
Object Grasping with the NAO

Egbert van der Wal
April 3, 2012

Master Thesis
Artificial Intelligence

University of Groningen, The Netherlands

Primary supervisor:
Dr. M.A. Wiering (Artificial Intelligence, University of Groningen)

Secondary supervisor:
Dr. C.M. van der Zant (Artificial Intelligence, University of Groningen)

2

Abstract

With autonomous robots becomingmore andmore common, the interest in ap-
plications of mobile robotics increases. Many applications of robotics include the
grasping and manipulation of objects. As many robotic manipulators have several
degrees of freedom, controlling these manipulators is not a trivial task. The ac-
tuator needs to be guided along a proper trajectory towards the object to grasp,
avoiding collisions with other objects and the surface supporting the object. In this
project, the problem of learning a proper trajectory towards an object to grasp, lo-
cated in front of a humanoid robot, the Aldebaran NAO, is solved by using machine
learning. Three algorithms were evaluated. Learning from demonstration using a
neural network trained on a training set of recorded demonstrations was not capa-
ble of learning this task. Using Nearest Neighbor on the same training set yielded
much better results in simulation but had more problems picking up objects on the
real robot. A form of Reinforcement Learning (RL) tailored to continuous state and
action spaces, the Continuous Actor Critic Learning Automaton (CACLA), proved
to be an effective way to learn to solve the problem by exploring the action space to
obtain a good trajectory in a reasonable amount of time. This algorithm also proved
to be robust against the additional complexity of operating on the real robot after
being trained in simulation, bridging the reality gap.

3

4

Table of Contents

Abstract 3

Table of Contents 6

1 Introduction 7
1.1 Related Work . 9

1.1.1 Domestic Service Robots . 9
1.1.2 Object Grasping and Manipulation 10
1.1.3 Behavior Selection . 12
1.1.4 Object Recognition and Pose Estimation 13

1.2 Research Questions . 15
1.3 Outline . 15

2 Robot Learning and Object Recognition 17
2.1 Grabbing System . 17

2.1.1 Object Recognition . 17
2.1.2 Grabbing the Object . 19
2.1.3 Parameter Optimization . 20
2.1.4 Self Evaluation . 21

2.2 Input and Output . 21
2.2.1 Input . 22
2.2.2 Output . 22

2.3 Learning from Demonstration . 23
2.4 K-Nearest Neighbor Regression . 24
2.5 Reinforcement Learning . 25

2.5.1 Methodology . 25
2.5.2 State Representations . 27
2.5.3 Actions and Policies . 27
2.5.4 Exploration Strategies . 28
2.5.5 Rewards and State Values . 29
2.5.6 State Transitions and the Q-function 29

5

2.5.7 Temporal Difference Learning . 29
2.5.8 Q-Learning . 30
2.5.9 SARSA . 31
2.5.10 Actor-Critic Systems . 31
2.5.11 Continuous Spaces . 31
2.5.12 CACLA . 32

2.6 Parameters . 32
2.7 Reward Function . 34
2.8 Performance Evaluation . 35
2.9 The Reality Gap - Evaluation on the Real NAO 35

3 Hard- and Software 39
3.1 Hardware . 39
3.2 Operating System and libraries . 41
3.3 Robot Software Architecture . 41

3.3.1 Main Software: The Brain . 43
3.3.2 Data Acquisition Modules . 44

4 Results and Discussions 47
4.1 Nearest Neighbor Results . 50
4.2 Learning from Demonstration Using an Artificial Neural Network 55
4.3 CACLA+Var with Random Networks . 56
4.4 CACLA+Var with Pre-trained Networks 58
4.5 Evaluation on the Real Robot . 60
4.6 Discussion . 62

4.6.1 Learning from Demonstration Using an Artificial Neural Network 62
4.6.2 Nearest Neighbor Regression . 63
4.6.3 CACLA+Var . 63

5 Conclusion and Future Work 67
5.1 Conclusions . 67

5.1.1 The Reality Gap . 67
5.1.2 Research Questions . 68

5.2 Future Work . 69

Bibliography 71

6

Chapter 1

Introduction

Autonomous robots have an increasing importance in society. As the possibilities in-
crease, they becomemore andmore useful in our lives, being able to assist us with tasks
of everyday live. Some commercial robots that perform useful tasks in daily live have
already been put on the market, such as the Roomba vacuum cleaning robot (Tribel-
horn & Dodds, 2007) or the Lawn-mowing-robot (Hagedon et al., 2009). While these
robots perform a valuable service to their owners, their abilities are very limited: they
are fully targeted at one specific task. The reasons for this are two-fold. Firstly, devel-
oping the software to control these robots is much simpler if the task to be performed
is simple and well-constrained. Secondly, the hardware costs can be reduced to select
all the actuators and sensors in a robot for one specific task instead of attempting to
account for all configurations.

Research on more general purpose robots has also seen much progress, although
few commercial products have been launched because most solutions are not perfect.
However, many tasks can already be performed by autonomous robots. Progress in the
research field of robots that can assist people in their daily living has been stimulated
over the last couple of years by the launch of a new league in the RoboCup (Kitano et al.,
1997) competitions: the RoboCup@Home (Wisspeintner et al., 2009, 2010), being or-
ganized since 2006. In these competitions, participating teams compete with self-built
robots that have to perform a selected set of tasks and are scored based on the per-
formance of their robots. Each year one RoboCup World Cup is organized but several
countries also organize local competitions allowing teams to benchmark before partici-
pating in the World Cup. These competitions focus the research of participating teams
on the relevant tasks required to score points.

Many tasks require that the robot is able to pick up and safely transport objects from
one place to another autonomously. To achieve this, the robot needs to have some kind
of manipulator mounted on it. Many forms of manipulators are available, such as the

7

LMS Mechanical Hand1 and Barrett Arm and Hand2. Most manipulators are aimed at
providing the best manoeuvrability to the end-effector. The downside is that usually
these agile robotic manipulators have been designed for research or industrial tasks,
making them large and unattractive to have on a robot meant to assist in a domestic
environment. The RoboCup@Home team of the University of Groningen3 instead uses
a combination of a wheeled robot, the ActivMedia Pioneer 24 with the humanoid robot
of Aldebaran, the NAO, mounted on top of it. The NAO has a cute appearance, and is
immediately appealing to non-technical people. One drawback of the NAO robot is that
severe constraints have been put on the size, configuration and strength of the actua-
tors. To keep in proportion with the rest of its body, the NAO only has short arms. Its
hands are controlled by one motor and therefore the fingers cannot be operated inde-
pendently. This strongly limits the abilities of the platform to pick up objects of different
sizes and shapes from different positions.

Controlling this kind of robot requires a whole new approach to be able to success-
fully grasp objects. Firstly and most importantly, the robot needs to plan a proper tra-
jectory for its arms to actually reach the object, avoiding the surface supporting it. Then,
it needs to clamp the object between its hands and lift it. Since the fingers of the NAO
have low strength and a moderately smooth surface, the range of objects that can be
picked up is small: only light, small objects with surfaces that are not too smooth can
be picked up as other objects will slip from the NAO’s fingers. Also, control has to be
very fine grained and specific to the exact situation. Discretizing the action space there-
fore severely limits the possibility of any learning system to obtain a proper solution to
the problem. Any learning system attempting to solve this problem must therefore be
able to cope with both continuous state and continuous action spaces. Also, the prob-
lem can be approached in two ways: estimating the correct angles for the joints directly
or estimating the angular difference between two successive states. The first approach
will be referred to as ’absolute angles’ in the rest of this thesis, while the second ap-
proach will be referred to as ’relative angles’.

This master thesis reports on the attempt to solve this problem using three forms of
machine learning. The first one is learning from demonstrations (Schaal, 1997) where
the controller of the robot is trained on demonstrations recorded when the hands of
the NAO were guided by a human towards the object. The second one uses the same
demonstrations in a much more direct way: K-Nearest Neighbor regression (Cover &
Hart, 1967). This compares the current state with all the states in the training set and
selects the bestmatching examples to generate the action. The third algorithm is a form

1www-lms.univ-poitiers.fr/article167.html?lang=en
2www.barrett.com/robot/products-arm.htm
3www.ai.rug.nl/crl/
4www.mobilerobots.com/

8

www-lms.univ-poitiers.fr/article167.html?lang=en
www.barrett.com/robot/products-arm.htm
www.ai.rug.nl/crl/
www.mobilerobots.com/

of reinforcement learning that is able to cope with both continuous state space and con-
tinuous action space: the Continuous Actor Critic Learning Automaton (Van Hasselt &
Wiering, 2007). This algorithm is an actor-critic system adapted for continuous state
and action spaces. Both reinforcement learning in general and the CACLA algorithm
will be discussed in-depth in section 2.5. There, a variant on CACLA that uses the vari-
ance of the TD-error to determine the number of updates to the actor calledCACLA+Var
will also be discussed.

Success is determined by the robot itself during training: when the hands are in an
appropriate location relative to the object this is considered a success. This feedback is
then used to continue training the system and increasing its performance. In the final
experiments on the real robot a human decided whether an attempt was successful or
not.

Results show that the artificial neural network trained on demonstrated trajectories
is unable to learn to perform the correct behavior, but that nearest neighbor regression
on the dataset does show excellent results in simulation. This method performs a lot
worse on the real robot. The results also show that Reinforcement Learning using CA-
CLA+Var is able to learn the correct trajectory from the starting position to the location
of the object. On the robot, a success rate even higher than the success rate in simula-
tion was measured.

1.1 RelatedWork

There are few publications on object manipulation on the NAO as of yet, but object
manipulation in particular and robotics in general has been subject to a lot of research.
Some of this research will be discussed in this section.

1.1.1 Domestic Service Robots

Robotics performing service tasks in a domestic environment have been in people’s
minds for a long time, as can be seen in many science fiction stories and movies. Over
the past few decades the feasibility of service robots has increased and more research
groups have started to do research in the field of robotics. The RoboCup is an inter-
national robotics competition founded in 1997 (Kitano et al., 1997), that aims to speed
up research and cooperation in robotics. The competitions are divided into multiple
leagues, each focusing on different applications such as soccer, rescue and simulated
robotics. In 2006, a new league was introduced, the RoboCup@Home (Wisspeintner
et al., 2009, 2010). This league aims at the application of many different applications

9

in robotics to construct an autonomous domestic service robot that is able to assist its
users in a domestic environment. The competition is formed by a set of tests that each
participating robot can perform to score points. Points are rewarded for performing
parts of each test to stimulate teams to participate even when their robot cannot com-
plete the full test yet. Tasks include welcoming guests, finding and retrieving objects
and recognizing people. Also, to stimulate any research relevant to the research field
there is a test in which the teams can showcase any interesting project they have been
working on in the Open Challenge. Since 2006, many teams have participated and also
published reports on their scientific contributions, e.g. Holz et al. (2009); Graf et al.
(2004); Chacón et al. (2011).

1.1.2 Object Grasping and Manipulation

Numerous researches have focused on object grasping and manipulation, benchmark-
ing grasps, grasp synthesis and object rotation. In the following sections, some of these
researches will be discussed.

Motor Control

While controlling motors of robots can be modeled explicitly, for example by recording
trajectories and executing these at a later time, this requires a lot of manual labor and
the result will only be applicable in situationsmuch like the one inwhich the trajectories
were recorded. A report on attempting to solve these problems using machine learning
is presented by Peters & Schaal (2008b). An approach to generate the building blocks
of movenent,motor primitives, is presented in Peters & Schaal (2006).

Grasping Novel Objects

An article by Saxena et al. (2007) reports on a research to grasp novel objects in a clut-
tered environment. While previous researches relied on detailed 3D-models of the ob-
jects to grasp, this research made no such assumptions. In their approach a 3D model
was built from vision. Using this model, possible grasping points were identified and
the points that were best reachable from the robot’s position were selected. Based on
this information and perception of the environment, a path was calculated for the robot
arm to successfully reach the object without hitting obstacles. While their approach
gave some good results, they acknowledge that their algorithm failed to find a pathwhen
there was much clutter around the object to grasp. Still, they report 80 percent success
rate in a test where the robot had to unload a dishwasher. They further investigated the
subject in a follow up paper (Saxena et al., 2008) where they accounted for more de-
grees of freedom, for example a robot hand with multiple fingers. In this case, not only
the grasping points on the object need to be selected, but also the appropriate position

10

for all the fingers while grasping the object. Using their new approach, they performed
several trials on grasping a set of objects of varying sizes from cluttered and uncluttered
environments. They report success rates from 90 to 100 percent for medium sized ob-
jects.

Opening Unseen Doors

Another research investigated the opening of unseen doors by a robot (Klingbeil et al.,
2008). In this case, a robot is moving through an unknown environment. In order to
access new locations, it is able to detect door handles or elevator buttons and recog-
nize how to manipulate those objects. They did impose a few constraints because their
initial approach gave many false positives. They incorporated, for example, the knowl-
edge that doors have at least one and at most two door handles. If there are two, they
are probably close to each other. Based on these heuristics, the robot was able to suc-
cessfully perceive the location of door handles. They used PCA on the 3D point cloud
generated from the image to determine theway tomanipulate the door handle: whether
it is a right-turning or left-turning handle. Their robot was able to open the door in 31
out of 34 experiments.

Properties of Objects

For manipulation tasks, certain properties of objects are very useful to increase perfor-
mance. For example, statistics such as weight, size and structure information are useful
to select the appropriate amount of force to exert and the location where the object can
be grasped. The friction between the object and the surface it is placed on is also an
important factor. The force required to displace an object on various surfaces can be
a useful statistic, which is what was measured in a paper by Matheus & Dollar (2010).
They measured the force required for the displacement of a set of objects occurring fre-
quently in daily live when placed on a set of common surfaces such as glass, granite,
stainless steel and others. Properties of objects can also be deduced by dynamic touch,
e.g. by shaking the object. In Takamuku et al. (2008) a research is presented that ex-
tracts additional information about the object by shaking it with different speeds. By
recording the sound the object makes while shaking it, they were able to distinguish
between a bottle of water, paper materials and rigid objects. Intra-category differences
were small while inter-category differences were large. However, the classification will
become harder when more types of object categories are added.

Trajectory Planning

In order to successfully grab an object, the manipulator must first be brought close to
the object and objects need to be avoided. A research byHsiao et al. (2011) reports on an

11

attempt to do this usingWorld-Relative Trajectories (WRTs). Theymodel the state and
action spaces into discrete belief states and end-effector trajectories in Cartesian space.
Using continuous updates of the belief states, they managed to increase the robustness
of the system. However, they did have to provide planned trajectories to work with
and also used inverse kinematics to execute the motions, requiring a precise kinematic
model of the actuators.

