SEEPost: A Secure Electronic Messaging System
Bachelor’s thesis

Anton F. Jongsma Dirk N. Nederveen
s1686534 s1706284

July 20, 2012

Abstract

Over the last years email has become a communication medium used
by almost everyone. However, the protocols involved in sending or re-
ceiving email messages don’t account for security measures like message
confidentiality and integrity.

In this thesis, we propose Security Enabled Electronic Post, a system
of protocols for a secure asynchronous messaging system. This system
reminds of email and functions for the user in the same way, but unlike
email, security measures are required for proper functioning. We designed
protocols that provide the general communication method and a proof of
concept application that demonstrates the possibilities.

The protocols provide secure communication and secure message han-
dling, focussing on confidentiality and data integrity. In SEEPost, the
servers are given as little knowledge as possible about the contents of the
messages they transmit.

The proof of concept application implements the SEEPost protocols
in a transparent way, only exposing the security layers in case any error
occurs.

Primary supervisor: Prof. dr. G.R. Renardel de Lavalette
Secondary supervisor: dr. F.B. Brokken

Contents

1

Introduction

1.1 Related work
1.2 Motivation

SEEPost system characteristics

2.1 Localized trust
2.2 Protocols

Implementation

3.1 Building blocks oL
3.2 Client program
3.3 Server program

Conclusion

Discussion

5.1 Fundamental assumptions
5.2 SEEPost weaknesses
5.3 Further research

List of Terms

Interaction sample

w

oo

12
13
17
19

19

20
20
21
22

26

27

1 Introduction

Since the Internet started, Internet email use has increased to the point that
almost everyone uses it daily. Often email is used to communicate privacy sen-
sitive data like government and business communication, financial information
and passwords. The risks of using email to exchange these kinds of informa-
tion are not widely known with the users. An example of this risk is shown
by the compromise of over two million email messages from and to several
Syrian government divisions by the independent news site WikiLeaks.org. The
compromise of these documents shows that email messages do not guarantee
confidentiality. In the default case, an email message is sent in plain text: any
attacker who intercepts the message can effortlessly read the message.

Another problem is message integrity, because the traditional email system
provides no mechanism to ensure that a message remains unaltered in transit.
It is not uncommon for email servers to alter the message by changing line
breaking characters and adding a header line stating that the message passed
that server.

In this paper, we present Security Enabled Electronic Post (SEEPost), an
alternative message passing system with security concepts integrated in the
communication protocols. Section 1.1 covers the history of email, some trust
models that should be considered when constructing a secure system and several
existing methods that add security layers to conventional email. In section 1.2
we point out system goals and how SEEPost should satisfy these goals. From
the observations in Section 1.1 and the goals in Section 1.2 we continue with the
proposal of a localized trust model in Section 2.1 for use in SEEPost. Section 2.2
addresses the protocol specification and Section 3 elaborates on choices that
were made for the implementation of the demo application’s client and server
programs.

1.1 Related work
1.1.1 History of email

In 1973 Bhushan et al. proposed a standard for storing electronic messages that
could be transported between computers connected to ARPANET [2]. The
format messages are regularly stored in, Multipurpose Internet Mail Extention
(MIME), was not specified until 1996 [8]. When the internet emerged in the early
1980’s a protocol called Simple Mail Transport Protocol (SMTP) for handling
messages between servers was published by Postel in 1982 [16]. Until 1999 there
was no means of authentication for the SMTP protocol; Authenticated SMTP
was invented to solve this problem [15, 20, 12]. In 1984, the Post Office Protocol
(POP) protocol was invented, allowing a user to fetch messages from a server.
POP added a bit of security in the form of user authentication [17]. When users
access their messages via POP, these messages are usually transferred to the
client program and deleted from the server. POP was followed by the Internet
Mail Access Protocol (IMAP) in 1988 [4], which takes a different approach by
keeping the messages on the server instead of deleting the messages after they
are transferred to the client.

TA#3 TA#4

‘ Alice ’ ‘ Bob

Constance

David ’

(a) Centralized trust model (b) Distributed trust model

Figure 1: Trust models as directed graphs

1.1.2 Trust models

The basis for a secure system is trust, because security cannot be guaranteed
when the other party has not provided proof that its identity claim is trust-
worthy. There are several strategies to determine if the presented credentials
are trustworthy. [14] For this reason, it is desirable to model these strategies as
trust models. These trust models can be grouped in two categories, the models
with a centralized structure and those with a distributed structure.

In centralized models one or more Trust Authorities (TAs) express trust
towards an encryption key or identity. When the encryption key of user A is
presented to user B, user B verifies the authenticity of the key if the key carries
a trust expression of a TA that is acknowledged by user B. If such a trust
expression exists and the key is verified, user B trusts the presented key.

Centralized trust models can also specify several layers of TAs. In that case
TAs can express second order trust towards another, thereby stating “trust keys
that are trusted by that TA”. In Figure la is a simple diagram that visualises
a trust graph in a centralized system with two root TAs.

In the second category, the distributed trust models, no central agent is
trusted ultimately, but users express trust towards each other. Abdul-Rahman
& Halles propose two elements of trust in their distributed trust model: di-
rect trust and recommender trust [1]. An expression of direct trust from key A
towards key B means that user A trusts that key B belongs to user B. Recom-
mender trust expresses that user A recommends the trust expressions issued by
user B. Figure 1b shows a trust graph according to a distributed trust model
with only direct trust relations.

1.1.3 Security characteristics

For a system to be secure, it must provide several characteristics. The most
important of characteristics are confidentiality, integrity and availability. [19]

A secure system should provide confidentiality, meaning that the messages
cannot be read by anyone other than the intended recipient. Integrity means
that messages that are transmitted can be guaranteed to originate from the
correct sender and are not altered during transport. Availability is harder to
define, but includes that if some participants in a system fail in any way, the
system keeps functioning.

A fourth important characteristic is usability, because if the security system
is difficult to use, the chance that the system is used in an insecure way rises.
Whitten and Garfinkel show from several studies [21, 11] that many security
failures are the result of users who make mistakes in handling the system, instead
of faulty protocols or weak keys. From these studies we conclude that usability
is a critical element in a secure communication system.

