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Abstract. Variation in the abundance of species in space and/or time

can be caused by a wide range of underlying processes. Before such
causes can be analyzed there is a need of simple mathematical models

which can describe the observed response patterns. For this purpose
a hierarchical set of models is presented. These models are applicable

to positive data with an upper bound, like relative frequencies and
percentages. The models are fitted to the observations by means of
logistic and nonlinear regression techniques. Working with models of

increasing complexity allows to choose for the simplest possible model,

which sufficiently explains the observed pattern. The models are
particularly suited for description of responses in time or over major

environmental gradients. Deviations from these temporal or spatial

trends may be statistically ascribed to, for example, climatic

fluctuations or small—scale spatial heterogeneity. The applicability

of this approach is illustrated by examples from recent research. A
combination of simple, descriptive models like those presented in this

paper and causal models as developed by several others, is advocated

as a powerful tool towards a fuller understanding of the dynamics and

patterns of vegetational change.

Keywords: direct gradient analysis, fluctuations, logistic regression,

nonlinear regression, response curve, succession
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Introduction

Responses of organisms in space and/or time may be the consequence

of physiological limitations, of interactions with other organisms,

of human interference and so on. But, whatever the causes of a response,

there will be a need of simple mathematical models which can describe

the observed relationships. One of the classical and frequently used

models is the bell—shaped Gaussian response curve (Gauch & Whittaker

1972; ter Braak & Looman 1986) . However, usually there are no a priori

reasons to assume that organisms should respond in the form of such
symmetrical curves (e.g. , Austin 1976) . Austin (1990) discusses several

examples of skewed curves in relation to factors like temperature,
soil organic matter and total soil nitrogen. Succession series will
often yield asymmetric curves of species abundance versus time. In

particular, successions may proceed to a steady state of species
abundances. It can be concluded that response types will differ among

organisms and factors studied. Therefore, descriptions of the observed

relationships should incorporate the possibility to distinguish between

different response types.
Furthermore, many species will exhibit considerable variation around

the observed response. Relationships between fluctuations in the major

species composition of plant communities and fluctuating abiotic
conditions have been frequently observed (e.g. , Talbot, Biswell & Hormay

1939; Watt 1960; van der Maarel 1981; Cramer & Hytteborn 1987) . Only
a few studies, however, have examined and. quantified these relationships

througli statistical analyses (e.g. , Pitt & Heady 1978; van Tooren,
Schat & ter Borg 1983; Collins, Bradford & Sims 1987; de Leeuw, 01ff

& Bakker 1990) . Still fewer studies distinguished between long--term

trends and short—term fluctuations. If fluctuations in the species
composition are superimposed on major successional trends, statistical

detrending will often be required before fluctuating species abundances

can be related with, for example, fluctuating weather factors (e.g.

Cashen 1947; Hunt, Hope—Simpson & Snape 1985)

Species response curves may help both the examination and

quantification of suggested relationships. For this purpose, a

hierarchical set of descriptive models is presented. Examples illustrate

how these models may be used for the exploration of spatial and temporal

variation in species composition.
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The models

Qualitative presentation of the models

Percentages and frequencies, the data types often used in vegetation

science, impose a certain structure on the response models to be used.

For example, a linear relationship between percentage cover of a certain

species and an environmental variable cannot hold ad infinitum, because

the cover cannot exceed 100%. The models presented here are particularly

suited for such positive data types with an upper bound, like

frequencies, percentages and other positive data or which a maximum
M can be imposed. The models are ranked according to the increasing

complexity of biological information contained (Fig. 1):

I

M
MODEL

C

M
MODEL III

MODEL 'V

Fig.1: Aset of five simple response models, ranked by their increasing

complexity. Model I: no trend. Model II: increasing or decreasing trend.

