
Master thesis applied mathematics

Model reduction of multi-agent systems
with consensus dynamics

Author:
J.H.C. Klaassens

Supervisor:
prof. dr. Arjan van der Schaft

June 29, 2012

Contents

1 Introduction 2

2 Notation 2

3 Graph Theory 3
3.1 Laplacian matrix . 4

4 Consensus 4
4.1 Leader-follower networks and state space representation 6

5 Balancing and reduction methods 8
5.1 Balancing . 8

5.1.1 Examples . 12
5.2 Passivity balancing . 14

5.2.1 Example . 14
5.3 Krylov model reduction . 15

5.3.1 Example . 16
5.4 Conditions on the transformation matrix T . 17

6 Merge Vertices 18
6.1 Merge vertices method . 18
6.2 Merge vertices Hankel singular value error analysis . 21

7 Kron-reduction 23
7.1 Schur complement . 23
7.2 Kron-reduction method . 24
7.3 Kron-reduction Hankel singular value error analysis . 28

8 Stationary state output 29
8.1 Kron-reduction stationary state response . 30
8.2 Merging vertices stationary state response . 31

9 Conclusion 32

1

1 Introduction

This thesis is about systems which are connected to each other, more specifically multi-agent systems,
where every agent has its own dynamics. In this thesis I am first looking at consensus algorithms for
these multi-agent systems. It is common that a multi-agent system can become very large; so it is
convenient if we will find a way of reducing a multi-agent system in such a way that the reduced system
has the structure of a multi-agent system again. The structure of the connections between all the agents
is given by a graph G. Furthermore, we will see that we can describe the multi-agent system subject to
the consensus algorithm with the Laplacian matrix L corresponding to the graph. With this Laplacian
and by giving the agents the roll of leader or follower we can write the system in the standard state
space representation and so we can use the theory which is well-known in system theory. Based on this
we start the search for a good reduction method. This search turns out to be not that trivial and easy
as it appears.

After trying some standard reduction techniques which did not result in a reduced system corre-
sponding to a graph, I looked for structure preserving transformations but also these failed to end up in
a graph Laplacian. It was time for another approach: if we wish to end up with a new reduced Lapla-
cian what kind of transformation do we have to use to get this reduced Laplacian from the full order
Laplacian? This idea has led to the ’merge vertices’ technique. Another method that was yet available
in the literature is called Kron-reduction [5]. This Kron-reduction uses the Schur-complement to reduce
the number of agents in the system. It turns out that also this reduction technique is a candidate for
a ’good’ reduction. Now that we have found two appropriate reduction techniques we have to analyze
if the reduced systems are a good approximation of the full order system. Also questions arise which
vertices can be discarded and which vertices must remain in order to get a good approximation.

The structure of the thesis is as follows. We start with some basic notation, followed by a brief
introduction to graph theory. After that the consensus algorithms are introduced. Next, six reduction
techniques are presented. Four of them are treated in the chapter Reduction and balancing methods.
The other two are treated respectively in the chapters Merge vertices and Kron-reduction. In these
two chapters there is also attention for the question: how to get a ’good’ reduced system? We end by
concluding which method is the best.

2 Notation

In this section all basic notation is introduced which will be used throughout this thesis. All notation
that is more ’advanced’ will be introduced in the sections were it is needed.

A ∈ Rn×m denotes a real matrix with n rows and m columns. The transpose of a matrix A is denoted
by AT . Whenever a matrix A is nonsingular the inverse of the matrix is denoted by A−1. We use real
vectors x ∈ Rn, which are n× 1 matrices.
0n = (0, . . . , 0)T and 1n = (1, . . . , 1)T vectors with n× 1 zeros and ones respectively.

The Kronecker product is an operation on two matrices of arbitrary size resulting in another matrix
[31]. If A is a m× n and B is a p× q matrix, then the Kronecker product A⊗ B is the mp× nq block
matrix

A⊗B =

a11B · · · a1nB
...

. . .
...

am1B · · · ammB

 . (1)

As a small example consider

(
1 2 3
4 5 6

)
⊗
(

1 3
6 2

)
=

1 ·
(

1 3
6 2

)
2 ·
(

1 3
6 2

)
3 ·
(

1 3
6 2

)
4 ·
(

1 3
6 2

)
5 ·
(

1 3
6 2

)
6 ·
(

1 3
6 2

)
 . (2)

2

A graph is denoted by G and a corresponding reduced graph by Gred. In the same way L is the
Laplacian matrix of graph G and Lred the reduced Laplacian corresponding to the reduced graph Gred.
Similar A is the graphs adjacency matrix and Ared is the adjacency matrix of the reduced graph. In the
next chapter I will give a more elaborated overview of the needed graph theory.

3 Graph Theory

In this section fundamental graph theory is presented. We need this graph theory in order to formulate
our multi-agent system. Some properties are needed to see what is happening if we apply reduction
techniques and to confirm if the new system is still corresponding to a graph. The following main graph
theoretical topics are treated:

• Graph G(V,E) defined by its set of vertices V and set of edges E.

• The Laplacian, L, of a graph.

• The adjacency matrix A.

• Eigenvalues of L and graph connectivity.

• Several other important graph theoretical properties.

For more information about (pure) graph theory I refer to the books [9], [3] and lecture notes [12]
and the article [7]. Also the articles about consensus of multi-agent systems give a brief introduction to
graph theory, see for example the introduction of [18].

We use throughout this thesis an undirected, weighted graph G = (V,E) with V = {1, 2, . . . , n} the
vertices and E ⊆ V × V the edges.
When the edges do not have a direction we speak of undirected (symmetric) graphs. An edge is linking
two vertices, and thus can be represented as the unordered pair of the vertices linked by this edge [29].
The order of a graph is |V |, the number of vertices, and the size of a graph is |E|, the number of edges.
The degree of a vertex is the number of edges connected to that vertex.
The connections in a weighted graph can be expressed in an adjacency matrix A = [aij] ∈ Rn×n in the
following way: aij > 0 if (j, i) ∈ E; otherwise when (j, i) /∈ E then aij = 0. Here (j, i) ∈ E means that
there is an edge between i and j. The adjacency matrix of an undirected graph has the property that
aij = aji,∀i 6= j, because in an undirected graph whenever (j, i) ∈ E then also (i, j) ∈ E. Moreover
because we consider graphs without self-loops we have Aii = 0,∀i ∈ V .
When the weights are not relevant we set aij = 1 when (j, i) ∈ E.

The incidence matrix I(G) of a graph G is the 0, 1 matrix with rows and columns indexed by the
vertices and edges of G, respectively, such that an (i, e) entry of I(G) is 1 whenever vertex i is connected
to edge e and otherwise 0. I(G) has dimension n × e where n is the number of vertices of the graph G
and e is the number of edges.

A path is a sequence of edges in a graph of the form (i1, i2), (i2, i3), . . . where ij ∈ V . A spanning
tree is a subgraph which forms a tree and connects all vertices. A tree is a connected graph without
cycles i.e. between every two vertices there is exactly one (simple) path. A simple path is a path with
no repeated vertices.

Spectral graph theory is the study of the relationship between the eigenvalues and eigenvectors of the
adjacency an the Laplacian matrix and the graph itself.

The neighbors of a vertex i are denoted by Ni = {j ∈ V : (i, j) ∈ E}, so all vertices j in the
set of vertices V , which have an edge connecting j to i. Using this neighbor set we can easily define
L = [lij] ∈ Rn×n the graph Laplacian of the network, its elements are defined as follows:

lij =

{
−aij , j in Ni∑n
j=1 aij , j = i

(3)

3

Equivalently if we define the degree matrix D = diag{d1, . . . , dn} ∈ Rn×n, with di =
∑n
j=1 aij for

i = 1, . . . , n, we can define the Laplacian of the weighted graph as

L = D −A,

which is symmetric [13]. In the case wherein the weights are not important the non-diagonal entries of
the Laplacian are −1 when j is a neighbor of i and has value |Ni| at the diagonal, where |Ni| denotes
the number of neighbors of vertex i. At the diagonal entry of the Laplacian stands the sum of the
weights of all edges connected to this vertex. When a vertex j is a neighbor of vertex i we get a value
−aij in the Laplacian matrix at entry (i, j). By definition of this graph Laplacian the sum of a row,∑n
j=1 lij = 0, for i ∈ {1, . . . , n}, is always zero. Also the graph Laplacian satisfies lij ≤ 0, i 6= j. Because

the graph Laplacian is important in this research a section is dedicated to the Laplacian matrix.

3.1 Laplacian matrix

In this section I present in a structured way all the properties of a symmetric graph Laplacian matrix
[32], [13] and [9]. For a graph G and its Laplacian matrix L with eigenvalues λ1 ≤ λ1 . . . ≤ λn:

• L is always positive-semidefinite, i.e. ∀i, λi ≥ 0.

• The off-diagonal elements are all non-positive, i.e. lij ≤ 0, i 6= j.

• The diagonal elements are nonnegative, i.e. lii ≥ 0, i = 1, . . . , n.

• The row sum of every row is equal zero, i.e.
∑n
j=1 lij = 0, for i = 1, . . . , n, or written as L1n = 0.

• The column sum of every column is equal zero, i.e.
∑n
i=1 lij = 0, for j = 1, . . . , n, or written as

1TnL = 0.

• L has at least one eigenvalue at 0, λ1(L) = 0 with right eigenvector 1n and left eigenvector 1Tn .

• The number of times 0 appears as an eigenvalue of the Laplacian equals the number of connected
components in the graph. λ2 is called the algebraic connectivity. This eigenvalue is greater than 0
if and only if G is a connected graph. If G is connected then the eigenvalues λi(L) with i = 2, . . . , n
are all positive.

In this thesis for simplicity I assume the graphs to be connected. An important remark is conversely
that every symmetric positive semi-definite matrix L with diagonal elements ≥ 0 and off diagonal ele-
ments ≤ 0, with zero row and column sums is a Laplacian matrix [4].

4 Consensus

In the previous chapter we have introduced graph theory in order to be able to describe a system
consisting of vertices which are called agents. All these agents have there own dynamics and they are
connected to other agents and together they form a multi-agent system. These connections, with the
possibility of weight along the edges, between the agents are described by a graph G and its corresponding
Laplacian L. We show how we can write a multi-agent system in state space representation with the
Laplacian matrix. If we also introduce a leader-follower network we will see that we can split the
Laplacian in order to get the A,B,C,D matrices of the state space representation. Now because we have
a multi-agent system, we want the agents to ’behave’ in the same way. We will start with first order
consensus.

Consider a network of n decision-making agents with the first order dynamics

ẋi(t) = ui(t) i = 1, . . . , n,

note that the state of agent i at time t, xi(t) can be a vector in Rd, ui(t) is the control input at vertex
i. The communication between such agents is described by a graph G(V,E).
The first question is: what is consensus and how a system can reach it? A consensus algorithm (or
protocol) is an interaction rule that specifies the information exchange between an agent and all of its

4

neighbors on the network [18]. In a network of agents consensus means to reach an agreement regarding
a certain quantity of interest that depends on the state of all agents [18]. There are a couple of types
of consensus, one of the most common is the average consensus. In this type of consensus it holds that

when the consensus is reached: x1 = x2 = . . . = xn =
∑n

i=1 xi(0)

n , so every state has the same value and
is equal to the average value of the initial states.