Grasp Synthesis

When the object has been approached, the correct locations to actually pick up or ma-
nipulate the object need to be selected. Different approaches are usable, such as learn-
ing from demonstration or automatic selection. In Daoud et al. (2011) an approach
using a genetic algorithm to optimize a grasp for certain objects is discussed. They
were able to synthesize correct grasping poses to pick up a set of objects using three
of the four available fingers on their manipulator, an LMS mechanical hand. Control
of multi-fingered robot hands has been studied in more detail in a reviewing paper by
Yoshikawa (2010). Different kinds of grasp synthesis methods are discussed, both for
soft and hard fingers. Soft fingers are harder to control as they can be deformed and can
thus be controlled less precisely. However, the deformation capability allows for more
firm grasping of certain objects by forming more around the object and by providing
more friction. A grasp pose can be tested by attempting to pick up the actual object.
However, estimating the quality of a grasp beforehand can lead to improved results. In
Cheraghpour et al. (2010), a method to estimate the quality of a grasp using amultiple
aspect grasp performance index is discussed.

Inverse Kinematics

Positioning the hands correctly to pick up an object has a strong relation with inverse
kinematics: the joint configuration of the arm to reach the object must be such that the
manipulator ends up near the correct coordinates in Cartesian space. While this prob-
lem can bemodeled and solved using equations, there are usually more than one way to
reach the same position and in that situation a decisionmust bemade which solution is
the best. An attempt to solve this problem without a model but by approximating it by
learning directly on the position level is presented by Bocsi et al. (2011). An approach to
learn the building blocks ofmovement,motor primitives, using reinforcement learning
is discussed in a paper by Peters & Schaal (2006).

1.1.3 Behavior Selection

The researches by Saxena et al. (2007) and Saxena et al. (2008) use a different strategy
than the research by Klingbeil et al. (2008). They first use little prior knowledge: they

12

estimate proper grasping points which are then used tomove the hand to the proper lo-
cation to grab the object. The latter research uses several trained strategies for opening
doors, where the optimal strategy was selected based on visual input. In the proposed
research the system needs to do a combination of both: it needs to select the proper
grabbing strategy based on recognition of object types. A method for selecting behav-
iors is reported by Van der Zant et al. (2005). This method implements exploration
and exploitation in a natural fashion. The success and failure rates of behaviors are
stored for each target. When a behavior selection is required, the system looks at the
confidence interval of each behavior for the selected target. By selecting the behavior
with the highest upper bound the system will explore when too little data is available
for the confidence interval to be small but will naturally switch to exploitation when
confidence intervals become smaller. This method was also applied in a bachelor thesis
by Oost & Jansen (2011), that reports on an effort to train the NAO to mimic grabbing
behaviors. The grabbing behaviors were selected inspired by how humans grab objects
and the NAO was trained to perform these behaviors on command. Using interval es-
timation, the best behavior for each situation was determined.

Another approach is presented by Van Hasselt & Wiering (2007). In this paper,
a Continuous Action Critic Learning Automaton (CACLA) is used to map continuous
input onto continuous output. This algorithm is an actor-critic system well-suited for
continuous state and action spaces by using a function approximator to learn both the
value function and the policy. By exploring the action space sufficiently, CACLA can be
used to optimize a policy to achieve the goal.

1.1.4 Object Recognition and Pose Estimation

Interpreting the data obtained from cameras is not an easy task. Many factors influence
the output such as lighting conditions and camera parameters such as exposure, gain,
white balance and resolution. Humans are able to recognize objects under extremely
varying circumstances robustly and much research has been devoted to achieving the
same level of performance of object recognition in machine vision. Because lighting
conditions vary, color values are usually not a robust indicator of object properties. So
far, the most robust properties of objects in camera images have proven to be descrip-
tors that describe the spatial organization of salient features of the images, which are
usually the edges in an image, as these are the easiest to detect and provide much in-
formation about the structure of the object. One algorithm that uses this information
is SIFT (Lowe, 2004), which detects the most stable features of an image under vari-
ous scalings and stores the direction of the edges as a descriptor of 128 values. While
this approach is reasonably robust and copes with rotations and scaling rather well, it is
relatively expensive to compute and the length of the descriptor results in long match-

13

ing times when there are many features in the database to compare with. A different
algorithm, also using spatial information, is SURF (Bay et al., 2006, 2008). This algo-
rithm results in descriptors of 64 values, using the Haar Wavelet responses. Also, the
features are all based on the same scaling by generating the Integral Image from the
original image to begin with (Viola & Jones, 2001). As a result, less time is required to
calculate the descriptors. Matching the resulting descriptors with a database of known
feature vectors is also more efficient because the feature vector is only half the size of
the feature vector used in SIFT.

Another method for object recognition is presented by Malmir & Shiry (2009). The
method described in this paper is inspired by the primate visual cortex. They imple-
mented a system performing roughly the same functions that the V2 and V4 areas in
the primate brain perform. In addition, the already established alternative for the V1
area, Gabor filters (Jones & Palmer, 1987) is used. While they do report optimistic re-
sults, they present results on just 6 images from a dataset which does not seem enough
to establish the quality of the method. Earlier however, Van der Zant et al. (2008) re-
ports on using biologically inspired feature detectors for recognizing handwritten text
in a handwriting recognition system called Monk. They used a model presented based
on Gabor functions, local pooling and radial basis functions, described in Serre et al.
(2007). They report an accuracy of up to 90% on a large dataset of 37,811 word zones.

Any object recognition method will benefit from better images. Instead of attempt-
ing to work with bad images, Lu et al. (2009) attempt to improve image quality by op-
timizing the entropy of the image, as entropy is a good measure of the amount of in-
formation available in the image. By adjusting certain camera parameters such as gain
and exposure time, they were able to improve the image quality significantly in several
hundred milliseconds.

Naturally, the processing speed of these algorithms automatically increases over
time by technological advancements resulting in faster hardware. However, the fea-
tures computed by the methods mentioned above are largely independent and only de-
pend on the direct surroundings of each pixel. Thismakes the features independent and
thus easily parallelizable. Therefore, implementations of both SIFT and SURF for use
on the Graphical Processing Unit (GPU) have been made. GPUs are extremely suitable
for highly parallel computations and can thus increase the processing speed tremen-
dously. Using these approaches it is often feasible to process complex scenes withmany
objects with almost real-time performance, making them extremely suitable for use in
domestic service robots.

While SIFT and SURF are reasonably robust against rotations in the image plane
and scaling, other rotations pose a problem. Therefore, the algorithmsneed to be trained

14

on several images of the object in several different poses. A 3D model of the object can
help to improve the training. Furthermore, because the descriptors of the objects are
independent, problems often occur when multiple instances of the same type of object
appear in the same image. An attempt to unite several algorithms to integrate images
frommultiple cameras of the same scene and 3Dmodels generated from images to rec-
ognize objects and estimate their pose in the real world ismade inMOPED (Collet et al.,
2011). Their results indicate reliable recognition, even ofmanydifferent instances of the
same object and in highly cluttered environments.

A different approach was taken by Kouskouridas et al. (2011). They detect objects
using their features as detected by SIFT or SURF. From this information, they form an
outline of the image, resulting in a binary image containing the general shape of the
object in the image plane. Using this information and a training set, they were able to
estimate the pose of objects successfully with good accuracy: a mean error≈ 3cmwhen
using SIFT and a mean error ≈ 5cm when using SURF.

1.2 Research Questions

In this thesis, one main research question and two sub-questions will answered:

1. “Can machine learning algorithms be used to control the joints of a humanoid
robot in order to grasp an object?”

(a) “Which of the evaluated algorithms, learning from demonstration, nearest
neighbor or CACLA, performs best on the task of grasping an object?”

(b) “Which form of control, the target angular values for the joints or the angu-
lar difference relative to the current state of the joints, is better suited for
machine learning?”

These questions will be evaluated on the results obtained from the experiments and
they will be answered in the conclusion of this thesis.

1.3 Outline

The outline of the remainder of this thesis is as follows. Chapter 2 will discuss the vari-
ous machine learning algorithms, such as learning from demonstration, reinforcement
learning and K-Nearest Neighbor. It will also discuss the object recognition algorithms
used in this research. Chapter 3 will give insight into the hard- and software archi-
tecture used to perform the research. It gives details about the geometry of the NAO

15

humanoid robot and about the software used to control it. Chapter 4 will present the
details about the experiments performed for this research and their results. The impli-
cations of these results will also be discussed in this chapter. Chapter 5 will conclude
the thesis and answer the research questions posed in the previous section. It will also
discuss what ends were left open and give suggestions for further research into the field
of robotic machine learning for motor control.

16

Chapter 2

Robot Learning and Object
Recognition

In this chapter, the setup of the project will be discussed. It has several sections, de-
scribing the methods utilized in the corresponding parts of the project. First, a generic
overview of the project is given, followed by the detailed overview of the individual
parts.

2.1 Grabbing System

Building on the hardware of the NAO and the robot architecture in use, the project
is naturally split into two parts: the object recognition as an external module, and a
higher-level behavior to grab an object. This higher-level behavior is split into three
sub-behaviors. The first sub-behavior finds out where the object to grab is located. The
second sub-behavior actuates the motors of the NAO to pick up the object. The third
sub-behavior validates that the object has indeed been picked up. The behavior archi-
tecture is shown schematically in figure 2.1. Each of these systems will be described in
more detail in the following subsections.

2.1.1 Object Recognition

In order to successfully grasp an object, some of its features must be known. Essential
features are its location and dimensions. Other information could also be useful. If a
model of the object is available, the Generalized Hough Transform (Ballard, 1981) is
able to find transformation parameters that give a best match in mapping the model
onto an actual image. This is much harder when there is no model available, which will
be the case when grasping unknown objects. If unknown objects should be recognized

17

Figure 2.1: The Behavioral Architecture of the Grabbing System

and labeled, feature detectors such as SURF (Bay et al., 2006) or SIFT (Lowe, 2004)
can be used. These methods result in a set of features which can be stored in an object
database. New observations can then be comparedwith this database to see if the object
can be recognized. Using this method, the system will be able to learn to recognize new
objects without user intervention, which is an appealing feature for this project. It will
be assumed that the objects are located in an uncluttered environment: for example
without any distractions on a table or in an organized, open closet. These limitations
are implied by the design of the NAO: it has relatively short arms making it harder to
avoid lots of obstacles. This lowers the demands on the object recognition algorithm.

For the initial experiments, a basic approach was taken, reducing the dependency
on the vision system in order to evaluate and optimize the grasping system first. The
system did not use any object recognition at all, but instead requires a human to locate
the object in the camera image and select it. The system then calculates the position of
the object in the real world based on the assumption that the object is always located at
16.5 cm in front of the robot. The arms of the robot are little over 20 cm so the robot
cannot reach further than around 18 cm in front of it. However, objects are usually
placed lower than the shoulders and this reduces the reaching distance of the NAO’s
arms because they also have to reach down. At around 34 centimeters height, around
its waist, the robot is able to comfortably grab objects that are 16.5cm in front of it.
Therefore, this distance was used for all experiments, even though the vertical position
of the object was varied.

In the final experiments on the robot it was attempted to actually recognize the ob-
ject using SURF descriptors and using these descriptors to estimate the position of the
object.

18

2.1.2 Grabbing the Object

Once an object has been detected and selected for grabbing, the second sub-behavior
obtains the dimension and position of the object from the first sub-behavior. The sec-
ond sub-behavior will interpret these data and try to find the right joint angles required
to position two hands at appropriate positions on the object.

Three methods will be used to generate the proper sequence of actions: learning
fromdemonstrations (Schaal, 1997)with artificial neural networks, learning fromdemon-
strations using Nearest Neighbor regression (Cover & Hart, 1967) and reinforcement
learning using the CACLA algorithm (Van Hasselt & Wiering, 2007). For the first two
methods, a large dataset has been formed containing 1000 demonstrations where the
NAO’s arms were guided towards the object, avoiding the surface supporting the object
in the process. For these demonstrations, much of the available data about the current
state of the NAOwas recorded, such as the angles of all the joints, measurements of the
accelerometers and the camera image from the active camera. The dataset was formed
by demonstrating how to grasp an object at four different heights. For each of those
four heights, roughly ten demonstrations were recorded where the object was moved
a small distance from the right side of the scene to the left side of the scene after each
demonstration. This results in roughly 40 demonstrations per object. Because the po-
sition of the object varied, the object was not always equally visible in each camera.
The camera whose field of view was closest to the object was used to look at the object.
For the lowest placed objects this was always the bottom camera while for the highest
placed objects this was always the top camera. Since both cameras are the same and
also share the same parameter settings, impact on performance by switching cameras
is minimal. The position of the object was always calculated in NAO Space, one of the
three spaces defined in NAOqi, the API for controlling the NAO. The other two spaces
are Torso Space andWorld Space. Torso Space is the space with the origin in the center
of NAO’s torso, with the Z-axis extending upwards along the spine. NAO space is the
space centered between NAO’s legs with the Z-axis pointing upwards. World Space is
initially equivalent to NAO space when the robot boots up. However, the World Space
has a fixed origin and orientation while NAO Space moves with the NAO. Because the
NAO’s feet did not move during the experiments in this project, NAO Space andWorld
Space were equivalent.

The second method, Nearest Neighbor regression, was implemented using the Fast
Library forApproximateNearestNeighbor (Muja&Lowe, 2009), a fast implementation
of the nearest neighbor algorithm (Cover & Hart, 1967) which can be used for regres-
sion on datasets.

The third method that was evaluated is the Continuous Actor Critic Learning Au-

19

tomaton, CACLA (Van Hasselt & Wiering, 2007). This method can be used with un-
trained, randomly initialized networks. Alternatively, the actor can be bootstrapped
with a network trained on the pre-recorded demonstrations. Using the trained net-
work can speed up training significantly but will also bias the results more towards this
initial solution. An untrained, randomly initialized networkmakes sure that there is no
bias and the action space is explored to obtain the best solution. In this research, both
a randomly initialized actor and a pre-trained actor were evaluated to compare their
performance. Also, not the default CACLA version described in Van Hasselt & Wiering
(2007) was used, but instead a variant on it presented in the same paper, CACLA+Var
was used. CACLA+Var differs from CACLA in that it uses the variance of the size of the
TD-error to determine the number of updates to the actor.

All training algorithms were used with the same set of outputs: the joint values for
the relevant joints. Each armof theNAOhas 6DegreesOf Freedom (DOF), but of these,
only five are relevant for grabbing objects with two hands. The last one is the joint con-
trolling the opening and closing of the hand. This joint does not add to the possibility
to solve the problem but it does extend the action space, making it harder to find a so-
lution. Therefore, that joint was ignored during training. The hand joints allow closing
of the hands but this is not useful for the objects used in this project as NAO’s hands
are too small to fit around these objects.

To reduce the search space even further, only one hand can be explicitly controlled.
The other hand can thenmirror themovement of the controlled hand. As grabbing usu-
ally involves a lot of similarity between the two hands, this is a sensible simplification.
The only additional limitation that this imposes is that the object must be centered in
front of the NAO before attempting to grab it. In practice, this is not a limitation, be-
cause the robot can solve this problem by performing a rotation or a few steps to the
side to change its pose relative to the object so that the object will be centered in front
of the robot.