1.1.4 Existing security measures

In 1991 Zimmerman introduced Pretty Good Privacy (PGP) as a way to securely
exchange email [22], providing confidentiality and message integrity to users of
the system. PGP has a distributed trust model very much alike the distributed
trust model described by Abdul-Rahman & Halles [1]. In 1993 Kent et al.
published Privacy Enhanced Mail (PEM) [13] a method of exchanging mail in a
secure fashion. PEM was never widely used, probably because its design relied
on a single central Trusted Authority [10]. It was not until 1998 that Secure
MIME (S/MIME) was proposed [7] as an extension to the MIME protocol.
S/MIME uses X.509 certificates like the Secure Sockets Layer (SSL) and its
successor Transport Layer Security (TLS) that are widely used in secure internet
connections and uses a centralized trust model.

PGP and S/MIME are still used for the exchange of secured email, but
although usage figures are unknown, we estimate that these systems are only
marginally used.

1.2 Motivation

Email is widely used to exchange sensitive data: financial details, contracts and
other private information, but the email system provides no intrinsic security
aspects like confidentiality and integrity. This information is interesting for
attackers, who have several possibilities to gain access to the information. The
different types of attacks are distinguished in two classes, the passive attacks
and the active attacks.

Passive attacks allow an attacker to read parts of the communication or all of
it. This is regularly called eavesdropping, and compromises the confidentiality
of the communication.

Another kind of attack is the active eavesdropping attack or man-in-the-
middle attack, similar to the eavesdropper but with the difference that the
attacker has the ability to insert, remove or alter messages without being de-
tected by one or more of the communicating parties, in that way compromising
the confidentiality and integrity of the system. A third way a communication
system can be attacked, is an impersonation attack, where the attacker falsely
identifies themselves as a legit user and sending messages under the name of the
victim and make recipients believe the message is genuine. With this attack, the
integrity is compromised, because false information is presented as being true.
Impostors may use various strategies to gain access to computer systems. The
simplest way for an impostor to gain access to a system is by forging credentials
of a legit user, e.g. by guessing the password of another user. Another way of
becoming a successful impostor is the replay attack, in which an attacker can
gain access to the system by repeating a legit authentication sequence that was
captured previously.

A denial of service attack aims to make a service unavailable to legitimate
users. A common method to accomplish this is flooding the server running the
service with more traffic than it can handle.

In a secure system these attacks are very hard or even impossible, rendering
it uninteresting for an attacker to gain access to the system.

OpenPGP and S/MIME provide several mechanisms for confidentiality and
integrity, but they seem to be only marginally used. This marginal use adds to
the chance that an attacker successfully forges a message without the forgery
being detected, because it is uncommon for email programs to give a warning
at the absence of security measures. This implies that no warnings are given
when an attacker forges a message without these security measures.

OpenPGP and S/MIME both have other properties that may inhibit users
from using it securely. OpenPGP provides a fine-grained key management
system, in which end users are responsible for obtaining and verifying
public keys of other users. This bookkeeping is mandatory for both the sending
and the receiving party in order to exchange secured messages, and this extra
work could be a factor that keeps users from exchanging secured messages with
OpenPGP. S/MIME has the problem that the keys in the system must be val-
idated by a TA, a process that raises the cost for users who start to use the
system.

For these reasons, we chose not to design a security layer on top of email,
but to create a set of protocols that provide secure messaging over insecure
connections. In this way, the security layers are not an optional addition to the
communication protocol, but an integral part of it. Omitting security measures
therefore should be a violation of the protocol, resulting in the violating message
being ignored.

We will apply several security techniques in order to achieve a system which
provides security for all its users in a way that is easy to use without technical
knowledge while making it hard for attackers to compromise the confidentiality,
integrity and availability of the system. These techniques can be summarized
as strong encryption, simple protocols and trusted connections.

1.2.1 Strong encryption

If a system needs to be secure, it is essential that the security layers are easy to
use. One approach is to enforce the use of strong cryptographic encryption in all
communication by disallowing unencrypted connections in the protocol. This
will prevent that implementations provide weak encryption or no encryption
at all, for those implementations will not be able to connect to the network.
The use of strong encryption schemes prevents attackers from eavesdropping on
connections and from altering any of the communication without being noticed.

Transparent encryption The cryptographic encryption should be as trans-
parent as possible to make sure an end user will be warned only when an insecure
situation occurs. A situation like this could occur when another agent demands
to use a weak encryption scheme or any other recoverable error. Transparent

encryption means that the encryption is applied without requiring special ac-
tion from the user, because properly applied encryption should be the default
situation in the SEEPost system and therefore should not attract the atten-
tion of a user. Notifications and warnings should only be given in cases where
the confidentiality of the communication cannot be guaranteed because strong
encryption cannot be applied. Connections with weak or absent encryption
should be regarded as communication with an attacker and therefore as un-
trusted connections. End user implementations should not try to continue with
an untrusted connection, as a safeguard against security compromise.

1.2.2 Simple protocols

Another important feature is the use of a small set of simple protocols, so that
it is easy to create a correct implementation. Current email implementations
differ from each other in handling, forcing different implementations to adapt
to the errors of other implementations. The protocols should therefore not be
ambiguous to make sure all implementations can interoperate with each other.

Current email clients need to support at least two protocols, one for sending
mail and one for receiving mail, the connections for these protocols are authenti-
cated individually. Although this allows for greater flexibility in authentication,
there are few situations that require different credentials for sending messages
and receiving messages. SEEPost should allow sending and receiving messages
over a single connection, to simplify the protocol.

The authentication protocol should provide methods against impersonation
attacks by requiring a different authentication sequence every time, preventing
replay attacks, and should require proof of credentials without exchanging the
credentials themselves as to eavesdropping on a password. Furthermore the cre-
dentials should be too large for a human to generate and remember, to prevent
weak credentials that are easy to forge.

