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Chapter 1

Introduction

In a networked system dynamic units (agents) operate by interacting over an
information exchange network. Networked systems are omnipresent in the
many areas of science. Examples vary from technological and information
networks to social and biological ones [15]. All these networks have in common
that their structure, representing a particular pattern of interactions, usually
has a big effect on the behavior of its corresponding system.

Also in system and control theory distributed coordination of multi-agent sys-
tems has a strong tradition. An important class of problems studied in this
field are the consensus problems, for which Borkar and Varaiya [6] and Tsitsik-
lis [26] have layd the groundwork. The common motivation behind their work
is the rich history of consensus protocols in computing science. We refer to [17]
for an overview of the history of consensus problems in systems and control
theory.

For a networked system of agents reaching consensus means to reach an agree-
ment regarding a certain quantity of interest that depends on the states of all
agents [17]. Recently, consensus problems and closely related topics have at-
tracted attention of many researchers, which has led to a flood of publications.
These include topics such as collective behavior of flocks and swarms, e.g. [16],
and synchronization of coupled oscillators, e.g. [22].

Agents try to reach consensus by interaction. There exist many variants of
interaction topologies for multi-agent systems. For example, the topology can
be static or varying and the communication, that it represents, can be instan-
taneous or not [19]. Throughout this thesis we assume that the interaction
topology is fixed and without communication time-delay. Moreover, we study
networks in which interactions between agents can be asymmetric. Results for
symmetric interactions easily follow from their asymmetric counterparts.

Graphs form a natural representation of interaction topologies. Undirected
graphs model symmetric communication, while directed graphs model assy-
metric communication. As such, consensus problems lie at the intersection
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1. Introduction

of systems and control theory and graph theory. In particular, the analysis
of consensus problems relies heavily on properties of the graph Laplacian, as
studied in algebraic graph theory. The fact that the latter is less developed
for directed graphs adds a challenge to the analysis of consensus problems on
asymmetric-interaction topologies.

The remainder of this thesis consists of three parts. In Chapter 2 we introduce
the notion of consensus algorithms and show stability and convergence criteria
for these. Instead of giving all agents the same roles we can also assign leader
and follower rules to various agents. We study the consequences of this choice
in Chapter 3. Finally, in Chapter 4 we derive conditions on passive systems to
reach output synchronization, and we study a physical example.

1.1 Notation

Throughout this thesis we will adopt the following notation. An n×m matrix
is a matrix having n rows and m columns; AT denotes transpose of A and A−1

its inverse (if A is nonsingular). The class of real n×m matrices is denoted by
Rn×m and the class of real n× 1 vectors by Rn.

Vectors 0n and 1n denote the all-zero and all-one n × 1 vectors, respectively.
The n ×m all-zero matrix is denoted by 0n×m and the n × n identity matrix
by In.

Let v1, . . . , vn ∈ Rm. Then col(v1, . . . , vn) is the nm × 1 vector that stacks
v1, . . . , vn one underneath the other. We let diag(a1, . . . , an) denote the matrix
in Rn×n with diagonal entries a1, . . . , an ∈ R and zero off-diagonal entries.

The Kronecker product of A ∈ Rm×n and B ∈ Rp×q is denoted A ⊗ B and is
a mp× nq matrix defined by

A⊗B =

a11B · · · a1nB
...

. . .
...

am1B · · · amnB

 .

Some basic properties of the Kronecker product are:

(A+B)⊗ C = A⊗B +B ⊗ C,
(A⊗B)T = AT ⊗BT ,

(A⊗B)(C ⊗D) = AC ⊗BD.

Of course, the products AC and BD must exist for the last identity to hold.
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Chapter 2

State consensus

In this chapter we will discuss multi-agent systems, in which the agents are
intended to reach consensus on their states. To define what it means to reach
consensus, we consider a system of n agents and let xi ∈ Rd denote the state
of agent i. Agents are said to reach (state) consensus if they converge to the
same value, that is, for all initial states xi(0) ∈ Rd and all i, j ∈ V ,

|xi(t)− xj(t)| → 0, as t→∞.

In case the consensus value is equal to the average of the initial states of all
agents, the agents are said to reach average consensus.

We assume that the agents in the system operate by interacting over a network.
The consensus algorithm (or protocol) is an interaction rule that specifies the
information exchange between an agent and all of its neighbours in this net-
work. We will elaborate on the consensus algorithm in Section 2.1.

Whether the consensus algorithm causes agents to reach consensus depends on
their interaction topology. As mentioned in the introduction, an interaction
topology can be represented by a graph. In such a graph vertices correspond
to agents and edges to the interactions between them. We assume that the in-
teractions between agents can be asymmetric. Therefore, we consider directed
graphs G = (V,E) with vertex set V = {1, . . . , n} and an edge set E ⊆ V × V
consisting of ordered pairs of distinct vertices [19]. In Section 2.2 we will de-
rive necessary and sufficient conditions on G for the agents to reach (average)
consensus. All results on directed graphs can be extended straightforwardly to
undirected graphs (symmetric communication), because with any undirected
graph a directed one can be associated (see Appendix A).

In Section 2.3 we study the Laplacian matrix. The Laplacian is a matrix
representation of a graph and many properties of a graph can be characterized
in terms of properties of its corresponding Laplacian. Moreover, the Laplacian
matrix is closely related to the standard consensus algorithm. We introduce a
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2. State consensus

procedure to partition this matrix that allows us to express the final state of
agents abiding the consensus algorithm in closed form.

2.1 Consensus algorithm

Since the agents we study are embedded in a network, they form a system
that is inherently distributed. Let the set of neighbours of agent i be defined
by Ni = {j ∈ V : (j, i) ∈ E}. The distributed consensus algorithm, which is
central in this thesis, takes into account the distributed nature of the multi-
agent system and is defined as

ẋi(t) =
∑
j∈Ni

(xj(t)− xi(t)), i ∈ V. (2.1)

According to these dynamics, an agent adapts its state solely based one the
states of its neighbours, in such a way that its state moves in the direction of
the average of the neighbours’ states. Intuitively, this implies that the states
of the agents will always converge to some bounded solution. The following
lemma formalizes this intuition.

Lemma 2.1. Let Ω0 denote the convex hull of the initial states of the agents,
then xi(t) ∈ Ω0 for all t ≥ 0 and i ∈ V [11].

Proof. If |Ni| = 0, agent i will not move, so xi(t) ∈ Ω0 for all t ≥ 0. Let
Ωt denote the convex hull of the states of the agents at time t. We will show
that in case |Ni| > 0 the trajectory xi(t) will be on the boundary of Ωt or is
pointing inwards Ωt. To this order we first rewrite consensus algorithm (2.1) a
bit, obtaining

1
|Ni|

ẋi(t) = −xi(t) +
1
|Ni|

∑
j∈Ni

xj(t).

This shows that the motion of agent i is always directed towards the mean of
the states of its neighbours, which lies in Ωt. By convexity of Ωt we conclude
that the motion of agent i lies within Ωt. This implies that no agent will ever
leave Ω0.

Since the solution to system with dynamics 2.1 is bounded for any choice of
initial state of the agents, this system is stable by the definition of stability
(see Section B.2.1). In Section 2.3.4 the stability of this system is derived in a
different way.

2.1.1 Consensus algorithm in terms of Laplacian matrix

Consensus algorithm (2.1) can be formulated more concisely in terms of the
Laplacian matrix. The Laplacian matrix L of graph G is defined as

lij =

 −1 if j ∈ Ni,
|Ni| if i = j,

0 otherwise.
(2.2)
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2.1. Consensus algorithm

2 3

4 5

1

(a) (b)

Figure 2.1: Graph G representing the interaction topology of the agents in
Example 2.2 (a) and the trajectories of these agents (b).

Note that this definition of the Laplacian is equivalent to the one introduced
in Appendix A. If we suppose that each undirected edge can be represented by
two oppositely oriented directed edges, the Laplacian matrix of an undirected
graph is also defined as in (2.2). The Laplacian of an undirected graph is always
symmetric.

Let x = col(x1, . . . , xn) ∈ Rnd denote the vector containing the states of all
agents. Consensus algorithm (2.1) can now be reformulated as

ẋ(t) = −(L⊗ Id)x(t). (2.3)

Example 2.2. Consider five agents with states in R and let their initial states
be given by x(0) = col(8, 3, 1, 5, 4). Their interaction topology is represented
by graph G in Figure 2.1a. The Laplacian matrix corresponding to this graph
is

L =


1 −1 0 0 0
0 1 −1 0 0
−1 0 2 0 −1
0 −1 0 2 −1
0 0 0 0 0

 .

Figure 2.1b shows the trajectories of the agents. All agents converge to value
4, so they reach consensus.

By definition, the Laplacian L has zero row sums, that is, L1n = 0n. Therefore,
L has at least one zero eigenvalue and 1n is a corresponding eigenvector. From
the particular structure of the Laplacian we can derive the following result on
its eigenvalues in general.

Lemma 2.3. The eigenvalues of a Laplacian matrix are either zero or lie in
the open right half plane.

Proof. This statement is a direct consequence of the Gersgorin’s disc theorem
(see Appendix B). According this theorem all eigenvalues of L lie in at least
one of the closed discs in the complex plane, centered at lii and with radius
Ri =

∑
j 6=i |lij | = lii, i = 1, . . . , n. In a Laplacian matrix by definition lii ≥ 0,

so all these discs lie in the closed right half plane. Moreover, the only eigenvalue
that can have zero real part is zero itself.
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2. State consensus

2.1.2 Generalization

All the results that will be presented in this thesis can be generalized to
weighted directed graphs. In these graphs a weight aij is assigned to each
edge (i, j). A non-existent edge (i, j) corresponds here to zero weight aij . The
weight of a loop (i, i) in a graph is given by aii, but since we do not allow loops
we assume that aii = 0 [19]. The in-degree and the out-degree of vertex i in a
weighted graph are respectively defined as

din(i) =
n∑
j=1

aji and dout(i) =
n∑
j=1

aij .

The consensus algorithm on weighted directed graphs is given by

ẋi(t) =
n∑
j=1

aji(xj(t)− xi(t)), i ∈ V.

Like consensus algorithm (2.1), these dynamics can equivalently be formulated
using the Laplacian matrix. The Laplacian L of a weighted directed graph is
defined as

lij =
{
−aij if j 6= i,
din(i) if j = i.

2.2 Consensus conditions

In the system described in Example 2.2 the agents reached consensus. Imagine,
however, what would have happened if the graph would have consisted out of
two unconnected components. In this case the agents from one component
would not have had access to the states of any of the agents in the other
component. Intuitively, this prevents the agents from reaching consensus.

