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Chapter 1

Introduction

Motivation To perform quantum information processing, using electron spin states can be done
with localized spin states. In donor doped semiconductors electrons are localized in donor-bound
electron and bound exciton systems. With the help of polarized optical transitions there can be
coherent electron spin states created. The big disadvantage of using donor doped semiconductors
is that the decoherence time of the electron spin is very short [1]. So information stored in the
electron spin is easily lost. In for example donor doped GaAs the donor-bound electron couples
with around ≈ 105 [2] nuclear spins (called spin bath), due to hyperfine interaction between the
electron spin and the nuclear spins. Because of thermal fluctuations of the nuclear spin bath
the nuclear field forms an important dephasing source. Therefore understanding the mechanisms
that lead to loss of quantum information and controlling these processes is crucial. Dynamic
Nuclear Polarization (DNP) can be used to reduce these fluctuations of nuclear spins in the spin
bath [3–6]. DNP is the mechanism were electron spin polarization is induced, which leads to
nuclear polarization. When electron spin polarization deviates from thermal equilibrium, spin
polarization can be transferred between electrons and nuclei via hyperfine interaction between
the electrons and the nuclei. Relatively new research area is ZnSe II-VI semiconductor. The big
advantage of II-VI semiconductors is the low natural abundances of nonzero nuclear-spin isotopes
in II-VI materials. The existence of zero nuclear-spin isotopes can be also isotropically purified to
deplete nonzero nuclear spins [7]. In this thesis a model is build which describes the energy levels
of a single electron spin that has hyperfine interaction with an arbitrary number of nuclear spins.
For building physical insight we mainly focus on the case of single or a few nuclear spins with
I = 1/2 or I = 3/2. These results are the basis for further investigations that study how DNP
can take place. Nuclear spin decoherence times are much larger than electron spin decoherence
times, so its also interesting to look for possibilities for using the nuclear spin to store quantum
information. This thesis explores the possibilities for optical transitions between nuclear spin
states which directly give rise to a nuclear spin polarization. To be able to investigate optical
transitions between nuclear spin states, a description of the coupling between the electron and the
nuclear spins in the spin bath is needed. For inducing nuclear spin flips, the ability to selectively
couple different nuclear spin states is needed. For the possibility of selective coupling with a laser
to optical transitions between different spin states, the dipole coupling selection rules for different
polarizations of laser light are important.

Experimental reference In an external magnetic field the donor-bound electron in the ground
state, called D0, has two possible Zeeman split levels corresponding to electron spin up and down.
These states can be optically excited to higher energy levels, where the lowest excited state excists
of a bound exciton state, labeled with D0X. In an external magnetic field the electrons form a
spin singlet state and the spin projections of the hole will be Zeeman split into four levels. In
experiments with n-doped GaAs the excited state D0X is shown to be optically resolvable. In
the experiment of figure 1, taken from reference [8], two lasers are coupled between the ground
state and an excited state. With different polarizations light transitions can be selectively coupled

5



6 CHAPTER 1. INTRODUCTION

between different spin states. One is coupled with the ground state with electron spin up and
the other with electron spin down. This scheme is called a lambda scheme. Such an lambda
scheme in figure 1, can be used to induce DNP. The levels in figure 1 represent only the electronic
states. In reality, due to electron-nuclear angular momentum coupling, each of these levels is
split into many hyperfine levels. When we have more insight in this hyperfine splitting and the
corresponding optical transition strengths, it is in principle possible to treat the interaction of the
full system with one or more optical fields within the density matrix formalism. A preliminary
study of how this should be done is covered in appendix A. The main part of this thesis has the
goal to understand the hyperfine structure in simplified representations of the D0X system, as
well as the corresponding optical transition rates.

Outline thesis In chapter 2 is explained that a hydrogen like model is used to describe the
energy levels of the ground state D0 and the excited state D0X. The concepts of the spin-orbit
coupling and hyperfine coupling are worked out. These couplings are important to be able to
describe the electron spin and nuclear spin states. The last part of chapter 2 will explain what
happens with these energy levels when applying an external magnetic field. These Zeeman splitting
provides optically resolvable energy levels which are needed to be able to selectively couple lasers
on resonance to specific electron spin states. In chapter 3 selection rules for different polarizations
laser light are worked out. These selection rules are needed to be able to describe the coupling of a
laser to specific nuclear spin states and also to describe the strongly allowed spontaneous emission
from the excited states. In chapter 4 all the concepts from chapter 2 are combined. An example of a
ground state D0 with one nuclear spin 1/2 is worked out including Hyperfine coupling and Zeeman
splitting. This example illustrates how the field dependent energy diagrams are constructed and
the field dependent mixing of spin states is explained. This mixing of spin states has influence
on the selection rules. In chapter 5 a few systems with different number of nuclei coupled to the
donor-bound electron/hole are worked out. These magnetic field dependent energy level diagrams
are used to construct transition schemes, which sketches the strongly allowed transitions between
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spin states in low and high field. A model in Mathematica is build to calculate the energy levels
of a donor system coupled with multiple nuclei (Appendix E). In chapter 6 the transition schemes
derived in chapter 5 are used to investigate the possibilities for inducing nuclear polarization by
coupling laser light with certain polarization. To keep track of populations in the system, rate
equation can be set up with the density matrix formalism. In appendix A the concept of density
matrix formalism is introduced and a three-level lambda system (shortly introduced in figure 1)
is worked out with an extension to four levels.
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Chapter 2

Energy levels

2.1 Introduction

In this chapter it is described how the hydrogen model is used to describe the energy levels of
the ground state and the excited state. The band structures and their corresponding quantum
numbers in the semiconductor are important, because these determine the quantum numbers of
the donor-bound electron and hole. The different spin states of the donor-bound electron and
hole are described with the help of the spin-orbit coupling. The hyperfine coupling between the
donor-bound electron and the nuclear spin states in the spin bath is explained. After defining all
the energy levels and their degeneracies, the Zeeman splittings due to an applied external magnetic
field are worked out. These Zeeman splittings are important to be able to investigate the possible
transitions between optically resolvable energy levels.

2.2 Hydrogen like orbitals

When semiconductors are doped with low concentration of donor atoms, at low temperatures the
donor electron will bound to the donor site. For GaAs the bohr radius of the bound electron
will spread out approximately 100-200 lattice sites. When exciting an electron from the valence
band an excited state is created. These excited states are very complicated [9] and not yet fully
understood. There is still no consistent picture of what these excited states look like. But the
most used description of the lowest excited states are that of a three particle complex [10], which
consist of two electrons in a spin singlet state and a hole. Because the two electrons are in a
spin singlet state, they will not contribute to effects involving couplings with the spin. The hole
however does contribute to spin coupling effects. So the ground state D0 contains one electron and

D+

e-

(a) Ground state D0 of the donor-bound electron.

D+

e-hole e-

(b) Excited state D0X of the donor system.

Figure 2.1: The ground state of the donor-bound electron consists of an electron bound to the
positive charged donor atom. The excited state exists of two bound electrons in a spin singlet and
an hole.
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10 CHAPTER 2. ENERGY LEVELS

(a) Band Structure GaAs [11].

D0X

D0

( ) holeelec ⇓↑↓ +3/2
+1/2
-1/2
-3/2

mJ

+1/2
-1/2

electron↑

(b) Energy levels.

Figure 2.2: Figure a) shows the band structure of GaAs. The three lower bands belong to the
valence band and the highest band belongs to the conductance band. Figure b) shows the possible
spin projections for the electron in the ground state D0 and for the hole spin in the excited state
D0X.

the excited state contains one hole which is of interest. Because of this hydrogen like structure of
the system, this can be described with the hydrogen model.

2.3 Band structure

The band structure of a semiconductor determines the character of the bound electron and hole.
In this paragraph a short introduction is given what the band structure of GaAs or ZnSe looks
like and what their corresponding quantum numbers are for the ground state and excited state.
In figure 2.2a the highest band is the conductance band. Electrons in the conductance band have
a s-like orbital. The valence band contains three bands, namely the heavy/light-hole bands and
the split-off band. Electrons in the valence band have p-like orbitals. p-like orbitals have orbital
angular momentum L = 1 and because here only the hole with spin S = 1/2 is considered, the total
angular momentum J has two possible values J = |L−S| = 1

2 and J = L+S = 3
2 . The heavy hole

band has the quantum numbers J = 3
2 ,mJ = ± 3

2 and the light hole band has J = 3
2 ,mJ = ± 1

2 .
The split-off band has quantum numbers J = 1/2 and mJ = ± 1

2 . The heavy hole and light hole
bands at k = 0 are strictly degenerate only in absence of strain. In a quantum well structure there
can be a splitting induced between the heavy-hole and light-hole energy bands. For a quantum
well structure with a height of 5nm the heavy hole ans light hole bands are separated by 100
meV [12]. In this thesis a model is build where the heavy/light-hole bands are strictly degenerate.

The energy difference between the heavy/light hole bands and the split-off band is due to
spin-orbit coupling. In figure 2.2a this energy splitting between the heavy/light hole band and the
split-off band is indicated with ESO. This energy splitting due to spin-orbit coupling is explained
in more detail in section 2.4. The energy splitting between the ground state D0 and the excited
state D0X is almost the same as the gap energy in the semiconductor, in the figure indicated with
Eg.

When looking at possible transitions between the valence band and conductance band at a
particular point in the bandstructure at the point k = 0 (in figure 2.2a indicated with three open
circles), electrons can be excited from the split-off band or the higher heavy/light-hole bands to
the conductance band. When exciting an electron from the valence band to the conductance band,
the hole left behind has the properties of what the electron had in that band. In figure 2.2b the
quantum numbers of the ground state and the lowest excited state are summarized.
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2.4 Spin orbit coupling

To explain the splitting between the heavy/light hole band and the split-off band a closer look at
the spin-orbit coupling is needed. Also the spin-orbit coupling determines the quantum number J ,
which stands for the total angular momentum L+S. J is important because this also determines
which projections mJ there are possible for a certain energy level. In chapter 3 it becomes clear
that the projections mJ are important for the dipole selection rules.

The spin-orbit interaction is the interaction between the electron magnetic moment and the
magnetic field generated by the motion of the electron in the static electric field of the nucleus.
The electron moves with a velocity ~v = ~p

me
in the static electric field ~E of the nucleus. In the

reference frame of the electron there appears a magnetic field ~B′ = − 1
c2~v× ~E. Because the electron

has an intrinsic magnetic moment ~MS = q~S/me, the interaction energy can be written as

HSO = − ~MS · ~B′ (2.1)

~E can be written as − 1
q
d
drV (r)r̂ with V (r) = − e

2

r substituting this in B′ the expression for B′

becomes

~B′ = − 1

c2
~v × ~E =

1

qc2
1

r

d

dr
V (r)

~p

me
× ~r (2.2)

The cross product between ~p and ~r can be written as the total angular momentum vector ~l

~P × ~R = −~L (2.3)

where the classical vectors are replaced by quantum operators, here represented with capitals.
The expression for HSO becomes

HSO =
1

m2
ec

2

1

R

d

dR
V (R)~L · ~S =

e2

m2
ec

2

1

R3
~L · ~S (2.4)

Introducing the |J,mJ〉 basis The spin-orbit term depends on a product of two angular mo-

menta, the orbital angular momentum vector ~L and the electron spin vector ~S. The product of the
two operators does not have eigenstates defined in either of the two bases |L,mL〉 or |S,mS〉. One
way to describe the eigenstates of this product of two operators is to define a new vector space as
a product of the two vector spaces |L,mL〉 |S,mS〉. But a more useful construction of a new basis

is |J,mJ〉, where ~J = ~L + ~S. In this new basis |J,mJ〉 the spin-orbit operator is diagonal. The
eigenstates of |J,mJ〉 can be expressed in that of |L,mL〉 |S,mS〉 with the help of Clebsch-Gordan
CJmLmS coefficients

|J,mJ〉 =
∑

mL,mS

CJmLmS |L,mL〉 |S,mS〉 (2.5)

were the Clebsch-Gordan coefficients are defined in equation 3.21. This relation between the two
bases is useful to obtain the orbital angular momentum L and its projection mL from a |J,mJ〉
state. The values for mL determine mostly whether electric dipole transitions between energy
states are possible or not. This is explained in chapter 3.

In this new basis |J,mJ〉 the spin-orbit coupling term can be rewritten in terms of operators
with eigenvalue defined in this new basis.

~J2 =
(
~L+ ~S

)2

= ~L2 + ~S2 + 2~L · ~S
~L · ~S = 1

2

(
~J2 − ~L2 − ~S2

) (2.6)

Where each of these operators ~J2, ~L2, ~S2 has an eigenstate in the |J,mJ〉 basis. Namely
~2 (J (J + 1)), ~2 (L (L+ 1)) and ~2 (S (S + 1)).
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Spin-orbit energy splitting The expectation value of the spin-orbit term is the matrix element

∆ESO = 〈R(r)Y (θ, φ)|HSO |R(r)Y (θ, φ)〉 (2.7)

where the eigenfunctions are a product of the angular and radial solutions of the Schrödinger
equation. The matrix element can be written as a product of two elements depending on different
variables. These steps are described in more detail in paragraph 3.1.

∆ESO =
e2

m2
ec

2
〈R(r)| 1

R3
|R(r)〉 〈Y (θ, φ)| ~L · ~S |Y (θ, φ)〉 (2.8)

where the expectation value of 1/R3 is

〈R(r)| 1

R3
|R(r)〉 =

∫ ∞
0

1

r3
R2
n,l(r)r

2dr (2.9)

with R(r) the radial depending part of the eigenfunctions for hydrogen (shortly introduced in
section 3.1). The angular part with the help of equation 2.6 becomes

〈Y (θ, φ)| ~L · ~S |Y (θ, φ)〉 = 〈J,MJ | ~L · ~S |J,MJ〉
= ~2

2 {J(J + 1)− L(L+ 1)− S(S + 1)}
(2.10)

Combining the expectation values of the radial and angular parts for the spin-orbit coupling

∆ESO =
~2βSO

2
{J(J + 1)− L(L+ 1)− S(S + 1)} (2.11)

with all constants in front collected in the constant βSO. The spin-orbit energy splitting occurs
between different values of J . The spin-orbit term does not depend on the projections mJ . So
the energy bands of the heavy/light hole bands does not split up relative to each other due to
spin-orbit effect. There is a splitting induced between the split-off band and the heavy/light hole
band. Using equation 2.11 the spin-orbit energy shift for the heavy/light hole band with J = 3/2
is

∆E
3/2
SO =

~2βSO
2
{3/2(3/2 + 1)− 1(1 + 1)− 1/2(1/2 + 1)} =

~2βSO
2

(2.12)

For the split-off band with J=1/2 the energy shift due to spin-orbit coupling is

∆E
1/2
SO =

~2βSO
2
{1/2(1/2 + 1)− 1(1 + 1)− 1/2(1/2 + 1)} = −~2βSO (2.13)

So the the splitting between the heavy/light hole bands and the split of band has an energy
separation

∆E
3/2
SO −∆E

1/2
SO =

3

2
~2βSO (2.14)

2.5 Hyperfine coupling

The nucleus has just like an electron an intrinsic angular momentum. The spin for the nucleus is
labeled with ~I. The corresponding magnetic moment is labeled by ~MI . The magnetic moment of
the nucleus can be expressed in terms of the nuclear spin.