1.2.3 Trusted connections

Conventional email programs implicitly trust any other host that connects to
the program, because the other agent can comply with the protocols without ap-
plying any security measures. This is because conventional email was developed
to allow users of a single computer system to send messages to each other, and
was extended later to allow for messaging between computers. The email system
was intended for use within a trusted environment like a mainframe within a
company, but was scaled without modification to an untrusted environment, i.e.
the Internet. Some security measures were added to the email system, but for
the system to function each implementation must accept all connections that
conform to the protocol, regardless of security measures. By including security
measures like integrity checks for messages the complete chain of hosts can be
verified and it can be assured that no host has altered the message in any way,
this prevents eavesdropping and man-in-the-middle attacks.

2 SEEPost system characteristics

2.1 Localized trust

To create an automated system little to no human effort should be required
for the system to function. To achieve this, key exchange and key assessment
should be done as much as possible in an automated fashion.

In a centralized trust model, it is necessary for a user to find a TA that
expresses trust towards the key of the user. A distributed trust model requires
the user to verify the keys of people they communicate with. Both models
require in-depth knowledge and some action of the user to participate in the
system. This makes sending secured messages a more complex task than is
necessary, which may affect the secure handling of messages in a negative way.
Since maintaining an automated system is a different task than participating in
one, another level of in-depth knowledge may be required of system maintainers
than may be required from users of the system. We believe that more in-depth
knowledge of the system may be expected from maintainers and that persons
with more in-depth knowledge of a system use the system more correctly.

Under these assumptions, a trust model should be formulated in which users
of the system do not need in-depth knowledge to use the system without error
and system maintainers have the responsibility of key exchange and key assess-
ment.

We propose a layered trust model that combines features from the centralized
trust model and the distributed trust model. In the localized trust model we
propose the servers exchange keys with each other via a centralized system,
whereas the account keys are exchanged with a distributed approach.

In this model, each account is present on exactly one server. It is assumed
that the account holder and the corresponding server know each other’s public
key, this assumption is feasible because service provider and account holder can
exchange keys upon account creation.

2.1.1 Server key exchange

When two servers connect to each other for the first time, they do a simple
key exchange where both hosts send their public keys towards each other. In a
naive implementation this would allow an attacker, using a man-in-the-middle
attack, to substitute the real keys with their own fake key. To avoid this threat,
SEEPost servers should publish a fingerprint of their public key in the Domain
Name System (DNS). With that fingerprint, each server can verify that the key
that they received is genuine and can be used to set up a trusted connection.
This leaves open the possibility for a DNS cache poisoning attack, where an
attacker substitutes DNS information with their own fake addresses and key
fingerprints. To avoid this threat, it is highly desirable to protect the DNS
information with the DNS Security Extensions (DNSSEC), which eliminate the
possibility for attackers to insert false information in DNS servers.

The server key exchange is an implementation of a centralized trust model,
with the DNSSEC system and ultimately the private key of the DNS root zone
as central Trusted Authority.

2.1.2 Account key exchange

Under the assumption that any two servers can set up a trusted connection,
it becomes trivial to exchange account keys. In the localized trust model each
server is responsible for the distribution of public keys belonging to all accounts
present on that server. The sender of a message delegates the responsibility for
obtaining the required keys to their corresponding server. The server relays the
key request to the server that is responsible for the distribution of the recipient’s
account key. This method ensures that all key requests can be satisfied with at
most two lookup operations.

2.1.3 Conclusion

These properties satisfy the goals of the localized trust model, as the user only
need to exchange keys with the server that provides access to the system for
that user. The server maintainer is responsible for obtaining expressions of trust
towards the server they maintain.

2.2 Protocols

To accomplish the security of a protocol set, the protocols should be designed
with the security characteristics confidentiality, integrity, availability and us-
ability in mind; this section explains how we designed the SEEPost protocols
and how these protocols provide the necessary security characteristics.

2.2.1 A minimalist approach

To accomodate awvailability and usability, SEEPost’s design is kept as simple
as possible and has two main components: the transport layer and the com-
munication protocol between hosts. This division of components allows the
implementation to have clearly defined functions with little uncommon combi-
nations of functions. This minimalist design accomodates testability and with
a minimalist design implementation errors are more likely to be detected and
avoided. When a program has few implementation errors, the usability will be
better, because users quickly get accustomed to the system and are not required
to understand many different situations.

The functions for message handling do not rely on many external functions
or services. This increases availability, as many components keep functioning
correctly when other components fail.

2.2.2 Communication between hosts

The communication protocols cover the aspects of confidentiality and integrity.
To provide confidentiality, the communication should be protected with strong
encryption involving perfect forward secrecy. Each user of the system has a
unique key pair and all messages that are sent should be encrypted with the
recipient’s public key to ensure that only the intended recipient can read the
messages.

Every connection between two hosts in the system starts with a session key
exchange via a mutually-authenticated Diffie-Hellman Key Exchange protocol.
This protocol provides confidentiality by requiring the connecting parties to

authenticate themselves. The Diffie-Hellman Key Exchange protocol allows two
parties to negotiate a shared secret in such a way that even if an attacker
can read all communication between the parties, it is computationally hard
for the attacker to calculate the shared secret [5]. Both hosts should remove
the Diffie-Hellman parameters after the handshake, doing so guarantees full
perfect forward secrecy, meaning that if in the future an attacker can access
the decryption keys of both parties and the communication, the attacker can
not decrypt the communication. Section 2.2.4 covers this protocol part in more
detail.

Every message sent to another end user of the system should be encrypted
using public-key cryptography. Even if an attacker is somehow able to inter-
cept the communication between client and server, the confidentiality of the
communication is ensured as the messages cannot be read by the attacker.

Messages should be stored in an encrypted container to prevent that an at-
tacker with access to the server can read the messages. In this way an attacker
will not be able to determine with whom a user has communicated previously,
nor the contents of the communication.

SEEPost also ensures the integrity of messages by adding cryptographic
signatures to messages.