In this section we derive what condition the graph representing the interaction
topology of the agents has to satisfy such that the agents will reach consensus.
Throughout the remainder of this chapter we assume that the agents have a
one-dimensional state, that is, d = 1. The results that are derived can be
generalized straightforwardly.

In this section we will gradually work towards the main result, Theorem 2.6,
that states that a network of agents reaches consensus under algorithm (2.3) if
and only if their interaction topology has a directed spanning tree. To prove
this theorem we follow the ideas provided in [22], but reformulate them for the
sake of clarity.

We will show that a graph has a directly spanning tree if and only if its cor-
responding Laplacian has exactly one zero eigenvalue (Lemma 2.4). Since all
non-zero eigenvalues of −L lie in the open left half plan (Lemma 2.3), this lat-
ter property implies that e−Lt converges to a matrix with properties that are
suitable for consensus (Lemma 2.5). In the proof of Theorem 2.6 these results
will be combined.

Lemma 2.4. The Laplacian has exactly one zero eigenvalue if and only if its
corresponding graph G has a directed spanning tree [22].
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2.2. Consensus conditions

Proof. [⇒] Suppose graph G does not have a directed spanning tree, then the
condensation Gc = (Vc, Ec) of G does not have a directed spanning tree either.
Since Gc is acyclic, we can find a vertex v ∈ Vc that has no predecessors. Let
set A ⊂ V denote the vertices in V that correspond to vertex v ∈ Vc. Let
W ⊂ Vc contain those vertices that are reachable from v in Gc and let C ⊂ V
contain the corresponding vertices in V . Finally, let B = V \ (A ∪ C). This
set is not empty, since Gc has no directed spanning tree, so there are vertices
in Vc that are not reachable from v. Renumber the vertices in their order of
appearance in consecutively A, B and C. The Laplacian matrix of G then is
partitioned as follows:

L =

LA LB
Lac Lbc LC

 .

Since L1n = 0n, we also have that LA1|A| = 0|A| and LB1|B| = 0|B|, so both
LA and LB have a zero eigenvalue. Matrix L is a lower diagonal block matrix
and LA, LB and LC are square matrices, so

det(L− λIn) = det(LA − λI|A|) det(LB − λI|B|) det(LC − λI|C|).

This implies that the algebraic multiplicity of eigenvalue zero in L is at least
two.

[⇐ ] A Laplacian has at least one zero eigenvalue. We will prove by induction
over the number of edges m of a graph with n vertices that there exists only
one such eigenvalue, if G has a directed spanning tree. First suppose G is itself
a directed spanning tree (m = n− 1). Let vertex 1 be the root vertex and give
the vertices at distance 1 from the root numbers 2, . . . , q1, those at distance 2
numbers q1 + 1, . . . , q2, etc. In this way the Laplacian L of G satisfies l11 = 0
and lii > 0 for i = 1, . . . , n. Since G is a tree and thus (j, i) ∈ E only if j < i,
L is a lower triangular matrix. Therefore, the eigenvalues of L are equal to its
diagonal entries and L has only one eigenvalue equal to 0.

Now suppose that for a graph G on n vertices with m edges, for a certain m ≥
n−1, the following holds: if G has a directed spanning tree, then the Laplacian
of G has exactly one zero eigenvalue. We will show that this statements is also
true for graphs with m+ 1 edges.

Let G̃ be a graph on n vertices with m + 1 edges that contains a spanning
tree. Since a spanning tree always consists of n− 1 edges, we can remove one
edge from G̃ in such a way that remaining graph G still has a spanning tree.
Assume without loss of generality that we remove edge (k, 1).

Let L̃ and L denote the Laplacians of G̃ and G respectively. We will prove
that L̃ has exactly one zero eigenvalue, by showing this for −L̃. Define Mλ =
λIn+M for M ∈ Rn×n. By solving det(Mλ) = 0 for λ we obtain the eigenvalues
of matrix −M . In the remainder of this proof we first relate det(Lλ) to det(L̃λ)
and then use this relation in combination with the Routh-Hurwitz stability
criterion (see Section B.2.1) to show that L̃ has exactly one zero eigenvalue.

Since G was obtained from G̃ by the removal of edge (1, k), matrix L̃λ is equal
to Lλ except for entries

(L̃λ)11 = λ+ l̃11 = λ+ l11 + 1 = (Lλ)11 + 1,
(L̃λ)1k = l̃1k = l1k − 1 = (Lλ)1k − 1.
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2. State consensus

Let M([i, j]) denote the submatrix of M formed by deleting its ith row and jth
column. Evaluating the determinant of L̃λ by expansion along the first row
yields

det(L̃λ) = det(Lλ) + det(Lλ[1, 1]) + (−1)k det(Lλ[1, k]). (2.4)

The Laplacian of the graph induced by vertex set V ′ = {2, . . . , n} is given by

E =


l̃22 l̃23 · · · l̃2k + l̃21 · · · l̃2N
l̃32 l̃33 · · · l̃3k + l̃31 · · · l̃3N
...

...
. . .

...
l̃N2 l̃N3 · · · l̃Nk + l̃N1 · · · l̃NN

 .

Expanding the determinant of Eλ along the (k − 1)th column of Eλ, we find
that

det(Eλ) = det(L̃λ[1, 1]) + (−1)k det(L̃λ[1, k]). (2.5)

We combine equations (2.4) and (2.5) to obtain the following relation between
det(L̃λ) and det(Lλ):

det(L̃λ) = det(Lλ) + det(Eλ). (2.6)

Both L and E are Laplacian matrices, so they have at least one zero eigenvalue
and we can write

det(Lλ) = λn + an−1λ
n−1 + . . .+ a1λ,

det(Eλ) = λn−1 + bn−2λ
n−2 + . . .+ b1λ.

According to Lemma 2.3 all eigenvalues of a Laplacian matrix lie in the closed
right half plane, so the eigenvalues of −L and −E lie in the closed left half
plane. With the Routh-Hurwitz stability criterion it follows that a1, b1 ≥ 0.
Moreover, since by assumption L has exactly one zero eigenvalue, we have that
a1 > 0. This implies that a1 + b1 > 0, so from equality (2.6) it follows that
det(L̃λ) can have only one zero root and L̃ has exactly one zero eigenvalue.

Note that for the proof of necessity we deviated from [22], since the argument
there was based on the statement that if G does not have a spanning tree, then

“ . . . there exists a vehicle that separates two subgroups that do
not exchange information or there exist at least two vehicles that
do not receive any information from their neighbors. ”

No proof of this statement was included in [22] and it is not that straightforward
to see that these are the only two cases that can arise when G does not have a
directed spanning tree.

Lemma 2.5. If a Laplacian matrix L has a simple zero eigenvalue, then
e−Lt → 1nvT for t → ∞, where v is nonnegative and satisfies 1Tnv = 1 and
LT v = 0 [22].
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2.2. Consensus conditions

Proof. Let −L = PJP−1, where J is the Jordan normal form of L. The
diagonal entries of J are the eigenvalues of −L and P contains the correspond-
ing (generalized) eigenvectors. From the decomposition of −L it follows that
e−L = PeJP−1.

Assume without loss of generality that the upper left entry of J is zero and
let the first column of P contain 1n as corresponding eigenvector. Since L has
exactly one zero eigenvalue and the others lie in the closed right half plain (see
Lemma 2.3), for t→∞ we have

eJt →


1 0 · · · 0
0 0 · · · 0
...

...
. . . 0

0 0 · · · 0

 .

Consequently, e−Lt = PeJtP−1 → 1nvT , as t → ∞, where vT equals the first
row of P−1. Moreover, e−Lt1n = e0·t1n = 1n (see Lemma B.3). This is true
for all t, so in particular for t→∞ we have 1nvT 1n = 1n and vT 1n = 1Tnv = 1.

It only remains to be shown that LT v = 0n and v ≥ 0. From the Jordan matrix
decomposition of −L it holds that LT v = −(P−1)TJTPT v. Since vT is the
first row of P−1, we have

PT v = (vTP )T = (1 0 · · · 0)T .

Moreover, all entries in the first row and first column of J are zero, so

LT v = −(P−1)TJT (1 0 · · · 0)T = −(P−1)T 0n = 0n.

With this we get that eL
T

v = e0v = v (see Lemma B.3). Matrix eL
T

is positive
and its largest eigenvalue is 1, so Lemma B.2 implies that eL

T

x = x for some
x > 0. Since eigenvalue 1 is simple, v = αx. Earlier we proved that 1Tnv = 1
and consequently α > 0, so v ≥ 0.

Theorem 2.6. Agents abiding algorithm (2.1) reach consensus if and only if
G has a directed spanning tree. In particular, the consensus value is vTx(0),
where v is nonnegative and satisfies 1Tnv = 1 and LT v = 0 [22].

Proof. [⇐ ] The solution of (2.1) is given by x(t) = e−Ltx(0). If G has a
directed spanning tree, its Laplacian L has exactly one zero eigenvalue (Lemma
2.4). Lemma 2.5 then implies that for t → ∞, x(t) → 1nvTx(0), where v is
nonnegative and satisfies 1Tnv = 1 and LT v = 0. So for i = 1, . . . , n the limit
of xi(t) is vTx(0).

[⇒] Suppose G does not have a directed spanning tree. Then, according to
necessity part of the proof of Lemma 2.4, the Laplacian can be structured as
follows:

L =

LA 0 0
0 LB 0
Lac Lbc LC

 .

Now if we take the initial values of agents 1, . . . , |A| bigger than 0 and the others
less than 0, Lemma 2.1 implies that for all t > 0, xi(t) > 0 for i = 1, . . . , |A| and
xi(t) < 0 for i = |A|+1, . . . , N . Therefore, consensus can never be reached.
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2. State consensus

For the necessity part of the proof we deviated from the proof given in [22].
There a proof by contradiction is used, that is, it is assumed that algorithm
(2.1) achieves consensus asymptotically but that G does not have a directed
spanning tree. The argument continues as follows:

“ Then there exist at least two vehicles i and j such that there is no
path in Gn that contains both i and j. Therefore it is impossible to
bring data between these two vehicles into consensus, which implies
that consensus cannot be achieved asymptotically. ”

This argument suggests that ‘bringing data between any two vehicles into con-
sensus’ is something formal. We could similarly state that that the existence of
a directed spanning tree is sufficient for reaching consensus, because then for
any pair of vertices i and j there exists a path that contains both i and j, so
‘data between these two can be brought into consensus’. However, the proofs
of Lemma 2.4 and Lemma 2.5 show that this is not that straightforward.

For algorithm (2.1) to achieve average consensus one extra constraint on graph
G is necessary: G needs to be balanced. In terms of the Laplacian of G this
means that LT 1n = 0n. Theorem 2.7 states this result.