MI = gn ~µn~I/~ (2.15)

where ~µn = qn~/2Mn, with Mn the mass of the nucleus. The hyperfine interaction is the interac-

tion of the moment ~MI of the nucleus with the magnetic field ~Be produced by the electron. The
interaction term is

Hhf = − ~MI · ~Be (2.16)
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When writing out the magnetic field produced by the electron, the hyperfine interaction term in
the Hamiltonian becomes [13]

Hhf = −µ0

4π

{
e

meR3
~L · ~MI +

1

R3

[
3
(
~MS · R̂

)(
~MI · R̂

)
− ~MS · ~MI

]
+

8π

3
~MS · ~MIδ

(
~R
)} (2.17)

where R is the distance between the two dipoles ~MI and ~MS and R̂ = ~R/R is the unit vector
parallel to the line joining the dipoles, pointing towards the electron dipole. The first term de-
scribes the interaction between the nuclear moment ~MI and the magnetic field produced by the
orbital motion of the electron’s charge. The field produced is ~Borbital(0) = −(µ0/4π)e~L/meR

3.
The second term represents the interaction between the nuclear magnetic moment and the mag-
netic dipole field created by the electron density outside the nucleus. The third term is the Fermi
contact term, which describes the interaction of the magnetic moment of the nucleus with the
magnetic field created by the electron density inside the nucleus (~R = 0).

For the calculation of the expectation value of the hyperfine interaction for a 1s orbital, the con-
tribution of the first term in equation 2.17 leads to the matrix 〈L = 0,mL = 0| ~L |L = 0,mL = 0〉,
which is clearly zero. The second term is zero because of spherical symmetry. The remaining term
is the expectation value for the Fermi contact term for the 1S level is equal to the matrix element

〈n = 1; l = 0;mL = 0;m′S ;m′I | −
2µ0

3
~MS ·MIδ(~R) |n = 1; l = 0;mL = 0;m′S ;m′I〉 (2.18)

here ~MI and ~MS are rewritten as ~MI = gnµn~I/~ and ~MS = geµB ~S/~, with ge ≈ −2 for a free
electron (The following convention about the g-factor of the electron is used, in which the sign of
the g factor is positive when the dipole moment is parallel to its angular momentum and negative
when it is antiparallel. This would have the advantage that it could be applied consistently in
any situation. Such a choice would require the g factors for the electron orbital and electron spin
angular momenta to be negative. This is briefly discussed in the reference [14]).

Ak 〈m′S ;m′I | ~I · ~S |mS ;mI〉 (2.19)

Only a fraction of the magnetic moment of the total electron is inside the nucleus. The radius of
the nucleus is small compared to the electron density function, so the electron density function
squared is considered constant inside the nucleus. The hyperfine coupling constant Ak between
the electron and a nucleus at a distance ~Rk, the hyperfine coupling constant for a nucleus at a
distance k lattice sites from the center of the electron density function is [15]

Ak = Av0

∣∣∣Ψ(~Rk)
∣∣∣2 (2.20)

Where A is based on the average over the hyperfine coupling constants for the isotopes in the
semiconductor of interest, weighted by there relative abundances. v0 is the volume of the crystal

unit cell containing one nuclear spin, and
∣∣∣Ψ(~Rk)

∣∣∣ is the electron envelope function. When con-

sidering only one nucleus, the electron density function will have its center at the location of the

nucleus. The square amplitude at the origin is |Ψn,l=0(0)|2 = 1
π

(
Z
na0

)3

, where the radial function

Rnl can be found in table 3.1. The hyperfine interaction term in the Hamiltonian can be written
as

For D0: Hhf = Ak~Ik · ~S (2.21)

Introducing the |F,mF 〉 basis Both ~I and ~S has its own vector space with theire eigenvalues.
To be able to describe the eigenstates of the product of the two operators there has to a new basis
|FMF 〉 defined. Just like explained in paragraph 2.4. F is defined as the total angular momentum
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~F = ~J + ~I. This new basis is needed to be able to write the product of the operators in the Fermi
contact term in operators which have theire eigenstates in this new basis.

~F 2 =
(
~I + ~S + ~L

)2

= ~I2 + ~S2 + ~L2 + 2~I · ~S + 2~S · ~L+ 2~I · ~L
~I ~S = 1

2

(
~F 2 − ~L2 − ~I2 − ~S2

)
− ~I · ~L− ~S · ~L

(2.22)

In the energy levels with s orbitals, ~L is zero and we get with the help of equation 2.22 the
expression for ~I ~S in this new basis

Hhf = A~I ~S =
A
2

(
~F 2 − ~I2 − ~S2

)
(2.23)

Now the matrix elemetn in equation 2.19 can be calculated with the help of equation 2.23.

〈F ;mF |
A
2

(
~F 2 − ~I2 − ~S2

)
|F ;mF 〉 =

A~2

2
(F (F + 1)− I(I + 1)− S(S + 1)) (2.24)

For the excited state D0X the hole are in p-like orbitals, with the consequence that the density
function at the lattice sites is zero. The fact that the contact term gives no contribution for an
electron in a p orbital has led to the claim that electrons in p orbitals and holes do not interact
with nuclear spins. But there is still a contribution from the dipole-dipole interaction and the
orbital interaction terms, which gives a coupling constant that is about 10 percent of that of
the coupling constant of the s electron in the ground state with opposite sign [16]. The effective
interaction term for the dipole-dipole and orbital interaction is studied by J. Fischer and W. A.
Coish [17] and turned out it can be written as

For D0X: Hhf = A~I · ~J (2.25)

which contains now the first two terms of equation 2.17. And the energy shift relative to the
spin-orbit energy becomes now simply

∆Ehf =
A~2

2
(F (F + 1)− I(I + 1)− J(J + 1)) (2.26)

This energy shift due to hyperfine coupling is an additional shift to the energy shift above the
spin-orbit coupling splitting. The expectation value of the Fermi contact term depend on the
quantum number F and not on the projection mF .

2.6 Multiple coupled nuclei

The donor electron has hyperfine interaction with the nuclear spins on the lattice sites inside
its bohr radius. This model looks at the coupling between the donor electron spin and multiple
nuclear spins at equal distance and equal nuclear spin. In this paragraph is explained why this
approuch is needed and that with this approuch the total interaction with multiple nuclei can be
rewritten in the form of equation 2.26.

To describe the coupling between the electron and the nuclear spins in the spin bath, the
hyperfine coupling contribution of each nucleus is summed over.

Hhf =

N∑
k

Ak~Ik ~J (2.27)

To calculate the expectation value of this hyperfine coupling term with multiple nuclei, the inner
product of the operators should be rewritten like in equation 2.22. Because the coupling constants
are not equal, defining a total F =

∑N
k
~Ik + ~J to be able to rewrite the product of operators, is

not possible with the approach as used in equation 2.23 or 2.26. Considering only the nuclei at the
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S-orbital e-

i

R k

Figure 2.3: Hyperfine coupling with multiple nuclei at the same distance Rk. The white cross
in the middle indicates the donor site, with its positive charged nucleus D+. The black gradient
illustrates the spherical symmetric electron density function of an electron in the s orbital.

same distance from the center of the electron density function, sketched in figure 2.3, can overcome
this problem. The coupling constant Ak contains the radial dependence given in equation 2.20.

When looking only at the nuclei at the same distance the value for
∣∣∣Ψ(~Rk)

∣∣∣2 is for each nucleus

the same. Ak is replaced by AR = NRAk, were NR is the number of nuclei at a distance Rk as
sketched in figure 2.3. When looking at the coupling between the electron and nuclei at the same
distance Rk, AR can be taken outside the summation.

Hhf = AR
NR∑
i

~Ii ~J (2.28)

the summation here is only over the nuclei which are at the same distance Rk. When considering
all nuclear spins Ii with the same value, for GaAs 3/2 for ZnSe assumed 1/2, the sum over all Ii’s
can be replaced with a total vector Itot. The general rule for vector addition holds Itot runs from
|I1 − I2| to I1 + I2 and results in

~Itot =

{
even number of nuclei: 0, 1, ..., N · Ii
odd number of nulcei: I1, I1 + 1, ..., N · Ii

(2.29)

The first term equals to all nuclear spin vectors anti-parallel and the last term corresponds to all
nuclear spin vectors parallel. The steps in between are of the size one. The interaction term can
be written in terms of this total nuclear spin vector

Hhf = AR~Itot ~J (2.30)

Defining a basis with this new total nuclear spin vector is possible by defining a total angular
momentum vector ~F = ~Itot + ~J . In this new basis the expectation values for the hyperfine
coupling term can be easily calculated in the same way as in equation 2.26. The difference now is
that the nuclear spin vector ~Itot can take more values than the nuclear spin vector for one nucleus,
so the number of energy splittings will increase. When extending the model to coupling with all
nuclei, the contribution of all the rings, containing nuclei at same distance, should be included.
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2.7 Zeeman splitting

When applying an external magnetic field B0, due to the magnetic momenta of the electron and
nuclei, the energy levels split up due to Zeeman splitting. The Zeeman term corresponding to an
applied external magnetic field B0 in the ẑ direction these shifts are

HZ = −ω0 (gLLz + geSz)− ωngnIz
HZ = −ω0 (gLLz + geSz + gIIz)

(2.31)

The ge and gn are the gyro magnetic factors of the electron and nuclei. In the second line of
equation 2.31 the gyro magnetic factor of the nucleus gI contains the nuclear mass, gI = gn

me
Mn

.
For a free electron ge ≈ −2 or ge ≈ +0.41 for GaAs (see [14] for the used sign convention). ω0

and ωn are the Larmor frequencies of the electron and nuclei and are defined like

ω0 = e
2me

B0

ωn = e
2Mn

B0

(2.32)

The Zeeman energy is much smaller than the spin-orbit coupling(~ω0 << ~2βSO) for the range of
applied external magnetic fields in this thesis. The spin orbit coupling is of the order of electron
volt and the Zeeman splitting is of the order micro electron volt. The term −ω0 (gLLz + geSz)
can be rewritten as function of Jz. With the help of the Wigner-Eckart theorem, L and S can be
written in terms of J

~L =
〈~L· ~J〉

E0,L,S,J

J(J+1)~2
~J

~S =
〈~S· ~J〉

E0,L,S,J

J(J+1)~2
~J

(2.33)

where the inner products can be rewritten as

~L · ~J = ~L(~L+ ~S) = ~L2 + 1
2 ( ~J2 − ~L2 − ~S2)

~S · ~J = ~S(~L+ ~S) = ~S2 + 1
2 ( ~J2 − ~L2 − ~S2)

(2.34)

Now L and S can be rewritten

~ω0(gLLz + geSz) =

~ω0

[
gL

J(J+1)+L(L+1)−S(S+1)
2J(J+1) + gs

J(J+1)−L(L+1)+S(S+1)
2J(J+1)

]
Jz

= ~ω0gJJz

(2.35)

The Zeeman terms from equation 2.31 becomes

Hz = −ω0 (gLLz + geSz + gIIz) = −ω0 (gJJz + gIIz) (2.36)

where gJ is called the Landé factor

gJ =
gL (J(J + 1) + L(L+ 1)− S(S + 1))

2J(J + 1)
+
gs (J(J + 1)− L(L+ 1) + S(S + 1))

2J(J + 1)
(2.37)

Three different regimes for field strengths Energy levels for all magnetic fields can be
calculated analytically with the help of the hyperfine coupling described in paragraph 2.5 and the
Zeeman term derived in the previous paragraph. So the three regimes that will be described are not
used to produce the field dependent energy diagrams in this thesis, but are only used for physical
interpretation of the results. There are three different regimes of magnetic field strengths, where
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the energy splitting can be interpreted in different ways. In weak magnetic fields the Zeeman term
can be seen as a perturbation on the hyperfine term, which results in an offset due to hyperfine
coupling plus an energy splitting of each level due to projections of the total angular momentum
F . At high fields the hyperfine term can be seen as a perturbation on the Zeeman term, which
results in overall energy splittings due to Zeeman splitting of the spin projections in the magnetic
field and within these overall splitting, there will be a splitting due to hyperfine splitting. In the
intermediate field strengths there will be a continues transition between these two descriptions.
The three regimes will be explained in more detail.

Weak field Zeeman effect (~ω0 << A~2) For weak external magnetic fields the total angular

momentum ~J and the nuclear spin angular momentum ~I are on resonance. The Zeeman terms of
the electron and the nucleus can be combined

Hz = −ω0 (gJJz + gIIz) = −gFω0Fz (2.38)

with the Landé factor gF defined like

gF =
gJ(F (F + 1)− I(I + 1) + J(J + 1))

2F (F + 1)
+
gI(F (F + 1) + I(I + 1)− J(J + 1))

2F (F + 1)
(2.39)

So at zero field there are the energy offsets due to the hyperfine interaction given in equation
2.26. When increasing the field the degenerate energy levels evolve according to the Zeeman term
−gFω0Fz. Each hyperfine level contains 2F + 1 degenerate levels, mF running from −F,−F +
1, ..., F , so each degenerate level at zero field split up into 2F + 1 levels.

High field Zeeman effect (~ω0 >> A~2) For high field ~I and ~J are decoupled, so they are

described with −ω0

(
gJ Ĵz + gI Îz

)
. Because the two terms are decoupled the Zeeman term cannot

be described any more (is not diagonal) in the basis |F,mF 〉. At the high field limit the Zeeman
term is diagonal in the basis |mJmI〉

− ω0

(
gJ Ĵz + gI Îz

)
|mJmI〉 = −~ω0 (mJ +mI) |mJmI〉 (2.40)

mJ has values running from −J, ...,+J , so the energy level split up into 2J + 1 energy levels.
The hyperfine coupling term is in high field considered as a perturbation to the Zeeman term. So
the hyperfine interaction produces an offset from the Zeeman split energy level. The Hyperfine
interaction

〈mJmI | A~I · ~J |mJmI〉 (2.41)

can be calculated in the same basis |mJmI〉 with the use of the relation

~I · ~J = IzJz +
1

2
(I+J− + I−J+) (2.42)

where the last two terms are diagonal in this basis and cancel each other. The remaining term is

〈mJmI | AIzJz |mJmI〉 = A~2mJmI (2.43)

So inside a Zeeman split bundle due to a projection of mJ there are splittings, which corresponds
to a different projections of mI .

Intermediate field Zeeman effect (~ω0 ≈ A~2) At an intermediate field ~I and ~J are partial
decoupled. There will be a continues transition between the two descriptions when increasing
the magnetic field. States cannot be described in either the basis |J,mJ〉 or |F,mF 〉. In this
intermediate field the states are not purely in a state |F,mF 〉 or |J,mJ〉, but contain a mixture of
spin states. This mixture of spin states is worked out in chapter 4.
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Chapter 3

Electric dipole transition and
selection rules

3.1 Introduction

In this chapter the concept of dipole coupling between electron states and applied electric fields
is explained. Also the selection rules for transitions for different polarizations and incoming di-
rections are determined. To describe the dipole transition strength, the dipole operator and the
eigenfunctions need to be specified. Starting with the Schrödinger equation for the hydrogen atom
in its most general form (

−~2

2me
52 +V (r)

)
ψ = Eψ (3.1)

The solution to this differential equation can be found as a product of two functions depending
on the radial depending part and the angular depending part

ψ = R(r)Y (θ, φ) (3.2)

Where Y ml (θ, φ) are the angular momentum eigenfunctions. Some examples for the spherical
harmonics are summed in table 3.1 and a few expressions for Rn,l are given in table 3.1. Solutions
to the Schrödinger equation are standing waves which give a time-independent charge distribution
of the electron. To look at transitions between these standing waves a time-dependent perturbation
theory is needed. The results of this time-dependent perturbation is described by Fermi’s Golden
rule. This states that the transition rate is proportional to the square of the matrix element of

Rn,l(r) Y ml (θ, φ)

R1,0 = 2
(
Z
a0

)3/2

e−ρ Y 0
0 = 1

2

√
1
π

R2,0 =
(
Z

2a0

)3/2

(2− ρ) e−ρ Y −1
1 = 1

2

√
3

2π e
−iφsinθ

R2,1 =
(
Z

2a0

)3/2
2√
3
ρe−ρ Y 0

1 = 1
2

√
3
π cosθ

Y −1
1 = − 1

2

√
3

2π e
iφsinθ

Table 3.1: some values for Rn,l’s and Y ml ’s, with ρ defined as Z
n
r
a0

.