1. Every message to another end user should be timestamped to avoid replay
attacks.

2. Every message to another end user should be cryptographically signed to
ensure data integrity and authenticity.

2.2.3 Protocol diagrams

Notation Throughout this section we use the following notation:
A, B accounts
PK 4 Public key of account A
SK 4 Secret key of account A
g,p,a,b Diffie-Hellman parameters
k Session key
ASC(PK, m) Asymmetric encryption of message m with public key PK

KDF Key derivation function

In the diagrams a variety of braces are used, angular braces denote tuples
or lists of values, whereas parentheses denote the argument list for functions.

2.2.4 Authentication

Prior to manipulating messages, the user with account A should get authenti-
cated with server S4 in a way similar to the STS protocol as described by Diffie
et al. [6]. The hosts already know each other’s public key, therefore all messages

10

(1) Send:
ASC(PKs,,(A,p,g,9* (mod p)))

®
(€

(2) Send:
J{ b
=) ASC(PKa,(g" (mod p)))
A Server(A) (3) A and S4 both compute

k = KDF(g°*)

Figure 2: The authentication protocol

are encrypted with a public-key cryptographic algorithm. The prerequisites for
this authentication protocol are that A knows PKg, and S4 knows PK 4.
The authentication protocol is drawn in Figure 2.

Send message Another important facility is sending messages between end
points. Suppose A sends message m to B via S4. This process is visualized in
Figure 3, each communication channel uses a symmetric encryption as negoti-
ated in Section 2.2.4:

1) 2

<

Fo N
A

5 b

@ Server(A) Server(B)

(1) M = <B,A50(PKB, (m,ASC’(SKA,m)>)>
M is the message envelope containing the addressee (B), the signed message
m ((m, ASC(SK a,m))), which is encrypted to B.

(2) M

(3) Response r: confirmation that the message is delivered if B is present at
Server(B), or an error message.

(4) Response r

Figure 3: The protocol for sending a message

2.2.5 Retrieval of account public keys

Under the assumption that servers can establish a secure connection with each
other, the retrieval of account public keys is relatively simple. The protocol is
visualized in Figure 4 on page 12.

11

(1)
> E (2) Request for PKp
I (3)

(4)

Request for PKpg

3) PKp

@
@ Server(A) Server(B)

=F

4) PKp

Figure 4: The protocol for retrieving an account public key

2.2.6 Key retrieval of servers

The most difficult security characteristic is authentication, because exchang-
ing keys is an intrinsically hard task if there has been no prior communication
between two parties. SEEPost specifies a Localized Trust model that has two
levels in the trust hierarchy. In this model, each host, client and server alike,
has its own key pair, but only the retrieval of end user keys is specified in the
protocol. The first level is the level of inter-server trust. To set up a trusted
path, each connection in that path should be mutually authenticated. SEEPost
intentionally has defined no specific method of interserver trust, to allow im-
plementations to use a strong basis of trust. There are several techniques to
exchange keys with unfamiliar hosts.

e Galvin proposes an infrastructure for key distribution via secure DNS [9].
The drawback of this method is that the DNS KEY record has a limited
length, which makes it impossible to exchange keys of arbitrary length.

e Servers could exchange keys at the start of a connection in a way similar to
the SSH protocol. In common SSH implementations the key verification
is a manual process, which makes it useless for interserver key exchange.
With the key fingerprints in a DNS record similar to the SSHFP record
[18] and the DNS record protected with DNSSEC, this process can be
automated.

The second level is trust between server and client. Each account is associ-
ated with a server and the account holder has a trust relation with the person
or organization who provides the server. To set up a trusted connection, SEE-
Post mandates that account holder and server provider have exchanged keys
via a trusted channel beforehand. In the Localized Trust model each server
is responsible for distributing the public keys of the accounts present on that
server. This model provides a two-link trust chain in which a trusted path can
be established with the receiving server and the key of the receiving user can
be obtained via that trusted path.

3 Implementation

To demonstrate the SEEPost system we implemented it in two demo programs,
a client program and a server program. In this section we will first explain how
the different parts of the system where implemented. Second we explain both
programs in more detail. The source code can be found at https://github.
com/felrood/seepost.

12

https://github.com/felrood/seepost
https://github.com/felrood/seepost

3.1 Building blocks

The SEEPost system has four major parts, the Transport Layer, the Protocol,
the Storage system and the message format. These form the building blocks for
the client and server programs.

This section explains the commands that are exchanged between two hosts in
the SEEPost network, throughout these commands the words between anglular
brackets should be replaced with the correct value. Words between square
brackets are optional values, that may be omitted in the command.

3.1.1 Transport Layer

The transport layer provides a secure communication channel and simultane-
ously authenticates both parties. The connection can be initiated by both the
client and server program. The listing program is always a server program.
The protocol for establishing a shared secret is as follows:
The client sends the SEEPost header. In the header both the server name
and the client name are stated. A version number is used to allow revisions of
the protocol. The header format:

SEEPOST <seepost version> HELLO <server name> AUTH <client name>

The server should return ERROR <error code> <reason>> if it is not the
server stated in the header, the client has no account on the server or the
protocol version is not supported. Otherwise OK should be returned.

The client then sends his Diffie-Hellman parameters encrypted with the
server public key, and the server sends his parameters to the client, encrypted
with the public key of the client.

For this we used the Botan C++ encryption library!. This library imple-
ments Diffie-Hellman Key Exchange with the DL_Group and PK_Key_Agreement
classes.

The secret key and initialization vector are then derived from the session
key with the KDF2(SHA-256) protocol. All communication from this point on
is then encrypted with AES using the secret key.

3.1.2 Server key retrieval

During the handshake we assume that both parties know each others public key
in advance. In case of client to server communication this condition may be
assumed. With server to server communication this might not be true. It could
happen that a server needs to deliver a message to a server it has never seen
before. For this we implemented a simple key lookup service. This service does
not use a secure connection, which leaves opportunity for a man-in-the-middle
attack.

The service supports only two commands:

e GET <hostname>

e QUIT <reason>

Thttp://botan.randombit.net/

13

http://botan.randombit.net/

The response to the GET command should be FOUND <public key> if the
public key that is asked for is indeed the one of the server, otherwise NOTFOUND
is returned. This syntax differs from responses 0K <public key> and ERROR
<error code> <reason> due to historical reasons. Using the OK/ERROR syn-
tax also in this situation would be more consistent and elegant.

