertices is
below a certain treshold. When the similarity is above a certain treshold,
then the vertices are considered locally similar.

The local similarity information is stored in a similarity graph. This
graph is constructed from the resampled DTI data as follows. Every vertex
corresponds to one node in the graph, and the graph contains an edge if
and only if the vertices corresponding to the edges begin- and end node are
locally similar. Based on this graph the tracts are iteratively bundled by
relocating the tract vertices closer to similar ones.

Similar vertices will move closer to each other in the iterative bundling
process and this will have the effect that similar tract segments are bundled.

10

3.2. ANALYSIS 11

When visualizing, the bundled tract data will have some advantages over
the unbundled data. First, fiber bundles in the brains can be visualized by
highlighting the tract bundles. Second, due to the bundling process, empty
space is created between the bundles of data. These voids make it possible
to see deeper into the brain.

Figure 3.1: Nearest neighbor pairs

3.2 Analysis

The first part of the Multi-Scale Fiber Tract Bundling technique is the
analysis of the tracts and construction of the similarity graph. This first
part is called the analysis stage. A tract A with length n − 1 consists of n
vertices named a0, a1, . . . , an−1. Now this tract will have n − 1 segments,
#»a 0,

#»a 1, . . . ,
#»a n−2. Each #»a i is the segment connecting the vertices ai and

ai+1. Each vertex ai with i > 0 and i < n − 1 does have two incident
segments #»a i−1 and #»a i. If i = 0 or i = n− 1 then there is just one incident
segment.

Given two tracts A and B and a vertex p on A, the nearest neighbor of
p on B, denoted nn(p), is the vertex q on B so that the distance between p
and q (denoted D(p, q)) is minimal, i.e. there is no vertex q′ on B such that
D(p, q′) < D(p, q). Now it is possible to construct a list L which contains
all pairs (p, q) with p on A and q on B so that p = nn(q) or q = nn(p)
and (q, p) /∈ L. The last case is necessary to filter out so called superfluous
entries, because the similarity graph is an undirected graph.

For every pair (p, q) ∈ L, an edge is created in the similarity graph
between the nodes Np and Nq if and only if the pair (p, q) satisfies the
following requirements:

12 CHAPTER 3. MULTI-SCALE FIBER TRACT BUNDLING

1. the distance between p and q is smaller than a given length dmax.

2. at least one of the segments incident to p is approximately parallel
to one of the segments incident to q, where ”approximately parallel”
means that the angle between the segments is smaller than a predefined
angle θpar.

3. the nearest neighbor relation of p and q is approximately mutual, that
is, it holds that |index(nn(q)) − index(p)| ≤ 1 and |index(nn(p)) −
index(q)| ≤ 1, where the function index(v) returns the index of v on
the tract to which it belongs.

Here, the dmax is the threshold value for the distance between vertices and
θparis the threshold value used to determine if the vertex pair is similar.
The third condition is used to prevent unwanted edge bundling during the
bundling stage.

3.3 Bundling

The first stage of Multi-Scale Fiber Tract Bundling produces a similarity
graph for a given DTI data set, but doesn’t modify the data set and visual-
izing still gives the same result. The second stage modifies the actual data
such that

• Bundles in the white matter structure are represented as bundles of
tracts.

• Voids are created in the data set.

The first property will give insight in the structure of the white matter by
abstracting the actual measured tracts to bundles of tracts. The voids are
useful too, because they will reduce mutual occlusion during visualization.

Figure 3.2: The concept of bundling

3.4. VISUALIZATION 13

A simple bundling algorithm could use the information stored in the sim-
ilarity graph to move locally similar vertices closer to each other. However,
iterating over all edges in the similarity graph and displacing the vertices
corresponding to each edge once isn’t a good option because most vertices
will have more then one similar vertex and so the ordering of the edges will
influence the results of the bundling stage.

Let us consider two locally similar vertices p and q. If p and q don’t have
any other locally similar vertices, then the bundling process could move both
p and q to the point halfway between the original locations of p and q. In
most situations there will be other locally similar vertices and these will
influence the new positions of either p or q.

The bundling stage computes the displacement vectors of all vertices
before applying them. This ensures that the ordering of the edges doesn’t
have any influence on the results. To avoid run-away situations, each dis-
placement vector is divided by the number of edges connected to the vertex.
Also, the application of a small gaussian kernel to each displacement vector
will prevent sudden transitions where merging tracts come into the influence
range of other tracts.