In the multi-agent system agents are intended to reach a consensus about their states. To make a
mathematical definition of consensus we consider a system of n agents and let xi ∈ Rd denote the state
of agent i. So each of the n agents has a state of dimension d.
Agents reach a state consensus if their states all converge to the same value, that is ∀xi(0) ∈ Rd and
∀i, j ∈ V

|xi(t)− xj(t)| → 0 t→∞. (4)

By reaching consensus we mean that the values of the agents asymptotically converge to an agreement
space x1 = x2 = . . . = xn. This agreement space can also be expressed as x = α1n for an α ∈ R. This
α is called the collective decision of the group of agents. A simple consensus algorithm is the following
[18]:

ẋi(t) =
∑
j∈Ni

(xj(t)− xi(t)), i = 1, . . . , n. (5)

This algorithm changes the state of agent i into the direction of the values of the states of the neighbor
agents. For example, if the neighbors of i have on average a higher value, then the value of xi increases.
For a graph with weights we can make the following change to the algorithm [18]:

ẋi(t) =
∑
j∈Ni

aij(xj(t)− xi(t)), i = 1, . . . , n. (6)

This is a distributed consensus algorithm, i.e., it guarantees convergence to a collective decision via local
inter agent interactions.

This generalization of the consensus algorithm, if we first assume for simplicity of notation that the
state xi of every agent is in R (i.e. d = 1), can be rewritten in the following compact form:

ẋ =

ẋ1...
ẋn

 = −Lx (7)

where L is the graph Laplacian. This short notation can be verified by noticing that L = D − A and
simply working out the product −(D−A)x to obtain (6). Now because our Laplacian L is symmetric we
will reach average consensus in our consensus algorithm (6). From this short notation we can easily derive
that we will reach average consensus, meaning that we have an agreement space with α = 1

n

∑
i xi(0).

Because we have 1Tn ẋ = −1TnLx = 0x = 0⇒ d
dt (1

Tx)(t) = 0, i.e. the sum,
∑
i xi, is an invariant quantity

and so we reach average consensus. In other words the eigenvector of the eigenvalue 0 corresponds to
the consensus. In consensus xi → ci for i = 1, . . . , n, we end up with nc = 1Tnx(0), hence the consensus

value only depends on the initial value of the state, c =
1T
nx(0)
n . This results in the following lemma [18].

Lemma 1. Let G be a connected undirected graph. Then, the algorithm (6) asymptotically solves an
average-consensus problem for all initial states.

The graph Laplacian satisfies the following sum-of-squares property:

xTLx =
1

2

∑
(i,j)∈E

aij(xj − xi)2 (8)

where ϕ(x) = 1
2x

TLx is called the quadratic disagreement function. Now we can rewrite the consensus
algorithm in terms of the disagreement function:

ẋ = −∇ϕ(x). (9)

5

This is called the gradient-descent algorithm. This algorithm globally asymptotically converges to
the agreement space since the following two conditions hold:

1. L is a positive semidefinite matrix.

2. All equilibria of (6) are given as α1n for some α ∈ R.

If the agents have a state vector xi ∈ Rd then we can rewrite the consensus algorithm (6) for the
whole multi-agent system with the help of the Kronnecker product and the Laplacian (as in (7)). First
write x(t) = col(x1, . . . , xn) ∈ Rnd then the consensus algorithm is given by:

ẋ(t) = −(L⊗ Id)x(t). (10)

From this point we will focus on multi-agent dynamics with individual agent states in R, i.e. xi ∈ R.
However our results can directly be extended to the case of (10).

4.1 Leader-follower networks and state space representation

We know that we can write the consensus algorithm as in (7). Now instead of giving every agent the
same role we can choose follower and leader agents [17], [10], [16], [15], [23]. We let some vertices be
leader agents, the complement of the set of leaders in the network will be the set of follower agents.
We consider single-leader systems and the more difficult multiple leader systems. With the help of the
partition in followers and leaders we can look at some properties of the system like controllability and
observability. In this thesis we choose the leader agents in such a way that the whole system becomes
controllable, for more information see [23]. Important however is the rearrangement of the Laplacian
matrix into four parts. A part only related to the followers, subscript f , a part for the leaders, subscript
l and two parts for the connection between the leaders an followers. In this partition the corresponding
state of the leaders become xl and of the followers xf . Now we reorganize the agents. The first nf
agents are the followers and the next nl are the leaders (and of course: nf + nl = n (the total number
of vertices)). Now we can easily divide the Laplacian in parts in the following way:

L =

(
Lf lfl
lTfl Ll

)
(11)

where Lf ∈ Rnf×nf , Ll ∈ Rnl×nl and lfl ∈ Rnf×nl . The graph of all the follower vertices V f ⊆ V is a
subgraph of G. Also the graph of all the leader vertices Gl(V

l, El) is a subgraph of G [23].
With (11) we can make a state space representation

ẋ(t) = Ax(t) +Bu(t) (12)

y(t) = Cx(t) +Du(t). (13)

For matrix A we take the part of the Laplacian corresponding to the followers, −Lf , because of the
symmetry of L we have also symmetry in the A matrix [23], so A = AT . We define B = −lfl as the
connection between the states of the leaders and followers. Again by symmetry C = −lTfl = BT and
D = −Ll. Now we have identified our state space model where the state x(t) = xf (t) corresponds to
the state of the followers and the output y(t) = ẋl(t) corresponds to the first order derivative of the
states of the leader vertices, and the input u(t) = xl(t) corresponds to the state of the leaders. Note
that by taking the state of the leader agents as input, the followers do not have any influence anymore
on the leaders i.e. the equation ẋl(t) = −lTflxf (t) − Llxl(t) does not hold anymore. We give an other
interpretation to this equation, namely that of the output of the system. We obtain:

ẋ(t) = −Lfx(t)− lflu(t) (14)

y(t) = −lTflx(t)− Llu(t). (15)

6

So concluding:

L =

(
Lf lfl
lTfl Ll

)
=

(
−A −B
−C −D

)
(16)

From the article [15] we have:

Lemma 2. If G is connected then Lf is positive definite.

Because we can obtain the A,B,C,D matrices from the Laplacian matrix, the Laplacian of the graph
will be very important to the further research.
When the network is split into leaders and followers we want to reach a consensus between the states of
the agents. We want to steer all the states of the agents to a value a ∈ R. This is done by the influence
of the leaders. The leaders can be time varying (ẋl 6= 0) or constant (ẋl = 0). Therefore we want to
reach consensus with the agreement value (xf (t), xl(t))

T = a1n. Following from (11) the dynamics of
the followers are given by:

ẋf (t) = −Lfxf (t)− lflxl(t). (17)

When leader agents are constant the states of the leaders are all the time fixed at the goal value
a [17]. So we have ẋl(t) = 0 with initial value xl(0) = a1nl

and hence xl(t) = a1nl
. Therefore the

dynamics of the leader agents and the system output become (see (11)):

ẋl(t) = 0 (18)

y(t) = Cxf (t) +Da1nl
. (19)

Now we can state the following theorem [15]:

Theorem 1. Given fixed leader positions xl = a1nl
, with a ∈ R the equilibrium point under the follower

dynamics in (17) is

x̄f (t) = −L−1f lflxl = −L−1f lfla1nl
. (20)

Proof. Put (17) equal to zero. From lemma (2), we know that Lf is invertible and hence (20) is well-
defined. Hence the equilibrium point is unique. Moreover, since Lf is positive definite, this equilibrium
is in fact globally asymptotically stable.

Moreover by the row sum property of the Laplacian we know that

Lf1nf
+ lfl1nl

= 0⇒ lfl1nl
= −Lf1nf

.

Therefore the unique equilibrium point in (20) can be written as x̄f (t) = −L−1f (−Lf)a1nf
= a1nf

. The
corresponding output at the equilibrium can also be computed by using the row sum property of the
Laplacian we obtain:

ȳ(t) = Cx̄f (t) +Da1nl
= −lTfla1nf

− Ll1nl
a (21)

= (−lTfl1nf
+ lTlf1nf

)a = 0. (22)

As a result from the previous theorem and above computations we can compute the stationary state
output, this results in the following corollary:

Corollary 1. The corresponding stationary state x̄(t) and stationary state output ȳ(t) by a given constant
input ū(t) = a1nl

is given by:

x̄(t) = −A−1Bū(t) = a1nf
(23)

ȳ(t) = (−CA−1B +D)ū(t) = 0. (24)

7

The corresponding consensus value for all agents is (xf , xl)
T = (a1nf

, a1nl
)T = a1n. Recall that

indeed consensus is reached, all states have the same value and we have L(xf , xl)
T = 0, because the

consensus value must lie in the kernel of L which is given by kerL =span{1n}.

This constant leader agent case is very specific. Leaders do not always have the same constant value,
they can also have different constant values. Or more general, every value of a leader agent can vary
freely in time, the so called time varying leader agents. Therefore we state the previous corollary in a
more general way:

Corollary 2. The corresponding stationary state x̄(t) and stationary state output ȳ(t) by a constant
input ū(t) is given by:

x̄(t) = −A−1Bū(t) (25)

ȳ(t) = (−CA−1B +D)ū(t). (26)

Note that we do not reach consensus necessarily in this case. If the leaders have different constant
values, i.e. they are not in consensus, then the follower agents may also converge to different values
depending on there connections with the leaders. And hence we do not have a consensus situation.

For completeness I note that there are other ways to make a state space representation of a leader-
follower network, see for example [10], [11], [15] and [16].

5 Balancing and reduction methods

Now we are able to write a multi-agent system with its corresponding graph into a state-space model.
We have seen that in such a system we can reach consensus between the states of the agents by using the
leader agents as a constant or time-varying input to the system so the follower agents will asymptotically
converge to the value of the leader agents. More specifically in our case the states converge to the
average of the initial values of the states. But what if we have a multi-agent system with too many
agents. Then it will be desirable to reduce the number of agents and maintain a good representation of
the full scale model. Of course, if we reduce we must have again a multi-agent system with less agents and
a corresponding graph Gred. So the question that arises: are there reducing techniques which preserve
the graph structure of the system? In this chapter we search for these techniques. Every technique is
explained and tested with help of an example. We start with balancing techniques followed by reduction
techniques. For a good overview I refer the reader to [1]. The following reduction techniques are treated:

• Balanced truncation.

• Balanced singular perturbation method.

• Passivity balancing.

• Krylov model reduction.

5.1 Balancing

We want to reduce the model for control purposes and in order to be able to better analyze the system.
For simulations it is less intensive to work with a reduced model. The reduced model is required to have
the same essential behavior as the full order systems. In terms of the state space representation of a sys-
tem we wish to replace the system ẋ(t) = Ax(t) +Bu(t), y(t) = Cx(t) +Du(t) by ¯̇x(t) = Āx̄(t) + B̄u(t),
y = C̄x̄+ D̄u(t), where the x̄ has less elements than the original state x.
Balancing is finding a basis wherein the states which are difficult to reach are also the states difficult
to observe. Such a basis we find by simultaneously diagonalizing the controllability and observability
Gramian. From a linear algebraic point of view balancing consists of the simultaneous diagonaliza-
tion of two positive (semi) definite matrices. After balancing we can create reasonably reduced order
models of systems by deleting the part of the state space that is least controllable and least observable [6].

8

For this balancing technique we need Gramians. A Gramian is a positive semidefinite matrix with
a set of not negative real eigenvalues λ1 ≥ . . . λn ≥ 0. For balancing we need two special types of
Gramians: the observability and controllability Gramian.

Definition 1. Gramians. The controllability Gramian W and the observability Gramian M of the
systems (A,B,C) are defined as the unique solutions of the Lyapunov equations

AW +WAT = −BBT , ATM +MA = −CTC (27)

where A, −BBT and −CTC are given square matrices and respectively W and M are unknown.

In some cases we can solve explicitly the two (dual) Lyapunov equations. To solve the equations we
need that A is Hurwitz.

Definition 2. Hurwitz matrix.
A square matrix A is called Hurwitz matrix (stable matrix) if every eigenvalue of A has strictly negative

real part, that is, Re[λi] < 0 for each eigenvalue λi.

Now we can state the following theorem:

Theorem 2. Suppose that A is Hurwitz. Then the observability Gramian is given by

M =

∫ ∞
0

eA
T tCTCeAtdt (28)

and the controllability Gramian by

W =

∫ ∞
0

eAtBBT eA
T tdt. (29)

Note that these Gramians are only well defined for asymptotically stable systems (A is Hurwitz).

