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In Diffusion Tensor Imaging (DTI) a large set of dense fiber tracts represent-
ing white matter is generated. Fiber Tract Bundling (FTB) is an experimental
technique to bundle tracts. In this way a scalable abstraction is created. This
technique displaces the tracts in space and therefore the bundled tracts lose
coherence with the anatomy. This loss of information is studied in this work.

In order to investigate how FTB behaves with respect to the anatomy, we de-
veloped and implemented an evaluation method that enables the user to monitor
the bundling process on a curved surface. The fiber tract bundling is visualized
against the Fractional Anisotropy (FA) image, which is used as an anatomical
reference.

We present the FTB technique, demonstrate our evaluation method and
show the results we have obtained.
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Chapter 1

Introduction

MRI gives the possibility to visualize internal organs and structure of the human
body. Tractography is a specialized MRI technique that allows the visualization
of fibrous structure such as muscle or brain white matter. The fiber tracts are
computed by a tracking algorithm and displayed as three-dimensional curves.
The large number of those curves makes their visualization difficult on a com-
puter screen because of occlusion. To avoid occlusion, tractograpy software
usually implements simple techniques such as discarding tracts according to cri-
teria or selecting fiber tracts by mean of Region of Interest (ROI). Fiber Track
Bundling (FTB) is a technique with a novel approach to decrease occlusion by
producing scalable abstraction of fiber tracts. FTB produces the abstration by
changing the geometry of the tracts, which results into a loss of information
compared to the original tracts. In this project, we study this loss of informa-
tion by means of a visualization tool that we developped. We use this tool to
investigate how reliable FTB is in term of location, shape and topology.

1.1 Thesis Structure

Chapter 2 provides a comprehensive walk-through about MRI and moreover
about how MRI images are produced and what information they contain.

Chapter 3 presents the occlusion problem and the common techniques to
used to decrease it. Fiber Track Bundling is introduced as a novel approach to
decrease occlusion.

Chapter 4 detailed the FTB algorithm.
Chapter 5 states our research question.
Chapter 6 presents the tool we developed that allows us to visually investi-

gate to behavior of FTB.
Chapter 7 presents the result we obtained.
Chapter 8 presents the conclusions.
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Chapter 2

MRI, from NMR to
Tractography

In this chapter, we give background information about the Magnetic Resonance
Imaging (MRI) technique and about the place of tractography. First, we de-
scribe the physical principle that makes MRI possible, that is, Nulcear Magnetic
Resonance(NMR). Then, we describe the water diffusion principle and how it
is measured with Diffusion Weighted Imaging (DWI). After that, we explain
the process of how Diffusion Tensor Imaging (DTI) data are computed from
DWI data. Finally, we present the tractography algorithms that produce three-
dimensional curves representing fiber tracts from DTI data.

2.1 Magnetic Resonance Imaging

Magnetic Resonance Imaging (MRI) is a technique that allows detailed visual-
ization of internal organs of the human body. MRI is nowadays widely used in
medical applications.

MRI exploits an interesting magnetic property of hydrogen atoms. In 1946,
Bloch and Purcell, improving the work of Isidor Rabi [RZMK38], observed that
hydrogen nuclei emit a radio signal when they are placed in a strong magnetic
field and are exposed to a radio signal emitted at an appropriate frequency
[Blo46]. This phenomenon is called Nuclear Magnetic Resonance (NMR), and
it is more detailed in Section 2.1.1.

MRI is also known as Nuclear Magnetic Resonance Imaging (NMRI). The
original terminology was avoided, because it contains the word -nuclear [Gol07].
That word (which reminds of nuclear weapons) makes patients, not acquainted
with particle physics, a bit anxious when invited to be scanned.

The NMR effect, as a result, makes hydrogen nuclei to emit photons. This
emission produces a radio signal that is detected by a sensor in the MRI scanner.
This signal is used to infer the three-dimensional position of the nuclei.With the
nucleus three-dimensional position determined, a volumetric image representing
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the scanned body part is constructed. There are several types of MRI images,
also called weightings, which means that MRI images do not always encode the
same type of information.

In 1971, Raymond Damadian build the first MRI scanner and used it as
a mean to detect tumors [Dam71]. This achievement was the first medical
application of MRI.

In the human body, hydrogen can be found in various tissue types such as
skin, fat, muscle or other. The molecular and cellular organization character-
izes the tissue type and may respond with a specific signal. It is possible to
discriminate between the tissue types by controlling the NMR setting.

2.1.1 Nuclear Magnetic Resonance (NMR)

If we can create an image of the body or a part of it, it implies that the body
emits a signal that is detected by the scanner. In this chapter we describe the
phenomenon and the techniques involved in the generation of that signal. Proton

magnetic
moment

N

S
=

Figure 2.1. Analogy of a nucleus as a tiny magnet bar.

A proton, a nucleus also known as hydrogen ion H+, is a positively charged
particle and has a spin, that is, an angular momentum that makes it rotate about
its own axis. From electromagnetism, we know that any moving charge generates
a magnetic field. Therefore, because of its spin, a proton has a magnetic moment
~µ, which is a vector oriented from the south to the north pole, characterizing its
magnetic field. The magnetic moment ~µ is directly proportional to the angular
momentum ~J :

~µ = γ ~J, (2.1)

where γ is the gyromagnetic ratio and it is specific to the nucleus type.
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Figure 2.2. Precession of the magnetic moment ~µ around the magnetic field ~B0

A nucleus can be conceived as a tiny magnet bar, as illustrated in Figure 2.1. Magnetic
torqueWhen it is placed in a strong (e.g. 1.5 T) magnetic field ~B0 it undergoes a

torque. This turning force makes ~µ to be aligned with ~B0, in the same way a
compass needle is getting turned by a nearby magnet. However this analogy is
not to be taken too far. Because of a quantum mechanic behavior, the magnetic
moment ~µ is not completely aligned with ~B0, that is, there is a non-zero angle
θ between them. Because of this constraint and the influences of ~J and ~B0, the
magnetic moment ~µ precesses around the axis in the direction of ~B0, as shown
in Figure 2.2. This precessing movement is described with the equation: Magnetic

moment
precessiond ~J

dt
= ~µ× ~B0 = γ ~J × ~B0 = γJB0 sin θ~n, (2.2)

where the symbol × denotes the vectorial cross product and ~n is the unit
normal vector perpendicular to both ~J and ~B0.

By deriving the precession frequency ~ω0 from this equation (not shown here),
it is found that:

~ω0 = ±γ ~B0. (2.3)
Larmor
equationThis equation is known as the Larmor equation, which states that the pre-

cessional frequency ~ω0 of a nucleus is proportional to the static magnetic field
~B0.