19
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the perturbation. The transition rates are defined as [18]

Γabsi→f =
πe2ρ(ωfi)

ε0~2m2
eω

2
fi

∣∣∣〈Ψf | ei
~k~r êrad · ~pe |Ψi〉

∣∣∣2
Γstmi→f =

πe2ρ(ωif )

ε0~2m2
eω

2
if

∣∣∣〈Ψi| ei
~k~r êrad · ~pe |Ψf 〉

∣∣∣2 (3.3)

were Γabsi→f is the transition rate for radiation induced absorption and Γstmi→f is the rate for stimulated
emission. ρ is the energy density of radiation, êrad is the polarization vector and the integral is
in the Dirac notation, i stands for initial state of the system and f stands for final state. Before
calculating the integral a simplification can be made. When the wavelength of the incoming beam
is larger than the the size of the electron bound electron, the spacial dependence of the oscillating
incoming field can be neglected. The approximation made is

ei
~k~r = 1 + i~k~r + ...
≈ 1

(3.4)

this is called the dipole approximation and gives the simplification for the interaction matrix

〈Ψf | ei
~k~r êrad · ~pe |Ψi〉 ≈ 〈Ψf | êrad · ~pe |Ψi〉 (3.5)

~pe can be rewrite with the commutation relation [H0, ~r] = ~~pe
im , were H0 is the unperturbed

Hamiltonian

− ime

~
〈Ψf | êrad · [H0, ~r] |Ψi〉 =

im

~
ωfi 〈Ψf | êrad · ~re |Ψi〉 (3.6)

Now plugging this expression back into equation 3.3 the rates become

Γabsi→f = π
ε0~2 |êrad · ~µif |2 ρ(ωfi)

Γstmi→f = π
ε0~2 |êrad · ~µif |2 ρ(ωif )

(3.7)

where ~µif is the electric dipole moment

~µif = 〈Ψf | e · ~r |Ψi〉 (3.8)

The integral can be written as a product of two integrals both depending on different variables [19]

〈f | êrad · ~r |i〉 ≡ D12Iang (3.9)

where D12 is the radial integral

D12 =

∫ ∞
0

Rn2,l2(r)|r|Rn1,l1(r)r2dr (3.10)

and Iang is the angular integral

Iang =

∫ 2π

0

∫ π

0

Y m2

l2
(θ, φ)êrad · r̂Y m1

l1
(θ, φ)sinθdφdθ (3.11)

with r̂ = ~r/|r|.

3.2 Polarizations incoming beam

Before determining which transitions are possible with different polarizations and directions of an
incoming beam, a well defined reference frame is needed to be able to define the polarization and
propagation direction of incoming electric fields. With the help of a static external magnetic field
it is possible to define a reference frame. The reference frame can be defined with its z-axis along
the magnetic field. Looking at Π and σ polarizations of the incoming beam. Π polarized light is
defined as a linear polarized oscillating electric field, for example Πx

kz
is an incoming beam in the

z direction, with its electric field oscillating in the x direction, see figure 3.1a. Sigma polarized
light is a combination of two linear polarizations perpendicular to each other and with a relative
phase shift of π/2. For example σ+

kz
is defined as an incoming beam in the z direction and the

electric field rotating in the x-y plane, see figure 3.1b.
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(a) Πx
kz polarized light (b) σ+

kz
, or right-handed, polarized light

Figure 3.1: Example of incoming beams with propagation directions in the z-axis (Faraday con-
figuration), with different polarizations.

Faraday and Voight configuration There are two classifications of situations depending on
the propagation direction of the incoming beam. In a Faraday configuration the incoming beams
propagate parallel to the applied external magnetic field, so theire electric and magnetic field
components are perpendicular to the field. The situations sketched in figure 3.1 are in a Faraday
configuration. When the propagation direction is perpendicular to the applied external magnetic
field the system is called to be in the Voight configuration. Often used terminology for polarizations
are horizontal and vertical polarized light. For example horizontal and vertical polarized light in
a Voight configuration correspond with: polarizations Πy

kx
or Πx

ky
for horizontal light and Πz

kx
or

Πz
ky

for vertical polarized light. All other possible polarizations and propagation directions are
summed in table 3.2.

3.3 Dipole transition rates and selection rules

Transitions are possible for certain polarizations when the matrix element 〈f | êrad · ~r |i〉 is non-
zero. Both for stimulated emission and for excitation the same electric dipole ~µif from equation
3.8 determines which transitions are possible. For calculating this matrix element, its useful to
express all terms in Y ml ’s. Not only the initial and final state, but also the dipole operator. When
expressing the integral in Y ml ’s it is very easy to determine for which values of m and l the integral
is non-zero.

Only the angular integral Iang is interesting for determining if this matrix element is non-
zero, because the radial integral always gives a non-zero constant. The angular integral Iang from
equation 3.11 can be calculated by describing r̂ in spherical coordinates.

r̂ =
1

r
(xêx + yêy + zêz) = sinθcosφêx + sinθsinφêy + cosθêz (3.12)

Expressing these in spherical harmonics

sinθcosφ =
√

2π
3

(
Y −1

1 − Y 1
1

)
sinθsinφ = i

√
2π
3

(
Y −1

1 + Y 1
1

)
cosθ =

√
4π
3 Y

0
1

(3.13)

Writing the angular integral in spherical harmonics for the example of an incoming beam Πx
kz

the
angular integral becomes

〈f | êrad · r̂ |i〉 ∝
∫

Ω

Y
∗mf
lf

(θ, φ)(Y −1
1 − Y 1

1 )(θ)Y mili
(θ, φ)dφdθ (3.14)
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ML= -1 0 +1

ML= 0

2P3/2

2S1/2

(a) Allowed transitions for q=-1

ML= -1 0 +1

ML= 0

2P3/2

2S1/2

(b) Allowed transitions for q=0

ML= -1 0 +1

ML= 0

2P3/2

2S1/2

(c) Allowed transitions for q=+1

Figure 3.2: Possible transitions with dipole coupling between energy states of 2S1/2 and 2P3/2.
The lines connecting the energy levels represent allowed transitions for both radiation induced
absorption and stimulated emission. The ground state and excited states are now indicated with
Russel Saunder symbols 2S1/2 and 2P3/2. The superscript indicates the multiplicity, the number
of possibilities for J . The letters S and P indicates the value for L, respectively 0 and 1 for
the ground and excited state. The subscript indicates the value for J , which is the total angular
momentum L+ S.

In general the dipole operator is proportional to Y ql with a certain q, or like in the example in
equation 3.14 as a sum of Y ml ’s with different q’s. Where q is the value for ml of the incoming
beam. For the example in equation 3.14 q has the values ±1.∫

Ω

Y
mf
lf

Y q1 Y
mi
li
dφdθ (3.15)

Selection rules If this integral is non-zero the transition is allowed. With the help of the
addition rule [19] of spherical harmonics the integral of three Y ql ’s can be evaluated. The addition
rule of spherical harmonics state that the product of two spherical harmonics can be rewritten as
a sum of two new spherical harmonics.

Y m2

l2
· Y m1

l1
= AY m1+m2

l1+l2
+BY m1+m2

l1−l2 (3.16)

And with the help of ∫
Ω

Y m
′

l′ Y ml dφdθ = δl′,lδm′,m (3.17)

The angular integral over the three spherical harmonics become∫
Ω

Y m3

l3
Y m2

l2
Y m1

l1
dφdθ = Aδl3,l1+l2δm3,m1+m2 +Bδl3,l1−l2δm3,m1+m2 (3.18)

The integral is non-zero when both of the next statements are agreed

∆l = l3 − l1 = ±1
∆m = m3 −m1 = q, with q = −1, 0 or +1.

(3.19)

In figure 3.2 is summarized which transitions are allowed for the different polarizations q. The
lines connecting the ground level with the excited levels represent both excitations and emissions
with that particular polarization. In table 3.2 all possible propagation directions and polarizations
of incoming beams with theire corresponding dipole operator expressed in Y ql ’s are summarized.

3.3.1 Selection rules including spin-orbit interaction

When also spin-orbit coupling is considered, described in paragraph 2.4. The number of energy
levels increases and also the selection rules have to be adjusted. When the energy states are
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Polarization q r̂ · êrad ∝ ∆l ∆ml = q 2S1/2 ⇔2 P3/2

Πz
kx,ky

0 Y 0
1 (θ) ±1 0

Πx
kz,ky

±1 Y −1
1 (θ)− Y 1

1 (θ) ±1 ±1

Πy
kx,kz

±1 Y −1
1 (θ) + Y 1

1 (θ) ±1 ±1

σ−kz −1 Y −1
1 (θ, φ) ±1 −1

σ+
kz

+1 Y +1
1 (θ, φ) ±1 +1

σ−ky 0,±1 Y −1
1 (θ, φ)− Y 1

1 (θ, φ)− Y 0
1 (θ, φ) ±1 0,±1

σ+
ky

0,±1 Y −1
1 (θ, φ)− Y 1

1 (θ, φ) + Y 0
1 (θ, φ) ±1 0,±1

σ−kx 0,±1 Y −1
1 (θ, φ) + Y 1

1 (θ, φ)− Y 0
1 (θ, φ) ±1 0,±1

σ+
kx

0,±1 Y −1
1 (θ, φ) + Y 1

1 (θ, φ) + Y 0
1 (θ, φ) ±1 0,±1

Table 3.2: Possible transitions, excitations and emissions for all different polarizations and prop-
agation directions
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described in the basis |J,mJ〉, the selection rules are determined like before, by looking at the
non-zero transition rates. The transition rate in this new basis is calculated with the matrix
element

〈J ′,m′J | ê · ~r |J,mJ〉 (3.20)

Like in the previous paragraph the easiest way to evaluate the transition rates is by first writing
every term in Y ml ’s. To be able to write the eigenstates |l, s, J,mJ〉 a basis transformation to
|LmL〉 |SmS〉 is needed [20]. The physical idea why a basis transformation is needed here, is that
the driving field only couples to the orbital part of the state. Transitions can take place between
two energy levels where the electron spin stay unchanged. So for states in the |J,mJ〉 basis the
underlying states in the |mL,mS〉 are of importance. As described in equation 2.5 the |J,mJ〉
states are a superposition of |mL,mS〉 states. These transitions with keeping the electron spin
unchanged can however induce a electron spin flip, because the electron in the excited state can
spontaneously fall back into a different spin state. This is made more clear in paragraph 3.4

Basis transformation Spin orbit coupling Starting with writing out the Clebsch-Gordan
coefficients from equation 2.5 [21].

CjmLmS = 〈LMLSMS |JMJ〉 = (−1)
−L+S−MJ

√
2J + 1

(
L S J
LL MS −MJ

)
(3.21)

Here the Clebsch-Constant is written in the form of a Wigner 3j symbol, which can be computed
using the Racah formula which results in a single value (at the website of MathWorld [22] the
explicit calculations are shown). Plugging this basis transformation twice in equation 3.20, once
for the bra, once for the ket and recombine the two Wigner 3j symbols into one Wigner 6j and
one 3j the result is [23]

µeg = e(−1)L
′+S−M ′J

√
(2J + 1)(2J ′ + 1)

×

 L′ J ′ S

J L 1


 J 1 J ′

MJ q −M ′J

 〈α′L′| |r| |αL〉 (3.22)

where the last part 〈α′L′| |r| |αL〉 is the radial integral which will give an extra constant factor
just like described for equation 3.10. The matrix with round brackets is the Wigner 3j symbol
again and the matrix with the curly brackets is the Wigner 6j symbol. For both matrices there
are rules for which these give nonzero results. The general form for the Wigner 3j symbol is(

j1 j2 j3
m1 m2 m3

)
(3.23)

There are 4 rules which apply for Wigner 3j symbols, wherefore it is nonzero [22]:

rule 1 : m1 +m2 +m3 = 0
rule 2 : j1 + j2 + j3 has to be integer,

but when m1 = m2 = m3 = 0, j1 + j2 + j3 has to be an even integer
rule 3 : |mi| ≤ ji
rule 4 : |j1 − j2| ≤ j3 ≤ j1 + j2

(3.24)

The general form of the Wigner 6j symbol can be written as{
j1 j2 j3
J1 J2 J3

}
(3.25)

The Wigner 6j can be split up into four triads [24], which have to obey two rules for which the
Wigner 6j symbol is nonzero. The four triads are (j1, j2, j3), (j1, J2, J3), (J1, j2, J3) and (J1, J2, j3).
The rules are

rule 1 the elements in each triad (x1, x2, x3) have to satisfy the triangle rule:
|x1 − x2| ≤ x3 ≤ x1 + x2

rule 2 sum over the elements in a triad has to be an integer
(3.26)
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MJ=-3/2 -1/2 +1/2 +3/2

MJ=-1/2 +1/2

2P3/2

2S1/2

(a) Allowed transitions for q=-1

MJ=-3/2 -1/2 +1/2 +3/2

MJ=-1/2 +1/2

2P3/2

2S1/2

(b) Allowed transitions for q=0

MJ=-3/2 -1/2 +1/2 +3/2

MJ=-1/2 +1/2

2P3/2

2S1/2

(c) Allowed transitions for q=+1

Figure 3.3: Possible transitions between the energy states of 2S1/2 and 2P3/2. The lines connecting
the energy states represent the allowed transitions for both excitation and stimulated emission for
an incoming beam with a polarization q. The ground state has now two possible states, namely
states corresponding with electron spin up and down. The excited state exist of four possible spin
states, corresponding with the four different possibilities of the projection of J = 3/2.

Selection rules spin-orbit coupling Filling in the quantum numbers for the states in the
energy levels 2S1/2 and 2P3/2 in the rules for the Wigner 3j and 6j symbols, the selection rules for
possible transitions are determined. Rules derived from the Wigner 3j symbol:

rule 1 : MJ −M ′J = −q
rule 2 : J + 1 + J ′ has to be integer
rule 3 : MJ ≤ J

q ≤ 1
|−M ′J | ≤ J ′

rule 4 : |J − 1| ≤ J ′ ≤ J + 1

(3.27)

rules derived from the Wigner 6j symbol:

rule 1 |L′ − J ′| ≤ S ≤ L′ + J ′

|L′ − L| ≤ 1 ≤ L′ + L
|J − J ′| ≤ 1 ≤ J + J ′

|J − L| ≤ S ≤ J + L
rule 2 sum over the elements in a triad has to be an integer

(3.28)

Possible transitions derived from the Wigner symbols for different polarizations q are drawn in
figure 3.4. The result for different polarizations and propagation directions of an incoming beam
are given in table 3.3.

3.3.2 Selection rules including hyperfine interaction

When the atomic states are described in the basis |F,mF 〉, the selection rules are determined
like before, by looking at the non-zero transition rates. The transition rates in this new basis is
calculated as follows

µfi = 〈F ′,m′F | ê · ~r |F,mF 〉 (3.29)

Like in the previous paragraphs the easiest way to evaluate the transition rates is by first write
every term in Y ml ’s. To be able to write the eigenstates |F,mF 〉 a basis transformation to
|LmL〉 |SmS〉 results in [23].