2.1.3 Parameter Optimization

From this information, the next task is to find the best suited representation of each
state and the optimal set of outputs of the system that result in the best performance.
Because this kind of optimization is quite hard and tedious to do by hand and will also
take up a long time, a parameter optimization algorithm was used that was able to au-
tomatically generate new sets of parameters based on the performance of previous sets
of parameters and evaluate those sets. Given enough time to run, this method will find
nearly optimal parameters, much better than possible by hand. The algorithm used
by parameter optimization software was the Covariance Matrix Adaptation Evolution

20

Strategy (CMA-ES), presented in Hansen et al. (2003). This algorithm was combined
with a bandit using upper confidence bounds (Kocsis & Szepesvári, 2006) that always
evaluates the most promising offspring first to avoid evaluating bad performing off-
spring repeatedly to save time. The program evaluating the algorithms was developed
internally and tests were run to find the best methods to optimize sets of parameters
based on several experiments (Van derWal, 2011). The algorithmwas set up to vary the
input to the algorithm and the parameters of the algorithm such as the size of the hid-
den layer, learning rate, etc. From each configuration, the performance was evaluated.

To evaluate the performance, the dataset of 1000 demonstrations as discussed in
section 2.1.2 was divided into a training set of 70% of the demonstrations and a test
set of 30% of the demonstrations. The training set was used for training the algorithm
and then performance was evaluated on the test set. Afterwards, the set of inputs that
provided the best performance was used in further training. The parameters that were
optimized include the parameters of the artificial neural network used for learning from
demonstration and CACLA+Var, the inputs to provide to the system and the units of
those inputs (e.g. meters or centimeters).

2.1.4 Self Evaluation

To be able to learn and improve the grasping skills, the system needs to know whether
it was successful. The major part of training was performed while running in a robot
simulator, so approaches using the strain on the engines cannot be used. Therefore,
the algorithm evaluates the pose of the hands by calculating their position in Cartesian
space and the distance to the object. The goal state was defined as having the hands
close to the object, facing each other. When the robot reached this state, the attemptwas
considered a success. For experiments on the real robot, the evaluation of the grasping
attempt consisted of a human monitoring the trials and deciding when the hands are
in an appropriate position to pick up the object. Picking up the object then occurs by
moving the hands closer together and then moving the arms upwards. Success was
evaluated by checking if the object had actually been lifted.

2.2 Input and Output

This section will describe the input and output used in all the machine learning algo-
rithms evaluated in this research. The input represents the state the robot is currently
in and the output represents the action to take in the current state.

21

2.2.1 Input

The input must represent the state of the robot and the environment sufficiently to be
able to select the appropriate action in each state. It should therefore incorporate infor-
mation about the dimensions and position of the object that must be grasped. Without
this information, the system would not be able to find the correct location. Also impor-
tant is the current position of the arms of the robot. This information can be represented
in various forms, for example the current angles for each joint in the arms of the NAO
or the Cartesian coordinates of the hands of the NAO. The first form provides the most
information because multiple configurations of joint angles can lead to the same posi-
tion. However, the position of the hands has a more direct relation with the problem of
moving the hands towards the object of which the position is known, because the units
and dimensions for these numbers are equal. On the other hand, multiple configura-
tions of the joints can lead to the same position of the hands, so that possibly relevant
information is lost.

For the experiments in this project, the following set of inputs was used as a state
representation: the current angles of all 10 arm joints, the coordinate tuple (x, y, z)
describing the position of the center of the object in meters, relative to the robot, the
dimension tuple (w, h) of the width w and the height h of the object to grab in meters,
and finally the distance in meters from the left hand to the object and from the right
hand to the object, resulting in a total state representation of 17 inputs. These features
were selected because the empirical research using parameter optimization techniques
described in 2.1.3 suggested that the best results could be obtained by using these fea-
tures.

2.2.2 Output

The outputmust represent the suggested action for the robot to take in the current state.
Again, multiple formats can be used for this. The algorithm could output either angles
for the joints or Cartesian coordinates to which tomove each hand. The problem can be
approached in a local or in a global way. In the global approach, the algorithm outputs
the next exact angle configuration or position to move to. In the local approach, only
the difference with the current state or the direction to move in is output by the system.
The advantage by the local approach is that the meaning of the values are the same
in each state while they result in different state transitions. Because the relative move-
ment is limited to a small area theNAO is able to reach in one time step from the current
state, the system can much better exploit the available output range of the function ap-
proximator being used, giving it more opportunity to learn. To obtain a valid value for
the maximummovement of each joint, the 1000 grabbing demonstrations recorded for
this project, discussed in section 2.1.2, were analyzed. The difference in joint angles

22

between each time step was calculated. For each joint, the standard deviation of these
differences was calculated. To accommodate the majority of these differences the stan-
dard deviation σ was used. To standardize this over all joints, the largest value for σ for
all arm joints was used, which is the shoulder pitch. For the shoulder pitch, σ = 0.0574
was obtained, so a maximum change of angles of 0.0574 was set for all joints. This was
then scaled to the interval (−1, 1) to match the output space of sigmoid function of the
ANN.

2.3 Learning from Demonstration

Learning fromdemonstration (LFD) (Schaal, 1997) is amethod that can be used to train
a function approximator to perform some robot task. Recordings are made of demon-
strations by the human. These demonstrations should be performed with the same
hardware the algorithm should work on, except that now the control lies with the hu-
man. All relevant data is recorded thatmight influence the decisions the humanmakes.
When enough data is collected, a training set can be formed that formalizes the exact
input for each situation and the correct output for that situation. This training set can
then be used to train the function approximator. For this research, an Artificial Neural
Network (ANN) was used. Specifically, the open source software FANN (Nissen, 2003)
was used. This program is a highly optimized implementation of an ANN with sup-
port for various training algorithms such as back propagation (Rumelhart et al., 1986),
RPROP (Riedmiller & Braun, 1993), quickprop (Fahlman, 1988) and completely differ-
ent approaches to train neural networks such as cascade-correlation training (Fahlman,
1990) that dynamically adds new units to an already-trained ANN to improve the qual-
ity. It also has partial support for recurrent ANNs and adapted strategies to train them
(Pineda, 1987).

One additionalway to optimize the performance ofANNs is to use ensembles (Hansen
& Salamon, 1990). By using a set of similar networks having the same outputs, the gen-
eralization of the networks can be improved by averaging their outputs. This will reduce
bias of any of the networks towards any training set, assuming that the networks were
initialized with different random weights, and optionally have differing structures. In
the experiments for this project, both single ANNs and ensembles of ANNs were used
to test the performance.

The robot control module receives a set of inputs from the behavior system of the
architecture as described in section 2.1.2. These inputs consist of properties of the ob-
ject to grab and the current state of the motors. See section 2.2.1 for more information
about the inputs. The ANN is run on these inputs and produces a set of outputs. The
outputs represent the new position for the arms to bring it closer to the object. See sec-

23

tion 2.2.2 for more details about the output of the system. ANNs perform best when
their inputs and outputs are scaled to some limited interval, usually (−1, 1), the value
range of the symmetric sigmoid function usually used as activation function of ANNs.
The inputs and outputs are scaled to match this range. The output of the algorithm is
then used to control the NAO’s joints.

Using the parameter optimization program discussed in section 2.1.3, the parame-
ters for the ANN were determined. The best results were obtained with batch training
using back-propagation with a learning rate of 0.0001. The networks consist of three
layers, one input layer, one hidden layer with 200 hidden units and one output layer.
The networks were trained on the dataset for 30,000 epochs, at which point the train-
ing error stagnated.

2.4 K-Nearest Neighbor Regression

The problem described is to obtain an action based on the current state of the system:
at least involving the current angles. This output is continuous and can therefore be
regarded as a regression problem. One non-parametric way to solve a regression prob-
lem with a dataset is the Nearest Neighbor (NN) algorithm (Cover & Hart, 1967). This
algorithm relies on the fact that similar inputs will usually lead to similar outputs. So,
when input is fed into the system, it compares this input to all the known samples and
finds the closest example using a distancemeasure, for example the Euclidean distance.
The output of this trained example is then used as the answer. The algorithm can be
generalized to K-Nearest Neighbor (KNN) where not just the closest neighbor but the K
nearest neighbors are considered. The output of the algorithm can then be interpolated
between these nearest neighbors. Since a dataset was collected for this research to train
the ANN described in the previous section, a natural option to solve this problem is to
use KNN on the dataset. Since finding the nearest neighbor in a large dataset such as
this one can take a long time, one can settle for the approximate nearest neighbor, also
sometimes confusingly referred to as ANN. For this research, an approximate nearest
neighbor algorithm was used, FLANN1. FLANN is a highly optimized implementation
of this algorithm, described in Muja & Lowe (2009). For this implementation, the “au-
totuning” setting was used for FLANN, meaning that it automatically tries to find the
best possible parameters for the database while building an index. Once the index was
built, the nearest neighbors can quickly be obtained by matching the current state with
the dataset, and an interpolation based on the distance to each neighbor can be made.
Empirical research showed best results forK = 3. Using more neighbors increased the

1www.cs.ubc.ca/~mariusm/index.php/FLANN/FLANN

24

www.cs.ubc.ca/~mariusm/index.php/FLANN/FLANN

performance only slightly but added strongly to the processing requirements of the al-
gorithm and therefore K = 3 was used. However, for completeness, K = 1, where the
output is determined entirely by the nearest neighbor, was also evaluated. For K > 1,
the output was determined using a weighted average of the nearest neighbors. If dx is
the Euclidean distance from the actual input state to training sample x, the weight wi

for each of the nearest neighbors was calculated as follows:

w0<x≤K =

(
K∑
i=1

di

)
− dx (2.1)

After all the weights have been calculated, they are normalized to sum up to 1. The
resulting weights are then used to calculate the output at time t, Xt by the outputs of
each sample, Yi for 0 < x ≤ K:

Xt =
K∑
i=1

wiYi (2.2)

2.5 Reinforcement Learning

Reinforcement Learning (RL) is an online training method that can be used to teach
an agent to perform a certain task. The main requirement is that the task can be for-
mulated in terms of states, actions and rewards, and that the total rewards received
are maximized when the agent performs the target behavior. The following sections
will introduce the RL methodology and provide an overview of the various available al-
gorithms of RL. For a detailed overview of reinforcement learning algorithms, see e.g.
Sutton & Barto (1998).

2.5.1 Methodology

Reinforcement Learning formulates a problem using three elements: states, actions
and rewards. An agent needs to act in a certain environment. The agent is the entity that
must make decisions. The agent does not necessarily, and most often does not, equal
the physical agent for which reinforcement learning is implemented. In reinforcement
learning, the agent solely consists of the decisionmaking system. All other factors, such
as sensors and actuators are considered part of the environment. In essence, the agent
consists of all elements of the problemwhich it can directly influence. The environment
consists of all other factors. The agent can influence the environment only by means of
the selected actions.

25

The task of a reinforcement learning algorithm is to select an action that is to be
performed in the environment. The agent bases its decision on a summary of the envi-
ronment: a set of features that contains the most relevant available features about the
environment. This set is called the state or state description. The state description can
contain low level features such as raw readings from sensors or higher level features
such as interpreted readings or external information about the problem. It does not
necessarily need to contain all relevant information. The state could be partially hid-
den in a card game for example, where the agent does not know which cards the other
players have even though this information would be very useful for the decision. The
agent always is forced to deal with the available information and make the best deci-
sions given this limited set of information.

Based on this state representation, the agent selects an action from a possible set of
actions. It then performs this action in the environment. As a result, the environment
changes, and thus the state representation of that environment. The transition from
one state to another state resulting from an action occurs with a certain probability. In
stochastic settings one action executed in a certain state can lead to multiple following
states, each with their own probability. To accommodate for this, the agent needs to
maintain the set of transition probabilities for each action in each state. A specific case
of problem settings is the deterministic setting where the transition probability of one
state to another is always 1, and 0 to all other states. Executing an action and reaching
a new state can provide the agent with a certain reward. In reinforcement learning, the
reward is the single most important instrument to instruct the agent what to do. Usu-
ally, a reward is given for reaching the goal state. Rewards can also be used to instruct
the agent what not to do. For example, in board games, a negative reward can be given
each time a piece is captured by the opponent, or when the game is lost. If the agent
has to drive a car, collisions should be awarded with a negative reward.

Based on the above information, the agent selects an action. Because a reinforce-
ment learning agent is never instructed with the correct action to take, there are two
strategies for selecting an action thatmust be alternated sufficiently to allow the agent to
learn a proper strategy: exploitation and exploration. Exploitation is using the agent’s
knowledge of which action is good in the current state. If an agent exploits its knowl-
edge, it will take an action which is known to lead to high rewards. But because the
agent usually has not tried all possible actions it cannot know the expected rewards of
all possible actions. Therefore it needs to explore regularly by performing an action
which is not the current best known action. By trying this action the agent will learn
the expected rewards of this action and if it is better, it can adjust its strategy to increase
the probability of selecting this action in the future.

26

2.5.2 State Representations

As mentioned, state representation of the environment must convey as much relevant
information as possible but it should be as concise as possible. Furthermore, reinforce-
ment learning algorithms assume that the state has the Markov property: the current
state contains all the information necessary to select the next action. If knowledge of
past states is required to make a decision, this information should be summarized in
the current state in the most optimal form. Usually, the way the current state has been
reached is not relevant, only the effect it has on the current state is important. For ex-
ample, if the car driving agent must avoid collisions, it does not need to know all the
changes of speed and heading in the past, but only the current speed and heading. For-
mulating the state representation appropriately is essential for the performance of the
agent. When the state representation does not contain enough relevant information
the agent will not be able to make the best possible decision. Having many irrelevant
details in the state representation increases the number of possible states and therefore
the complexity of the problem.

Of course, in this way, the state representation is a snapshot of the environment
at a certain moment. In a reinforcement learning system, time is usually sliced into
discrete elements, time steps. At each time step, the state representation is formulated
again from the environment. The state representation at time step t is usually indicated
by st ∈ S, where S is the set of all possible states.

While RL assumes the Markov property, this does not necessarily need to be the
case exactly. A near-Markov state representation is good enough for RL algorithms to
perform satisfactory.

2.5.3 Actions and Policies

Actions are the one way for a reinforcement learning agent to influence the environ-
ment. The output of the algorithm can be a decision on the type of action to take in a
certain situation, a value from a discrete set of numbers appropriate for the problem or
a continuous function. Some reinforcement learning algorithms only handle discrete
actions where the set of possible actions is limited, while others also handle continuous
action spaces. For the first type of algorithms, continuous functions have to be dis-
cretized at a set level that gives enough flexibility in the actions to take without making
the action space too large to handle. The action selected at time t is usually indicated
by at ∈ A(st), where A(st) is the set of possible actions in state st.

