Food preference and food quality of Brent geese in a gradient of primary succession

Suzan van Lieshout
Undergraduate thesis report
Dept. of Behavioural Ecology
Dept. of Plant Ecology.
Supervisors:
University of Groningen
Drs C.F.R. van der Wal
Prof dr J.P. Bakker

SUMMARY

According to classical exploitation theory, the increase in primary productivity found over the successional gradient of the salt marsh of Schiermonnikoog should result in an increased grazing pressure. However field data obtained from the salt marsh showed the highest Brent geese grazing pressure at salt marsh areas with low primary productivity. The grazing pressure was relatively low in the more productive parts later in succession. We hypothesised that this could be due to plant species replacement along the successional gradient, with, in the course of succession, abundance of by the geese less preferred species.

Therefore this study examined the relations between Brent geese and their food stock along the successional gradient with two major questions in mind. First, is there a correlation between observed grazing pressure distribution and abundance of by Brent geese preferred food plants? Second, can we explain Brent geese preference for plant species by means of a qualitative analysis of plant material?

In order to answer the first question we investigated the diet of Brent geese at three different successional stages and their preference for plant species at these areas.
We determined the availability of preferred and disfavoured plant species at the successional stages of different age and compared this with the observed grazing pressure distribution.

Our data show that grazing pressure and abundance of preferred species are correlated. The relative abundance of preferred species is highest in the youngest areas.
Brents are, in the course of succession, faced with vegetation composed of an increasing amount of disfavoured plant species. Diets however, changed only marginally, incorporating only I 5% disfavoured species in the oldest successional stage.

An answer to the second question was sought by determining energy intake, soluble carbohydrates, crude protein, fibre, ash and in vitro digestibility of most plant species present at the salt marsh and comparing these with the observed preference.

Three clearly defined plant species clusters were found. One cluster was formed by the monocots, Festuca rubra, Puccinellia maritima, Juncus gerardi and Elymus sp which were all high in soluble carbohydrates and fibres. Triglochin maritima, in which the concentration protein was highest, formed a second cluster, and a third was composed of the dicots Plantago maritima, Spergularia maritima and Aster tripolium, highest in ash content.
The percentages of carbohydrates of neutral preferred species was significantly higher than the carbohydrate content of disfavoured species. There was also a tendency that preferred plants were more easy to digest.

We can conclude that the observed grazing pressure distribution correlates positively with the relative abundance of preferred forage. Data, however, indicate that it is difficult to link the observed food preference to one of the analysed food quality aspects. Future studies will have to provide more insight in the feeding strategies of Brent geese.

> Riberiniversitait Groningen
> phombek Biologist Centum
> Kerwhon ? -- posbus 14
> 97\%) AA HAREN

Contents

Summary

1. Introduction।
2. Methods
2.I Study area 3
2.2 Statistical analysis 4
2.3 Diet composition 4
2.4 Food quality 6
3. Results
Diet
3.1.I Diet composition 8
3.1.2 Discussion 13
Food quality
3.2.1 Qualitative analysis 15
3.2.2 Energy 19
3.2.3 Discussion 23
4. General discussion 25
Acknowledgements 27
Literature 28
Appendices 30

I INTRODUCTION

Brent geese (Branta bernicla bernic/a) are migratory herbivores. The salt marshes in the Wadden Sea area are their major feeding areas, both during fall and spring migration. During their spring staging period, Brent geese encounter favourable feeding conditions due to the onset of plant growth and increasing day length. Feeding and the search for food are then their predominant activities. Foraging around 14 hours a day -almost the entire daily light period- increases their total body weight by on average one third (Ebbinge et al, 1975). This accumulation of large amounts of body reserves prior to migration to their Arctic breeding areas is crucial for reproductive success. Reserves are needed to bridge the time of egg laying, gosling care and moult in the Arctic, during which the geese have little possibility to feed. The condition of the birds at the moment of departure from the Wadden Sea area, correlates with their reproductive success (Ebbinge \& Spaans, 1982). Geese that are heaviest after spring fattening, are most likely to return with young in the subsequent autumn (Ebbinge \& Spaans, 1995).

Schiermonnikoog, one of the Wadden Sea islands, is one of the locations were this spring fattening takes place. On this island a gradient of primary succession can be found on the salt marsh since the island is gradually extending eastwards (Bakker, 1989; Olf, 1992). Most recently developed plant communities are found on the eastern part of the island. Going westwards, over a distance of about 6 kilometres, older communities are found up to plant communities of 200 years of age on the most western part of the salt marsh. The oldest parts of the salt marsh have always been cattle grazed, but the island has unexploited salt marsh parts ranging from a few years to about 50 years of age, on which this paper will focus on.

The present study, executed in spring 1995, fits in the framework of long standing plant and anirral research at Schiermonnikoog carried out by the Rijksuniversiteit Groningen. During the late 70's mos: Brent geese could be counted at the nowadays $35-40$ years old salt marsh area, in that time about 20 years of age. Some years later the prime foraging area for the geese was found at the present 25 jears old salt marsh part and according to figure 1 , the area with the highest grazing pressure moved to the east again. Apparently salt marsh ageing leads to less intensive use by Brent geese, since the jeese are now occupying young salt marsh areas a few kilometres eastwards from the areas exploited some years ago (Bakker et al, 1997; van der Wal, unpublished).

Previous studies at Schiermonnikoog have shown that above-ground living biomass increases withsalt marsh age (van de Koppel et al., 1996). Theoretically, above a certain level of available plant biorass, the herbivore population is expected to increase with primary production (Oksanen et al, 1981, McNaugton et al., 1989). At high levels of primary production, the herbivore density may level off die to predator control of herbivores (Oksanen et al, 1981. Hairston et al, 1960). Brent geese do no suffer from predation on the island. They are fully protected by the Dutch hunting legislation since 1950 and no natural enemies of the geese are present.

However, at Schiermonnikoog we observe highest grazing pressure at salt marshes early in successional stage, so at areas with low primary productivity. This in contrast with the low grazing pressure at the oldest study areas, where primary productivity is high. This doesn't seem compatible with the previous described "top-down" control predictions along a succession gradient. The quesion therefore is "why do we find the highest grazing pressure of Brent geese at salt marsh areas earlyin succession and low in productivity?"

On possible explanation might be food preference of Brent geese (Olff et al,,1997). By vegeation succession the occurrence and dominance of plant species are altered. Brent geese may prefer certain plant species that do not occur or less frequently occur at the older salt marsh parts. Therefore we compared the diet of the geese flocks at three salt marsh parts with different stages of deveopment. Previous studies investigated the diet of the Brent geese on the salt marsh area of internediate age (Prop \& Deerenberg, 1991), but comparative studies have not been performed,

Assuming that geese prefer plant species that appear with a greater frequency in their diet than in the environment, we examined whether or not the geese diet represented the vegetation composition at the three areas. In case geese were eating plant species in other proportions than present in the vegetation we aimed to find out if this selection for certain plant species was similar at the different successional stages. If so, we wanted to know at which successional stage of the salt marsh the preferred plant species were mainly present.

Because geese retain their food for only a short period in the alimentary tract, there is little time for digestive processes more complex than the absorption of cell contents to occur. To meet their nutritional requirements geese are supposed to harvest large quantities of relatively high quality forage every day. This has important consequences for their foraging strategy, The observed highest grazing intensity on areas with low biomass suggests that, based on the animal's perception of costbenefit constraints, foraging at vegetation types early in succession is more profitable than in older areas. Trying to understand the underlying basis for plant selection, by analysing the nutritional value of food plants, was the second goal in this study.

There is no general agreement on which measurements define food quality best. High quality forage can be expressed by a high energy content. However, several studies indicate that simple considerations of energy maximisation can not account for food preference alone and show that nutrient constraints may have been important in food choice in these cases (Tinbergen, 1981). Others consider the absence of negative factors, like digestibility-reducing substances, a better indicator of high food quality (Bryant \& Kuropat, 1980).

In this study we have chosen for a combination of previous mentioned food quality measurements. We compared qualitative aspects of twelve salt marsh species by calculating their profitability on basis of energy intake per bite. We determined protein, soluble carbohydrates, ash and fibre content, of which the latter two are both undesirable gutfilling components. To enable a palatability ranking of the plant species under investigation, we analysed in vitro digestibility. Measuring in vitro digestibility gave us also the opportunity to find out whether values obtained by the in vitro digestibility method, approach vivo digestibility values of Brent geese. Already the qualitative aspects of four salt marsh species on Schiermonnikoog were known from the work of Prop \& Deerenberg (1991) were, but a comparison of more species had not yet been performed.

To get a good impression of the quality of the plant material and detect a possible change in the qualitative aspects of the food plants during the Brent geese staging period, we analysed plant material originating from March to June, but focused on the geese staging period from mid April till the end of May.

Figure / Brent geese grazing pressure at three successional stages

2 METHODS

2.I Study area

This study was conducted in spring 1995 at Schiermonnikoog, one of the Frisian Wadden Sea islands in the Netherlands. The research was carried out at three locations along the successional gradient of the island: at a very young area of 10 years old, a 25 and a 35 years old salt marsh (Fig.2).

Fig. 2 The location of Schiermonnikoog in the Dutch Wadden Sea and the three study areas at the island: a 10, 25 and a 35 years old salt marsh.

Besides the succession gradient from east to west, also three major vegetational zones on elevation from south to north, can be distinguished. One zone, the higher marsh, is dcminated mainly by Festuca rubra and inundated by sea water only during extreme high tides. A second zone is formed by the lower parts of the salt marsh covered with Limonium vulgare and Puccinellia maritima. The third is a transitional zone, where slight height diferences cause a mosaic pattern of small islands, separated by little gullies were many species can be found. These three vegetational zones are persistent along the successional gradient. The research presented here focuses on the transitional "isiand-zone" of the 10,25 and 35 years old salt marsh parts.

Fig. 3 Location of the transitional "island-zone" at the salt marsh of Schiermonnikoog

From the second week of April onwards, spring staging Brent geese grazed the salt marsh at the eastern part of the island. Approximately 3500 Brent geese spent this spring on the salt marshes of the island. By the 26th of May almost all Brent geese left the island for migration to their Arctic breeding grounds. During their spring staging period at Schiermonnikoog, foraging geese groups were frequently observed from dawn to dusk at the three successional stages. During these observations from towers the total number of geese, and their distribution over the study area was recorded every 30 minutes.

2.2 Statistical analysis

Overall differences among the three successional areas under investigation (Fig, 5,7,8) and data of the mean values of the chemical analysis with respect to neutral, negative and positive selected for plant species (Table 2) were analysed with Kruskal-Wallis tests and if necessary followed by Mann-Whitney tests. A Kruskal-Wallis test was also used to analyse the distribution of preferred and disfavoured plant species in $\mathrm{K} / \mathrm{bite}$ and $\mathrm{KJ} / \mathrm{gram}$ (Table 5,6). ANOVA with Tukey-contrasts was used to analyse for differences between percentages crude protein, soluble carbohydrates, NDF and in vitro digestibility of the salt marsh species under investigation (Fig. 10, 11, 12, 13), Percentages were arc sine-transformed before testing.

2.3 Diet composition

Since geese have a relatively inefficient digestion, many of the cell wall structures of digested plants will stay intact. Specific characteristics of the epidermis like size, form and position of the cells and stomata, the structure of the edge of the leaf and the presence of hairs, if any, will therefore remain recognisable and enable us to describe the diet by examining droppings.

Since analysing diet is very time consuming, we were forced to restrict ourselves to material of one zone: the transitional "island-zone" of the 10, 25 and 35 years old salt marsh. Droppings used for the microscopical faecal analysis were collected (if possible) after each daily observation period during the season (Table 1). Observants sampled mixed samples of fresh droppings, taking care that only droppings originating from the transitional "island-zone" were collected. Geese retain their food for only a short period in the alimentary tract. Therefore droppings originating from the "island-zone" could be identified by using continuous recordings of the distribution of the geese from the observation tower and by allowing a throughput time of about I $1 / 2$ hours. The droppings were oven-dried at $70^{\circ} \mathrm{C}$ for about 48 hours, before microscopical examination took place.

Table 1. Sampling days material diet analysis

) s.s:		\%
10 years	01-07-09-16-20-23-25	7
25 lly years	10-11-18-19-20-24	6
35 years	08-11-15	3

Analysis of the diet based on the surface area of epidermal fragments rather than on the frequency of plant fragments is recommended, as it gives a better impression of the quantitative intake of the various plant species (Stewart, 1967). In this study the line intersect method was used which accounts for differences in fragmentation size between species (Seber \& Pemberton, 1979). The line intersect method consists of measuring the lengths of all cuticles that intercept the line of the ocular-micrometer, irrespective of the shape and the orientation of the cuticles. Summation of the lengths of a particular species and dividing it by the total length of all species in the sample gives the proportion of that species in the diet. We did not adjust for differences in the ratio of mass versus leaf area.

From a homogenised sample of ten droppings, all of the same date and location, a randomly taken subsample was put on a microscopic slide. The material was as uniformly distributed as possible, to prevent particles to overlap each other. One hundred fragments, present on several examined vertical and horizontal lines, were identified on each microscopic slide. After about eighty identifications per sample, the proportion of a species stabilised (Fig. 4). A hundred identifications per sample were executed for analysis.

Drawings and photographs of most food species, as well as a reference collection with plant material of all plant species present in the study area, were available. Observants trained each other in recognising epidermal structures using object-glasses of the reference collection on which plant names were covered. An identification key was made to standardise the examination of the faecal samples (Appendix 2).

> DIET COMPOSITION
> 24-05-95 (25 year)
> ——. Fesrub
> -_ Eyalh
> ---- Flamar
> - Astri
> Trimar
> Suamar
> …...... Salmar
> ---- Spemar
> -... Alppor
> --....... Glamar

Fig. 4 The number of identifications per sample. At hundred determinations per sample the proportion of a species is stabilised.