Moving the vertices will alter the data. Ensuring that vertices will only
be moved perpendicularly to the tracts local orientation will keep the amount
of deformation to a minimum. The local orientation of a vertex can be
computed as the average direction of both segments incident to the processed
vertex.

Figure 3.3: Local orientation

The choice of dmax influences the results of the bundling stage. To make
it possible to explore the scale, a fairly large value dmax is used during the
analysis stage and then the bundling stage is done for different increasing
values dmax,i ∈ [0, dmax].

3.4 Visualization

The bundling stage results in a set of tracts where not only the original
position is stored for each vertex, but also the positions for the different
values of dmax,i. Using this values, it is possible to visualize the data where

14 CHAPTER 3. MULTI-SCALE FIBER TRACT BUNDLING

the user can interactively and seamlessly move from one bundling scale to
the next.

When rendering the tracts, the positions for vertices are computed using
the stored positions for the involved vertex and the selected bundling scale.
If the bundling scale equals one value dmax,i then the position is stored
directly. Otherwise, the position can be calculated by interpolating the
positions corresponding to the two values of dmax,i closest to the bundling
scale. This interpolation can be done using a vertex shader. This makes
it possible to render the tracts in realtime and thus enables the user to
explore the white matter structure by continuously changing the rendering
parameters. For example, users can play with the bundling scale. The
continuous transition of the vertex position enables the user to follow the
tracts and helps them to get insight in the white matter structure.

Visualization can be improved by doing some further filtering. The
bundling of tracts results in voids, which decrease mutual occlusion. By
filtering on thin structures, it is possible to further decrease the mutual oc-
clusion. This filtering can be implemented by looking at the degree of each
vertex in the similarity graph and omitting the vertices with a degree below
a certain threshold.

Chapter 4

Naive approach

4.1 Introduction

The first possible analysis stage implementation of the Multi-Scale Fiber
Tract Bundling technique is by just checking everything and selecting the
vertex pairs satisfying all three conditions. This naive approach was used
in [3] but it took too much time. However, we will have a look at this
naive solution, because it can be useful for us when constructing a better
algorithm.

The analysis stage has to find, given a set of tracts where each tract is
an equidistant sampled set of vertices, all pairs of vertices (p, q) with p and
q on different tracts which satisfy the three conditions for similar vertices
described in section 3.2. The naive algorithm does this by iterating over all
possible pairs of vertices (p, q) with p and q on different tracts. For every
pair, the three conditions are checked and if all three conditions are satisfied,
then the pair is added to the results.

Iteration over all nearest neighbor pairs (p, q) can be done with the fol-
lowing algorithm:

for a = 0 to num tracts− 1 do
for i = 0 to tract length[a]− 1 do
p⇐ tracts[a][i] {p is on tract a and has vertex index i}
for b = a+ 1 to num tracts− 1 do
md⇐∞
for j = 0 to tract length[b]− 1 do
t⇐ tracts[b][j] {t is on tract b and has vertex index j}
if D(p, t) ≤ md then
md⇐ D(p, t)
q ⇐ t

end if
end for
if check(p, q) then

15

16 CHAPTER 4. NAIVE APPROACH

{The pair (p, q) satisfies all three conditions.}
end if

end for
end for

end for

Here, the check function checks the three conditions for the given pair
(p, q) and returns true if and only if all three conditions are satisfied.

4.2 Distance condition

The check method should compute the distance and compare this with the
threshold dmax. Computing the Euclidean distance usually involves a square
root computation. But square root computations are expensive and it is bet-
ter to avoid them. In this case, it is possible to avoid square root computa-
tions by working with the squared distances and d2max, because comparisons
between squared numbers give the same results as comparison between the
normal numbers.

4.3 Angle condition

The angle condition can be verified by computing the (up to four) angles
between pairs of incident segments. If one of those angles is less than the
threshold θpar, then the angle condition is satisfied. It is possible to compute
the angles using goniometric functions, but those functions tend to be slow
so it is better to avoid them. However, it is possible to compute only the
dot product for every pair of segments. If a and b are vectors, and the angle
between a and b is θ, than the following relation holds:

a · b = |a||b| cos θ

But |a||b| is constant because all tracts are equidistant sampled with the
same sampling distance dsample.

a · b = C cos θ

a · b > C cos θpar

In our case we compute the right-hand side at the beginning and reuse
this value over and over, because this will stay constant. We compute it as
d2sample cos θpar. Now we can just compare the dot product of every pair of
segments and compare this to this constant to find out if the angle is less
than θpar.