Theorem 2.7. Agents abiding algorithm (2.1) reach average consensus if and
only if G has a directed spanning tree and is balanced [22].

Proof. [⇒] Suppose protocol (2.1) achieves average consensus. Theorem 2.6
implies that if consensus is reached, G has a directed spanning tree. It also
states that the consensus equilibrium is of the form vTx(0), where v satisfies
1Tnv = 1 and LT v = 0. In this case the equilibrium is 1

n1Tnx(0), so v = 1
n1n

and LT 1n = 0n. Hence, G is balanced.

[⇐ ] Suppose G has a directed spanning tree and is balanced. According to
Theorem 2.6, protocol (2.1) achieves consensus and the consensus equilibrium
is vTx(0), where v satisfies 1Tnv = 1 and LT v = 0n. Since G is balanced,
LT 1n = 0. Matrix LT has exactly one zero eigenvalue (see Lemma 2.4), so
v = α1n. Given that 1Tnv = 1, we find that α = 1

n , so the equilibrium is the
average of the initial states.

Note that in the literature on consensus algorithms the condition of having
a spanning tree, is often replaced by being strongly connected. Corollary A.2
shows that these two conditions are equivalent, if the graph under consideration
is balanced.

The conditions under which dynamics (2.1) causes agents with a symmetric
interaction topology to reach consensus can be derived from Theorem 2.6 and
Theorem 2.7. In this case the graph G representing the interaction topology is
undirected and the corresponding Laplacian L is a symmetric matrix. There-
fore, LT 1n = L1n = 0n and if consensus is reached, the consensus value will
always be the average of the initial states of all agents (Theorem 2.7). More-
over, (average) consensus is reached if and only if G is connected (Theorem
2.6).
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2.3. Laplacian of a directed graph

2.3 Laplacian of a directed graph

Let G = (V,E) be a directed graph on n vertices and L the corresponding
Laplacian. In [17] it is stated that if G has c strongly connected components,
then rank(L) = n − c. This is not true, as can be inferred from the following
example.

Example 2.8. Consider graph G in Figure 2.2. The Laplacian matrix of this
graph is given by

L =


1 −1 0 0
−1 1 0 0
0 0 1 −1
0 −1 −1 2

 .

Graph G has two strongly connected components, the subgraphs induced by
vertex sets V1 = {1, 2} and V2 = {3, 4}, so the formula given in [17] implies
that the rank of L is 2. However, the actual rank of L is 3.

1 2

3 4

Figure 2.2: Counterexample to statement from [17].

This mistake was already reported in [7]. The authors of [17] mentioned in
[18] in return that the misunderstanding is due to a misinterpretation of the
definition of strongly connected components of a graph used in [17]. However,
it is in fact possible to express the rank of L in terms of characteristics of G.
In [1] this was shown, but to this end many non-standard graph theoretical
concepts were introduced.

In the subsequent, similar results are shown by the combination of a convenient
partitioning of the Laplacian matrix (Section 2.3.2) with the approach used in
the proof of Lemma 2.4. The idea behind the partitioning is mainly based on
some common graph theoretical structures, that are introduced in Section 2.3.1.
In Section 2.3.4 we discuss the consequence of the partitioning for consensus
theory, partly based on the more general results obtained in Section 2.3.3.

2.3.1 Spanning forest of a directed graph

Let T1, . . . , Tk be disjunct subgraphs of G that are directed trees1. If to-
gether they cover all vertices in G, then we say that these trees span G and
{T1, . . . , Tk} is called a spanning forest of G. In each tree Ti we can point
out a root vertex, from which all other vertices in Ti can be reached. When

1We will leave out ‘directed’ from here on, if no confusion can arise.
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2. State consensus

(a) A graph G (b) Spanning trees of G

Figure 2.3: The root of a spanning tree is not necessarily uniquely defined.

there exists a tree on a graph, the root of this tree is not necessarily uniquely
determined. Consider for example Figure 2.3, where three vertices are eligible
for being the root of a directed spanning tree on G. In general, let the set of
vertices that are eligible for being the root of tree Ti be denoted by Ri. We call
this the root set of tree Ti. Since there exists a directed path between any two
vertices in a root set, this set is strongly connected. The root sets of a graph
can be specified as follows.

Definition 2.9. A set of vertices R is a root set of a graph G = (V,E) if it
induces a strongly connected graph on G and there are no (v, w) ∈ E such that
v /∈ R and w ∈ R.

It follows from this definition that in the condensation of a graph, the root
sets are represented by vertices with an empty predecessor set. Moreover, the
number of root sets of G is a lower bound on the cardinality of a spanning
forest of G.

The concept of a root set is not a standard one. However, we prefer it over
the term ‘undominated knot’ or ‘source knot’, used in [1] and [8] respectively,
since a knot in general refers to an embedding of a circle in R3. For sake of
completeness, Table 2.1 relates the terminology used in this chapter to the
terminology used in [1].

Used here Used in [1]
Directed tree Diverging tree
Spanning forest Spanning diverging forest
Smallest spanning forest Maximum out forest
Cardinality of a smallest spanning forest Forest dimension
With empty predecessor set Undominated
Root set Undominated knot

Table 2.1: Comparison of terminology.

2.3.2 Partitioning the Laplacian

Using the graph theoretical concepts introduced in the previous section, we
propose the following procedure to renumber the vertices of a graph G = (V,E)
in such a way that the corresponding Laplacian has a simple block structure.
This procedure also allows us to determine a smallest spanning forest of G.

14



2.3. Laplacian of a directed graph

Step 1. Find all root sets R1, . . . , Rk of G.

Step 2. Find the sets R+
i of vertices, that are reachable from Ri, but not from

Rj for j 6= i.

Step 3. Define Q = V \ ∪ki=1(Ri ∪ R+
i ). Let Qi contain those vertices from

Q\∪i−1
j=1Qj that are reachable fromRi, but not fromRj for j = i+1, . . . , k.

Step 4. Renumber the vertices by their order of appearance in consecutively
R1, R+

1 , R2, R+
2 ,. . . , Rk, R+

k , Q1,. . . ,Qk.

Step 1 and 2 of this procedure were already proposed in [1]. The following
example illustrates the procedure and will be referred to throughout the re-
mainder of this chapter.

Example 2.10. Consider graph G represented in Figure 2.4a.

Step 1. The condensation of G is shown in Figure 2.4b. By looking at the
vertices in the condensation that have no predecessors, we find that the root
sets of G are R1 = {1, 2, 3}, R2 = {5}, R3 = {11}, R4 = {12} and R5 = {16}.
Step 2. Vertex 4 is only reachable from vertices in R1, so it is contained in R+

1 .
Vertex 14 is reachable from both R4 and R5, so it is not contained in any of
the R+

i . Table 2.2 shows the sets R+
i corresponding to the sets Ri.

Step 3. For graph G the set of vertices that is reachable from more than one
root set is Q = {8, 9, 10, 14, 15} (see Figure 2.4c). Set Q1 ⊆ Q should contain
those vertices that are reachable from R1, but not from R2, R3, R4 or R5.
There are no such vertices, so Q1 = ∅. Table 2.2 shows all sets Qi.

Step 4. The renumbering of the vertices, according to the rule in the last step,
is given in Figure 2.4d. We will refer to this new graph as G′.

Define ni = |Ri∪R+
i | for i = 1, . . . , k and nQ = |Q|. By construction, no vertex

in Ri ∪ R+
i is reachable from any vertex in Rj ∪ R+

j for i 6= j. Consequently
the Laplacian matrix is a lower triangular block matrix of the following form:

L =


L1

L2

. . .
Lk

A1 A2 · · · Ak LQ

 , (2.7)

where the ni×ni blocks Li are equal to the Laplacian matrices of the subgraphs
of G induced by the vertices in Ri ∪R+

i . Block LQ is an nQ × nQ matrix and
in its turn has a particular structure as well. Since, by construction, vertices in
Qi are not reachable from vertices in Qj for j > i, LQ is again a lower diagonal
block matrix:

LQ =


BQ1

∗ BQ2

∗ ∗
. . .

∗ ∗ ∗ BQk

 , (2.8)

where BQi is a square block of order nQi = |Qi|, for i = 1, . . . , k. The asterisks
denote blocks that do not necessarily have to be filled with zeros.
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(a) Example graph G.
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(b) Condensation of G. Gray ver-
tices have no predecessors and repre-
sent root sets in G. (Step 1.)
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(c) Gray vertices are in Q. (Step 3.)
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(d) Vertices are renumbered. (Step 4.)

Figure 2.4: Illustration of graph partitioning procedure.

i Ri R+
i Qi Vi

1 {1, 2, 3} {4} ∅ {1, 2, 3, 4}
2 {5} {6, 7} ∅ {5, 6, 7}
3 {11} ∅ {8, 9, 10} {8, 9, 10, 11}
4 {12} {13} ∅ {12, 13}
5 {16} ∅ {14, 15} {14, 15, 16}

Table 2.2: Partition of the vertex set of G, according to the partitioning pro-
cedure.
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2.3. Laplacian of a directed graph

Example 2.11. The Laplacian matrix of the graphG′, constructed in Example
2.10, is given in Figure 2.5. The block structure of (2.7) with the five blocks
Li as described in Table 2.2 is clearly visible. Table 2.2 shows that sets Q1, Q2

and Q3 are empty, so block LQ has only BQ3 and BQ5 on its diagonal.

Note that the subgraph of G induced by the vertex set Vi = Ri ∪ R+
i ∪ Qi

contains a directed spanning tree Ti for all i = 1, . . . , k. Moreover, the union of
all these vertex sets is V . As mentioned earlier, the number of root sets of G is
a lower bound on the cardinality of a spanning forest of G. Since the number
of trees created in this way is equal to the number of root sets of G, the set
{T1, . . . , Tk} is a smallest spanning forest of G. Figure 2.6 shows for graph G
from Example 2.10 a smallest spanning forest constructed in this way.

2.3.3 Properties of Laplacians of directed graphs

Properties of Laplacian matrices of undirected graphs are widely known and
can for example be found in [10]. For Laplacians of directed graphs this is
somewhat different. However, based on the partitioning procedure proposed
in Section 2.3.2, we can derive some elementary results on directed graphs.
Standard results on undirected graphs follow from them.

Lemma 2.4 stated that a Laplacian has exactly one zero eigenvalue if and only
if its corresponding graph has a directed spanning tree. The following lemma
generalizes this statement.

Lemma 2.12. The number of zero eigenvalues of the Laplacian of a graph
G = (V,E) is equal to the cardinality of a smallest spanning forest of this
graph.