Model III: increasing or decreasing trend bounded below the maximum
attainable response M. Model IV; symmetrical response curve. Model
V: skewed response curve.
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model I: no significant trend in space or time.

model II: an increasing or decreasing trend where the maximum is

equal to the upper bound N.

model III: an increasing or decreasing trend where the maximum is

below the upper bound N.

model IV: increase and decrease by the same rate

(symmetrical response curve)

model V: increase and decrease by different rates

(skewed response curve)

More complex models, like bimodal curves, will not be discussed here.

Data types with an upper and lower bound are inherently nonlinear.
Because this structure is a priori included in the presented models,

the models will certainly not be suited for all data. Plant biomass,

for example, may be limited by abiotic and biotic constraints, but
the data type itself, mass, is not limited by any maximum. For such

data, model II may be better represented by an increasing or decreasing

trend without any maximum than by our representation. Thus for data
types without a logical upper bound, it is advisable to develop another,

but analogous, hierarchical set of models.
Working with models of increasing complexity allows to choose for

the simplest possible model, which sufficiently explains the observed

pattern. In fact. this is just the normal approach in multiple regression:

an additional parameter is only incorporated if it can explain a

significant part of the remaining variation.

Specification of the models

The models of Figure 1 may be described by several different equations.

The skewed curve of model V, for example, may be fitted to high—order

polynomial functions, a power Gaussian equation (01ff & Bakker 1991)

a beta—function (Austin 1976) or the product of two logistic functions.

When descriptive models are considered, there are no a priori reasons

to assume that one equation should be better than the other. The validity

of descriptive models should be obtained from their applicability in

many situations. However, the possibility to attain values which are

unrealistic is an important objection against certain equations. A
curve describing changes in, for example, probability of occurrence
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should not be able to yield negative values or exceed one. Furthermore,

third- or higher order polynomials may yield biologically unrealistic

curves no longer restricted to the relationships of Figure 1.

The following consistent set of logistic equations can be used for

positive data with an upper bound N:

model I: y=M (1)1 +ea

model II: Y
=

(2)

model III: y = M 1 1
()l+e'" 1÷ec

model IV: y M 1 1
(4)1 + ea 1 + e'

model V: y = M 1 1
(5)

1 + 1 + eth

where b and d have opposite signs.

Y and x are the response and the explanatory variable respectively;
a, b, c and d the parameters to be estimated, and N a constant which
equals the maximal value which can be attained (e.g., for relative
frequencies N = 1, for percentages N = 100) . Note that model IV and
V are represented by an interaction of two logistic terms, where one

term describes the increasing part of the curve and the other term
describes the decreasing part.

Qualitatively, model IV may also be represented by a Gaussian logit

curve (sensu ter Braak & Looman 1986)

y=M 1
2

(6)
1 +

where c > 0.

For reasons of consistency with respect to the other models, we prefer

(4) to (6)
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Fitting the models

In this section, we discuss the regression techniques on which the

parameter estimates and appropriate choice of the models should be
based. A major distinction is made between the analysis of continuous,

quantitative data (least—squares regression) and binary, 'presence/

absence' data (logistic regression).

Since the presented models differ in the number of parameters to
be estimated, it can be tested whether an increase in the number of
parameters yields a significantly better fit. Model III and model IV,

however, contain the same number of parameters. Thus a choice between

these two models cannot be based on any significant improvement of
the fit. Whenever this choice is necessary, the model with the best
fit should be selected. All models should be calculated, since it might

happen that model V yields a significantly better fit than model I,
whereas model II, III and IV do not.

1. Continuous data:

For continuous, quantitave data types like percentage cover, the
parameters of the presented models can he estimated by nonlinear
regression. In nonlinear regression, just as in linear regression,
the residual sum of squares of observed response versus predicted
response is minimized. However, in contrast with linear regression,

there is no analytical solution for the minimum of the residual sum

of squares. Instead, the residual sum of squares is minimized by
iteration. A commonly used method (e.g., SAS 1988; SPSS 1990) is

Marquardt's (1963) algorithm, described in detail by Conway, Glass
& Wilcox (1970) . Numerical procedures for the estimation of parameters
by nonlinear regression might sometimes encounter local optima. If

the estimation of parameters is distrusted, the use of different starting

conditions in the iteration can be recommended.