4.4. MUTUAL INDICES CONDITION 17

4.4 Mutual indices condition

The third and last condition to be checked by the check method is the
mutual indices condition. For this condition, we don’t only need to know
p and q, but also nn(p) and nn(q). The simplest solution is to just search
for this nearest neighbors again by iterating over all vertices of the other
tract. This is a little bit expensive, because always at least p = nn(q) or
q = nn(p) (otherwise (p, q) wouldn’t be a nearest neighbor pair). So this
could be optimized by just searching for the missing nearest neighbor.

It could be the case that this last nearest neighbor was already found
during a previous call to the check method (with a different pair (p, q)).
It might be possible to optimize the algorithm even further by memorizing
all nearest neighbors, do a lookup whenever a nearest neighbor is needed
and only search for the nearest neighbor if it isn’t already computed be-
fore. However, this probably results in a overhead larger than the speed
improvement.

4.5 Conclusion

While the naive approach will work, and for small datasets can be pretty
fast, it won’t work very well for the analysis stage of the Multi-Scale Fiber
Tract Bundling technique.

This because the naive approach does have a complexity of O(n2m),
where n is the total number of vertices and m the average number of vertices
per tract. Here, the iteration over all possible pairs (p, q) takes O(n2) time.
The distance and angle check can be done in constant time, but the mutual
indices condition requires to search for a nearest neighbor on a certain tract,
which takes on average O(m) steps and thus the total complexity is O(n2m).

Chapter 5

Grid-Search approach

5.1 Introduction

The initial goal of my bachelor research project was to find out if the analysis
stage could be made faster by implementing the construction of the similarity
graph using a grid search algorithm. Grid search algorithms are a class of
algorithms which are useful if you are searching for local data. Our data
consists of vertices, which are just 3-Dimensional points. This makes it
straightforward to define when two points in the dataset are local to each
other or not: measure the distance between both points and compare this
to some threshold value.

The analysis stage needs to find all pairs of vertices (on different tracts)
matching three conditions. The first condition is the distance condition.
The second and third condition deal with the orientation of the tracts. The
grid search algorithm can be faster than the naive algorithm if the grid
search algorithm can skip tests for vertex pairs, because due to the grid
search algorithm the result of the test is known beforehand. Skipping tests
means there are less computations needed and thus might lead to a perfor-
mance improvement, but only if the overhead of the grid search algorithm
is low enough. Here, the overhead of the algorithm is the time needed for
initialization and bookkeeping. If the overhead of the grid search algorithm
is larger than the computation time improvement by skipping tests, then
the resulting algorithm will be slower.

5.2 Grid search algorithms

Suppose we have a set of 2-dimensional points. Given any two such points,
it is possible to compute the (Euclidian) distance between those points. If
we want to know all pairs of points with a distance below some threshold,
we could first iterate over all points, and for every point iterate over all
remaining points such that we will loop over all possible pairs of points. For

18

5.2. GRID SEARCH ALGORITHMS 19

every pair of points, we could compute the distance and compare this to the
threshold. However, this does have a computational complexity of O(n2)
(where n is the number of points).

If however the used threshold is fairly small, such that most possible
point pairs do have a distance greater than this threshold, we can improve
the performance by ’ordering’ the points in such a way that we don’t have
to compute most distances. Thus, we could skip tests which might lead to
a better performance but this requires that we can re-order the points and
store them in a data structure which makes it easy to get only the points at
or close to some location.

A possible data structure is a 2-dimensional grid (with square cells) and
mapping all points to a grid cell based upon the point location. Now, given
a point A, we can easily find all points B close to A because we can take the
points assigned to the same or a nearby grid cell. How many grid cells we
have to take depends upon the chosen grid edge size and distance threshold.

For our 2-dimensional points, we can choose some edge size and an origin
of the grid, and use this to place all points into a grid cell. Some cells might
contain many points and others none, but in general the average number of
points in every cell depends upon the density of the set of points and the
chosen edge size. A smaller edge size or a lower density will result in less
points per cell, while a larger edge size or a higher density results in more
points per cell. It is impossible to change the density of the given data set,
but the edge size gives us a parameter we can use to alter the performance
of the algorithm.