The set of actions to take in each state together form the so-called policy, usually
indicated by π. The task of a reinforcement learning system is to optimize the policy to

27

select the best possible action in each state, which truly returns the highest reward. The
policy that accomplishes this is called the optimal policy, usually indicated by π∗.

2.5.4 Exploration Strategies

Exploiting the best known action is called greedy. A possible approach to mix exploita-
tion and exploration is ε-greedy. In this approach, the agent selects an action at random
from the set of possible actions in each state with probability ε as exploration, and the
best known action, the greedy choice, with probability 1 − ε. While this allows for ex-
ploration, the action is selected completely random which might not always be the best
approach. Another possibility is to arrange the possible actions by the current estimate
of the expected future rewards received after performing each action. The probability of
each action is then based upon their rank meaning that the best action has the highest
probability to be selected, while the action with the least expected rewards has the low-
est probability to be selected. This method is called the softmax method (Bridle, 1990).

A more sophisticated but mathematically more complex method is to use interval
estimation to select an action (Kaelbling, 1993). For this method, not just the expected
rewards for each action must be kept track of, but also the confidence interval for a set
percentage, usually the 95% confidence interval indicating that the rewards of this ac-
tion will lie between the lower and the upper bounds of the confidence interval with a
probability of 0.95. If the action has only been attempted a few times, the confidence
interval will be large, while for actions that have been tried numerous times, the con-
fidence interval will be small. To select an action, the agent could then select not the
action with the highest expected rewards, but the action with the highest upper bound
of the expected rewards. The action with the highest upper bound has a chance to be
more rewarding than the action with the highest expected reward. By performing this
action, the agent can update the confidence interval and the expected rewards of this
action and thus explores the action space.

If the action space is continuous, meaning that there is an unlimited set of possible
actions, another strategy for exploration is Gaussian exploration (e.g. Van Hasselt &
Wiering, 2007). Because continuous actions are usually numeric, exploration can be
achieved by selecting the action from a Gaussian distribution with a mean equal to the
action that is deemed best by the agent in the current state. The rate of exploration
is then determined by the standard deviation σexploration of this Gaussian distribution:
the larger the standard deviation is, the more the agent will explore. Also, the standard
deviation could be gradually decreased during training to reduce exploration after the
agent has had sufficient training. Of course, this same method could also be used for
the other exploration strategies.

28

2.5.5 Rewards and State Values

As mentioned, one of the most important elements in a reinforcement learning system
is the reward function, as it informs the system what situations are desirable. The task
of the system is to improve the policy so that the agent obtains the highest reward. The
reward received in state st+1 after executing action at in state st is indicated by rt+1. The
best situation for the agent is not to obtain the highest reward in any single state. In-
stead, the best situation is to obtain the highest cumulative reward in all future states.
However, it is not optimal to keep all the future rewards in mind when selecting an
action. Rewards in the near future should be valued higher than equal rewards in the
distant future to make sure the agent performs optimally. To accomplish this, future
rewards have to be discounted based on how far in the future the reward is expected to
be received. For each time step the reward is multiplied by a certain discount factor,
indicated by γ. So, a reward received 10 steps in the future would be valued in state st
as rt+10 ∗ γ10. This is the basic notion of a value: the way for a reinforcement learning
to look into the future. The state of each value represents the discounted expected fu-
ture rewards. By selecting the action that most likely leads to the state with the highest
expected rewards, the agent performs a greedy action.

With this information, the value of the state can be formalized as V (st), giving the
value of each state. During training, the value of each state is updated to match the true
value of that state. Because the expected rewards received depend on the policy π, the
value function also depends on π. The optimal value function that gives the expected
rewards when acting according to the optimal policy π∗ is given by V ∗(st). Because the
value of each state represents the cumulative discounted rewards of all future states,
V (st) can be formulated recursively as follows, where E is the expectation operator:

V (st) = E {rt+1 + γV (st+1)} (2.3)

2.5.6 State Transitions and the Q-function

As each action at results in a change of state from st → st+1 and yields a reward rt+1,
each state-action pair can be given a value representing the future rewards obtained.
The function assigning this value to a state-action pair is called theQ-FunctionQ(st, at).
Where V (st) emphasizes the reward obtained executing any action according to a policy
π, Q(st, at) focuses on the value of the action.

2.5.7 Temporal Difference Learning

An approach to learning the state values iteratively is Temporal Difference Learning,
introduced in Sutton (1988). The idea of Temporal Difference learning is that at each

29

time step a Temporal Difference Error (TD-error) is calculated which is the difference
between the current value of a function and the new estimate of the current value of that
function at a certain time step. For reinforcement learning, this could be applied to the
learning of the value function V (st), by updating the function with the newly calculated
value function according to equation 2.3. If, in state st action at is selected which yields
the reward rt+1 and leaves the agent in state st+1, a new estimate of the value of state st
can be made by calculating the TD-error δV (st) as follows.

δV (st) = rt+1 + γV (st+1)− V (st) (2.4)

The TD-error can then be used to update the value of state st:

V (st)← V (st) + αδV (st) (2.5)

Here, α refers to the learning rate used to control the size of the updates performed.
This value should not be too large, because updating towards one sample usuallymeans
updating away from another sample, and the systemneeds to generalize between all the
samples. The value should not be too small either because then learning will be slow.
Equation 2.5 is called the TD(0) update rule (Sutton, 1988). This rule updates the state
values in place, assuming that the value st+1 is a good estimate of the value upon which
the new value for state st can be based. By using Temporal Difference Learning, the
value function V (st) gets updated iteratively and will converge to its true value when
the number of iterations approaches∞.

2.5.8 Q-Learning

An algorithm that aims to learn the Q-function of a certain problem is Q-learning, pre-
sented in Watkins (1989). This method defines the Q-value in terms of the reward ob-
tained by executing the action and the future reward obtained by executing the action
with the highest Q-value in future states. Using the TD(0) rule, the Q-value can be
trained iteratively according to the following function for the TD-error:

δQ(st,at) = rt+1 + γmax
a

Q(st+1, a)−Q(st, at) (2.6)

This TD-error can then be used to update the value of taking action at in state st:

Q(st, at)← Q(st, at) + αδQ(st,at) (2.7)

Where α is once again a learning rate to control the size of the updates performed
to the Q-function.

30

2.5.9 SARSA

A modification of Q-learning was presented in Rummery & Niranjan (1994) and later
dubbed SARSA in Sutton (1996). SARSA focuses on the transition from a state-action
pair to the next state-action pair while obtaining a reward in the process. The result-
ing sequence results in the name SARSA: st, at, rt+1, st+1, at+1. The difference between
SARSA and Q-learning is that SARSA does not build on the action in state st+1 with the
highest Q-value, but instead uses the action in state st+1 that is selected by π. This could
either be an explorative or a greedy action.

2.5.10 Actor-Critic Systems

Themethods described above depend on either the values obtained from the value func-
tion V (st) or on the Q-values obtained from the Q-function Q(st, at) to select the next
action to take. By updating the value of the state or state-action pair, the policy may or
may not select a different action when it encounters the same state again. A different
approach is explored in Barto et al. (1983) that has a separate structure implementing
the policy π, the so-called actor. The actions taken by the actor are evaluated by the
critic, which represents the value function. This means that while the actor should be
influenced by the values generated by the critic, it does not necessarily use the value
assigned by the critic to select the next action. This separation has advantages in sit-
uations where the action space is extremely large or continuous as selecting an action
does not necessarily involve evaluating the expected rewards of all possible actions but
instead depends on the precise implementation of the actor. A paper by Peters & Schaal
(2008a) describes an actor-critic system using a gradient updatemethod called natural
actor critic. They show that the traditional actor-critic is a form of a natural actor-critic.

2.5.11 Continuous Spaces

Discrete state and action spaces allow to implement the value and transition functions
as lookup tables from which the state or state-action values can be obtained and up-
dated. Many problems are not discrete however, and the number of states is usually
extremely large. The value function can be regarded a function that maps a set of nu-
merical features to a value for that state. The true structure of this function is almost
always unknown. Any function can be approximated using a function approximator
(FA) that attempts to learn the patterns in the input data to correctly predict the corre-
sponding output. Examples of function approximators are Artificial Neural Networks
and decision trees. These FAs take the continuous input and use it to generate an es-
timate of the correct output. The TD-error can then be used to update the function
approximator after each action.

31

2.5.12 CACLA

Actor-critic systems can also be implemented for continuous state and action spaces.
A function approximator can be used for both the actor and the critic, where the critic
outputs a single value evaluating the current state, while the actor yields a set of values
representing the action to take. One implementation of an actor-critic system in con-
tinuous spaces is CACLA (Van Hasselt & Wiering, 2007), the Continuous Actor Critic
Learning Automaton. The main feature that distinguishes CACLA from conventional
actor-critic systems is that the update to the actor is equal regardless of the size of the
TD-error. Instead, the TD-error is used only for the decision whether to reinforce the
actor or not. If δV (st) > 0 then the action generated by the actor is reinforced, otherwise
it is not. The claim is that this makes the algorithm less sensitive to scaling of the value
landscape and also makes it easier to overcome plateaus in the value function: if the
value only increases very slightly, the actor will still be updated to select that action.
One variant of CACLA, also presented in Van Hasselt & Wiering (2007), does take the
TD-error into account to some extent. This variant is called CACLA+Var. A running
average is maintained of the TD-error over all states:

vart+1 = (1− β)vart + βδ2t (2.8)

After each TD-error of an action has been calculated, the number of times that ac-
tion is reinforced is determined by the TD-error divided by the standard deviation of
the TD-error of earlier actions. This requires a starting value for var0 and a value for β,
where var0 should not be too low to avoid updating often early in learning, when var0
is still a large factor in vart. In Van Hasselt & Wiering (2007), CACLA was compared
to two other algorithms that deal with continuous state and action spaces: Wire Fitting
(Baird et al., 1993) and Gradient Ascent on the Value (Prokhorov & Wunsch, 1997) on
a tracking task where the agent has to follow a moving target and a Cart Pole Balancing
task where the agent has to apply force to a cart with a pole attached to it which must
remain upright. For both problems, CACLA and CACLA+Var performed well, and CA-
CLA+Var showed quicker converging than regular CACLA. When Gaussian noise was
used as exploration strategy, it outperformed all other algorithms while it performed
roughly equal to Wire Fitting in the case of ε-greedy exploration. These good results
motivated the application of CACLA+Var to the higher dimensional problem of con-
trolling a robot arm to grasp an object.

2.6 Parameters

The CACLA algorithm has a number of parameters. The first one is the discount factor
0 ≤ γ ≤ 1 which indicates how important the future is. The larger this value, the more
the system looks ahead to future rewards. If this value is small, only rewards in the very

32

near future are considered relevant. In practice, varying this parameter does not affect
the outcome much, but since the goal of the project is to reach a goal situation, the fu-
ture is deemed rather important. An estimate of a good value for γ can be calculated
based on the average time expected to reach the goal. Based on the demonstrations
of grabbing poses that were recorded as part of this project, the average duration of
each demonstration was 25 seconds. While the demonstrations were performed rather
slowly to generate more fine-grained data, learning algorithms may need more time to
explore the action space. Therefore, an upper limit of 60 seconds was used. Because
a frequency of 10Hz was used in the robot architecture, 60 seconds correspond to 600
time steps, so a reward received 600 steps in the future must still be relevant in the cur-
rent state. As a baseline a factor of 0.1 for a state 600 time steps in the future is used,
resulting in γ600 ≈ 0.1, or γ = .11/600 ≈ 0.9962.

Also, two learning rates are required, one for the critic, α, and one for the actor β.
These values should be small to avoid overshooting on the correct values when updat-
ing the networks. Therefore, an initial value of 0.05 was used for both networks. The
learning rates were updated by multiplying with a factor 0.999 after each episode to
make them decay over time. This allows the system to learn quickly in the beginning
but converge to an optimal solution over time. These values were determined by many
intermediate experiments with various values for these parameters. Larger initial val-
ues for the learning rate or lower decay of the learning rates often resulted in failure
to reach a working solution to the problem, while lower initial learning rates require
longer to train the system. A smaller decay factor will result in the learning rates con-
verging to 0 too soon, stopping learning completely in an early phase.

When using Gaussian noise, a standard deviation σexploration is required to sample
from the Gaussian distribution. To decrease exploration when training progresses, a
large initial value of σexploration = 2 was used, which decayed over time. After each
grasping attempt, σexploration was reduced:

σexploration ← σexploration ∗ 0.999 (2.9)

After several hundred episodes of training this value will slowly decrease to 0, but
since the output of an ANN is deterministic, it is useful to keep some noise on the output
to keep the system dynamic. Therefore, a lower bound of 0.2was enforced on σexploration.

Two more parameters must be set for the CACLA+Var algorithm: the initial value
for the moving variance var0 and the factor β with which new values for the TD-error
are incorporated into the moving variance. Since the system will receive the same re-
ward in most non-final states, the size of the TD-error will be small. An initial value
of var0 = 1.0makes sure that initially most TD-errors will be smaller than the moving

33

variance and will result in just one update of the actor. A value of β = 0.001 was used,
as this will result in approximately halving the influence of any value for the moving
variance in around 600 time steps, or 60 seconds, the maximum duration of time steps
enforced in the final experiments. Higher values of β led to too much fluctuation in the
moving variance and lower variancemakes themoving variance stabilize toomuch over
time, resulting in hardly any additional updates at all.

To stimulate the robustness of the system, an additional layer of noise was added at
the final output of the algorithm. The algorithmnever knows about this noise and there-
fore never knows the actual command executed. This noise was also Gaussian noise
with a standard deviation of σnoise = 0.01 during training. The experiments were per-
formed with two different values for σnoise: 0.01 and 0.05, to test the robustness against
noise of the system.

2.7 Reward Function

The value function given in equation 2.3 can be rewritten as the sum of a geometric
series:

V (t) = γ0rt+1 + γ1rt+2 + γ2rt+3 + ... (2.10)

FANN, the function approximator that was used for the experiments has a linear
output function that is limited to the interval (−300, 300). This information can be used
to set the maximum reward that can be given in each state to avoid saturating the value
function by calculating the sum of the infinite geometric series:

∞∑
k=0

γka =
a

1− γ
(2.11)

with a as themaximum reward. For this project, γ = 0.9962was used as is explained
in section 2.6. Using this formula and the value for γ, a can be calculated:

a = 300 ∗ (1− γ) = 1.14 (2.12)

So, any reward in a non-final state should not lie outside the interval (−1.14, 1.14).

To keep the implementation simple, a simple reward function is required that for-
mulates the desired behavior with as few separate cases as possible. For the problem
at hand, negative situations are collisions with the environment or the robot itself and
positive situations are reaching the goal as quickly as possible without hitting anything.
Therefore, a large positive reward is awarded when the robot arms reach their goal. A

34

negative reward is given when the robot collides with its environment or its own body.
This is decided by performing collision detection between the bounding box of the robot
itself, the surface supporting the object and the position of the hands of the robot.