There is a second quantum behavior to be noted here, which explains the
plus-minus sign (±) in Equation (2.3). When the nucleus is exposed to a static

magnetic field ~B0, it precesses in either two orientations, spin-up or spin-down. Spin-
up/downWhen the nucleus is in the spin-up or parallel state, its magnetic moment ~µ

is almost aligned in the direction of the static magnetic field ~B0, while in the
spin-down state or anti-parallel state, ~µ is oriented in the opposite direction of
~B0. The proton “chooses“ one of thoses states depending on the energy it has.
The spin-down state requires more energy than the spin-up state.

In either state, the proton is stable, so it precesses persistently in its chosen
state. However the spin can be flipped (spinning in the opposite direction), Spin flipping
by gaining or loosing a specific amount of energy as electromagnetic wave or
photon. A proton in the low energy state pulsed by electromagnetic wave at a
certain frequency will absorb a photon and it is promoted to the high-energy
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state. When a proton is in the high energy state, because of the interaction Photon
absorp-
tion/emission

with the environment, it can emit the absorbed energy as a photon, and turn
into the low-energy state.

When a proton is in the spin-up state (low energy state), it’s has been found
that the RF field frequency necessary to flip its spin-down (high energy state),
the resonance frequency, is exactly the Larmor frequency: Resonance

frequency
ω0 = γB0. (2.4)

So far, we have described the behavior of the proton at the atomic scale. At
this point, we are leaving the microscopic level and zoom out to a macroscopic
level, by considering the NMR effect within a small volume containing a large
number of protons.

When considering a large number of nuclei, the ratio of spin-up and spin-
down protons is given by the Boltzman equation: Boltzman

equation
Nup

Ndown
= exp(

γ h
2πB0

kT
), (2.5)

where h is the Plank’s constant, k is the Boltzman’s constant and T is the
temperature. At the normal body temperature (37 ◦C) and in a field of 1.5

T,
Nup

Ndown
= 1.000004, which means that for every million spin-down protons,

there are a million-and-four spin-up protons. It is this very small difference that
allows an MRI scanner to measure a signal.

Let’s say we have N protons within a small volume. When we expose this
sample to a static magnetic field ~B0, each proton’s magnetic moment precesses
according to Equation (2.2). At a given time, the net magnetization is: Net magne-

tization

~M0 =

N∑
i=1

~µi. (2.6)

The magnetic moments precess out of phase with each other, that is, the
their phase are randomly distributed. As a net effect, the net magnetization
~M0 is aligned with the static magnetic field ~B0. Furthermore, since there are

more spin-up protons, the orientation of ~M0 is in the same direction of ~B0. We
can conclude that the net magnetization ~M0 of a sample exists because of the
tiny differences in the number of spin-up and spin-down protons and it is aligned
with the static field ~B0 at equilibrium.

The net magnetization ~M0 is very small compared with the strong static
field ~B0. The magnitude of ~B0 is in order of tesla (T) and the magnitude of ~B0

is in order of microtesla (µT).

In the equilibrium condition it is not possible to measure ~M0. The measure- Measuring
~M0ment of ~M0 is possible with a sensor (a coil) that is sensible only to magneti-

zation in the transversal plane, which is the plane perpendicular to ~B0. When
~M0 is at equilibrium, its projection into the transversal plane is null, thus not

measurable. Therefore we need to push ~M0 away from B0, which is achieved by
using a radiofrequency field ~B1.
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When the radiofrequency field ~B1 is activated, ~M0 moves away in a preces-
sional movement from ~B0. The trajectory of the tip of ~M0 describes a spiral
around ~B0 at a rotational speed equal to the Larmor frequency, and the radius
of that spiral increases as ~M0 moves away from with ~B0. This precession of ~M0

generates a rotating magnetic field in the transversal plane which generates a
signal in the transversal coil. It is that signal that Bloch and Purcell observed
and described by the Bloch equations in 1946 [Blo46]. This signal is called the
Free Induction Decay signal and it is further described in Section 2.1.3.

The Bloch equations is a mathematical model that describes the movement
of the net magnetization ~M0 in the presence of the static magnetic field ~B0 and
the radiofrequency field ~B1. Those equations are detailed in the Section 2.1.2. Bloch equa-

tionsSummarizing, NMR is composed of three phases:

1. Magnetic Moment orientation The magnetic moments of the nuclei are
oriented using a strong magnetic field. A single nucleus can be conceive
as a small magnet bar, which can be oriented by using a bigger magnet,
in the same way a compass needle is oriented by a nearby magnet.

2. RF Pulse A radio emitter is turned on very briefly in order to pulse an
electromagnetic field at specific frequency (the Larmor frequency), which
causes the nuclei to flip their spin (spin in the opposite orientation) and
being in an a higher energy state because each neuclei has absorbed one
photon. This pulse field is oriented so it is perpendicular to the magnetic
field in order to increase the strength of the signal emitted by the nucleus.

3. Relaxation When the RF pulse stops, the nuclei return from a high-energy
state to a low-energy state, releasing the stored energy as a photons. This
releasing of photons is a radio signal absorbed and converted to an electric
signal. Also, as the nucleus is no more influenced by the magnetic field,
it progressively loose its alignment. This alignment decay is measured as
two components: T1 and T2 (see Figure 2.4).

2.1.2 The Bloch Equations

Bloch and Purcell described the NMR phenomenon with a set of equations
[Blo46]. Those equations model the NMR effect at a macroscopic scale; they do
not describe NMR at the atomic level. In other words they are phenomenological
equations, that is, they are based on empirical observation.

The Bloch equations in laboratory (stationary) frame of reference are: Bloch equa-
tions com-
ponentwize
form

dMx

dt = γ( ~M × ~B)x − Mx

T2
dMy

dt = γ( ~M × ~B)y − My

T2
dMz

dt = γ( ~M × ~B)z − Mz−M0

T1

, (2.7)

where:

• ~M is the net nuclear magnetization of the sample.
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• ~B is the magnetic field, which include both ~B0 and ~B1.

• γ is the gyromagnetic ratio.

• T1 and T2 are the relaxation times (detailed in Section 2.1.5).

• M0 is the magnitude of the net nuclear magnetization at equilibrium (that

is aligned with ~B0).

• ~M × ~B is the cross product of those vectors.

~M and ~B are time dependent. They should be formally written ~M(t) and
~B(t). This notation is avoided for readability.

The equations can be rewritten in a vectorial form: Bloch equa-
tions vecto-
rial form

d ~M

dt
= γ( ~M × ~B)−


Mx

T2
My

T2
Mz−M0

T1

 . (2.8)

The vectorial forms (2.8) is a more condensed form of the componentwize
form (2.7) and it highlights two terms; the torque and the relaxation. The torque

term γ( ~M × ~B) is a force that pushes ~M away from the z-axis and makes it to

precess. The relaxation term −(Mx

T2
,
My

T2
, Mz−M0

T1
)T is a kind of damping force

that pulls ~M toward the z-axis so that it returns to equilibrium. The smaller
the relaxations times T1 and T2 are, the quicker ~M0 returns to equilibrium.