If we now have some point A and want to find all points Bi with the
distance between A and Bi less than some threshold value T , then we can do
this by only checking the distances between A and all points in cells which
can contain points Bi with the distance between A and Bi less than T . In
many cases, this means we can skip lots of distance computations. To do
this fast, some bookkeeping is needed. We have to store for every vertex
which grid cell it belongs to, and for every grid cell which vertices are inside
the cell. This bookkeeping results in some overhead and additional memory
usage.

Grid search cannot only be used with 2-dimensional data, but also higher
dimensional data is possible. This makes it also possible to use the grid
search method for the analysis stage of the Multi-Scale Fiber Tract Bundling
technique.

Formally, the grid search algorithm is still O(n2) because it might happen
that - in worst case - we are still checking all possible pairs of points. But,
depending upon the data set, it might be the case that on average the
complexity is less then O(n2).

In the context of DTI data, it is known that the data set will be very
large and dense, and the threshold value T fairly low. Because of this, it
might be the case that using a grid search algorithm for the construction of

20 CHAPTER 5. GRID-SEARCH APPROACH

the similarity graph gives a performance improvement.

Figure 5.1: Nearest neighbor search for a set of points

5.3 The distance condition

It is clear that the distance condition for similar vertex pairs makes the grid
search method attractive, because we can simply choose the value of the
threshold T as the grid edge size. Since the vertex data is spatial by nature,
it is also clear how to assign every vertex to a grid cell and to define the
distance between any two vertices. This makes it straightforward to apply
the grid search algorithm and skip distance condition tests.

Figure 5.2: The distance condition

5.4. THE ANGLE CONDITIONS 21

5.4 The angle conditions

The latter two conditions which similar vertices had to satisfy was that the
angle between at least one of the corresponding incident segments had to be
less then a certain threshold, and the mutual indices condition which states
that, if (p, q) is a nearest neighbor pair, then the position of nn(p) and q is
not allowed to differ more than 1, and also the position of nn(q) and p is
not allowed to differ more than 1.

Those last two conditions don’t leave any possibilities for optimization
by using a grid search method. It might be possible to skip a few angle tests
by using extensive bookkeeping, but the performance improvement won’t be
worth the required overhead for this bookkeeping.

5.5 Conclusion

The idea was that I should research the possibilities of using a grid search
method for the last two conditions, while in the similar bachelor project
research was done for the possibilities of using a grid search method for the
first condition, the distance condition. Since the second and third condition
don’t leave much space for improvement by using a grid search method, it
seems that it is better not to use a separate grid search only for the angle
and mutual indices conditions because the overhead of the grid search would
make matters only more worse.

However, this isn’t a really satisfactory result. My research suggested
that it might be possible to use another search algorithm, which is described
in chapter 6.

Chapter 6

Sorted Data approach

6.1 Introduction

The grid search approach for only the second and third condition didn’t give
satisfactory results, but my research suggested there were some possibilities
which could result in a faster algorithm. The idea is that, instead of sorting
the vertices, the nearest neighbor vertex pairs are sorted. However, this
requires that those nearest neighbor vertex pairs are already known, because
else it isn’t possible to sort the pairs.

In chapter 5 it was suggested that a grid search approach would give a
good improvement for only the distance condition, but not for the last two
conditions, the angle and the mutual indices condition. A first stage grid
search algorithm could be used to get all nearest neighbor pairs satisfying
the distance condition. Given this list of pairs, it might be possible to find
all nearest neighbor pairs satisfying all three conditions. At first sight, this
requires that the second and third condition are checked for all given pairs
of nearest neighbor vertices satisfying the distance condition. This would
require the computation of up to four angles per vertex pair, and finding
the nearest neighbors of both vertices for every vertex pair. However, it
seemed to be possible to do this much faster by sorting the vertex pairs
before processing them.

22

6.2. ALGORITHM OVERVIEW 23

6.2 Algorithm Overview

Figure 6.1: Algorithms overview

This second stage algorithm gets as input not only the original tract data,
but also the results of the first stage. Those results are a single list of 5-tuples
(a, i, b, j, d) with two vertices on two different tracts and their distance:

a the index of the first tract of the pair

i the index of the vertex on the first tract

b the index of the second tract of the pair (with b > a)

j the index of the vertex on the second tract

d the distance between the first and second vertex

Here, all a, i, b and j are integer numbers and the d are floating point num-
bers. The condition b > a ensures that all possible pairs can be written in
only one way. Without this condition, the tuple (b, j, a, i, d) would represent
the same vertex pair as the tuple (a, i, b, j, d).

