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Abstract

Automatic classification becomes more and more in-

teresting as the amount of available data keeps grow-

ing. Also, modern computers are equipped with pow-

erful hardware specifically designed for processing fast

amounts of data, namely the GPU (graphical process-

ing unit). We use OpenCL to implement a multilayer

perceptron that runs on the GPU. Our implementation

scales better than an implementation for the CPU, but

this proves to be only an improvement for larger net-

works due to the overhead of calculating on a different

device.

1 Introduction

Recent developments in GPU-land have resulted in
the availability of tools to use the graphics pro-
cessing unit (GPU) for other purposes. Artificial
neural network (ANN) can take advantage of this.
This fits perfectly with the demand to process in-
creasingly large amounts of data.

Research Question: How fast is an implementa-
tion of a neural network for the GPU compared to
an implementation for the CPU?

In this paper we explore how a multilayer per-
ceptron can be implemented in OpenCL. We will
compare the speed of this implementation with an
implementation in C, and test whether the differ-
ence in speed and the scaling of speed is an ad-
vantage worth the effort. Larger networks might
be faster to train on the GPU, but if the larger
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network does not yield better performance than a
small network, there is no value in this increase in
speed.

We expect it to be faster for larger networks, as
in this configuration calculating the activation of
nodes in parallel has a clear advantage. We also
expect that for smaller networks it will be slower
as there are costs to running the computation on a
different device.

This paper is organized as follows: In Section 2
we discuss the background of implementing neural
networks on GPUs: what has been done before. In
Section 3 we describe the ANN in more detail. We
then introduce OpenCL in Section 4 and how we
use it to implement our neural network in Section
5. Finally, we will discuss the results and future
work in Section 7.

2 Background

The development of GPUs has focused on optimiz-
ing throughput instead of latency. As a result the
GPU can outperform the CPU in streaming tasks:
tasks that require applying the same calculation
on large amounts of data (Owens, Luebke, Govin-
daraju, Harris, Krger, Lefohn, and Purcell (2007)).

In the beginning, GPUs had been optimized for
these tasks by designing the hardware itself around
the algorithms. But in time, more and more parts
of the GPU have become programmable, allowing
the programmer to refine or redefine the applied
computations (Owens et al. (2007)). Oh and Jung
(2004), Luo, Liu, and Wu (2005) demonstrated that
the GPU can be repurposed for non-graphical cal-
culations and implemented a neural network by
programming the pixel and vertex shaders to calcu-
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late activation. This practice of using the GPU for
non-graphical calculations also known as general-
purpose computing on graphics processing units
(GPGPU).

The hardware is still optimized for graphical
tasks and speed, and as a consequence, GPUs were
traditionally not equipped for precise floating-point
mathematics. Also, one needed specific knowledge
of the architecture and of programming with the
graphics APIs such as DirectX or OpenGL. More
modern hardware nowadays does support double
precision floating-point mathematics, but it is still
not commonplace.

In 2007 NVIDIA released CUDA, which allowed
programmers to program the GPU in a variant of C,
specifically designed for using the GPU hardware
for tasks other than generating graphical images.
Jang, Park, and Jung (2008) showed that CUDA
could be used to implement a neural network with-
out the need of significant background knowledge
in graphics. The Deep neural network developed by
Ciresan, Meier, and Schmidhuber (2012) currently
yields the best performance on various datasets be-
cause it uses CUDA to train the network in a mat-
ter of days instead of months.

OpenCL is developed by the Khronos Group and
is an open API for parallel programming. Unlike
CUDA, it is not specifically designed for GPUs.
Hardware vendors can implement it for both CPU
and GPU as well as specialized hardware. OpenCL
code can run on any device that implements the
necessary APIs, making programs that depend on
OpenCL more portable than programs depending
on CUDA. The downside is that the OpenCL run-
time may not be as tightly interknitted with the
features of the hardware as CUDA. Karimi, Dick-
son, and Hamze (2010) and McConnell, Sturgeon,
Henry, Mayne, and Hurley (2012) show that the
performance of OpenCL is a bit less than the per-
formance of CUDA.

3 Artificial Neural Network

The multilayer perceptron consists of an input
layer, a number of hidden layers, and an output
layer, as shown in Figure 1. The first hidden layer
is fully connected to the input layer with weighted
connections, the second hidden layer to the first
hidden layer and so on. The output layer is fully

Figure 1: A fully connected neural network with
three hidden layers and a single output node.
The lines between the nodes each have their own
weight.

connected to the last hidden layer. The weights of
the connections between nodes are initialized with
random values between -1 and 1, although often
less extreme values closer to zero are chosen.