Furthermore, for each time step a negative reward of−0.3a is given, with a the max-
imum reward at each time step, motivating the system to find the shortest possible path
to the goal. Finally, a reward of 300 is given for reaching the goal location which is hav-
ing both hands touching the object, with the hands at roughly opposing sides of the
object.

After this situation has been reached, the robot attempts to actually pick up the ob-
ject by moving the hands closer to each other and then moving them upwards.

2.8 Performance Evaluation

The system was evaluated by attempting to grab objects from a selected set of different
objects from various locations and orientations. The evaluation will take place after the
algorithms have been trained in simulation on randomly generated objects of varying
dimensions and positions.

Evaluation consists of moving the hands together and upwards. If the location of
the hands was correct, the object should be fixed between the two arms and the upward
movement should have lifted the object. During training, the object was simulated and
just having the hands in the correct position was used to determine success. In the final
evaluation on the real robot, success was determined by a human observing if the robot
has correctly picked up the object.

2.9 The Reality Gap - Evaluation on the Real NAO

As robots are expensive and limited in processing capacity, often researchers rely on
simulations of the world and the robot to perform their experiments. However, what-
ever works in simulations usually will not work withoutmodifications when using a real
robot in the real world. This is called the reality gap (Jakobi et al., 1995). The tremen-
dous advantages of simulations however can be of great help to validate new approaches
to robot learning problems. This research is no exception to that rule. In order to eval-
uate many different parameter settings and conditions, experiments will have to be run
on a simulated robot that makes it possible to evaluate the performance without de-
ploying it on a real robot. For the experiments in this research, the best performing
algorithms will be evaluated on a real robot with the best performing setups for these

35

Figure 2.2: The objects the algorithms were tested on: a cup, a can, a bottle, a package
of Pringles, a stuffed toy, a carton of milk, a computer fan and a coffee pad tin.

36

algorithms. The simulator models the object to grasp as a box with a random width be-
tween 8 and 10 centimeters and a height between 8 and 10 centimeter, randomly placed
in front of the robot, at a random height between 34 and 37 centimeter. Theses values
agree with the capabilities of the NAO: it cannot handle much larger and thus heavier
objects, and smaller objects are more effectively handled using one hand, which is not
the focus of this research.

Performance on the real robot will be tested on a set of 8 different objects of varying
sizes and shapes: a small disposable cardboard cup, a 330ml soda can, a 0.5 liter plastic
bottle, a package of Pringles, a stuffed toy, a carton of milk, a computer fan and a coffee
pad tin. For each object, 10 attempts will be made to see if the robot is able to pick up
the object. To be able to localize the object, the robot will be trained to recognize the
object based on SURF features, using 5 training images per object. The set of objects is
shown in figure 2.2. Using this dataset, the robot was able to easily recognize the cup,
the can, the bottle, the Pringles and the milk carton. Recognizing the stuffed toy, the
fan and the coffee pad tin was more difficult during testing. When it failed to recognize
these objects, a small rotation of the object was sufficient to get the correct angle and
lighting conditions in order for the robot to recognize the object and start its grasping
attempt.

37

38

Chapter 3

Hard- and Software

The project was run on a PC and an Aldebaran NAO humanoid robot, using a software
architecture designed for a robot participating in the RoboCup@Home competitions.
In the following sections, details about the hard- and software used in the system will
be presented.

3.1 Hardware

The experiments were performed on an Aldebaran NAO humanoid robot, version 3.2.
The robot is 573.2 mm high and 273.3 mm wide. From scapula to the end of the hand,
the length of the arms is 290mm. Detailed information about the geometry of the NAO
can be found in image 3.1.

The training of the robot was performed using the actual dimensions of the robot.
Therefore, the resulting methods will not be immediately usable on a different version
of NAO or on a different humanoid robot. However, the dimensions are parameters to
the training algorithms and in no way hard coded. Therefore, repeating the experiment
using another robot should be fairly straightforward and require few modifications.

For image recognition, the two cameras inside NAO’s head were used. These cam-
eras are VGA cameras producing a video stream of up to 30 Hz. Both cameras have a
horizontal field of view (FOV) of 47.8 degrees and a vertical FOVof 36.8 degrees and use
the YUV422 color space. However, hardware and processing limitations imply that the
full quality and frame rate of the cameras could not be used. Instead, the video stream
was downscaled to 160x120 with 10 frames per second. The cameras have a fixed focus
and have a focus range of 30 centimeters to infinity 1. The placement of the two cameras

1The minimum focus range of 30 cm advertised for the camera does not not pose any problems in
practice, even though the distance towards the object is usually less than 30 cm: the object remained in
focus during the experiments

39

(a) Front view (b) Top view

Figure 3.1: Geometry of the NAO.
Source (05-03-2012): www.aldebaran-robotics.com/documentation/nao/hardware/kinematics/

nao-links-32.html

Figure 3.2: The placement of the cameras in NAO’s head.
Source (05-03-2012): www.aldebaran-robotics.com/documentation/nao/hardware/video.html

40

www.aldebaran-robotics.com/documentation/nao/hardware/kinematics/nao-links-32.html
www.aldebaran-robotics.com/documentation/nao/hardware/kinematics/nao-links-32.html
www.aldebaran-robotics.com/documentation/nao/hardware/video.html

is such that they do not overlap, there is a gap of 5.2 degrees between the two fields of
view. The first camera is facing straight forward and the second camera faces down 40
degrees. See image 3.2 for more details.

The NAO is equipped with a 500MHz x86 processor from AdvancedMicro Devices,
Inc. Because of the limited processing capacity of this processor, all data processing
was performed on a separate desktop PC with an Intel Core i5 processor, running a 32-
bits version of Debian GNU/Linux. The NAO collects all the data and transmits this
over a wired network connection to the PC, which processes the data and sends new
commands to the NAO.

3.2 Operating System and libraries

The NAO was running the Aldebaran NAO Software version 1.10.52 during the experi-
ments.

The software architecture used runs on a 32 bits version of Debian GNU/Linux. The
architecture itself was written in Python and is targeted at Python version 2.6, but will
run in Python 2.7. For image processing the OpenCV library 2 was used. The artificial
neural networks that were used in the systemwere implemented using FANN, Fast Arti-
ficial Neural Network 3. For the generation of randomnumbers andGaussian noise, the
NumPy package 4 was used which provides many strongly optimized numerical meth-
ods for use in Python.

3.3 Robot Software Architecture

The system was deployed on a behavior based architecture (Arkin, 1998) , developed
by the BORG team 5, a robotics team of the University of Groningen competing in the
RoboCup@Home competitions (Wisspeintner et al., 2009). The architecture was writ-
ten in Python. This section will describe the design of this architecture.

The architecture consists of one central core, the Brain, and a set of modules per-
forming data acquisition, which can be run onmachines separate from the one running

2opencv.willowgarage.com/
3leenissen.dk/fann/wp/
4numpy.scipy.org/
5www.ai.rug.nl/crl/

41

opencv.willowgarage.com/
leenissen.dk/fann/wp/
numpy.scipy.org/
www.ai.rug.nl/crl/

F
igu

re
3.3:

A
n
overview

of
th
e
softw

are
arch

itectu
re.

42

the Brain. The following subsections will provide more information about how they
operate and interact. An overview of the system can be seen in figure 3.3.

3.3.1 Main Software: The Brain

The Brain itself consists of a set of controllers, each controlling a part of the whole sys-
tem and a central storage facility, the memory. The task of the Brain is to initialize the
system, read the configuration and run the system at a set frequency. After setup, the
Brain runs its main loop at a specified frequency, requesting updates from each con-
troller sequentially. We generally use a frequency of 10Hz, and this value was also used
in this research.

The Memory

The Memory is a central storage mechanism where all parts of the Brain can store and
retrieve information. Each entry in the memory has a name in order to categorize the
information available. Specific functions are available to retrieve the most relevant in-
formation necessary, such as obtaining the last observation of one specific category of
information, or checking whether one type of observation has occurred at all or in the
recent past. A typical query would be:

memory.is_now(’person_visible’, {’name’: ’John’})

which would evaluate to True if a person is currently visible which is recognized as
John. Similarly, is now could be replaced with was ever to check if the robot has ever
seen John for as long as it has been running.

Body Controller

The Body Controller is in control of the body of the robot. In this specific project, this
contains themodules connecting to and controlling the NAO. It reads out sensor values
from the NAO’s joints and actuates the motors. It connects to the NAO using the SDK
supplied by Aldebaran, NAOqi.

Our body controller has support for other robots, such asActivMedia’s Pioneer robots,
but these were not used in this project.

Sensor Integrator

The Sensor Integrator is a controller that collects data from the external sensors, such as
cameras, microphones, sonars and other equipment. It mainly consists of a networking

43

architecture setting up communication with the external modules to send commands
and receive observations from them. All the data obtained from the external modules
is gathered and stored in the Memory, to be used by behaviors.

Behavior Controller

TheBehavior Controller is where the behavioral logic takes place. It selects the behavior
to run based on the configuration or the current state of the robot, such as the presence
or absence of certain stimuli. The selection of behaviors is realized through the use of
pre-conditions and post-conditions. These conditions are evaluated by the Memory to
check if they are true, in the way described above. As soon as a pre-condition becomes
true, the behavior controller will activate the behavior. As soon as the post-condition
becomes true, the behavior controller will terminate the behavior.

There are high-level behaviors and low-level behaviors. The low level behaviors will
actually actuate the robot and use the readings provided by the Sensor Integrator. An
example could be a behavior to find an object in the room. Such amodule would use the
readings from a module recognizing objects to see if the object is currently in view, and
if it is not, it could move the robot around until it is in view. High-level behaviors will
not use such direct actions, but will use sub-behaviors to perform the required action.
A behavior to serve drinks to a guest could, for example, consist of a behavior to find
the guest, a behavior to ask the guest which drink the guest wants, a behavior to find
the kitchen, a behavior to pick up the drink that the guest wants, a behavior to navigate
back to the person and a behavior to give the drink to the guest. Each of these sub-
behaviors would encapsulate the necessary low-level actions to accomplish the task at
hand. The high-level behavior’s job is then to make sure that each sub-behavior com-
pletes successfully, and if it does not, find a way to work around the problem or report
back to the user that the task was impossible.

3.3.2 Data Acquisition Modules

The robot architecturewas developed to obtainmaximumperformance on a distributed
system. Therefore, each of the modules can be run on any machine that is accessible
through a network by the Brain. This allows for easy scalability: if more processing
power is required, one could easily add a new PC or laptop to the system. Because the
data acquisition is usually very demanding on processing power while the behavior sys-
tem is not, the system is able to utilize all available resources optimally.

Themodules are configured in the configuration of the Brain and started by the Sen-
sor Integrator. If any module fails for some reason, it is automatically terminated and

44

restarted. This greatly improves the overall stability of the system. Also, multiple in-
stances of the same module can be run using different parameters to tune the results
for some specific task. For example, two instances of an object recognizer could be run,
each trained on a different set of objects.

The modules most directly interact with the sensors, such as the 3D sensor, sonars,
video cameras or microphones. They also process the data to perform object or speech
recognition. While most modules of this system are also written in Python this is not a
strict requirement and we do have other modules written inMatlab, Java and C++. For
example, our speech recognition is in JAVA. We have a person tracking module using
Matlab and we handle point clouds from our 3D sensor using a C++ library.

For this project, one module was used to capture the video stream from the NAO
and localize the object to grab in the image. To accomplish this, the module extracts
SURF features (Bay et al., 2006) from the image and matches them with the features
calculated on a set of objects trained on. If an object is recognized, themodule sends the
observation and the position in the image to the grabbing module which then attempts
to grab it.

45

46

Chapter 4

Results and Discussions

This chapter will describe the experiments and report on their results. Various algo-
rithms are compared. First, all algorithms are trained if necessary, and then evaluated
for 250 trials on randomly generated objects in simulation. Afterwards, the algorithms
that performed adequately in simulation were tested on the real robot, for 80 trials in
total, or ten trials for each of a set of eight objects.

Five different algorithms are compared in the following sections. The five algo-
rithms are:

1. 1-Nearest Neighbor on the dataset

2. 3-Nearest Neighbor on the dataset

3. Learning from Demonstration using an Artificial Neural Network

4. CACLA+Var with random initial actor

5. CACLA+Var with actor pre-trained on dataset

Each of these algorithms has parameters. For 1-NN and 3-NN, the most important
factor is the value for K, which is tested at K = 1 and K = 3 as the names indicate.
For the other settings, the autotuning option of FLANN was used which automatically
tunes the behavior of the algorithm to the provided dataset. The parameters for the
ANN used in Learning From Demonstration are summarized in table 4.1. The param-
eters for CACLA+Var algorithm are summarized in table 4.2. For CACLA+Var with a
pre-trained actor, the actor network, originating from the learning from demonstration
using an ANN, was updated to match the parameter settings listed in table 4.2. It is im-
portant to note that for all experiments, the system was put into testing mode. This
means that no learning occurred, and all updates to the system were disabled. Since
CACLA+Var is the only of the algorithms tested that uses on-line training, this does not

47

Parameter Value
Inputs 17
Hidden Units 200
Outputs 5 or 10
Learning rate 0.0001
Activation function Symmetric Sigmoid
Training method Back-propagation
Initial weights (-0.1, 0.1)

Table 4.1: Parameters for the Artificial Neural Network used for Learning fromDemon-
stration. The values for these parameters have been discussed in section 2.3.

Parameter Value
Inputs 17
Hidden units 200
Outputs Critic 1
Outputs Actor 5 or 10
Critic Activation Function for Hidden Units Symmetric Sigmoid
Critic Activation Function for Output Linear ∈ (-300, 300)
Actor Activation Function for Hidden Units Symmetric Sigmoid
Actor Activation Function for Output Symmetric Sigmoid
Actor Learning Rate Initial: 0.05 Min: 0.001
Critic Learning Rate Initial: 0.05 Min: 0.001
Learning rate discount factor, applied after each episode 0.999
Discount Factor 0.9962
σexploration Initial: 2.00 Min: 0.2
Exploration discount factor, applied after each episode 0.999
β for updating variance 0.001
var0 for initial variance 1.0
Number of training episodes 1500
Reward for reaching goal 300
Reward per time step -0.342
Reward for collisions -1.14

Table 4.2: Parameters for CACLA+Var. The values mentioned for the parameters here
have been discussed in section 2.6.

48

affect the other algorithms. For CACLA+Var this means that each subsequent trial is
not dependent on the previous trial. If learning were enabled, one trial might lead to
updates of the system that influence the next trial. The same holds for the experiments
on the real robot.