The vector ~B is composed of two components, the strong static magnetic field
~B0 and the transversal radiofrequency field ~B1, ~B = ~B0 + ~B1. By convention, ~B0- z-axis

conventionthe z-axis of the laboratory stationary frame of reference is aligned with ~B0,
therefore the x and y components of ~B0 are null and its z component is its
magnitude, ~B0 = (0, 0, B0)T . The radiofrequency field ~B1 is a magnetic field

that rotates in the transversal plane perpendicular to ~B0, that is, the xy-plane.
The radiofrequency field ~B1 is given by: radiofrequency

field defini-
tion

~B1 =

 B1 cosωt
B1 sinωt

0

 , (2.9)

where ω is the is the angular frequency, which is equivalent to the Larmor
frequency.

For educational purpose, a simulator that demonstrates the dynamics of
NMR is available on the Internet at:

http://www.drcmr.dk/bloch

11



2.1.3 Free Induction Decay Signal

When the radiofrequency field ~B1 is pulsed, the net magnetization ~M is no more
aligned with the z-axis. That angle between ~M and the z-axis is a function of
the strength and duration of ~B1 pulse. There are two pulse types commonly
used during an MRI scanning, the 90◦ pulse and the 180◦ pulse. Those two
pulses bring the net magnetization ~B0 at an angle of 90◦ and 180◦ respectively
from the z-axis. They are used to produce a phenomenon known as Spin-Echo
(see Section 2.1.4).

When the radiofrequency field ~B1 is turned off, a signal in the transversal
plane can be measured, whose strength is proportional to the length of the pro-
jection of ~M on the xy-plane. As the net magnetization ~M goes to equilibrium FID signal
by aligning again with the z-axis, that signal decreases in intensity. This signal
is known as the Free Induction Decay (FID).

Signal

Mx

Time Time

Mz

(a) (b)
Figure 2.3. (a) The shape of the x-component of ~M , the Free Induction Decay signal and

(b) the z-component of ~M after a 90◦ radiofrequency pulse ~B1.

Figure 2.3 shows the form of the x-component of ~M and the corresponding
FID signal just after the 90◦ radiofrequency pulse is switched off, as well as
the z-component of ~M . As ~M returns to equilibrium, the FID signal decay
exponentially while Mz recover exponentially.

2.1.4 Spin-Echo

In Section 2.1.3, we have seen that the net magnetization ~M can be moved from
the z-axis using a radiofrequency pulse ~B1 and that the angle between ~M and
the z-axis is function of the duration and the strength of that pulse. In this
section, we describe what the Spin-Echo phenomena is and how it is produced
by using the radiofrequency pulse ~B1.

An MRI scanner can produce a radiofrequency pulse ~B1 that brings the net
magnetization ~M at a desired angle from the z-axis. There are two specific an-
gles, 90◦ and 180◦, used to produce the Spin-Echo effect. The pulses producing
those angles are simply called the 90◦-pulse and the 180◦-pulse.

The Spin-Echo is based on the precession dephasing of the nuclei. A nu-
cleus interacts with the static magnetic field but also interacts with its local
environment, in which there are other nuclei producing their own tiny magnetic
field. So, the momentum of a nucleus is function of the atomic configuration
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of its environment. Therefore, the nuclei within a sample composed of different
molecules do not precess at the same speed. As a consequence, their precession
phase changes dynamically relatively to each other. This dephasing explains
the decaying of the FID signal (see Section 2.1.5).

When the net magnetization ~M is at equilibrium, that is, aligned with the
static magnetic field ~B0, the nuclei are spinning out of phase. The first step
in the creation of the Spin-Echo is to produce a 90◦-pulse, which makes the
nuclei to precess in phase. Right after this pulse, the net magnetization ~M
is rotating perfectly in the xy-plane, which makes the FID signal to be at its
maximum. But, as the time passes, this signal progressively decay because
of the dephasing of the nuclei. The second step is to produce a 180◦-pulse,
which inverts the angular momentum of each nucleus. This angular momentum
inversion, as an effect, makes the nuclei to precess in the opposite direction or
backward. This backward motion makes the neuclei to re-phase again. During
the re-phasing of the nuclei, the FID signal increases producing an echo, hence
the name of the phenomena. After some time, the nuclei are in phase just as
they were just after the 90◦-pulse, the FID signal reaches a peak again, before
decreasing as the nuclei dephase again.

2.1.5 Relaxations Times: T1 and T2

In Section 2.1.2, we have seen that the net magnetization ~M0 is aligned with
the static magnetic field ~B0 at equilibrium and that ~M spirals around the z-axis
when pulsed by a radiofrequency field ~B1, producing a signal in the transversal
xy-plane. Also we have seen that the signal decays as ~M0 returns to equilibrium
and the decaying speed is given by T1 and T2 (see Equation 2.8). In this section,
we are going to have a closer look at the underlying phenomena and their use
to produce weighted images.

Time

Mxy

Mz

0.63M0

0.37M0

T2 T1

recoveryT1

decayT2

M0

Figure 2.4. Shape of relaxation components T1 recovery and T2 decay.

T1 is the elapsed time for the z-component of the net magnetization Mz to
recover 63% of M0 after the radiofrequency ~B1 pulse. T2 is the time for the
FID signal to drop down to 37% of M0. Figure 2.4 shows the shape of the T1
recovery and the T2 decays. The duration of T1 is much longer that T2.

In 1948, Bloembergen, Purcell and Pound explained the relaxation of the
net magnetization ~M by molecular dynamic [BPP48]. This work is known as BPP Theory
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the BPP Theory.
After the radiofrequency pulse, the protons return to their equilibrium ori-

entation because of the interaction with their environment, which makes the net
magnetization ~M to re-align with the static magnetic field ~B0. The interactions
are of two types, the spin-lattice (T1 recovery) and spin-spin (T2 decay).

The spin-lattice (proton- ~B0) relaxation (T1) is the increasing of the z-component

of ~M . This recovery is caused by the release of energy by the spin-down protons, T1 recovery
which flip their spin up, and therefore contribute to the net magnetization in
the direction of ~B0. The protons release their energy randomly until the ratio
of spin-up to spin-down protons reaches equilibrium (see Equation 2.5).

The spin-spin (proton-proton) relaxation (T2) is the decay of the xz-component

of the ~M . This decay is caused by dephasing of the precessing protons. The T2 decay
proton magnetic moment is influenced by the magnetic field in the environment,
which includes the magnetic field of the protons in the neighborhood.