3.1.3 Protocol

The protocol specifies the format of commands that may be issued to a server.
The commands are always initiated from the client side of the connection, and
a single response is given back. In this protocol identifier means an hexadec-
imal encoded unique identifier. The term blob is used for a piece of encrypted
data of arbitrary length for the storage system. The commands can be divided
in four categories.

General commands

ERROR <error code> <reason>>, Indicate an error occurred

QUIT [reason], Quit

Queue manipulation

PEEK [identifier], Retrieve message [identifier] from the queue with-
out removing it. If the value [identifier] is omitted, the first element
of the queue is retrieved.

DROP <identifier>, Drop message <identifier> from the queue

LENGTH, Query the length of the queue

Storage manipulation

GET <identifier>, Get the blob <identifier> from the data storage

PUT <identifier> <data>, Store <data> at blob <identifier> in the
data storage

DELETE <identifier>, Delete blob <identifier>

LIST, List all the keys in the data storage

retrieval and sending a message
SEND <address> <message>, Send message <message> to <address>

ENCPUBKEY <address>, Retrieve the encryption public key from <ad-
dress>

SIGNPUBKEY <address>, Retrieve the sign public key from <address>

14

In case of a client - server connection all of the above commands are avail-
able for the client. In case of a server to server connection only the general
commands and Key retrieval and sending a message commands are available.
This makes the server to server protocol a subset of the client to server protocol.

The response to a command is either 0K [data] if the command succeded
or ERROR <error code> <reason>> if an error occurred. For some commands
the syntax for the OK response is actually a little different due to historical
reasons. To increase consistency this should be unified to 0K [data].

3.1.4 Storage system

The storage system of SEEPost provides a permanent storage facility for the
client and transparently handles the encryption of its contents. The server-side
part of the storage system is a simple key-value store. The commands GET, PUT,
DELETE and LIST from the protocol are used for manipulating this key-value
store. The values, also known as blobs, are encrypted client-side before being
stored on the server.

The AES-256 encryption key for the data is encrypted with the users public
key and signed with its private key using the RSA algorithm. This ensures that
only the user can read the storage key and can verify that he himself only could
have created this key. Since the user is the only entity with knowledge of the
key and is sure that they created that key themselves, the encryption and sig-
nature on the storage provide both confidentiality and data integrity, because
any alteration in the data makes the data unreadable.

Inside this key-value store resides a minimalistic file system like structure
to store messages efficiently, known as the storage format. The current version
of the format can only store recieved messages, it does not support common
features like folders and storing attachments.

Because the storage format is seperate from the storage system on the server-
side, it can store arbitrary information without any server modifications and is
therefore not restricted to concepts like messages or attachments. For example,
some sort of index could be stored to implement fast search queries, or an ad-
dressbook with adresses and corresponding public keys. Due to time contraints
we did not implement this.

The storage system supports these functions:
e List messages

e Retrieve message contents

e Store a message

e Delete a message

Wipe all messages

This last function is mainly used for debugging purposes.

The storage format has several blobs with a special purpose.

15

0, blob containing the version number in plain text and the storage en-
cryption key, itself encrypted to the owner

1, list of index blobs

2, last message identifier

3, usualy the first index blob

Blob 1 is a meta-index. It contains a reference to all index blobs. This was
implemented so the size of a index blob would not grow too large. This reduces
the transmission overhead of having to downloading the whole message list each
time the client connects.

Blob 2 contains the number of the last message. When a message is stored it
is assigned a unique number to identify the message.

An index blob has a newline seperated keyO=value0O;keyl=valuel;... for-
mat. Each line represents a message. All headers of a message are stored in
such a single line. The mandatory keys are:

e id, number uniquely identifing the message

e body, blob id of the message body

e from, address of the sender

e name, name of the sender

e subject, subject line

e timestamp, an RFC 2822 timestamp

e status, status field. U for unread, R for read.

e from server, the server from which the message originated

e server_timestamp, RFC 2822 timestamp of when the server recieved the
message

e digest, the signature hexadecimal encoded

e sign verified, an RFC 2822 timestamp of when the signature was last
verified

Storing a message When a message is added to the structure the message
headers are appended to the last index blob. If this blob then exceeds a certain
length or size a new index blob is created.

16

3.1.5 Message format

The message format specifies how a message should be formatted when send
from one client to another. A message consists of a header line, the message
contents and a hexadecimal encoded signature. This message is then encrypted
with the AES-256 algorithm and passed in a hexadecimal encoding. The encryp-
tion key is encrypted to the recipient with the RSA algorithm and prepended
to the encrypted message.

A more formal definition:

envelope := <encryption key> <newline> <encrypted message>
message := <header> <newline> <message content> <newline> <signature>
header := <key> ’=’ <value> ’;’ <header>

The header line has some required fields:
e from, The senders address

e name, The name of the sender

e subject, Subject line

e timestamp, An RFC 2822 timestamp

If these fields are not present the message is invalid and will be dropped by
the client.

When the message is put on the queue, the server prepends it with a header
line with the following keys:

e from server, the server from which the message originated

e timestamp_server, an RFC 2822 timestamp when the server recieved the
message

This adds some information for the client program to check the validity of the
message, although in the current demo implementation this is not implemented.
3.2 Client program

The client program uses the building blocks which we described in the previous
sections and adds an interface to make a usable program.

3.2.1 User Interaction

The client program has a commandline interface to interact with humans, due
to time constraints a GUI was not implemented. However, since the command-
line interface has only a few easy to understand commands, we still consider it
userfriendly.

The demo client supports the following commands:

e help, help message

e retr, retrieve new messages

17

e list [lengthl], show a list of the messages in the inbox
e write, write a message

e read <identifier>, read a message

e delete <identifier>, remove message

e info, show some info about the system

e wipe, destroys the storage and initializes an new one

e quit, quit client

A typical interaction with a user is shown in Appendix B. The example
program exposes no security or cryptograpy related terms to the user. As the
program handles security measures transparently, user security errors are pre-
vented [21, 11].