In general a magnification of I00x was used to examine fragments. Particles with less than five cells were considered to have insufficient characteristics for determination and were not used for quantitative assessment of plant species in the diet. Besides this there was a nonidentifiable epidermal structure which had characteristics of both Festuca rubra and Puccinellia maritima. Photographs of the so called Festuca²epidermal structure have been made in order to enable future determination (Appendix 5).

To quantify the amount of food available for geese at the three areas, plant species abundance was estimated, just after the geese had left the island. On each study area, twenty randomly selected patches of one $1 \mathrm{~m}^{2}$, were recorded, estimating plant cover in percentages.

In this report we assumed that neutral feeding occurs when foods were found in the same proportion in droppings as they were encountered in the field. Preference is shown for species that appear in the diet with a greater frequency than in the environment. Species appearing less frequently in the diet than in the set of available foods are said to be disfavoured (Crawley, 1983).

An often used definition of "preference ratio" is the proportion of food in the diet divided by the proportion of the food in the habitat. The difficulty with this ratio lies in the accurate estimation of the availability of food items but also in a good estimate of the availability of all other potential food (Crawley, 1983). An example of this can be found in Appendix 8. This problem, mainly caused by working with percentages, occurs especially when non food-species are abundant, which was the case on the 35 years old salt marsh. Therefore we decided to distinguish three groups of species. If plants were above the line $\%$ in diet $=\%$ cover (See Fig, 6) and twice the standard deviation did not overlap this line a plant species was said to be positively selected for. The same arguments were used to label plants beneath the line as disfavoured species. The remaining plants were classified neutral.

2.4 Food quality

From early March until mid April pant material was collected every two weeks. During the Brent geese staging period at Schiermonnikoog, from mid April until the end of May, samples were collected every five days. A schedule with location and date of collection, can be found in Appendix 6. Nearly all material originated from the "island-zone" at the 25 years old salt marsh. Food plants samples were collected by hand, taking care to sample only those parts that would have been selected by the geese. The material collected was washed thoroughly and oven-dried at $70^{\circ} \mathrm{C}$ for 24 hours, grounded by a 1 mm sieve and stored in jars of glass.

Chemical qualitative analyses included in vitro digestibility, crude protein, soluble carbohydrates, ash and cell wall components. The twelve species being analysed were: Aster tripolium- Atriplex portulacoides- Elymus sp- Enteromorpha sp- Festuca rubra - Juncus gerardi- Limonium vulgare- Plantago maritima- Puccinellia maritima-Spartina anglicaSpergularia maritima- Triglochin maritima.

Potential digestibility of plant material was determined by an in vitro procedure (Tilley and Terry, 1963) where samples were incubated in rumen fluid from a fistelated cow for 6 hours. This incubation period of 6 instead of 48 hours appeared most appropriate to simulate the intention of degradation of plant cell walls by geese in vivo (Soldaat \& Slager, 1985; Prop \& Vullink, 1992). Dietary crude protein was determined by the Kjeldahl procedure (Kjeldahlnitrogen times 6.25). For the procedures followed to determine in vitro digestibility, cell wall components (Neutral Detergent Fibre) and soluble carbohydrates is referred to Appendix 10 and 12. In Appendix II adjustments to the normal Tilly \& Terry in vitro method are elucidated.

The bite sizes, necessary for the energy calculations per bite, of Festuca rubra, Puccinellia maritima and Plantago maritima, were taken from literature (Prop \& Deerenberg, 1991). Bite sizes of Elymus sp and Juncus gerardi were assumed to be same as the bite size of Festuca rubra.

Field experiments and a feeding trial have been carried out, in order to define bite size; of the other plant species compared at the qualitative analysis, In order to define the bite size of Spergularia maritima, captive Barnacle geese in an exclosure at the field station on Schermonnikoog were allowed to graze on salt marsh sods with inconspicuously marked plarts. The bill of Barnacle and Brent geese are of a similar size. A few marked Spergularia plarts at the youngest study area were, supplementary to the feeding trail, examined to record the length of each leaf, before and after the visit of a Brent geese flock. Field experiments on Triglochin maritima at the same study areas carried out by M. Egas (1995), revealed the bite sizes of Brent geese on this species, Limonium vulgare, Aster tripolium and Atriplex portulacoides at the salt marsh showed grazing marks by which the bite size could be reconstructed, using the outline of the leave. In order to estimate Enteromorpha bite size, a Brent goose scull was used to take bites of the same size as the Brent geese did, after some practice on Limonium vulgare and Aster tripolium leaves.

3 RESULTS

Diet

3.I. I Diet composition

The main components of the Brent geese diet were Puccinellia maritima, Festuca rubra, Triglochin maritima, Atriplex portulacoides and Festuca². Diet composition of geese differed among salt marshes of increasing age (Fig.5). Significant differences between the three marshes were found for the percentage of Puccinellia maritima, Festuca rubra, Triglochin maritima, Atriplex portulacoides and Artemisia maritima (Kruskal-Wallis, Mann-Whitney, $p<0.05, p<0.01$). In every sample on average $5.5 \%(S E=0.61)$ of the total measured length of encountered particles could not be recognised.

Fig. 5 Comparison of the diet composition of Brent geese for the 10,25 and 35 years old salt marsh areas. Bars are mean \pm S.E. Levels of significance are indicated with:* $(p<0.05)$ and $* *(p<0.01)$. For the used abbreviations of plant names see Appendix 7 .

In the following three graphs the percentage of plant species found in the diet is plotted against the percentage cover. A plant species on the diagonal line $(y=x)$ would indicated that this plant is eaten as much as it is encountered by the geese. Preference is shown for plant species above and disfavourance for those below the line, when twice the standard deviation does not intersect the diagonal line (indicated by plant name abbreviation in graphs).

10 years

25 years

Fig. 6 Brent geese diet for the 10, 25 and 35 years old salt marsh in relation to the estimated plant cover. The line $y=x$ is shown as a guide for preference determination. Vertical and horizontal bars show standard errors. See appendix 7 for the used abbreviations of plant names.

In each of the three study areas Puccinellia maritima and Festuca rubra were found in high percentages in the diet despite the fact that they covered only a small percentage of the area. Limonium vulgare, on the contrary, was less common in the diet than expected on basis of its abuncance in the field. At the 10 years old salt marsh there was virtually no Trig/ochin maritima available, but at the 25 years old salt marsh were this plant species is more abundant, it was preferred by Brent geese. Atriplex portulacoides and Artemisia maritima, increasing in abundance at the 25 and 35 year old successional area, were mainly excluded from the geese diet.
On basis of these data, three groups of plant species were distinguished and grouped according to preference by the geese.
positive
Festuca rubra
Puccinellia maritima
Triglochin maritima

neutral	negative
Armeria maritima	Artemisia maritima
Aster tripolium	Atriplex portulacoides
Elymus sp	Limonium vulgare
Enteromorpha	
Glaux maritima	
Juncus gerardi	
Plantago maritima	
Salicornia sp	
Spergularia maritima	
Spartina anglica	
Suaeda maritima	

negative
Artemisia maritima
Atriplex portulacoides
Limonium vulgare

Total abundance in percentage of the three previously labelled "positive, neutral and negative" geese plant clusters, plotted for the 10,25 and 35 years old salt marsh is shown in figure 7. By comparing the three areas one can see that the relative abundance of preferred plant species is the highest in the youngest areas and significantly lower at the 35 years old salt marsh. In the oldest area, the vegetation is virtually entirely composed of species disfavoured by the geese. With increasing age of the salt marsh, the cover of plant species disfavoured by the Brent geese is changing significantly from an average cover of 16% to 82% (Kruskal-Wallis, Mann-Whitney, $\mathrm{p}<0.01$).

Since no dead material or bare soil are presented in the graph it is obvious that the percentage of total plant cover is increasing with increasing age of the salt marsh. At the youngest successional stage less than 50% of the area is covered by plants. At the 25 and 35 years old salt marsh this amounts to 59% and 86%, respectively.

Fig. 7 Cover of plant species that Brent geese selected for positively, neutrally or negatively at the 10, 25 and 35 years old salt marsh. Bars with different letters differ with among areas ($p<0.01$).

The percentage of preferred plant species in the geese diet did not differ significantly among the three salt marsh areas compared. A large proportion of the diet of geese foraging at the 35 years old salt marsh area consist of preferred plant species despite the low cover estimates of preferred plant species recorded in the field. The proportion of disfavoured plants in the diet was nonetheless the highest in the oldest area (Kruskal-Wallis, Mann-Whitney, p<0.05).

Fig. 8 Plant species, separated in three groups, found in the diet of Brent geese at the 10, 25 and 35 years old satt marsh. Bars with different letters differ among areas ($p<0.05$).

3.1.2 Discussion

We can conclude that over the course of succession, Brent geese are faced with vegetation composed of an increasing amount of disfavoured plant species. Diets however, changed only marginally, incorporating only 15% disfavoured species in the oldest successional stage. It seems logical that maintenance of a diet composed of favourite food plants in areas with a low availability of these favourites is costly, but one could also argue that considering the low grazing pressure in these areas, geese are less vulnerable to depletion of their preferred forage and spent less energy in interactions with other geese. The interplay between disfavoured food on offer and possibly less competition for food, remains to be quantified. The number of Brent in the oldest area however, is significantly lower, indicating low preference for later successional marsh stages.

The ranking of plant species according to preference, with Puccinellia maritima, Festuca rubra and Triglochin maritima being preferred and Limonium vulgare, Atriplex portulacoides and Artemisia maritima being disfavoured forage is also reported from other studies. Brent geese foraging at the Norfolk coast during spring, selected for Puccinellia maritima and Triglochin maritima, together with Aster tripolium and avoided Limonium vulgare (Summers, 1993). Puccinellia was found to be the staple food of Brent in Terschellinger marshes (Ebbinge, 1980) and Danish marshes (Madsen, 1989). In the diet composition of Brent at Schiermonnikoog established by Prop en Deerenberg (199|) Puccinellia maritima was the principal food species together with Festuca rubra, Triglochin and Plantago maritima. The latter two were less commonly consumed.

From field experiences and literature data (Prop \& Deerenberg, 1991; Summers, 1993) Aster tripolium, Plantago maritima and Spergularia maritima were also expected to belong to the "positively selected" group, but there was not enough evidence to conclude this from our own results. Probably the percentage of their presence in the diet was too low to classify them in one of our three classes. We consider it unlikely that this is due to differential digestion of plant species, considering the outcome of the experiment of Summers (1993). He gave, in order to test for differential digestion, a mixture of Triglochin maritima and Lolium perenne, to a captive Brent. The same percentage of remains in the droppings as the percentages fed to the goose were found after adjusting for differences in the ratio of mass versus leaf area.

In general, true feeding preferences can only be determined under the strictest controlled experimental conditions, when all differences in availability between the different foods are eliminated. These so called "cafeteria trails" offer nonetheless various interpretation problems. The comparative examination of geese diet and food preference at three different successional stages of salt marsh development is hard to study in an experimental set-up. We therefore studied free ranging geese. Consequently the interpretations of the results are hampered by the inextricably intertwined effects of availability and preference.

As a measure of food availability we quantified the percentage cover per plant species immediately after the departure of the geese. The results might be improved by the estimation of the biomass of available food items instead of percentage cover of the species. Measuring biomass at various times intervals during the spring staging period and not afterwards, would be more accurate too. Both improvements involve several practical difficulties which were not possible to overcome in the time budget of this research.

The diet analysis performed to determine the food preference of geese flocks imposed two restrictions. The geese observations at the 35 years old salt marsh were hampered by the dense vegetation present. This resulted in low sample size for the dropping analyses at this area since little material was available. Secondly, by a very time consuming diet-analyses, we were forced to choose between the replication of the analysis with material of few data points or analyse material originating from several time intervals during the geese staging period without replication. The latter was considered to be best, since more variation in diet composition was found between succession stadia then within material of different dates originating from one of the successional areas.

Notwithstanding the items discussed above, this study has demonstrated that grazing pressure and the abundance of preferred plant species are correlated. The relative abundance of preferred plant species is highest in the youngest areas. In the oldest area, the vegetation is virtually only composed of species that hardly occurred in the diet of the geese.

Food quality

3.2.1 Qualitative analysis

Ash

Remarkable variation was found analysing ash content of various salt marsh species (Fig. 9). This was an important reason to present the results of the qualitative analysis as percentage of dry weight and not as percentages of ash free dry weight (see discussion).

In general, most dicotyledonous species contained a high percentage of ash whereas monocots did not. In some plant species like Plantago maritima almost a quarter, or in Spergularia maritima and Atriplex portulaciodes even a greater percentage, consisted of ash only. The high percentage of ash in algae could be due to the fact that cleaning them from sand particles was very difficult, but that will hold for the geese as well.

Fig. 9 Ash content in \% of the dry matter. All were based on duplo samples of 19/06/95. Species ranked according to increase in ash percentage.

Soluble carbohydrates

Large differences in soluble carbohydrate content were found (Fig IO). The plants with the significantly highest content in their leaf tips were grasses and grass-like species (Tukey, $\mathrm{F}=(5.73, \mathrm{p}<0.00 \mathrm{I})$. Low in soluble carbohydrate content were dicotyledonous species. The Enteromorpha soluble carbohydrate content lies in between those two groups.

Fig. 10 Soluble carbohydrate content in \% of the dry matter. Means (\pm SE) were based on 5 replicates except those indicated with an asterisk* which had only 3 or 4. Significant differences are indicated with different capitals ($p<0.001$).

Cell wall components

Spartina anglica together with the other grasses and grass-like species were significantly higher in fibre content than the dicots and Enteromorpha (Tukey, F=33.38, p<0.000I). The lowest percentage of cell wall components, 13%, was found for Triglochin maritima, whereas Spartina anglica consisted for 63% of cell wall components on dry weight basis (Fig, I I).

Fig. // Cell wall components (NDF) in \% of the dry matter. Means were based on 3 replicates except those with an asteriks * which had I or 2. Vertical bars show mean with S.E. Significant differences are indicated with capitals ($p<0.0001$).

