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Abstract

Is it possible to comb the hairs of a billiard ball? In other words,

can a singularity-free vector field exist on the 2-sphere? This is a

question that can be answered using index theory. First, the definition

of an index is discussed, after which we will prove that a vector field

on the sphere must have singularities and that the sum of indices is

independent of the vector field on the sphere. Finally, we will consider

other manifolds, both homeomorphic and not homeomorphic to the

sphere.
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1 Index

In this section, we will cover the definition of winding number and index,

with their properties.

1.1 Winding Number

For a proper definition of the index, we need the notion of winding number

(Fulton [2], page 20). Take a closed curve gamma γ : [0, 1]→ R2 \ {0}, then

the winding number is defined as the ”net” number of times γ goes (winds)

around the origin, with the counterclockwise direction as positive. To be

precise, the winding number of γ reads as:

W (γ, 0) =
1

2π

∫
γ

x dy − y dx
x2 + y2

(1)

According to the Stokes formula, the winding number is well-defined for a

smooth γ (Broer, [1], page 126), so W (γ, 0) is independent of parametriza-

tion.

For example, let γk(t) ∈ C ∼= R2 and let

γk(t) = e2πikt, t ∈ [0, 1], k ∈ Z,

then W (γk, 0) = k.

1.2 The index of a singularity

Given a vector field V on a surface U and assume that V has isolated

singularities that form a set Z. Then V maps as follows: V : U\Z → R2\{0}.
Now we can define the index of V , at point p ∈ Z. Take a small circle C

around p and restrict V to this circle (denoted by VC), such that VC ⊆ U \Z
and C only contains p. We then have a mapping from C to R2, with a

winding number. We define the index to be (Fulton [2], page 97):

IndexpV = W (V |C , 0) (2)

Since the winding number is independent of parametrization, so is the index.

However, the index is only independent of the radius of C, as long as the

number of singularities inside VC remains the same inside VC . If p is no

singular point, then IndexpV = 0.
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We now have a vector field V (a, b) = (a(x, y), b(x, y)). The index is the

winding number over a circle restricted to the vector field, which will give

us:

IndexpV =
1

2π

∫
C

adb− bda
a2 + b2

(3)

For computing the index, we will first substitute x and y in a and b, after

that, we will substitute cos t for x and sin t for y. The latter will often be

the same: x = cos t, dx = −sin t dt y = sin t, dy = cos t dt.

Let D be a closed disk with boundary circle C and let V be a vector field

on D without singularities at the boundary, then (Fulton [2], page 100):

W (V |C) =
∑
p∈D

IndexpV (4)

A qualitative approach: Instead of using the integral formula, let an

arrow follow C once, tangent to the vectors of VC as it goes. The index is

the number of times the arrow revolves.

Examples with various indices. Of the following examples, all singu-

larities are found at the origin. The integral formula is used to calculate

the index and the qualitative approach is left to the reader, with the images

found below. (Fulton [2], page 98).

(a) Index 0 (b) Index 1 (c) Index -1 (d) Index 2

Examples of indices

(a) V (x, y) = (x2 + y2, 0). This field has a singularity with an index equal

to zero, which can be seen by the parametrization (a = x2 + y2, b = 0,

so also db = 0).

(b) V (x, y) = (−y, x). This vector field has a singularity with an index

6



equal to one. The integral formula becomes (after parametrization):

1

2π

∫ 2π

0
dt = 1

(c) V (x, y) = (y, x). Saddle points have an index equal to minus one.

From the integral formula, we get:

1

2π

∫ 2π

0

−sin2 t− cos2 t

cos2 t+ sin2 t
dt = −1

(d) V (x, y) = (x2−y2, 2xy) (let z = x+iy, then V = (x, y) = (Re(z2), Im(z2)).

This vector field has a singularity with an index equal to two. The

resulting parametrization will give:

1

2π

∫ 2π

0

2(cos2t− sin2t)2 + 8cos2tsin2t

(cos2t− sin2t)2 + 4cos2tsin2t
dt = 2
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2 Indices on the 2-sphere

In this section, we will look at the existence of singularities of a vector field

on the 2-sphere.

Theorem 1 (hairy ball). On the 2-sphere, the sum of indices is equal to 2,

regardless of the chosen vector field.

For the proof, we will first flatten out the sphere to the plane by stereographic

projection (Fulton [2], page 103):

Φ : S2\{NP} → R2 (5)

V Φ∗(V ),

where NP = (0, 0, 1). This map is continuous, so Φ∗(V ) on R2 is continuous

if V on S2 is continous.

figure 2.1: stereographic projec-

tion

Proof. Assume, by contradiction, that

V has no singularities on S2, thus Φ∗(V )

has no singularities on R2. First, con-

sider a small disc D at NP , with bound-

ary C, then W (V |C) = 0. If the

disk is small enough, we can consider

the vectors to be almost parallel. Us-

ing the stereographic projection, C ′ =

Φ(C) is a very large circle in R2, with

W (Φ∗(V )) = 0.
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figure 2.2: V near NP figure 2.3: Φ∗(V )

However, let vt be the vector pointing at C towards NP and va be the vector

pointing away from NP , then Φ∗(vt) will point towards infinity and Φ∗(va)

will point towards the origin. Since Φ∗(V ) is continuous, it will look like the

one in figure 2.3. Here we see that W (Φ ∗ (V )|C′) = 2 6= 0, concluding the

contradiction. Furthermore, let D′ be the region inside C ′ (e.g. C ′ = ∂D′),

then: ∑
q∈D′

IndpΦ∗(V ) = 2,

so ∑
p∈S2\D

IndpV = 2.