The input layer has the same amount of nodes
as the input data of the neural network. The out-
put layer has as many nodes as there are classes
in the dataset. The number of hidden layers, and
the number of nodes in these layers are parameters
which can be altered to increase the performance
of the neural network.

The nodes in the first layers receive a value equal
to the input data. The activation of each node aj
in the second layer (i.e. the first hidden layer) is
calculated by taking the inner-product between the
connecting weights wij and the values of each node
ai in the previous layer (i.e. the input layer). A
bias bj is added and the activation function f is
applied.

aj = f(

n∑
i=0

wijai + bj) (3.1)

The activation function f introduces nonlinearity
into the network. We implemented these as follows:

f(x) =
2

1 + e−x
− 1 (3.2)

f ′(x) = 1 − x2 (3.3)
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3.1 Backprogagation

To train the NN the backpropagation algorithm is
used. The weights between the layers are adjusted
to better reproduce the target output in accordance
to their impact and the activation of their con-
nected nodes. We update the weights backwards:
The weight connecting the last hidden layer and
the output layer are adjusted first. First we calcu-
late the error of the jth node in the output layer
by subtracting the actual activation of the node aj
from the target value gj :

ej = gj − aj (3.4)

The weight wij of the connection between the ith
node in this layer and the jth node of the next layer
is corrected by adding the adjustment dj multiplied
by the learning speed l and the activation of the
node ai:

wij = wij + ai · dj · l (3.5)

The adjustment dj equals the error multiplied by
the derivative of activation function f applied to
the activation of the jth node:

dj = f ′(aj) · ej (3.6)

For the hidden layers, the error of the ith node is
equal to the sum of all the errors ej in the next
layer in proportion to their connecting weights wij :

ei =

n∑
j=0

wij · ej (3.7)

Finally, the bias for each node in this layer is up-
dated by adding the error ei:

bi = bi + ei · l (3.8)

4 OpenCL

OpenCL allows us to define functions in a variant of
C. Functions can be marked as kernels, which can
be scheduled to be executed by calling the OpenCL
API from our C++ program. Many instances of
the kernel function are executed in parallel, and as
such each instance of a kernel only needs to ap-
ply its calculations on a small subset of the data.
Batches of kernel executions can be queued to be
executed after each other. This in total results in

the CPU queuing a series of commands once, and
then waiting for the GPU to finish executing the
queue.

Work units are instances of a kernel. Work units
are grouped in work groups with whom they share
memory. Each work unit is assigned a unique id
which can be used inside the kernel to identify it.
Only the execution of work units in the same work
group can be synchronized with each other. This is
important to note when removing inner loops that
access the same memory, e.g. summations. We im-
plement summation of Equation 3.7 across multiple
work items through sum reduction as described by
Hillis and Steele (1986).

As kernels are executed on a different device they
cannot access the memory of the CPU, but only
buffers allocated by OpenCL on the device. To
minimize the copying of data between CPU and
GPU as suggested by Luo et al. (2005), all data
used by the network is kept in the memory on the
GPU in multiple OpenCL buffers.

Only single precision floating-point arithmetics
are required by OpenCL to be available. Newer
hardware does support double precision floating-
point data types, and when it does OpenCL can
make use of this, but this is an optional feature.
Recursive function calls are not supported accord-
ing to the OpenCL-1.1 specification, even though
newer hardware does support it (Munshi (2011)).
CUDA 2.1 does allow recursion on hardware that
supports it.

5 Method

The calculations of the activation for each node in
a layer are only dependent on the calculation of the
activation of all the nodes in the previous layer and
the weights connecting them to the node, but not
on the other nodes in the same layer. Therefore
these activations can easily be calculated in par-
allel. This also holds true for the calculation of
the error and the adjustment of the weights in the
backpropagation step.

We first rewrite the implementation of the neural
network to do all the calculations in C functions.
This way we can implement the neural network,
complying with the constraints of OpenCL one by
one, while having all the tools for the gcc program-
ming environment available. At the time of writ-
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ing, no such tools are available for OpenCL for the
platform we use for development. For easy compar-
ison later on, we maintain the same C++ interface
for all three implementations: the original C++
implementation, the C++/C implementation (we
will refer to this as the C implementation) and the
OpenCL implementation.

We allocate a number of buffers in the GPU’s
global memory where we keep the activation of all
the nodes and the weights of all the connections in
our network. Initially, the random values for the
weights are initialized by the CPU and then copied
to the GPU as OpenCL does not offer the function-
ality to generate random values. Thereafter, only
the inputs of the first layer are copied to the GPU
and only the outputs of the final layer are retrieved
from the GPU. We then queue the copying of the
data of the first layer to the buffer. Second, the
execution of many instances of the kernel imple-
menting Equation 3.1 is scheduled to be applied on
the buffers for the first layer. The same is sched-
uled for succeeding layers, to be executed when the
batch for the previous layer has been completed.
Finally, we queue the copying of the data from the
output buffer back to the CPU memory. The CPU
then blocks and waits till the GPU has emptied the
queue.