Crude protein

Protein concentrations on dry matter basis differed considerably, with the highest concentration being 3 times higher than the lowest concentration (Fig. 12). Triglochin maritima had the highest protein content of all salt marsh species under investigation and Enteromorpha the lowest (Tukey, $F=70.44, \mathrm{p}<0.000 \mathrm{I}$)

Fig. 12 Protein content in \% of the dry matter. Means (\pm SE) were based on 5 replicates except those indicated with an asteriks* which had only 3-1. Significant difference are indicated with capitals ($p<0.0001$)

In vitro digestibility

There are no large differences in the in vitro digestibility percentages between the plant species under investigation. Of Juncus gerardi, Spartina anglica and Limonium vulgare no more than 43, 39 and 35% respectively, was digested (Tukey, $F=18.95, \mathrm{p}<0.00 \mathrm{I}$).

Fig. 13 In vitro digestibility in \% of the dry matter. Means were based on 3 replicates, except those indicated with an asteriks * which had 1-2. Significant difference are indicated with capitals. ($p<0.001$)

Combined features

In figure 14 the previously presented date are summarised. Each "kite" represents one of the compared food species of the Brent geese. The percentage fibre, crude protein, ash and soluble carbohydrates are plotted on the top, right, bottom and left side respectively. Four clusters can be distinguished. At first the grasses (except Spartina) and grass-like species have a characteristic form recognisable at a high percentage fibre and about equal percentages protein and soluble carbohydrates. The only plant species with more than 30% protein is Triglochin maritima, being group number two. The third corresponding features are those of Plantago maritima, Spergularia maritima and Aster tripolium with a higher percentage ash and a lower percentage fibre than the first group mentioned and, besides this, a higher level of protein than soluble carbohydrates. Limonium vulgare has a lower ash percentage and is included in rest group number four, together with Spartina anglica, Enteromopha and Atriplex portulacoides. Unfortunately the NDF content of the latter was not measured.

Ely

Fig. 14 Summary of the qualitative analysis.

Tri

Pla

Ast

Sper

Atr

Ent

The plant material analysed here originated from the geese staging period (April to May). A summary of the qualitative analyses per plant species from March to June can be found in Appendix 9.

Comparison with preference

Analysis of the mean chemical values of neutral, positively and negatively selected plant species showed a significant difference between the water soluble carbohydrate content of the neutral and negatively selected plant species (Table 2). An indication of difference was observed between the in vitro digestibility values of the neutral and preferred plant species.

Table 2 Mean values chemical analysis of "negatively, neutral of positively selected for" plant species tested. For the plant species division into three groups see pag 10. The 'negatively selected for' group here, exist of Limonium vulgare and Atriplex portulacoides (2) or Limonium vulgare(1) alone if other data were not available., Symbol * indicates a significant difference ($p<0.05$).

Plant species selection by Brent	Ash	(n)	NDF	(n)	WSC	(n)	Protein	(n)	In vitro digestibility	
Negative	20.3	$\%$	(2)	23.0	$\%$	(1)	4.79	$\%$	$]_{*}$	(2)
Neutral	18.1	$\%$	(7)	34.2	$\%$	(7)	10.6	$\%$	(2)	34.9

There was no correlation between the water soluble carbohydrates content and the in vitro digestibility.

3.2.2 Energy

Besides quality aspects, the amount of material gained per foraging action is an important part of the 'benefits' animals can obtain. In table 3 the average mass per length of eleven plant leaf tips are summarised, ranked from high to low. (See Appendix 18 for data from March to June)

Table 3. Average dry weight per length of the different plant species in May. In $10-{ }^{1 *} \mathrm{mg} / \mathrm{mm}$, except for those with a shaded background: $100^{-1 *} \mathrm{mg} / \mathrm{mm}^{2}$

Plant	Spa	Pla	Spe	Tri	Ely	Jun	Fes	Puc	Lim	Atr	Ast
Mean	2.29	1.85	1.73	1.14	0.83	0.72	0.40	0.40	1.17	0.84	0.60
SE	0.19	0.07	0.50	0.03	0.02	0.03	0.01	0.03	0.3	0.02	0.05

In the next table the average bite weight of the Brent geese per plant species for the period of May is summarised.

Table 4 Average bite weight for the period of May in mg/bite.

species	Lim	Ent	Atr	Pla	Ast	Spa	Spe	Tri	Ely	Jun	Fes	Puc
b.weight	10.4	7.51	3.38	3.22	2.33	2.06	1.80	1.60	1.16	1.01	0.58	0.36
source	1	1	1	3	1	1	1	2	1	1	3	3

Source mm/bite 1. This study 2. Egas, 1995 3. Prop \& Deerenberg, 1991

When combining the information of the qualitative analysis with the previous data one can calculate the energy gain per bite after digestion. See Appendix 13 for information of the used method.

Table 5 Energy gain per bite

Plant species	Kjoule /bite	preference
Limonium vulgare	49.78	disfavoured
Enteromorpha	31.25	
Plantago maritima	14.25	
Spartina anglica	11.66	
Atriplex portulacoides	10.87	disfavoured
Aster tripolium	10.61	
Triglochin maritima	9.12	preferred
Elymus sp	8.88	
Spergularia maritima	7.74	
Juncus gerardi	7.01	
Festuca rubra	4.15	preferred
Puccinellia maritima	2.57	preferred

There was no significant difference between the spreading of preferred and disfavoured plant species.

In table 6 the percentages fibre, sugars, protein, fat and ash of each food plant are listed. The contribution of each cell component, based on I gram plant material, is given. Of each component the digestion by Brent and the energy gain through this digestion is calculated. Of each food species the total energy gain by digesting I gram plant material is marked in bold. In the last column the contributions of cell wall, soluble carbohydrates, crude protein and fat to the total energy digested by the geese from their plant food, can be found, See Appendix 14 for more information about the calculation method followed.

The plant species are ranked from high to low energy content per gram plant material, with at the start Festuca rubra, Puccinellia maritima and Triglochin maritima, plant species preferred by the Brent geese, Yet no significant difference between the place of preferred and disfavoured plant species was found.

Remarkable is that the cell components, fibre, sugars, protein, fat and ash, of the grasses and glasslike species sum up to approximately 100%, while for the dicotyledons and other plant species on the contrary, a component seems underestimated or missing.

Table 6 Contributions of cell wall, sol, carbohydrates, protein and fat to the total energy digested by the geese from ther plant food.

Species		Perc	gram	Digested (gram)	KJoule	Perc
Festuca	NDF	43,6	0,44	0,13	1,67	23,03
	WSC	22,7	0,23	0,16	2,74	37,76
	Protein	20,5	0,21	0,13	2,28	31,46
	Lipid	5	0,05	0,01	0,56	7,75
	Ash	7	0,07			
	Total	98,8	0,99		7,25	100
Pucccinelía	NDF	41	0,41	0,12	1,57	22,03
	WSC	18,8	0,19	0,13	2,27	31,82
	Protein	24,5	0,25	0,15	2,73	38,26
	Lipid	5	0,05	0,01	0,56	7,89
	Ash	8,9	0,09			
	Total	98,2	0,98		7,12	100
Elymus	NDF	47, 1	0,47	0,14	1,80	25,68
	WSC	18,5	0,19	0,13	2,23	31,77
	Protein	21,8	0,22	0,14	2,43	34,54
	Lipid	5	0,05	0,01	0,56	8,00
	Ash	7,1	0,07			
	Total	99,5	1,00		7,02	100
Junger	NDF	47,5	0,48	0,14	1,82	26,27
	WSC	19,5	0,20	0,13	2,35	33,96
	Protein	19,7	0,20	0,12	2,19	31,66
	Lipid	5	0,05	0,01	0,56	8,12
	Ash	6,3	0,06			
	Total	98	0,98		6,92	100
Triglochin	NDF	13,5	0,14	0,04	0,52	9,07
	WSC	8,9	0,09	0,06	1,07	18,82
	Protein	31,9	0,32	0,20	3,55	62,25
	Lipid	5	0,05	0,01	0,56	9,86
	Ash	17,4	0,17			
	Total	76,7	0,77		5,70	100
Spartina	NDF	63,9	0,64	0,19	2,45	43,15
	WSC	5	0,05	0,03	0,60	10,63
	Protein	18,5	0,19	0,12	2,06	36,30
	Lipid	5	0,05	0,01	0,56	9,91
	Ash	10	0,1			
	Total	102,4	1,02		5,67	100
Limonium	NDF	23	0,23	0,07	0,88	18,37
	WSC	4,9	0,05	0,03	0,59	12,33
	Protein	24,8	0,25	0,16	2,76	57,57
	Lipid	5	0,05	0,01	0,56	11,73
	Ash	11,5	0,12			
	Total	69,2	0,69		4,79	100

Aster	NDF	20,5	0,21	0,06	0,78	17,23
	WSC	5,1	0,05	0,03	0,61	13,50
	Protein	23,3	0,23	0,15	2,59	56,92
	Lipid	5	0,05	0,01	$\underline{0,56}$	$\underline{12,34}$
	Ash	$\underline{19,1}$	$\underline{0,19}$		4,55	100
Plantago	Total	73	0,73		4,55	
						0,91
	NDF	23,7	0,24	0,07	20,54	
	WSC	6	0,06	0,04	0,72	16,37
	Protein	20	0,20	0,13	2,23	50,37
	Lipid	5	0,05	0,01	$\underline{0,56}$	$\underline{12,72}$
	Ash	$\underline{24,7}$	$\underline{0,25}$			
	Total	79,4	0,79		4,42	100
	NDF	18,6	0,19	0,05	0,71	16,56
	WSC	6	0,06	0,04	0,72	16,82
	Protein	20,7	0,21	0,13	2,30	53,55
	Lipid	5	0,05	0,01	$\underline{0,56}$	$\underline{13,07}$
	Ash	$\underline{26,6}$	0,27			
	Total	76,9	0,77		4,30	100

Atriplex	NDF					
	WSC	4,7	0,05	0,03	0,57	
	Protein	18,7	0,19	0,12	2,08	
	Lipid	5	0,05	0,01	0,56	
	Ash	$\underline{29,1}$	$\underline{0,29}$			
	Total	57,5	0,58			
		18,1	0,18	0,05	0,69	16,71
	NDF	1,71	41,29			
	WSC	14,2	0,14	0,10	1,71	4,18
	Protein	10,6	0,11	0,07	1,44	
	Lipid	5	0,05	0,01	$\underline{0,56}$	$\underline{13,55}$
	Ash	$\underline{33,4}$	$\underline{0,33}$			
	Total	$\underline{81,3}$	0,81		4,15	100

- no lipid analysis was carried out and a constant value of 5% for all plant species was assumed
- Schmidt-Nielsen, 1975: lipid 39,5 K//g, protein $17,8 \mathrm{KJ} / \mathrm{g}$, sol. carbohydrates $17,6 \mathrm{KJ} / \mathrm{g}$
- Hungate*, 1966: NDF $13,2 \mathrm{~K} / \mathrm{g}$ (* taken from J.Prop \& T. Vulink, 1992)
- R.Buchsbaum, 1986: AD lipid 28,5\%, protein 62,5\%, sol,carbohydrates 68,5\%, NDF 29\%

3.2.3 Discussion

The analysis of soluble carbohydrates, NDF, protein and ash content of the plant species under investigation showed four clusters. The monocotyledonous Festuca rubra, Puccinellia maritima, Juncus gerardi and Elymus sp were all high in sugars and fibres. Triglochin maritima, in which the concentration protein was highest. A third cluster with dicotyledonous Plantago maritima, Spergularia maritima and Aster tripolium, highest in ash content and a forth, rest cluster, formed by Limonium vulgare, Spartina anglica, Enteromorpha and Atriplex portulacoides with several characteristic features.

Cell components individually

Ash

The ash percentage of the species analysed varied highly. This was an important reason to present the results of the qualitative analysis as percentage of dry weight and not as percentages of ash free dry weight. Correcting for ash, which is often found in literature, would not only overlook an undesirable gutfiling component (sometimes a quarter or even more of the plant material) but also give a wrong quality impression. This is because percentages of other plant components like protein and carbohydrates change for the better when a correction for ash is carried out (see also Appendix 19).

The measurements of the ash content fit well with other studies in the same season. In general most dicotyledonous species contained a higher ash percentage whereas monocots did not. Normally an increase in ash percentage is expected when plant material is growing older, so in autumn, which could explain some deviating percentages found in other studies (see Appendix I5).

Soluble carbohydrate

The leaf tips of grasses and grasslike species had significantly higher soluble carbohydrate content than those of the dicots. Our results are in good agreement with those of Briens \& Larher (1982), who demonstrated a low content of inorganic ions and a high content of sugars in the leaves of monocotyledons contradictory to dicotyledons species that had a high content of inorganic ions and a low content of sugars in their leaves. In our study Spartina anglica formed an exception on this. It might be that Spartina and also the dicots, allocate soluble carbohydrates to their below ground storage organs.

The measurements of the soluble carbohydrate content seem to be somewhat low compared to other studies. This could be due to a not corresponding analysing period (summer versus autumn) but might also be caused by the anthrone method (Allen 1989) used in this research. The anthrone method should measure all carbohydrates including starch but might not be sound in measuring the latter (Bakker, 1997).

Crude protein

Crude protein concentration was highest for Triglochin maritima. Compared with ash and soluble carbohydrate analyses less variation was found in protein content among the species
under investigation, The measurements of the crude protein content fit well with other studies in the same season (see Appendix 17).

Digestibility

Juncus gerardi, Spartina anglica and Limonium vulgare were found difficult to digest in comparison to the other salt marsh species. Only around 40% of these species could be digested compared with $\pm 55 \%$ digestibility of the other species.

As stated in the introduction we analysed digestibility with two questions in mind. We wanted to know in what proportion the plant species under investigation related to each other, Secondly is we could, using the in vitro method, approach the vivo digestibility values of the salt marsh species of which some are know from literature. With an incubation period of 6 hours (for arguments see appendix II) we expected to be able to answer both questions. Unfortunately this incubation time did not gave us the expected variation in digestibility values, To detect larger differences a shorter incubation period would be advisable, which might also help to approach the true in vivo values which are lower than the values we found.