Definition 3. Balanced realization We speak of a balanced realization of the system if the coordinates
are chosen in such a way that for the transformed system M and W are equal and diagonal, i.e. M =
W = Σ. Where Σ is a diagonal matrix [19].

Theorem 3. The eigenvalues of the product WM are invariant under state space transformations and
hence they can be viewed as input/output invariants [19].

If we have a balanced realization W = M = Σ then Σ is a diagonal matrix with at the diagonal the
Hankel singular values of the system [19], [30]. For our purposes we can define the Hankel singular values
in the following way:

Definition 4. Hankel singular values [19] Assume that A is Hurwitz. The Hankel singular values
σi of the system are defined as

σi =
√
λi(WM), for i = 1, 2, . . . , n (30)

where λi(WM) is the i’th eigenvalue of the matrix product WM . We also have the convention of
ordering the Hankel singular values in such a way that σi ≥ σi+1. For a more elaborate view on Hankel
singular values and the singular value decomposition theorem see [8] and [2] or any other book on Linear
Algebra.

Theorem 4. • The singular values of a matrix A and PAQ are identical for any orthogonal matrices
P , Q.

• The rank of a matrix A equals the number of nonzero singular values of the matrix.

• If a matrix A is symmetric, then the singular values of A are the absolute values of its eigenvalues.

• If A is positive semidefinite then the singular values are the same as the eigenvalues.

9

Proof can be found in any good book about Linear Algebra for example in [8].
We need a state space transformation in order to make the system balanced [20], a corollary in [6]

says:

Corollary 3. Suppose (A,B,C) is a controllable and observable realization there exists a state transfor-
mation T such that the equivalent realization (Ã, B̃, C̃) = (TAT−1, TB,CT−1) satisfies

W̃ = M̃ = Σ

with Σ > 0 diagonal and with

W̃ = TWTT M̃ = (TT)−1MT−1 (31)

respectively the controllability and observability Gramians transformed in the new coordinates.

So for our problem we can always find the balanced realization when we can describe our system in
a state space representation with (A,B,C).

This was a brief introduction to balancing. It is time to take a look at our situation. In this thesis
we look at a special kind of systems, the so called gradient systems [26]. Consider a linear system
(A,B,C,D) given as

ẋ(t) = Ax(t) +Bu(t) (32)

y(t) = Cx(t) +Du(t). (33)

Definition 5. Such a system is called a gradient system whenever there exists an invertible symmetric
matrix G satisfying

ATG = GA, BTG = C. (34)

We work with an undirected graph, i.e. L = LT ⇒ A = AT , BT = C. It follows that our system is a
gradient system, with G = I [26]. If we take a look at the two Lyapunov functions (27) we get:

AW +WAT = −BBT = −CTC = ATM +MA (35)

⇒ AW +WAT = ATM +MA (36)

⇒W = M. (37)

From the theory on gradient systems we also know that a controllable and observable system is a
gradient system if and only if its transfer matrix H(s) := C(Is − A)−1B + D = H(s)T is symmetric.
Moreover we know that G is unique whenever the system is controllable and observable [26]. The system
written in balanced coordinates, (Ā, B̄, C̄, D̄) is again a gradient system with G = I. During balancing
we want to keep W = M and diagonalize them with opposite transformations as in corollary 3. After
balancing we have that W̃ = M̃ = Σ with Σ a diagonal matrix, with at the diagonal the Hankel singular
values ordered from high to low. Therefore we have TWTT = (TT)−1MT−1, now because we already
have W = M we obtain TT = T−1 hence TTT = I = TTT . Thus T is a unitary transformation. In other
words T is an orthonormal transformation matrix which diagonalizes W . To diagonalize a symmetric
positive definite matrix W we use a matrix P which columns are the eigenvectors of W , i.e. P−1WP = Σ.
From this observations the following important corollary arises:

Corollary 4. If we have a (special) gradient system with G = I we have:

• The transformation matrix T = P−1 = PT , where P ’s columns are the eigenvectors of W .

• The Hankel singular values of the system are equal to the singular values of W , which are equal to
the eigenvalues of W .

10

Proof. See results above this corollary. We have TWTT = Diag(σ1, . . . , σn) and W = M thus T
is symmetric, unitair and orthonormal, more specific we have WTT = TTDiag(σ1, . . . , σn). Hence
Wpi = piσi, where pi is the ith column of P (ith eigenvector of W). Hence we have λi = σi for
i ∈ {1, . . . , n}.

After balancing we want to reduce the system. We apply two reduction techniques on the balanced
system: balanced truncation and singular perturbation balanced truncation. First I give a small theoretic
introduction to this two reduction methods and then I will work out an example for both. For the
transformation matrix T in the general case I refer to [20], [1] and [21].

Beginning with balanced truncation we order the Hankel singular values from high to low, that is
σ1 ≥ σ2 ≥ . . . ≥ σn. Now if we want to reduce the order of the system we can do this by only looking
at the part of the system which corresponds to the highest Hankel singular values. If holds that for
some i that σi >> σi+1 we will reduce the system to those parts corresponding to the larger Hankel
singular values (σ1, . . . , σi), i.e. we reduce the dimension of the system by discarding those parts of the
system which correspond to the smaller Hankel singular values. The remaining system still captures the
controllability and observability behavior of the original system [19].

Moreover you can always write a system in balanced coordinates and truncated the part corresponding
to the lowest Hankel singular values, hence a balanced truncation is always possible for proofs I refer to
[6] and [1]. In balanced coordinates we have:

W = M =


σ1

σ2
. . .

σn

 (38)

where the Hankel singular values are at the diagonal and are ordered. Now suppose we want to find a
realization with order less than n, say r (so r < n). We assume that the strict inequality σr > σr+1 is
satisfied. So we really only want to truncate at a clear separation of the singular values. The full order
model is partitioned as:

A =

(
A11 A12

A21 A22

)
, B =

(
B1

B2

)
, C =

(
C1 C2

)
, D = D (39)

where A11 ∈ Rr×r. So our full model is given by:

(
ẋ1

ẋ2

)
=

(
A11 A12

A21 A22

)(
x1

x2

)
+

(
B1

B2

)
u (40)

y =
(
C1 C2

)(x1
x2

)
+Du (41)

where (A,B,C,D) are written in balanced coordinates and are partitioned as above and x1 ∈ Rr, x2 ∈
Rn−r. The balanced truncation method now sets the states with low Hankel singular values x2 = 0 and
discard all differential equations of ẋ2. The reduced order approximation now becomes

ẋ1 = A11x
1 +B1u (42)

y = C1x
1 +Du (43)

with transfer matrix

Ĝr = C1(Is−A11)−1B1 +D (44)

in which we need that A11 is still Hurwitz. This is indeed the case [6].

11

Proposition 1. • The matrix A11, as defined above, is Hurwitz.

• The realization (A11, B1, C1, D) is balanced with Hankel singular values σ1, . . . , σr.

• The reduced order model is still a gradient system with Ĝ = Ir [26].

By truncating we have now found a balanced state space realization of order r < n.

The second method is singular perturbation balanced truncation. In this case we will also obtain a
reduced order gradient system [26]. The method works as follows. Set the differential equations ẋ2 = 0,
i.e. 0 = A21x

1 + A22x
2 + B2u. By simple computation we have x2 = −A−122 A21x

1 − A−122 B2u, plug this
in the differential equations for ẋ1 and in the equation for output y . We now have reduced the system
by singular perturbation balanced truncation and we obtain:

ẋ1 = (A11 −A12A
−1
22 A21)x1 + (B1 −A12A

−1
22 B2)u (45)

y = (C1 − C2A
−1
22 A21)x1 + (D − C2A

−1
22 B2)u (46)

so the reduced linear system matrices (Â, B̂, Ĉ, D̂) are given by Â = (A11 −A12A
−1
22 A21), ĈT = B̂ =

(B1 −A12A
−1
22 B2) and D̂ = D−C2A

−1
22 C

T
2 . Note that Â is given by the Schur complement of block A22

of matrix A. Therefore Â is again symmetric, for proof see [26].
I will use both balancing reduction methods on the same graph to obtain a reduced model in the

following example.

5.1.1 Examples

We look at the following graph with one leader agent (most left vertex) and three follower agents (the
other three)

•l •f1 •f2 •f3
I will call this graph G1. First I will look at the case when there are no weights to be taken into
account. Then I will rearrange the vertices in such order that the first three are the followers and
the last one is the leader agent. So we get V = {f1, f2, f3, l} = {1, 2, 3, 4} and the edges set E =
{(4, 1); (1, 4); (1, 2); (2, 1); (2, 3); (3, 2)}. The Laplacian becomes:

L =


2 −1 0 −1
−1 2 −1 0
0 −1 1 0
−1 0 0 1

 = LT (47)

Now split L into Lf , lf l, l
T
fl and Ll like in (11) and compose the state space representation like in (14).

We obtain:

ẋ(t) =

−2 1 0
1 −2 1
0 1 −1

x(t) +

1
0
0

u(t) (48)

y(t) =
(
1 0 0

)
x(t)− u = x1(t)− u(t). (49)

(50)

The A matrix of the system has three negative solutions (eigenvalues) to det(A − λI) = 0: λ1 ≈
−3, 24698, λ2 ≈ −1, 55496 and λ3 ≈ −0, 198062. From this we can conclude that matrix A is Hurwitz.
Now we compute the Gramians. Because A = AT and BT = C we have W = M . Hence, solving one of
the Lyapunov equations by hand or in Matlab, we obtain

W = M =

0.3103 0.1207 0.0690
0.1207 0.1034 0.0862
0.0690 0.0862 0.0862

 .

12

By computing the eigenvalues of W we also have the Hankel singular values of the system, they are
given by {0.00379763, 0.09838144426, 0.39782092088}. Now we have to put the singular values in the or-
der from highest value to lowest. So we get: {0.39782092088, 0.09838144426, 0.00379763} = {σ1, σ2, σ3},
with σ1 > σ2 > σ3. Following corollary 3 we can find a orthonormal T in order to transform to a
diagonal matrix Σ. We can diagonalize a matrix by putting the eigenvectors as columns in a matrix P ,
now because we ordered the eigenvalues we obtain:

P =

−0.8453 0.5144 −0.1447
−0.4367 −0.5090 0.7418
−0.3079 −0.6902 −0.6548

 .

Take T = P−1, with this T we can transform the system in balanced coordinates and then obtain
the Gramian in diagonal form (with corollary 3). Recall and note that T is a unitary matrix (TTT =
I = TTT). Also the Laplacian matrix transforms into:

Lnew =

(
T 0
0 1

)
L

(
T−1 0

0 1

)
=


0.8980 −0.8762 0.3046 0.8453
−0.8762 1.3446 −0.7285 −0.5144
0.3046 −0.7285 2.7574 0.1447
0.8453 −0.5144 0.1447 1

 .

Now we have obtained the system in balanced coordinates we are going to reduce the model. The
biggest gap is between σ2 and σ3. So a good choice will be to reduce the system to a second order system.

ẋ(t) =

 −0.898 0.8762 −0.3046
0.8762 −1.345 0.7285
−0.3046 0.7285 −2.757

x(t) +

−0.8453
0.5144
−0.1447

u(t)

=

(
A11 A12

A21 A22

)
x(t) +

(
B1

B2

)
u(t).

So by using balanced truncation (putting x3 = 0 and discard the third differential equation) we end
up with the reduced system (Ar, Br, Cr, Dr) given by:(

ẋ1
ẋ2

)
=

(
−0.898 0.8762
0.8762 −1.345

)(
x1
x2

)
+

(
−0.8453
0.5144

)
u(t)

y(t) =
(
−0.8453 0.5144

)(x1
x2

)
− u(t).