Proof. Let vertices V be numbered according to the procedure described in
Section 2.3.2 and consider block structure (2.7). Since L is a lower triangular
block matrix, the algebraic multiplicity of eigenvalue zero in L is equal to the
sum of the algebraic multiplicities of eigenvalue zero in matrices L1, . . . , Lk and
LQ.

Matrix Li equals the Laplacian matrix of the subgraph of G induced by vertex
set Ri ∪R+

i . This subgraph contains a directed spanning tree, so according to
Lemma 2.4, Li has exactly one zero eigenvalue.

Now it remains to show that LQ has no zero eigenvalues. Consider the block
structure of this matrix as given in (2.8). We will show that none of the matrices
BQi can have a zero eigenvalue. Note that matrix BQi is closely related to the
Laplacian matrix LQi of the subgraph of G induced by vertex set Qi. Suppose
vertex v ∈ Qi, then the number of edges to this vertex from a vertex not in Qi
is given by

d̂in(v) = |{(w, v) ∈ E : w /∈ Qi}|.

Let DQi define the nQi × nQi diagonal matrix with entries d̂in(v) for v ∈ Qi.
Then

BQi = LQi +DQi.
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2.3. Laplacian of a directed graph
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Figure 2.6: A smallest forest of G.

The pth eigenvalue of BQi is equal to the sum of the pth eigenvalue of LQi and
(DQi)pp. Since the subgraph of G induced by vertices Qi contains a spanning
tree, LQi has exactly one zero eigenvalue. Suppose that this spanning tree has
vertex r as its root.

Again take a look at the sufficiency part of the proof of Lemma 2.4. For the
basic case (number of edges in the graph is n − 1) it is shown that G has
exactly one zero eigenvalue by a convenient renumbering of the vertices in G.
This renumbering yields that the Laplacian can be written as a lower triangular
matrix with upper left entry 0 and all the other diagonal entries larger than 0.
Here, number 1 was assigned to the root vertex.

Suppose that the graph induced by Qi on G has nQi − 1 edges. Then we can
renumber the vertices in Qi in the same way and find that number 1 is assigned
to root r. In graph G there always exists an edge from some vertex not in Qi
to r = 1, so (DQi)11 > 0 and in the basic case BQi has no zero eigenvalues.
We can add edges in a similar way as was done in the remainder of the proof
of Lemma 2.4 to show that BQi has no zero eigenvalues in general.

Lemma 2.13. Suppose G is a graph on n vertices and L its Laplacian. Let k
denote the number of trees necessary to span G. Then the rank of L is n− k.

Proof. To show that the rank of L is n − k, we will show that the dimension
of the kernel of L is k. The kernel of L is equal to the eigenspace of L corre-
sponding to eigenvalue 0, so we will construct k linear independent eigenvalues
corresponding to this eigenvalue. The algebraic multiplicity of eigenvalue 0 is
always larger or equal to its geometric multiplicity and we have seen in Lemma
2.12 that the algebraic multiplicity of eigenvalue 0 is equal to k. The existence
of k such eigenvectors would imply that the dimension of the kernel of L is k.

Let vertices V be numbered according to the procedure described in Section
2.3.2 and consider block structure (2.7). Since all Li are Laplacian matrices,
Li1ni

= 0ni
. Now define the following vectors vi ∈ Rn for i = 1, . . . , k. Let
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2. State consensus

vi = col(vi1, . . . , vik, viQ), where

vij =


1ni

if j = i,
−L−1

Q Ai1ni
if j = Q,

0nj
else.

Matrix LQ is invertible, because it has no zero eigenvalues as was shown in the
proof of Lemma 2.12. By construction, Lvi = 0n and v1, . . . , vk are k linear
independent eigenvectors for eigenvalue 0.

The rank of an undirected graph G is n−c, where c is the number of connected
components of G [10]. This can be seen as a consequence of Lemma 2.13. Each
root set Ri in this case consists out of one connected components of G and all
R+
i and Q are empty sets.

2.3.4 Implications for consensus theory

In Section 2.1 we inferred that the multi-agent system abiding the dynamics
ẋ(t) = −Lx(t) is stable from the fact that the trajectories x(t) that satisfy
these dynamics are bounded (see Lemma 2.3). Another way to determine the
stability of this system is by considering the eigenvalues of −L. We already
derived that the eigenvalues of −L are either zero or lie in the open left half
plane (see Lemma 2.3). For the system to be stable we need moreover that
the algebraic and geometric multiplicity of eigenvalue zero are the same. In
Lemma 2.4 we showed that this is true in case a graph has a directed spanning
tree. Combining the results from Lemma 2.12 and Lemma 2.13 we find that
for any Laplacian matrix the algebraic and geometric multiplicity of eigenvalue
zero are the same. This implies that system ẋ(t) = −Lx(t) is stable.

Another interesting implication of the partitioning procedure as introduced in
Section 2.3.2 is that it allows us to express the limit state of system ẋ(t) =
−Lx(t) with initial conditions x(0) ∈ Rn in terms of these initial conditions.

Since the Laplacian can be partitioned as in (2.7) the dynamics of the agents
in a set Ri ∪ R+

i only depend on the states of the agents in this set. If we
consider a block Li in more detail, we see that it is again of the form:

Li =
(
LRi

∗ LR+
i

)
Let xRi

denote the states of the agents in Ri. The dynamics of these states
are thus given by

ẋRi(t) = −LRixRi(t).

In G there exists a directed spanning tree on the vertices in Ri, since the sub-
graph of G induced by Ri is strongly connected. Therefore, from Theorem 2.6
it follows that consensus will be reached in this part of the graph. The consen-
sus value is vTi xRi(0), where vi ∈ R|Ri| is nonnegative and satisfies 1T|Ri|vi = 1
and LTRi

vi = 0|Ri|. If the subgraph of G induced by Ri is balanced, then by
Theorem 2.7 this consensus value is the average of the initial states of agents
in Ri.
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2.3. Laplacian of a directed graph

In Ri ∪R+
i the dynamics are given by

ẋRi∪R+
i

(t) = −LixRi∪R+
i

(t).

Since by construction there exists a directed spanning tree on Ri∪R+
i , consen-

sus will be reached on this set. This implies that the agents in R+
i will converge

to vTi xRi
(0) as well.

For t→∞ the state x(t) will converge to an equilibrium. In this equilibrium it
holds that ẋ(t) = −Lx(t) = 0n. Using this in combination with the partitioning
(2.7) we can find the values to which agents in Q will converge. In equilibrium
it holds that

A1

(
xR1

xR+
1

)
+ . . .+Ak

(
xRk

xR+
k

)
+ LQxQ = 0|Q|.

Therefore the values of the agents in Q are given by

xQ = L−1
Q

(
A1

(
xR1

xR+
1

)
+ . . .+Ak

(
xRk

xR+
k

))
Since in equilibrium the states of the agents in Ri ∪R+

i are given by vTi xRi(0),
we can reformulate this as

xQ = L−1
Q

(
A11n1v

T
1 xR1(0) + . . .+Ak1nk

vTk xRk
(0)
)
.

Consequently, the values to which the agents will converge can be expressed
in terms of the initial states of the agents in the root sets of the graph that
represents their interaction structure.
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Chapter 3

Leader-follower networks

While in the previous chapter, all agents abided the consensus algorithm, in
this chapter we will distinguish between leader and follower agents, as was done
in for example [11, 21]. We define the dynamics of leader and follower agents in
Section 3.1 and in Section 3.2 we discuss under what conditions a multi-agent
system on a leader-follower network reaches consensus. In Section 3.3 we see
that the maximum modulus principle that is known in complex analysis has
an interpretation for leader-follower networks. In Section 3.4 we assume that
network dynamics can be influenced by external signals through the leaders and
wonder under what conditions the entire multi-agent system is controllable.
Finally, in Section 3.5 we study Schur complements of Laplacian matrices, that
have an application in leader-follower networks as well.

3.1 Leader and follower dynamics

Consider a multi-agent system with n agents and let directed graph G = (V,E)
represent their interaction topology. We use l and f to denote affiliations
with leaders and followers, respectively. For example, a follower graph is the
subgraph of G induced by follower vertex set V f ⊆ V . The cardinality of V f

is nf .

We assume again that all agents are evolving in R. Now collect the states of
all followers in a vector xf ∈ Rnf and those of all leaders in xl ∈ Rnl . Let x
denote the concatenation of these vectors. Assume that the leaders are indexed
last in the original graph G. Then the graph Laplacian can be partitioned as

L =
(
Lf Lfl
Llf Ll

)
. (3.1)

The aim is to steer all the states of agents to a pre-defined goal value a ∈ R
through changing the dynamics of the leaders. So we do not only want to reach
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3. Leader-follower networks

consensus here, but also reach the specific consensus value x = a · 1n. There
are multiple ways to define a consensus algorithm in this context, two of which
we will present here. The difference between these two lies in the choice of the
dynamics for the leaders. The dynamics of the followers are governed by the
standard consensus algorithm, as described in Section 2.1. Taking into account
the structure from (3.1) we can write the follower dynamics as

ẋf (t) = −Lfxf (t)− Lflxl(t). (3.2)

Hereafter we describe two types of leader dynamics, those of dynamic leaders
and those of static leaders.

Dynamic leaders. The dynamics of dynamical leaders are equal to those of
the followers, but include an additional attraction term [11]. For leader
i, define δi(t) = |a− xi(t)|. The dynamics of leader i are given by

ẋi(t) =
∑
j∈Ni

(xj(t)− xi(t)) + F (xi, a),

where F (xi, a) is the goal atraction function

F (xi, a) =
{
f(δi)a−xi

δi
if δi > 0

0 if δi = 0
(3.3)

with f(δ) ≥ 0. This function directs state xi towards a; if xi(t) > a, then
it contributes negatively to ẋi(t). The magnitude of the ‘steering force’
is determined by f(δi).

We require that f(0) = 0 and limδ→0+
f(δ)
δ <∞, so that limx→a F (x, d) =

F (a, a) = 0 and F (x, a) is continuous. A simple example of a goal at-
traction function is obtained by choosing f(δ) = δ.

Static leaders. The states of static leaders are assumed to already be fixed
at the goal value a, that is, ẋl(t) = 0 and xl(0) = a · 1nl

.

Even though the dynamics of dymanic leaders look more complicated than
those of static leaders, in case we choose f(δ) = δ in goal attraction function
(3.3), we can formulate a leader-follower system with dynamics leaders in the
static leader framework. If f(δ) = δ, the dynamics of leader i are given by

ẋi(t) =
∑
j∈Ni

(xj(t)− xi(t)) + (a− xi(t)).