Both T1 and T2 depend and the molecular configuration of the sample. That
is, the values of those relaxation times is function of the tissue type. Therefore
they can be used to discriminate tissue types. For example, when scanning the
human brain with 1.5 T scanner, the white matter has T1 = 560 ms and T2 = 82
ms, while the grey matter has T1 = 1000 ms and T2 = 92 ms [SZZS01].

2.2 Diffusion Weighted Imaging

In liquid water, due to thermal motion, the molecules are constantly in move-
ment and are bouncing with each other. This makes the trajectory of individual
water molecule being random. This movement is a Brownian motion.

When there is no microscopic physical constraint, water diffusion is isotropic. isotropic
diffusionFor example, in a glass of water, the molecules diffuse in any direction with the

same probability. In that case, the diffusion can be characterized by a single
scalar, the diffusion coefficient D.

But in the body the water diffusion is constrained by the biological envi-
ronment. In fibrous tissue (e.g. muscle or brain white matter) the diffusion is
anisotropic [LBBL+88] [LBTMP91] [Tan79]. That is, the spread of the water anisotropic

diffusionmolecule is not the same in every direction. Therefore, a single diffusion D
coefficient is not enough to characterize the diffusion. This coefficient D would
rather be a function of direction. Actually, the diffusion in 3-dimension is best
described by the diffusion tensor, which is a 3-by-3 matrix: diffusion

tensor

D =

 Dxx Dxy Dxz

Dyx Dyy Dyz

Dzx Dzy Dzz

 . (2.10)

The multiplication of D by a vector ~e is a vector which as the same direction
of ~e but a different length or scale λ: eigen

value/vector
D~e = λ~e, (2.11)
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where ~e is called an eigenvector and λ is its corresponding eigen value.
It is possible to compute the principal diffusion direction from the eigen value

and eigenvector algebra. Diagonalization of the diffusion tensor D provides the
three eigenvectors (~e1, ~e2, ~e3) and the their three corresponding eigen values
(λ1, λ2, λ3). For the three eigen values, it holds that λ1 > λ2 > λ3 in the
general case.

The diffusion tensor D can be visualized as an ellipsoid (Figure 2.5), whose
principal directions represent the directions in which the diffusion is fastest. To
draw such ellipsoid, one can multiply D with a vector ~e with different orienta-
tions but same length. The tips of the resulting vectors are points on the surface
of the ellipsoid. The main directions (e.i. major, medium, and minor) of the
diffusion ellipsoid correspond to the eigenvectors ~e1, ~e2 and ~e3 respectively.

Figure 2.5. Visualization of the diffusion tensor as an ellipsoid, whose principal directions
are the vectors ~ei.

The signal intensity S measured after a spin echo sequence is:

S = S0 exp(−b~g ·D~g), (2.12)

where S0 is the signal intensity without the gradient pulse, b is the so called
b-value, ~g is the gradient pulse vector, D is the tensor matrix.

2.2.1 Bloch-Torrey Equation and Gradient Pulse

In 1956, Torrey added a diffusion term +D∇2 ~M to the Bloch equations (see
Section 2.1.2) [Tor56]:

d ~M

dt
= γ( ~M × ~B)−


Mx

T2
My

T2
Mz−M0

T1

 + D∇2 ~M, (2.13)

where ∇2 denotes the Laplace operator. This spatial differential operator is
applied on the vector field ~M .

Bloch-Torrey equation (Equation 2.13) states that the change of ~M with
respect to time is higher in sample with inhomogeneous magnetic nuclear mag-
netization. This fact is exploited in an MRI scanner to localize the protons and
to measure the apparent water diffusion. A gradient magnetic field B1, which
the strength varies linearly along a specified direction through the scanned vol-
ume, causes the Larmor frequency to vary as a function of space. This effect

15



is used to spatially encode the positions of the nuclei and makes it possible to
construct a volumetric image. Furthermore, when the water molecules diffuses
in the same direction of the gradient ~B1 the signal emitted by protons is weak,
and when the molecules diffuses perpendicularly to to the direction of gradient
~B1 the signal is strong. By performing several measures with different gradient
direction, it is possible to compute the diffusion matrix D.

2.3 Diffusion Tensor Imaging

Diffusion Tensor Imaging (DTI) is a method in which Magnetic Resonance Imag-
ing (MRI) scanners are used to measure the water diffusion in the human body.
The data obtained from those devices are volumetric images in which each voxel
is a diffusion tensor giving information about the local water diffusion. Since
the water diffusion is influenced by the body tissue structure, DTI produces
images that show the structures such as heart muscle or the brain white matter.

The diffusion tensor matrix D is estimated from several diffusion weighted
images acquired with different gradient directions, that is, solving Equation
(2.12) for D with several values of S,~g and b.

[BML94]

2.3.1 Fractional Anisotropy

The Fractional Anisotropy is [BP96]:

FA =

√
1

2

√
(λ1 − λ2)2 + (λ2 − λ3)2 + (λ3 − λ1)2)√

λ21 + λ22 + λ23
, (2.14)

where λ1, λ2 and λ3 ared the eigen vectors of the diffusion matrix D (see
Section 2.2).

The FA is a scalar metric that describes how anisotropic the diffusion is. This
value is high when diffusion ellipsoid tends to a cigar shape (high anisotropy)
and low when the ellipsoid tends to a sphere (low anisotropy). Compared to
the diffusion matrix D, the FA value contains less information since it discards
the specific diffusion directions though it tells about how much oriented the
diffusion is.

With the assumption that water molecules diffuse faster along the fibers than
perpendicular to them [LBBL+88], a measure of highly anisotropic indicates a
highly fibrous tissue. Since the FA is a measure of the anisotropy, an FA image
gives information about the location of the fibrous tissue.
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2.4 Tractography

Figure 2.6. By following the main direction of the diffusion tensors (blue ellipsoid) we obtain
the path of the fiber tracts (red curve).

Tractography is a technique to visualize fiber tract of fibrous tissue such
as muscle or brain white mater. The fiber tracts are visualized as curves in
3D space. In the visualization of brain white matter, this technique shows the
connection structure between different part of the brain.

The directionality provided by the tensor images are used to compute curves
representing the fiber tracts. Because water molecules diffuse along rather than
across the fiber tract due to physical constraint caused by the myelin structure
[LBBL+88], the direction of the water diffusion gives us information about the
orientation of the tracts. Since DTI images provide water diffusion information
at each voxel by mean of diffusion tensor, it is therefore possible to compute the
fiber tract paths. In Section 2.2 we have seen that main diffusion direction can
be obtained from the diffusion using eigenvector algebra. So a vector field can
derived from a DTI image in which each vector represents the main diffusion
direction. Assuming that a single vector represents also the local direction of
the fiber tracts, we can naturally expect that following the direction of those
vectors traces the paths of the fiber tracts (see Figure 2.6).