For this research, experiments were performed using four different setups:

1. control both arms, using absolute angles

2. control both arms, using relative angles

3. control the left arm and have the right arm mirror the left arm, using absolute
angles

4. control the left arm and have the right arm mirror the left arm, using relative
angles

Each of the following sections will describe the results of one of the five algorithms
on the four different setups. Different numbers of runs were used for the algorithms,
because they differ in their approach and requirements.

For learning from demonstration, training uses the same data set for all runs but
this data set is split randomly into a training set and a test set. To achieve significant
results, several different distributions over the training set and the test setmust be used
to test all the data in many different combinations. 20 independent trainings on this
dataset were performed for each of the four setups. Additionally, the twenty trained
networks were combined in sets of four to form an ensemble which was also evaluated
for 250 grasping trials. These five additional trained systems resulted in a total of 25
different systems trained using learning from demonstration.

For Nearest Neighbor, no training is required. Therefore, the results of each run
should be nearly identical for the same settings, only depending on the randomly gen-
erated objects. Therefore, less variation in the results was expected and therefore just
five runs of 250 grabbing attempts were evaluated per setup.

CACLA+Var has more random factors that are different for each run of the algo-
rithm. These additional random factors are the initial weights of the actor and critic
neural networks and the random exploration. Therefore, a larger number of runs is
required to average over these factors and increase the statistical significance of the ex-
periments. For this reason, twelve independent runs of CACLA+Var were executed and
each resulting system was evaluated for 250 grasping attempts.

49

For CACLA+Var with a pre-trained actor, the ANNs trained for the evaluation of
Learning from Demonstration were used. The four trained networks per PC were com-
bined in an ensemble and used in that way as the actor of the system. Because the
training then still relies on the random exploration, the system was started four times
with the same pre-trained ensemble to average over this. Since 20 networks were avail-
able, this resulted in 20 evaluations of the pre-trained CACLA+Var.

Each trained algorithm was evaluated 250 times on a randomly generated object in
simulation, between 8cm and 10cm in width and height, located on a centered position
in front of the robot, between 34cm and 37cm high and 16.5cm in front of the robot. The
histograms list the number of time steps required until the goal state was reached. Time
steps correspond to actions for the robot. When running on the robot, each second is
split in ten time steps. In simulation, up to 450 time steps were evaluated every second.

The statistical details of the various experiments are presented in table 4.3 for con-
trol using absolute angles and table 4.4 for control using relative angles. The table lists
the mean µ, the standard deviation σ and the upper and lower bounds of the 95% confi-
dence interval for each of the experiments. The numbers refer to the success rate of the
algorithms, so that 1means 100% success and 0means 0% success. All algorithms listed
were ranN times, each time attempting to grab an object 250 times, and the success rate
listed in the table is the average of the results of each of those runs.

4.1 Nearest Neighbor Results

In these simulations, 3-Nearest Neighbor and 1-Nearest Neighbor give similar perfor-
mance in four of the setups, while 3-Nearest Neighbor performs a lot better in three
of the remaining four setups, and 1-Nearest Neighbor performs better in the last setup.
Here, only the graphs for 3-NN are shown, but the graphs for 1-NN show similar shapes
and numbers. The results of 3-Nearest Neighbor Regression when controlling one arm
using absolute angles in simulation are shown in figure 4.1. The first histogram shows
the distribution of the number of time steps required to reach the goal statewith σnoise =
0.05 while the second histogram shows the same information when using σnoise = 0.01.
In both cases, each attempt resulted in reaching the goal state. Figure 4.3 shows the re-
sults when using relative angles for the same two values for σnoise. When using relative
angles, this resulted in 118 successes for σnoise = 0.05 and 541 successes for σnoise = 0.01.
Similar figures for when controlling both arms can be seen in figure 4.2 for absolute an-
gles (885 and 976 successes for both noise levels) and figure 4.4 for relative angles (11
and 1 successes for both noise levels).

50

Algorithm Arms σnoise N µ σ 95% CI LB 95% CI UB

CACLA Left 0.01 12 91.4% 27.0 pp 74.4% 100.0%
CACLA Pre-trained Left 0.01 20 2.5% 1.1 pp 2.0% 3.0%
LFD Left 0.01 25 0.0% 0.0 pp 0.0% 0.0%
1-NN Left 0.01 5 100.0% 0.0 pp 100.0% 100.0%
3-NN Left 0.01 5 100.0% 0.0 pp 100.0% 100.0%
CACLA Left 0.05 12 91.8% 26.8 pp 74.9% 108.6%
CACLA Pre-trained Left 0.05 20 4.5% 1.9 pp 3.6% 5.3%
LFD Left 0.05 25 0.0% 0.0 pp 0.0% 0.0%
1-NN Left 0.05 5 100.0% 0.0 pp 100.0% 100.0%
3-NN Left 0.05 5 100.0% 0.0 pp 100.0% 100.0%
CACLA Both 0.01 12 0.0% 0.0 pp 0.0% 0.0%
CACLA Pre-trained Both 0.01 20 0.0% 0.0 pp 0.0% 0.0%
LFD Both 0.01 25 0.0% 0.0 pp 0.0% 0.0%
1-NN Both 0.01 5 42.2% 5.1 pp 36.4% 48.0%
3-NN Both 0.01 5 78.2% 9.7 pp 67.0% 89.4%
CACLA Both 0.05 12 0.0% 0.0 pp 0.0% 0.0%
CACLA Pre-trained Both 0.05 20 0.0% 0.0 pp 0.0% 0.0%
LFD Both 0.05 25 0.0% 0.0 pp 0.0% 0.0%
1-NN Both 0.05 5 42.8% 5.8 pp 36.1% 49.5%
3-NN Both 0.05 5 70.8% 12.5 pp 56.4% 85.2%

Table 4.3: Results of the algorithms using absolute angles to control the joints. CI LB
andCIUB refer to the lower and upper bounds of the 95% confidence interval. µ and the
upper and lower bounds express the success percentage on the trials and σ expresses
the standard deviation of the success percentage in percentage points (pp).

51

Algorithm Arms σnoise N µ σ 95% CI LB 95% CI UB

CACLA Left 0.01 12 76.0% 39.3 pp 51.3% 100.0%
CACLA Pre-trained Left 0.01 20 0.1% 0.3 pp 0.0% 0.2%
LFD Left 0.01 25 0.0% 0.0 pp 0.0% 0.0%
1-NN Left 0.01 5 21.2% 2.0 pp 18.9% 23.5%
3-NN Left 0.01 5 43.4% 6.5 pp 35.9% 50.9%
CACLA Left 0.05 12 77.8% 38.8 pp 53.3% 100.0%
CACLA Pre-trained Left 0.05 20 15.1% 1.9 pp 14.2% 16.0%
LFD Left 0.05 25 0.0% 0.0 pp 0.0% 0.0%
1-NN Left 0.05 5 30.0% 5.5 pp 23.7% 36.3%
3-NN Left 0.05 5 9.6% 2.2 pp 7.0% 12.2%
CACLA Both 0.01 12 0.0% 0.0 pp 0.0% 0.0%
CACLA Pre-trained Both 0.01 20 0.0% 0.0 pp 0.0% 0.0%
LFD Both 0.01 25 0.0% 0.0 pp 0.0% 0.0%
1-NN Both 0.01 5 0.0% 0.0 pp 0.0% 0.0%
3-NN Both 0.01 5 0.0% 0.0 pp 0.0% 0.0%
CACLA Both 0.05 12 0.0% 0.0 pp 0.0% 0.0%
CACLA Pre-trained Both 0.05 20 0.1% 0.2 pp 0.0% 0.2%
LFD Both 0.05 25 0.0% 0.0 pp 0.0% 0.0%
1-NN Both 0.05 5 0.0% 0.0 pp 0.0% 0.0%
3-NN Both 0.05 5 0.8% 0.7 pp 0.0% 1.7%

Table 4.4: Results of the algorithms using relative angles to control the joints. CI LB
andCIUB refer to the lower and upper bounds of the 95% confidence interval. µ and the
upper and lower bounds express the success percentage on the trials and σ expresses
the standard deviation of the success percentage in percentage points (pp).

52

(a) σnoise = 0.05 (b) σnoise = 0.01

Figure 4.1: Results of 3-NearestNeighborRegression - Control of one armwith absolute
angles. The bars show the number of trials that resulted in a duration corresponding to
the bar, with each bar covering a range of 50 time steps. A shorter duration is better.

(a) σnoise = 0.05 (b) σnoise = 0.01

Figure 4.2: Results of 3-Nearest Neighbor Regression - Control of both arms with abso-
lute angles. The bars show the number of trials that resulted in a duration correspond-
ing to the bar, with each bar covering a range of 50 time steps. A shorter duration is
better.

53

(a) σnoise = 0.05 (b) σnoise = 0.01

Figure 4.3: Results of 3-Nearest Neighbor Regression - Control of one armwith relative
angles. The bars show the number of trials that resulted in a duration corresponding to
the bar, with each bar covering a range of 50 time steps. A shorter duration is better.

(a) σnoise = 0.05 (b) σnoise = 0.01

Figure 4.4: Results of 3-Nearest Neighbor Regression - Control of both arms with rela-
tive angles. The bars show the number of trials that resulted in a duration correspond-
ing to the bar, with each bar covering a range of 50 time steps. A shorter duration is
better. The surprising shape of the right graph is due to the fact that there was only one
successful trial.

54

(a) Training both arms with absolute angles (b) Training one arm with relative angles

Figure 4.5: The MSE on the training set and the test set during training for 30000
epochs, for training on relative and absolute angles.

4.2 Learning from Demonstration Using an Artifi-
cial Neural Network

Figure 4.5a shows the Mean Squared Error (MSE) on both the training set and the test
set during training when training to control both arms using absolute angles. Figure
4.5b shows the same statistics for training on controlling the left arm using relative
angles. The graphs for controlling one arm with absolute angles or both arms using
relative angles are not shown but show similar shapes and values. The values are aver-
aged over 20 networks trained on the same dataset. However, the graph for the relative
angles shows the average of 12 networks. 20 networks were trained on these datasets,
but due to power failure, the training needed to be resumed for 8 networks training on
relative values. This resulted in a different distribution of the data over the training set
and the test set, which would distort the graph. Therefore the average of the MSE on
these datasets was measured over the 12 networks that had no such interruption.

Testing any of the the trained networks for 250 trials on random objects failed to
result in success every time, both for σnoise = 0.01 and σnoise = 0.05. The five ensembles
formed, each using four of these ANNs together, also failed to result in success every
time.

55

(a) σnoise = 0.05 (b) σnoise = 0.01

Figure 4.6: Results of CACLA+Var - Control of one arm with absolute angles. The bars
show the number of trials that resulted in a duration corresponding to the bar, with
each bar covering a range of 50 time steps. A shorter duration is better.

(a) σnoise = 0.05 (b) σnoise = 0.01

Figure 4.7: Results of CACLA+Var - Control of one arm with relative angles. The bars
show the number of trials that resulted in a duration corresponding to the bar, with
each bar covering a range of 50 time steps. A shorter duration is better.

4.3 CACLA+Var with Random Networks

Training CACLA+Var to control both hands simultaneously yielded no results when
trying to pick up an object for 250 times, for none of the 24 trained systems. Therefore,
their graphs are not shown. When training to control the left arm with the right arm
mirroring the left, the system did manage to grab the object: for absolute angles 2744
times for σnoise = 0.01 and 2752 times for σnoise = 0.05. When outputting relative angles,
the results were 2280 successes for σnoise = 0.01 and 2333 successes for σnoise = 0.05.

56

Figure 4.8: Performance during training of randomly initialized CACLA+Var - Control
of one arm with absolute angles. The error bars show the 95% confidence interval.
The left graph shows the average duration until success plotted against the number
of training episodes - lower is better. The right graph shows the success rate when
performing 20 trials after every 100 training episodes - higher is better.

Figure 4.9: Performance during training of randomly initialized CACLA+Var - Control
of one arm with relative angles. The error bars show the 95% confidence interval. The
left graph shows the average duration until success plotted against the number of train-
ing episodes - lower is better. The right graph shows the success rate when performing
20 trials after every 100 training episodes - higher is better.

57

(a) σnoise = 0.05 (b) σnoise = 0.01

Figure 4.10: Results of pre-trained CACLA+Var - Control of one arm with absolute an-
gles. The bars show the number of trials that resulted in a duration corresponding to
the bar, with each bar covering a range of 50 time steps. A shorter duration is better.

The distribution of the duration of the successful attempts are shown in figure 4.6 for
absolute angles and figure 4.7 for relative angles. During training, each algorithm was
evaluated after every 100 episodes for 20 attempts to track the progress. The results of
this can be seen for the absolute angles in figure 4.8, and for relative angles in figure 4.9.
In these graphs, the average duration for all systems is averaged to generate the plot.
The error bars show the 95% confidence interval for these values. Note that failures are
represented as duration of 3000 time steps in these graphs, the maximum duration of
each attempt used during training.

4.4 CACLA+Var with Pre-trained Networks

CACLA+Varwas also evaluatedwhen the actor was not randomly initialized but instead
a pre-trained network that had been trained before on the dataset was used. Five differ-
ent pre-trained actors were used for each set of inputs, where each one consisted of an
ensemble of 4 pre-trained ANNs. Each pre-trained actor was used for 4 different runs
of the CACLA+Var algorithm during 1500 episodes, giving 20 different CACLA+Var
controllers. The value of 1500 was chosen because initial experiments showed that CA-
CLA+Var will usually converge to a solution in under 1500 episodes. Here too, training
on controlling both arms resulted in failure in almost all of the 5000 attempts over sev-
eral runs. Therefore, just the results of the algorithms training to control one arm are
shown. The distribution of the number of time steps until success when using absolute
angles is shown in figure 4.10 and the distribution when using relative angles are shown
in figure 4.11. During training, each algorithm was evaluated after every 100 episodes

58

(a) σnoise = 0.05 (b) σnoise = 0.01

Figure 4.11: Results of pre-trained CACLA+Var - Control of one arm with relative an-
gles. The bars show the number of trials that resulted in a duration corresponding to
the bar, with each bar covering a range of 50 time steps. A shorter duration is better.

Figure 4.12: Performance during training of pre-trained CACLA+Var - Control of one
arm with absolute angles. The error bars show the 95% confidence interval. The left
graph shows the average duration until success plotted against the number of training
episodes - lower is better. The right graph shows the success rate when performing 20
trials after every 100 training episodes - higher is better.

59

Figure 4.13: Performance during training of pre-trained CACLA+Var - Control of one
arm with relative angles. The error bars show the 95% confidence interval. The left
graph shows the average duration until success plotted against the number of training
episodes - lower is better. The right graph shows the success rate when performing 20
trials after every 100 training episodes - higher is better.

for 20 attempts to track the progress. The results of this can be seen for the absolute
angles in figure 4.12, and for relative angles in figure 4.13. In these graphs, the average
duration for all systems is averaged to generate the plot. The error bars show the 95%
confidence interval for these values. Note that failures are represented as duration of
3000 time steps in these graphs, the maximum duration of each attempt used during
training.