Equivalently, we can write that

ẋl(t) = −Llfxf (t)− Llxl(t) + 1nl
· a− xl(t)

= −Llfxf (t)− (Ll + Inf
)xl(t) + 1nl

· a. (3.4)

Now suppose we introduce an extra agent in the system, agent n + 1, whose
state is assumed to be fixed at value a: xn+1(0) = a and ẋn+1(t) = 0. Let the
new communication topology be represented by a graph G′ = (V ′, E′), where
V ′ = V ∪{n+ 1} and E′ = E∪{(i, n+ 1) : i ∈ V l}. All leader vertices are now
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3.2. Consensus conditions

2 3

4 5

1

Figure 3.1: Graph representing the communiction topology of a leader-follower
system. Gray vertices correspond to leaders.

connected to vertex n+ 1 and we can think of the latter as a ‘supreme leader’
with followers in V . The Laplacian corresponding to G′ is given by

L′ =

 Lf Lfl 0nf

Llf Ll + Inl
−1nl

0Tnf
0Tnl

0

 ,

where the partitioning is as in (3.1). The dynamics of the agents in V l in the
new dynamical system are still given by (3.4). The dynamics of the agents in
V f have not changed either. Therefore, in this way we have formulated the
leader-follower system with dynamic leaders in the static leader framework.

3.2 Consensus conditions

In this section we will focus on leader-follower systems with static leaders.
Using the results from Chapter 2 we can easily find conditions such that the
agents reach consensus.

The presence of leaders in a system does not necessarily imply that they in-
fluence the dynamics of the followers in any way. This is illustrated in the
following example.

Example 3.1. Consider the graph in Figure 3.1. The Laplacian of this graph,
partitioned as in (3.1), is given by

L =


2 −1 −1 0 0
0 0 0 0 0
0 −1 1 0 0
0 −1 0 1 0
0 0 −1 −1 2

 .

Therefore, in this case ẋf (t) = −Lfxf (t). The dynamics of the followers do
not depend on the states of the leaders.

This motivates to distinguish between leaders that actually ‘fulfill their role as
a leader’ and those that do not. We therefore introduce the following definition.
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3. Leader-follower networks

Definition 3.2. Agent i is called active in S ⊆ V if there exists an edge
(i, j) ∈ E such that j ∈ S. In particular, a leader is called active if he is active
in V f .

We will show that any leader-follower system with static leaders has an equiv-
alent representation as a system without leaders.

Lemma 3.3. Consider a leader-follower system Σ1 on a graph G with static
leaders that have initial value a ∈ R. Let G′ be the graph corresponding to
Laplacian matrix

L′ =

 Lf Lfl 0nf

0nl×nf
Inl

−1nl

0Tnf
0Tnl

0

 ,

and assume that in the system Σ2 on G′ agent n+ 1 has initial value a. Then
agents 1 through n in Σ1 will converge to the same values as agents 1 through
n in Σ2.

Proof. First note that the dynamics in Σ1 are given by

ẋ(t) = −

(
Lf Lfl

0nl×nf
0nl×nl

)
x(t) = −L̃x(t), (3.5)

where xl(0) = a · 1nl
. Let G̃ = (V, Ẽ) be the graph that corresponds to

Laplacian matrix L̃. This graph is equal to G with all edges that entered a
leader vertex removed. Graph G′ = (V ′, E′), that corresponds to Laplacian
matrix L′, is the graph with vertex set and edge set defined as follows:

V ′ = V ∪ {n+ 1},
E′ = Ẽ ∪ {(i, n+ 1) : i ∈ V l}.

System Σ2 is defined on this graph. In this system it was supposed that
xn+1(0) = a.

Set R1 = {n + 1} is a root set of G′ and by construction V l ∈ R+
1 , so by the

results from Section 2.3.4 we have that xl → a · 1nl
for t→∞. Therefore, the

limit state of the agents would have been the same, if we would have assumed
that xl(0) = a · 1nl

. In that case the dynamics of the agents in V l would be
ẋl(t) = 0, so if we assume that xl(0) = a ·1nl

, the dynamics of the first n agents
in Σ2 are given by (3.5). Therefore, agents 1 through n in Σ1 will converge to
the same values as agents 1 through n in Σ2.

From the combination of this lemma and the fact that on a regular graph
consensus is reach if and only if this graph has a spanning tree (see Theorem
2.6), we can derive the following conditions for a leader-follower system to reach
consensus.

Lemma 3.4. A leader-follower system with static leaders on graph G reaches
consensus if and only if G′ has a directed spanning tree.
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3.3. Maximum modulus principle on graphs

If such a spanning tree exists, its root is of course vertex n+ 1. The following
lemma provides with a consensus condition that does not require us to consider
graph G′.

Lemma 3.5. A leader-follower system with static leaders on graph G reaches
consensus if and only if in each root set of G at least one leader is active.

Proof. [⇐ ] If in each root set of G at least one leader is active, then in G′

every vertex is reachable from vertex n+ 1, so G′ has a directed spanning tree
and by Lemma 3.4 the system reaches consensus.

[⇒] Suppose there exists a root set of G where no leader is active. By con-
struction, this set will also be a root set of G′. Since {n+ 1} is a root set of G′

as well and one root sets can (by definition) not be reached from another root
set, G′ can not be spanned by one tree.

In case graph G is undirected, Lemma 3.5 implies that consensus is reached if
and only if graph G′ is connected. Lemma 3.4 implies that consensus is reached
if and only if there exists at least one leader in each connected component of
G.

3.3 Maximum modulus principle on graphs

In this section we consider leader-follower systems with static agents, where the
leaders do not necesserily have to have the same initial state a. We call the ver-
tices corresponding to leader agents boundary vertices and those corresponding
to followers internal vertices [23]. The introduction of this terminology allows
us to talk about the boundary of a graph and state a maximum modulus prin-
ciple on graphs that is comparable to the maximum modulus principle known
in complex analysis.

The graph Laplacian can be considered as an analog of the continuous Laplace
operator ∆. For a continuously differentiable function f : Rn → R this operator
is defined as

∆f(x) =
(
∂2

∂x2
1

+ . . .+
∂2

∂x2
n

)
f(x),

where x = col(x1, . . . , xn). A function f that satisfies ∆f(x) = 0 is called a
harmonic function. Let Ω ∈ Rn be a bounded and connected open set. The
maximum modulus principle states that for a function f continuous on the
closure Ω of Ω and harmonic on Ω, the maximum modulus is attained on the
boundary ∂Ω, that is,

sup
x∈Ω

|f(x)| = sup
x∈∂Ω

|f(x)|.

This implies that f can attain no local maximum or minimum in Ω.

Let us now formulate a similar set-up on a directed graph G = (V,E). We have
already defined internal and boundary vertices. Assume that G consists of at
least one boundary vertex. Now call a function h : V → R, where h(i) = xi,
harmonic if

Lfxf + Lflxl = 0nf
. (3.6)
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3. Leader-follower networks

A harmonic function is called constant if x1 = x2 = . . . = xn. A similar
definition of harmonic functions for the case of undirected graphs is given in
[4]. The maximum modulus principle for undirected graphs is formulated in
[4] as well. In the following we will state and prove a similar statement for
directed graphs. The undirected graph case then follows as a consequence.

Theorem 3.6. The maximum and minimum of a non-constant harmonic func-
tion h on a directed graph G are attained on a boundary vertex, if in G each
internal vertex is reachable from a boundary vertex.

Proof. Function h is harmonic, so for some x1, . . . , xn equation (3.6) holds.
This implies that for all vertices i ∈ Nf :∑

k∈Ni

(xi − xk) = 0.

This can be rewritten as

xi =
∑
k∈Ni

xk
|Ni|

=
1
|Ni|

∑
k∈Nf

i

xk +
1
|Ni|

∑
k∈N l

i

xk,

where N l
i and Nf

i are the sets of leader and follower neighbours of i.

We first show that the maximum is attained on a boundary vertex, that is,
xi ≤ max{xj : j ∈ N l} for i ∈ Nf . Suppose there exists a vertex i ∈ Nf

such that xi > xj for all k ∈ N l and choose this vertex such that xi ≥ xj for
j ∈ Nf . We will show by induction that such a vertex can not exist at any
finite distance from a boundary vertex. Vertex i can not be at distance 1 from
a boundary vertex, because then

xi =
1
|Ni|

∑
k∈Nf

i

xk +
1
|Ni|

∑
k∈N l

i

xk <
|Nf

i |+ |N l
i |

|Ni|
xi = xi.

Assume that vertex i can not exist at some distance D > 1 from a boundary
vertex. We will show that it can not exist at distance D + 1 either. In that
case |N l

i | = 0 and

xi =
∑
k∈Nf

i

xk
|Ni|

.

This yields that xj = xi for all vertices j ∈ Ni. One of these vertices has
distance D to a boundary vertex, but by assumption a vertex with this state
value could not exist at distance D from a boundary vertex. Consequently,
vertex i could not have had distance D + 1 from a boundary vertex. By
induction we now have shown that xi ≤ max{xj : j ∈ N l} for i ∈ Nf . In a
similar way it can be derived that xi ≥ min{xj : j ∈ N l} for all i ∈ Nf .

Note that the condition in Theorem 3.6 is equivalent to demanding that in each
root set of G one leader is active or that the graph G′, as defined in Section
3.2, has a directed spanning tree. Another way to formulate Theorem 3.6 is
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that under either of these conditions in an equilibrium state of a leader-follower
system, for all followers i the following will hold:

min{xj(0) : j ∈ V l} ≤ xi ≤ max{xj(0) : j ∈ V l}.

The maximum modulus principle on undirected graphs follows directly from
Theorem 3.6.

Corollary 3.7. The maximum and minimum of a non-constant harmonic
function h on an undirected graph G are attained on boundary vertices of G, if
there exists at least one leader in each connected component of G.

3.4 Controllability

In Section 3.1 we defined leader-follower systems in which the leaders abided
fixed dynamics. In this section we generalize this and assume that the states
of the leaders can be chosen arbitrarily: xl(t) = u(t), where u(t) is an exoge-
nous control signal. In this section the controllability of system (3.2) will be
investigated.

In [21] the controllabity of single-leader networks was investigated using the
Popov-Belevitch-Hautus (PBH) test (see Section B.2.2). In system (3.2) only
a part of the Laplacian matrix is included. The following lemma allows us to
study the controllability of system (3.2) by the consideration of an extended
system, that does include the complete Laplacian. Consider the following gen-
eral system:

ẋ(t) = Ax(t) +Bu(t), (3.7)

with x ∈ Rn and u ∈ Rm and A and B of compatible dimensions.