NDF

The concentration NDF was the highest for Spartina anglica and other grasses and grass-like species. The dicots were significantly lower in NDF.

When the proportion of cell wall in plant tissues increases, during maturation for example, the digestibility will be reduced. Expecting this inverse correlation and noting the strong variation among the plant species NDF content, strengthened our opinion that, to approach in vivo values, the in vitro incubation time should be reduced.

Energy per bite or gram

To get an impression of attainable energy intake we calculated the energy gain per bite. Field observations on wild Brent geese indicate that it is possible to incorporate more than one leaf in a single bite (Prop \& Deerenberg, 1991; Van der Wal, pers com), Besides this there is also variation in geese bite rate per plant species, In assessing which species is more proftable for the geese to forage on, attainable energy intake rate will prove to be important (see general discussion). Future studies will have to provide more information on this subject. In this report we focused on plant interior quality, therefore the energy gain per gram digested plant material is given.

Festuca rubra, Puccinellia maritima and Triglochin maritima, plant species preferred by the Brent geese had a high energy content per gram material. Yet no significant difference between the place of preferred and disfavoured food species was found.

Besides this, the calculated energy per gram plant material showed us that the cell components, fibre, sugars, protein, fat and ash of the grasses and grasslike species sum up to approximately 100%, while for the dicots and other species a component seems underestimated or missing.

4 GENERAL DISCUSSION

On the eastern part of Schiermonnikoog a gradient of primary succession can be found on the salt marsh since the island is gradually extending eastwards (Bakker, 1989; Olff, 1992). According to classical exploitation theory, the increase in primary productivity found over the successional gradient (van de Koppel et al., 1996), should result in an increased grazing pressure. On Schiermonnikoog, however, we observed that recently developed plant communities are intensively used by Brent geese. The grazing pressure was relatively low in more productive parts later in succession.

This study has demonstrated that grazing pressure and the abundance of preferred plant species are correlated. The relative abundance of preferred plant species is highest in the youngest areas. In the oldest area, the vegetation is virtually only composed of species that hardly occurred in the diet of the geese. Diets however, changed only marginally, incorporating only 15% disfavoured species in the oldest successional stage.

The ranking of plant species according to preference, with Puccinellia maritima, Festuca rubra and Triglochin maritima being preferred and Limonium vulgare, Atriplex portulacoides and Artemisia maritima being disfavoured forage is also reported from other studies. Brent geese foraging at the Norfolk coast during spring, selected for Puccinellia maritima and Triglochin maritima, together with Aster tripolium and avoided Limonium vulgare (Summers, 1993). Puccinellia was found to be the staple food of Brent in Terschellinger marshes (Ebbinge, 1980) and Danish marshes (Madsen, 1989). In the diet composition of Brent at Schiermonnikoog established by Prop en Deerenberg (|99|) Puccinellia maritima was the principal food species together with Festuca rubra, Triglochin and Plantago maritima. The latter two were less commonly consumed.

In the introduction we mentioned three possible considerations to unravel the cause of observed food preference. These are energy maximisation, nutrient constraints and the absence of negative factors, like digestibility-reducing substances.

The accumulation of sufficient body reserves prior to their flight to the high-Arctic breeding grounds is highly important for Brent. Not only for migration to the high-Arctic itself, but also for survival and reproduction in an environment still inhospitable at the time of arrival. Maximising energy intake to build up body reserves can be approached on two scales.

One is the efficiency by with forage can be ingested. This is determined by distribution and appearance of the species in the field. Handling time and bite rate, together with mass and volume per bite, are aspects necessary to evaluate here. The energy intake rate will level off, when the accessibility of leaf tips is hindered, for example, by the presence of dead material and amount of structural components of a plant species (van der Wal et al,, in press).

The second level to evaluate energy maximisation concerns the plant interior quality, on which we focused in this report. We found that the percentage carbohydrates of disfavoured plant species was significantly lower than the carbohydrate content of neutral preferred species. Secondly, a trend was visible indicating that preference was shown for highly digestible plant species. This corresponds with data of Boudewijn (1984) that showed that Brent switched from feeding on Poa protensis and Lolium perenne to Puccinellia maritima when the digestibility of Puccinellia was higher than that of the pasture grasses.

Our data suggest that in terms of energy maximisation, foraging on disfavoured plant species is less proftable. The observed differences, however, did not came to significant expression in calculated digestible energy per gram of a plant species.

A combination of attainable intake rate together with interior plant quality is probably very important in assessing which species is more profitable for a geese to forage on. Puccinellia maritima for example can be preferred because of its high soluble carbohydrates content and also because Brent geese can easily feed uninterruptedly on the closed sward of the grass.

Several studies indicate that considerations of energy intake can not account for food preference alone and stress the importance of nutrient constraints in food choices. Mattson (1980) argued that protein is in limiting supply for non-rumant herbivores due to its relative shortage in plants. The crude protein content of the, in this report compared salt marsh species, varied little. Except for the by the Brent preferred Triglochin maritima, which had a much higher crude protein concentration.

Other studies suggest that herbivores base their feeding preference on minimising the concentrations of toxins, repellents and digestibility reducing substances in their diets. All the animals in the study of Bryand and Kuropat (1980) for example ranked their foods on neither energy or nutrient content. Instead their food preference was strongly negatively correlated with terpenes and phenolic resins. In this report we compared ash and fibre, two undesirable gut filling components. In relation to the food preference of the geese there was no significant difference between preferred and disfavoured plants.

We have to conclude that it is difficult to tie down the observed food preferences to one of the analysed factors. This might not be surprising since the animal will receive stimuli from the various attributes of a plant and make a comparison of its favourable and unfavourable characteristics with that of an other species, It can, for example, be the high percentage of crude protein which makes foraging on Triglochin maritima attractive even though its ash percentage is high. We compared characteristics of the preferred species with disfavoured species. It also counts that the reasons for a high preference ranking of one species may be quite different from those for another species.

We can conclude that the observed grazing pressure distribution correlates positively with the relative abundance of preferred forage. Data, however, indicate that it is difficult to link the observed food preference to one of the analysed food quality aspects. Future studies will have to provide more insight in the feeding strategies of Brent geese.

ACKNOWLEDGEMENTS

The acknowledgements are among the things of a report I mostly read first. Behind all graphs, tables and text, there's a whole world hidden. The acknowledgements mostly reveal a tip of the veil of the accomplishment of the presented report : the hard labour, fun and discussions before the final daft was there. It is a pleasure to finally being able to thank the many people that made a contribution to the research that is presented here. Its accomplishment would never have succeeded without their help.

First of all I want to thank René van de Wal for his continuous enthusiasm, insights and warm support during all stages of the research! I am grateful to Jan Bakker for his guidance, useful comments on preliminary drafts (even during his vacation) and the trust he put in me. For he created the opportunity to present the results of this study at a symposium in Germany. Both, I have to thank for their patience, allowing me to go to West-Africa and finish my second doctoraalstudy first.

I greatly enjoyed the co-operation with Martijn Egas. Thanks for the fun and discussions we had together! Your helping hand at the start of the diet analysis, with the creation of the determination key and the first determinations gave me the right spirit to continue.

My thanks appeal to all the people from the Plant and Animal Ecology group in Groningen for the fruitful discussions and advises. In particular I want to mention the people with whom I shared the fieldstation on Schiermonnikoog. It was great to have all these enthusiastic biologists around me! Special thanks go out to all the people that helped me sampling the required geese droppings and uncountless amounts of leave tips for the chemical analysis.

I am grateful to the people of the Plant Ecology laboratory for providing the protein data and to Sip van Wieren of the Agricultural University of Wageningen for he created the possibility to analyse the plant material on the laboratory there. I want to thank Tjakkie van der Laan for her co-operation and great support on the lab. Special thanks go out to students of Carol's Paradise in Renkum for their incredible hospitality and the prepared diners in the garden when I came back after long day of laboratory work.

And last but certainly not least the Brent geese themselves! My respect for their performance has grown every day, especially when I was sampling leave tips.. Luckily I did not have to live on the food I sampled. Finishing this report, I have far more questions on these fascinating birds than at the beginning... Will there be a next time?

LITERATURE

Allen, S.E. (1989). Chemical analysisof ecological mateials. Blackwell Scientific Publications, Oxford.
Bakker, J.P., P. Esselink, R. vd Wal and K.S. Dijkema (1997). Options for restauration and management of coastal salt marshes in Europe. In Urbanika, K.M., Webb, N.R. and Edwards, P.J. (eds), Restoration ecology and sustainable development, Cambridge University Press (in press).
Bakker, J.P. (1989). Nature mangement by grazing and cutting. On the ecological significance of grazing and cutting regimes applied to restore former species-rich grassland communities in the Netherlands. Kluwer academic publishers, PhD thesis, University of Groningen.
Bakker, E. S. (1997). The importance of Spartina anglica for Greylag geese (Anser anser) staging and winterig on the island of Schiermonnikoog, Student report, Rijksuniversiteit Groningen, The Netherlands.
Boudewijn, T. (1984). The role of digestablility in the selection of spring feeding sites by Brent Geese. Wildfowl 35: 97-105.
Briens, M. and F. Larher (1982). Osmoregulation in halophytic higher plants: a comparative study of soluble carbohydrates, polyols, betaines and free proline. Plant, cell and environment 5: 287-292.
Bryand J.P. and P.J. Kuropat (1980). Selection of winter forage by subarctic browsing vertebrates: the role of plantchemistry. Annual review of ecology and systematics |1:26|-285.
Buchsbaum, R., J. Wilson and I. Valiela (I986). Digestability of plant constituents by canada geese and atlantic Brant. Ecology 67(2): 386-393.
Crawley, M.J. (1983). Herbivory, the dynamics of animal-plant interactions, Blackwell Scientific Publications, Oxford.
Deerenberg, C. (1988) Voorjaarsbegrazing door rotganzen -over voedsel kwalteit. Student report, Rijksuniversiteit Groningen, The Netherlands
Dijksta, L. \& Dijksta-De Vlieger (1977). Voedselecologie van de rotgans. Student report, Rijksuniversiteit Groningen, The Netherlands
Drent, R.H. and H.H.T. Prins (1987). The herbivore as a prisoner of its food supply. In disturbance in grasslands. J. van Andel, J.P. Bakker \& R.W. Snaydon (eds), Junk Publishers, Dordrecht, p. I3I-I48.
Ebbinge, B., A. Stjoseph, P. Prokosh and B. Spaans (1982). The importance of spring staging areas for arcticbreeding geese, wintering in Western Europe. Aquila 89:249-258.
Ebbinge, B and B. Spaans (1995). The importance of body resreves accumulated in spring staging areas in the temperate zone for breeding in Dark-bellied Brent geese Branta b. bernicla in the high Arctic. Journal of Avian Biology 26: $105-113$.
Egas, M. (1995). Effects of herbivory and competition on growth and reproduction of Triglochin maritima in a gradient of primary succession. Student report, Rijksuniversiteit Groningen, The Netherlands,
Hairston, N.G., F.E. Smith and L.B. Slobodkin (1960). Community structure, population control and competition. American naturalist 94: 42 1-425.
Koppel, J, vd., J. Huisman, R. vd Wal and H. Offf (1996). Patterns of herbivory along a gradient of primary productivity: an empirical and theoretical investigation. Ecology 77: 736-745.
Lytle, R.W. and R.J. Hull (1980). Annual carbohydrate variation in culms and rhizomes of smooth cordgrass (Spartina alterniflora loisel.). Agronomy Journal, vol. 72: 942-946.
Madsen, J. (1989). Spring feeding ecology of Brent geese (Branta bernicla): annual variation in salt march food supplies and effects of grazing on growth of vegetation. Danish review of game biology 13(7): 4-15.
Marken Lichtenbelt, W. van (1981). Een verteringsonderzoek bij brandganzen. Student report, Rijksuniversiteit Groningen, The Netherlands

Mattson, W.J. (1980). Herbivory in relation to plant nitrogen content. Ann. Rev.Ecol. Syst, II: I |9-|6|
Mc Naugton, S.J., M. Oesterheld, D.A. Frank and K.J. Williams (I989). Ecosystem-level patterns of primary productivity and herbivory in terrestrial habitats. Nature 341: 142-144.
Oksanen, L., S.D. Fretwell, J. Arruda and P. Niemela (1981). Exploitation ecosystems in gradients of primary productivity. American naturalist II8: 240-261.
Olff, H., J. de Leeuw, J.P. Bakker, R.J. Platerink, H. van Wijnen and W. Munck (1997). Vegetation succession and herbivory on a salt marsh. J. of Ecology (in press)
Olff, H. (1992). On mechanisms of vegetation succession. PhD thesis University of Groningen.
Prop, J, and C. Deerenberg (1991). Spring staging in Brent geese Branta bernicla: feeding constraints and the impact of diet on the accumulation of body reserves. Oecologia 87: 19-28.
Prop, J. and T. Vullink (1992). Digestion by Barnacle geese in the anual cycle: the interplay between retention time and food quality. Functional Ecology 6: 180-I89.
Robbins, C.T. (1993). Wildlife feeding and nutrition. Academic press inc. San Diego, Calfornia.
Seber, G.A.F. and J.R. Pemberton (1979). The line intercept method for studying plant cuticles from rumen and fecal samples. J. of Wildl. Management, 43(4): 916-925.
Schmidt-Nielsen, K. (1975). Animal physiology, Adaptation and environment. Cambridge University Press, London.
Steward, D.R.M. (1966). Analysis of plant epidermis in faeces: a technique for studying the food references of grazing herbivores. App. Ecology: 83-111.
Soldaat \& Slager (1985). Grauwe ganzen en fioringras. Rijp rapport.
Summers, R.W., J. Stansfield, P. Sue, A. Atkins and J. Bishop (1993). Utilization, diet and diet selection by Brent geese Branta bernicla bernicla on the salt-marshes in Norfolk. J. Zool., London. 231: 249-273.
Tilly, J.M.A. and R.A. Terry (1963). A two-stage technique for the in vitro digestion of forage crops. Jounal of the British grassland Society 18: $104-1 \mid 1$.
Tinbergen, J.M. (1981). Foraging decisions in starlings (Sturnus vulgaris L.). Ardea 69:1-67.
Zar, J.H. (1984). Biostatistical analysis. Prentice-Hall, New Jersey (USA).