4.5 Evaluation on the Real Robot

The twobest performing algorithmswere tested on a robot, which are clearly CACLA+Var
and Nearest Neighbor. Since both 1-NN and 3-NN perform equally well when using
absolute angles while mirroring the arms, and equally bad when using relative angles
while controlling both arms, the decision which to use on the robot was based on the
other two situations for both noise levels, σnoise = 0.01 and σnoise = 0.05. In these four
situations, 3-NN outperforms 1-NN in three situations. Therefore, 3-NNwas evaluated
on the real robot.

Both algorithms were evaluated with both absolute and relative angles because in
both these setups, the algorithms performed quite well in simulation. The algorithms
were evaluated when controlling the left arm while the right armmirrored the left arm,

60

3-NNMirror Relative 3-NNMirror Absolute CACLA Mirror Relative CACLA Mirror Absolute
Object Score Mean Stddev Score Mean Stddev Score Mean Stddev Score Mean Stddev
Milk 60% 17.3 4.2 80% 48.8 13.0 100% 3.6 0.4 100% 18.3 18.6

Bottle 10% 35.1 0.0 80% 50.4 12.8 100% 3.5 0.3 100% 17.9 16.8
Toy 50% 37.0 17.2 50% 39.3 11.8 100% 3.9 0.3 90% 28.3 15.0
Fan 20% 17.3 9.7 60% 42.5 6.9 100% 3.6 0.2 90% 24.3 19.9

Pringles 10% 27.5 0.0 20% 47.3 8.3 100% 3.7 0.3 70% 30.4 9.7
Can 10% 26.3 0.0 40% 54.0 16.9 80% 3.6 0.3 80% 23.3 19.4

Coffee Tin 20% 6.8 6.7 70% 35.6 13.7 70% 3.5 0.2 100% 15.8 10.2
Cup 30% 27.8 17.6 20% 44.3 15.8 70% 3.6 0.3 80% 29.3 21.8

Total 26% 24.2 15.1 53% 45.0 14.0 90% 3.6 0.3 89% 22.9 17.7

Table 4.5: The results of 10 attempts to pick up each out of a set of 8 objects on a real
robot. The mean and standard deviation relate to the time needed to grab the object in
each of the successful attempts, in seconds.

Algorithm Angles Arms N µ σ Robot score
CACLA Absolute Left 12 91.8% 26.8 pp 89%
3-NN Absolute Left 5 100.0% 0.0 pp 53%
3-NN Relative Left 5 43.4% 6.5 pp 26%
CACLA Relative Left 12 77.8% 38.8 pp 90%

Table 4.6: Results of the best algorithms in simulation compared to their performance
on the real robot. µ expresses the success percentage of the trials and σ expresses the
standard deviation of the success percentage in percentage points. The robot score is
the success percentage over all the trials for all the objects that were attempted to grab
on the real NAO.

61

because both of the algorithms performed a lot better when using this approach. Each
algorithm was allowed 60 seconds per attempt to grab an object. They were tested on
the set of 8 objects presented in section 2.9. For each object, 10 attempts were per-
formed to grab the object. The absolute angles revealed a problem on the real robot: in
simulation, every set of angles was set instantly while on the real robot, it took much
longer to set each set of angles. Therefore, the time required to complete ismuch longer
relative to the relative angles than it was in simulation. The results of grasping with the
real robot are shown in table 4.5. This table lists the success rate and the mean and
standard deviation of the time in seconds until success. As mentioned above, both in
the experiments in simulation and the experiments on the actual robot, no learning oc-
curred during testing to avoid that the trials influence the following trials by updating
the system. The four algorithms with their scores both in simulation and on the real
robot are listed in table 4.6. This table allows for easy comparison of the effect of the
reality gap on both algorithms.

4.6 Discussion

The following three sectionswill discuss the results of the three algorithms implemented.

4.6.1 Learning from Demonstration Using an Artificial Neu-
ral Network

As can be seen from the results in the previous section, the ANN did not perform well
at all after training on the dataset, in any of the setups. This can mean that the ANN
is not suited to extract the relevant information out of the demonstrations or that the
demonstrations did not provide sufficient information to grab the object. The higher
performance of the nearest neighbor approach which operates directly on the dataset
suggests that even though the dataset might not be perfect, it allows for better per-
formance than the ANN is able to get out of it. The explanation for the disappointing
performance probably lies in ambiguity present in the data set. Because the demon-
strations were performed by a human, the same action was not taken in the same state
every time due. This can cause problems because the ANN has to train onmultiple con-
flicting sets of outputs for the same input, and it has no information about which action
is better. This is different from training in CACLA+Var, where the output of the critic
will give a verdict about which action is better.

Since the high number of parameters of training an ANN it might be possible to ob-
tain better results by better tuning the parameters. A parameter optimization algorithm

62

was already used to tune these settings, as was described in section 2.1.3, so it is ques-
tionable how much improvements can be gained from this. The graphs of each setup
showing the mean squared error (MSE) of the ANN show that this error is quite high.
Even after 30,000 training epochs, the error remained comparably high. This suggests
that the training set is complex in such a way that it cannot be captured by the ANN.
Restructuring the input strongly, extracting more information before feeding it to the
ANN, could help but this will increase the complexity of the software.

4.6.2 Nearest Neighbor Regression

The Nearest Neighbor approach used in this project shows that just interpolating be-
tween the data to find the correct action in any state is a feasible approach to obtain
reasonable performance. Due to the high level of noise in measurements the results
are far from perfect. However, not a lot of time was dedicated to optimize the results
using the Nearest Neighbor approach. Performingmore parameter tuning or recording
a better dataset might strongly improve the performance of this method.

The performance of this algorithm was much worse on the robot than it was in sim-
ulation. This is most likely due to the strongly increased noise level when actuating
real motors instead of modifying values stored in memory representing the joints. This
effect was even stronger for the relative angles. This can be explained by the fact that
the error accumulates when using relative angles and the robot gets further and fur-
ther away from the trajectory from the demonstrations it was trained on. The absolute
angles however showed many sudden moves and not a smooth trajectory towards the
object to grab.

4.6.3 CACLA+Var

In all situations, the CACLA+Var algorithm was able to learn a valid value function of
the problem. A visualization of the value function for an object of 9cm x 10cm located at
(16.5, 0, 35) in centimeters is shown in figure 4.14. The figure shows the highest values
for the two arms in the white areas, there where the object is. The value decreases grad-
ually when moving away from the object. The areas in the picture that are completely
black are areas that are unreachable by the arms of the NAO without moving the rest of
its body. It can be seen that at 16.5cm in front of the NAO, the two ellipses have no over-
lap, meaning that 16.5 cm in front of the NAO, the arms cannot touch each other. Closer
to the robot, at 12.5cm, this is not the case. The axes show values in centimeters: the
horizontal axis corresponds to the Y axis and the vertical axis to the Z axis inNAO space.

Using the correctly trained critic, the actor function was able to converge to a good

63

(a) x = 16.5cm (b) x = 12.5cm

Figure 4.14: A visualization of the output of the critic for states that result in one plane
with two values for x: x = 16.5cm, the same plane as the object, and x = 12.5cm, closer
to the body. The completely black areas are areas that are unreachable by the arms.
For the other areas, the brighter the color, the higher the value. The horizontal axis
corresponds to the Y axis in NAO space, the vertical axis with the Z axis in NAO space.
The values shown are in centimeters.

solution inmost caseswhen it had to output the joint angles for just the left hand, result-
ing in a successful positioning of the hands after five to ten seconds, a good performance
when comparing to the other algorithms. When outputting angles for both hands, the
algorithm did not manage to achieve a lot of successes. The reason for this most likely
lies in the exponentially increased search space when controlling 10 joints over control-
ling 5 joints. While it should not pose an insurmountable problem for RL, it will require
a lot more training.

The graphs in figures 4.8 and 4.9 show that during training, performance gradually
increased, resulting in a decreasing durationuntil success and an increased success rate.
These results could not be obtained for the training to control both hands, which is still
due to the exponentially increasing search space when controlling ten joints instead of
five.

CACLA+Var with the actor pre-trained on the dataset performed a lot worse com-

64

pared to running with randomly initialized networks. When considering the results of
the learning from demonstration algorithm shown in the previous section this is not
surprising, as the network was unable to grab the object at all. Therefore, the bias was
towards an incorrect solution, resulting in worse performance on the final tests. Per-
haps better results could be obtained when a neural network can be trained to achieve
at least a little success, for example trained on a different set of demonstrations. The
graphs in figures 4.12 and 4.13 show that when using the pre-trained ANNs, the algo-
rithm had difficulty optimizing the actor, probably because of the large bias towards an
incorrect solution.

The performance of CACLA+Var on the robot was surprisingly well, reaching up
to 90% performance for both the relative and the absolute angles. The relative angles
outperformed the absolute angles slightly but not significantly when looking at the suc-
cess rate. On the durations of the trials CACLA+Var for absolute and relative angles, a
Mann-Whitney test was performed (Mann & Whitney, 1947), with the null-hypothesis
that the distributions of the durations of both experiments have the samemean and the
alternative hypothesis that µrm > µam, where µam is the mean for the mirrored arms
using absolute angles and µrm is the mean for the mirrored arms using relative angles.
For a significance level of p < 0.05 for a one-tailed distribution, this leads to a critical
value U = 2963.4with sample sizes 71 and 72. The difference is significant if u < 2963.5.
The test results in u = 10.5, and since 10.5 < 2963.5, the time required to achieve suc-
cess is significantly lower when using relative angles than when using absolute angles.
The means of both experiments confirm this with a mean of 3.6 seconds for the relative
angles as opposed to 22.9 seconds for the absolute angles. Also, when looking at the tra-
jectory towards the goal, the movement of the relative angles was much more smooth
and goal-targeted than the absolute angles. When using absolute angles, it looked like
the algorithm had converged to an optimal exploration strategy, quickly exploring as
much of the action space as possible, while with the relative angles, the arms moved
quickly towards the goal, solely reducing the distance towards the object. The explana-
tion for this is that when using absolute angles, the entire action space of the robot is
reachable from every state. This means that the next state does not strongly depend on
the current state but only on the action selected. Therefore, the trajectory can not re-
ally be optimized, just the target. This makes it much harder to get a smooth trajectory
towards the target when using absolute angles.

Relative angles on the other hand explicitly make the next state dependent on the
current state and reduce the action space for each state. This gives more opportunity
to optimize the trajectory, and therefore seems better suited for reinforcement learning.

Interestingly, the actor trained using CACLA+Var seemed to have formed a policy
that effectively seems to work for many objects. It first brought the hands together to

65

enclose the width of the object at a high position and then gradually moved the arms
down until the correct position had been reached. This is a good strategy to grab objects
of any size without changing the complete trajectory. Also, when looking at the results,
the algorithm was able to grab the object in approximately 3 to 4 seconds every time,
so the results are really well compared to the other algorithms.

66

Chapter 5

Conclusion and Future Work

5.1 Conclusions

The results show that CACLA+Var is a good approach to learning complex tasks such
as controlling a robot arm to move towards a target. Nearest Neighbor approaches are
also viable candidates although the parameters should be tuned. The major drawback
is that a large dataset is required to perform good interpolation. CACLA+Var on the
other hand can be trained without any prior training and without any dataset, making
it easier to apply to different robots using different kinematics. Also, Nearest Neighbor
suffers from the noise resulting from operation on the real robot while the results show
that CACLA+Var does not suffer from this additional noise.

Seeing that the results of the training of the CACLA+Var algorithm were also di-
rectly applicable on the robot without any modification, the use of simulations to speed
up training is highly valuable.

5.1.1 The Reality Gap

In the experiments discussed in the previous chapter the learning from demonstration
with ANNs was unable to achieve any success. Therefore, it was not tested on the real
robot. The K-Nearest Neighbor algorithm and CACLA+Var were tested on the robot.
The results clearly show that performance of KNN decreases tremendously when per-
forming on the actual robot. CACLA+Var even slightly increased its performance when
running on the real robot, managing to pick up the object around 90% of the trials. Es-
pecially the implementation using relative angles performed very good, picking up the
object in less than 4 seconds most of the time, while the variant using absolute angles
took around five times longer to successfully pick up the object.

67

A complication when running on the actual robot using actual objects is that the
objects are not generated but instead have to be recognized. The object recognition
method used in this research, SURF features, was able to recognize most of the objects.
It especially had problems recognizing the shiny surface of the coffee pad tin, and to a
smaller extent, the plastic bottle. Also, the lack of texture of the computer fan made it
hard to recognize using SURF features. The position of the object as calculated from the
location of the recognized SURF features was also prone to errors. Because the shape of
the object in the camera image as determined by the SURF feature matching algorithm
usually differed quite a lot from the actual dimensions and shape of the object, due to
distortion because of the camera angle looking down at the object, the system was not
always able to properly estimate the position of the object. CACLA+Var exploited the
policy it had learned to quickly put the hands together at a high position centered in
front of the robot, and then moving the hands down along the width of the object. This
policy seemed to work quite well, even when the estimate of the object was incorrect.
The other algorithms suffered more from this imperfection in object recognition and
pose estimation. A lot can be gained from improving the pose estimation, for example
by using a depth sensor in addition to the RGB image of the camera.

Despite all this, CACLA+Var performed very well and did not show any difficulty in
dealingwith both the increased noise of running on the real robot and the imperfections
in the pose estimation data. It can therefore be concluded that reinforcement learning
in general and CACLA+Var seems to be a very robust method for robot learning, even
when considering the complex task of motor control for a humanoid robot arm.

Table 4.6 also shows the effect of the reality gap on the two algorithms tested on
both absolute and relative angles. It is surprising to see that CACLA+Var even performs
better on the real robot than it did in simulation, reaching up to 90% performance on
the test set of 8 objects.

5.1.2 Research Questions

The main research question, “Can machine learning algorithms be used to control the
joints of a humanoid robot in order to grasp an object?” can be answered positively:
two of the three algorithms tested are able to achieve over 50% performance on the real
robot.

The first subquestion, “Which of the evaluated algorithms, learning from demon-
stration, nearest neighbor or CACLA+Var, performs best on the task of grasping an
object?”, can be answered by looking at the success rate and time needed to reach the

68

goal state in table 4.5. On the real robot, CACLA+Var performs significantly better us-
ing both relative and absolute angles than nearest neighbor.

The second subquestion, “Which form of control, the target angular values for the
joints or the angular difference relative to the current state of the joints, is better suited
for machine learning?”, can be answered by the same table. CACLA+Var using relative
angles resulted in both the most consistent and significantly shortest durations. Also,
visually, the trajectories were much smoother than when using absolute angles.