Since
∑

p∈D IndpV = 0, we now know that
∑

p∈S2 IndpV = 2.

Now that we have proven that
∑

p∈S2 IndpV , we only need to prove that this

holds for any vector field. Let W be an arbitrary vector field on S2 with a

finite number of isolated singularities and let p ∈ S2 be a point where W

is not zero. Let D be a small disk at p, with boundary C. If the disk is

small enough, the vectors are almost parallel (figure 2.2). Now the rest of

the proof is the same.

This theorem is known as the hairy ball theorem: consider a ball covered

in small hairs, then it is impossible to comb the hairs without creating a

cowlick. The theorem was proven by L.E.J. Brouwer (Broer [1], page 106)

for any n-dimensional sphere, when n is even. If n is odd, the sum of indices

is zero, i.e. a singularity-free vector field can exist.
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3 Other manifolds

3.1 Triangulation of S2

Let M be a manifold with v vertices, e edges and f faces, then the Euler

characteristic χ(M) is defined as (Fulton [2], page 113):

χ(M) = v − e+ f (6)

Theorem 2. For any manifold M , with v vertices, e edges and f faces,

homeomorphic to S2, the following holds:

χ(M) = v − e+ f = 2

figure 3.1: decompositions of the

sphere for the cube and prism ([3],

page 370)

To prove the theorem, we will first

triangulate the sphere: decompose

S2 into a small surfaces homeomor-

phic to triangles, that fit together

along the edges. Other polygonals

can be used too, as long as they

fit.

Having made a triangulation of the sphere, we will construct a vector field

V such that we find a singularity with index 1 at each vertex, one with index

-1 on each edge and one with index 1 in each face. Then:

2 =
∑
p∈M

IndpV = 1 · v + (−1) · e+ 1 · f = χ(M)

figure 3.2: triangulation
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3.2 Singularities on the torus

While a singularity-free vector field cannot exist on S2, it can on T2 (hairs

on a doughnut can be combed without creating a cowlick).

Theorem 3 (Fulton [2], page 107). for any continuous vector field with

singularities V on T2, ∑
p∈T2

IndpV = 0 (7)

figure 3.3: construction of a torus

Proof. The torus can be constructed by taking a square or rectangle and

identifying the opposite edges. Conversely, a rectangle R can be constructed

by cutting the torus open twice. Let V be a continuous vector field on T2,

with isolated singularities. Then, cut T2 open along a meridian and circle

of longitude that have no singularities. Then we have a vector field V ′ that

is continuous on R, including its edges. Since the vector field is exactly the

same on the opposite edges,

0 = W (V ′|∂R) =
∑
q∈R

IndqV
′ =

∑
p∈T2

IndpV.

Using triangulation, we now know that for any manifold M homeomorfic to

T2, χ(M) = 0.
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3.3 Manifolds with more holes

Now that we have proven that
∑

p∈S2 IndpV = 2 and that
∑

p∈T2 IndpV = 0

for a vector field V , we wish to find a generalization.

Theorem 4 (Poincaré-Hopf). Let X be a sphere with g handles, or doughnut

with g holes. For any vector field V with singularities on X,∑
p∈X

IndpV = 2 (8)

The proof for this theorem (Fulton [2], page 108) shall be omitted. The

theorem was proven by Henri Poincaré for two dimensional manifolds and

generalized by Heinz Hopf.

Like the torus and the sphere, a manifoldM with g holes can be triangulated,

so χ(M) = 2− 2g (Fulton, [2], page 114).
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4 conclusion

In this thesis, we have described the definition of an index and used index

theory to show that a singularity-free vector field cannot exist on the 2-

sphere. Furthermore, sum of indices of a vector field V , with a finite number

of singularities, on the 2-sphere always equals 2. If we triangulate the 2-

sphere, we have shown that any manifold M (with v vertices, e edges and f

faces) homeomorphic with the 2-sphere has an Euler characteristic of 2.

Whereas a singularity-free vector field cannot exist on the 2-sphere, it can

on the torus (compare combing the hairs of a ball and combing the hairs of

a doughnut), so the sum of indices of a vector field on a torus always equals

zero. Using triangulation, it becomes clear that a manifold homeomorphic

with the torus has an Euler characteristic of 0.

For further reading, the reader is referred to the Poincaré-Hopf theorem

(Fulton, [2], page 108), which describes the relation between the number of

holes in a manifold and the sum of indices of a vector field on that manifold.
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