6.3 The distance condition

For all pairs given, it is known that the corresponding pair of vertices satisfies
the distance condition, and it has to be determined if they also satisfy the

24 CHAPTER 6. SORTED DATA APPROACH

other two conditions. If for some reason the distances d aren’t known, then
it is easily possible to recompute them for all given pairs. But because in
general the first stage will already have computed this distances, it might
be easier to just pass this distances instead of recomputing them.

6.4 The angle condition

Given an input list of pairs described as 5-tuples (a, i, b, j, d) it is possible
to verify the angle condition in one pass by just iterating over all elements
of the input list, compute the up to four different angles and if at least one
of them is less than the threshold value, then the input element does satisfy
the angle condition.

Figure 6.2: Same angle might be used for two vertex pairs

But in many cases many angles will be computed twice, for two different
pairs of vertices, where the corresponding vertices are each others neighbor.
It is possible to prevent this by sorting the input list before processing the
elements. This is possible if and only if the input list is sorted first with
respect to a, then with respect to b, if both a and b are equal then sorting
is done with respect to i, if even those equal with respect to j and finally
with respect to d. Thus, the fields are sorted and the order of importance

6.4. THE ANGLE CONDITION 25

of the fields is: [a, b, i, j, d].

If we are processing a 5-tuple (a, i, b, j, d) then this tuple represents the
vertices ai and bj . Now, ai will have the incident segments #»a i−1 and #»a i and

bj will have the incident segments
#»

b j−1 and
#»

b j . This gives us four possible
incident segment pairs:

LL : (#»a i−1,
#»

b j−1)

LR : (#»a i−1,
#»

b j)

RL : (#»a i,
#»

b j−1)

RR : (#»a i,
#»

b j)

Here, LL stands for left left, LR for left right and so on.

Figure 6.3: There are up to four segment pairs possible for vertex pair
(a2, b2)

26 CHAPTER 6. SORTED DATA APPROACH

(a) Example dataset

(b) Iteration 1 (c) Iteration 2

Figure 6.4: First two iterations

In image 6.4(a) we see a tiny dataset with only 3 tracts. Each tract does
have 3 vertices. The tracts are perfectly parallel, and dmax is chosen so that
DA,B ≤ DB,C < dmax < DA,C where DX,Y denotes the distance between
tract X and Y (thus X and Y have to be parallel). This gives six vertex

6.4. THE ANGLE CONDITION 27

pairs satisfying the distance condition:

1. (A, 1, B, 1, DA,B) : a1 b1
2. (A, 2, B, 2, DA,B) : a2 b2
3. (A, 3, B, 3, DA,B) : a3 b3
4. (B, 1, C, 3, DA,B) : b1 c3
5. (B, 2, C, 2, DA,B) : b2 c2
6. (B, 3, C, 1, DA,B) : b3 c1

Here, the vertex pairs are sorted as described earlier.
Suppose that it isn’t known that these tracts are parallel, and we want

to determine if they are approximately similar. Then we will have to verify
the angle condition for every vertex pair. In the first iteration we have to
verify the angle condition for the first vertex pair. As can be seen in figure
6.4(b), vertex pair nr. 1 does only have one corresponding pair of segments,
the so-called RR segment pair. Computing the angle of this segment pair
will learn us that this angle is less than the threshold θpar and thus that this
angle is valid.

In the second iteration we have to verify the angle condition for the
second vertex pair. Now, there are four different vertex pairs as can be seen
in 6.4(c). We can compute the angle for all four vertex pairs, but then we
recompute the angle we computed in the first iteration because LL2 (the
LL segment pair of the second iteration) is the same as RR1.

In the third iteration, the same will happen: LL3 = RR2. Now we have
verified all vertex pairs with one vertex on tract A and the other on tract B.
In the fourth iteration, we again have only one segment pair, but this time
it is the RL pair because of the ’inverse’ numbering of vertices on tract C.

Now, in the fifth iteration it will happen that LR5 = RL4 and finally
in the sixth iteration LR6 = RL5. This example learns us that we have to
recompute some angle in most iterations. However in all cases this angle was
computed first in the previous iteration and it was in the previous iteration
either the RR or the RL pair. This happens because of the vertex pair
ordering.