If Ar, Br, Cr, Dr would correspond to Lred1 =

(
−Ar −Br
−Cr −Dr

)
:

Lred1 =

 0.898 −0.8762 0.8453
−0.8762 1.345 −0.5144
0.8453 −0.5144 1

 .

Take a close look at the numerical values in this Lred1 matrix and see that both the row and column
sum are not equal to zero. So this Lred1 is not a Laplacian, therefore the reduced system cannot be
represented by a graph. The Gramians of this reduced system however, are exactly as we want, namely:

Wred1 = Mred1 =

(
0.3978 0

0 0.0984

)
.

The second way to obtain a reduced order model is by the singular perturbation balanced truncation,
we set ẋ3 = 0 we obtain (by direct computation):

13

(
ẋ1
ẋ2

)
= (A11 −A12A

−1
22 A21)x1 + (B1 −A12A

−1
22 B2)u =

(
−0.8644 0.7957
0.7957 −1.152

)(
x1
x2

)
+

(
−0.8293
0.4761

)
u

x3 = −A−122 (A21

(
x1
x2

)
+B2u).

If we deduce the associated Laplacian from this reduced system we get:

Lred2 =

 0.8644 −0.7957 0.8293
−0.7957 1.1522 −0.4761
0.8293 −0.4761 1

 .

Again, unfortunately Lred2 is again not a Laplacian matrix, so this reduced model can not be repre-
sented by a graph.

By these two examples of balanced reduction techniques we conclude that in general balanced re-
duction is not a good method to obtain a reduced system which still has a graph corresponding to it.
Therefore we try some other reduction methods.

5.2 Passivity balancing

For this type of balancing we start with a passive system. Fortunately our system of the previous example
is passive (for information about passive systems I refer to [14]), so we can and will use in this example
the same L corresponding to graph G1 and hence the same system matrices. I treat this type of balancing
immediately with an example because we already know that it is unlikely that balancing results in a new
Laplacian matrix. And also in this case we will see that balancing does not result into a Laplacian. Now
we will start with the example and take a look at the following matrix [27]:

5.2.1 Example

(
ATQ+QA QB − CT
BTQ− C −D −DT

)
. (51)

Because A = AT , BT = C and we want that the matrix is negative semi definite we obtain:

(
AQ+QA QB −B
CQ− C −2D

)
≤ 0. (52)

From [2] we know that this holds when −D−DT ≤ 0 and its Schur complement AQ+QA− (QB −
B)(−2D)−1(CQ − C) ≤ 0. Notice that this second inequality is exactly the (general) continuous-time
algebraic Riccati equation [1] and [27]:

ATQE + ETQA− (ETQB + S)R−1(BTQE + ST) +X = 0 (53)

with A = A,E = I, S = −B = −CT , R = −2D and X = 0. Note that in this example D is invertible
because it is just a number different from 0. Now we can find the unique minimum stabilizing solution
with the Matlab command care. By computation:

Qmin =

−0.4016 −0.3120 −0.2864
−0.3120 −0.3414 −0.3465
−0.2864 −0.3465 −0.3670

 . (54)

14

If we multiply equation (52) with −1 and compute the minimum solution of the corresponding Riccati
equation, we get the maximum solution, Qmax of equation (53). Therefore we have to give Matlab the
following command: Qmax = care(-A,-B,0,2D,B, I).

Qmax =

−17.5984 51.2787 −34.6802
51.2787 −219.4583 167.1797
−34.6802 167.1797 −133.4995

 . (55)

We are however interested in Q−1max. This turns out to be the same matrix as Qmin. So:

Q−1max = Qmin.

We want to balance the matrices Qmin together with Q−1max in the same way as in the previous example.
The system matrices (A,B,C,D) also transform in the same way as in the previous example. We are now
interested if the Laplacian matrix has transformed into an other Laplacian matrix for the transformed

system. We take T = P−1 = PT =
(
v3 v2 v1

)T
with v1, v2, v3 the eigenvectors of Qmin corresponding

to the eigenvalues of Qmin i.e. λ1, λ2, λ3.
Now we diagonalize the two matrices (balancing) with T as is written in corollary 3:

Σ = TQminT
T = (TT)−1Q−1maxT

−1 =

−0.0028 0 0
0 −0.1073 0
0 0 −1.0000

 . (56)

Now if we transform the Laplacian directly with the transformation matrix:

Lnew =

(
T 0
0 1

)
L

(
T−1 0

0 1

)
=


2.8517 0.7135 0.1025 0.1775
0.7135 1.8150 0.4601 0.7970
0.1025 0.4601 0.3333 0.5774
0.1775 0.7970 0.5774 1.0000

 .

And again, unfortunately, this Lnew matrix is not a Laplacian. Also this type of balancing does not
result into a Laplacian. And therefore we do not even have to take the effort to reduce the system from
the balanced system because we already know that the reduced system will not be corresponding to a
graph.

5.3 Krylov model reduction

Krylov model reduction is an other type of model reduction. There are several types of Krylov model
reduction methods, for example Arnoldi and Lanczos [1], [22]. Look at the system of the form

ẋ(t) = Ax(t) +Bu(t) (57)

and compute the controllability matrix

V =
[
B AB A2B . . . An−1B

]
∈ Rm×n. (58)

The idea behind Krylov model reduction is to reduce the matrix V with some columns to a matrix

Vred =
[
B AB A2B . . . Ar−1B

]
∈ Rm×r (59)

with r < n, which is called the Krylov subspace. This reduced Vred matrix now has to be made
orthonormal with, for example, the Gram-Schmidt process [28]. Then we obtain a matrix Ṽred with
orthonormal columns. With this matrix we can now compute our reduced system (Â, B̂, Ĉ, D̂) in the
following way [22]:

Â = Ṽ TredAṼred (60)

B̂ = Ṽ TredB (61)

Ĉ = CṼred (62)

D̂ = D. (63)

This short theoretical overview of the Krylov method is enough to reduce our example graph G1. For
more information about the Krylov model reduction I refer to [1], [22] and [24].

15

5.3.1 Example

Again our system is defined by the Laplacian which corresponds to the four agent system with graph
G1. We write it in the form

ẋ(t) = Ax(t) +Bu(t) =

−2 1 0
1 −2 1
0 1 −1

+

1
0
0

u(t). (64)

We can now build up the controllability matrix V by

V =
[
B AB A2B

]
=

1
0
0

 −2
1
0

  5
−4
1

 . (65)

I reduce this V to Vred which have second order i.e. Vred =

1
0
0

 −2
1
0

 = [ṽ1 ṽ2]. Now I am going

to use Gram-Schmidt process to orthonormalize the set of vectors vred.

u1 = ṽ1 =

1
0
0

 (66)

u2 = ṽ2 − projectionu1
(ṽ2) =

−2
1
0

−
−2

1
0

 ·
1

0
0


√

1
2

1
0
0

 =

0
1
0

 . (67)

Observe that indeed < u1, u2 >= 0. Now we need to normalize the vectors u1, u2 by dividing them by
their own length and we stack them together to get Ṽred. We have obtained:

Ṽred =

1 0
0 1
0 0

 . (68)

Computing the new reduced A matrix in the following way:

Â = Ṽ TredAṼred =

(
−2 1
1 −2

)
. (69)

According to page 62 of Polyuga [22] the system matrices changes in the following way: Â = Ṽ TredAṼred,

B̂ = Ṽ TredB, Ĉ = CṼred, D̂ = D. Computations result in the following reduced system:

Â =

(
−2 1
1 −2

)
B̂ =

(
1
0

)
Ĉ =

(
1 0

)
D̂ = −1.

The corresponding ’Laplacian’ of this reduced system is

Lred3 =

 2 −1 −1
−1 2 0
−1 0 1

 . (70)

This Lred3 matrix is almost a Laplacian matrix. Only the second row doesn’t sum up to 0. The diagonal
elements are positive and the off diagonal elements are negative. The best reducing method up to now.

We conclude this chapter with a section about conditions on a transformation matrix T .

16

5.4 Conditions on the transformation matrix T

In this section I will first derive some necessary conditions on the coordinate transformation matrix T
which was the matrix introduced to diagonalize the Gramian matrices as in (3). By symmetry of the
Laplacian (L = LT) in our case we have :

A = AT , BT = C, D = D.

Recall that it directly follows that the controllability and observability Gramians are equal (W = M ,
see definition 1). And recall that T should be an orthogonal matrix (TTT = TTT = I), hence the inverse
of T is given by the transposed of T−1 = TT . It is clear that T should be square and invertible. We can
derive the following conditions on state transformation matrix T :

Theorem 5. Conditions on T We can divide the conditions on T into four blocks. Block 1: the
conditions on T that follows from that it should diagonalise the matrix W . Block 2: the conditions on
T that follows from the row/column sum property of the (new/transformed) Laplacian. Block 3: the
conditions on T that follows from the fact that the diagonal entries of the (new/transformed) Laplacian
must be nonnegative and the off-diagonal entries must be nonpositive. Block 4: the transformed Lyapunov
equation. Where the conditions in block 2 and 3 all follow from that we want that TLTT is a Laplacian
matrix.

1. • TTT = I = TTT by orthogonality.

• TT = T−1 by orthogonality.

• Columns and rows of T are orthogonal unit vectors. The dot product of two columns/rows
equals zero and the length of a column/row vector equals one. By orthogonality.

• Σ = TWTT = TMTT and so ΣT = TM and TTΣ = MTT .

• T = PT where the columns of P are the eigenvectors of W .

2. • 1TT = −1TCA−1 (follows from the column sum of the new Laplacian).

• 1TTB = −1TD (follows from the column sum of the new Laplacian).

• TT1 = −A−1B1 (follows from the row sum of the new Laplacian).

• CTT1 = −D1 (follows from the row sum of the new Laplacian).

3. • −TATT and −D must be positive on the diagonal and negative off the diagonal.

• Every element of −CTT and −TB should be negative.

4. T (AM +MA)TT = TAMTT + TMATT = TATTΣ + ΣTATT = ÃΣ + ΣÃ = −C̃T C̃.

Note that the theorem does not say that it is possible to find a T that satisfies to all conditions of
the theorem.

Theorem 6. Spectral Theorem. If matrix A is a square symmetric n × n matrix the eigenvalues of
A are real. There is an orthogonal matrix P such that

PTAP =


λ1 0 . . . 0
0 λ2 . . . 0
...

...
. . .

...
0 0 . . . λn

 .

Corollary 5. The columns of P are the eigenvectors of matrix A.

In our case we have that W = M = WT = MT . So in order to diagonalize this symmetric Gramian
we can take for T = PT with P the matrix which columns are the eigenvectors of W . With help of
corollary 3 we have diagonalized our Gramians and we can write the system into balanced coordinates
with the same coordinate transformative T .
As we have seen in the examples in this chapter it is in general not true that a system written in balanced
coordinates corresponds to a Laplacian. Therefore we will not look any further for a transformation
matrix T which diagonalise W and M as in (3).

17

6 Merge Vertices

In this chapter we will find a different kind of T , which reduce the system in such a way that there is
a Laplacian corresponding to it. This T simply combines two vertices. After describing the method we
will analyze if this method approaches the full order system.

In this section we will develop a method to combine vertices in order to get a system with a reduced
number of vertices. The method we use is just a transformation that combines the two (or more vertices)
we want to combine, just adding their weights in the combined Laplacian matrix. We will see that this
transformed and reduced Laplacian is still a Laplacian matrix and hence it corresponds to a weighted
reduced graph. The question is now: how does this reduced graph look like? And what is the behavior of
the corresponding system in comparison with the full order system? Is there anything we can say about
the error which is induced by reducing the number of vertices in this specific way? And what about the
static state (ẋ = 0) response of the reduced systems in comparison with the full order system?

6.1 Merge vertices method

In this section we introduce a quite different T . This T matrix is not square and only consist of 0’s and
1’s as entries. From now on we use T for this type of matrices. T is introduced further in the following
theorem.