The proportion of variance 'explained' by the model is given by

R2 = 1
- residual sum of squares (7)total sum of squares

where R2 is the coefficient of (multiple) determination. For nonlinear

models the usual tests for linear models are not exact, even under
the assumption of independent, homoscedastic normal errors. But in
large samples they are still fairly robust against nonnormality (Miller

1986) . Moreover, for percentages an arcsin(y/100) transformation might

improve the homoscedasticity of the data (Sokal & Rohif 1981; Miller

1986) . (In that case, M = arcsin() = 90 ) . Hence, since there is no

workable, reasonable alternative, we propose to use the F statistic
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(R9 — R1d) (N—J--K)FKNJK =

____________ __________

(1-R) K

with the usual tabulated critical values to test whether an increasing

number of parameters yields a 'significant' increase of R4:

(8)

where N is the total number of observations, R201d represents R2 of a

model with J estimated parameters and R2new represents R2 of a model with

J+K estimated parameters (e.g., Sokal & Rohlf 1981; Jongman, ter Braak

& van Tongeren 1987) . If this FKM.J.. is significant, the new model with

J+K parameters is chosen.

2. Binary data:

In many ecological studies only presence/absence or other binary

('yes/no') data are obtained. The observation is either 'present' (y=1)

or 'absent' (y=O) , thus the error structure is specified by the Binomial

distribution. The probability p that the object is present can be
estimated. A trend represents a change of p with a change of an
explanatory variable (Fig. 2)

•1

p

1¼

0

Fig.2: Fitting presence/absence data by logistic regression. The

probability of occurrence (p) is related to a certain variable x.
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In case of binary data, the parameters of a model are estimated by
logistic regression (e.g. , ter Braak & Looman 1986; Jongman, ter Braak

& van Tongeren 1987; McCullagh & Nelder 1989) . Logistic regression

minimizes the statistic —2LL (where LL stands for "Log—Likelihood")

also known as the deviance, by iteration. This statistic is given by

N

—2LL = —21ri(L) , (9)
ii

where N is the total number of observations, and L is the predicted
probability of observation i. Suppose, for example, that the probability

to find a certain species is predicted to be 0.8, then, when this species

is found L1 = 0.8, but when it is not found L1 = 0.2.
The use of —2LL itself for assessing the adequacy of the model is

usually not valid. But it can be tested whether addition of K extra
parameters yields a significant reduction of —2LL, because the reduction

of —2LL is asymptotically distributed as a XC distribution;
Xc = (2LLO1d) — (2LLnew) (10)

where —2LL01.. represents —2LL of a model with J estimated parameters

and —2LL represents —2LL of a model with J+K estimated parameters.

If this X is significant, the new model with J+K parameters is chosen.

It should be stressed that this approach is an approximation, it is
only valid if N is large (McCullagh & Nelder 1989)
Unfortunately, up to now statistical software packages like BMDP

(Dixon 1985) , SAS (1988) and SPSS (1990) only allow to estimate

parameters of equations (1) , (2) and (6) by logistic regression. As

an alternative, the parameters of (3) , (4) and (5) may be estimated

by nonlinear regression. But this is not an optimal solution, since
the residual sum of squares is minimized instead of —2LL. For binary

data, the CURVE module of VEGROW (Fresco 1991) minimizes -2LL of all

models by iteration. A commercial version of VEGROW is available upon

request from the last author.
For continuous data the proportion of variance 'explained' by the

model is given by R2. For binary data -2LL is used to discriminate between

the models. Unfortunately, however, —2LL does not give much insight
in the explained variation. A large value of —2LL cannot be considered

evidence of a poor fit (McCullagh & Nelder 1989) . Calculation of the

relative reduction of —2LL, analogous to (7) , is not very informative;

its value will usually be low because the observations ("0" and "1")

necessarily deviate from the values of p (O<p<1) . As an alternative,

we propose to use R after the data have been subdivided over several

intervals (see examples) . Then R2 can be calculated following (7) , where
the observed response is represented by the relative frequency in each