APPENDICES

1. Brent geese grazing pressure at three successional stages: calculation figure I
2. Identification key epidermal structures
3. Photographs, drawings and notes epidermal structures
4. Diet composition
5. Photographs Festuca ${ }^{2}$
6. Schedule plant material sampling and chemical analyses
7. Abbreviations plant species names
8. Example Crawley
9. Summary qualitative analyses per plant species from March to June
10. Methods chemical analysis dry weight / Ash / NDF / in vitro digestibility /WSC
11. Calculating in vitro digestibility
12. Plant species cover at the 10, 25 and 35 years old salt marsh
13. Calculating K Joule per bite for each plant species
14. Calculating contributions of NDF, WSC, nitrogen and fat to the total energy digested per gram per food species
15. Comparing ash values
16. Comparing WSC values
17. Comparing protein values
18. Leaf tips from March to June
19. Dry weight versus ash-free dry weight

Appendix I

Brent geese grazing pressure at three successional stages
Calculating figure I page 2:
Average goose hours per day
(day of 14 hours)

10 years	$=666.23$	$S D=412.78$	$n=13$
25 years	$=843.58$	$S D=1107.83$	$n=28$
35 years	$=1000.45$	$S D=1038.53$	$n=11$

surface area of transitional "island -zone" on map

10 years	$=252$ squares	$=3.9375 * 10-\mathrm{km}^{2}$
25 years	$=486$ squares	$=7.59375 * 10-2 \mathrm{~km}^{2}$
35 years	$=1108$ squares	$=1.7312 * 10-^{-} \mathrm{km}^{2}$

4 cm	$=500 \mathrm{~m}$
1 cm	$=125 \mathrm{~m}$
$1 \mathrm{~cm}^{2}$	
1 square	$=15625 \mathrm{~m}^{2}$
	$=156.25 \mathrm{~m}^{2}$

Average goose hours per day/ km^{2}

10 years	$=16920,12$	$\mathrm{SD}=10483.3$	
25 yE $=2907.5$			
25 years	$=11108.87$	$\mathrm{SD}=14588.7$	$\mathrm{SE}=2757.01$
35 years	$=5778.772$	$\mathrm{SD}=5998.9$	$\mathrm{SE}=1808.74$

Appendix 2

DE SLEUTEL

I - Huidmondjes 2

- Geen huidmondjes 19

2 - Haltervormig 3

- Boontjes 8

3 - Celstructuur rechthoekig, vaak geribbelde cellen 4

- Celstructuur opgeblazen, cellen glad 7

4 - Tussencellen vierkant =Puccinellia manitima (oz) Verdere kenmerken: randcellen bol, dakpansgewijs gerangschikt. Humo's geconcentreerd per rij van cellen. Haltervormige huidmondjes (zonder ellips?) NB. Tussencellen hoeven niet vierkant te zijn, maar er zijn altijd vierkante aanwezig

- Tussencellen nooit vierkant 5

5 - Huidmondjes in rijen, ononderbroken door cellen, Ellips om haltertjes = Elymus athericus (oz)

- Niet in ononderbroken lijnen 6

6 - Onderscheid bedenken tussen Spartina en de bovenkant van Elymus athericus. Elymus athericus dakpancellen als Festuca, maar dan spits

7 - Tussencellen aanwezig, haren uit tussencellen. Huidmondjes smal en lang = Festuca rubra (bz)

- Tussencellen niet aanwezig, geen haren maar wel korte stekels(?), huidmondjes verspreid= Puccinellia maritima (bz)
- Huidmondjes haltervormig Ribbels in nerf (zie foto) = Agrostis $\quad \mathrm{C}=0$

8 - Dubbele boonties 9

- Geen dubbele boonties 10

9 - Regelmaat, huidmondjes in rijen, gescheiden door rijen met lange smalle cellen. Cellen tussen huidmondjes
vierkantig. Boonties soms bruin gekleurd. Evenwijdige nerven overeenkomstig met njen smalle cellen = Triglochin maritima

- Minder regelmaat; geen duidelijke indeling in rijen, cellen tussen de huidmondjes niet duidelijk vierkantig =Armeria maritima

10 - Huidmondjes op scheiding van twee cellen. Lijken in een grote cel te liggen omdat de scheiding van de twee cellen moeilijk zichtbaar is = Plantago maritima.
Verder: veel huidmondjes regelmatig verspreid

- Niet II
$20 \rightarrow$

en niet 20 .
- Steeltyes aanwezig of cellen op steeltjes (Atriplex + Glaux)
[nieume-Steeltjes, verder kunnen cellen gegolfd zijn, dikkere celwanden = Glaux maritima
10] - Steeltjes of met een cel erop, verder cellen hoekig. Geen dikke celwanden onregelmatige structuur $=$ Atriplex portulacoides

II - Celwanden geribbeld als de grassen, maar alleen aan de rand smalle rechthoekige cellen scort van dubbele boontjes=/uncus gerardi

- Niet I2

I2 - Cellen gegolfd I3

- Cellen hoekig, tot afgerond I5

I3 - Cellen licht gegolfd = Artemisia manitima

- Cellen sterk gegolfd I4

14 - Huidmondjes groot en dik en in ander vlak itt Spergularia maritima. Cellen met dikke dubbele celwanden. Steeltjes! = Glaux maritima

- Huidmondjes klein, cellen op rijen (?) Ook steettjes (?) = Spergularia maritima
- Cellen rond huidmondjes kleiner. Rommelige structuur, cellen variabel, cellen geconcentreerd rond huidmondjes $=$ Limonium vulgare
- Niet 16
- Huidmondjes een beetje kleiner dan de omliggende cellen = Aster tripolium. Huidmondjes enigzins bovenop? bijna bolrond, veel huidmondjes
- Huidmondjes duidelijk een stuk kleiner dan de omliggende cellen I7

I7 - Cellen op steeltjes =Atriplex portulacoides

- Niet I8
- Huidmondjes onregelmatig van grootte. Veel huidmondjes, langwerpige boontjes ingeklemd. Grote hoekige cellen = Sueda maritima
- Huidmondjes regelmatig van grootte, cellen minder hoekig, veel huidmondjes = Salicornia europaea

19 - Celstructuur lange rechthoekige cellen, geribbeld, met smalle korte tussencellen =Festuca rubra (oz)

- Niet 20

20 - Weefsel bestaand uit heel veel kleine celletjes = Enteromorpha

- Niet? Tja,..

Definities:
humo's =huidmondjes
dubbele boontjes=
bz= bovenzijde
oz=onderzijde
dakpancellen als Festuca maar dan spits=
steeltjes $=\theta \theta \theta$

Appendix 3

Tekeningen, foto's en beschrijvingen van epidermale structuur van:

Ammophila arenaria
Arrreria maritima
Artemisia maritima
Aster tripolium
Atriplex portulacoides
Elymus fartus
Entromopha sp
Festuca rubra
Fucus sp
Glaux martima
juncus gerardi

Limonium vulgare
Monostroma sp
Plantago maritima
Puccinellia maritima
Salicomia oliostachya
Spartina townsendii
Spergularia maritima
Suaeda manitima
Triglochin maritima
Ulva lactuca
Zostera sp

Met dank aan
Charlotte Deerenberg
Martijn Egas
Dijkstra \& Dijksta- De Vieger
Summers et al., 1993
(zie ook: Dijkstra \&
Dykstra-
De Vlieger)

vriy grote, onregelmatige cellen byna bolronde huidmondjes -enigzins bovenopliggend.
boven-en onder $2 y$ de \pm gelyk

(h) Aster tripolium

hoekige grote cellen
humo's I tussen anderc cellen in bïna bolrond
\pm even groot - iets kleiner dan overige cellen. enigzins boven opliggend

Armeria maritima

(9) Armeria marilima

Armeria maritima (Plate IIg)

Stomata surrounded by two curved cells as for Triglochin maritima but cells not arranged in regular rows. Circular non-stomatal structure present as for Limonium vulgare.

Artemisia maritima

Halimione portulacoides 200x

(h) Halimione portulacoides

grote ronde schetsmatige
cellen Mang effect
onderzýde
(Vie ook: Dýkstra \& Dýkstra-De Vlieger)
 geén huidmondjes
longe, scale cullen
fyn gekarteld.
some twee tussercellen mast elleaar
bovenzýde

opgeblazern, \pm glade ellen
huidinondjes! smaller, langer dan by Puccinellia
smalle tussencellen
humor's aan bovenz̈yde! met glade bollige cellen lange haven mn. langs nerved boven ride ellen scherp rechthoekig soms dubbele tussencellen Festuca rubra $=\cdots \cdots$,
$200 x$ ak opvallend grote tussencellen bu op nerven

Festuca rubra
Abaxial surface-cells bigger than for Puccinellia maritima-80-400 $\times 15-20 \mu \mathrm{~m}$. Thickening of walls present but more finely folded than P. maritima. Silica bodies present, often in twos or threes. Mostly shorter (in direction of leaf axis) than for P. maritima. No stomata. Cells on leaf edge more flattened, giving a smoother edge.

Adaxial surface-cells without lumps, but whole cell bulges outwards and sideways from the narrow end walls adjoining the silica bodies. Cells arranged so that in adjacent rows the narrow ends of the cells are partly obscured by the bulging of the cells on either side. Short hairs grow from

Plantago maritima
onder $2 y \mathrm{~d}$ c

huidmondjes altyd met twee uttopers

- op schiciding van twec cellen (?)
veci huidmondjes
cellen \pm op ryen
boven ry de

cellen wij onregelmatig

(e) Plantago maritima

Stomata surrounded by 2 or 3 cells only. Cell junctions perpendicular to stomatal axis.
humor kein binnen de cel op scheiding"van twee cellen humoss boven en onder

onregelmatige cellen
humos tussen andere cellen numo's groter en dikker dan Spergulaina
dikke, dubbele celwanden humo's bovent onder, boven bovencpliggend.

Limonium vulgare

humo's in de cel bovenzÿde rand - smalle regelmatige rechthoekige cellen midden - grote cellen onderzäde : regelm. vierk.- langu
cellen humors!
ronde hamo's, 2 "boontjes" zwarte opening, rondow humo's kring $(2-3-4) v$. begeleidende cellen Cellen variabel, rommelige
structuur.
(g) Limonium vulgare

Salicornia oligostachya
iemplantje

Salicornia europaea

1^{c} blad $\stackrel{\overbrace{}^{2}}{n}$

henmerlunde celstructuur
rond huidmondies
(h) Salicornia europaea agg.

cellen onregelmatig hoekig
Kleiner en voller (minder $\ddot{y})$) dan Sucda. Humo's tussen andere cellen un. Ovaal, valak -zurte opening. mestal al allengation verder onregelmatig.
"wollig's uiteinde 'of in punt iutlopend mat wortelhaven Q. (vgl. Suarda!)

Puccinellua maritima
onder 2 y de

huidinondjes
lijken \pm rond (door tycellen?)
1^{e} blad
legere cellen minder gekarkeld cellen lyhen nog niet volledig gestrelat
3^{c} blad

cellen smal,
nalluelijks gekarteld (alad)
bovenzyde
knoblets, alle noar

cellen rommelig,
niet geribbele
3^{e} Blad

enigzins opgeblazen ullen geen (duidelijke?) lnobbels
cellon wisselend van grootte: nict altyd duiddyu vershrityty

Puccinellia: \pm vierkante tussencellen
humor's bovenop legend, boven en order (ie fest!) randeellen dike één züde is dikker (dakpannen) hoeken meer atgerond
scums knobbets op celled, all near eén kant bowen gladdere, rondere cellen (rommeliger)
va voorjaar - geribbelde cellen
vi najuar - glade cullen
\rightarrow onderscheid mogelyk tussen jong en oud blad

(a) Puccinella maritima (abaxial surface)

Puccinellia maritima 200x

Adaxial and abaxial surfaces differ. Morphology varies according to growth state.
Abaxial surface-old leaves: cell walls thickened and folded, silica bodies present between cells.
Stomata present but not very dense. Cells on leaf margins rounded giving corrugated edge. Cell sizes $60-220 \times 10-15 \mu \mathrm{~m}$. Young leaves: cell walls thin, not folded. Silica bodies few or absent. If present they occur near leaf margins. Stomata present.

Adaxial surface-many cells with circular lumps. Cell walls often thickened and folded, but not

Spartina townserdii
onder $2 y$ de

vgl. Puccircllia on Festuca wainig tussencellan vech nerven - lange smalle cetten overigens wat brede, why leorte wlen
bovenziyde

stecltjes in banen op plaats tussencel in die banen ook de huidmondjes

huidmonajos aanwerig onduidelyt - mocelýn richtbaar
gegoifac celuandon alle when met "belletjes" - 20 theristallen? nerver $=$ smalle lange cellen

Spartina anglica
Only the abaxial surface is characteristic. Cells covered in evenly spaced silica nodules appearing as small bright spots. Otherwise cells very like P. maritima. Cell size $80-250 \mu \mathrm{~mm}$ long.

Spergularia maritima

meest gegolfde celwandon \pm rýen

huidmondje, ury hicin

(d) Spergularia media

Spergularia media \& Artemisia maritima (Plate Ild)
Cells have jigsaw piece appearance due to wavy edges, more so in Spergularia.
cellen \pm op räen grof gektonkeld ("puzzelstukjes") $\longrightarrow \pm$ glad. humo's op scheiding van cellen humos boven t onder, klein

of
kiemplant

Luemblad

wortel

langwerpige, gladde cillen (vg!. Salicornia!)