So, to te able to skip consecutive computations of the angle, we have to
do some bookkeeping. Because the input pairs are sorted, we only have to
look at the previous input element to know whether we could re-use some
angle computation or not. Suppose we are processing the input element
(av, iv, bv, jv, dv), then the previous input element was (av−1, iv−1, bv−1, jv−1, dv−1).
Now, there are two possibilities for reusing one angle computed for the pre-
vious input element:

Case 1 : av = av−1, bv = bv−1, iv = iv−1 + 1, jv = jv−1 + 1, now LLv is only
valid if RRv−1 was valid.

Case 2 : av = av−1, bv = bv−1, iv = iv−1 +1, jv = jv−1−1, now LRv is only
valid if RLv−1 was valid.

28 CHAPTER 6. SORTED DATA APPROACH

Those cases are almost identical. The second case happens when the
indices of the tracts are ordered in opposite directions, as can be seen in the
following image.

(a) Case 1

(b) Case 2

Figure 6.5: Angle reuse cases

Now, we finally have the following algorithm for verification of the angle
condition:

6.5. THE MUTUAL INDICES CONDITION 29

vertex pairs.sort() {Sort pairs as described above}
{Previous values of a, b, i and j, initialized to -1 for first iteration}
(pa, pb, pi, pj)← (−1,−1,−1,−1)
(llvalid, rrvalid, rlvalid, lrvalid)← (false, false, false, false)
for all (a, i, b, j, d) ∈ vertex pairs do

if a = pa ∧ b = pb ∧ i = pi+ 1 ∧ j = pj + 1 then
ll valid← rr valid {Case 1}

else
ll valid← check segment pair(LL, a, i, b, j)

end if
if a = pa ∧ b = pb ∧ i = pi+ 1 ∧ j = pj − 1 then
lr valid← rl valid {Case 2}

else
lr valid← check segment pair(LR, a, i, b, j)

end if
rr valid← check segment pair(RR, a, i, b, j)
rl valid← check segment pair(RL, a, i, b, j)
if ll valid ∨ rr valid ∨ rl valid ∨ lr valid then
mark result(a, i, b, j)

end if
(pa, pb, pi, pj)← (a, b, i, j)

end for

6.5 The mutual indices condition

While in the naive implementation it is possible to test for the angle condi-
tion in one run without sorting first, this isn’t possible for the mutual indices
condition. However, this can be done in a similar way as with the distance
condition. Again, the input pairs have to be sorted, but this time the order
of importance of the fields is: [a, b, d, i, j]. By sorting it this way, we ensure
that the vertex pairs are ordered so that all vertex pairs between the same
tract pair are grouped together. Moreover, for each tract pair we now have
all corresponding vertex pairs, sorted by distance.

Suppose we now want to check the mutual indices condition for all given
vertex pairs in one loop. We know that the input vertex pairs are all nearest
neighbor vertex pairs satisfying the distance condition. Because of the cho-
sen ordering, the algorithm will handle all vertex pairs corresponding with
a pair of tracts after each other. When processing tract A and B, we can
easily hold two mappings, one mapping the vertices on A to their nearest
neighbor on B, and the other mapping the vertices on B to their nearest
neighbor on A.

However, it still seems to be necessary to find the nearest neighbors to
fill in these mappings. But this isn’t needed, because the vertex pairs are

30 CHAPTER 6. SORTED DATA APPROACH

sorted with respect to the distance too. It is important that this sorting is
done in ascending order. We already know that all input vertex pairs are
nearest neighbor pairs, so we only have to find out if the vertex pair is a
nearest neighbor pair because the vertex on B is a nearest neighbor of the
vertex on A, or the other way around the vertex on A is a nearest neighbor
of the vertex on B. Or maybe even both are a nearest neighbor of the other.

Because of the sorting with respect to the distance d, we will process
the vertex pairs closest together first. So we can just update our near-
est neighbor mappings every iteration, and clear the mappings when we
start processing a new pair of tracts. Again assume that we are process-
ing the input element (av, iv, bv, jv, dv) and the previous input element was
(av−1, iv−1, bv−1, jv−1, dv−1).

For every pair of tracts we keep two arrays for the nearest neighbor
mappings:

• nna with the same length as the current A tract, initialized to −1
(meaning unknown).

• nnb with the same length as the current B tract, also initialized to
−1.