5.2 FutureWork

Some ends were left open in this research. The Nearest Neighbor approach could prob-
ably be improved by improving the dataset, for example by filtering out outliers and
smoothing the movements, or by increased sampling of the movements during the
demonstrations. In spite of this, the performance was still a good start. Therefore, a
good approach to train the actor of the CACLA+Var algorithmmight also be to initially
use the output of the Approximate Nearest Neighbor algorithm to select the next action
instead of using the output of the (initially random) actor. Gradually, this effect could
then be removed to have the actor take over control.

The object recognition system in this project used only SURF features for object
recognition and pose estimation. Combining several techniques, such as the MOPED
framework (Collet et al., 2011) might help to improve the recognition and pose estima-
tion, resulting in better input to the algorithm and possibly increased performance.

69

70

Bibliography

Arkin, R. (1998). Behavior-based robotics. The MIT Press.

Baird, I., Klopf, A., & OH., W. L. W.-P. A. (1993). Reinforcement learning with high-
dimensional, continuous actions. Defense Technical Information Center.

Ballard, D. (1981). Generalizing The Hough Transform To Detect Arbitrary Shapes.
Pattern Recognition, 13(2), 111–122.

Barto, A., Sutton, R., & Anderson, C. (1983). Neuronlike Adaptive Elements that can
solve difficult learning control problems. IEEE Transactions on Systems, Man &
Cybernetics, 13(5), 834–846.

Bay, H., Ess, A., Tuytelaars, T., & Van Gool, L. (2008). Speeded-Up Robust Features
(SURF). Computer Vision And Image Understanding, 110(3), 346–359.

Bay, H., Tuytelaars, T., & Van Gool, L. (2006). SURF: Speeded up robust features. In
Leonardis, A and Bischof, H and Pinz, A (Ed.) Computer Vision - ECCV 2006 , PT
1, Proceedings, vol. 3951 of Lecture Notes in Computer Science, (pp. 404–417). Adv
Comp Vis; Graz Univ Technol; Univ Ljubljana, Heidelberger Platz 3, D-14197 Berlin,
Germany: Springer-Verlag Berlin. 9th European Conference on Computer Vision
(ECCV 2006), Graz, Austria, May 07-13, 2006.

Bocsi, B., Nguyen-Tuong, D., Csato, L., Schölkopf, B., & Peters, J. (2011). Learning
inverse kinematics with structured prediction. In Intelligent Robots and Systems
(IROS), 2011 IEEE/RSJ International Conference on, (pp. 698–703). IEEE.

Bridle, J. (1990). Training stochastic model recognition algorithms as networks can
lead tomaximummutual information estimation of parameters. InAdvances in neu-
ral information processing systems 2, (pp. 211–217). Morgan Kaufmann Publishers
Inc.

Chacón, J., Van Elteren, T., Hickendorff, B., Van Hoof, H., Lier, C., Nolte, A., Mutis,
D., Neculoiu, P., Oost, C., Van der Wal, E., et al. (2011). Borg – the robocup@ home
team of the university of groningen. Team Description Paper.

71

Cheraghpour, F., Moosavian, S., & Nahvi, A. (2010). Robotic Grasp Planning by Multi-
ple AspectsGrasp Index forObjectManipulationTasks. In 2010 18th IranianConfer-
ence on Electrical Engineering (ICEE), (p. 6 pp.). Piscataway, NJ, USA: IEEE. 2010
18th Iranian Conference on Electrical Engineering (ICEE), 11-13 May 2010, Isfahan,
Iran.

Collet, A., Martinez, M., & Srinivasa, S. S. (2011). The MOPED framework: Object
recognition and pose estimation formanipulation. International Journal of Robotics
Research, 30(10, SI), 1284–1306.

Cover, T., & Hart, P. (1967). Nearest neighbor pattern classification. Information The-
ory, IEEE Transactions on, 13(1), 21–27.

Daoud, N., Gazeau, J. P., Zeghloul, S., & Arsicault, M. (2011). A fast grasp synthe-
sis method for online manipulation. Robotics And Autonomous Systems, 59(6),
421–427.

Fahlman, S. (1988). Faster-learning variations on back-propagation: An empirical
study. In Proceedings of the 1988 connectionist models summer school, (pp. 38–51).
Morgan Kaufmann.

Fahlman, S. (1990). The cascade-correlation learning architecture. Tech. rep., DTIC
Document.

Graf, B., Hans, M., & Schraft, R. (2004). Care-O-bot II–development of a next genera-
tion robotic home assistant. Autonomous robots, 16(2), 193–205.

Hagedon, M., Grubbs, L., Morris, J., Lammmers, J., & Fan, H. (2009). UC Robomow
2009. Ph.D. thesis, University of Cincinnati.

Hansen, L., & Salamon, P. (1990). Neural network ensembles. Pattern Analysis and
Machine Intelligence, IEEE Transactions on, 12(10), 993–1001.

Hansen, N., Müller, S., & Koumoutsakos, P. (2003). Reducing the time complexity of
the derandomized evolution strategy with covariance matrix adaptation (CMA-ES).
Evolutionary Computation, 11(1), 1–18.

Holz, D., Paulus, J., Breuer, T., Giorgana, G., Reckhaus, M., Hegger, F., Müller, C.,
Jin, Z., Hartanto, R., Ploeger, P., et al. (2009). The b-it-bots robocup@ home 2009
team description paper. RoboCup 2009@ Home League Team Descriptions, Graz,
Austria.

Hsiao, K., Kaelbling, L. P., & Lozano-Perez, T. (2011). Robust grasping under object
pose uncertainty. Autonomous Robots, 31(2-3), 253–268.

72

Jakobi, N., Husbands, P., & Harvey, I. (1995). Noise and the reality gap: The use of
simulation in evolutionary robotics. Advances in artificial life, (pp. 704–720).

Jones, J., & Palmer, L. (1987). An evaluation of the two-dimensional Gabor filter model
of simple receptive fields in cat striate cortex. Journal of Neurophysiology, 58(6),
1233–1258.

Kaelbling, L. (1993). Learning in embedded systems. The MIT Press.

Kitano, H., Asada, M., Kuniyoshi, Y., Noda, I., & Osawa, E. (1997). Robocup: The
robot world cup initiative. In Proceedings of the first international conference on
Autonomous agents, (pp. 340–347). ACM.

Klingbeil, E., Saxena, A., & Ng, A. Y. (2008). Learning to open new doors. In Proc. of
Robotics: Science and Systems. Zurich, Switzerland.

Kocsis, L., & Szepesvári, C. (2006). Bandit based monte-carlo planning. Machine
Learning: ECML 2006, (pp. 282–293).

Kouskouridas, R., Amanatiadis, A., & Gasteratos, A. (2011). Guiding a robotic grip-
per by visual feedback for object manipulation tasks. In M. Gokasan, S. Bogosyan,
& E. Yesil (Eds.) Proceedings of the 2011 IEEE International Conference on Mecha-
tronics (ICM), (pp. 433–8). IEEE, Piscataway, NJ, USA: IEEE. 2011 IEEE Interna-
tional Conference on Mechatronics (ICM), 13-15 April 2011, Istanbul, Turkey.

Lowe, D. (2004). Distinctive image features from scale-invariant keypoints. Interna-
tional Journal of Computer Vision, 2(60), 91 – 110.

Lu, H., Zhang, H., Yang, S., & Zheng, Z. (2009). A Novel Camera Parameters Auto-
adjusting Method Based on Image Entropy. In RoboCup 2009: Robot Soccer World
Cup XIII, (pp. 192–203). Berlin, Germany: Springer-Verlag.

Malmir, M., & Shiry, S. (2009). Object Recognition with Statistically Independent Fea-
tures: A Model Inspired by the Primate Visual Cortex. In RoboCup 2009: Robot
Soccer World Cup XIII, (pp. 204–14). Berlin, Germany: Springer-Verlag.

Mann, H., & Whitney, D. (1947). On a test of whether one of two random variables
is stochastically larger than the other. The annals of mathematical statistics, 18(1),
50–60.

Matheus, K., & Dollar, A. (2010). Benchmarking grasping and manipulation: Proper-
ties of the objects of daily living. In Intelligent Robots and Systems (IROS), 2010
IEEE/RSJ International Conference on, (pp. 5020 –5027).

73

Muja, M., & Lowe, D. G. (2009). Fast approximate nearest neighbors with automatic
algorithm configuration. In International Conference on Computer Vision Theory
and Application (VISSAPP’09), (pp. 331–340). INSTICC Press.

Nissen, S. (2003). Implementation of a fast artificial neural network library (fann).
Report, Department of Computer Science University of Copenhagen (DIKU), 31.

Oost, C., & Jansen, E. (2011). Object manipulation with a NAO. Bachelor’s Thesis.

Peters, J., & Schaal, S. (2006). Reinforcement learning for parameterizedmotor primi-
tives. InNeural Networks, 2006. IJCNN’06. International Joint Conference on, (pp.
73–80). IEEE.

Peters, J., & Schaal, S. (2008a). Natural actor-critic. Neurocomputing, 71(7),
1180–1190.

Peters, J., & Schaal, S. (2008b). Policy learning formotor skills. InNeural Information
Processing, (pp. 233–242). Springer.

Pineda, F. (1987). Generalization of back-propagation to recurrent neural networks.
Physical Review Letters, 59(19), 2229–2232.

Prokhorov, D., & Wunsch, D. (1997). Adaptive critic designs. Neural Networks, IEEE
Transactions on, 8(5), 997–1007.

Riedmiller, M., & Braun, H. (1993). A direct adaptive method for faster backpropa-
gation learning: The RPROP algorithm. In Neural Networks, 1993., IEEE Interna-
tional Conference on, (pp. 586–591).

Rumelhart, D., Hinton, G., & Williams, R. (1986). Learning representations by back-
propagating errors. Nature, 323(6088), 533–536.

Rummery, G., & Niranjan, M. (1994). On-line Q-learning using connectionist systems.
Technical Report CUED/F-INFENG/TR 166. Univ. of Cambridge, Department of
Engineering.

Saxena, A., Wong, L., Quigley, M., & Ng, A. Y. (2007). A vision-based system for grasp-
ing novel objects. In International Symposium of Robotics Research, vol. 13.

Saxena, A., Wong, L. L. S., & Ng, A. Y. (2008). Learning grasp strategies with partial
shape information. In AAAI.

Schaal, S. (1997). Learning from demonstration. Advances in neural information pro-
cessing systems, (pp. 1040–1046).

74

Serre, T., Wolf, L., Bileschi, S., Riesenhuber, M., & Poggio, T. (2007). Robust object
recognition with cortex-like mechanisms. Pattern Analysis and Machine Intelli-
gence, IEEE Transactions on, 29(3), 411–426.

Sutton, R. (1988). Learning to predict by themethods of temporal differences.Machine
learning, 3(1), 9–44.

Sutton, R. (1996). Generalization in reinforcement learning: Successful examples us-
ing sparse coarse coding. Advances in neural information processing systems, (pp.
1038–1044).

Sutton, R., & Barto, A. (1998). Reinforcement learning: An introduction, vol. 28. Cam-
bridge Univ Press.

Takamuku, S., Hosoda, K., & Asada, M. (2008). Object Category Acquisition by Dy-
namic Touch. Advanced Robotics, 22(10), 1143–1154.

Tribelhorn, B., & Dodds, Z. (2007). Evaluating the Roomba: A low-cost, ubiquitous
platform for robotics research and education. In Robotics and Automation, 2007
IEEE International Conference on, (pp. 1393–1399). IEEE.

Van Hasselt, H., & Wiering, M. A. (2007). Reinforcement learning in continuous ac-
tion spaces. Proceedings of the 2007 IEEE Symposium on Approximate Dynamic
Programming and Reinforcement Learning, (pp. 272 – 279).

Viola, P., & Jones, M. (2001). Rapid object detection using a boosted cascade of simple
features. In Computer Vision and Pattern Recognition, 2001. CVPR 2001. Proceed-
ings of the 2001 IEEE Computer Society Conference on, vol. 1, (pp. I–511 – I–518).

Van der Wal, T. (2011). Automatic parameter optimization. Internal Report.

Watkins, C. (1989). Learning from delayed rewards. Ph.D. thesis, King’s College,
Cambridge.

Wisspeintner, T., Van der Zant, T., Iocchi, L., & Schiffer, S. (2009). RoboCup@Home
Scientific Competition and Benchmarking for Domestic Service Robots. Interaction
Studies, 10(3, SI), 392–426.

Wisspeintner, T., Van der Zant, T., Iocchi, L., & Schiffer, S. (2010). Robocup@home:
Results in benchmarking domestic service robots. In J. Baltes, M. Lagoudakis,
T. Naruse, & S. Ghidary (Eds.) RoboCup 2009: Robot Soccer World Cup XIII, vol.
5949 of Lecture Notes in Computer Science, (pp. 390–401). Springer Berlin / Hei-
delberg.

75

Yoshikawa, T. (2010). Multifingered robot hands: Control for grasping and manipula-
tion. Annual Reviews in Control, 34(2), 199–208.

Van der Zant, T., Schomaker, L., & Haak, K. (2008). Handwritten-word spotting us-
ing biologically inspired features. Pattern Analysis and Machine Intelligence, IEEE
Transactions on, 30(11), 1945–1957.

Van der Zant, T., Wiering, M., & Van Eijck, J. (2005). On-line robot learning using
the interval estimation algorithm. In Proceedings of the 7th EuropeanWorkshop on
Reinforcement Learning, vol. 7, (pp. 11–12). Napoli, Italy.

76

	Abstract
	Table of Contents
	Introduction
	Related Work
	Domestic Service Robots
	Object Grasping and Manipulation
	Behavior Selection
	Object Recognition and Pose Estimation

	Research Questions
	Outline

	Robot Learning and Object Recognition
	Grabbing System
	Object Recognition
	Grabbing the Object
	Parameter Optimization
	Self Evaluation

	Input and Output
	Input
	Output

	Learning from Demonstration
	K-Nearest Neighbor Regression
	Reinforcement Learning
	Methodology
	State Representations
	Actions and Policies
	Exploration Strategies
	Rewards and State Values
	State Transitions and the Q-function
	Temporal Difference Learning
	Q-Learning
	SARSA
	Actor-Critic Systems
	Continuous Spaces
	CACLA

	Parameters
	Reward Function
	Performance Evaluation
	The Reality Gap - Evaluation on the Real NAO

	Hard- and Software
	Hardware
	Operating System and libraries
	Robot Software Architecture
	Main Software: The Brain
	Data Acquisition Modules

	Results and Discussions
	Nearest Neighbor Results
	Learning from Demonstration Using an Artificial Neural Network
	CACLA+Var with Random Networks
	CACLA+Var with Pre-trained Networks
	Evaluation on the Real Robot
	Discussion
	Learning from Demonstration Using an Artificial Neural Network
	Nearest Neighbor Regression
	CACLA+Var

	Conclusion and Future Work
	Conclusions
	The Reality Gap
	Research Questions

	Future Work

	Bibliography