To create the OpenCL kernels we try to replace
most of the loops in our code with scheduling the
execution of a kernel function for each would-be
iteration of the loop, using the work unit id as an
index to indicate which iteration this would have
been. These kernel functions are equal to the old
body of the loop applied to a single argument.

We schedule multiple kernels per node in each
layer. This means the summarizing is done to-
gether by multiple work units, and as a result these
work units have to be synchronized. This limits
the amount of kernels we can assign per node to
the maximum number of work units inside a work
group.

6 Results

6.1 Setup

We test the performance of our implementations
on an iMac running Mac OS X 10.7 Lion using the
OpenCL implementation Apple provides. It houses
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Figure 2: Comparing speed across different im-
plementations using data from Table 1.

an ATI Radeon HD 5670 with 512 MB of GDDR5
memory and an Intel Core i3 3.2 Ghz with 12 GB
of 1333 Mhz DDR3 RAM memory. To compare the
performance of OpenCL on different hardware we
also compare the results of the iMac with results
generated on a Mac Pro with an ATI Radeon HD
5770 with 1 GB of GDDR5 memory. The code
of all implementations is compiled with compiler
optimization flags enabled.

To compare and test our neural network we use
a dataset of handwritten digits in Bangla. These
digits have been preprocessed and normalized into
5381 values between 0 and 1. This will be the input
data for the network. It contains 2000 samples,
of which 200 will be randomly picked to test the
performance. The network has to classify them into
one of 10 categories.

As a consequence, our network has 5381 nodes in
the input layer and 10 nodes in the output layer.
When the network is trained to learn the symbol
for six, the input layer in presented with the data,
and the target is set to −1 for all nodes, except for
the sixth node, which is set to 1.

6.2 Comparison OpenCL and C

As can be seen in Table 1 and accompanying Figure
2, our OpenCL implementation of the neural net-
work is faster than the single core CPU implemen-
tation only when the network is configured with a
large number of hidden units per layer. The speed
of the OpenCL1 configuration seems to be consis-
tent across most values for the number of nodes
per hidden layer, but skyrockets at the end. For

4



hidden units OpenCL1 OpenCL2 C
10 684 923 23
20 401 955 60
30 403 1119 90
40 417 1191 120
50 420 744 154
75 410 1003 229

100 420 678 304
150 504 724 490
200 551 819 816
250 632 1016 1516
300 1071 858 1640

Table 1: Measuring speed in seconds to train
100 epochs on the Bangla dataset, varying num-
ber of hidden units. 3 hidden layers. OpenCL1:
4 work units per node. OpenCL2: 16 work units
per node. Average of 3 runs per configuration.

the same configuration with more work units per
node, OpenCL2, the implementation is slower. No-
tice how the time taken by OpenCL1 at 300 nodes
(4∗300) is almost equal to the time of OpenCL2 at
75 nodes (75 ∗ 16). This might explain the bump
at the end of OpenCL1, but does not explain why
the line for OpenCL2 does not show a clear trend.

To confirm that our implementation performs
equally well as the reference C implementation, we
measured the performance of both implementations
on an unseen test set. Results are shown in Table
2. It could have been possible that the lack of float-
ing point precision degraded performance, but this
seems not to be the case. This table also shows
that, with our current unoptimized configuration,
using more than 100 nodes in each of the hidden
layers does not yield a noticeable benefit for the
performance.

For a more in-depth comparison of both imple-
mentations, we measure the CPU time taken by the
forward- and backpropagation steps for the C im-
plementation, and the total time taken by running
the tasks on the GPU. The times for the OpenCL
implementation are obtained through the OpenCL
runtime. The results are shown in Table 3 and Fig-
ure 3. Part of the time unaccounted for is because
the test phase and the loading of the data are not
measured in the CPU and GPU time, but are in
the total time.

As can be seen, forward propagation takes most
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Figure 3: Profiling implementations using data
from Table 3.

of the time in the C implementation, mainly due to
the exponent in the calculation of Equation 3.2.

The profiling of the OpenCL implementation is
split into the CPU and GPU part. The CPU only
issues commands to the GPU, and then waits. This
explains the large amount of time unaccounted for.
The GPU part shows that both forward and back-
ward propagation happen equally fast. This may
indicate that the kernel function is not the bottle-
neck, as the C implementation shows that forward
propagation is computationally more intensive.