Lemma 3.8. System (3.7) is controllable if and only if system(
ẋ(t)
u̇(t)

)
=
(
A B
C D

)(
x(t)
u(t)

)
+
(

0n×m
Im

)
v(t) (3.8)

is controllable, where v ∈ Rm and C and D of compatible dimensions.

Proof. System (3.8) is not controllable if and only if there exists a vector q =
col(qx, qu) with qx ∈ Rn and qu ∈ Rm satisfying

qT
(
A B
C D

)
= qTλ such that qT

(
0n×m
Im

)
= 0Tn+m.

The latter requirement is equivalent to demanding qu = 0m. This implies that
system (3.8) is not controllable if and only if there exists a vector qx ∈ Rn such
that (

qTxA qTxB
)

=
(
qTx 0Tm

)
λ.

This is true if and only if there exist a qx ∈ Rn such that qTxA = λqTx for some
λ and qTxB = 0Tm, that is, system (3.7) is not controllable.
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3. Leader-follower networks

Now again consider a leader-follower system with a communication topology
represented by a graph G = (V,E) with Laplacian L. Let the dynamics of
the system be as in (3.2) and assume xl(t) = u(t), where u(t) is an exogenous
control signal. The following statement about the controllability of the followers
is a direct consequence of Lemma 3.8.

Corollary 3.9. System (3.2) is controllable if and only if L has no left eigen-
value with zeros on all indices that correspond to a leader.

This statement is a generalization of Proposition 5.4 from [21]. It generalizes
this proposition in three ways. Firstly, leader-follower systems with multiple
leaders are considere here, instead of single leader systems. Secondly, Corro-
lary 3.9 provides with necessary and sufficient conditions for system (3.2) to
be controllable, while in [21] only a neccessary condition was given. Finally,
Corrolary 3.9 is formulated for directed graphs instead of for undirected graphs.

So far we have looked at controllability, but we can also study observability in
this context. To this end we define the following output function:

y(t) = −Llfxf (t)− Llxl(t). (3.9)

The observability conditions for the system given by equations (3.2) and (3.9)
with input xl(t) follow from the PBH test for observability (see Section B.2.2)
and strongly resemble the conditions given in Corollary 3.9, since controllability
and observability are dual properties.

Lemma 3.10. The system given by equations (3.2) and (3.9) is observable if
and only if L has no right eigenvalue with zeros on all indices that correspond
to a leader.

The Laplacian matrix of an undirected graph is symmetric. Therefore, a system
given by equations (3.2) and (3.9) defined on an undirected graph is controllable
if and only if it is observable.

3.5 Schur complements of Laplacians

Let A ∈ Rn×m, B ∈ Rn×l, C ∈ Rk×m and D ∈ Rk×l and define matrix M as

M =
(
A B
C D

)
.

Then the Schur complement of A with respect to M is defined by D−CA+B,
where A+ denotes the generalized inverse1 of A. Schur complements have a
wide range of applications, for example in numerical analysis and multivariate
statistics [29] and the analysis of electrical networks [14, 25].

Also in the study of leader-follower networks Schur complements arise. Con-
sider a leader-follower system with dynamics(

ẋl(t)
ẋf (t)

)
= −

(
Ll Llf
Lfl Lf

)(
xl(t)
xf (t)

)
.

1For the definition and properties of the generalized inverse we refer to [2].
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3.5. Schur complements of Laplacians

We assume that the leaders are static, that is, ẋl(t) = 0nl
. Equivalently we

could require that
−Llxl(t)− Llfxf (t) = 0nl

.

This yields the following follower dynamics:

xf (t) = −(Lf − LflL+
l Llf )xf (t).

Matrix Lf − LflL+
l Llf is the Schur complement of Ll with respect to L. This

idea was already used in [25]. Here it is stated that any symmetric positive
semi-definite matrix L with non-negative diagonal elements, non-positive off-
diagonal elements and with zero row and column sums, can be considered as
a weighted Laplacian matrix of a certain undirected graph, and conversely. It
is shown that if a graph G is connected, then all Schur complements of the
corresponding Laplacians are well defined and are again Laplacian matrices
of a connected graph. In the remainder of this section we will derive similar
results for undirected graphs.

First of all, any square matrix L with non-negative diagonal elements, non-
positive off-diagonal elements and with zero row sums, can be considered as a
weighted Laplacian matrix of a certain directed graph, and conversely.

Theorem 3.11. All Schur complements of a Laplacian of a directed graph
G = (V,E) with |V | > 2 are well defined if and only if G is strongly connected.
In particular, all Schur complements are again Laplacian matrices of strongly
connected directed graphs.

Proof. [⇐ ] Since all vertices in G have positive indegree, the diagonal elements
of L are strictly positive. We will first show, adopting the proof line from
[25, 28], that the Schur complement of upper left entry of L is a Laplacian
matrix of a directed graph.

Let L([1,1]) denote the matrix obtained from L by deleting the first row and
column and let lr and lc be the first row and column of L, respectively, without
their first elements. Then the Schur complement of element l11 is given by

L̂ = L([1, 1])− 1
l11
lclr. (3.10)

Since all elements of lc and lr are non-positive, the off-diagonal elements of L̂
are also non-positive. Let the entries of L̂ be denoted by

L̂ =

 l̂22 . . . l̂2n
...

. . .
...

l̂n2 . . . l̂nn

 .

This matrix again has zero row sums, since for all i = 2, . . . , n we have

n∑
j=2

l̂ij =
n∑
j=2

(
lij −

1
l11
li1l1j

)
=

n∑
j=2

lij −
li1
l11

n∑
j=2

l1j .
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3. Leader-follower networks

Matrix L has zero row sums, so l11 = −
∑n
j=2 l1j and

n∑
j=2

l̂ij =
n∑
j=2

lij + li1 = 0.

This also implies that the diagonal elements of L̂ are non-negative, so L̂ is
again a Laplacian matrix.

We will now prove that the the diagonal elements of L̂ are strictly positive.
Suppose they are not, then since we already showed that they are non-negative,
for all i = 2, . . . , n,

l̂ii = lii −
1
l11
l1ili1 = 0. (3.11)

By definition of the graph Laplacian we have that l11 > −l1i and lii > −li1 (the
sum of all incoming weights is larger than only one of them) and by assumption
lii > 0. Define a = −l1i/l11, then 0 ≤ a ≤ 1. Equation (3.11) implies that
−ali1 = lii and therefore a = 1 and lii = −li1. From a = 1 it follows that
l11 = −l1i. Consequently, only edge (1, i) is entering vertex i and only edge
(i, 1) is entering vertex 1. Thus, since |V | > 2, graph G can not be strongly
connected. This leads to a contradiction, so the diagonal elements of L̂ are
strictly positive.

Graph G is strongly connected, so for all i, j ∈ V there exists a path from i to
j. Let Ĝ = (V̂ , Ê) be the graph on vertices V̂ = {2, . . . , n} corresponding to
Laplacian matrix L̂. Since l̂ij = lij − 1

l11
li1l1j ≤ lij , the edge set Ê contains at

least those edges for which (i, j) ∈ E. Therefore, for all vertices i, j ∈ V \ {1}
for which there exists a path in G from i to j not passing vertex 1, there exists
such a path in Ĝ as well.

We will show that in case the path from i to j in G does cross vertex 1, there
still exists a path from i to j in Ĝ. Suppose that in this path vertex 1 is
preceded by vertex v and succeeded by vertex w, so l1v < 0 and lw1 < 0. By
the preceding paragraph we know that there exists a path from i to v in Ĝ and
also one from w to j. Moreover,

l̂wv = lwv −
1
l11
l1vlw1 < 0,

so vertex (v, w) ∈ Ê. Therefore, there exists a path from i to j in Ĝ as well.
This proves that Ĝ is strongly connected.

In order to prove the claim for an arbitrary Schur complement, we note that
any Schur complement can be obtained by the successive application of taking
Schur complements with respect to diagonal elements.

In Theorem 3.11 we assume that |V | > 2 for graph G = (V,E) to let equation
(3.11) lead to a contradiction. In case |V | = 2, matrix L looks like

L =
(
a −a
−b b

)
,
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3.5. Schur complements of Laplacians

where a, b ≥ 0. To ensure that arbitrary Schur complements can be taken we
need that a, b > 0, that is, G has to be strongly connected also in this case.
The Schur complement of either diagonal element of L is 0.

We now resume the proof of Theorem 3.11.

Proof (continued). [⇒] Suppose graph G is not strongly connected. Then G
consists out of more than one strongly connected component. Let S1 denote
such a strongly connected components that has no incoming edges (represented
by a vertex without predecessors in the condensation of G) and let {1, 2, . . . , k}
be the vertices from S1. Then the Laplacian of G is given by

L =



l11 . . . l1k 0 . . . 0
...

. . .
...

...
. . .

...
lk1 . . . lkk 0 . . . 0
lk+1,1 . . . lk+1,k lk+1,k+1 . . . lk+1,n

...
...

. . .
...

ln1 . . . lnk . . . . . . lnn


.

We will show that the Schur complement of the leading diagonal k × k block
LS1 is not well defined. If we take the Schur complement of l11 as in (3.10),
matrix L̂ is structured similarly to L and the upper left (k− 1)× (k− 1) block
represents a strongly connected component. After repeating this process k− 1
times, the upper left element will be zero, so the Schur complement of LS1 is
not well defined.

In Theorem 3.11 we have seen that the Schur complement of the Laplacian L
of a strongly connected graph G is again the Laplacian of a strongly connected
graph Ĝ. It can be shown in a similar way that if we additionaly assume that
G is balanced, that is, LT 1n = 0n, then Ĝ is balanced as well. To this end,
we only need to repeat the argument provided after equation (3.10) for zero
column sums.

In [25] it was already proven that if an undirected graph G is connected, then
all Schur complements of the Laplacian of G are well defined and, in particular,
they are again Laplacian matrices of a connected undirected graphs. Note that
this statement is a special case of Theorem 3.11 and only necessary and no
sufficient conditions are provided.
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Chapter 4

Output synchronization

Suppose we have a network of n agents, whose communication topology is
represented by graph G = (V,E). The dynamics of agent i are given by

Σi :
{
ẋi = f(xi, ui),
yi = h(xi, ui)

Here xi ∈ Rd represents the state, ui ∈ Rm the input and yi ∈ Rm the output
of agent i and functions f and h are sufficiently smooth. The agents are said
to output synchronize if for all i, j ∈ V ,

|yi(t)− yj(t)| → 0, as t→∞.

Note that this definition strongly resembles the definition of state consensus.
The main difference is, however, that here the agents can synchronize to time-
varying steady-state values and in the consensus problems we encountered so far
the asymptotic states of the agents are constant. Moreover, so far the dynamics
imposed on the agents were rather simple, linear systems where f(xi, ui) = ui
with ui =

∑
j∈Ni

(yj − yi), and yi = xi. Synchronization models are usually
nonlinear.