When at some iteration av 6= av−1 or bv 6= bv−1 then both nna and nnb
are recreated (due to possibly changed lengths) and again initialized to −1
(unknown) values.

Now, it is possible to check if the current element satisfies the mutual
indices condition. If nna[i] 6= −1 and |nna[i] − j| > 1, then the mutual
index condition check failed. The same happens when nnb[j] 6= −1 and
|nnb[j]− i| > 1. When the mutual index condition is satisfied, then nna and
nnb have to be updated for the next iterations. If nna[i] = −1, then there
isn’t yet a value known as the nearest neighbor of ai on the B tract, so this
can be set to bj but only the value j has to be stored in nna[i]. The same
should be done for nnb[j] and i.

This gives us finally the following algorithm:

6.5. THE MUTUAL INDICES CONDITION 31

vertex pairs.sort() {Sort pairs as described above}
{Previous values of a, b, i and j, initialized to -1 for first iteration}
(pa, pb, pi, pj)← (−1,−1,−1,−1)
for all (a, i, b, j, d) ∈ vertex pairs do

if a 6= pa ∨ b 6= pb then
{array(x) creates a new integer array of length x}
nna← array(tract length(a))
{set array values(A, V) sets all values of the given array A to V}
set array values(nna,−1)
nnb← array(tract length(b))
set array values(nnb,−1)

end if
if (nna[i] = −1 ∨ |nna[i] − j| ≤ 1) ∧ (nnb[j] = −1 ∨ |nnb[j] − i| ≤ 1)
then
mark result(a, i, b, j)
if nna[i] = −1 then
nna[i]← j

end if
if nnb[j] = −1 then
nnb[j]← i

end if
end if
(pa, pb, pi, pj)← (a, b, i, j)

end for

See for example the dataset in figure 6.6. There are two tracts, A
(dashed) and B (solid). The first stage algorithm has found 7 nearest neigh-
bor pairs. If we sort those pairs as described above, then the third pair will
become the first while the other pairs don’t move.

In the first iteration, a 6= pa and b 6= pb, so nna and nnb are created,
nna has length 8, and nnb has length 9. In this iteration i = 2 and j = 3.
Both nna[i] = −1 and nnb[j] = −1 so this first pair is marked as a result,
the value of j is assigned to nna[i] and the value of i is assigned to nnb[j].

In the second iteration, i = 1 and j = 3. Now nnb[j] = 2, however
|1− 2| ≤ 1 so this is still marked as a result. In the third iteration the value
of nna[i] won’t equal −1 but the absolute value of the difference is again
less then 1.

32 CHAPTER 6. SORTED DATA APPROACH

Figure 6.6: Example dataset

In the following three iterations the pair will also be accepted as a result.
However in the seventh and last iteration we will have this situation: i = 8,
j = 9, nna[i] = −1 and nnb[j] = 6. Here, the absolute difference between i
and nnb[j] is too large and thus the last pair will be rejected.

6.6 Conclusion

The sorted data algorithm does two times sort the input data. With a good
sorting algorithm this can be done in O(n log n) time. It also does two
iterations over the input list, which both take O(n). Here n is the number of
elements in the input list. Thus the total algorithm will only take O(n log n)
time, which is at least better than the O(n2) of the naive algorithm, and
also better than the grid search approach. While this algorithm does only
a little bit bookkeeping, it can skip many of the computations the naive
algorithm otherwise would do.

However, the price of using this algorithm is that the vertex pairs have

6.6. CONCLUSION 33

to be sorted twice which is an additional overhead. Inspection of the time
the algorithm spent on this sorting learned that approximately 25% of the
running time (without file I/O) was used for sorting, where the first sorting
(for the angle condition) required twice as much time as the second (for the
mutual indices condition) because this second time the vertex pairs failing
the angle condition where removed from the input.

Chapter 7

Test results

The speeds of the naive and the sorted data algorithms were measured and
compared. The algorithms ran on a HPC cluster node with 24 Opteron
2.6 Ghz cores and 128 GB memory. However, none of the algorithms was
designed to work with multiple cores, so only one 2.6 Ghz core was used.

of pairs Naive Sorted Data

50710224 19m 43s 3m 14s
14518582 5m 15s 1m 1s
4190030 1m 42s 18s

For testing, a variation on the naive algorithm was used which did, like
the Sorted Data approach, run over all input pairs and checked them using
the check function. However, this time the check function didn’t verify the
distance condition, since this was already satisfied as a precondition. This
naive algorithm did an O(n) search for the nearest neighbors to find the
absolute differences used by the mutual indices condition. The optimized
version doesn’t have to do this search, In combination with leaving out
repeated angle computations, this results in the speedup of four to six times.