Tracking algorithms are used to compute fiber tracts from diffusion tensor
images. There are mainly two approaches to infer the path of the neural tract
from DTI images. Tracking algorithms can be classified into two categories,
either local or global [MvZ02]. In the local approach, the path of the tracts are
estimated by following the main diffusion direction from voxel to voxel, by mean
of streamlines as in fluid flow visualization. The global approach considers all
the voxels to find a path between two given voxels in order two minimize an
energy function.
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Chapter 3

Dealing with occlusion

In this section, we first describe what is occlusion, why it appears and what
is the impact on fiber tracts visualization. Then we present the common tech-
niques used to decrease occlusions. Finally, we introduce a novel technique that
decreases occlusion, that is, Fiber Tract Bundling (FTB).

3.1 Occlusion

Occlusion generally appears when rendering a three-dimensional scene. Because
a scene is often composed of several opaque objects at different locations in
space, from a given point of view some object are partially or completely hidden
by other objects (see Figure 3.1). This phenomenon appears when performing
a realistic rendering. The rendering algorithm, while solving the visibility prob-
lem, draws visible objects and discard occluded objects, as it is in a real image
(e.g. a picture taken from a camera).

a b
Figure 3.1. (a) Spatial relation between the viewer and three opaque objects: a blue wall, a
red sphere and green sphere. (b) From the viewer perspective, the blue wall occludes partially
the red sphere and completely occludes the green sphere.

The tracking algorithm generates a large number of three-dimensional curves.
The number of generated curves is in the order of hundred thousands. Render-
ing such a large number of curves on a standard screen produces inevitably
occlusion (see Figure 3.2). As a consequence, this way of visualizing three-
dimensional curves does not offer insight into the inner structure of the brain,
because a large number of curves are occluded by other curves. In Figure 3.2,
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the surface of the brain is visible, but because of occlusion, it is impossible to
observe how the neural tracts are organized below the surface.

Figure 3.2. Sagital rendering of a large set of neural tracts that creates occlusions.

3.2 Common Methods to Reduce Occlusion

Various simple strategies have been developed to decrease occlusion. The tra-
ditional techniques mainly consist of filtering out some curves to decrease their
number. The techniques are usually global filtering, length filtering and Region
of Interest (ROI) filtering. In the global filtering three-dimensional curves are
randomly removed given a filtering ratio. In length filtering, only the curves
falling into a given length range are kept. In ROI filtering a three-dimensional
object (e.g. a plane or a sphere) is locally placed and only the curves inter-
secting the ROI object are kept. Those filtering techniques can be combined to
obtained a desired visualization.

3.2.1 Global Filtering

The global filtering consists of filtering out a fraction of the total number of
tracts randomly. Figure 3.3 shows the results of filtering out 98% of a set of
tracts. This filtering give a good overview of the whole brain.
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Figure 3.3. 98% of the fiber has been filtered out.

3.2.2 Length Filtering

The length filtering consists of discarding the tracts whose length are not into
a range defined by the user. This filtering can be use to remove the very small
tracts that can be considered as noise.

Figure 3.4. Neural tracts whose length are less than 90 mm has been filtered out.

3.2.3 ROI Filtering

ROI filtering consist of defining a region by means of simple geometric objects
such as cube, spheres or plane and visualizing only the tracts that intersect
the ROI. This technique is useful when we are interested in which tracts pass
through a specific location. Further, if the intersecting tracts are long, it is
possible to visually follow them and see wich region of the brain they are con-
necting.
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Figure 3.5 and 3.6 show examples of an ROI filtering using a sphere and a
place respectively.

Figure 3.5. Neural tracts passing through the red sphere are kept, the other one are filtered
out.

Figure 3.6. Neural tracts passing through the plane are kept, the other one are filtered out.
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3.2.4 A novel approach: Fiber Track Bundling

The common techniques presented in here, are very simple and straighforward.
The problem with those techniques is that the user must know exactly what he
is looking for. Also, those techniques tackle the occlusion problem by discard-
ing tracts without considering the anatomy; there would be some information
related to the anatomy that is lost during the filtering of tracts.

Fiber Track Bundling (FTB) aims at decreasing the occlusion by providing
an abstracted version of the tracts. The abstraction is computed by considering
globally all the tracts. The tracts are bundled based on their similarities. In this
way anatomical structures are expected to be visually reavealed automatically.
FTB is detailed in Chapter 4.
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Chapter 4

Fiber Tract Bundling

Figure 4.1. The aim of FTB is to provide an abstract representation of a set of curves.

Fiber Track Bundling (FTB) is a technique that produces scalable abstrac-
tion of fiber tracts and meanwhile it decreases occlusion [EBRI11]. Figure 4.1
illustrates the aim of FTB. This technique is inspired from a graph visualiza-
tion technique named Force-Directed Edge Bundling [HvW09]. FTB aims to
give insight into the structure of a set of neural tracts obtained from tracking
algorithms by offering different scales of simplification.

Figure 4.2. Visualization of a bundled tract set revealing at the center the sheet-like structure
of the corpus callosum, which is the anatomical structure connecting the two halfs of the brain.
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Figure 4.2 shows a set of tracts computed from a DTI image of a head. The
color encodes the local direction of the curve. The tracts have been bundled
and a sagital cutting plane has been placed offering a cut view of the brain. We
can see the corpus collosum in the center of the image as a sheet like structure.
This anatomic structure has been simplified by the FTB technique.

FTB achieves the simplified versions of the tracts by modifying the position
of their representative curve points so that the curves are grouped together
to form bundles. This bundling is obtained by moving similar pairs of points
belonging to different tracts toward each other as illustrated in Figure 4.3. The
moving of the points causes the tracts they belong to to move. Pairs of points
are considered similar when a similarity criteria (i.e. close distance between pair
of points, similar local curve unsigned direction) are full filled. The result of
the similarity searching can be formally represented as a graph, in which each
vertex represents a point and an edge connecting two vertices exists between
similar points.

Figure 4.3. FTB achieves bundling by moving similar points towards each other.

The FTB technique is composed of two steps. In a first step the curve points
are analyzed in order to find similar points ((see Section 4.1)). In the second
step the similar points are moved toward each other in an iterative manner(see
Section 4.2).

4.1 Similar Points Searching

The first step of FTB is to search through a fiber data set for the tract segments
that shows local similarity. The local similarity is defined from the perspective
of the points belonging to the tracts.

Two points ~p and ~q belonging to different tracts are considered similar if
they fulfill the following criteria:

• Proximity: the distance between ~p and ~q is smaller than a given length
dmax.