In this chapter we assume that each agent’s dynamics is represented by a system
that is affine in its input u and does not have a feedthrough term, conform [9].
These systems are of the following form

Σa :
{
ẋ = f(x) + g(x)u,
y = h(x),

with g(x) an n×m matrix [24]. Such a system is passive if there exists a non-
negative real-valued storage function S(x) such that for all input functions
u,

∂S(x)
∂x

T

[f(x) + g(x)u] ≤ uTh(x). (4.1)
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For a discussion on passive systems, we refer to Appendix B. Inequality (4.1)
is the differential dissipation inequality, applied to system Σa. Equivalently,
system Σa is passive if there exists a storage function S(x) that satisfies the
Hill-Moylan conditions:

∂S(x)
∂x

T

f(x) ≤ 0 and
∂S(x)
∂x

T

g(x) = hT (x).

Suppose that all n agents have a system Σi, that is affine in its input u and
without feedthrough term and suppose these sytems are passive. In [9] it is
assumed that the agents are coupled together using

ui =
∑
j∈Ni

(yj − yi). (4.2)

Note that there is in fact no difference between this input and the one con-
sidered in the previous chapters, as was made clear in the introduction of this
chapter. Let x = col(x1, x2, . . . , xn) ∈ Rnd, u = col(u1, . . . , un) ∈ Rnm and
y = col(y1, . . . , yn) ∈ Rnm. In this way function (4.2) can for all agents can be
written simultaneously as

u = −(L⊗ Im)y, (4.3)

where L is the Laplacian of graph G.

Theorem 4.1. If G is strongly connected and balanced, then the system is
globally stable and the agents output synchronize.

Proof. Let S(x) = S1(x1) + . . . + Sn(xn) be a Lyapunov function candidate,
where Si(xi) denotes the storage function for agent i. Using the Hill-Moylan
conditions and the control function (4.3), we get

Ṡ =
∂S(x)
∂x

T

ẋ =
n∑
i=1

∂Si(xi)
∂xi

T

ẋi

=
n∑
i=1

∂Si(xi)
∂xi

T

(f(xi) + g(xi)ui)

≤
n∑
i=1

yTi ui

= −yT (L⊗ Im)y

Matrix L ⊗ Im can be decomposed into a symmetric part LS and a skew-
symmetric part LSS . Since yTLSSy = 0, we only have to conside the symmetric
part, which is 1

2 (L⊗Im+(L⊗Im)T ). The communication graph is balanced, so
according to Lemma A.3 we have that L+LT = DDT , where D is the incidence
matrix of graph G. Consequently, L⊗ Im + (L⊗ Im)T = (D ⊗ Im)(D ⊗ Im)T

and
Ṡ ≤ −1

2
|(DT ⊗ Im)y|2 ≤ 0,

so the system is globally stable. Consider the set E = {x ∈ Rnd : Ṡ(x) = 0}.
This set is characterized by all trajectories such that |(DT ⊗ Im)y| = 0. The
last property implies that yi = yj for all j ∈ Ni. It follows from Lasalle’s
invariance principle that, if G is strongly connected, the agents can output
synchronize.
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4.1. Example: driven pendula

4.1 Example: driven pendula

As an example of a physical synchronization system we consider a set of driven
pendula (see also [9]). We assume here that all pendula have unit mass. Let
ϕi be the angular displacement of pendulum i and ϕ̇i its angular velocity. The
motion of such a pendulum is governed by the following non-linear dynamics:

d
dt

(
ϕi(t)
ϕ̇i(t)

)
=
(

ϕ̇i(t)
− g
li

sin(ϕi(t)) + ui

li

)
, (4.4)

where g is the gravitational constant, li is the length of pendulum i and ui the
driving force. The energy Vi of a pendulum is given by

Vi(ϕi, ϕ̇i) = 1
2 l

2
i ϕ̇

2
i + gli(1− cos(ϕi)).

Taking the time-derivate yields that

V̇i =
∂V

∂ϕi
ϕ̇i +

∂V

∂ϕ̇i
ϕ̈i = gli sin(ϕi)ϕ̇i − l2i ϕ̇i(

g
li

sin(ϕi)− ui

li
) = uiliϕ̇.

So we conclude that with output yi = liϕ̇i the system passive. We will now
consider a set of these pendula such that pendulum i is coupled to the pendula
in Ni using input (4.2). We assume that all pendula have unit length li.

As a first experiment we take two pendula, one with initial angle of 0.1, the
other with initial angle -0.2. The initial velocity of both pendula is 0. The
resulting dynamics are shown in Figure 4.1a. We see that indeed the pendula
synchronize on their angular velocities, as expected from Theorem 4.1. Taking
opposite but equal angles results in the system damping out, as can be seen
Figure 4.1b. Also here synchronization takes place.

In Figure 4.2 we have a system of four pendula for various topologies and fixed
initial states. The initial velocities of all pendula is 0. In Figure 4.2a we see
that when all pendula influence each other the pendula synchronize quickly. On
the other hand, if we have a circular topology, where pendulum 1 influences 2,
which in its turn influences 3 etc., then convergence takes longer to achieve.
Finally, we see in Figure 4.2c what happens if the topology has two components
that are not connected. Within the components synchronization takes place,
but not between the components.
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4. Output synchronization

(a) Initial angles 0.1 and -0.2.

(b) Initial angles 0.1 and -0.1.

Figure 4.1: Two pendula with various initial angles. Both pendula influence
each other and after a while their angular velocities synchronize.
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(a) Every pendulum influences every other pendulum.

(b) Pendula with circular interaction topology (1 to 2, 2 to 3, etc.).

(c) Pendula 1 and 3, and 2 and 4 influence each other.

Figure 4.2: Four pendula with stationary initial angles ϕ1 = 0.1, ϕ2 = 0.2,
ϕ3 = −0.3 and ϕ4 = −0.1 respectively and varying interaction topologies.
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Appendix A

Graph theory

In this appendix we give a brief review of some basic concepts in (algebraic)
graph theory. The appendix provides the general background which we draw
from in the remainder of this thesis and is included mainly to render the work
self-contained. Moreover, it aims to clarify some graph theoretical ambiguities
that exist in literature on consensus algorithms. For a thorough overview of
the field of (algebegraic) graph theory we refer to [4, 10].

A.1 Definitions

An undirected graph G is an ordered pair of sets (V,E), where V is the set of
vertices and E the set of edges, given by a subset of the unordered pairs {i, j}
of distinct vertices of V . In a directed graph the edge set E consists of ordered
pairs (i, j) of distinct vertices of V . Vertex j is called the head and vertex i
the tail of directed edge (i, j). We only consider graphs with finite V and E,
that have no loops or parallel edges.

Any undirected graph G can be regarded as a directed one, by replacing all its
edges with two oppositely oriented directed edges with the same ends. This
is the associated directed graph of G [5]. Another way to obtain a directed
graph from an undirected graph is by replacing each of its edges by just one
of the two possible directed edges with the same ends. Such a directed graph
is called an orientation of G. With any directed graph G we can associate an
undirected graph by introducing an undirected edge between two vertices if
they are joined by at least one directed edge in G. This is called the underlying
undirected graph of G.

A (directed) path of length r from i0 to ir is a graph with vertex set {i0, i1, . . . , ir},
such that the edge set consists of the (directed) edges from in to in+1 for
n = 0, . . . , r − 1. Here vertex ir is said to be reachable from vertex i0. The
distance between two vertices is the length of the shortest path connecting
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them. An undirected graph is connected if any two vertices can be joined by a
path. Similarly, a directed graph is strongly connected if any two vertices can
be joined by a directed path. A directed graph is called weakly connected if its
underlying undirected graph is connected.

Graph G′ = (V ′, E′) is a subgraph of a graph G = (V,E) if V ′ ⊆ V and E′ ⊆ E.
If G′ contains exactly those edges of G that join two vertices in V ′, then G′

is said to be the subgraph induced by V ′. An induced subgraph of G that is
maximal, subject to being (strongly) connected, is called a (strongly) connected
component of G.

A spanning tree of an undirected graph G is a subgraph of G, that contains
all of its vertices and in which any two vertices are connected by exactly one
path. A directed spanning tree is a subgraph of a directed graph G, in which
there exists a vertex r such that there is a directed path from r (the root) to
all other vertices in G.

In an undirected graph the degree d(i) of a vertex i is equal to the number
of vertices to which it is adjacent. In a directed graph the in-degree din(i) of
a vertex i is the number of edges ending in i and its out-degree dout(i) is the
number of edges starting from i. If for all vertices i ∈ V the in-degree equals
the out-degree, the graph is called balanced.

A.2 Connectedness

In this section the connection between strong and weak connectedness and the
existence of a directed spanning tree in a directed graph will be explored. In
the literature on consensus algorithms these concepts are used interchangeably.
We will end the section with a result that provides some clarification regarding
this issue.

Any strongly connected graph is also weakly connected. The underlying undi-
rected graph of a directed spanning tree is connected, so a graph that contains
a directed spanning tree is weakly connected. In a strongly connected graph
any vertex can serve as a root a directed spanning tree, so such a graph con-
tains a directed spanning tree. Note that neither having a spanning tree nor
weakly connectedness implies strongly connectedness. To this end an additional
requirement is needed.

Lemma A.1. In case a directed graph G is balanced, G is weakly connected if
and only if it is strongly connected [10].

Proof. Strongly connectedness trivially implies weakly connectedness. Now let
G be a weakly connected and balanced graph. We can partition its vertex set
into strongly connected components S1, S2, . . . , Sm. Since G is balanced, we
have for k = 1, . . . ,m that ∑

i∈Sk

din(i) =
∑
i∈Sk

dout(i). (A.1)

Edges within Sk contribute to both the in-degree and the out-degree sums.
Substracting the total number of these edges from both sides in equation (A.1)
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yields that the number of edges leaving Sk is equal to the number of edges
entering Sk.

Consider a graph H with vertices s1, s2, . . . , sm and an edge from si to sj if
there exists an edge from a vertex in Si to one in Sj . Suppose that m > 1. If for
some vertex sk it holds that din(sk) = 0, then the previous argument implies
dout(sk) = 0. This contradicts the weakly connectedness of G, so din(sk) > 0
and dout(sk) > 0 for all k = 1, . . . ,m. Since m is finite, the graph H contains a
cycle. This contradicts the maximality of the strongly connected components
S1, S2, . . . , Sm. Therefore, m = 1 and G is a strongly connected graph.

In the literature on consensus algorithms the concepts directed spanning tree,
weakly connected and strongly connected are used, but often diffferent concepts
are used to express the same result. The following corollary may in that case
give some clarification.