Theorem 7. If we want to combine two adjacent follower vertices i and j of an undirected given graph
G with n vertices by the following transformation

Lr = T tLT (71)

where L is the Laplacian matrix. T is an n× (n− 1) matrix which can be obtained by taking the n× n
identity matrix and add in the min{i, j}’th column a 1 on both the i’th row as the j’th row if there is not
a 1 already present. After that delete the max{i, j}th column of this identity matrix.
Then Lr is a Laplacian matrix.
Note: we assume that the vertices are ordered i.e. the follower vertices are numbered 1 to n − |α| and
the n− |α|+ 1 to n are the leader vertices.

Example. Consider the graph G1 with weights, we want to combine vertex f1 with f2 to get the
combined vertex f12. We start with the Laplacian of the graph G1.

•L
a1 •f1

a2 •f2
a3 •f3

L =


a1 + a2 −a2 0 −a1
−a2 a2 + a3 −a3 0

0 −a3 a3 0
−a1 0 0 a1

 . (72)

Now apply the transformation in order to get the reduced Laplacian L12

L12 = T tLT =

1 1 0 0
0 0 1 0
0 0 0 1

L


1 0 0
1 0 0
0 1 0
0 0 1

 =

a1 + a3 −a3 −a1
−a3 a3 0
−a1 0 a1

 . (73)

Observe that L12 is clearly a Laplacian and corresponds to the following graph

•L
a1 •f12

a3 •f3

We see that this corresponds with just leaving out the edge between f1 and f2. In the same manner
vertex f2 and f3 of G1 can be combined; after transformation of L we obtain the new reduced Laplacian:

18

L23 =

a2 + a1 −a2 −a1
−a2 a2 0
−a1 0 a1

 (74)

this Laplacian L23 corresponds to the graph:

•L
a1 •f1

a2 •f23
Again we see that this graph could also be obtained by just leaving out the edge between vertex f2

and f3 from the original graph G1.
Now we want to check if combining vertices commutes i.e. do we obtain the same graph if we first
combine f1 with f2 and then f12 with f3 as when we first combine f2 with f3 and then f1 with f23? By
simple computation we will see that:

L123 = T t12,3T
t
1,2LT1,2T12,3 = T t1,23T

t
2,3LT2,3T1,23 (75)

=

(
a1 −a1
−a1 a1

)
(76)

corresponding to the reduced graph (figure 6.1) :

•L
a1 •f123

The following picture gives a summary of the example above, it shows that reducing the graph by
combining vertices is a commuting operation:

•L
a1 •f1

a2

1 combined with2
x�

•f2
a3

2 combined with3

�'

•f3

•L
a1 •f12

a3

�&

•f3 •L
a1 •f1

a2

w�

•f23

•L
a1 •f123

Now we know what is happening when we combine vertices, we can take a look at the stationary
state response of the corresponding system. The stationary state response (i.e. when ẋ = 0) is given by
y = (−CA−1B +D)ū. When we compute this response for the full order system of this example we see
that y = 0, y is a scalar because we have only one leader agent in G1, for all possible weights a1, a2, a3
and all constant inputs ū(t).
Also the steady state responses of the reduced systems y12 = y23 = y123 = 0 for all edge weights and
constant input functions ū. We combine this result in a theorem:

Theorem 8. For a graph which has one leader vertex and n − 1 follower vertices in one line the
corresponding system has a steady state response of y = 0. All the corresponding systems of all possible
reduced graphs, by combining vertices, have also steady state response of y = 0.

This follows from the fact that −CA−1B + D is −1 times a Laplacian L. This results and above
theorem follow from the theorems and theory which I introduce in a following chapter called stationary
state output.

Now we only looked at a graph which had all vertices connected in one line. But what happens if we
want to combine two vertices which are adjacent to the same vertex? For example we want to combine
vertex f1 with f2 in the following ’triangle’ graph:

•f3
a3 a4

•L
a1 •f1

a2 •f2
a5 •f4

19

Now take as transfer matrix T12 =


1 0 0 0
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

. We obtain:

L12 = T t12LT12 =


a1 + a3 + a4 + a5 −a3 − a4 −a5 −a1
−a3 − a4 a3 + a4 0 0
−a5 0 a5 0
−a1 0 0 a1

 . (77)

Clearly this matrix is a Laplacian matrix. We see that by combining two vertices (f1 and f2) which have
a neighbor in common (f3) that the edge and weight between f1 and f2 is ’deleted’ and that the weights
of the edges from f1 to f3 and f2 to f3 is added to obtain the weight on the edge between f3 and the
new formed combined vertex f12.
All possibilities to combine two vertices have now been treated. In the following theorem this is summa-
rized. Note that combining a leader with a follower vertex or a leader with a leader vertex results in the
same combination. The only choice is: is the new vertex a leader or a follower vertex? I decide that it
will be a leader vertex.

Theorem 9. Combining vertices. There are a couple of ways in which two vertices can be combined.
For completeness I will treat them all in this theorem.

• If we want to combine some vertices which are not neighbors but have a neighbor in common, then
the combined vertex will have an edge to this common neighbor with as edge weight the sum of all
the edge weights to this common neighbor of the combined vertices.

• If we want to combine two vertices which are neighbors, the edge or edges between them are removed
and the combined vertex has edges to all vertices which where adjacent to one of the two vertices,
the weights on these edges remain unchanged or are added when they have a common neighbor.

• If we want to combine two vertices which are not adjacent nor have a neighbor in common then
the combined vertices has all the edges from both vertices. In this way circle graph may arise.

• Combining vertices is commuting. So it doesn’t matter in which order the vertices are combined.

• When combining vertices we do not have to differentiate between leader and follower vertices. The
only difference is the position in the Laplacian matrix. The choice which vertex is a leader influence
the new system matrices A,B,C,D.

Proof. Take an n × n complete graph with along the edges the weights a1, . . . , an2−(n−1)∗2. The corre-
sponding graph Laplacian is given by:

L =


a1+a2+...+an−1 −a1 −a2 −a3 −a4 ... −an−1

−a1 a1+an+...+a2n−3 −an −an+1 −an+2 ... −a2n−3
−a2 −an a2+an+a2n−2+...+a3n−5 −a2n−2 −a2n−1 ... −a3n−5
−a3 −an+1 −a2n−2 a3+an+1+a2n−2+a3n−4+...+a4n−7 −a3n−4 ... −a4n−7

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
−an−1 −a2n−3 −a3n−5 −a4n−7 −a5n−9 ... −a

n2−(n−1)∗2


This is the most general case we can take, note that if an edge does not exist we can just set the weight
along that edge equal to zero. The corresponding Laplacian has on the diagonal in each row the sum of
n− 1 weights. The sum of every row in the Laplacian is equal to zero. Because it is an undirected graph
the column sums will be zero. Now if we combine two, three, four, five, . . . vertices we first have to sum
up the columns of the combining vertices. Therefore the weight of the edges between the vertices to be
combined cancels out, because the weight is positively contributing in the diagonal entry of the matrix
and negatively contributing in the off diagonal entry. This means that the edges between the vertices
which are combined are discarded.
By summing up the columns of the combing vertices, we can go from this new vertex to all neighbors
of the combined individual vertices. If we could go from one or more vertex of the combined vertices to

20

the same neighbor, the weights are simply added to this new edges, as can be seen from the Laplacian
matrix.
Then we sum up the rows of the combing vertices in the Laplacian (by multiplying with T t). We obtain
that all the edges previously going to the apart vertices now go to the new combined vertex. Here we
also see that if the combined vertices have a same vertex as neighbor then the new vertex gets an edge
to this vertex with the sum of the weights of the previous edges. This completes the proof.

Remark: Every symmetric positive semidefinite matrix L with diagonal elements ≥ 0 and the off-
diagonal elements ≤ 0 and L has zero row and zero column sums is a Laplacian matrix [4].

Now we wonder why we only look to this kind of combinations of vertices and why are we not
looking to a weighted combination of two or more vertices. The following theorem says that the above
combination is the only possibility and I will give a proof immediately:

Theorem 10. The only way to combine two or more vertices and get a new, reduced, Laplacian matrix
is to use the above introduced matrix T .

Proof. I will proof this by showing in a graph with four vertices that it is in general not possible to
combine follower vertex f1 and f2 in any other way. From this proof the proof of the general n× n case

can be deduced. Take L the Laplacian for a four vertex complete graph. And T12 =


K 0 0
L 0 0
0 1 0
0 0 1

, with

K and L arbitrary numbers. By simple computation we obtain:

L12 = T t12LT12 =

K2(a1 + a2 + a3)− 2KLa1 + L2(a1 + a4 + a5) −a2K − a4L −a3K − a5L
−a2K − a4L a2 + a4 + a6 −a6
−a3K − a5L −a6 a3 + a5 + a6


From the remark we know that the column and row sums should be 0. This only happens when

K = L = 1.

This rules out all the other possible combinations of vertices. It is also easy to see that it does not matter
which vertices we combine and how many; the corresponding transformation matrix T should always
exist of only ones at the appropriate entries.

6.2 Merge vertices Hankel singular value error analysis

To set up an error estimate, we are going to look at the Hankel singular values (HSV). Recall σi =√
λi(WM) where W and M are the controllability and observability Gramians we also know that A is

Hurwitz (i.e. Re(λi) < 0). Computing these HSV is the same as computing the eigenvalues of W , as we
have seen. The idea is to take a look at the highest singular value of the full order system and compare
this to the highest singular value of the corresponding reduced system. This is relevant to do because
the highest singular value resembles the part that has the most influence on the system. Later on, in the
chapter about the stationary state output, I’m also going to use the stationary state output to determine
how good this reduction technique is.
I start with graph G2 which is the ’line graph’ with four vertices, but now with two leader agents and is
pictured below.

•L1

a1 •f1
a2 •f2

a3 •L2

The Laplacian matrix corresponding to graph G2 is given by:

L =


a1 + a2 −a2 −a1 0
−a2 a2 + a3 0 −a3
−a1 0 a1 0

0 −a3 0 a3

 . (78)

21

With Matlab I computed for some weights a1, a2, a3 the HSV for the full system of four vertices and
of the reduced system with three vertices (one HSV). When I compare the results I see that the highest
HSV does not differ that much, so it seems to be a good reduction. To test this further I will analytically
work out the HSV for a three vertex system.

Theorem 11. The HSV of a three vertex reduced line graph with two leaders (G2red) is given by (with
the edge with weight a2 deleted i.e. f1 and f2 are combined)

σred = λred =
1

2

a21 + a23
a1 + a3

Proof. G2red is pictured as:

•L1

a1 •f12
a3 •L2

with the corresponding reduced graph Laplacian given by:

Lred =

a1 + a3 −a1 −a3
−a1 a1 0
−a3 0 a3

 . (79)

Now compute the eigenvalue of Wred; where Wred is the controllability Gramian corresponding to the
reduced system. Which is the solution of the Lyapunov equation AredWred + WredA

T
red = −BredBTred,

where Ared = −a1 − a3 and Bred =
(
a1 a3

)
; Ared and Bred are found by computing the reduced

Laplacian L12. Plugging Ared and Bred in the Lyapunov equation we obtain

−2(a1 + a3)Wred = −(a21 + a23)

. Hence Wred ∈ R and is equal to its own eigenvalue (and singular value).