Triglochin maritima

baan met
1-3 rijen hividmendies
boven - en oncior íjde geleith
kelkbladen
$3(3)$ raadjes
geen duidelye horiuerbare structuer
rruchtepidermis
vgl. Lellebladen
rucht epi dermis
vgl. Lellublader
Welkoladin
cellon niet/namudijus to onderschaden

Triglochin maritima (Plate IIf)
Stomata and elongated cells arranged in regular rows. Two curved subsidiary cells surround the stomata, lying parallel to the guard cells. A single row of cells stretches between stomata.
humo's in banen van vierkantige hoekige cellen

(AMMOPHILA ARENARIA)
BLAD: KLeine blokRige cellen, dor ceel u-sanbe tursencellen

Cecolen cilicacel?

Biestarwegras (elymus farctus)
BLAD. UARiEREND lang deun tapistoce Copend
dith, sark

anderi

Appendix 4

Diet analysis
Hundred identifications of a dropping sample take from the 10 years old salt marsh

Appendix 5

Appendix 6

	Festus	Wecma	Wiximax	Ememe	Spemat	Filuma	4indeme	Enesinik	**imm	A 4 Stat	Alypio	Sxaang	Suamar
March												-xman	Suamar
02	T5-DE			T5-D									
08		T5-D											
13			T2-E				pad						
21		TO-E	T2-D		TO-E	T0-E							
22	T5			T5									
24				3 esi									
April													
06		T2											
14	OBK							TO-DE					
24		T2-D	3esl-DE										
26	T2	T2-B	T2	T2-E	TO-DE	T2-DE	T2-DE	T2-E					
May													
01	T2-8DE	T2-8D				T2-BDE	T2-BDE	T2ABDE	T2-ABDE				
02			T2-8E	T2-8DE									
03		T2-CE	${ }^{+}$		TO								
04													
05													
06	T2-C	T2	T2	T2	T2-8DE	T2-A	T2	T2		T2-8E			
07													
08													
09													
10													
11	T2-ABDE		T2	T2-8DE	T2-A	T2	T2-ABDE	T2-8E	T2-ABD	T2-A			
12													
13													
14													
15													
16	T2-A		T2-ABDE	T2-A	T2-8DE	T2-ABDE	T2-A	T2-ADE	T2	T2-8D			T2
17													
18													
19													
20													
21	T2-ABDE	T2-BDE	T2-ABDE	T2-BDE	T2-8E	T2-8	T2-8	T2-AB	T2-ABDE	T2-8E	T2		
22													
23													
24													
25													
26	T2	T2-AE	T2-A	T2-A	T2-AD	T2-ADE	T2-ADE	T2-D	T2-DE	T2-DE	T2-E	T2-BE	

27		T2-A											
June													
01													
02		T2								T2-D	T2-CE	T2-CE	
18	T2-CDE			T2-CDE									
19		T2-CDE	T2-CDE		T2-CDE	T2-CDE	T2-CDE		T2-CDE	T2-ACE	T2-DE	T2-ADE	
20								T2-CDE					

[^0]
Appendix 7

Abbreviations of plant names:
Arm Armeria maritima
Art Artemisia maritima
Ast Aster tripolium
Atr Atriplex portulacoides
Ely Elymus sp
Ent Enteromorpha
Fes Festuca rubra
$\mathrm{Fes}^{2} \quad$ Festuca² (see methods)
Gla Glaux maritima
Jun Juncus gerardi
Lim Limonium vulgare
Pla Plantago maritima
Puc Puccinelia maritima
Sal Salicornia sp
Spa Spartina anglica
Spe Spergularia maritima
Sua Suaeda maritima
Tri Triglochin maritima

Appendix 8

Possible difficulties when using "preference ratio" :

Species	A	B	C
percentage habitat	I	9	90
percentage diet	5	95	trace

When species C is included as available food, then A and B are both strongly preferred. Ratio 5.0 and 10.6 However when C is omitted from the analysis, the habitat contains 10% species A and $90 \% \mathrm{~B}$; B is still slightly preferred, but A is quite strongly avoided, Ratios of I.I and 0,5 respectively.

Crawley, 1983

Appendix 9

FESTUCA
protein, WSC and NDF

PUCCINELLIA
protein., WSC and NDF

ELYMUS
protein, WSC and NDF

JUNCUS
protein, WSC and NDF

TRIGLOCHIN
protein, WSC and NDF

days from I May

SPERGULARIA
protein, WSC and NDF

ASTER
protein, WSC and NDF

LIMONIUM

protein, WSC and NDF

ENTEROMORPHA
protein, WSC and NDF

days form I May

Appendix 10

Oplosbare Koolhydraten / Water Soluble Carbohydrates

VOORBEREIDINGEN:

*De glucose-basis oplossing kan lof meer dagen voor de bepalingsdag aangemaakt worden. Het plantenmateriaal moet goed vermalen zijn tot 0.5 mm en moet worden voor gedroogd op $70^{\circ} \mathrm{C}$. Zorg ervoor dat dit maalsel goed gemengd is ! *Gemalen plantenmateriaal ? uur in stoof: $1 / 2$ uur in exicator
*In het waterbad kunnen 24 monsters staan. Dus II monsters in duplo+ blanco in duplo.

```
Maak een glucose-basisoplossing:(Iml =0.25 mg glucose)
    *droog de benodigde D-glucose bij 70 C
    *los 0.250 gram (gedoogde) D-glucose op in I liter gedest, water.
    *Deze glucose oplossing blijt enkele weken goed.
```

Maak Anthrone reagent:
*Nodig oa bril, handschoenen, zuurstofkast, bak met ijs en magnetische roerplaat.
*Voeg voorzichtig 760 ml geconsentreedrd $\mathrm{H}_{2} \mathrm{SO}_{4}$ toe aan 330 ml gedest water in een "kookfles" en
hou dit mengsel koel tijdens het mengen.
*Voeg I gram Anthrone en I gram Thioura toe. Gebruik hiervoor een magnetische roerplaat.
* Breng dit mengsel over in een donkere fles en laat deze oplossing twee uur staan bij $1{ }^{\circ} \mathrm{C}$ alvorens het te
gebruiken. (Mengsel kan na bepaling enige tijd in koelkast bewaard worden)
*Het Anthrone reagents moet stro-kleurig of lichtgeel zijn. Als het donkerder wordt, met een groene tint, heeft
oxidatie plaatsgevonden en moet de oplossing weggegooid worden

Maak een reeks glucose-standaardoplossing:
*pipetteer $0,10,20,30 \& 40 \mathrm{ml}$ glucose-basisoplossing in (5 verschillende) 100 ml
maatkolven. Vul deze aan met gedest, water.
*Maak deze ijkvoeistoffen dagelijks aan!

EXTRACTIE

*Weeg 100 mg gedroogd plantenmateriaal nauwkeurig af en breng het in een 100 ml maatkolf.
*Voeg 60 ml gedest water toe,
*Plaats deze maatkolf in een waterbad met trechter en knikker en laat deze zachtjes koken gedurende 2 uur. Beweeg af en toe deze oplossing voorzichtig.
*Vul de inhoud van de maatkolf aan met gedest water tot 60 ml .
*Laat de vloeistof enigzins afkoelen en filter de vloeistof door een filtreerpapier (Whattman 44) in een 100 ml maatkolf.
*Spoel het filtreerpapier met lauw water en vul de maatkolf aan met demi -water tot 100 ml .
*Laat een water blanco dezelfde behandeling ondergaan
*Dit extract kan niet over de nacht bewaard worden en moet bereid worden vak voor de kleurontwikkelings bepaling!

KLEURONTWIKKELING:

*Pipetteer 2 ml van elke standaardoplossing in reageerbuizen.
*Pipetteer 2 ml van elk extract of water blanco in reageerbuizen.
Vanaf dit punt moeten standaardoplossingen en monsteroplossingen gelijk behandeld worden.
*Voeg snel 10 ml Anthrone reagents toe en mix zeer goed (vortex) terwijl de buis wordt gekoeld door stromend water (of in een waterbad).
*Plaats de reageerbuizen in een beker kokend water, in een verduisterde zuurstof kast (of verduister de beker met aluminiumfolie) en laat de oplossing 10 minuten koken.
*Plaats de buizen in koud water en laat ze afkoelen, liefst in het donker. (Kan in spoelbak met deksel)
*Meet lichtabsorptie op 625 nm met gedestileerd water als referentie.

BEREKENING:

Maak ijkcurve mbv de standaard oplossingen en gebruik deze om de hoeveelheid glucose te bepalen. Trek de gemiddelde waarden van de blancos ervan af (mits noodzakelijk)

Bepaling van het drogestorgehalte.

om de verschillende componenten van het plantenmateriaal te kunnen geven als percentage van het 100 of droge materiaal moet men van elk monster het drogestofgehalte kennen. monster, welke van te voren zeer goed is gehomogeniseerd. wordt in de kroes gebracht en na minimaal $103{ }^{\circ} \mathrm{C}$ wordt het kroesje met gedroogd meteriaal weer gewogen. Benodigdheden: -porseleinen schaaltjes
-monsterlepel
-analyseformulier -kroezentang -droogstoof

Ferkwijze:

Berekening:
\%drogestof $=\frac{\text { droog gew. }-1 \text { eeg gew. }}{\text { inweeg gew. }} * 100 \%$
Alle gewichten zijn in grammen.
Het verschil tussen de duplo's mag niet groter zijn dan 0,2 \%
absoluut.
Bepaling van N.D.F..
Het monster wordt gekookt in een buis met N.D.R. (neutral Na filtreren blijft de celwandfractie, N.D.F. (neutral detergent fiber) achter in de kroes. Deze fractie wordt uitgespoeld, gedroogd en gewogen.
Benodigdheden: - buizen van 250 ml .

	- glasfilterkroezen met manchetten (kroezen $\left.c_{i} 2\right)$
- standaard met afzuigtrechters	
	- kookblok
- droogstoof en kroezentang	
	- balans
Werkwijze:	- buisjes met ijs

Homogeniseer het monster en weeg 0,9 gram af op het weeg-
Voeg m.b.v. een dispenser 100 ml . N.D.R.-oplossing toe aan
Zet het kookblok op $170{ }^{\circ} \mathrm{C}$ en plaats bijv. elke 5 minuten
een buis in het kookblok. Hang er een buisje met ijs in (dit
om verdamping tegen te gaan).
Vervang het buisje met ijs na 30 minuten koken.
Na totaal 60 minuten gekookt te hebben wordt het monster
een afzuigtrechter met manchet (op de eerste rij).

- Spoel de restanten van het monster uit de buis over met heet demiwater. De glasfilterkroes wordt nog drie maal gespoeld
- plaats de glasfilterkroes op een trechter van de achterste rij en spoel het monster twee maal door met een beetje en laat dit tenminste cén minuut staan.
plats de kroezen in de droogstoof gedurende 8 uur bij
Weeg de kroezen én voor éen zoals beschreven staat bij de drogestof bepaling.
plaats de kroezen
plaats de kroezen (max. 45) op volgorde in de moffeloven, op
de metalen slede. Sluit de deur en zet de oven aan.
Laat de schaaltjes gedurende 3 uur verassen bij $55^{\circ} \mathrm{C}$. let op het opwarmen van de moffel is niet bij deze tijd inbegrepen)
Zet vervolgens de schaaltjes op volgorde op een blad en
plaats deze in de droogstoof bij $103{ }^{\circ} \mathrm{C}$.
Na 1 uur zijn de schaaltjes voldoende afgekoeld en kunnen
gewogen worden (as gew.).
ROERMOTOR
Deze moet voorzien zijn van een roerder met vrij grote schoe-
pen, zodat bij een lage snelheid van de motor de vloeistof
toch goed gemengd wordt. Een hoge motorsnelheid kan beschadi-
ging van de micro-organismen tot gevolg hebben. VERDEELPIPET VAN 50 ML
Met onderverdelingen van elke 5 ml .
MAATCYLINDER, 500 ML
KAASDOEK, MET EEN FIJNHEID VAN CA. 200 OPENINGEN PER CM ${ }^{2}$ Zeer fijn geweven.(bv. voeringstof)
TRECHTER
Bovenzijde ca $6 \mathrm{~cm} ; ~ l e n g t e ~ s t e e l ~ c a . ~$
cm
TRECHTER
Doorsnede bovenzijde ca 15 cm.
ROERSTAAF
Met rubber
vatersinal
uchionmo

:NERKWIJZE
Jan de te onderzoeken monsters ruwvoer wordt 0.5 g gemalen lucht droog materiaal (deeltjesgrootte < 1 mm) nauwkeurig ifgewogen en in centrifugebuizen overgebracht. Hetzelfde wordt net een standaardmonster van tamelijk lage verteerbaarheid. Jan beide standaardmonsters is de verteringscoëfficient voor le organische stof berekend als gemidielde van tenminste 10 jepalingen in triplo. Met elke serie worden tevens 3 blanco jepalingen meegenomen.
je buizen worden in een stoof van $38-39{ }^{\circ} \mathrm{C}$ voorgewarmd. Van de Sosfaat-bicarbonaat buffer wordt 2.5 liter tot $38-39$. ${ }^{\circ} \mathrm{C}$ ver-
varma in een waterbad, waarna de pH van de oplossing op 6.9 jebracht wordt door er een flinke stroom CO_{2}-gas door te leiden ca. 20 min). Tijdens het CO_{2}-doorleiden wordt de buffer goed
m ... uur (2 uur na het voeren) wordt van twee fistelhamels a. i liter (elke hamel 500 ml) pensvloeistof genomen, die irect in van te voren tot $38-39{ }^{\circ}{ }^{\circ} \mathrm{C}$ verwarmde termosflessen ordt overgebracht. Direct daarna wordt de pensvloeistof door ubbel kasdoek gefiltreerd in een stoof van 38-39 ${ }^{\circ} \mathrm{C}$. De aatste resten vloeistof worden uit de kaasdoek geperst, zodat an de gefiltreerde pensvloeistof w6rdt 625 ml aan de met co_{2} erzadigde fosfaat-bicarbonat buffer toegevoegd. Het mengen an de vioeistof en het CO_{2}-inleiden worden voortgezet. an slk monster ruwvoer wordt nu met de automatische pipet 50 1 van het mengsel pensvloeistof-buffer toegevoegd, waarna de laatst. Na een uur wordt de inhoud van de buizen goed geengd, zorg ervoor dat zo weinig mogelijk vaste deeltjes aan edurende de incubatietijd van 46 uur wordt de inhoud van de uizen 2 maal per dag gemengd en wel om 8 en om 17 uur. Na de an elke buis $5 \mathrm{ml} \mathrm{Na}_{2} \mathrm{CO}$, oplossing 10 \% toegevoegd, gemengd en edurende 15 min . gecentrifugeerd bij 2500 t.p.m. De boventaande vloeistor wordt afgeschonken over eens stukje nylonigd. dat op een Buchnertrechter (doorsnede 6 cm) is beves-
e deoltjes, die op het nylon achterblijven, worden met pepsi-e-zoutzuur ($38-39^{\circ} \mathrm{C}$) via een trechter met korte steel in de
e deeltjes, die aan de glaswand kleven, worden met een glastaaf, voorzien van een rubber wissertje, los gemaakt en de et residu oo de bodem van de buis wordt met een glasstaaf osgewerkt en goed gemenga met de pepsine-zoutzuur, waarna de dis met pepsine-zoutzuur $\left(38-39{ }^{\circ} \mathrm{C}\right)$ wordt aangevuld tot 50
: inhoud van de buis wordt gemencd, :vaarna de buis wordt