9



interval. Since the value of R' will depend on the interval division,

this is a rather subjective method. But calculation of R for binary
data may be useful when the model fits of different species responses

along the same gradient are compared. Annual plant species, for example,

will often exhibit more fluctuations around a major successional trend,

i.e. have a lower R2, than perennials.

Residuals

Many species will exhibit considerable variation around the observed

response. This may be due to sampling errors or to some stochasticity

in the studied phenomena, but also to variation of variables not included

in the model. Deviations from successional trends may be the consequence

of, for example, climatic fluctuations. Deviations from spatial trends

might indicate sm1all scale heterogeneity superimposed on major
environmental gradients. In order to investigate the possible causes

of such deviations, the influence of the trend must first be eliminated.

This can be performed by different methods (McCullagh & Nelder 1989;

SPSS 1990) . For linear models the residuals (the difference between
observed response and predicted response) are often used. If, for

continuous data, a data transformation has improved the homogeneity
of the error variance, then the residuals should be derived from the
transformed data.

For binary data, where the variance changes with the probability
of occurrence p, standardized residuals (SR) might be more appropriate:

residualSR=

______

, (11)
p(1-p)

where p represents the probability of occurrence predicted by the
calculated trend. Note that /p(1-p) is the standard deviation of a

binomial distribution with N=1.

These residuals may be correlated with the variables considered
responsible for the deviations from major trends.

Examples

In this section we will shortly discuss several examples from recent

research. All calculations were done using the CURVE module of VEGROW

(Fresco 1991), a program package developed for the analysis of vegetation

data, which follows the procedures described above.
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Temporal trends from continuous data: a hay field succession

In the Drentse Ac study area (The Netherlands, 53°NL, 6°40' EL) a

hay field succession was studied, which started after cessation of
fertilizer application. Fertilizer application was stopped in order
to restore former species—rich hay field communities, which were found

before agricultural practices were intensified (Bakker 1989) . Three
different fields are used in this example, in which permanent plots
of 2x2 m. have been recorded from 1972 onwards. Two fields had four
plots, while one field had two plots. Fertilizer application was stopped

in 1966 (one field) and in 1972 (two fields) , respectively. To account

for the different numbers of plots per field and to exclude

pseudoreplication (Hurlbert 1984) , the mean percentage cover per field

was used as the dependent variable, and age (years without fertilizer

application) was used as the independent variable. Percentage cover
was arcsin(fy/l00) transformed prior to the analysis, which improved
the homogeneity of the error variance considerably.

Table 1: The presented logistic models fitted on
continuous data of Ranunculus repens from the hay
field succession of the Drentse Ac (N=47) . Model IV

fitted significantly better than model I and model
II, model IV had a higher R2 than model III, and model
V did not fit significantly better than model IV.

Model R2 d.f.

I 0 46

II 0.002 45

III 0.075 44

IV 0.202 44

V 0.203 43

Model Test
Model tested

against
FKH

K

d.f.

N-J-K
p

IV I 5.58 2 44 < .01

IV II 11.07 1 44 < .01

IV III — — — —

V IV 0.05 1 43 > .1
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In Table 1 Ranuncu.lus repens is given as an example. Model IV fits
significantly better than model I and model II. As discussed above,
a choice between model III and model IV cannot be based on any
statistical significance, since they do not differ in the number of
parameters. But model IV has a much higher R2 than model III. Model
V does not fit significantly better than model IV. Therefore, model
IV is chosen. The calculated trends of Ranunculus repens and three
other species are given in Figure 3. From Figure 3a it is clear that
description of the decreasing abundance of Loliurn perenne by model
III, IV or V willnot increase our information. Model II is the simplest
model, which still sufficiently describes the observed successional
pattern of Lo.Zium perenne. Ranunculus repens increased towards mid—
succession and then decreased at the same rate (model IV) . Agrostis
capillaris and Ca.rex nigra started to increase later and did not show
any consistent change during the latest years of this succession series
(model III) . This succession has been studied in further detail on
the physiological (01ff 1992) and ecosystem level (01ff & Bakker 1991)