µfi = e(−1)1+L′+S+J+J′+I−MF
√

(2J + 1)(2J ′ + 1)(2F + 1)(2F ′ + 1)

×

 L′ J ′ S

J L 1


 J ′ F ′ I

F J 1


 F 1 F ′

MF q −M ′F

 〈α′L′| |r| |αL〉 (3.30)

where the last part the radial integral which will give an extra constant factor like equation 3.10.
The Wigner 3j matrix here is in the same form as the one in the basis transformation in equation
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Polarization q ∆l ∆J ∆ml ∆mJ
2S1/2 ⇔2 P3/2

Πz
kx,ky

0 ±1 0,±1 0 0

MJ=-3/2 -1/2 +1/2 +3/2

MJ=-1/2 +1/2

Πx
kz,ky

,Πy
kx,kz

±1 ±1 0,±1 ±1 ±1

MJ=-3/2 -1/2 +1/2 +3/2

MJ=-1/2 +1/2

σ−kz −1 ±1 0,±1 −1 −1

MJ=-3/2 -1/2 +1/2 +3/2

MJ=-1/2 +1/2

σ+
kz

+1 ±1 0,±1 +1 +1

MJ=-3/2 -1/2 +1/2 +3/2

MJ=-1/2 +1/2

σ−ky ,σ+
ky

,σ−kx ,σ+
kx

0,±1 ±1 0,±1 0,±1 0,±1

MJ=-3/2 -1/2 +1/2 +3/2

MJ=-1/2 +1/2

Table 3.3: Summary of all possible transitions, excitations and emissions for all different polariza-
tions and propagation directions including spin-orbit coupling. The dipole coupling term operators
are the same as summed in table 3.2. The diagrams are a combination of the diagrams in figure
3.3.
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F=1

F=2

F=0
F=1

0-1
-1 0-2 +1 +2

0 +1-1
0

+1

(a) Allowed transitions for q=-1

F=1

F=2

F=0
F=1

0-1
-1 0-2 +1 +2

0 +1-1
0

+1

(b) Allowed transitions for q=0

F=1

F=2

F=0
F=1

0-1
-1 0-2 +1 +2

0 +1-1
0

+1

(c) Allowed transitions for q=+1

Figure 3.4: Possible transitions between the energy states of 2S1/2 and 2P3/2. The lines connecting
the energy states represent the allowed transitions for both excitation and stimulated emission for
an incoming beam with a polarization q. These schemes are made for the simple case where
I = 1/2. For the ground state the total angular momentum F can take two values, namely
F = |I −S| = 0 and F = I +S = 1. For the excited state the possible values for F are |I −J | = 1
and I + J = 2. For each F there are 2F + 1 degenerate states.

3.22, so the rules are also in the same form

rule 1 : MF −M ′F = −q
rule 2 : F + 1 + F ′ has to be integer

but when MF = M ′F = q = 0, F + 1 + F ′ has to be an even integer
rule 3 : MF ≤ F

q ≤ 1
|−M ′F | ≤ F ′

rule 4 : |F − 1| ≤ F ′ ≤ F + 1

(3.31)

The first of the two Wigner 6j matrices is exactly the same as the one in the basis transformation
from JMJ to SMS in equation 3.22. The rules that apply are the same

rule 1 : |L′ − J ′| ≤ S ≤ L′ + J ′

|L′ − L| ≤ 1 ≤ L′ + L
|J − J ′| ≤ 1 ≤ J + J ′

|J − L| ≤ S ≤ J + L
rule 2 : sum over the elements in a triad has to be an integer

(3.32)

The rules for the second Wigner 6j matrix can be found by replacing the elements from the first
matrix. The triads and rules can be found by replacing the elements L,L′J, J ′, S with respectively
J, J ′, F, F ′, I. The triads become (L′, J ′, S), (J ′, J, 1), (F, F ′, 1) and (F, J, I) the rules for getting
nonzero values become

rule 1 : |J ′ − F ′| ≤ I ≤ J ′ + F ′

|J ′ − J | ≤ 1 ≤ J ′ + J
|F − F ′| ≤ 1 ≤ F + F ′

|F − J | ≤ I ≤ F + J
rule 2 : sum over the elements in a triad has to be an integer

(3.33)

Possible transitions for different q’s are drawn in figure 3.4. There are some interesting forbidden
transitions to note. The transitions between F = 0 and F = 2 states are not possible because of
the rule 2 and 4 for the Wigner 3j matrix. In diagram 3.4b, the transition from F = 1, MF = 0
to F ′ = 1, M ′F = 0 is not possible, because of rule 2 for the Wigner 3j. The result of all possible
transitions for different polarizations and propagation directions are summed in 3.4. For the
simple system coupled to one nucleus with spin 1/2, all polarizations and propagation directions
the selection rules are summarized in table 3.4, the schemes are combinations of the schemes in
figure 3.4.
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Polarization q ∆J ∆F ∆MF
2S1/2 ⇔2 P3/2

Πz
kx,ky

0 0,±1 0,±1 0

F=1

F=2

F=0
F=1

0-1
-1 0-2 +1 +2

0 +1-1
0

+1

Πx
kz,ky

,Πy
kx,kz

±1 0,±1 0,±1 ±1

F=1

F=2

F=0
F=1

0-1
-1 0-2 +1 +2

0 +1-1
0

+1

σ−kz −1 0,±1 0,±1 −1

F=1

F=2

F=0
F=1

0-1
-1 0-2 +1 +2

0 +1-1
0

+1

σ+
kz

+1 0,±1 0,±1 +1

F=1

F=2

F=0
F=1

0-1
-1 0-2 +1 +2

0 +1-1
0

+1

σ−ky ,σ+
ky

,σ−kx ,σ+
kx

0,±1 0,±1 0,±1 0,±1

F=1

F=2

F=0
F=1

0-1
-1 0-2 +1 +2

0 +1-1
0

+1

Table 3.4: Summary of all possible transitions, excitations and emissions for all different polariza-
tions and propagation directions including Hyperfine structure. The dipole coupling operators are
the same as summed in table 3.2. The diagrams are combinations of the diagrams in figure 3.4.
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2P3/2

2S1/2

M J=-3/2 -1/2
+1/2

+3/2

M J=-1/2
+1/2

Figure 3.5: Demonstration of electron spin flip, by optically pumping electron population to
the excited state, due to spontaneous emission, here indicated with a dashed line, the electron
population will fall back to the ground state with electron spin down. Excitation happens in this
diagram with a q = −1-polarization.

3.4 Conclusion

In figure 3.5 the states mJ are with the help of equation 3.21 written in the individual projections
mL and mS . With the help of this figure it can be illustrated in what way an electron spin can
be flipped by pumping electron population to the excited state. Transitions can be made between
energy levels where the spin state is unchanged. Looking at figure 3.5 allowed transitions are
sketched for a q = −1-polarization. When applying an external magnetic field the different spin
states will be split relative to each other, and is possible to selectively couple to the to state from
the ground state level with electron spin up and the excited state with projection mJ = −1/2.
The coupling between the ground state mJ = −1/2 and the excited state mJ = −3/2 is also
allowed, but because of the Zeeman splitting these levels have a bigger energy separation and are
off resonance. The coupling between the mJ = +1/2 and mJ = −1/2 is allowed because the
excited state is a superposition of two electron spin projections, spin up and spin down with a
certain amplitude given by the Clebsch-Gordan constant, here 1√

3
|−1,+1/2〉 + 2√

3
|0,−1/2〉, so

because of the fraction with spin up there is a coupling possible where the spin is unchanged.
The population can decay via spontaneous emission to the ground state level which contains the
electron spin down state. So although a coupled electric field only couples with the electric charge
of the electrons, the electron spin can be changed indirectly with the help of spontaneous emission.
Electron spins can also be flipped without spontaneous emission, by coupling a second laser to the
system between the two ground states and the same excited state mJ = −1/2. This technique
is called Coherent Population Trapping CPT, which make use of the so called dark state (see
reference [25] for a nice introduction). Flipping an nuclear spin with the help of optical pumping
will be worked out in detail in chapter 6.



30 CHAPTER 3. ELECTRIC DIPOLE TRANSITION AND SELECTION RULES



Chapter 4

Mixing of spin states

4.1 Introduction

At zero field states are well described with the quantum numbers F,mF , they are in pure |F,mF 〉
states. At zero field these states can with the help of Clebsch-Gordan coefficients be described in
basis factors |mJ ,mI〉 (see equation 2.5). At the high field limit the states are in pure |mJ ,mI〉
states. In intermediate fields there is a continues transition between the two descriptions. States
cannot be described with pure |F,mF 〉 or |mJ ,mI〉 states, but they can be described with those
states with field depending Clebsch-Gordan coefficients in front. In this chapter an example
is worked out for a donor-bound electron coupled with hyperfine coupling to one nuclear spin
1/2. The concepts from chapter 2 are combined to construct an magnetic field depending energy
diagram. With this example the field dependent mixing of states will be illustrated.

4.2 Construction of field depending energy diagrams

The expectation values for the Hamiltonian for the ground state D0 coupled with one nuclear spin
1/2 are worked out. For the electron in the ground state D0 coupled to one nucleus with spin I =
1/2, the orbital angular momentum L = 0, the total angular momentum F = |I−J |, ..., I+J = 0, 1
and J = S = 1/2. The possible eigenstates in the |F,mF 〉 basis are |0, 0〉, |1,−1〉, |1, 0〉 and |1,+1〉.
The possible eigenstates of this system in the |mI ,mJ〉 basis are |−1/2,−1/2〉, |−1/2,+1/2〉,
|+1/2,−1/2〉 and |+1/2,+1/2〉.

Including the Zeeman term and the hyperfine interaction term in the Hamiltonian from equa-
tions 2.36 and 2.21.

Hhf +HZ = A~I · ~J − ω0 (gJJz + gIIz) (4.1)

The operators in the Zeeman term are diagonal in the |J,mJ〉 basis and the Hyperfine interaction
operator is diagonal in the |F,mF 〉 basis. The eigenvalues of these operators can be expressed in
either one of these bases, which results in diagonal elements from the operators with eigenvalues
diagonal in that basis and off diagonal elements from the operators with eigenvalues diagonal in
the other basis. To diagonalize this Hamiltonian a new basis has to be constructed from the
excising basis states.

First the expectation values will be worked out in one of the two bases, where after the terms
will be diagonalized with the help of defining a new basis. The eigenstates from different bases
are related with the help of Clebsch-Gordan constants. The eigenstates from one basis can be
transformed in the other. All basis vectors can now easily be transformed into each other.

(|mI ,mJ〉)m = M (|F,mF 〉)n (4.2)

where M is a m × n matrix, containing the Clebsch-Gordan constants and (|mI ,mJ〉)m and
(|F,mF 〉)n are respectively vectors containing m and n elements of the basisvectors |mI ,mJ〉 and
|F,mF 〉.

31
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For the example in this chapter the transformation for the ground states coupled to one nuclear
spin 1/2 looks like 

∣∣− 1
2 − 1

2

〉∣∣− 1
2 + 1

2

〉∣∣+ 1
2 − 1

2

〉∣∣+ 1
2 + 1

2

〉

 =


0 1 0 0

− 1√
2

0 1√
2

0

1√
2

0 1√
2

0

0 0 0 1




|0 0〉

|1 −1〉

|1 0〉

|1 1〉

 (4.3)

This transformation is needed for calculating the expectation value of the operators which are not
diagonal in the basis where is worked in. Working in the basis |mJ ,mI〉 the Zeeman operators are
diagonal. So the eigenvalues of the Zeeman operator are easily found

− ω0

(
gJ Ĵz + gI Îz

)


∣∣− 1
2 − 1

2

〉∣∣− 1
2 + 1

2

〉∣∣+ 1
2 − 1

2

〉∣∣+ 1
2 + 1

2

〉

 =


−~ω0

2 (−gJ − gI)
∣∣− 1

2 − 1
2

〉
−~ω0

2 (−gJ + gI)
∣∣− 1

2 + 1
2

〉
−~ω0

2 (+gJ − gI)
∣∣+ 1

2 − 1
2

〉
−~ω0

2 (+gJ + gI)
∣∣+ 1

2 + 1
2

〉

 (4.4)

To calculate the eigenvalues of the hyperfine interaction operators, the basis transformation worked
out in equation 4.3, is needed. With the help of equation 2.25 the eigenvalues of the hyperfinein-
teraction can be calculated.

AÎ · Ĵ



∣∣− 1
2 − 1

2

〉∣∣− 1
2 + 1

2

〉∣∣+ 1
2 − 1

2

〉∣∣+ 1
2 + 1

2

〉

 = AÎ · Ĵ


|0 −1〉

− 1√
2
|0 0〉 + 1√

2
|1 0〉

+ 1√
2
|0 0〉 + 1√

2
|1 0〉

|1 +1〉



=


+ 1

4A~
2 |0 −1〉

+ 3
4
√

2
A~2 |0 0〉 + 1

4
√

2
A~2 |1 0〉

− 3
4
√

2
A~2 |0 0〉 + 1

4
√

2
A~2 |1 0〉

+ 1
4A~

2 |1 +1〉



(4.5)

To express these eigenvalues in |mJ ,mI〉 the inverse transformation from equation 4.3 is needed.
After applying the inverse transformation the end result will be

AÎ · Ĵ



∣∣− 1
2 − 1

2

〉∣∣− 1
2 + 1

2

〉∣∣+ 1
2 − 1

2

〉∣∣+ 1
2 + 1

2

〉

 =


+ 1

4A~
2
∣∣− 1

2 − 1
2

〉
+ 1

4A~
2
[
−1
∣∣− 1

2 + 1
2

〉
+ 2

∣∣+ 1
2 − 1

2

〉]
+ 1

4A~
2
[
+2
∣∣− 1

2 + 1
2

〉
− 1

∣∣+ 1
2 − 1

2

〉]
+ 1

4A~
2 |+1/2 +1/2〉

 (4.6)

The eigenvalues for both the Zeeman and the hyperfine interaction operators are now calculated
in the |mJ ,mI〉 basis. Calculating the expectation values of these two terms in the Hamiltonian
is now possible

〈mJ ,mI |
(
−ω0

(
gJ Ĵz + gI Îz

)
+AÎ · Ĵ

)
|mJ ,mI〉 (4.7)

When putting the expectation values in a matrix with the bra’s 〈mJ ,mI | put horizontal and the
kets |mJ ,mI〉 vertical in the order

∣∣− 1
2 − 1

2

〉
,
∣∣− 1

2 + 1
2

〉
,
∣∣+ 1

2 − 1
2

〉
,
∣∣+ 1

2 + 1
2

〉
, this
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is nicely illustrated.
−~ω0

2 (−gJ − gI) + 1
4A~

2 0

0 −~ω0

2 (−gJ + gI)− 1
4A~

2

0 + 2
4A~

2

0 0

0 0

+ 2
4A~

2 0

−~ω0

2 (+gJ − gI)− 1
4A~

2 0

0 −~ω0

2 (+gJ + gI) + 1
4A~

2



(4.8)

Because the hyperfine interaction operator changes the state when working on the |J,mJ〉 states,
as can seen in equation 4.6, the matrix from equation 4.8 containing the expectation values, has off-
diagonal elements. The expectation values of the Zeeman terms only appear on the diagonal. This
matrix can be diagonalized by defining a new basis |Ψnew〉 =

(
α
∣∣− 1

2 + 1
2

〉
+ β

∣∣+ 1
2 −

1
2

〉)
. Diago-

nalizing this matrix by determining the eigenvalues of the matrix by solving det [Matrix(4x4)− λI4] =
0 for the eigenvalues lambda. The diagonalized matrix with expectation values looks like

−~ω0

2 (−gJ − gI) + 1
4A~

2 0

0 −~ω0

2 (+gJ + gI) + 1
4A~

2

0 0
0 0

0 0
0 0

1
4

(
−A~2 − 2

√
A2~4 + [(gI − gJ) ~ω0]

2

)
0

0 1
4

(
−A~2 + 2

√
A2~4 + [(gI − gJ) ~ω0]

2

)



(4.9)

Plotting these eigenvalues gives the field dependent energy diagram in figure 4.1. At zero field
the offset is due to hyperfine interaction. With increasing external magnetic field the energy levels
converge into two bundles. These two bundles are the Zeeman split projections of the electron
spin mJ = mS up and down. The splitting between the two sub levels in the two overall bundles
is due to the different nuclear spin projections. This energy splitting is given by equation 2.43.
The two straight lines are from the two diagonal terms in the matrix from equation 4.8 the two
hyperbola functions are from the coupled states due to off diagonal elements. In paragraph 4.3
is explained that these hyperbola functions are due to field dependent mixing of the two coupled
spin states.