 VERTEERBAARHEID"IN VITRO" VAN GROENVOER
$* * * * * * * * * * * * * * * t *$

PRINCIPE VAN DE METHODE:

ใEAGENTIA EN BENODIGDHEDEN:

FOSFAAT-BICARBONAAT BUFFER.
Deze wordt gemaakt van 3 moederoplossingen.
Oplossing 4650 Na
Oplossing 1: $46,5 \mathrm{~g} \mathrm{Na} \mathrm{NPO}_{4} \cdot 12 \mathrm{H} 2 \mathrm{O}$ (potnr.
NaHCO_{3}
NaHCl
KCl kn opg
Deze 4 stoffen worden opgelost in water en aangevuld tot 1
Oplossing 2 : MgCli-oplossing (6\%): $12,8 \mathrm{~g} / 100 \mathrm{ml}$ (potnr.) oplossing 3 : CaClifeplossing $(4 \%): 5,3 \mathrm{~g} / 100 \mathrm{ml}$ (potnr.) 500 ml oplossing $1+5$ moplossing 3 hierna met water aanvullen tot 3,5 liter. PEPSINE-ZOUTZUUR OPLOSSING.
5 g pepsine $(1: 10.000)$ wordt

5 g pepsine (1:10.000) wordt opgelost in 2250 ml water. Aan deze oplossing wordt $250 \mathrm{ml} \mathrm{HCl}(1 \mathrm{~N})$ toegevoegd (voor ca. 45 Voeg 85 ml toe aan ca. 800 ml water en vul aan tot 1 liter. bereid voor iedere reeks bejalingen.
$\mathrm{Na}_{2} \mathrm{CO}_{3}-$ OPLOSSING 10 gram op in 100 ml water (potnr.
PENSVLOEISTOF
VOOr de leveri
(Tilly en Terry)

CENTRIFUGEBUIZEN (inw. doorsnede 3.2 cm ; hoogte $11 \mathrm{cm}$.)

AUTOMATISCHE PIPET EN VOORRAADFLES (zie fig. 8)
Door opening A met de vinger af te sluiten wordt het mengsel van pensvloeistof en buffer in de pipet gezogen tot boven
niveau B. Nadat de vinger bij A is weggenomen loopt de vloeistof terug in de voorraadfles, totdat in de pipet het niveau B is bereikt. De hoeveelheid vloeistof, die in de pipet beneden te bewegen. Door kraan D te openen kan de vloeistof aan het te onderzoeken monster groenvoer worden toegevoegd. zijn, daar de vloeistof dan met te grote kracht in de pipet wordt gezogen, waardoor schuim ontstaat.

WATERBAD
Deze wordt ingesteld op 38-39 ${ }^{\circ} \mathrm{C}$. De afmetingen van het waterbad moeten zodanig zijn, dat de hiervoor genoemde voorraadfles er in geplaatst kan worden.

CYLINDER MET CO_{2}-GAS
Deze moet voorzien zijn van een reduceerventiel. DROOGSTOOF (103-105 ${ }^{\circ} \mathrm{C}$)

BROEDSTOOF (38-39 ${ }^{\circ} \mathrm{C}$)

MOFFELOVEN (550 ${ }^{\circ} \mathrm{C}$)

BALANS
Met een
Met een aevoeliahoid van 0.1 mm
BEREKENING

$$
\begin{gathered}
10.000 *(E-C-B) \\
P * D(1-0.01 * A)
\end{gathered}
$$

* WAARIN:
$A=\dot{y}$ AS IN DE DROGE STOF VAN HET MONSTER.
$B=$ VERSCHIL VAN HET GEMIDDELDE GEWICHT VAN DE DROGE
$\star c=$ GEFAICHT VAN HET KROESJE+RESIDU NA HET GLOEIEN IN GRAMRON STOF IN HET MONSTER
 LNGIDIAGGODSONIZGIZE $\Lambda=\Lambda *$
 standaardmonsters, die berekend zijn als gemiddelde van tenminste 10 bepalingen in triplo, worden grafisch uitgezet tegen
de gemiddelde verteringscoëfficiënten van de standaard monsters, die gelijk met de serie te onderzoeken monsters zijn
De rechte lijn, die door de gevonden punten wordt getrokken, geeft het verband aan tussen de werkelijke en de gevonden behulp van deze lijn worden de gevonden verteringscoëfficiën--T•0 do 707 pxaəłxoddexab uapxom uazuạ! He verterings coëfficiënten worden gerapporteerd maximum toelaatbare verschil tussen de duplo's bedraagt 2 eenheden.

Na 46 uur worden de buizen gedurende 15 min. gecentrifugeerd bij 2500 t.p.m. , waarna weer wordt afgeschonken door nylonbuis terug gespoten. De inhoud van de buis wordt afgefiltreerd door een van te voren gegloeid (1,5 uur bij $550{ }^{\circ} \mathrm{C}$) glasfil-
terkroesje. De vaste deeltjes, die aan de glaswand kleven, worden met een glasstaaf, voorzien van een wisser losgemaakt en met water in het kroesje overgespoeld. (45 kroesjes worden gedurende 1 nacht bij $103-105{ }^{\circ} \mathrm{C}$ gedroogd (45 min in de exicator) en gewogen. Daarna wordt de inhoud
gedurende 1,5 uur bij $550^{\circ} \mathrm{C}$ verast waarna de kroesjes weer worden gewogen.

BEREIDING VAN DE OPLOSSINGEN

BENODIGDHEDEN VOOR CA 120 BEPALINGEN
EERSTE DAG:
EERSTE DAG:
Bij inzetten heb je een begin volume nodig van 12,5 liter 2100 ml oplossing 1 21 ml oplossing 2
21 ml oplossing 3

Aan deze oplossing wordt 25 g tripticase toegevoegd, vervol2.5 liter.

DERDE DAG:
DERDE DAG:
1100 ml Na CO_{3}-opl----> $5 \mathrm{ml} / \mathrm{buis}$.
5 g pepsine in 2250 ml water en hieraan 250 ml HCl iN toevoe-
gen. Deze opl. wordt 3 maal bereid.

Appendix 11

Berekening in vitro waarden:

Tijdens de in vitro bepaling volgens Tilly \& Terry wordt plantmateriaal 2 *24 uur geincubeerd, Na aanleiding van de gegevens verzameld door W. van Marken Lichtenbelt (I98I) kozen we voor 6 uur incubatie. Zie ook figuur I. De *-jes in de figuur zijn gevonden vivo verteringswaarden. Verwacht werd dat de op deze wijze verkregen data, de vertering van het plantenmateriaal door de rotganzen, het beste zou benaderen. Verder werd ook verwacht dat de verschillen tussen de verteerbaarheid van de onderzochte plantensoorten beter zichtbaar zouden zijn bij 6 uur ipv 48 uur incubatie.

Figuur I In vitro verteringwaarden van Festuca en Poa Lolium bij verschillende incubatie tjiden. *-tjes geven gevonden vivo verteringswaarden weer. (Marken Lichtenbett, 1981)

Omdat bij de in vitro bepaling volgens Tilly \& Terry gebruik gemaakt wordt van penssap van levende runderen, corrigeert men de aan het eind gevonden data voor verschillen in penssap. Verschillen in penssap agv verschillende individuen; hooi of gras gevoed etc Dit gebeurt mbv ijkmateriaal waarvan de vitro-verteringswaarden bekend zijn en die mee genomen worden tijdens de bepaling: Wilgentakken [63809], vers gras [1475], beheershooi [1593] en Engels raai gras [16|I]. Om de correctie voor verschillen in penssap ook bij 6 uur incubatie toe te kunnen passen is de volgende berekening uitgevoerd:

LUW file:

6 uur incubatie tijd nr $15 \mathrm{t} / \mathrm{m} 88$
24 uur incubatie tijd nr $89 \mathrm{t} / \mathrm{m} 102$
30 uur incubatie tijd nr $103 \mathrm{t} / \mathrm{m} 116$
48 uur incubatie tijd $\mathrm{nr} 117 \mathrm{t} / \mathrm{m} / 30$
$48+$ ur incubatie tijd $\mathrm{nr} 131 \mathrm{t} / \mathrm{m} 144$

Vitro 6 uur - Vitro 48 uur
Beide bekend, tegen elkaar uitgezet.
Regressie lijn: $Y=0.85 X-7.18$

$$
\left[R^{2}=0.88, N=6, Y=\text { vitro } 6, X=\text { vitro } 48\right]
$$

Aangenomen dat verhouding tussen
Vitro 6 uur - Vitro 48 uur
gelijk is aan verhouding tussen
daarom nieuwe ijklijn; na berekening Vivo 6
Vivo 6 uur - Vivo 48 uur
van $x=$ vitro 6
$y=$ in vivo 6
$Y=0.83 x+0.82 \quad\left[R^{2}=0.87, \quad N=6\right]$
Met behulp van deze vergelijking kunnen de gevonden waarden van Festuca, Puccinellia ed bij 6 uur incubatie gecorrigeerd worden voor verschillen in penssap ten opzichte van andere in vitro bepalingen.

	VIVO 48 UUR	VITRO 48 UUR	VITRO 6 UUR	VIVO 6 UUR
Wilgentakken [63809]	31.9	35.6	25.64	19.94
Vers gras [1475]	75.3	80.3	56.76	56.82
Beheershooi [1593]	48.1	66.1	39.07	33.71
Engels raai gras [1611]	80.9	86.6	71.45	61.59
Hazebrokken	64.3	81.8	66.56	47.47
Lizemebrokken	54.9	59.6	47.08	39.49

$\bigcirc \bigcirc N \bigcirc$	年
	出
	z
	\%
	¢
	¢
	n
	z
	-
	\%
	-
000 응	n
	z
	\%

	-
	攵
- O O-	m
	z
	品
	-
$\circ \text { O O}$	\|l
$\bigcirc \bigcirc \bigcirc O_{\infty} 0 \bigcirc \bar{\sim}$	n
	z
	-
	-
	4
	z
	\%

	n
	z
	-
	ก
	-
	碞
	出
	z
	-

Appendix I3

Energy gain per bite
Table I Average bite size for the period of May in mm/bite (or in $\mathrm{mm}^{2} /$ bite indicated with *)

species	Lim *	Ent	Atr*	Pla	Ast*	Spa	Spe	Tri	Ely	Jun	Fes	Puc
bite size	89.47	-	40.3	17.38	38.6	9	10.4	14	14	14	14.48	8.93
source	1	1	1	3	1	1	1	2	1	1	3	3

I. This study 2. Egas, I995 3. Prop \& Deerenberg, I99 |

Festuca rubra as example of the calculation by with values of table 5 are obtained:

Dry weight per lenght	$=0.40 * 100^{\prime}$	$\mathrm{mg} / \mathrm{mm}$
Bite size	$=14.48$	mm
Bite weight	$=0.58$	$\mathrm{mg} / \mathrm{bite}$

The percentage NDF, WSC, Protein and Ash of this plant species found were found with the chemical analyses. No lipid analysis was carried out and a constant value of 5% for all plant species was assumed.