• Orientation: at least one of the segments incident to ~p is approximately
parallel to one of the segments incident ot ~q, where ”approximately par-
allel“ means that the angle between the segment is smaller than a given
angle θpar.
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• Nearest neighbour mutuality: the nearest neighbour relation of ~p and ~q is
approximately mutual, that is, it holds that |index(nn(p))−index(q)| ≤ 1,
where the function index(~v) returns the index of ~v on the tract to which
it belongs.

The FTB algorithm compares every pairs of points within the data set and
tests whether they are similar as defined above. During this phase, a similarity
graph G is built in which each vertex represents a point on a tract and an edge
connecting two points signifies that these two points are similar.

In the second step (see Section 4.2), G is used to move similar points toward
each other.

4.2 Iterative Bundling

The second step of the FTB technique is to move similar tracts points toward
each other in order to form bundles. The similary graph computed during the
similar point search is used.

One iteration of the algorithm goes as follows. For each pair of points (~p, ~q)
in G, ~p and ~q are displaced toward each other so that they meet halfway at ~p+~q

2 .
Because a point can be similar to several points and therefore may be influenced
by several points, its position is not updated directly, rather its displacement
is accumulated and later used to update the point position at the end of the
iteration. When a vertex is being influenced by several vertices, its displacement
vector is divided by the number of incident vertices in the similarity graph.

The algorithm runs typically 40 iterations to achieve a bundled state.
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Chapter 5

Research Question: How
reliable are the bundled
tracts?

We have seen in Section 4 that FTB reduces the occlusion of a dense curve set
by creating a scalable visual abstraction.

A main issue occurs with the intrinsic behavior of FTB, that is, this method
groups the curves into bundles by changing the position of the vertices repre-
senting the curves. The geometry of the curves is therefore distorted resulting
into a loss of information about the anatomical location of the bundles. De-
pending on the application, this loss of information may be significant or not.
A neurologist may be only interested whether two distant regions of the brain
are connected. For such application the exact location of the fiber bundle is
not relevant. However, we can imagine a neuro-surgeon looking at those visual
abstraction and wondering how relevant are the bundles in terms of location.

Though FTB does reveal large scale structures such as the corpus callosum
that connects the two halfs of the brain, it is not clear whether smaller struc-
tures are revealed the same way. When we look at Figure 4.2, we see that the
corpus collosum has been revealed and that FTB has simplified this anatomical
structure into a sheet-like structure, which is indeed an appropriate abstract
representation of the corpus collosum. However the corpus collosum is a major
structure in term of size, so we may think that is not possible for the FTB
algorithm to ”miss” this structure. This leads us to wonder whether the same
abstracting phenomenon occurs with smaller anatomical parts, particularly in
the region at the surface of the brain where the grey matter is located.

Our research is to evaluate how faithful are the bundled tracts produced by
FTB in terms of position and shape.

In order to answer this research question we developed an evaluation method
(see Section 6) that enables a user to investigate the behavior of FTB interac-
tively.
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Chapter 6

FTB Evaluation Method

FTB modifies the curve point locations. This displacement consequently results
in a loss of information related to the anatomy. In order to evaluate this loss of
information, we have developed an evaluation tool. We designed this tool with
two main objectives:

1. Visualizing the static bundling situation for a given dmax.

2. Observing the bundling process behavior with respect to the anatomy.

Also, we want this tool to be interactive so the user can observe the behavior
of FTB in an explorative manner.

6.1 Dimensionality reduction

FA-textured

surface S

Fiber tracts

Intersections

FA image as 

anatomical reference

Figure 6.1. The tract are intersected with a surface S in order to decrease the dimensionality.
The surface S is textured with the FA image used as an anatomical reference.

With objective (1), we want this method to consider all the tracts generated
by the tracking algorithm and transformed by the FTB algorithm. So we can
observe what is happening to all of them. But in this way we are facing a major
occlusion problem: it is very difficult or even impossible to visualize such a
number of tracks on a computer screen (see Section 3.1).
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We solve the occlusion problem by decreasing the problem dimension. We
compute the intersection of the tracts with a two-dimensional surface S embeded
into the three-dimensional space, which has a skull-like shape for this evaluation
(see Section 6.2 for more details). The results of the intersection is a set of
points that are used as images of the tracts. In this way the dimensionality of
the problem is decreased from three to two dimensions, that is, instead of curves
we are now visualizing points. When the tracts are bundled, their intersection
point with the surface changes accordingly, so visualizing only the intersection
points give us an insight about the influence of the FTB algorithm upon the
represented tracts while decreasing the occlusion.

The surface S can be arbitrary defined and it is used as a Region of Interest
(ROI). But obviously it has to passe through the space domain of the tracts,
thus the space domain of the DTI image. The user defines S as his interest of
the locations where he would like to observe the FTB process.

The visualization of the intersection points decreases the visualization prob-
lem dimensionality from three dimensions to two dimensions, that is, we are
visualizing points instead of curves. This decrease of dimensions allows the user
to visualize the bundling process by considering all tracts, though only the tracts
intersecting the surface S are observable.

6.2 The Skull-like Shaped Surface

Iso-surface

Smoothing/Cleaning

FA-Texturing

With intersections

1

2

3

4

Figure 6.2. Construction and texturing of a skull-like shaped surface S. (1) A iso surface
extracted from the FA-image. (2) Manually simplified surface. (3) The surface textured with
the FA image. (4) The FA-textured surface rendered with the intersecting points.
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The surface S, which is used to intersect the tracts with to obtain intersection
points, can be seen as a Region Of Interest (ROI). It may be defined so that it
covers the specific location where we are interested in observing the behavior of
the FTB technique.

In this study we are interested in observing the behavior of the FTB algo-
rithm just a bit below the surface of the brain. Becuause, in this area, it is not
clear to us whether FTB achieves the same abstraction as it achieves with the
corpus collosum. In order to observe the surface of the brain, we first needed to
build an appropriate surface to intersect the tracts with.