4.3 Field dependent mixing of spin states

For explaining the field dependent mixing of states, a closer look at the diagonalization process is
needed. When the Hamiltonian operates on the new defined basis state, the eigenvalue equation
is in the from

Ĥ |Ψnew〉 = λ |Ψnew〉

Ĥ
(
α
∣∣− 1

2 + 1
2

〉
+ β

∣∣+ 1
2 −

1
2

〉)
= λ

(
α
∣∣− 1

2 + 1
2

〉
+ β

∣∣+ 1
2 −

1
2

〉) (4.10)
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Figure 4.1: Field dependent energy diagram of the ground state D0 coupled to one nucleus with
spin 1/2. Parameters for ZnSe from section 5.3.1 are used. Further explanation about these energy
diagrams can be found in chapter 5

The eigenvalues are given by the equations 4.4 and 4.5. Filling these eigenvalues for the Hamilto-
nian operator acting on the new basis eigenstates in equation 4.10

Ĥ |Ψnew〉 = α
[ (
−~ω0

2 (−gJ + gI)− 1
4A~

2
) ∣∣− 1

2 + 1
2

〉
+ 2

4A~
2
∣∣+ 1

2 − 1
2

〉 ]
+β
[ (

+ 2
4A~

2
) ∣∣− 1

2 + 1
2

〉
+
(
−~ω0

2 (+gJ − gI)− 1
4A~

2
) ∣∣+ 1

2 − 1
2

〉 ] (4.11)

The constants alpha and beta will be the field dependent mixing amplitudes. Alpha is the measure
for the amount of spin state

∣∣− 1
2 + 1

2

〉
. Grouping the terms for each state from equation 4.11

Ĥ |Ψnew〉 =
[
−~ω0

2 (−gJ + gI)− 1
4A~

2 + 2β
4αA~

2
]
α
∣∣− 1

2 + 1
2

〉
+
[
−~ω0

2 (+gJ − gI)− 1
4A~

2 + 2α
4βA~

2
]
β
∣∣+ 1

2 − 1
2

〉
= λ

(
α
∣∣− 1

2 + 1
2

〉
+ β

∣∣+ 1
2 −

1
2

〉)
(4.12)

Here both terms in front of alpha and beta equals lambda and thus equals each other[
−~ω0

2
(−gJ + gI)−

1

4
A~2 +

2β

4α
A~2

]
=

[
−~ω0

2
(+gJ − gI)−

1

4
A~2 +

2α

4β
A~2

]
(4.13)

Solving this for alpha gives two solutions for α

α1 =
−~ω0(gI−gJ )−

√
A~4+~2ω2

0(gI−gJ )2

A~ β1

α2 =
−~ω0(gI−gJ )+

√
A~4+~2ω2

0(gI−gJ )2

A~ β2

(4.14)
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Figure 4.2: The field depending expectation values of the state |−1/2,+1/2〉 are here plot-
ted. There are two solutions, representing the two different expectation values of the spin state
|−1/2,+1/2〉 in the two mixed energy states in figure 4.1. The hyperfine coupling constant here
taken is the total average coupling constant, explained in paragraph 5.2.1.

With the help of the restriction that the probability amplitudes are normalized alpha can be
expressed in terms of the ratio Ri(ω0) = αi/βi determined from equation 4.14.

1 =
√
α2
i + β2

i

1 = 1

αi

√
1+

β2
i
α2
i

αi = 1√
1+R−2

i (ω0)

(4.15)

When plotting α2
i against the magnetic field B0, the field dependent percentage of the state

|−1/2,+1/2〉 is visualized in figure 4.2. The hyperbola function indicate the portion of the spin
state |−1/2,+1/2〉. At zero field the mixing is fifty fifty. This is also what is expected, because
at zero field the state is described in pure |F,mF 〉 states. At zero field |0, 0〉 = 1√

2

∣∣− 1
2 + 1

2

〉
−

1√
2

∣∣+ 1
2 −

1
2

〉
and |1, 0〉 = 1√

2

∣∣− 1
2 + 1

2

〉
+ 1√

2

∣∣+ 1
2 −

1
2

〉
, thus the energy levels described by the two

hyperbola in figure 4.1 contain at zero field both an equal amount of the spin states
∣∣− 1

2 + 1
2

〉
and∣∣+ 1

2 −
1
2

〉
. For example at 7 Tesla α2

1 = 0.991669 and α2
2 = 0.008331. With increasing field the

mixing of states converge to one of the pure |mJ ,mI〉.
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Chapter 5

Calculated levels

5.1 Introduction

In this chapter the energy levels for an electron coupled to different number of nuclei are calculated.
Field dependent energy diagrams are constructed, with the help of the Mathematica code in
Appendix E. The first system that is worked out is a system where the donor-bound electron
couples to nuclei with nuclear spin 3/2. Therefor the values of the g-factors, nuclear spin and
hyperfine splitting are taken from a GaAs semiconductor. The second system that is described
is a system where the electron couples to nuclei with spin 1/2. Here the g-factors and hyperfine
coupling constant of ZnSe are used. Both systems are worked out for different number of nuclei.
The diagrams in this thesis uses the total hyperfine coupling, when evaluating the coupling to one
or two nuclei, this assumes that all nuclei are coupled, but only the coupling with one or two nuclei
are evaluated. Transition schemes with possible transitions between the ground and excited states
are constructed, with the help of the Mathematica code in Appendix F. The strongly allowed
transitions at low field are weakly allowed at high field and vice versa. These transition diagrams
are needed for constructing possible DNP diagrams, which will be constructed in chapter 6.

5.2 Donor electron coupled to nuclei with spin 3/2

5.2.1 Parameters for Si:GaAs

Before starting with the calculations, a short summary of the parameters that are used for the
model with nuclear spins 3/2. Parameters of bandstructure GaAs: ESO ≈ 0.34eV ≈ 82.2·103GHz
[26], Eg ≈ 1.51eV [27].

Hyperfine coupling constants: Ahole~2 ≈ −15µeV [12], Aelectron~2 ≈ +90µeV [12], [28]. These
values for the hyperfine coupling constants are the average over the hyperfine coupling constants
for the three nuclear isotopes 69Ga, 71Ga and 75As weighted by theire relative abundances [15].
These values are used for the construction of the field dependent energy diagrams in this chapter.
This value is the total hyperfine coupling between the electron and all nuclei. This constant still
has to be multiplied with the electron density function squared, as showed in equation 2.20. When
dealing with more nuclei coupled the expression in equation 2.20 also needs to be multiplied by
the number of nuclei, which is explained in section 2.6.

g-factors GaAs: nuclear g-factor gn =≈ 1.3 [28], electron g-factor ge = +0.44 [29] (free electron
ge ≈ −2, sign convention used from reference [14]), hole g-factor gh = +0.2[ [30], [31]] (Zeeman
splitting of the hole energy levels is half that of the electron and the signs of the g-factor are
equal).

5.2.2 Donor electron coupled to one nuclear spin 3/2

37
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Figure 5.1: System coupled with one nuclear spin 3/2, with the parameters defined in paragraph
5.2.1. For the hyperfine coupling constant, the total average hyperfine coupling constant is taken,
which result in bigger splittings in the diagram, than the hyperfine coupling to just 1 nucleus
(see discussion in paragraph 5.2.1). The F values for the excited state D0X are |I − J |,...,I + J ,
respectively 0,1,2 and 3. For the ground state D0 the F values are I + S and |I − S|, respectively
2 and 1. The values for mF are placed at the right side of the diagram, although these numbers
are only well defined at zero field. the quantum numbers mJ and mI are well defined only at the
high field limit. See chapter 4 for more details.
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Energy diagram in external magnetic field In figures 5.1a and 5.1b the energy levels of the
D0X and D0 coupled with one nucleus with nuclear spin 3/2 are shown. At zero field the levels are
split due to Hyperfine interaction. Each level is 2F + 1 degenerate. When increasing the external
magnetic field, the degenerate levels split up. When increasing the field the lines converge into
overall bundles. These bundles are due to the Zeeman splitting of the electron/hole projection.
With increasing magnetic field the sub levels inside these bundles converge to parallel lines with
equal spacing. This holds only if the Zeeman term of the nucleus which is a factor Mn/me ≈ 105

smaller than that of an electron is neglected. When the Zeeman term of the nucleus is included
these parallel sub levels will at very high fields diverge again. These sub levels are due to the
Zeeman splitting of the possible nuclear spin projections.

Energy diagram of the ground level D0 In the ground state D0, the hyperfine coupling
due to the bound electron is Ae ≈ +90µeV ≈ +21.7 GHz. This value is the average hyperfine
coupling constant and represents the total coupling with all nuclei, so for determining the value
for one nucleus this would be A/(105), also the amount of contact with the electron density should
be included as explained in paragraph 5.2.1. For the D0 in figure 5.1b the offset is correlated to
the hyperfine coupling constant and the size of the total angular momentum F . The F values

here are I + S and |I − S|, respectively 2 and 1. The offsets from zero are respectively − 5Ae~2

4

and 3Ae~2

4 derived from equation 2.24. With increasing external magnetic field the degenerate
levels split up due to Zeeman splitting. Each projection Fz gets an extra term −gFω0Fz, which is
explained in section 2.7. At high fields where the Zeeman term of the electron is more dominant
than the hyperfine splitting (i.e. ~ω0 >> A~2), the energy splittings are dominated by the overall
splitting of the electron spin projection. Energy splittings inside these overall bundles are due to
the projection of the nuclear spin. Here the system couples with one nuclear spin 3/2, so there
are four possible projections per bundle, namely Iz = −3/2,−1/2,+1/2,+3/2. The splitting can
be calculated with the equation derived in section 2.7

〈mJmI | AIzJz |mJmI〉 = A~2mJmI (5.1)

If the Zeeman splitting of the nucleus is neglected the sub levels converge to parallel lines with equal
spacing. The spacing between the sub levels in the ground state is A~2 ·1/2 ·3/2−A~2 ·1/2 ·1/2 =
21.7 · (3/4 − 1/4) = 10.85 GHz. It is possible to check if the result plotted in figure 5.1 are in
agreement with this high field description. Looking at the analytical solution of the two lowest
lines of the D0 states gives

1
4 (3A~2 − 2gJ~ω0)

1
4

(
−A~2 + 2

√
3A2~4 + (A~2 − gJ~ω0)

2

)
(5.2)

For large magnetic field ω0 >> 1 the term 3A2~4 inside the square root can be neglected. The
difference between the two lines becomes

1

4
(3A~2 − 2gJ~ω0)− 1

4

(
−A~2 + 2

√
(A~2 − gJ~ω0)

2

)
(5.3)

The Zeeman terms cancel, the remaining term is A~2

2 = 10.85 GHz. So the high field description
from equation 5.1 are in agreement with the derived analytical solution. To give more feeling for
the analytical expression in equation 5.2, at zero magnetic field (ω0 = 0) both expressions equals

the offset for F = 1: 3Ae~2

4 . The analytical solutions are derived with the help of the model build
in Mathematica given in Appendix E.

Energy diagram of the excited level D0X Here Ah~2 ≈ −15µeV ≈ 21.7 GHz For the D0X
in figure 5.1b the F values are |I − J |,...,I + J , respectively 0,1,2 and 3. The offsets from zero are
respectively − 15A

4 ,− 11A
4 ,− 3A

4 and + 9A
4 which are derived from equation 2.24, where Ah is the
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hyperfine coupling constant for the hole. Because the hyperfine coupling constant of the hole is
negative, there are three offsets above zero and one beneath. The spacings inside the bundles differ
between bundles. The spacings inside the outer two bundles are larger than the spacings in the
inner two bundles. The nucleus experiences a higher local field in the outer bundles because the
nucleus couple to a larger local field of the hole, namely ±3/2 and to ±1/2 in the inner bundle. For
the D0X the hyperfine splitting is Ah~2 ≈ −15µeV ≈ −3.6 GHz. The energy splitting between
the sub levels at high field is A~2 ·3/2·3/2−A~2 ·3/2·1/2 = 3.6·(9/4−3/4) = 5.4 GHz for the outer
bundles. The spacing between the sub levels in the inner bundles is A~2 ·1/2·3/2−A~2 ·1/2·1/2 =
3.6 ·(3/4−1/4) = 1.8 GHz. It seems like that the lower inner bundle corresponding to mJ = +1/2
has less spacing between its sub levels than the upper inner bundle mJ = −1/2. However when
increasing external magnetic field these spacings become equal.

Identifying states in the energy diagrams At low field the degenerate states the Zeeman
splitting of the projection of total angular momentum Fz looks like

Hz = −gF~ω0Fz (5.4)

which was derived in section 2.7. The factor gF is defined in equation 2.39. With the help of the
sign of gF , the energy levels can be labeled with quantum numbers mF . When the gF is positive,
the highest line corresponds with the most negative projection mF . For the energy levels in the
D0X energy diagram figure 5.1b, the F values and their corresponding gF factors at low field from
up to down are

For F = 0 : gF = 0
For F = 1, 2 and 3 : gF ≈ +0.1

(5.5)

So the ordering in low external field of mF projections from up to down is from most negative
to most positive. For the energy levels in the D0 energy diagram in figure 5.1a the F values and
theire corresponding gF factors are

For F = 1 : gF ≈ −0.05
For F = 2 : gF ≈ +0.05

(5.6)

So the order of the projections of the F = 1 states are opposite. The labels for mF are placed right
from the diagram, but these hold only for low magnetic field. At high field the states are described
with the quantum numbers mJ ,mI . In the diagrams in figure 5.1 the energy levels are labeled
with the quantum numbers mJ and mI . With the help of the sign of the electron/hole g-factor the
ordering of labeling mJ can be derived. When the g-factor gJ is negative, the projections mJ run
from most positive to most negative. The ordering of the projections mI can be obtained in two
ways. One is looking at the energy splitting between the sub levels, described in equation 2.26.
The sign of the product of mJ mI and the hyperfine couplings constant, determines the order of
mI . The second way is looking at the sum mJ +mI = mF .

Possible transitions In figure 5.2 the energy levels with theire quantum numbers are derived
from the field dependent energy diagrams. The energy levels per bundle are grouped and placed
alongside at the same height, because the energy splittings between the sub levels in the overall
bundles are small, they are optically unresolvable. So all states on the same height belong to the
same electron/hole projection. The strongly allowed transitions between the ground and excited
states are indicated with lines. These represent both excitations and stimulated emissions with
q = 0-polarized light. In figure 5.2a the strongly allowed transitions at low external magnetic field
are given. The lines indicate both excitation and emission. The selection rules are determined
by equation 3.30. The dominating rule is the restriction on the change of mF . For q = 0-
transitions ∆mF = 0. Almost all transitions that satisfies this condition are drawn. There are a
few exceptions, most of them are not allowed because the change in F can be either 0,±1. Besides
these two conditions there is still one unexplained not allowed transition. The transition from
state |2, 0〉 to |2, 0〉 is not allowed, because of the second rule derived from the Wigner 3j matrix
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(a) Weakly allowed q = 0-transitions at high fields.