Corollary A.2. In case a directed graph G is balanced, the following three
statements are equivalent:

(i) G has a directed spanning tree,

(ii) G is weakly connected,

(iii) G is strongly connected.

A.3 Laplacian matrix

The incidence matrix D of a directed graph G = (V,E) is a matrix with rows
and columns indexed by the vertices and edges of G, respectively, such that

dif =

 −1 if the vertex i is the tail of edge f ,
1 if the vertex i is the head of edge f ,
0 otherwise.

(A.2)

The Laplacian L of G is defined as

lij =

 −1 if (j, i) ∈ E,
din(i) if i = j,

0 otherwise,
(A.3)

Lemma A.3. Let G = (V,E) be a directed balanced graph with Laplacian L
and incidence matrix D. Then L+ LT = DDT [13].

Proof. From the definition of the Laplacian it follows directly that

(L+ LT )ij =


−1 if either (i, j) ∈ E or (j, i) ∈ E,
−2 if both (i, j) ∈ E and (j, i) ∈ E,

2 · din(i) if i = j,
0 otherwise.

(A.4)
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In a balanced graph the in-degree equals the out-degree for all vertices, so in
case i = j we have

(DDT )ii = din(i) + dout(i) = 2 · din(i) = (L+ LT )ii.

In the other cases we consider the sum (DDT )ij =
∑
f∈E difdjf . The only

non-zero entries in this sum are the ones where edge f involves both vertices i
and j. Because di(i,j) = −1 and dj(i,j) = 1, the sum will be equal to minus the
number of edges that involve both i and j. This proves (L+LT )ij = (DDT )ij
in the cases that i 6= j.

The Laplacian of an undirected graph G is defined as the Laplacian (2.2) of the
associated directed graph of G. Such a Laplacian is a symmetric matrix. Com-
bined with the previous lemma this yields the following result for undirected
graphs.

Lemma A.4. Let G be an undirected graph and let graph H be an arbitrary
orientation of G. Then the Laplacian L of G can be decomposed as L = DHD

T
H ,

where DH is the incidence matrix of H.

Proof. Let DG denote the incidence matrix of the associated directed graph of
G. All edges in this graph come in pairs: (i, j), (j, i). Graph H is a subgraph
of G, obtained by removing one edge from each of these pairs. Therefore, all
non-zero off-diagonal entries in DGD

T
G will be −2 and in DHD

T
H these same

entries will be −1, conform expression (A.4). Also the sum din(i) +dout(i) will
be twice as large for vertices i in the associated directed graph of G as in H.
Consequently, DGD

T
G = 2DHD

T
H . Since L is symmetric,

2L = L+ LT = DGD
T
G = 2DHD

T
H

and therefore L = DHD
T
H .
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Appendix B

Systems theory

This appendix summarizes a few definitions and results from systems theory.
Only what is relevant for this thesis is discussed. The results that are explicitly
stated as lemma or theorem are referred to from somewhere else in the thesis.

B.1 Spectral properties of matrices

The algebraic multiplicity of an eigenvalue λ of A is the multiplicity of λ as a
root of the characteristic polynomial det(λIn −A). The geometric multiplicity
of λ is the dimension of the kernel of λIn−A. For each eigenvalue the geometric
multiplicity is smaller or equal to the algebraic multiplicity.

Theorem B.1 (Gersgorin disc theorem). Every eigenvalue of a matrix A ∈
Cn×n lies inside one of the Gersgorin discs D(aii, Ri), which is a closed disc
centered at aii and with radius Ri =

∑
j 6=i |aij | [2].

Proof. Let λ be an eigenvalue of A and x a corresponding eigenvector. Choose
i such that |xi| ≥ |xj | for all j = 1, . . . , n. Since λ is an eigenvalue of A,

n∑
j=1

aijxj = λxi.

Substracting aiixi from both sides and dividing by xi gives that

|λ− aii| =
∣∣∣∣
∑
j 6=i aijxj

xi

∣∣∣∣ ≤∑
j 6=i

|aij | = Ri,

so eigenvalue λ lies in the closed disc D(aii, Ri).
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A vector x ∈ Rn is called positive (or nonnegative) if all of its entries are positive
(nonnegative). We denote this by x > 0n (x ≥ 0n). Positive or nonnegative
matrices are defined similarly.

Let λ1, . . . , λn denote the eigenvalues of a matrix A ∈ Rn×n. The spectral
radius of A is defined as

ρ(A) = max
i=1,...,n

|λi|.

Lemma B.2. If A ∈ Rn×n is nonnegative, then ρ(A) is an eigenvalue of A
and there exists a nonnegative vector x 6= 0n, such that Ax = ρ(A)x [12].

B.2 Linear differential systems

A linear time-invariant differential system is a system that can be written as

x(t) = Ax(t) +Bu(t), (B.1)
y(t) = Cx(t) +Du(t),

where x(t) ∈ Rn denotes the state (vector) of the system, u(t) ∈ Rm the input
(vector) and y(t) ∈ Rp the output (vector). The matrices A,B,C,D have sizes
n× n, n×m, p× n and p×m, respectively. Since these matrices are constant
in time, the system is called time-invariant. We will assume that given initial
condition x(0) = x0 and an input u(t), t ≥ 0 are admissible, that is, they are
such that the solution x(t) and output y(t) of this system are well defined.

Now consider system
ẋ(t) = Ax(t) (B.2)

with initial condition x(0) = x0, where t ≥ 0. The solution of this system is
given by x(t) = eAtx0, where the matrix exponential eA ∈ Rn×n is defined as

eA =
∞∑
k=0

Ak

k!
.

The matrix exponential is easily determined in case A is diagonizable, that
is, there exists an invertible matrix P such that P−1AP = D, where D =
diag(λ1, . . . , λn). In that case eA = PeDP−1, where eD = diag(eλ1 , . . . , e

λ
n). If

A is not diagonizable, eA can be determined using the Jordan normal form J
of A (see for example [20]), which is close to a diagonal form. The following
lemma shows the relation between the eigenvalues and eigenvectors of A and
eA.

Lemma B.3. If λ is an eigenvalue of A and v a corresponding eigenvector,
then eAtv = eλtv.

B.2.1 Stability

Consider the first order differential equation ẋ = f(x), with x ∈ Rn and let
x(t, x0) denote its solution at time t, given initial condition x(0) = x0. A vector
x that satisfies f(x) = 0 is called an equilibrium point. An equilibrium point
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is called stable if for every ε > 0 there exists a δ > 0 such that |x0 − x| < δ
implies |x(t, x0) − x| < ε for all t > 0. This means that the solution remains
in a neighbourhood of the equilibrium point, provided that x0 lies sufficiently
close to it. An equilibrium point is called asymptotically stable if it is stable
and in addition the solution converges to the equilibrium point, provided that
x0 lies sufficiently close to it. Equilibrium point x̂ is called unstable if it is not
stable.

Again consider system (B.2). This system is called (asymptotically) stable if
the equilibrium point x = 0n is (asymptotically) stable. Let λ1, . . . , λk be the
distinct eigenvalues of A ∈ Rn×n. The origin x = 0n is asymptotically stable if
and only if Re(λi) < 0 for all i = 1, . . . , k. It is stable if and only if Re(λi) ≤ 0
for all i = 1, . . . , k and for each eigenvalue λi with Re(λi) = 0, the algebraic
and geometric multiplicity are the same.

With the Routh-Hurwitz stability criterion we can determine whether a system
is assymptotically stable without the explicit computation of the eigenvalues
of A. The criterion indicates the number of roots of the characteristic equation
det(A−λI) = 0 with non-negative real part based on the coefficients a0, . . . , an
in

det(A− λI) = anλ
n + an−1λ

n−1 + . . .+ a1λ+ a0.

Let an be positive. If it is negative, then multiply all coefficients by −1. Routh
stability criterion consists of several steps, but here we only present the first
one.

Step 1. If any of the coefficients a0, a1, . . . , an−1 is negative or zero, there is
at least one root of the characteristic equation with positive real part.

For a clear description and illustrative examples of the complete Routh criterion
we refer to [3].

B.2.2 Controllability and observability

System (B.1) is called controllable if any state x1 ∈ Rn, can be reached starting
from an arbitrary state x0 ∈ Rn, in finite time t1 > 0, by application of a
suitable admissible input u. The system is called observable if the initial state
x0 can be constructed from knowing u and y on the interval [0, t1] for some
finite t1. By means of the Popov-Belevitch-Hautus (PBH) tests we can test
whether a system is controllable or observable.

Theorem B.4 (PBH test for controllability). System (B.1) is not controllable
if and only if there exist a left eigenvector of A, i.e., qTA = λqT for some λ,
such that qTB = 0Tm.

Theorem B.5 (PBH test for observability). System (B.1) is not observable if
and only if there exist a right eigenvector of A, i.e., Aq = λq for some λ, such
that Cq = 0p.

Note that controllability is completely determined by matrices A and B and
observability by matrices A and C.
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B.3 Dissipative non-linear systems

Consider state space system

Σ :
{
ẋ = f(x, u),
y = h(x, u)

where x ∈ Rn, u, y ∈ Rm and functions f and h are sufficiently smooth. Assume
that moreover a real-valued function s defined on R2m is given. This function
will be called the supply rate. We assume that s is locally integrable [27].

Let x(t1) denote the state of Σ at time t1 resulting from initial condition
x(t0) = x0 and input u [24]. A system Σ said to be dissipative with respect
to supply rate s if there exists a function S : Rn → R+, called the storage
function, such that for all x0, t1 > t0 and input functions u,

S(x(t1)) ≤ S(x(t0)) +
∫ t1

t0

s(u(t), y(t))dt, (B.3)

The above inequality is called the dissipation inequality. It expresses that at
time t1 the ‘stored energy’ S(x(t1)) in the system can not be larger than the
sum of the energy present at a previous time t0 and the energy that was supplied
in the meanwhile,

∫ t1
t0
s(u(t), y(t))dt. Inequality (B.3) therefore represents the

fact that no energy can be ‘created’ in the system, only dissipated. If it holds
with equality for all x0, t1 > t0 and input functions u, then Σ is lossless with
respect to s.

A system Σ is said to be passive if it is dissipative with respect to supply rate
s(u, y) = uT y. If it is lossless with respect to this supply rate, Σ is called
conservative.

If storage function S is continuous differentiable, we can rewrite the dissipation
inequality by dividing by t1 − t0 and lettting t1 → t0, thus obtaining

∂S(x)
∂x

T

f(x, u) ≤ s(u, h(x, u)). (B.4)

This inequality is called the differential dissipation inequality.
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