6.3 Comparison between hardware

We run the OpenCL network on both the iMac and
Mac Pro to see whether the ideal number of work
units per node differs across different hardware. As
can be seen in Table 4 the speed of the network dif-
fers significantly between both GPUs. The fastest
run on both GPUs is with 4 work units per node,
but the hardware does not differ enough to con-
clude this is the right value for all configurations.

7 Discussion

Noticeable is the jumpy performance of the
OpenCL implementation across different numbers
of units in the hidden layers. It might be that the
OpenCL runtime is unable to divide the number
of requested work units into optimal batches, exe-
cuting more batches for e.g. 75 nodes than for 100
nodes per hidden layer. We did find this pattern in
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OpenCL C
hidden units min average max min average max

10 0.12 0.31 0.75 0.13 0.31 0.74
20 0.12 0.51 0.83 0.13 0.49 0.84
30 0.13 0.55 0.85 0.12 0.57 0.84
40 0.12 0.59 0.86 0.13 0.60 0.85
50 0.13 0.62 0.86 0.12 0.61 0.85
75 0.12 0.63 0.87 0.12 0.64 0.86

100 0.13 0.65 0.88 0.13 0.64 0.87
150 0.13 0.66 0.87 0.12 0.65 0.87
200 0.12 0.64 0.88 0.11 0.64 0.87
250 0.10 0.61 0.87 0.11 0.62 0.87
300 0.09 0.56 0.86 0.10 0.61 0.86

Table 2: Comparing performance OpenCL and C implementations. 100 learning iterations. Shown
is the accuracy on the test set. Average of 3 runs per configuration.

Implementation backward forward total time unaccounted for
C 94 443 616 79
OpenCL CPU 47 43 698 608
OpenCL GPU 177 190 698 331
OpenCL both 224 233 698 241

Table 3: Profiling C and OpenCL implementations. Time measured in seconds. 100 learning
iterations, 3 hidden layers, 150 nodes per layer, 4 work units per group.

all our experiments but have not been able to de-
scribe the exact conditions under which it occurs.

The hardware we used does not offer support for
double precision floating-point calculations and as
a result our implementation uses single precision
calculations. As can be seen in Table 2 there is no
noticeable difference.

The OpenCL implementation is only faster than
the C implementation when there are more than
150 nodes per hidden layer when using three hid-
den layers. This might indicate that using OpenCL
adds a large overhead. Table 2 shows that using
more than 75 units does not yield an improvement
in the results, although this might be different with
other values for learning speed and random weight
initialization. Larger networks with more input
nodes and larger layers might profit from using the
OpenCL implementation as it does seem to scale
better. For smaller networks our implementation
is not faster than the reference C implementation.

The OpenCL implementation adds the number of
work units per node as another parameter to opti-
mize. In addition, the speed of the network greatly

depends on the number of nodes in the hidden lay-
ers.

7.1 Future work

We have tried to find good values for the number
of work units we should use to calculate a layer
with the comparison in Table 4, but Table 1 showed
that this comparison was too limited. Future work
might start with trying to formulate the optimal
number of work units depending on the amount of
nodes that need to be calculated and the number
of processors the particular GPU has available.

It is worth noting that the GPUs used in our
experiments are basic models. Results will differ
significantly when these experiments are run on top
of the market models offered today. Testing the
OpenCL implementation on newer hardware and
platforms other than Mac OS X might yield far
better results.

Our implementation of the network in OpenCL
does not make use of the shared memory of the
graphics card, except for the sum reduction step.
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work units per node ATI Radeon HD 5670 ATI Radeon HD 5770
1 387 815
4 282 474
8 316 597

16 398 823
32 566 1281
* 1575 3947

Table 4: Comparing speed in seconds of OpenCL implementation for multiple configurations of
work units per node on different hardware. 3 hidden layers, 128 nodes per layer. Star denotes
the number of nodes in the previous layer.

Shared memory is faster than the global memory
in which we store the network. Shared memory
is faster but smaller, and only shared across every
work unit in a work group. In the understanding
that one serial copy operation would be faster than
numerous small non-serial reads from the global
memory, we tried to copy all values needed for
calculating a layer into the shared memory. But
this did not fit. Smarter prefetching of the values
needed in the calculations might yield an increase
in performance as it takes some load off the global
memory. Another method to speed up the read-
ing of data might be to reorder the way weights
and node values are stored in memory or to make
accessing them more predictable for the GPU.

The reduction of branching as suggested by
Owens et al. (2007) may yield an increase in perfor-
mance as the GPU is better able to predict what
data will be needed. We did some small experi-
ments with it, separating the kernel for backprop-
agation into two separate kernels, removing an if-
statement in the kernel function. We did not notice
a change in performance, but we have not made a
significant effort.
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