0 5 10 15 20 25 0 5 10 15 20 25

Age (years)
Fig.3: Percentage cover during the hay field succession at the Drentse
Aa (plotted on an arcsin(v'y) scale) . The calculated trends are based
on 47 observations (closed dots) from three hay fields. (A) Lolium
perenne (model II; R=O.59) , (B) Ranunculus repens (model IV; R2=O.20)
(C) Agrostis capillaris (model III; R'=O.46) , (D) Carex nigra (model
III; RL073)
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Spatial trends from binary data: a salt marsh gradient

On the Dutch island of Schiermonnikoog (5329! NL, 612'EL) the

vegetation along an elevational gradient on the salt marsh was studied.
Lower parts of the salt marsh are more frequently inundated by tidal
waters. A 11 x 51 meter grid was laid out, which was subdivided in
561 plots of 1 m2. In each plot, the three most abundant plant species
were recorded, which were referred to as the dominants of the vegetation.
Furthermore, the elevation of the centre of each quadrat with respect
to standard sea level (NAP, Dutch ordnance level) was determined. The
species data were interpreted as binary data (dominant or not) and
related to elevation. An example is given for the perennial grass species

Festuca rubra (Table 2, Fig. 4c) . As discussed above, for binary data
it is not valid to asses the adequacy of each model from —2LL itself
(i.e. the upper part of Table 2) . But reduction of —2LL provides a
method for testing the significance of additional parameters (i.e.

the lower part of Table 2) . Model V fits significantly better than
the simpler models.

Table 2: The presented logistic models fitted on
binary data of Festuca rubra along a salt marsh
gradient on Schiermonnikoog. Based on 561 plots
of 1 m. Model V had the best fit of all models
tested and all terms in this model significantly
reduced -2LL.

Model -2LL d.f.

I 767.1 560

II 766.4 559 .

III 766.3 558

IV 572.1 558

V 406.0 557

Model
Model
tested
against

—2LL
reduction

(Xi)

Test
d.f.

K

p

V I 361.1 3 < .001

V II 360.4 2 < .001

V III 360.3 1 < .001

V .

13



(cm. above mean sea level)

Fig.4: Probability of dominance along a gradient from the low salt
marsh to the high salt marsh of Schierrnonnikoog. Based on 561 plots
of 1 in2 (small closed dots) . The open dots indicate the fraction of
plots in which the species dominated, for each 10 cm. interval. (A)

Limonium vulga.re (model II; R2=0.76), (B) Glaux maritirna (model IV;
R20.94) , (C) Festuca rubra (model V; R2=O.62) , and (D) Elymus athericus
(model II; R2=0.99)

The calculated response curves of Festuca .rubra and three other species

are depicted in Figure 4. The curves were computed using the binary
data (small closed dots) . However, these binary data yield little
information on the fit of the curves. Therefore, the factor elevation
was subdivided in 10 intervals of 10 cm each. For each interval the
fraction of plots in which the species was dominant was computed (open
symbols in Fig. 4). This shows that there is good agreement between
the observed dominance fractions and the calculated trends. Limoniwn
vulgare dominated the lowest plots, and gradually decreased toward
the higher elevations (model II). Glaux marl tima showed an optimum,
relatively low on the gradient (model IV) . Somewhat higher, Festuca
rubra showed an optimum, which was clearly skewed (model V) . For this
species, we can hypothesize that its dominance along the gradient is
determined by different processes, resulting in such a skewed
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distribution. For salt marsh gradients in general it is thought that
the lower limits of species distributions are determined by the
physiological tolerances of species to extreme values of physical factors