34

Chapter 8

Conclusions

In this bachelor project I considered the possibilities of using a grid search
method in the analysis stage of the Multi-Scale Fiber Tract Bundling algo-
rithm as described in [3], but only for the last two of the three conditions for
similar vertices. It turned out that the grid search wouldn’t help in the case
that only the last two conditions had to be verified, but that a grid search
approach is very useful for the first stage (which checks only the distance
condition). However, a faster solution was possible by sorting the results of
the first stage prior to processing them in the second stage. This did give
the best results.

It is possible to join the first and second stage of the analysis into one
algorithm. However, this requires that the first stage outputs the results in
an order suitable for the second stage. This can be either the ordering used
for the mutual indices condition or alternatively the one for the angle con-
dition. It could then test the mutual indices condition (or in the alternative
case the angle condition) immediately after the nearest neighbor pair has
been found by the first stage algorithm. However, this ordering then isn’t
suitable for the optimized test of the remaining condition. One option is
to do this remaining condition at the end, when the first stage is done and
sorting is possible, or to do this immediately after the first condition, but
in an suboptimal way (because of the wrong ordering). Further research
in this area is possible and might give an algorithm with the advantages of
both the first stage (as researched by Jorn v.d. Beek) and the second stage
as described in this thesis.

35

Bibliography

[1] Aaron Filler, M.D., Ph.D. Magnetic Resonance Neurography and Diffu-
sion Tensor Imaging: Origins, History, and Clinical Impact of the First
50000 Cases with an Assessment of Efficacy and Utility in a Prospective
5000-Patient Study Group, chapter 6. Congress of Neurological Surgeons,
2008.

[2] F Dargi, M A Oghabian, A Ahmadian, H Zadeh, M Zarei, and A Bo-
roomand. Modified fast marching tractography algorithm and its ability
to detect fibre crossing. Conf Proc IEEE Eng Med Biol Soc, 2007:319–22,
2007.

[3] Maarten H. Everts, Henk Bekker, Tobias Isenberg, and Jos B.T.M.
Roerdink. Exploration of the Brain’s White Matter Structure through
Visual Abstraction and Multi-Scale Fiber Tract Bundling.

[4] M. Kubicki, H.-J. Park, C.-F. Westin, P. Nestor, R. Mulkern, S. E. Maier,
M. Niznikiewicz, E. Connor, J. Levitt, M. Frumin, R. Kikinis, F. A.
Jolesz, R. McCarley, and M. E. Shenton. DTI and MTR abnormalities in
schizophrenia: Analysis of white matter integrity. NeuroImage, 26:1109–
1118, 2005.

[5] Marek Kubicki, Robert McCarley, Carl-Fredrik Westin, Hae-Jeong Park,
Stephan Maier, Ron Kikinis, Ference A. Jolesz, and Martha E. Shenton.
A review of diffusion tensor imaging studies in schizophrenia. Journal of
Psychiatric Research, 41:15–30, 2007.

[6] J.M.J. Murre and D. P. F. Sturdy. The connectivity of the brain: Multi-
level quantitative analysis. Biological Cybernetics, 73:529–545, 1995.

[7] C H Salmond, D K Menon, D A Chatfield, G B Williams, A Pena,
B J Sahakian, and J D Pickard. Diffusion tensor imaging in chronic
head injury survivors: correlations with learning and memory indices.
NeuroImage, 29(1):117–24, 2006.

36

	Introduction
	Diffusion Tensor Imaging
	Magnetic Resonance Imaging
	Diffusion Tensor Imaging
	Tractography

	Multi-Scale Fiber Tract Bundling
	Introduction
	Analysis
	Bundling
	Visualization

	Naive approach
	Introduction
	Distance condition
	Angle condition
	Mutual indices condition
	Conclusion

	Grid-Search approach
	Introduction
	Grid search algorithms
	The distance condition
	The angle conditions
	Conclusion

	Sorted Data approach
	Introduction
	Algorithm Overview
	The distance condition
	The angle condition
	The mutual indices condition
	Conclusion

	Test results
	Conclusions