(b) Strongly allowed q = 0-transitions at the high field.

Figure 5.2: q = 0-transitions between the ground level D0 and the excited state D0X for a system
coupled to one nuclear spin 3/2. Figure a) are the strongly allowed transitions at low external
magnetic field, which are weakly allowed at high fields. In figure b) are the strongly allowed
transitions at high magnetic field, these are weakly allowed at low magnetic fields. The selection
rules for transition at high field are given in equation 5.8. The quantum number that are not
important for the strongly allowed transitions at high field are grayed out, here the quantum
numbers I,mI , J,mJ are needed to calculate the transition strengths. Transition schemes for
other polarizations are given in Appendix B.2.
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in equation 3.31. When both mF and m′F are zero than F + 1 + F ′ has to be an even integer,
which is not the case here.

In 5.2b the strongly allowed transitions at high field are given. The states at high field are
described by |J,mJ〉 |I,mI〉 so the matrix element of with the interaction term

〈I ′,m′I | 〈J ′,m′J | ê · r̂ |J,mJ〉 |I,mI〉 (5.7)

because the interaction operator only acts on radial parts and not on the spin part, this term can
be rewritten as

〈I ′,m′I |I,mI〉 〈J ′,m′J | ê · r̂ |J,mJ〉 = δI′,Iδm′I ,mI 〈J
′,m′J | ê · r̂ |J,mJ〉 (5.8)

The rules from paragraph 3.3.1 apply, with the extra restriction that there is no change in spin
angular momentum I and projection mI .

At intermediate fields there will be a mixture of two the possible transition schemes. As
explained in chapter 4 the energy levels at low field are purely described with the quantum numbers
F and mF and at high field purely with the quantum numbers J and mJ . At intermediate field
the energy levels are described as a mixture of states, with field depending probabilities. Because
of this mixture of states the possible transitions are also effected. So in intermediate field the
transitions that are possible are both the transitions at low and high field with a field depending
amplitude. These amplitudes are described in chapter 4.

5.2.3 Donor electron coupled to two nuclear spins 3/2

Energy diagram in external magnetic field In figures 5.3a and 5.3b the energy levels of
the ground state D0 and the excited state D0X are shown. Because there are now two nuclei
coupled to the system, the electron couples to a total nuclear spin Itot, which can take the values
|I1− I2| = 0 to I1 + I2 = 3 with integer steps. The assumption made is that the coupling between
electron and nuclear spin is equal for both nuclei. Because the total nuclear spin can take multiple
values, the number of hyperfine splittings at low field increases. For each total nuclear spin there
are total angular momenta F which determines the energy offset. For all values of total nuclear
spin Itot, F runs from |I − J | to I + J in integer steps. In table 5.1 the possibilities for F values
are given. At zero external magnetic field the hyperfine structure levels have an offset due to

D0X D0X D0 D0

Itot F offsets F offsets

0 3
2 0 1

2 0

1 1
2 , 3

2 , 5
2 − 5Ah~2

2 , −Ah~2, 3Ah~2

2
1
2 , 3

2 −Ae~2, Ae~
2

2

2 1
2 , 3

2 , 5
2 , 7

2 − 9Ah~2

2 , −3Ah~2, −Ah~
2

2 , 3Ah~2 3
2 , 5

2 − 3Ae~2

2 , Ae~2

3 3
2 , 5

2 , 7
2 , 9

2 −6Ah~2, − 7Ah~2

2 , 0, 9Ah~2

2
5
2 , 7

2 −2Ae~2, 3Ae~2

2

Table 5.1: Quantum numbers corresponding to coupling to two nuclear spins. Here Itot is defined
in equation 2.29.

the hyperfine interaction. These values for the offsets corresponding to the different values of
F are summed in table 5.1, these are calculated with equation 2.26. With increasing field the
degenerate levels split up due to Zeeman splitting. The overall bundles are due to the Zeeman
splitting of the electron/hole, just the same as in the case with one nuclear spin coupled. With
two nuclei coupled to the electron, inside the overall bundles there are more sub levels. At high
field the splitting inside the overall bundles is due the different projections of the total nuclear
spin, described with equation A~2mImJ . In this case the total nuclear spin Itot = 3, there are
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Figure 5.3: System coupled with two nuclei with spin 3/2, with the parameters of GaAs.
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2I + 1 possible projections in an external magnetic field. In the case Itot = 0 the only projection
in an external magnetic field is mI = 0. With increasing field the zero projections from the total
nuclear spin Itot = 0, 1, 2, 3 converge, as can seen in figure 5.3.

Identifying states in the energy diagrams Like in paragraph 5.2.2, with the help of the gF
factors the states can be identified. But another way, much easier is using the signs of the gJ
and of the hyperfine coupling A to determine the ordering of mI projections. For example the
highest bundle of D0X has a projection mJ = −3/2 because the hole g-factor is positive (+0.2).
The hyperfine coupling constant is negative (-0.15µeV ) so due to the energy shift A~2mJmI , the
ordering mI from up to down runs from +3 to −3. The labeling of mF values can easily obtained
from the relation mF = mI +mJ . Labeling the values F at zero field, needs the calculated offsets
given in table 5.1 (the sign inside the hyperfine coupling constant must be taken into account. For
example for the excited state an offset +A gives a negative offset).

5.3 Donor electron coupled to nuclei with spin 1/2

5.3.1 Parameters for F:ZnSe

The model of systems coupled to nuclei with spin 1/2, the parameters for F:ZnSe are used. The
composition for F:ZnSe: the natural abundance of 67Zn with nuclear spin I=5/2 is 4.11%. 77Se
with nuclear spin I=1/2, has a natural abundance of 7.58%. 19F with spin 1/2, has a natural
abundance of 100%. The hyperfine coupling constants are: ASe~2 = 33.6µeV ,AZn~2 = 3.7µeV
and AF~2 = 200µeV [32]. Like in the discussion for the parameters of GaAs in paragraph 5.2.1
the hyperfine coupling constants given are the average over the coupling constants of all coupled
nuclei. This constant is the total coupling with all nuclei and still has to be multiplied with the
electron density function squared, as showed in equation 2.20.

The g-factors of importance for ZnSe are: for the electron ge = −1.37 [33], for the hole
gh=+0.21 [33], the nuclear g-factors: for Selenium the g-factor can be derived from the gyro
magnetic factor given in reference [34], for Zinc the g-factor can be found in reference [35]. Fluorine
nuclear g-factor is gn = +5.3 [36]. In this model the values for the nuclear g-factor and hyperfine
coupling of Fluorine are taken.

5.3.2 Donor electron coupled to one nuclear spin 1/2

Energy diagram in external magnetic field In figure 5.4 the field dependent diagrams are
given for a system coupled with one nucleus with nuclear spin 1/2. The difference with the coupling
to nuclei with spin 3/2 is that the number of splittings in the overall bundle is less. The possible
projections of the nuclear spin here are only mI = ±1/2. Also the number of levels at zero field
is less, because the number of possible values that F can take is less. For the ground state D0

the values for F are |I − S| = 1/2− 1/2 = 0 and I + S = 1/2 + 1/2 = 1 with respectively offsets

− 3Ae~2

4 and +Ae~
2

4 . For the excited state the possible F values are |I − J | = |1/2 − 3/2| = 1

and I + J = 1/2 + 3/2 = 2, with respectively theire offsets at zero field − 5Ah~2

4 and + 3Ah~2

4 .
The ordering of electron spin projection is here the other way around, because the g-factor for the
electron is here ge = −1.37 and for the diagrams for nuclear spins 3/2 ge = +0.44.

Possible transitions In figure 5.5 the possible transitions between the energy levels of a system
coupled with one nucleus 1/2 are shown.

5.3.3 Donor electron coupled to two nuclear spins 1/2

Energy diagram in external magnetic field The energy dependent diagrams for a system
coupled with two nuclei with spin 1/2 are shown in figure 5.6. For the ground state D0 the possible
values for F run from |Itot − S| to Itot + S, where Itot has two possible values I1 − I2 = 0 and
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Figure 5.4: System coupled with with one nucleus with spin 1/2, with the parameters defined
in paragraph 5.3.1. The total coupling constant is taken and still has to be multiplied with the
electron density function of the electron. So because of this, the energy splittings in this energy
diagram are in reality smaller. The F values for the excited state D0X are |I − J |,...,I + J ,
respectively 1 and2. For the ground state D0 the F values are I + S and |I − S|, respectively 1
and 0.
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(a) Weakly allowed q = 0-transitions at the high
field.

mI=

+1/2
-1/2

mI=
+1/2
-1/2

(b) Strongly allowed q = 0-transitions at the high field.

Figure 5.5: q = 0-transitions between the ground level D0 and the excited state D0X, which are
strongly allowed in low and high external magnetic field. Selection rules in high field are given
by equation 5.8. Here the system is coupled to one nucleus with spin 1/2. The quantum number
that are not important for the strongly allowed transitions at high field are grayed out, here
the quantum numbers I,mI , J,mJ are needed to calculate the transition strengths. Transition
schemes for other polarizations are given in the Appendix B.3.

I1 + I2 = 1 as explained in paragraph 2.6. The possible values for F in the ground state become
thus 1/2, 1/2 and 3/2. Here the value F = 1/2 can be obtained in two ways, one for the total
nuclear spin Itot = 0 and one for the Itot = 1. Therefor the offsets for the two levels with quantum
number F = 1/2 are different. The offsets can be calculated with equation 2.26, where for I in
both cases the value of Itot is taken. For the excited state D0X the possible F values run from
|Itot − J | to Itot + J : 1/2, 3/2, 3/2 and 5/2. At high field the mI = 0 projections of the two
different total nuclear spin Itot vectors will converge, because at high field the spacings inside the
bundles are due to Zeeman splitting of the nuclear spin projection, which are the same for both
Itot.

Possible transitions Possible transitions between these ground and excited states are given in
figure 5.7. Transition schemes for different polarizations are given in Appendix B.4.
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Figure 5.6: A system coupled with two nuclei with spin 1/2, with the parameters of ZnSe. The F
values for the excited state D0X are |I − J |,...,I + J , respectively 1 and2. For the ground state
D0 the F values are I + S and |I − S|, respectively 1 and 0.
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(a) Weakly allowed q = 0-transitions at the high field.

mI=
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0
-1

mI=
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0
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(b) Strongly allowed q = 0-transitions at the high field.

Figure 5.7: q = 0-transitions between the ground level D0 and the excited state D0X, which are
strongly allowed in low and high external magnetic field. Here the system is coupled to two nuclei
with spin 1/2. The quantum number that are not important for the strongly allowed transitions
at high field are grayed out, here the quantum numbers I,mI , J,mJ are needed to calculate the
transition strengths. Transition schemes for other polarizations are given in the Appendix B.4.



Chapter 6

Optical processes that could cause
nuclear polarization

6.1 Introduction

With the help of the transition diagrams derived in chapter 5, the schemes for possibilities for
inducing DNP can be constructed. In these schemes the excitations can be selectively chosen
by choosing the photon energy and polarization of the light that couples to the system. When
constructing a DNP scheme the excitation transitions and the stimulated emissions are determined
by the polarization of the light that couples to the system. The transitions for spontaneous
emissions take place for the allowed transitions for all possible polarizations. The transition
schemes for all polarizations and theire transition strengths are worked out in Appendix B.

6.2 Possible scheme to induce DNP in a system coupled to
one nuclear spin 3/2

To be able to induce DNP an external magnetic field is needed to be able to couple selectively
to electron/hole spin states. When the field is high enough the energy levels for the different
electron/hole spin states get optically resolvable, because of Zeeman splitting. Now it is possible
to couple for example a laser on resonance between the electron spin down state mJ = −1/2 of the
ground level D0 and the mJ = +3/2 spin projection of the hole state in the excited state D0X.
For building the diagram, which can induce DNP, all spontaneous emissions should be collected.
In figure 6.1 the emissions allowed at high field are taken from the diagram C.1 in Appendix
C. Emission from the state mJ = +3/2 to mJ = −1/2 exceeds the limitation of ∆mJ = 0,±1
determined in paragraph 3.3.1. In figure 6.2 are the strongly allowed emissions at low field, thus
weakly allowed at high field, drawn. The diagram contains emissions with all three polarizations,
namely with q = −1 which are given in figure B.3, q = +1 which are given in figure B.2 and q = 0
which are given in figure 5.2.

In figure 6.3 the weakly allowed transitions at high field are drawn which are coupled to a laser
with a q = +1-polarization. A q = +1-polarization can be obtained by applying an beam with a
σ+
kz

polarization, in other words a σ+-polarization in the Faraday configuration (In paragraph 3.2
and in table 3.2 is explained how a certain q-polarization is obtained).

In figure 6.4 all these transitions are combined and form a diagram to induce DNP. The solid
lines are the transitions that are coupled with a laser with a polarization q = +1, these are
weakly allowed transitions at higher fields. The thin black dashed lines are all weakly allowed
transitions corresponding to spontaneous emission. The thick gray dashed lines are strongly
allowed transitions corresponding to spontaneous emission. When the laser is coupled to the
system, population will be pumped from three of the four levels corresponding to the electron spin
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D0

D0X

Lowest 
bundle

Figure 6.1: The strongly allowed transitions at high field, between the ground levels and the lowest
bundle of the excited state D0X of a system coupled with one nuclear spin 3/2 are sketched.

Lowest 
bundle

D0X

D0

Figure 6.2: The strongly allowed transitions at low field. These are at high fields weakly allowed.
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Lowest 
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D0

D0X

Figure 6.3: Allowed absorption transitions with an incoming beam with polarization q = +1.
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Figure 6.4: Possible scheme to induce DNP in a system coupled to one nuclear spin 3/2. The
transitions combined, where the thick gray dashed lines are the strongly allowed emission at high
field, the black dashed lines the weakly allowed emissions at high field and the solid black lines are
the weakly allowed transitions at high fields, which are coupled with the laser with a polarization
q = +1 (σ+ in Faraday configuration (see paragraph 3.2)).
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D0

D0X

Lowest 
bundle

Figure 6.5: Weakly allowed transitions at high field with q = 0-polarization, between two ground
level D0 and the lowest bundle of the excited state D0X. For a system coupled with one nuclear
spin 1/2.

down to the four levels corresponding to the electron spin up. During pumping, the population
in the four electron spin up levels will decay back to the four electron spin down levels to retain
thermal equalibrium. Only three of the four levels will be repumped, so one would expect the
level |2,−2〉 to be filled, which corresponds with a nuclear spin projection mI = −3/2. Which is
the same as saying the nuclear spins are beeing polarized. To quantitatively say something about
the nuclear polarization, the rate equations should be solved with the help of the density matrix
formalism, explained in Appendix A.

6.3 Possible scheme to induce DNP in a system coupled to
one nuclear spin 1/2

In figure 6.5 the weakly allowed transitions at high field, with q = 0-polarization are sketched.
These transitions are taken from figure B.4 in Appendix B. The transitions in figure 6.6 are the
weakly allowed transitions in high field, with polarization q = +1 taken from figure B.5. In
diagram B.9 can be seen that there are no weakly allowed transitions with a polarization q = −1.
In figure 6.7 are the strongly allowed transitions shown. These are taken from diagram C.2 in
the appendix. Pumping with a q = 0 polarization can be achieved by applying a beam with
an polarization Πz

kx
or Πz

ky
, in other words vertical polarization in the Voight configuration (see

paragraph 3.2). Population will end up in the state |1,+1〉, which corresponds with nuclear spin
up.
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Figure 6.6: Weakly allowed transitions at high field with q = +1-polarization.
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Figure 6.7: Strongly allowed transitions at high field with.
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Figure 6.8: Possible scheme to induce DNP in a system coupled to one nuclear spin 1/2. The
transitions between two ground levels and the lowest bundle of the excited state D0X are sketched.
The thick gray dashed lines are strongly allowed transitions, representing spontaneous emission.
The thin black dashed lines indicate the weakly allowed emissions. The black solid lines represent
weakly allowed transitions that are coupled with the laser with a q = 0-polarization (vertical
polarized light in the Voight configuration (see 3.2)).