(salinity, anaeroby) , while competitive interactions are considered
more important in determining the upper limits (Snow & Vince 1984)
E.lymus athericus dominated the highest plots on the gradient (model
II) and, in view of its plant height and clonal growth, could be one
of the species which has a competitive superiority over Festuca rubra
in this situation (Bakker 1989)

Trends and fluctuations during a primary succession

On the same island, Schiermonnikoog, a primary succession has been
studied (van Tooren, Schat & ter Borg 1983; 01ff, Huisman & van Tooren
subm. ) . In 1959 this succession was initiated with the building of
a sand dike, which sheltered a bare 'beach plain' with scattered young
dunes from frequent flooding by the North Sea. From 1972 onwards the
presence of all plant species was recorded yearly in 240 plots of 0.4
m. Thus the data set consists of binary data. The plots were subdivided
over different elevation classes ( 'Plains' , 'Slopes' and 'Dunes')
to account for the spatial variation. For each elevation class the
species responses in time were fitted to the presented models.
Furthermore, for each elevation class the yearly observed probability
of occurrence of each species was calculated, which represents the
fraction of the 0.4 m2 plots in which the species was actually observed.
Consider Sedum acre, a small perennial on the Dunes. Model V fitted
significantly better than the simpler models. As can be seen in Figure
5a, there is a close agreement between the yearly observed probability
of occurrence and the trend 'predicted' by model V. It is concluded
that Sedum acre first increased and then decreased, where the rate
of increase differed from the rate of decrease. In fact, the underlying
processes were different. First sandblowing may have prevented Sedum
acre from establishing. Later onwards small species such as Sedum acre
and Cerastium semidecandrum were outshaded by taller species,
particularly by the shrub Hippophae rhamnoides (01ff, Huisinan & van
Tooren subm.; Fig. 5b).
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0.4

0.2

0.0
72

HR

Fig.5: Probability of occurrence (p) on the Dunes of Schiermonnikoog
during primary succession. Based on 32 permanent plots of 0.4 m2.

(A) Sedum acre (model V; R2=0.95). Open dots indicate the yearly
observed probability of occurrence.

(B) Model II: AS = Agrostis stolonifera (R2=0.74), HR = Hippophae
rhamnoides (R2=0.98), PP = Pea pralensis (R2=0.90), and SA = Sonchus
arvensis (R2=0.88) , model III: AA = Amniophila arenaria (R2=0,73) , model
IV: CS = Cerastium semidecandrum (R2=0.80) , model V: SM = Sedum acre

(R2=0.95)
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The analysis of deviations from major trends is illustrated by the
same primary dune succession. During heavy storms in winter the Plains
can still be flooded by seawater, both from the north via openings
in the sand dike and from the south via the saltmarshes (the area may
be compared with a bath—tub) . Extremely high tides (see Fig. 6a) result
in the formation of many large gaps in the perennial vegetation of
the Plains. Several annual species, mainly halophyts, can establish
in these gaps. Thus superimposed on the successional trends, large
year—to—year fluctuations of these annual species were observed, which
was illustrated by their low R2 (see Fig. 6b for an example) . The
standardized residuals from the trends of many annual halophytes could
indeed be correlated with the maximal heights of the sea level (Table
3; Fig. Sc) . Furthermore, fluctuations of short—lived glycophytes were
negatively correlated with rainfall deficit in spring (Table 3) , where
the rainfall deficit is calculated as precipitation minus evaporation
according to Penman (1948) . In this study area, a high rainfall deficit
causes a low soil moisture content and an increased salinity (van Tooren,

Schat & tar Borg 1983) . Both low soil—moisture content and high salinity
have negative effects on the germination and establishment of most
of these short—lived glycophytes (Schat 1982)

Table 3: Partial regression coefficients of the standardized residuals
of the calculated trends against annual maximal height of the sea
level (F) , and rainfall deficit in spring (R) . Examples from 8 species
are given. Based on 18 years recording of a primary succession in
a coastal dune area. — = no trend calculated, because species occurred
in less than 4 years, n.s. = p>.O5, * = p<.O5, ** = p<.Ol

PLAINS DUNES

F R F •R

Halophytes

Salicornia spec. 0.61" n.s. - -
Spergularia spec. 0.68" n.s.