For the full order system (four vertices ’line graph’ G2) it is possible to analytically compute the
controllability Gramian. However computing analytically the HSV results in long formulas and studying
them in there analytical form does not seem profitable. However, if we take a1 = a3 = 1 and let a2
variable, we can express the two Hankel singular values of the full order system in a2. We get:

σ1 = λ1 =
1

2
σ2 = λ2 =

1

2(1 + 2a2)
(80)

Now I keep two weights equal to 1 and send the remaining one to infinity. Then I compare the
Hankel singular values of the full order system with the one of the reduced system; recall that the Hankel
singular values of the system or reduced system are the same as the eigenvalues of W or Wred that is
why I denote λ1, λ2 and λred for the Hankel singular values of the full order system and the reduced
system respectively.

a1 →∞ λ1 →
1

2
, λ2 →∞ λred →∞ (81)

a2 →∞ λ1 →
1

2
, λ2 =

1

2(1 + 2a2)
→ 0 λred =

1

2
(82)

a3 →∞ λ1 →
1

2
, λ2 →∞ λred →∞ (83)

We conclude this section with the following theorem:

Theorem 12. For the removed edge wheight a2 large enough the largest Hankel singular value of the
reduced system is close to the largest Hankel singular value of the full order system. Moreover when
a2 → ∞ it even converges to the Hankel singular value of the reduced order system. And the Hankel
singular values of the reduced system does not depend on the weight(s) of the deleted edge(s).

Proof. See the observations above this theorem.

22

7 Kron-reduction

In this chapter Kron-reduction theory is treated. This reduction technique is based on the Schur com-
plement. So we start with the Schur complement. Then we introduce the Kron-reduction method and
analyze how well it works.

7.1 Schur complement

The Schur complement [3]. Let A be an n× n matrix partitioned as

A =

(
A11 A12

A21 A22

)
where A11 and A22 are square matrices. If A11 is nonsingular then the Schur complement of A11 in A is
defined to be the matrix A22 −A21A

−1
11 A12. Similarly, if A22 is nonsingular then the Schur complement

of A22 in A is A11 − A12A
−1
22 A21. We can make the following identity, which can be verified by just

working out the matrix product:

(
I 0

−A21A
−1
11 I

)(
A11 A12

A21 A22

)(
I −A−111 A12

0 I

)
=

(
A11 0
0 A22 −A21A

−1
11 A12

)
. (84)

From this identity we can easily prove that:

Corollary 6. Schur complement formula for the determinant

det(A) = (detA11)det(A22 −A21A
−1
11 A12) (85)

holds. We will refer to this as the Schur complement formula for the determinant. We can also see

Corollary 7. Schur non singularity.
If A and A11 are nonsingular then also A22 −A21A

−1
11 A12 must be nonsingular. Similarly, if A and A22

are nonsingular then also A11 −A12A
−1
22 A21 must be nonsingular.

We are going to use the Schur complement in systems of the form:(
ẋ[1]

ẋ[2]

)
=

(
A11 A12

A12 A22

)(
x[1]

x[2]

)
+

(
B1

B2

)
u. (86)

Now if we, when we want to reduce the model, take ẋ[2] = 0 we get for x[2] = −A−122 (A21x
[1] + B2u). If

we plug this expression for x[2] into the differential equation for ẋ[1] we get:

ẋ[1] = (A11 −A12A
−1
22 A21)x[1] + (B1 −A12A

−1
22 B2)u. (87)

Note that the matrix coefficient standing in front of x[1] is just the Schur complement of A22 in A.
And so we can use the properties of the Schur Complement. By the Schur Complement we have [13]:

Lemma 3. Suppose that a symmetric matrix is partitioned as

A =

(
A1 A2

AT2 A3

)
where A1 and A3 are square. A is positive definite if and only if both A1 and A3−AT2 A−11 A2 are positive
definite.

The following theorem states that taking the Schur complement of a Laplacian results in again a
Laplacian matrix [17] and [25]:

Theorem 13. If a graph is connected, all diagonal elements of L are positive . Furthermore, all Schur
complements of L are well defined and are symmetric, positive semidefinite, with diagonal elements > 0,
off-diagonal elements ≤ 0, and with zero row and column sums, i.e. all Schur complements of L are
again Laplacian matrices.

23

7.2 Kron-reduction method

Kron-reduction of the Laplacian matrix of a graph gives us again a Laplacian of a reduced graph [5].
This form of reduction is obtained by applying the Schur complement of the original Laplacian matrix
with respect to a subset of vertices. It is used in classic circuit theory and in other related disciplines
such as electrical impedance tomography, smart grid monitoring, transient stability assessment in power
networks and analysis and simulation of induction motors and power electronics. We define the Laplacian
matrix L as above. Now we will apply the Schur complement on the Laplacian matrix L. We will see,
in general and by examples, that the reduced lower dimensional matrix Lred is again a well defined
Laplacian matrix and therefore a graph can be associated to it. For our purpose to see if this is a good
reduction technique we are going to take a look at the eigenvalues of L and Lred and check if they are
related. Because it is the standard in the literature that the leader vertices are in the top left block of
the matrix and the follower vertices in the bottom right block we adapt this notation in this chapter for
convenience.
Now take In as the index set of all vertices, β = {nl + 1, . . . , n} as the indices of the follower vertices
and α = {1, . . . , nl} = Inl

the indices of the vertices corresponding to the leader vertices. Now consider
again the consensus algorithm:

(
ẋα
ẋβ

)
= −

(
Ll Llf
Lfl Lf

)(
xl
xf

)
= −

(
Lαα Lαβ
Lβα Lββ

)(
xα
xβ

)
=

(
D C
B A

)(
xl
xf

)
(88)

Now by using Gaussian elimination of the vertices corresponding to state vectors in xβ (the followers)
and putting ẋβ = 0 we get a reduced network with |α| vertices. This reduced matrix Lred is given by
applying the Schur complement with respect to vertices β, that is Lred = Lαα − LαβL

−1
ββLβα and

thus Lred ∈ R|α|×|α|. The accompanying matrix is given by: Lac = −LαβL−1ββ ∈ R|α|×(n−|α|). This
accompanying matrix maps the vertices corresponding to ẋβ to the vertices corresponding to ẋα.

Example. Consider a four point star-like graph (see figure 1) with all weights one, three leaders
(corresponding to the vertex set α) and one follower (corresponding to β) which we want to reduce with
one follower vertex by applying Kron-reduction. The corresponding Laplacian is given by

L =


3 −1 −1 −1
−1 1 0 0
−1 0 1 0
−1 0 0 1

 =

(
Lββ Lβα
Lαβ Lαα

)

⇒ Lred = Lαα − LαβL−1ββLβα =

 2
3 − 1

3 − 1
3

− 1
3

2
3 − 1

3
− 1

3 − 1
3

2
3

 .

Figure 1: Kron-reduction of a star-like graph

Note that this example is denoted in the way I defined the structure of the Laplacian in the previous
chapters. In the following more abstract theory, to agree with the theory about Kron-reduction the
leaders will be arranged in the top left corner of the matrix and the followers in the bottom right corner,
as said before. It is easily verified that Lred in the previously example is again a Laplacian matrix and
hence it has a corresponding graph. In the previous example it is clear that the first vertex is deleted and

24

that the other three vertices remain. Now because the first vertex was connected to all other vertices,
the new graph has connections between every vertex. Moreover, the weight on every edge is the weight
1 of the old connection to the deleted vertex, divided by the total weight (3) of the deleted vertex.
Now we try to make more clear what is happening with Kron-reduction in a more general graph. There-
fore we take a complete graph and reduce this graph with one vertex (the first follower vertex) in the
above manner.

L =


a1 + a2 + a3 −a1 −a2 −a3
−a1 a1 + a4 + a5 −a4 −a5
−a2 −a4 a2 + a4 + a6 −a6
−a3 −a5 −a6 a3 + a5 + a6

 . (89)

We obtain for the reduced system a three vertex graph with the following Laplacian:

Lred =


a1(a2+a3)
a1+a2+a3

+ a4 + a5 − a1a2
a1+a2+a3

− a4 − a1a3
a1+a2+a3

− a5
− a1a2
a1+a2+a3

− a4 a2(a1+a3)
a1+a2+a3

+ a4 + a6 − a2a3
a1+a2+a3

− a6
− a1a3
a1+a2+a3

− a5 − a2a3
a1+a2+a3

− a6 a3(a1+a2)
a1+a2+a3

+ a5 + a6

 . (90)

This reduced Laplacian has a clear structure. The first thing that can be noticed is that vertex f1
has been deleted together with all the corresponding edges but all the corresponding edge weights are
maintained in other edges of the reduced Laplacian.
In order to construct the theory about Kron-reduction we need some notation first.
Just like in the rest of this thesis we consider an undirected, connected and weighted graph without
self-loops with n vertices and adjacency matrix A ∈ Rn×n and Laplacian matrix L.
Now if we take a Schur complement with respect to a subset of vertices, it turns out that the lower
dimensional matrix Lred is again a well-defined Laplacian matrix. This is called Kron-reduction. With
n ∈ N we have the index set In = {1, 2, . . . , n}. We have already introduced the two index sets
α corresponding to the leader vertices (which we want to keep) and β corresponding to the follower
vertices in such a way that α, β ⊂ In. Let L[α, β] denote the submatrix of L by taking the rows with
index α and columns indexed by β. Furthermore we have the shorthand notation L[α, β) = L[α, In\β],
L(α, β] = L[In\α, β] and L(α, β) = L[In\α, In\β]. For i, j ∈ In we have L[i, j] = L[i, j] = Li,j .
Now we define the Schur complement again, in new notation, which has the major advantage that we
can choose the rows and columns we want. We want to reduce (some of) the follower vertices and want
to keep the leaders. So we take the Schur complement with respect to L(α, α) = L[β, β]. If L(α, α) is
not singular then the |α| × |α| dimensional matrix

Lred := L/L(α, α) = L[α, α]− L[α, α)L(α, α)−1L(α, α] (91)

is the Kron-reduced matrix of L.
Since L is symmetric, the eigenvalues are real and can be arranged in increasing order:

0 = λ1(L) ≤ λ2(L) ≤ . . . ≤ λn(L)

We have that A,L, λ2(L) > 0 if and only if G is connected.
Now we can formulate the following Lemma [5]:

Lemma 4. Structural Properties of Kron-reduction. Let L ∈ Rn×n be a symmetric irreducible
Laplacian matrix and let α be a proper subset of In with |α| ≥ 2. Then the following statements hold:

• Existence: The Kron-reduced matrix Lred = L/L(α, α) is well defined.

• Closure: Lred is also a Laplacian matrix.

25

Proof. • We have to prove that L(α, α) is invertible. This is true because L is weakly diagonal
dominant since Lii =

∑n
j=1,j 6=i |Lij | for all i ∈ In. Now due to the irreducibility of L we have

that Lii >
∑n
j=1,j 6=i,j 6∈α |Lij | holds for at least one i ∈ In\α. Therefore L(α, α) is also irreducible,

weakly diagonal dominant and has at least one row with strictly positive row sum. Hence L(α, α)
is invertible.

• This follows from the properties of L and the closure properties of the Schur complement. Now
because L is a symmetric M -matrix we can conclude that the Kron-reduced matrix Lred is also
a symmetric M-matrix. Now assume, without loss of generality, that α = I|α| (the indices of the
leader vertices) for the Laplacian holds:(

L[α, α] L[α, α)
L(α, α] L(α, α)

)(
1|α|

1n−|α|

)
=

(
0|α|

0n−|α|

)
. (92)

Taking the Schur complement (elimination of the second block of equations) we have 0|α| =
Lred1|α|, which shows that also the reduced matrix is again a Laplacian matrix.

By this lemma we now know that if we reduce our matrix L with Kron-reduction we end up with
a reduced matrix Lred which is still a Laplacian matrix with the same properties. We will see that a
positive load Lii > 0 in the full order model lowers the values in Lred[i, j] in the reduced network and is
increasing the reduced loads Lred[i, i] [5]. This is clear if we take a look at (90). If we increase the value
of a1 + a2 + a3 then we see that the value of Lred[i, i] increases because the sum of products a1a2 + a1a3
increases faster, this holds for every row. From (90) it is clear that the off diagonal elements in row i
decrease.