Chapter 7

Conclusion and outlook

Inducing Dynamic Nuclear Polarization by selectively addressing transitions between nuclear spin
states should be possible. Essential for inducing DNP in this way is the concept of field dependent
mixing of states. The external magnetic field should be strong enough to be able to couple selec-
tively to the different electron/hole states. At low magnetic fields the different spin projections of
the electron are optically non resolvable. The strongly allowed transitions cannot induce transi-
tions involving nuclear spin flips. With increasing field the allowed transitions that play a role in
changing nuclear spin projections become weaker, but can still play a big role when concerning
large number of oscillations. The amount of mixing determines the amplitude of the weakly al-
lowed transitions at higher field. The strength of the hyperfine coupling will determine the decline
of mixing. The bigger the hyperfine coupling, the slower the decline of mixing with increasing
magnetic field. The size of the total hyperfine coupling constant scales with the number of nuclei
that are coupled to the donor system, so using the mixing of states to induce DNP, the amount
of nuclei plays a role.

Looking at the DNP schemes in chapter 6 only qualitatively arguments are given why it should
be possible to induce nuclear polarization by optically pump the system. What would be a nice
next step in further research for directly induce DNP, is to construct rate equations with the help
of density matrix formalism. With this formalism the steady state amount of population in each
energy level can be calculated. The amount of nuclear polarization possible in the different DNP
schemes can be determined. In appendix A an introduction of setting up rate equations is given.
Also an example with four levels is worked out.

The computer model to produce the field dependent energy diagrams in this thesis has no
limitation on the number of nuclei which can be coupled to the system, or the value of the nuclear
spin. The only limitation on adding a large number of nuclei, or large values for the nuclear spins
is the amount of Random Access Memory (RAM) of the computer. Depending on the size of the
nuclear spin and the amount of RAM the system can be coupled with around 5 nuclei (with 4GB
RAM). For case were the electron in the ground state is coupled to nuclear spins 1/2, there is the
smallest amount of RAM needed to calculate the energy diagrams. A system in the ground state
coupled with a nuclear spin 1/2 can easily be coupled with 50 nuclei. In figure 7.1 the energy
dependent diagram for a system coupled with 50 nuclear spins is shown.
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Figure 7.1: Ground state of a system coupled with 50 nuclei with spin 1/2.
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Appendix A

density matrix formalism

Introduction In this appendix an example for a system with three energy levels coupled with
two lasers is worked out with the help of the density matrix formalism. Two lasers are included in
this model, as a first step towards setting up a so called lambda scheme. Which coherently couples
two electron spin states. This model is extend to four levels to illustrate the difference between
coherent coupling between energy levels and energy levels that are not coherently coupled with a
laser. The levels which are not coherently coupled to the system with a laser, are involved due to
population decay.

ΔC
Δp

Ωprobe

ΩControl
Г31 Г32

edeph

(a) Three level scheme

ΔC
Δp

Ωprobe

ΩControl
Г31 Г32

edeph

Ndeph

Г41

(b) Four level scheme

Figure A.1: Coherent coupling with two lasers, one control and one probe laser. Decay rates are
indicated for a system with three and four levels. The system with four levels is an extension to
the system with three levels.

Short introduction to the concept of the density matrix Beginning with the time-
dependent Schödinger equation

i~
∂Ψs (r, t)

∂t
= Ĥψs (r, t)
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and split the Hamiltonian in such a way that there is the part for a free atom and a part for the
interaction energy.

Ĥ = Ĥ0 + V̂ (t)

The wave function of state s can be defined in this way

ψs(r, t) =
∑
n

Csn(t)un(r)

Here Csn(t) gives the probability amplitude that the atom in state s, is in the eigenstate n at time
t. The un(r)’s are the energy eigenfunctions. The density operator is defined as follows

ρnm =
∑
s

p(s)Cs∗mC
s
n

Where p(s) is the probability that the system is in state s. or in shorter notation

ρnm = C∗mCn

The over line denotes an ensemble average. The density matrix ρnm is defined in such a way
that the diagonal components describes the probability of the system being in state n and the off
diagonal elements in the matrix can be interpreted as the coherence between the levels n and m.
The time evolution of ρnm can be evaluated by the commutation of ρnm with the Hamiltonian.

ρ̇nm = − i
~

[
Ĥ, ρ̂

]
nm

(A.1)

Model density matrix formalism Consider a system with four energy levels, with two coupled
lasers. Assume electric dipole transitions are allowed between the levels 1 and 3, 2 and 3, 3 and
4, other transitions are not allowed by an electric dipole transition. The transition between level
1 and 2 are not allowed by dipole transitions but can take place by a so called cross relaxation
process, where at the same time the electron spin and nuclear spin changes orientation. The
transition between 1 and 4 happens because of Nuclear spin dephasing.

The system can be split into two different parts, one part with the first three energy levels,
see figure A.1a, where population is coherent controlled with the two applied lasers, and a fourth
level that is only coupled to the other three levels with decay rates in figure A.1b.

three level system The three level part can be described with the density matrix formalism
described earlier. First the Hamiltonian must be specified.

Ĥ(t) = Ĥatom + V̂int(t) (A.2)

where

Ĥatom = ~

 ω1 0 0
0 ω2 0
0 0 ω3

 (A.3)

The interaction part of the Hamiltonian Vint is described with the dipole coupling with the electric
field of the applied lasers. Vint = −µ̂Ẽ(t), where

Ẽc(t) = Ece
−ωct + c.c.

Ẽp(t) = Epe
−ωpt + c.c.

(A.4)

and the electric dipole operator can be represented by

µ̂(t) =

 0 0 µ∗31

0 0 µ∗32

µ31 µ32 0

 (A.5)
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The diagonal elements are zero, because all three energy levels have distinct parity. The of diagonal
element which are zero, are zero because these represent the forbidden dipole transitions. The
relation µab = µ∗ba is also used. Vint = −µ̂Ẽ() becomes now

V̂int = −

 0 0 µ∗31Ẽp(t)

0 0 µ∗32Ẽc(t)

µ31Ẽp(t) µ32Ẽc(t) 0

 (A.6)

Ĥ = ~

 ω1 0 −µ∗31Ẽp/~
0 ω2 −µ∗32Ẽc/~

−µ31Ẽp/~ −µ32Ẽc/~ ω3

 = ~

 ω1 0 − 1
2Ω∗p(t)

0 ω2 − 1
2Ω∗c(t)

− 1
2Ωp(t) − 1

2Ωc(t) ω3

 (A.7)

where the Rabi frequency Ω is defined as

Ω = 2|µnm||E|/~ (A.8)

By the use of equation A.1 and the just derived Hamiltonian in equation A.7 the rate equations
can be derived

ρ̇11 = 1
2Ωp(t)ρ13 − 1

2Ω∗p(t)ρ31

ρ̇22 = 1
2Ωc(t)ρ23 − 1

2Ω∗c(t)ρ32

ρ̇33 = − 1
2Ωp(t)ρ13 − 1

2Ωc(t)ρ23 + 1
2Ω∗p(t)ρ31 + 1

2Ω∗c(t)ρ32

ρ̇21 = −iω21ρ21 + 1
2 iΩ
∗
c(t)ρ31 − 1

2 iΩp(t)ρ23

ρ̇31 = −iω31ρ31 − 1
2 iΩp(t)(ρ33 − ρ11) + 1

2 iΩc(t)ρ21

ρ̇32 = −iω32ρ32 − 1
2 iΩc(t)(ρ33 − ρ22) + 1

2 iΩp(t)ρ12

(A.9)

In a rotating wave approximation the system is described with the components as a product
of a slow and a fast varying part in time.

ρ31 = σ31e
−iωpt

ρ32 = σ32e
−iωct

ρ21 = σ21e
−i(ωp−ωc)t

(A.10)

plugging these into equation A.9

ρ̇11 = 1
2Ωpσ13 − 1

2Ω∗pσ31

ρ̇22 = 1
2Ωcσ23 − 1

2Ω∗cσ32

ρ̇33 = − 1
2Ωpσ13 − 1

2Ωcσ23 + 1
2Ω∗pσ31 + 1

2Ω∗cσ32

σ̇21 = iδσ21 + 1
2 iΩ
∗
cσ31 − 1

2 iΩpσ23

σ̇31 = i∆pσ31 − 1
2 iΩp(ρ33 − ρ11) + 1

2 iΩcσ21

σ̇32 = i∆cσ32 − 1
2 iΩc(ρ33 − ρ22) + 1

2 iΩpσ12

(A.11)

In all equations the fast oscillating terms e±2ωp,c are neglected. For example the derivation of the
first row

1

2
Ωp(e

−iωpt + e+iωpt)σ13e
−iωpt =

1

2
Ωp(e

−i2ωpt + 1)σ13 ≈
1

2
Ωpσ13 (A.12)
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here the term e−i2ωpt can be neglected, because the oscillation is to fast for the system to respond.
This is called the Rotating Wave Equation RWA. The derivation of the fourth row for example

σ̇21e
−i(ωp−ωc)t + σ21(−i(ωp − ωc))e−i(ωp−ωc)t

= −iω21σ21e
−i(ωp−ωc)t + 1

2 iΩ
∗
c(t)σ31e

−iωpt − 1
2 iΩp(t)σ23e

+iωct

σ̇21 = i(−ω21 + ωp − ωc)σ21 + 1
2 iΩ
∗
c(t)σ31e

+iωct − 1
2 iΩp(t)σ23e

+iωpt

σ̇21 ≈ iδσ21 + 1
2 iΩ
∗
cσ31 − 1

2 iΩpσ23

(A.13)

Where δ = ∆p − ∆c = (ωp − ω31) − (ωc − ω32) = −ω21 + ωp − ωc and in the last step the
fast oscillating terms are neglected(RWA). The RWA applied on these rate equations can also be
put in a RWA Hamiltonian, which will give the same result when using this to derive the time
dependence from equation A.1

Ĥ = ~

 0 0 − 1
2Ω∗p

0 −(∆p −∆c) − 1
2Ω∗c

− 1
2Ωp − 1

2Ωc −∆p

 (A.14)

To make the rate equations complete all decay and dephasing rates have to be added. Look-
ing at figure A.1b the decay rates per level can be summed and afterwards be added in the rate
equations. In some literature the relaxation terms are a result of a relaxation operator, a so
called Liouville operator L̂, but here is chosen to explicitly write out all the relaxation terms and
implement them in the rate equations. The longitudinal and transverse decay rates respectively
Γnn = T−1

1,n and γnm = T−1
2,nm are defined as followed. Population in state |m〉 ρmm ≡ CmC∗m

decays with e−Γmmt. The decay rate from a certain level is the net result of the sum of out-
wards and inwards decay rates from other levels. The longitudinal decay rates Γmm, are defined
as Γmmρmm =

∑
p,k(Γmpρmm − Γkmρkk). Where Γmm is the rate of population from level m

outwards. Γnm is the rate of population from level n to m. The transverse decay rates γnm,
the so called dephasings, can be derived from the longitudinal decay rates. The probability am-
plitude Cm decays with e−Γmmt/2, so the coherence ρnm ≡ CnC∗m decays with e−γnmt, where
γnm = (Γnn + Γmm)/2.

Including decay rates Level four can now also be included by simply adding as the decay rates
of level four

Γ11ρ11 = −Γ31ρ33 − Γ21ρ22 + Γ12ρ11 − Γ41ρ44 + Γ14ρ11

Γ22ρ22 = −Γ32ρ33 − Γ12ρ11 + Γ21ρ22

Γ33ρ33 = +Γ31ρ33 + Γ32ρ33 + Γ34ρ33

Γ44ρ44 = −Γ34ρ33 + Γ41ρ44 − Γ14ρ11

(A.15)

The dephasings are defined like

γ12 = 1
2 (Γ11 + Γ22) + γ1,deph + γ2,deph

γ13 = 1
2 (Γ11 + Γ33) + γ1,deph + γ3,deph

γ23 = 1
2 (Γ22 + Γ33) + γ2,deph + γ3,deph

γ21 = 1
2 (Γ22 + Γ11) + γ2,deph + γ1,deph

γ31 = 1
2 (Γ33 + Γ11) + γ3,deph + γ1,deph

γ32 = 1
2 (Γ33 + Γ22) + γ3,deph + γ2,deph

(A.16)

Where γn,deph are the proper/pure dephasing rates due to energy-conservative decoherence pro-
cesses such as collisions. Implementing all decay and dephasing rates in the rate equations the
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rate equations become

ρ̇11 = 1
2Ωpσ13 − 1

2Ω∗pσ31 − Γ11ρ11

ρ̇22 = 1
2Ωcσ23 − 1

2Ω∗cσ32 − Γ22ρ22

ρ̇33 = − 1
2Ωpσ13 − 1

2Ωcσ23 + 1
2Ω∗pσ31 + 1

2Ω∗cσ32 − Γ33ρ33

ρ̇44 = −Γ44ρ44

σ̇21 = iδσ21 + 1
2 iΩ
∗
cσ31 − 1

2 iΩpσ23 − γ21σ21

σ̇31 = i∆pσ31 − 1
2 iΩp(ρ33 − ρ11) + 1

2 iΩcσ21 − γ31σ31

σ̇32 = i∆cσ32 − 1
2 iΩc(ρ33 − ρ22) + 1

2 iΩpσ12 − γ32σ32

(A.17)

Steady state solutions for this 4 energy level model are given with all the equations set to be
equal to zero. To calculate the susceptibility χ(ωp) of this model to the incoming probe bundle,
the expectation value of the dipole moment is needed. The susceptibility of a medium is defined
like

P = ε0χE (A.18)

P (t) = N 〈µ̂(t)〉 = N · Tr[ρ̂(t)µ̂(t)] = N [(ρ31(t)µ13 + ρ32(t)µ23 + c.c.)] (A.19)

Looking at the response of the system to the probe laser, only the terms that are on resonance
with the probe are considered, so the term with µ23 can be neglected.

χ(ωp) = N〈µ̂(t)〉
ε0E(ωp) ≈

N(σ31e
−iωptµ13+σ13e

+iωptµ31)

ε0(Epe
−iωpt)

≈ µ13σ31

ε0Ep
= 2|µ13|2σ31

ε0~Ωp (A.20)

In the first approximation, the complex part of the applied probe field can be neglected because
of RWA, because ρ31 tends to evolve in time as e−iω31t. In the second approximation, the fast
oscillating term +2iωpt is neglected (RWA).

For an analytically solution, replace σ31 with the steady state solution for σ31 from equation
A.17, neglecting the term depending on the control field. Remind that in the steady state solution
from equation A.17, due to the RWA, the fast oscillating terms ±i2ωpt are neglected. Then we
end up with the expression for χ(ωp)

χ(ωp) =
N [( 1

(∆p−iγ31)
µ31Ep(ρ33−ρ11)/~)e−iωptµ13+c.c.]

ε0(Epe
−iωpt+c.c.)

= N |µ13|2(ρ33−ρ11)
~(∆p−iγ31)ε0

(A.21)

Results of Matlab simulation
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Figure A.2: Steady state solutions. Horizontally the detuning of the probe laser, which is scanning
over the transition |1〉− |3〉. Steady state populations are plotted for the four levels, depending on
the detuning of the probe laser. There is also a fifth level plotted, but the decays to this level is
put to zero. This is an extension already for including more levels. The Matlab code can be found
in appendix D. The overall peak is due to absorption of the probe laser at resonance between level
1 and 3 in figure A.1. The small peak inside the overall peak is due to destructive interference of
the probe and control laser, this phenomena is called Electronically Induced Transparency, shortly
EIT. Where population is trapped in the lower to states 1 and 2, and absorption of the prope laser
is reduced. This is the so called dark state.