Suaeda maritima 0.63k n.s.

Atriplex prostrata 0.54t n.s.

Glycophytes

Centaurium puichellum n.s. —0.57k

Centauriumlittorale n.s. n.s. n.s.

Odontites verna n.s. n.s. n.s. 0.60*

Arenaria serpyllifolia — — n.s. —0.77"
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Fig.6: (A) '1nnual' maximal height of the sea level. All 'annual' highest

floodings occurred in the autumn and winter preceding the growing season;

years indicate these growing seasons.
(B) Probability of occurrence (p) of Spergularia spec. on the Plains

of Schiermonnikoog during primary succession (model II; R2=O.40) . Based
on 132 permanent plots of 0.4 m2. Open dots indicate the yearly observed

probability of occurrence.
(C) Correlation between standardized residuals of the calculated

trend of Spergularia spec. on the Plains (Fig. 5A) and annual maximal
height of the sea level (R2=0.46; N=15; p<.O1).
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Discussion

The calculated trends can provide much information. The type of
response, the maximal species response, the species optimum (i.e. the

value of the explanatory variable at which the species response is
maximal) and the skewness ofthe response can all be derived in a
standardized way. Often one is also interested in the response breadth

of a species (sometimes also referred to as "tolerance" or "ecological

amplitude") . It is obvious that model I, II and III can only indicate

the minimal response breadth. The symmetric Gaussian response curve,

model IV, provides an elegant measure of the response breadth analogous

to the standard deviation of a normal distribution (ter Braak & Looman

1986) . If, however, responses are skewed, as in model V, the choice

of an appropriate measure of the response breadth becomes rather
arbitrary in the sense that different measures may yield quite different

results. One might define response breadth as the interval length of

the explanatory variable along which the response remains above a certain

threshold value. This threshold value may be absolute (e.g., coverage

> 5%) or may be related to the maximal response attained by a species

(e.g. , coverage > 5% of maximal coverage attained) . Measures analogous

to Simpson's equitability index and Shannon's diversity index, derived

from information theory, have also been used (Levins 1968; Bazzaz 1987)

We prefer to use the threshold measures in view of their clearcut,
direct interpretation in terms of the explanatory variable.

The same set of equations was applied to three completely different

examples. In contrast, causal models usually require different equations

for different types of explanatory variables. But there is no objection

against application of the same set of equations to different

environmental gradients as long as the models are only used for
description.

The models were related to only one variable. This variable could
explain (in a statistical sense) most variation in the observed response,

and other variables were only introduced to account for deviations
from the trend. Description of the response by only one variable can

be useful even if the response might be determined by many underlying

processes, as for the successional response of Sedum acre or for the

spatial distributions of species along a salt marsh gradient. But the

models may also be extended to two or three different variables (see
Austin, Cunningham & Fleming 1984; Jongman, ter Braak & van Tongeren

1987) . This will be particularly useful if it may be assumed that only

a few variables are responsible for most of the observed variation.