From now on we assume throughout, without loss of generality, that I|α| = α. Instead of doing the
reduction to all follower vertices at once, it is much more intuitive to do it one by one. By reducing a
graph with one vertex at a time we get much more insight in what is happening to a graph by applying
Kron-reduction. And so we get to the definition of iterative Kron-reduction [5]:

Definition 6. Iterative Kron-reduction.
Iterative Kron-reduction associates to a symmetric irreducible Laplacian matrix L and indices {1, . . . , |α|}
a sequence of matrices L ∈ R(n−l)×(n−l), l ∈ {1, . . . , n− |α|} defined by the following Schur complement

Ll = Ll−1/Ll−1klkl
(93)

where L0 = L and kl = n+ 1− l is the lowest diagonal entry of the follower vertices in Ll−1.

By Lemma 4 we now know that for all l in this sequence Ll is a Laplacian inducing a graph G. From
this iterative definition we can observe a couple of things for the graph induced by Ll:

• Connectivity is maintained, this is because

• All connections are maintained between vertices which are not deleted and

• The edges {i, y} disappear whenever an edge was connected to a vertex y which is deleted.

• A new edge {i, j} is created if and only if kl is connected to both vertex i and j before the reduction.

From the above four observations and by computation we can see that the iterative Kron-reduction
can be written in components in the following way:

Llij = Ll−1ij −
Ll−1ikl

Ll−1jkl

Ll−1klkl

(94)

for all vertices i, j ∈ {1, . . . , n− l} . Now take a good look at the component formula (94). Assume that
i or j is not connected via an edge to kl we get in formula (94) Llij = Ll−1ij −0 = Ll−1ij , in words: the edge
{i, j} has the same weight as before the reduction. Now assume both i and j are connected to kl with an

26

edge with weight a > 0 and b > 0 respectively. In the reduced Laplacian we obtain: Llij = Ll−1ij − ab

Ll−1
klkl

.

So if there was no edge connecting vertex i with j in Ll−1 then there is an edge in the graph induced by
Ll with weight − ab

Ll−1
klkl

< 0. If there was already a connection between i and j in Ll−1 then the weight

along this edge in Ll is increased by the product of the weights a and b divided by the total weight sum
of the edges connected to kl. All of this we can summarize in a lemma [5]:

Lemma 5. Properties of iterative Kron-reduction.

Consider the sequence {Ll}n−|α|l=1 defined via the iterative Kron-reduction then the following holds:

• Well-posedness: Ll is well defined for l ∈ {1, . . . , n− |α|}.

• Quotient property: The Kron-reduced matrix Lred = L/L(α, α) can be obtained by iterative
reduction of all vertices kl ∈ In\α = β that is:

Lred = Ln−|α| = L|β| (95)

• Row sum:
∑n−l
j=1 L

l
ij = Alii = Al−1ii = 0 for i ∈ {1, . . . , n− l}.

Proof. Statement 2 is simply proved by the Quotient Formula stating that the Schur complements can
be taken iteratively or in a single step. Furthermore, the Quotient Formula states that all intermediate
Schur complements Ll exist for l ∈ {1, . . . , n−|α|}. This fact together with closure properties in Lemma
4 proves that matrices Ll are well-defined. Now to prove the last statement, first note that A0 = A and
L0 = L, for notational comfort we take l = 1 and k1 = n then the ith row sum is given by:

n−1∑
j=1

L1
ij =

n−1∑
j=1

(Lij −
LinLjn
Lnn

) =

n−1∑
j=1

(Lij −
AinAjn
Lnn

) =

n−1∑
j=1

(Lij)−
Ain
Lnn

n−1∑
j=1

(Ajn) = Ain −Ain = 0. (96)

In the proof we used the component formula (94) and the identities
∑n−1
j=1 Lij = Ain and

∑n−1
j=1 Ajn =

Lnn.
We are now at the point that we can analyze and characterize the properties of Kron-reduction. We

take a look at how the Lred and the corresponding graph Gred are obtained from L and G. This is
formulated in the next theorem [5]:

Theorem 14. Topological properties of Kron-reduction.
Let G, Gred be undirected weighted graphs associated to L, Lred = L/L(α, α). The following statements

hold:

• Edges: Two vertices i, j ∈ α are connected by an edge in Gred if and only if there exists a path
from i to j in G whose vertices belong to {i, j} ∪ |β|

• Reduction of connected components: If the vertices β ⊆ I\α form a connected subgraph of G,
then the vertices α̂ ⊆ α adjacent to β in G form a clique (a subset of its vertices such that every
two vertices in the subset are connected by an edge) in Gred.

The proof will consist out of observations we already have made.

Proof. We want to reduce a single follower vertex k with the iterative one step component Kron-reduction
formula (94). Due to the closure of Laplacians under iterative Kron-reduction, lemma 4, we know that
every strictly negative element Lij is rendered to a strictly negative element L1

ij in the reduced graph;
this follows directly from formula (94) where the first term on the right hand side is negative and the
second nonpositive. Therefore all edges, as we have already seen, in G are also maintained in the graph
induced by L1

ij . By the same iterative Kron-reduction a 0 at Lij is converted to a strictly negative

element in L1
ij if and only if both vertices i and j are neighbors of vertex k. As a consequence of this,

reduction of vertex k leads to a complete graph among all vertices that were adjacent to this vertex k.
Hence by single step Kron-reduction we obtain a loop-less well defined Laplacian matrix L1

ij . From the

27

second statement in lemma 5 we know that the one-step reduction of all follower vertices is equivalent
to the iterative reduction of all follower vertices. And so we can repeat the arguments of the one-step
reduction of a single vertex and therefore statement 1 holds. Now if we apply statement 1 to all vertices
in β we see that we end up with vertices α̂, were there is a connection between every two vertices in this
set α̂, i.e. a clique.

As a result of theorem 14 the connectivity between the remaining vertices after reduction can only
increase. This means that the algebraic connectivity λ2(L) should increase by the reduction. This is
formulated in the next theorem [5]:

Theorem 15. Spectral Properties of Kron-reduction.
For the spectrum of the Kron-reduced matrix Lred = L/L(α, α) we have that for any r ∈ I|α|

λr(L) ≤ λr(Lred) ≤ λr(L[α, α]) ≤ λr+n−|α|(L) (97)

For proof see [5].

7.3 Kron-reduction Hankel singular value error analysis

We consider again the line graph G2 with two leaders and four vertices in total (G2 is pictured in the
previous chapter, also the Laplacian is given in that chapter). Now we use Kron-reduction with respect
to f1 we obtain the graph G2red:

•L1

a1a2
a1+a2 •f2

a3 •L2

with corresponding Laplacian matrix given by:

Lred =

 a1a2
a1+a2

+ a3 − a1a2
a1+a2

−a3
− a1a2
a1+a2

a1a2
a1+a2

0

−a3 0 a3

 (98)

All weight values of the edges are kept in the new (formed) edges of the Kron-reduced matrix G2red, so it
is complicated to analyze this error. Therefore I will take a look at the influence of all weights, starting
with a1. By sending a1 to infinity the Hankel singular value of the reduced system is converging to the
value 0.5, if we keep the weights a1 = a3 = 1. The smallest HSV of the full order system tends to zero
but the highest singular value is growing linear and tends to infinity if a1 →∞.

Now send a2 to infinity and keep the other two weights a1 = a3 = 1. In the full order system one
HSV goes to 0.5 and the other goes to 0. In the reduced order system the HSV goes to 0.5. So when
a2 → ∞ the reduced system seems to be a good reduction, i.e. the error between the highest singular
values goes to zero.

In the case of a3 → ∞ the lowest HSV of the full order system goes to zero. The largest tends to
infinity but it seems that it stays close to the HSV of the reduced order model. The difference between
them is converging to 0.25. When a3 is getting really large the error is oscillating around 0.25, whether
this is because of accuracy of the numerical computation or the differences really fluctuated when a3 is
going to infinity is unknown to me.

Presented in a more structured way we obtain for the full order system (recall: we send one of the
three weights to infinity and the other two weights we keep both equal to 1):

a1 →∞ λ1 →
1

2
, λ2 →∞ (99)

a2 →∞ λ1 → 0, λ2 →
a21 + a23

2(a1 + a3)
=

1

2
(100)

a3 →∞ λ1 →
1

2
, λ2 →∞. (101)

28

And for the Kron-reduced system (reduced by vertex f1) we have that the controllability Gramian
of this reduced graph is WKronRed is a scalar, its value is equal to the eigenvalue and is given by:

WKronRed =
a21a

2
2 + a21a

2
3 + a22a

2
3 + 2a1a2a

2
3

2(a1 + a2)(a1a2 + a1a3 + a2a3)
(102)

and hence for the reduced system we have:

a1 →∞ λred →
a22 + a23

2(a2 + a3)
=

1

2
(103)

a2 →∞ λred →
a21 + a23

2(a1 + a3)
=

1

2
(104)

a3 →∞ λred =
1 + 4a23

4(1 + 2a3)
→∞. (105)

I conclude with two theorems:

Theorem 16. For a2 large enough the largest Hankel singular values of the reduced system are close to
the largest Hankel singular values of the full order system.

Proof. See observations above.

Theorem 17. The steady-state response of the reduced system is for every value of a1, a2, a3 equal to
the steady-state response of the full order system and is of course a Laplacian matrix times the input
vector.

Proof. I will treat this theorem in full detail in the next section about stationary state response.

8 Stationary state output

The stationary response or static input/output gain is the response to a constant input. In this case we
look at the response of a constant input when time is going to infinity. This is a way of saying something
about how good the reduced system is comparing to the full order system. My definition of stationary
response is based on the definition in the book [19].

To derive directly the stationary state output for t→∞ when we apply a constant input ū(t) = c is
given. The general output is given by:

y(t) = CeAtx0 +

∫ t

0

CeA(t−s)Bū(t)ds+Dū(t). (106)

Because we assume the matrix A is Hurwitz we have that for t → ∞ ⇒ CeAtx0 → 0. If we get the
constant vectors C, eAt, B, ū out of the integral and then integrate the remaining integral and let t→∞
we obtain:

y(t) =

∫ t

0

CeA(t−s)Bū(t)ds+Dū(t) = CeAt
∫ t

0

e−AsdsBū(t) +Dū(t)

= CeAt[e−As]t0 −A−1Bū(t) +Dū(t)

= CeAt[e−At − I]−A−1Bū(t) +Dū(t)

= −C[I − eAt]A−1Bū(t) +Dū(t)

t→∞⇒ eAt → 0

⇒ y(t) = (−CA−1B +D)ū(t)

29

Loosely speaking the stationary state response with constant input ū(t) is obtained by assuming that
the state converges to a certain value when t→∞. Therefore ẋ(t)→ 0 . Our state space equations for
t→∞ then become:

{
0 = Ax(t) +Bu(t)
y(t) = Cx(t) +Dū(t)

⇒
{
x(t) = −A−1Bū(t)
y(t) = (−CA−1B +D)ū(t)

(107)

As said with this stationary response on a constant input function we can compare the behavior of
the full order system with the behavior of the reduced system. In a further research we could also look
to stationary response on harmonic oscillations and compare this for the full order and reduced system.

From now on we are going to apply a constant input ū(t) to the system and take a look at the
stationary response ȳ(t) = (−CA−1B+D)ū(t). More specific we are interested in the matrix (−CA−1B+
D) which is the static input-output gain; for notational comfort I will denote this matrix by H, i.e.

H = (−CA−1B +D). (108)

We start by looking at single-leader systems. We first state that matrix H is −1 times a symmetric
Laplacian and therefore has zero row and column sums. Then we can state a theorem which is similar
to that we have seen in the consensus chapter namely: corollary 1.

Theorem 18. The matrix H is −1 times a Laplacian matrix. In particular, 1Tnl
H = 0T and H1nl

= 0nl
.