Figure 6.2 illustrates the construction and usage of the specific surface S we
are using in this study. First an iso-surface is extracted from the FA-image using
the marching cube algorithm, implemented in Mayavi [Ent08], with an iso value
that is selected in order to yeld a visually satisfying skull-like shape (Figure
6.2-1). However this iso-surface is not directly usable as it is; it is noisy and it is
defined by a large number ( 76k) of triangles. That noisy surface may generated
also noisy intersection points and the large number of triangles defining that
surface may slow down dramatically the computation of the intersection with
the tracts. Therefore, we need both to decrease the triangle count and to remove
the noise by smoothing and simplifying the iso-surface. For these purposes,
the raw iso-surface was edited manually using the modelling software Blender
[Fou11]. After the editing, the final surface S (Figure 6.2-2) is represented by
2k triangles. It is this manually simplified surface that is used to compute the
intersecting points with the tracts set. Further, the edited surface S is reused
during the visualization to provide the user with contextual information and
reference to the anatomy. The FA-image is used as an anatomical reference. It
is used to texture the surface S (Figure 6.2-3). Finally, the intersecting points
are rendered slightly above the FA-textured image. The surface S textured
with the FA-image and the rendering of the intersection points above it allow
the user to observe the result of FTB technique with respect to the anatomy
(Figure 6.2-4). Additionally, we would like to observe not only the surface of
the brain but also how the FTB algorithm behaves deeper to the center of the
brain. For this purpose, we used the same skull-like shape but scaled down and
displaced at two additional positions as illustrated in Figure 6.3.

Figure 6.3. The same surface is used at three differents locations and scales; slightly (red),
mid-way (green) and deeply (blue) below the brain’s surface.
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6.3 FA image as anatomical reference

The second objective of the method is to compare the FTB results with the
anatomy. This objective is reached by displaying the Fractional Anisotropy
(FA) image, which is used as an anatomical reference. We have seen in Section
6.2 that the surface S is texture with the FA-image. The rendering of the
FA-image nearby the intersections points gives the user useful visual cue about
the anatomy and therefore allow the observation of the behavior of the FTB
technique with respect to the anatomy.

We used the FA-image as an anatomical reference. We know that the
anisotropy of the water diffusion is caused by the interaction of the water
molecules with the fibrous material and that the FA value is metric that tells
how anisotropic the diffusion is. With some care, we can intrepret a region with
a high FA value as region with a high density of parallel fibers and a region
with a low FA value as a region containing fewer parallel fibers. In other words,
the FA can represent the “fibrousness” of the tissues and gives a good visual
reference of the fiber tract locations. We said ”with some care“ because there
are situations in which a voxel containing fibrous tissue is assigned with a low
FA value. Those are the voxels in which the contained fibers are oriented in
different directions, that is, they are not homogeneous in term of orientation
(e.g. crossing fibers). In that case the FA value value would be low compared
to voxel containing homogeneously oriented fibers. But for anatomical struc-
tures bigger than one voxels the FA value gives confident information about the
“fibrousness” of the tissue.

The FA image is used to texture the surface S, or more precisely, any point ~p
of S is colored with a color mapping the FA value at the location of ~p . This tex-
ture mapping is realized by using the positions of the triangles representing the
surface as texture coordinates. The surface S textured with the color mapping
of the FA value provides the user with information about the anatomy.
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6.4 Interaction

The visualization of the intersecting points with the FA-textured surface S al-
lows a user to visualize the bundling process and to compare the curve displace-
ment against an anatomical reference.

Figure 6.4. Screenshot of the interface of our visualization tool used to evaluate FTB.

Figure 6.4 is a screenshot of the interface of our visualization tool designed
and used to evaluate FTB. The surface S is rendered with the FA-image as
texture such that each point ~p of S has a color function of the FA value at the
location of ~p.

The points being the intersections of the tracts and S are rendered in red,
with a glow effect wich results into a the cloud look. This cloud rendering
gives the user visual information about the density of the points. This cloud
rendering is achieved by rendering each point as a transparent disk with varying
opacity; the opacity is high at the disk’s center and it decays as the distance
from the center increases. The disks are blended. This effect results in creating
an opaque region where the point density is high and a transparent region where
the point density is low.

The user can rotate the view so that he can observe the scene from arbitray
angle by dragging the mouse with the left button. There is two type of rotations:
orbiting or pivoting. The orbiting rotation makes the view to orbit around the
center of the scene, and it is achieves by dragging the mouse in the inner area
of the screen whereas the pivoting rotation rotates the view about the viewing
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direction, and it is achieves by dragging the mouse in one of the four borders of
the screen. Also, the view can be zoomed in and out by using the mouse scroll
button or by dragging the mouse up and down with the right mouse button
pressed.

The user is provided with an option pannel at the bottom of the screen.
The options are organised in three lines. The first line consists of three buttons,
which is used to select between the three position of the surface as described in
Section 6.2, and a checkbox that toggle the view between the 3D space and UV
space. The UV space is the projection of the surface into the 2D plane. The sec-
ond option line contains a slider that controls the FTB bundling strength. This
slider allows the user to interactively change the bundling strenght and visual-
ize the result interactively. The last option line contains seven checkboxes. The
first three checkboxes are used to enable or disable the rendering of elements
such as the tracts, the surface S and the intersection points. When the “Glow“
option is enabled, the intersection points are rendered as clouds and when this
option is disabled, the points are rendered as flat regular pixels. The ”Colored
FA“ option allows the user to toggle between black and white FA-texture or
colored FA-texture (where the color indicates the major main diffusion direc-
tion). The ”FA filter“ controls whether a trilinear filter is applied or not on
the FA-texture. And the ”DDH“ option activates the Depth Dependant Halo
[EBRI09] for rendering of the tracts.

6.5 Implementation

6.5.1 Overview

1

2

3

Figure 6.5. Work flow diagram of the evaluation method; Three ordered processes are
represented in yellow, given data are in gray and computed data are in blue. The arrows
indicate the data flow from sources to destinations.
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The aim of the evaluation tool is to provide an interactive visualization of
the FTB result with respect to an FA image textured on the surface S. Figure
6.5 illustrates the work flow necessary to perform this evaluation.

The first step of the work flow is the bundling interpolation (1), which is
needed to obtain smooth transitions while the user is changing the bundling
strength. For our study we have 8 sets of tracts resulting from the FTB algo-
rithm. Those 8 sets were computed with a different search radius dmax, which
started at 0 mm (non-bundled) for the first set and was increased in the fol-
lowing sets. The transition between the sets were very abrupt when visualized.
Since we want the user to visualize a smoother transition, we compute linear
interpolations of the tract sets. The Section 6.5.2 details the tract sets interpo-
lation. We typically computed 40 interpolated data sets out of the 8 original
data sets.

The second step is the intersections computation (2), which consists of com-
puting the intersection points of all the interpolated tracts with the surface S
represented as a polygonal mesh.

The last step is the visualization (3). This process is fed with the interpolated
bundling sequence, the intersections points, the surface S and the FA-image.
All those data are used to provide the user an interactive vizualisation used to
investigate the FTB behavior with respect to the anatomy.

6.5.2 Interpolating the bundled tracts

We were provided with 8 datasets, each containing a bundled tract set obtained
from FTB algorithm with different values of dmax. All the 8 datasets were
computed from the same original tracts sets. The first tract set has a value
of dmax = 0 mm, that is, the tract set is not bundled. The value of dmax was
increased for the next 7 files such that (dmax)i < (dmax)i+1, where (dmax)i is
the search radius used to compute the tract set with index i. We can use those
8 datasets as a bundling sequence of the same tracks set.