One bite so 0.58 mg Festuca rubra consist of

$$
\begin{array}{ll}
0.58 / / 00 * 43.6 & =0.253 \mathrm{mg} \mathrm{NDF} \\
0.58 / 100 * 22.7 & =0.132 \mathrm{mg} \text { WSC } \\
0.58 / / 00 * 20.5 & =0.119 \mathrm{mg} \text { Protein } \\
0.58 / / 00 * 5 & =0.029 \mathrm{mg} \text { Lipid } \\
0.58 / 100 * 7 & =0.041 \mathrm{mg} \text { Ash }
\end{array}
$$

Since geese retain their food for only a short period in the alimentary track, not all material can be digested. The Apparent Digestability (AD) of NDF is assumed to be 29\%, WSC 8.5\%, Nitrogen 62.5% and Lipid 28.6\% (Buchsbaum, 1986). See also tablel. The values chosen (\Rightarrow) are derived from one experiment and take a middle position between other values found in literature.
after digestion;
$0.253 / 100^{*} 29=0.07 \mathrm{mg}$ NDF
$0.132 / 100^{*} 68.5=0.09 \mathrm{mg}$ WSC
$0.119 / 100^{*} 62.5=0.07 \mathrm{mg}$ Protein
$0.029 / 100^{*} 28.6=0.01 \mathrm{mg}$ Lipid
$0.041 / 100^{*} \quad 0 \Rightarrow$ can't be digested

Energy obtained from the plant material digested:
NDF I $3.2 \mathrm{KJ} / \mathrm{g}$ (Buchsbaum, 1986). WSC $17.6 \mathrm{KJ} / \mathrm{g}$, Protein $17.8 \mathrm{KJ} / \mathrm{g}$ and Lipid $39.3 \mathrm{KJ} / \mathrm{g}$ (Schmidt-
Nielsen, 1975)
$0.07 * 13.2=0.924$ Kjoule obtained from NDF
$0.09 * 17.6=1.584$ Kjoule obtained from WSC
$0.07 * 17.8=1.246$ Kjoule obtained from Protein
$0.01 * 39.5=0.395$ Kjoule obtained from Lipid

Total energy obtained after digestion of 1 bite Festuca $=$
$0.924+1.584+1.246+0.395=4.15$ Kjoule

Appendix 14

Contributions of cell wall, soluble carbohydrates, protein and lipid to the total energy obtained of I gram of their plant food.
An example of the calulation by with values of table 6 page 21 are obtained:

Species		Perc	gram	Digested (gram)	KJoule	Perc
Fesrub	NDF	43,6	0,44	0,13	1,67	23,03
	WSC	22,7	0,23	0,16	2,74	37,76
	Protein	20,5	0,21	0,13	2,28	31,46
	Lipid	5	0,05	0,01	0,56	7,75
	Ash	7	0,07			
	Total	98,8	0,99		7,25	100

Perc $=$
percentage NDF, WSC, Protein and Ash of this plant species found with the chemical analyses. No lipid analysis was carried out and a constant value of 5% for all plant species was assumed.
gram=
I gram Festuca rubra consist of
$1 / 100 * 43.6=0.44 \mathrm{gram}$ NDF
$1 / 100 * 22.7=0.23$ gram WSC
$1 / 100 * 20.5=0.21$ gram Protein
$\mathrm{I} / 100 * 5=0.05$ gram Lipid
I/I00*7 $=0.07$ gram Ash
Digested $(g r a m)=\quad$ Since geese retain their food for only a short period in the alimentary track, not all material can be digested. The Apparent Digestability (AD) of NDF is assumed to be 29%, WSC 68.5%, Nitrogen 62.5% and Lipid 28.6\% (Buchsbaum, 1986). See also tablel. The values chosen ($>)$ are derived from one experiment and take a middle position between other values found in literature.
Based on I gram Festuca rubra the following mass will be available for a Brent after digestion:

$$
\begin{aligned}
& 0.44 / 100^{*} 29=0.13 \text { gram NDF } \\
& 0.23 / 100^{*} 68.5=0.16 \text { gram WSC } \\
& 0.21 / 100^{*} 62.5=0.13 \text { gram Protein } \\
& 0.05 / 100^{*} 28.6=0.01 \text { gram Lipid } \\
& 0.07 / 100^{*} \quad 0 \Rightarrow \text { can't be digested }
\end{aligned}
$$

Kjoule $=\quad$ Energy obtained from the plant material digested:
NDF $13.2 \mathrm{KJ} / \mathrm{g}$ (Buchsbaum, 1986). WSC $17.6 \mathrm{KJ} / \mathrm{g}$, Protein $17.8 \mathrm{KJ} / \mathrm{g}$ and Lipid $39.3 \mathrm{KJ} / \mathrm{g}$ (Schmidt-Nielsen, 1975),
$0.13 * 13.2=1.67$ Kjoule obtained from NDF
$0.16 * 17.6=2.74$ Kjoule obtained from WSC
$0.13 * 17.8=2.28$ Kjoule obtained from Protein
$0.01 * 39.5=0.56$ Kjoule obtained from Lipid
Total energy obtained after digestion of 1 gram Festuca $=$ $1.67+2.74+2.28+0.56=7.25$ Kjoule

Perc $=\quad$ Of the total energy obtained after digestion of I gram of Festuca rubra $1.67 * 100 / 7.25=23.03 \%$ derived from NDF
$2.74^{*} 100 / 7.25=37.76 \%$ derived from WSC
$2.28 * 100 / 7.25=31.46 \%$ derived from Protein
$0.56 * 100 / 7.25=7.75 \%$ derived from Lipid

Table l: Apperent Digestability of cellcomponents by Brent geese

Component	Percentage	Source
Protein	70.5 \%	1984, Deerenberg
	61.55 \%	1985, Deerenberg
	75.23 \%	1986 WD, Deerenberg
	87.60 \%	1986 Texel, Deerenberg
	79.5 \% ± 2.6	Buchsbaum, 1986
	$62.5 \% \pm 5.0$	Buchsbaum, 1986
	80 \%	Bruns, 1988
NDF	22.91 \%	1984, Deerenberg
	28.44 \%	1985, Deerenberg
	29.95 \%	1986 WD, Deerenberg
	41.63 \%	1986 Texel, Deerenberg
	18.0 \% ± 10.3	Buchsbaum, 1986
\Rightarrow	29.0 \% ± 5.6	Buchsbaum, 1986
Lipid	51.4 \% ± 6.0	Buchsbaum, 1986
	28.6 \% ± 10.4	Buchsbaum, 1986
	27.3 \%	Prop \& Vullink, 1991
Sol carbohydrates (WSC) \Rightarrow	$79.7 \% \pm 1.2$	Buchsbaum, 1986
	68.5 \% ± 3.5	Buchsbaum, 1986
	40 \%	Bruns, 1988
	50 \%	Bruns, 1988

Note: Deerenberg used values from Weijand (1976), Van Marken Lichtenbelt (1981) and Buchsbaum (1986).

Appendix IF

Comparing ash valyes:

	24w	4048ixisk	20exid	kpuke
Juhcus gerardi	6.3	$550{ }^{\circ} \mathrm{C}$ for 3 h	April-May	This study
Juncus gerardi	10.3 ± 1.5	$500^{\circ} \mathrm{C}$ for 3h	April-May	Buchsbaum et al., 1986
Festuxa rubra	7	$550^{\circ} \mathrm{C}$ for 3 h	April-May	This study
TEIVmis sp	7.1	$550^{\circ} \mathrm{C}$ for 3 h	April-May	This study
Puccinellia maritima	8.9	$550^{\circ} \mathrm{C}$ for 3 h	April-May	This study
Puccinellia maritima	7.9 ± 0.5	MAFF, 1986	Sept-Okt	Summers et al., 1993
Spartina anglica	10	$550^{\circ} \mathrm{C}$ for 3 h	April-May	This study
Splartina alterniflora	10.8	$500^{\circ} \mathrm{C}$ for 3h	April-May	Buchsbaum et al., 1986
Limonium vulgare	11.5	$550^{\circ} \mathrm{C}$ for 3h	April-May	This study
TLimonium vulgare	14.2 ± 1.4	MAFF, 1986	Sept-Okt	Summers et al., 1993
Triglochin maritima	17.4	$550^{\circ} \mathrm{C}$ for 3 h	April-May	This study
Triglodhin maritima	22.8 ± 0.7	MAFF, 1986	Sept-Okt	Summers et al., 1993
Aster tripolium	19.1	$550^{\circ} \mathrm{C}$ for 3 h	April-May	This study
Aster tripolium	22.2 ± 5.2	MAFF, 1986	Sept-Okt	Summers et al., 1993
Plantago martima	24.7	$550^{\circ} \mathrm{C}$ - for 3 h	April-May	This study
Plantago maritima	33.9 ± 2.4	MAFF, 1986	Sept-Okt	Summers et al., 1993
Spergularia maritima	26.6	$550^{\circ} \mathrm{C}$ for 3 h	April-May	This study
Atriplex portulacoides	29.1	$550^{\circ} \mathrm{C}$ for 3 h	Abril-May	This study
Atriplex portulacoides	36.5 ± 1.4	MAFF, 1986	Sept-Okt	Summers et al., 1993
Enteromorpha	33.4	$550^{\circ} \mathrm{C}$ for 3 h	April-May	This study
Enteromorpha	24.8 ± 4.2	MAFF, 1986	Sept-Okt	Summers et al., 1993

Appendix 16

Comparing soluble carbohydrates values:

	\% M M M M M M		\%	\%
Festuca rubra	$22.8 \% \pm 2.2$	Anthrohe	April-May	This study
Festuca rubra	18%	Anthrone	fall	E.S.Bakker, 1997
	28%	?		Amat, 1991
Juncus geradi	$19.5 \% \pm 2.2$	Anthrone	April-May	This study
Juncus geradi	$93 \% \pm 0.2$	Chromatography	April-May	Buchsbaum et al., 1986
Puccinelia mantima	$18.8 \%+2.4$	Anthrone	April-May	This study
Puccinellia maritima	20.3% 90.7	WSC, MAFF 1986	Sept-Okt	Summers et al., 1993
Elymus sp	18.6\% +2.6	Anthrone	April-May	This study
Enteromorpha	$14.3 \%+1.9$	Anthrone	April-May	This study
Enteromorpha	3.2% \% 0.9	WSC, MAFF 1986	Sept-Okt	Summers et al., 1993
Triglochin mantima	$8.9 \% \pm 0.5$	Anthrone	April-May	This study
Triglochin maritima	$5.8 \% \pm 1.6$	WSC, MAFF 1986	Sept-Okt	Summers et al., 1993
Spergularia manitima	$6.1 \%+1.7$	Anthrone	April-May	This study
Plantago maritima	6.0 \% 0.40 .5	Anthrone	April-May	This study
Plantago maritima	$3.5 \%+0.3$	WSC, MAFF 1986	Sept-OKt	Summers et al., 1993
Aster tripolium	$5.1 \% \pm 0.7$	Anthrone	April-May	This study
Aster tripolium	$28.2 \%+1.0$	WSC, MAFF 1986	Sept-Okt	Summers et al., 1993
Spartina anglica	$5.0 \% \pm 1.2$	Anthrone	April-May	This study
Spartina anglica	22 \%	?		Lytle \& Hull, 1980
Spartina alterniflora	22 \%	Chromatography		Briens \& Lahrer, 82
	7%	Anthrone	fall	E.S.Bakker, 1997
	$11 \% \pm 0.2$	Chromatography	April-May	Buchsbaum et al., 1986
Limonium vulgare	$4.9 \%+0.3$	Anthrone	April-May	This study
Limonium vulgare	$6.5 \% 2.8$	WSC, MAFF 1986	Sept-Okt	Summers et al., 1993
Atriplex portulacoides	4.7 \% +1.8	Anthrone	April-May	This study
Atriplex portulacoides	5.4\%40.9	WSC, MAFF 1986	Sept-Okt	Summers et al., 1993

Appendix 17

Comparing protein values:

\%				squkik
Tjiglochin maritima	$31.9 \%+0.5$	Kjeldah	April-May	This study
Triglochin martima	40.1\%	Kjeldah	May	C. Deerenberg, 1985
Triglochin maritima	$23.8 \%+1.0$	Kjeldah	Sept-Okt	
Limonium vulgare	$24.8 \%+1.97$	Kjeldah	April-May	This study
Limonium vulgare	18.4\% 1.8	Kjeldahl	Sept-Okt	Summers et al., 1993
Puccinellia maritima	24.5\% 1.6	Kjeldahl	April-May	This study
Puccinellia maritima	$23.5 \% \pm 4.1$ *	Kjeldahl	May	C. Deerenberg, 1985
Puccinellia maritima	$15.0 \%+0.9$	Kjeldah	Sept-Okt	Summers et al., 1993
Aster tripolium	23.3\% 1.8	Kjeldah	Apil-May	This study
Aster tripolium	25.9 \%*	Kjeldah	May	C.Deerenberg, 1985
Aster tripolium	$17.8 \% \pm 3.1$	Kjeldah	Sept-Okt	Summers et al., 1993
Elymus sp	$21.8 \% \pm 3.2$	Kjeldah	Apil-May	This study
Spergularia maritima	$20.7 \% \pm 1.5$	Kjeldah	Ap il-May	This study
Festuca rubra	$20.5 \% \pm 2.3$	Kjeldah	Ap il-May	This study
Festuca rubra	$25.8 \%+0.7$	Kjeldah	March-April	Faber, 1985
Festuca rubra		Kjeldahl		Koppel, 1996
Plantago manitima	$20 \%+1.2$	Kjeldah	April-May	This study
Plantago maritima	25,7\%	Kjeldah	May	C. Deerenberg, 1985
Plantago maritima	7.1	Kjeldahl	Sept-Okt	Summers et al., 1993
Atriplex portulacoides	18.7?	Kjeldah	April-May	This study
Atriplex portulacoides	$8.4 \%+0.5$	Kjeldah	Sept-Okt	Summers et al, 1993
Juncus gerardi	$19.7 \% \pm 0.7$	Kjeldahl	Apil-May	This study
Juncus gerardi	$13.9 \% \pm 0.3 *$	Marks, 1985	April-May	Buchsbaum et al,, 1986
Spartina anglica	18.5\%	Kjeldahl	April-May	This study
Spartina alterniflora	$9.4 \%+0.7^{*}$	Marks, 1985	April-May	Buchsbaum et al., 1986
Enteromorpha	10.6% 2.1	Kjeldah	April-May	This study
Enteromorpha	29.3% 3.2	Kjeldah	Sept-Okt	Summers et al., 1993

[^1]
Appendix 18

JUNCUS GERARDI

ELYMUS SP

FESTUCA RUBRA

PUCCINELLIA MARITIMA

TRIGLOCHIN MARITIMA

SPERGULARIA MARITIMA

PLANTAGO MARITIMA

Note change in X and Y axis !

ASTER TRIPOLIUM

ATRIPLEX PROSTRATA

LIMONIUM VULGARE

Appendix 19

Dry weight (A) versus ash free dry weight (B) for Plantago maritima, Triglochin maritima and Festuca rubra

Effect on the percentges protein and WSC of plant species \times after a correction for ash

[^0]: Explanation of the symbols used:
 Material of this date was used for the chemical analysis of:
 $A=$ Cell wall components $A=$ Cell wall components
 $B=\operatorname{In}$ vitro digestability
 $T 0=3$ year
 $T 1=10$ year
 $T 2=25$ year
 $T 3=35$ year
 $T 5=100$ yea
 $D=$ Protein
 $E=$ Soluble carbohydrates

[^1]: *based on ash free dry weight