Proof. Consider the Laplacian matrix L partitioned as in (11), clearly −L has zero row and column
sums. The Schur complement of block A of the matrix −L equals D − CA−1B which is equal to H.
The Schur complement of block −A of the matrix L is given by −D +CA−1B and is again a Laplacian
matrix by properties of the Schur complement. Hence −H is a Laplacian.

This brings us to a theorem about the stationary state response of a single-leader system

Theorem 19. For a graph, G, with one leader and n− 1 follower agents the corresponding system has
a stationary sate response of ȳ(t) = 0. Moreover all the corresponding systems of all possible (follower)
reduced graphs by merging vertices or applying Kron-reduction also have stationary state response ȳ(t) =
0.

Proof. From the previous theorem 18 we know that 1Tnl
H = 0 and H1nl

= 0 holds. Now we only have
one leader (nl = 1); ’matrix’ D ∈ R, hence H ∈ R, therefore H ∗ 1 = 0 and so H must be zero, i.e.
H = 0. The corresponding stationary state response is given by ȳ(t) = 0ū(t) = 0. The ’matrix’ Hred for
follower reduced systems is also in R and again the ’row’ and ’column’ sum should be zero. Therefore
also for all reduced systems the stationary state response equals 0.

In the two following subsections we analyze the static input output gain of the Kron-reduction
and Merging vertices techniques. The stationary response of single-leader systems is not useful to say
something about how good the reduced system is behaving. Therefore we will take a look at multiple
leader systems for both the Kron-reduction and Merging vertices reduction techniques.

8.1 Kron-reduction stationary state response

We start with system consisting of two leaders and n− 2 followers. We have D ∈ R2×2, B,CT ∈ Rn−2×2
and A ∈ Rn−2×n−2 and so H ∈ R2×2. From theorem 18 it follows that

H =

(
−1 1
1 −1

)
× J (109)

with J ∈ R. We start our search with the two leader line graph G2, with two followers. By using
Mathematica it turns out that for this graph J = a1a2a3

a1a2+a1a3+a2a3
. Now apply Kron-reduction with

respect to follower vertex f1,

30

Lred = L/L[1, 1] = L[{2, 3, 4}; {2, 3, 4}]− L[{2, 3, 4}, 1]L−1[1, 1]L[1, {2, 3, 4}] (110)

=

 a1a2
a1+a2

+ a3 − a1a2
a1+a2

−a3
− a1a2
a1+a2

a1a2
a1+a2

0

−a3 0 a3

 =

(
−Ar −Br
−Cr −Dr

)
. (111)

The graph G2red is now given by:

•L1

a1a2
a1+a2 •f2

a3 •L2

Compute Hr = Dr−CrA−1Br it follows that for a reduced system holds that Jr = J . From this and
the observation that computing H (or J) is the same as applying Kron-reduction to −L with respect
to all followers the presumption arises that the stationary state response of every Kron-reduced system
always equals that of the full order system. We formulate this presumption in the following theorem.

Theorem 20. The static input-output gain is invariant under Kron-reduction with respect to followers.

Proof. Consider an auxiliary graph G and its Laplacian L, where L is partitioned again as in (11). The
stationary state output gain is given by H = D − CA−1B. Note that H is just the Laplacian of the
Kron-reduced system reduced with all its followers, i.e.

−Lred = −L/− L(α, α) = −L[α, α]− (−L[α, β])(−L[β, β]−1)(−L[β, α]) (112)

= D − CA−1B = H. (113)

Note, by properties of Kron-reduction this proves again that H is just −1 times a Laplacian matrix for
a Kron-reduced system reduced by one or by a part of the followers β̄ ⊂ β. The reduced Laplacian is
given by Lred = L/L[β̄, β̄] = L[ᾱ, ᾱ]− L[ᾱ, ᾱ)L−1(ᾱ, ᾱ)L(ᾱ, ᾱ], where ᾱ = α ∪ (β/β̄) are all the leaders
together with the follower agents which we want to preserve. The corresponding stationary state output
factor Hr = Dr −CrA−1r Br. Hr corresponds again to the graph in which all (remaining) follower agents
are Kron-reduced. By the iterative property of Kron-reduction we obtain: Hr = −Lred = H. Denoted
in a scheme:

−L→ −L1 → . . .→ −Lnf = −Lred = H (114)

where the arrows stand for Kron-reduction. Hence the stationary state response corresponds with the
Kron-reduction of all (remaining nf − i) followers of −Li , for i ∈ {1, . . . , nf} and so all Kron-reduced
systems have the same stationary state response as the full order system.

From the proof above some corollaries immediately follow:

Corollary 8. H = D − CA−1B = Dr − CrA−1r Br = Hr for a Kron-reduced system.

Corollary 9. The static input-output gain H can be expressed in terms of Kron-reduction as follows:

H = −Lred = −L/L(α, α) (115)

where α is the index set of all leaders and β = I/α the index set of all followers. So the static input-
output gain H can be computed by taking to Schur complement of the block consisting of all follower
agents of the matrix −L.

8.2 Merging vertices stationary state response

We start with the line graph with four vertices of which two leaders G2. From the previous section,
Kron-reduction stationary state response, we know that computing the stationary state response is just
taking the Schur complement of the Laplacian with respect to all the followers. Recall that for this graph
G2 the stationary state response is given by (109), where J = a1a2a3

a1a2+a1a3+a2a3
. Now we merge vertices f1

with f2 by the transformation matrix T12, our reduced Laplacian is:

31

L12 =

a1 + a3 −a1 −a3
−a1 a1 0
−a3 0 a3

 (116)

the corresponding static input-output gain of the reduced system is given by

Hr =

(
−1 1
1 −1

)
a1a3
a1 + a3

.

Where Jr = a1a3
a1+a3

. The difference between J and Jr will reduce to zero whenever a2 →∞, i.e.

lim
a2→∞

J = Jr. (117)

In words: whenever the deleted weight (the weight on the edge between the two merging vertices)
is becoming arbitrary high, the stationary state response of the system is arbitrary close to that of the
reduced system. This observation leads us to the following conjecture:

Conjecture 1. The stationary state response of the full order system is equal to the stationary state
response of the ’merging vertices reduced’ system if the weights on the edges between all the merging
vertices is infinite.

9 Conclusion

The tested balancing methods did not preserve the graph structure. We have found two structure-
preserving model reduction methods.

• Merging vertices

• Kron-reduction

With the Merging Vertices method we reduce the system by merging some vertices. The Kron-reduction
uses the Schur complement to reduce the number of vertices in the system. To analyze how well both
methods are working we looked at the static input-output gain and the Hankel singular values of both
the full order as the reduced system. Analyzing the static input-output gain we observed that the Kron-
reduction is performing well, the static input-output is even invariant under Kron-reduction with respect
to the followers. The research on the static state input-output response of the merging vertices has led
to the conjecture that the stationary state response of the full order system is equal to the stationary
state response of the reduced system if the weights on the edges between the vertices which are merging
is going to infinity. Hence, if the weights of the deleted edges are large enough also the merging vertices
reduced system gives a good reduced model in terms of the static state input-output gain. The Hankel
singular values of the system turned out to be equal to the eigenvalues of the corresponding control
Gramian W . Based on the analyses of the HSV we cannot draw a conclusion which method is better. In
both methods the highest HSV of the full order system is converging to the HSV of the reduced order
system whenever a2 → ∞. Or more general, if conjecture 1 is true, the weight of the deleted edges
should go to infinity in order to get a good reduced system. For further research studying more graphs
is important to proof that conjecture 1 is true.

References

[1] A.C. Antoulas and D.C. Sorensen. Approximation of large-scale dynamical systems: An overview,
2001.

[2] R.B. Bapat. Linear Algebra and Linear Models. Universitext (1979). Springer, 2000.

[3] R.B. Bapat. Graphs and Matrices. Springer, Hindustan book agency, 2011.

32

[4] B. Bollobás. Modern Graph Theory. Graduate Texts in Mathematics. Springer, 1998.

[5] F. Dorfler and F. Bullo. Kron Reduction of Graphs with Applications to Electrical Networks. ArXiv
e-prints, feb 2011.

[6] G.E. Dullerud and F.G. Paganini. A Course in Robust Control Theory: A Convex Approach. Texts
in Applied Mathematics. Springer, 2000.

[7] M. Fiedler. Algebraic connectivity of graphs. Czechoslovak Mathematical Journal, 23(98):298–305,
april 1972.

[8] S.H. Friedberg, A.J. Insel, and L.E. Spence. Linear algebra. Pearson Education, 2003.

[9] C Godsil and G Royle. Algebraic Graph Theory. Springer-Verlag, 2001.

[10] J.A. Guerrero. Leader-based multi-agent consensus: Robust control design and stability analysis.

[11] T. Gustavi, D.V. Dimarogonas, M. Egerstedt, and Xiaoming Hu. On the number of leaders needed
to ensure network connectivity in arbitrary dimensions. In Control and Automation, 2009. MED
’09. 17th Mediterranean Conference on, pages 98 –103, june 2009.

[12] Tero Harju. Lecture notes on graph theory, 2011.

[13] Jiangping Hu, Yiguang Hong, and Linxin Gao. Tracking control for multi-agent consensus with an
active leader and variable topology. 2007.

[14] D. Jetsema, J.M.A. Scherpen, and A.J. van der Schaft. Lecture notes for: Nonlinear systems theory
(part 1,2 and 3), February 2011.

[15] Meng Ji, A. Muhammad, and M. Egerstedt. Leader-based multi-agent coordination: controllability
and optimal control. In American Control Conference, 2006, June 2006.

[16] R. Lozano, M.W. Spong, J.A. Guerrero, and N. Chopra. Controllability and observability of leader-
based multi-agent systems. In Decision and Control, 2008. CDC 2008. 47th IEEE Conference on,
pages 3713 –3718, dec. 2008.

[17] Nynke Niezink. Consensus in networked multi-agent systems. Master thesis applied mathematics,
Rijksuniversiteit Groningen, 2011.

[18] R. Olfati-Saber, J.A. Fax, and R.M. Murray. Consensus and cooperation in networked multi-agent
systems. Proceedings of the IEEE, 95(1):215–233, jan. 2007.

[19] G.J. Olsder and J.W. van der Woude. Mathematical Systems Theory. Delft University Press, 1998.

[20] P.J. Patil and M.D. Patil. Model order reduction of high order lti system using balanced trunca-
tion approximation. In Process Automation, Control and Computing (PACC), 2011 International
Conference on, pages 1 –6, july 2011.

[21] J. Phillips, L. Daniel, and L. Miguel Silveira. Guaranteed passive balancing transformations for
model order reduction. In Design Automation Conference, 2002. Proceedings. 39th, pages 52 – 57,
2002.

[22] Rostyslav V. Polyuga. Model Reduction of Port-Hamiltonian Systems. Phd thesis, Rijksuniversisteit
Groningen, april 2010.

[23] Amirreza Rahmani, Meng Ji, Mehran Mesbahi, and Magnus Egerstedt. Controllability of multi-
agent systems from a graph-theoretic perspective. SIAM J. Control Optim., 48:162–186, February
2009.

[24] Maryam Saadvandi. Passivity preserving model reduction and selection of spectral zeros. Master of
science thesis, Stockholm, 2008.

[25] Arjan van der Schaft. Characterization and partial synthesis of the behavior of resistive circuits at
their terminals. pages 423–428, 2010.

33

[26] J.M.A. Scherpen and A.J. van der Schaft. Balanced model reduction of gradient systems. pages
1–6, October 2011.

[27] A. van der Schaft. Balancing of lossless and passive systems. IEEE Transactions on Automatic
Control, 53(9):2153 –2157, oct. 2008.

[28] Wikipedia. Gram-schmidt process, 2011.

[29] Wikipedia. Graph theory, 2011.

[30] Wikipedia. Hankel singular value, 2011.

[31] Wikipedia. Kronecker product, 2011.

[32] Wikipedia. Laplacian matrix, 2011.

34