Dealing with attacks When an attacker attempts to perform a man-in-the-
middle attack between the client and the corresponding server, the client cannot
establish an connection, because the attacker cannot present a valid response
to the Diffie-Hellman parameters the client sent. The user is presented an error
message stating: An error occurred: cannot establish connection.

If the user receives an message with an invalid signature or with some of
the required header fields missing the message is discarded by the client pro-
gram and the user is presented a messages stating Signature did NOT verify,
discarding message or Corrupted message received, discarding.

3.2.2 Keyfile

The private key of the user and some configuration data is stored in a configu-
ration file. This keyfile can be secured with a passphrase. In this case we have
two-factor authentication: both the passphrase and the configuration file are
needed to connect to the server.

The data stored in the configuration file:

e name, the users own name

e address, the users own address

e server, the address of the server

e port, the servers port

e sign _pub, the public key for signing

e sign priv, the private key for signing

e enc_pub, the public key for encrypting

e enc_priv, the private key for encrypting

e server_pub, the public key of the server

18

3.3 Server program

The server program consists of three actual servers. The clientserver, the
interserverserver and the keyserver.

3.3.1 Clientserver

This server listens on port 9011 and serves clients. It implements the full pro-
tocol as explained in Section 3.1.3. This is the most important server and the
largest in lines of code.

3.3.2 Interserverserver

This server listens on port 9010 and it serves other servers that connect to
it. It implements only a subset of the whole protocol as explained in Section
3.1.3. In retrospect it would have been possible to merge the clientserver and
interserverserver, but we realised this too late. Both servers implement the
whole or a part of the protocol, so they share a lot of functionallity.

3.3.3 Keyserver

The keyserver is very simple. Its purpose is to make the public key of the
server freely available, as explained in Section 3.1.2 it only has to deal with two
commands. Also, the connection is in plaintext. The server listens on port 9012.

3.3.4 Configuration and data storage

The server program stores its configuration file and all its data in a directory.
The public key and some other configuration data from all its users is in the sub-
directory accounts. The storage system is located in blobstore/<address>.
The queue for incoming messages is stored in inqueue/<address>

4 Conclusion

In Section 1.1.3 the security characteristics confidentiality, integrity, availability
and usability were identified, this section will evaluate the SEEPost protocols
and programs with respect to these characteristics.

Confidentiality The SEEPost protocols provide confidentiality in different
parts of the design, most importantly in the connection between any two hosts
and in the transport of messages between users. Each connection starts with
the authentication protocol as described in 2.2.4, which also provides a session
key exchange to set up an encrypted channel which attackers can not decrypt.
This way the confidentiality of all communication in the network is guaranteed.

In the demo program this part of the protocol is implemented in the
connection classes, which perform the key exchange and send all further com-
munications encrypted with the AES-256 algorithm.

As an extra layer of confidentiality the messages are encrypted in such a
way that only the recipient can read the messages, so even if attackers are able

19

to read the communication between two hosts, they can not read the messages
that are being transferred.

The clientproto class performs this function transparently. When the
function for sending a message is called, the recipient’s key is looked up and
the message is encrypted to that recipient. After the encryption, the message
is sent to the recipient.

The storage system provides confidentiality, as users store all information
encrypted to themselves, only the correct user can decrypt the stored informa-
tion. This prevents any attacker with access to the stored information from
obtaining the decrypted information.

The demo program implements this part of the protocols in the clientfs
class, which applies all encryption and decryption operations transparently.

Integrity The protocols provide message integrity as each message that is
sent to another user is cryptographically signed, this way any modification to
the message will be detected.

The send function in the clientproto class adds this signature to the mes-
sage before encrypting and sending the message. On the receiving end, the
verifysignature function checks if the signature that is found on the message
is correct and belongs to the sender.

In the storage system, the encryption key is signed by the client and checked
each time the encryption key is requested. This guarantees that the stored
information cannot be replaced with false information without being detected.

Availability The security characteristic availability is provided by the fact
that no third host is needed if two hosts connect to each other. This means that
if a server stops functioning, all communication continues in the normal way,
except for the communication with that server.

Usability The demo program tries to provide usability by hiding all security
measures for the user. If the SEEPost system functions as intended, the user
only sees plain text messages and no information about keys and encryption.
When the system cannot function as intended, only error messages are shown.

5 Discussion

In this section we discuss some of the fundamental assumptions that were made
for the SEEPost system, the weaknesses we see in the protocol design and some
topics that require further research.

5.1 Fundamental assumptions
5.1.1 Trust between account holder and server

The Localized Trust model assumes the account holder has a trust relation with
their server. This trust relation is necessary, because the server is responsible for
the distribution of the account holder’s public key and keeping their data. This

20

trust relation is also feasible, because having someone else provide a service
in which they play an active part requires that the server knows where the
messages must be sent to.

5.1.2 TUse of DNSSEC

The demo implementation does not use DNSSEC due to the lack of DNSSEC
on the testing network. For DNSSEC to work widespread coverage is required,
which is not yet the case. Until then we cannot depend on it, this makes our
design much weaker.

5.2 SEEPost weaknesses
5.2.1 Self-designed security protocol

Although it is generally considered a bad idea to “roll your own” security algo-
rithm [3], we chose to diverge from existing secure messaging protocols. This
decision was made to avoid the complex SSL and TLS protocols and the Cen-
tralized Trust model that comes with X.509 certificates. The complexity makes
it difficult to implement the protocols correctly, which would easily result in
security errors.

5.2.2 Transport layer protocol

In retrospect, designing a secure transport layer protocol was harder than we
anticipated. There are many important details which we overlooked when we
choose not to use TLS. Next time we would consider TLS and X.509 more
carefully. Using a different PKI for X.509 certificates would drop one of our
main objections against using TLS.

5.2.3 Cipher choice

For the transport layer we choose the block cipher AES for the encryption. Being
a block cipher this caused quite some problems with properly padding variable
length data. In the current implementation the same plaintext data results in
the same cipher texts send over the network. This leaks some information about
the higher level protocol to an eavesdropper. Using a stream cipher would have
been a more natural choice. With stream ciphers padding is not needed and
sending a plain text twice would not result in the same cipher text.