We wanted our visual tool to allow the user to smoothly visualize the transi-
tions of the bundling sequence. However, we had only 8 bundling levels and the
transition from one level to another were very abrupt. Therefore, we needed to
interpolate the 8 files in order to obtain smoother transition between the tract
sets.

In order to avoid heavy computation that could decrease the frame rate of
the visualization, we compute the interpolated tract sets offline, that is, we
compute a desired number of interpolated tracts (We typically computed 40
data sets out of the 8 data sets) and save them on disk as precomputed data
prior to the visualization.

An interpolated tract set for a given search radius dmax is computed as
follow. First we search the two tracts sets with index i and i + 1 that defines
the range bounding of dmax such that (dmax)i < dmax < (dmax)i+1. Once the
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bounding indices i and i+ 1 are found, we compute the interpolant t:

t =
dmax − (dmax)i

(dmax)i+1 − (dmax)i
,

where t ∈ [0, 1]. Then, the interpolated position for each vertex ~v is given
by the linear interpolation :

~v = (1− t)~vi + t~vi+1,

where ~vi is the position of vertex ~v in the tract set with index i.

6.5.3 Computing the intersections

A bundling sequence consists of several tract sets ordered by dmax. Each set was
computed using the FTB algorithm with a different value of dmax. Visualizing
those sets successively would results into an animation in which a non-bundled
tract set is progressively bundled as the bundling strenght increases. The user
is able to control the bundling strength interactively.

Changing the bundling strenght results in changing the position of the tracts,
and therefore the intersection with the surface S. Recomputing the intersections
points while the user is changing the bundling strength would cause an overhead
that would dramatically decrease the visualization frame rate.

In order to provide the user with a visualization tool that runs at an in-
teractive frame rate, we pre-compute the intersection points and save them on
disk. In this way the computation is not performed during the visualization and
therefore the visualization process is free from this overhead.

The intersection points are computed for each tract set resulting from the
interpolation process and for each surfaces (we typically have 40 interpolated
tracts set and the 3 surfaces resulting into the computation of 120 point sets ).

The computation of the intersection points of a tracts set T and a surface
S represented as a set of triangles is performed as follows. We search for each
triangle of S the potentially intersecting tract segments. In order to accel-
erate this search, we compute an octree covering the surface S. We use an
accelerating structure only for the tract set segments and not for the triangles
representing the surface S, because the number of the tract segments is very
large ( 2.0M) while the number of triangles is low ( 2k). Using two accelerating
structures would be an overhead considering the low number of triangles. By
using an octree covering S, the complexity of the searching of tracts segments
that potentially intersect a given mesh is:

O(t log(n)),

where t is the number of triangles and n is the number of tract segments. One
iteration consists of first searching the tract segments that potentially intersect a
given triangle. When this search is done, the intersection points of the potential
intersecting tracts segments with the given triangle are determined and saved.
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Then the iteration considers the next triangle. The iterations stop when all the
triangles of S have been processed.

The intersection points for each tract set and each surface S is computed
and saved to the disk as a preparation for the visualization.

Our implementation of this algorithm, running on a machine equiped with an
Intel(R) Pentium(R) 4 CPU at 3GHz and 1 Go RAM, computes in 12 minutes
the intersection points of a sequence of 40 bundled tract sets, each composed
of 2M of tract segments, with a surface composed of 1K triangles placed at 3
different positions.
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Chapter 7

Results

7.1 Displacement Analysis

FTB creates tract bundles by deforming the tracts locally. This is done by
changing the position of the points belonging to the tracts. We are interested
in how much the points are displaced from their original position.

In order to perform this analysis, we compute for each point ~v its difference
||~vi − ~v0||, where ~vj is a the position of the points ~v with the bundling index
j. The result of this computation is aggregated and presented as histograms
representing the displacement distribution (see Table 7.1) and as a statistics
table (see Table 7.2).
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Table 7.1. Vertex displacement distribution per bundled tract sets. The x-axis is the dis-
placement from original position (in mm) and y-axis is the number of vertices.

FTB index mean (mm) var (mm) min(mm) max (mm)
0 0.0000 0.0000 0.0000 0.0000
1 0.2072 0.0244 0.0000 1.9573
2 1.0082 0.3088 0.0000 4.2964
3 2.0089 1.1120 0.0000 8.0925
4 2.8551 2.3487 0.0000 11.6030
5 3.5489 3.6143 0.0000 14.6157
6 4.1193 4.6829 0.0000 17.1593
7 4.5832 5.6305 0.0000 19.2375

Table 7.2. Displacement statistics for 7 bundled tract sets indexed from 0 (non bundled) to
7 (highly bundled).

We observe that the displacement distribution follows a skew distribution.
The mean of the distribution increases as the bundled index increases, and so
for the variance.

The increase of the displacement with the bundling index is coherent with
the FTB algorithm. Since a larger index corresponds to a larger dmax, this
means that the points will be influenced by farther neighbor points and thus
the point displacements will be larger.

This analysis tells us how faithful FTB is in term of position. That is by
observing a bundled tract for a given dmax, we know that the original fibers are
located nearby the bundled tract with a probability given by its displacement
distribution. For example, with a bundled tracts at bundling index 3, we know
that the original fibers are not farther than 9 mm.
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7.2 Behavior w.r.t. FA image

We use a three-dimensional surface representing the surface of the brain, roughly
located within the space between the skull bone and the brain. This surface is
used at three different positions/scale: (1) slightly, (2) mediumly and (3) deeply
below the brain surface.

From a visual inspection, we conclude that FBT is anatomically consistent
with 30% of bundling. At this bundling scale we have a more abstract image
of the fiber tracts structure while the tracts are still located at the high FA-
values. When the bundling scale goes above 30% the fiber tracts become less
and less aligned with the FA-image, meaning that the fiber tract are no more
anatomically consistent.

From this we conclude that FTB offers a good abstraction of the fiber tract
structure, when the bundling strength is carefully controlled.

a b

c d
Figure 7.1. FTB scaling.
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Chapter 8

Conclusion

In this master project, we have evaluated the Fiber Tract Bundling (FTB)
technique by considering how faithful the bundled tracts are in terms of location
and shape. In order to perform this evaluation we developed a tool to visually
and interactively investigate the behavior of the FTB algorithm with respect
to the anatomy. The FA image was used as an anatomical reference since
it give information about the location of the fiber tracts. Through a visual
inspection using our interactive visualization tool, we found out that FTB gives
an abstraction that is coherent with the anatomy when the bundling strenght
is approximately at 1

3 of its maximum.
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