Van Dam et al. (1986) / for example, used a multiplicative model analogous

to model V, where one term described the effect of habitat destruction
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and the other term the effect of air pollution. In our example of the

primary succession, a multiple regression could have been performed

with both time (x1) and elevation (x2) as the explanatory variables,

e.g.,

1 1 1 1.y=M
. (12)1+e6 l+e' 1+ec2 l+e

Unfortunately, skewed relationships with respect to only two variables

are already hard to analyze statistically, because of the great number

of parameters to be estimated. For this reason the permanent plots
of the primary succession example were subdivided over different
elevation classes, which reduced the regression problem to only one
variable, time. If one is interested in the explicit inclusion of many

variables, ordination techniques like canonical correspondence analysis

will be more appropriate (Jongrnan, ter Braak & van Tongeren 1987)
But a priori inclusion of many variables is no guarantee for a better

understanding of the actual response. Most ordination techniques use

very simple response models, such as the weighted average or the
symmetrical Gaussian response curve (model IV) . It should therefore

be realized what is more relevant in a particular situation: the broad

relationship with many factors, or a detailed description with respect

to one or only a few variables (see also ter Braak & Prentice1988).
Usually it is not known a priori whether the observed response will

indeed be a member of the five presented models. Bimodal curves, for

example, were not included. The qualitative shape of the response can

be examined by a simple plot of the observations, but also by the so—

called Generalized Additive Models (GAMs) recently illustrated by Yee

& Mitchell (1991) . GAMs are nonparametric models, based on smoothers,

which can suggest a particular shape of the response model. It can
be tested whether the unspecified smooth functions of a GAM can be
replaced by one of the parametric models presented in this paper. If

these parametric models are statistically allowable' then for reasons

of parsimony they are to be preferred (Yee & Mitchell 1991)
Curve fitting, for example by minimizing the residual sum of squares,

is an often used technique for the analysis of time series (Chatfield

1989) . However, the F and test, used to discriminate between the

five different models, assume independent error terms (e.g., Miller

1986) . Thus, for succession series, the choice of the most appropriate

model may be hampered by the biological and statistical dependence
of an observation in a given year on observations of the same object

in the previous years (temporal autocorrelation) . But this is not a

general objection against the use of regression techniques for the
analysis of succession series. Not seldom serial dependence of the
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residuals maybe assumed negligible, see for example Sedum acre (fig.5A)

Autocorrelation may also be reduced by combining data from different

fields with different ages, as in the hayfield example. Furthermore,

several statistical techniques have been developed to cope with
autocorrelation. Time—dependent patterns can be modeled by spectral

analysis (also known as Fourier analysis) or Box—Jenkins time series

analysis (Box & Jenkins 1976) if these patterns are parts of repeatable

'cyclic' events. Spectral analysis, for example, may be a valuable
tool for the detection of deviations from the normal tidal cycle. These

deviations may have profound influences on species composition and
can be correlated with fluctuations in species abundance analogous
to the methods described in the 'Residuals' section (01ff, Bakker &

Fresco 1988) . But spectral analysis and Box—Jenkins methods are primarily

used to detect and describe cyclic phenomena, while they are less
suitable for describing long-term trends superimposed on the cycli.

Often, however, species abundances along temporal or spatial gradients

will not show repeatable, cyclic patterns, but a 'simple' unimodal

response. Another approach might be to use tests for dependent data.

These tests are often modifications of the usual tests for independent

data corrected for the error dependence (e.g. , Miller 1986; El—Shaarawi

& Damsleth 1988; Clifford, Richardson & Hémon 1989) . Valid tests can

also be constructed by special schemes for permutation of residuals

that do not modify the autocorrelation structure (Besag & Clifford

1989; ter Break 1992)
The proposed approach offers the possibility to separate long—term

trends and short-term fluctuations. During the primary succession of

Schiermonnikoog, for example, the accumulation of nitrogen is considered

to be an important determinant of the successional dynamics, favouring

taller species in later, nitrogen—richer stages (01ff, I-iuisman & van

Tooren subrn.). But salinity, moisture content and flooding are considered

to be major determinants of the year to year fluctuations of short-lived

species (Table 3, Fig.6). Thus a standardized analysis of trends and
fluctuations can help both the examination and quantification of
suggested relationships. It has been repeatedly emphasized (e.g., Austin

1981; Likens 1989) that only long—term vegetation studies will be

suitable for such purposes.
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