5.2.4 Trust model

The centralized trust model poses a problem, because when a Trust Authority
is compromised, no certificate can be trusted. The attacker who compromised
the TA could express trust toward any certificate, deceiving all parties that are
presented that certificate, since it is trusted by a TA.?2 When a server key is
compromised in the localized trust model, all communication with that server
may be considered compromised, but communication with other servers is un-
affected.

2This happened in 2011 with the Dutch X.509 Certificate Authority DigiNotar

21

5.2.5 Server compromise

In the event that a server is compromised by an attacker, the possible dam-
age that can be done is limited by the SEEPost design. When an attacker
is in control of a server all communication from and to that server is poten-
tially compromised, as the attacker may be able to insert their own malevolent
software. This means that the attacker can have access to all communication
starting from that point in time. For example, any public key that is requested
from that server may be replaced by a non-authentic attacker key. This would
compromise the messages send to clients of that server, as well as messages send
by any of its clients.

The past communication of the server remains secret due to the perfect
forward secrecy characteristic of the Diffie Hellman key exchange.

The stored messages of all the clients also remain secret, because the en-
cryption and decryption of storage is performed by the client application.

5.3 Further research

In developing this system we came across several limitations that require further
research.

5.3.1 Shared inboxes

The files on the server are encrypted with the public key of a single user. This
make inbox sharing impossible. To make inbox sharing possible, a shared key
must be established. We think this is possible but would require extension of
the protocol.

5.3.2 Webmail

A webmail client is not trivial to implement with the same level of security
because the private key is needed to authenticate the connection and to read
messages. This means the user should upload its private key to the webserver,
which we consider risky behaviour. Another way would be to store the private
key always on the webserver, and securing it with a passphrase. This way the
private key is never transferred over the internet, but it makes the authentication
process weaker. An attacker only has to guess the passphrase, a token (the
private key) is already available.

5.3.3 Server side search

The contents of the inbox are encrypted so the server can’t read the contents.
This makes server side search impossible. This makes searching through your
messages very slow because all content needs to be downloaded from the server,
decrypted and then inspected for the search query. A possible solution is storing
an index of some sort on the server. The client could download this once and use
it for searching. This could be implemented completely in the client program.

22

5.3.4 Unreachable server

Even if a server would only need to send outgoing messages, it needs to be
reachable from the outside. This is a result of the server key lookup as explained
in Section 3.1.2.

We could remove this problem by incorporating the key exchange in the
handshake. The downside of that approach would be that the client—server
handshake would differ from server—server handshake, making the protocol more
complex and making correct implementation harder.

5.3.5 Key revocation

The current implementation has no method for key revocation. Key revocation
should be present for both client keys and server keys.

If the private key of a client is compromised by an attacker or the key is lost,
some method should exist change the compromised keypair and replace it with
a new keypair. In the demo implementation of the client program, the public
key of a recipient is not cached. This more or less compensates for the lack of
a key revocation mechanism. However, implementing an addressbook function
in the storage system was an original goal early in the project.

A key revocation method for server keys is also not present. Server keys are
cached by other serves, so this is a much bigger problem than with client keys. If
a server changes its publickey because of an compromise, it becomes impossible
for other servers to establish an connection if they have the old publickey in
cache.

A possible method would be a “freshness check” in the handshake. The
connecting party now only specifies his own name and the name of the party
it want to connect to. It could also specify the fingerprint of the key it has in
cache, as well as the fingerprint of his own current keys. The receiving party can
then detect if it has a different key of the connecting party, or the connecting
party has his old key still in cache.

This would however create a new possibility for an attacker, who could
successfully perform a man-in-the-middle attack by claiming the other party
has an old key. Verifying the new key with DNSSEC or a different Central
Trust Authority could solve this.

23

References

[1]

[10]

[11]

[12]

[13]

[14]
[15]

Alfarez Abdul-Rahman and Stephen Hailes. A distributed trust model. In
Proceedings of the 1997 workshop on New security paradigms, NSPW ’97,
pages 48-60, New York, NY, USA, 1997. ACM.

A K. Bhushan, K.T. Pogran, R.S. Tomlinson, and J.E. White. Standard-
izing Network Mail Headers. RFC 561, September 1973. Updated by RFC
680.

Wm. Arthur Conklin and Glenn Dietrich. Secure software engineering: A
new paradigm. In System Sciences, 2007. HICSS 2007. 40th Annual Hawaii
International Conference on, page 272, jan. 2007.

M.R. Crispin. Interactive Mail Access Protocol: Version 2. RFC 1064, July
1988. Obsoleted by RFCs 1176, 1203.

W. Diffie and M. Hellman. New directions in cryptography. Information
Theory, IEEE Transactions on, 22(6):644-654, 1976.

Whitfield Diffie, Paul C. Van Oorschot, and Michael J. Wiener. Authentica-
tion and authenticated key exchanges. Des. Codes Cryptography, 2(2):107-
125, June 1992.

S. Dusse, P. Hoffman, B. Ramsdell, L. Lundblade, and L. Repka. S/MIME
Version 2 Message Specification. RFC 2311 (Historic), March 1998.

N. Freed and N. Borenstein. Multipurpose Internet Mail Extensions
(MIME) Part One: Format of Internet Message Bodies. RFC 2045 (Draft
Standard), November 1996. Updated by RFCs 2184, 2231, 5335, 6532.

J.M. Galvin. Public key distribution with secure DNS. In Proceedings of
the 6th USENIX Security Symposium, pages 161-170, 1996.

S. Garfinkel. Signed, sealed and delivered. CSO Online,
2004. http://www.csoonline.com/article/219173/email-security-signed--
sealed-and-delivered-, accessed July 4, 2012.

Simson L. Garfinkel and Robert C. Miller. Johnny 2: a user test of key
continuity management with s/mime and outlook express. In Proceedings
of the 2005 symposium on Usable privacy and security, SOUPS ’05, pages
13-24, New York, NY, USA, 2005. ACM.

T. Hansen and J. Klensin. A Registry for SMTP Enhanced Mail System
Status Codes. RFC 5248 (Best Current Practice), June 2008.

Stephen Kent. Internet privacy enhanced mail. Communications of the
ACM, 36(8):48-60, 1993.

J. Linn. Trust models and management in public-key infrastructures. 2000.

J. Myers. SMTP Service Extension for Authentication. RFC 2554 (Pro-
posed Standard), March 1999. Obsoleted by RFC 4954.

2RFC is short for “Request For Comments”, the document format in which proposals for
computer interactions are specified

24

http://www.csoonline.com/article/219173/email-security-signed-sealed-and-delivered-
http://www.csoonline.com/article/219173/email-security-signed-sealed-and-delivered-

[16]

[17]

[18]

[19]

[22]

J. Postel. Simple Mail Transfer Protocol. RFC 821 (Standard), August
1982. Obsoleted by RFC 2821.

J.K. Reynolds. Post Office Protocol. RFC 918, October 1984. Obsoleted
by RFC 937.

J. Schlyter and W. Griffin. Using DNS to Securely Publish Secure Shell
(SSH) Key Fingerprints. RFC 4255 (Proposed Standard), January 2006.

Bruce Schneier. Applied Cryptography: Protocols, Algorithms, and Source
Code in C. John Wiley & Sons, Inc., New York, NY, USA, 2nd edition,
1995.

R. Siemborski and A. Melnikov. SMTP Service Extension for Authentica-
tion. RFC 4954 (Proposed Standard), July 2007. Updated by RFC 5248.

Alma Whitten and J. D. Tygar. Why johnny can’t encrypt: a usability
evaluation of pgp 5.0. In Proceedings of the 8th conference on USENIX
Security Symposium - Volume 8, pages 14-14, Berkeley, CA, USA, 1999.
USENIX Association.

P. Zimmerman. PGP User Guide. MIT Press, 1994.

25

Appendices
A List of Terms

AES Advanced Encryption Standard
DHKX Diffie-Hellman Key Exchange
DNSSEC DNS Security Extension
DNS Domain Name System

GUI Graphical User Interface
IMAP Internet Mail Access Protocol

KDF Key derivation function, a function to generate cryptographic keys from
an input

key part of encryption algorithms that is specific to a user, also called
certificate in X.509-based protocols like SSL and TLS

MIME Multipurpose Internet Mail Extension

PEM Privacy Enhanced Mail, a system to send secured messages via email
PGP Pretty Good Privacy, a system to send secured messages via email
PK Public Key

POP Post Office Protocol

RSA The asymmetric encryption algorithm by Rivest, Shamir and Adleman
S/MIME Secure MIME, a system to send secured messages via email
SEEPost Security Enabled Electronic Post

SK Secret Key

SMTP Simple Mail Transport Protocol

SSH Secure Shell

SSL Secure Sockets Layer, the protocols for secured Internet communication
TA Trust Authority

TLS Transport Layer Security, the successor of SSL

26

B Interaction sample

This appendix illustrates the use of the client demo program in a typical interac-
tion session with a user. In this session the user responds on behalf of Tagware
Corp. and has the address info@tagware.nl. The user communitates in this
session with Alice, with email adres info@hethelejaarherfst.nl. We used some
domain names that we owned but where not in use. Lines starting with $ and
> are commands typed by the user, the former being a system prompt, in which
the user types command to the operating system, the latter being the SEEPost
prompt, in which the user types commands to the SEEPost demo program.

$./client -v -f keyfiles/info_tagware_nl.skf
Jun 11 15:22:09 Hello Tagware Corp.

You have 1 new message

> retr

You have 1 new messages

Here the demo program is started with the configuration file as second ar-
gument. The client informs the user there is a new message waiting, so the user
types the command retr to retrieve the new message.

Next the user uses the 1ist command to get an overview of all the messages.
To read the new message from Alice the command read 2 is used.

> list
ST From Subject Time
2 U Alice <info@hethelejaarherfst.nl> Hello world Mon, 11 Jun 2012 13:21:23 +00
1 R Alice <info@hethelejaarherfst.nl> Testje Mon, 11 Jun 2012 10:04:38 +00
0 R Admin <admin@mail.tagware.nl> Welcome to SEEPost! Mon, 11 Jun 2012 08:24:07 +00

3 from 3 messages listed

> read 2

From: Alice <info@hethelejaarherfst.nl>

Signature: OK, verified at Mon, 11 Jun 2012 13:22:12 +0000
Date: Mon, 11 Jun 2012 13:21:23 +0000

Status: U, Priority: O

Subject: Hello world

Hello Tagware Corp.,
This is a test message.

Greetings,
Alice

Now the user wants to send a message back to Alice. An actual reply com-
mand in not available in the demo program, but the write command does the
same with a manual copy-paste of the subject line.

> write
To: info@hethelejaarherfst.nl

27

Subject: RE: Hello world
Message: (end with EOF)
Hello Alice,

Message recieved.

Bye,

Tagware Corp.
EQOF

Message sent!
> quit

QUIT bye

After the EOF the message is directly sent and the user quits the demo
program.

Attacks

In this session we show how the demo program responds to attacks. In the first
example the user receives a message with a nonsense signature.

$./client -v -f keyfiles/info_tagware_nl.skf
Jul 12 11:34:21 Hello Tagware Corp.

You have 1 new message

> retr

Signature did NOT verify, discarding message
You have O new messages

> quit

QUIT bye

In this second example, a man-in-the-middle attack is simulated.
$./client -v -f keyfiles/info_tagware_nl.skf
Jul 12 13:29:15 Hello Tagware Corp.

An error occurred: cannot establish connection.
Bye!

28

	Introduction
	Related work
	Motivation

	SEEPost system characteristics
	Localized trust
	Protocols

	Implementation
	Building blocks
	Client program
	Server program

	Conclusion
	Discussion
	Fundamental assumptions
	SEEPost weaknesses
	Further research

	List of Terms
	Interaction sample