Appendix B

Transition schemes Low Fields

B.1 Introduction

In this Appendix chapter the remaining transition diagrams for the different systems coupled to
different number of nuclear spins are summed. The transition strengths for each diagram are
summed in a matrix. The matrices contain the dipole coupling strengths for each combination of
states between the ground level and excited level. The ground states are ordered as shown in the
diagram from left to right horizontal in the matrix. The excited states are ordered vertical in the
matrix in the order as shown in the diagram. So for example the transition strength between the
first ground level and the sixth excited level shown in the transition diagram 5.2, the ground state
|1,−1〉 and the excited state |2, 0〉, can be found in the first column and in the sixth row. The
transition strength between these two states is thus 1/36. These transition strengths are calculated
with the help of equation 3.30. The transition strengths for excitation and for emission are the
same, this was derived in equation 3.7 where in both expressions for emission and absorption the
same electric dipole moment appears.

B.2 GaAs coupled to one nucleus spin 3/2



0 0 0 0 0 0 1
5 0

0 0 0 0 0 0 0 8
45

0 0 0 1
9 0 0 0 0

0 0 0 0 0 0 0 0
0 0 0 0 0 8

45 0 0
0 1

9 0 0 0 0 0 0
0 0 1

12 0 0 0 0 1
36

0 0 0 1
9 0 0 0 0

0 0 0 0 1
9 0 0 0

0 0 0 0 0 8
45 0 0

0 0 0 0 0 0 1
45 0

0 0 5
36 0 0 0 0 1

60
0 0 0 0 0 0 0 0
0 0 0 0 1

9 0 0 0
5
36 0 0 0 0 1

60 0 0
0 1

9 0 0 0 0 0 0


Excitation and emission transition strengths at zero field,

for q=0-polarization, for a system coupled to one nuclear spin 3/2. The
transition diagram was already given in figure 5.2a

(B.1)
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

0 0 0 0 0 1
15 0 0

0 0 0 0 0 0 2
15 0

0 0 0 0 0 0 0 2
9

0 0 0 1
3 0 0 0 0

0 0 0 0 1
45 0 0 0

1
36 0 0 0 0 1

12 0 0
0 1

12 0 0 0 0 1
12 0

0 0 1
6 0 0 0 0 1

18
0 0 0 0 0 0 0 0
0 0 0 0 1

45 0 0 0
5
36 0 0 0 0 1

60 0 0
0 5

36 0 0 0 0 1
180 0

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 1

30 0 0 0
1
9 0 0 0 0 0 0 0


Transition diagram including strongly allowed excitations and emissions for q = +1-polarization at the

low field. Its corresponding matrix, containing the transition
strengths at zero field. For a system coupled to one nuclear spin 3/2.

(B.2)
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

0 0 0 0 0 0 0 1
15

0 0 0 1
45 0 0 0 0

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 2

15 0
0 0 1

36 0 0 0 0 1
12

0 0 0 1
18 0 0 0 0

0 0 0 0 0 0 0 0
0 0 0 0 0 2

9 0 0
0 0 0 0 0 0 2

15 0
0 0 5

36 0 0 0 0 1
60

0 0 0 1
30 0 0 0 0

0 0 0 0 1
3 0 0 0

1
6 0 0 0 0 1

18 0 0
0 5

36 0 0 0 0 1
180 0

0 0 1
9 0 0 0 0 0


Transition diagram including strongly allowed excitation and emission transitions for q=-1

polarization at the low field. Its corresponding matrix,
containing the transition strengths at zero field. For a system coupled to one nuclear spin 3/2.

(B.3)
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B.3 ZnSe coupled to one nucleus spin 1/2



0 0 0 0
0 0 0 1

6
0 0 2

9 0
0 0 0 1

18
1
6 0 0 0
0 2

9 0 0
0 0 0 0
1
18 0 0 0


Transition diagram including strongly allowed excitations and emissions for q=0 polarization at low

field and its corresponding matrix, containing the transition strengths at zero field. For a system coupled
to one nuclear spin 1/2.

(B.4)
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

0 0 0 1
3

0 0 1
6 0

1
18 0 0 0
0 2

9
1
18 0

0 0 0 0
1
18 0 0 0
0 0 0 0
0 0 0 0


Transition diagram including strongly allowed excitations and emissions for q=+1 polarization in low

field and its corresponding matrix, containing the transition strengths at zero field. For a system coupled
to one nuclear spin 1/2.

(B.5)
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

0 0 0 0
0 0 0 0
0 0 0 1

18
0 0 0 0
0 0 1

6 0
0 0 0 1

18
1
3 0 0 0
0 2

9
1
18 0


Transition diagram including strongly allowed excitations and emissions for q=-1 polarization at low field.

and its corresponding matrix, containing the transition strengths at zero field. For a system
coupled to one nuclear spin 1/2.

(B.6)
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B.4 ZnSe coupled to two nuclei spin 1/2



0 0 0 0 0 1
5 0 0

0 0 0 0 0 0 0 2
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0 0 0 0 0 0 0 4
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0 0 0 0 0 0 0 0
0 0 0 0 1

5 0 0 0
0 0 0 10

81 0 4
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2
9 0

0 0 0 10
81 0 4

405
2
9 0

0 0 0 0 0 0 0 4
45

2
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0 10

81
2
9 0 4

405 0 0 0
0 10
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2
9 0 4

405 0 0 0
0 0 0 8

81 0 1
81 0 0

0 0 0 0 0 0 0 0
4
45 0 0 0 0 0 0 0
4
45 0 0 0 0 0 0 0
0 8

81 0 0 1
81 0 0 0


Transition diagram including strongly allowed excitations and emissions for q=0 polarization at low field.

and its corresponding matrix, containing the transition strengths at zero field. For a system
coupled to two nuclear spins 1/2.

(B.7)
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

0 0 0 0 1
10 0 0 0

0 0 0 0 0 1
5 0 0

0 0 0 5
27 0 8
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1
3 0

0 0 0 0 0 0 0 1
3

1
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0 5
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1
9 0 32

405 0 0 0
0 5
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1
9 0 32

405 0 0 0
0 0 0 5

27 0 8
135

1
3 0

0 0 0 0 0 0 0 0
8

135 0 0 0 0 0 0 0
8

135 0 0 0 0 0 0 0
0 16

81 0 0 1
162 0 0 0

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
1
54 0 0 0 0 0 0 0


Transition diagram including strongly allowed excitations and emissions for q=+1 polarization at low field.

and its corresponding matrix, containing the transition strengths at zero field. For a system
coupled to two nuclear spins 1/2.

(B.8)
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
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
Transition diagram including strongly allowed excitations and emissions for q=-1 at low field.
and its corresponding matrix, containing the transition strengths at zero field. For a system

coupled to two nuclear spins 1/2.
(B.9)
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Transition schemes High field

C.1 Introduction

For the high field limit the transition schemes are less complicated. One can see that transitions
are allowed between the sub levels, the restriction is that a transition is only allowed when no
nuclear spin is changed. Only the diagrams are shown, which are of interest for chapter 6. In
Appendix F the Mathematica code is given for calculating the transition strengths.
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C.2 Transition Schemes at high field

mI=
-3/2
-1/2

+3/2
+1/2mI=

+3/2
+1/2

-3/2
-1/2


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9 0
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9 0 0
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
transition strengths

Transition diagram including strongly allowed transitions for q=+1 polarization at high field.
and its corresponding matrices, containing the transition strengths. For a system

coupled to one nuclear spins 3/2.
(C.1)
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mI=
+1/2
-1/2mI=

+1/2
-1/2



0 0 0 1
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0 0 1
6 0

1
18 0 0 0
0 1

18 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0


transition strengths

Transition diagram including transitions for q=+1 polarization at high field.
and its corresponding matrices, containing the transition strengths. For a system

coupled to one nuclear spins 1/2.

(C.2)
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Appendix D

Matlab code for the density
matrix formalism

%%%%%%%%%%%%%%%%%%%%%%%%%%%% Labda−scheme %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% .............w3
% ∆p | | ∆c (negative detuning)
% * *
% * *
% * *
% wp * *wc
% * *
% * *
% * *
% * .............w2
% * |
% * |Zeeman
% .............w1 |
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%% Decay rates in labda scheme %%%%%%%%%%%%%%%%%%%%%%%%%

% .............w3 −−−−>
% | | G34
% G31 | |G32
% | |
% < >
%
%
%
%
% .............w2 G42
% −̂−−
% <−−− ............w4
% .............w1 G41

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%begin code:
clear; clc;

%Adjustable>>>
%level on/or off
levelfour=1;%1 for on 0 for off
levelfive=0;%1 for on 0 for off

B=7;%tesla
P=0.01;%0.01;%probe beam intensity
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C=1;%control beam intensity
∆c=−15;
T=4.2;%Kelvin

%%%%%%%%%%%%%%%%%%%%%%% Constants %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
hbar=1;%1.054571726E−34;%[J * sec]
muB=927.4E−26;%bohr magneton
muN=5.05078324E−27;%nuclear magneton
gN=5.4297;%g−factor nucleus fluor
ge=0.41;%g−factor electron
k=1.38E−23;
e0=8.854187817620E−12;%[C2 N−1 m−2]or[C2 N−1]or[C V−1 m− 1]
c=3E5;%m/ns
%Zeeman=g*muB*B/k;% Zeeman energy is ¬0.5 for 4.2K
u31=2*pi;
u32=2*pi;
mu=[0 0 conj(u31);0 0 conj(u32);u31 u32 0];
Wc=5;% Control field Rabi freq.
Wp=0.01;% Probe field Rabi freq.
N=50;%densityfactor

%%%%%%%%%%%%%%%%%%%%%%% Define decay rates %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
G31=0.1;%population decay from energy level w3 to w1
G32=0.1;%population decay from w3 to w2
G34=0.1*levelfour;%.1;%0.1;%2ns
G21=1/(1E6);%1millisec population decay from ws to wg, possible with nuclear flip flop
G12=G21*exp(−ge*muB*B/(T*k));%population decay from w1 to w2, possible with nuclear flip

flop
G13=0;
G23=0;
G24=1/(1E3);%electric dipole forbidden, micro sec microwave transition
G42=G24*exp(−ge*muB*B/(T*k));%electric dipole forbidden, micro sec microwave transition
G43=0;
G41=1/(1E12)*levelfour;%1000sec Nuclear spin flip
G14=1/(1E12)*levelfour;%1000sec Nuclear spin flip or? G41*exp(−gN*muN*0.5*B/(T*k));
%decayrates concerning a fifth level
G51=1/(1E3)*levelfive;%electric dipole forbidden, micro sec microwave transition
G15=G51*exp(−ge*muB*B/(T*k))*levelfive;%electric dipole forbidden, micro sec microwave

transition
G25=1/(1E12)*levelfive;%;%1000sec Nuclear spin flip
G52=1/(1E12)*levelfive;%1/(1E12);%1000sec Nuclear spin flip
G35=0*levelfive;
G53=0*levelfive;
G54=1/(1E6)*levelfive*levelfour;%1millisec Solid effect
G45=G54*exp(−ge*muB*B/(T*k))*levelfive*levelfour;

G11=G13+G12+G14−G31−G21−G41;
G22=G23+G21+G24−G12−G32−G42;
G33=G32+G31+G34−G23−G13−G43;
G44=G41+G43+G42−G14−G34−G24;

%%%%%%%%%%%%%%%%%%%%%%%%%% Dephasing rates %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
sp=0;%adjust by hand to make plots in same plot with offset 0.5*sp above the first
supplot=sp*0.5;
g2deph=1/5;% 2 GHz 1/T2*
g3deph=20;% 22 GHz
g31=0.5*(G33+G11)+g3deph;
g21=0.5*(G22+G11)+g2deph;
g32=0.5*(G33+G22)+g3deph+g2deph;
g13=0.5*(G11+G33)+g3deph;
g23=0.5*(G22+G33)+g2deph+g3deph;
g12=0.5*(G11+G22)+g2deph;

k=1;%index
for ∆p = −100:0.1:100

∆ptmp(k)=∆p;
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%%%%%%%%%%%%%%%%%%%%%% MatlabCodeRob %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
H0 = hbar*[0 0 0; 0 (∆p−∆c) 0; 0 0 ∆p];
%Hint=−u*E
Hint = 0.5*[0 0 conj(Wp);0 0 conj(Wc);Wp Wc 0];
%H=H0+Hint
H=H0+Hint;
%elements 11 22 33 44 55 31 21 32 13 12 23
RateEQ = [ 1 1 1 levelfour levelfive 0 0 0 0 0 0;

−(G13+G12+G14+G15) G21 G31 G41 G51 i*H(1,3) i*H(1,2) 0
−i*H(3,1) −i*H(2,1) 0;

G12 −(G23+G21+G24+G25) G32 G42 G52 0 −i*H(1,2) i*H(2,3)
0 i*H(2,1) −i*H(3,2);

G13 G23 −(G32+G31+G34+G35) G43 G53 −i*H(1,3) 0 −i*H(2,3)
i*H(3,1) 0 i*H(3,2);

G14 G24 G34 −(G41+G43+G42+G45) G54 0 0 0 0 0 0;
G15 G25 G35 G45 −(G51+G53+G52+G54) 0 0 0 0 0 0;
i*H(3,1) 0 −i*H(3,1) 0 0 −g31−i*H(1,1)+i*H(3,3) i*H(3,2)

−i*H(2,1) 0 0 0;
i*H(2,1) −i*H(2,1) 0 0 0 i*H(2,3) −g21+i*H(2,2)−i*H

(1,1) 0 0 0 −i*H(3,1);
0 i*H(3,2) −i*H(3,2) 0 0 −i*H(1,2) 0 −g32+i*H(3,3)−i*

H(2,2) 0 i*H(3,1) 0;
−i*H(1,3) 0 i*H(1,3) 0 0 0 0 0 −g13+i*H(1,1)−i*H

(3,3) −i*H(2,3) i*H(1,2);
−i*H(1,2) i*H(1,2) 0 0 0 0 0 i*H(1,3) −i*H(3,2)

−g12−i*H(2,2)+i*H(1,1) 0;
0 −i*H(2,3) i*H(2,3) 0 0 0 −i*H(1,3) 0 i*H(2,1)

0 −g23+i*H(2,2)−i*H(3,3)];

BoundCond = [1 ; 0 ; 0 ; 0 ; 0 ; 0 ; 0 ; 0 ; 0 ; 0 ; 0 ; 0];
%density matrix is here column vector [totalpopulation

;11;22;33;44;55;31;21;32;13;12;23]

rhoSteady = RateEQ\BoundCond; % solDensMatVec
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
rho = [rhoSteady(1) rhoSteady(10) rhoSteady(9);rhoSteady(7) rhoSteady(2) rhoSteady

(11);rhoSteady(6) rhoSteady(8) rhoSteady(3)]
Xi= N*abs(u31)ˆ2*rhoSteady(6)/(hbar*0.5*Wp)%removed e0 from expression
ReXi(k) = real(Xi);%
ImXi(k) = imag(Xi);%
pop1(k) = real(rhoSteady(1));
pop2(k) = real(rhoSteady(2));
pop3(k) = real(rhoSteady(3));
pop4(k) = real(rhoSteady(4));
pop5(k) = real(rhoSteady(5));
%total(k) = real(rhoSteady(1))+real(rhoSteady(2))+real(rhoSteady(3))+real(rhoSteady

(4));
% Absorb(k) = imag

Transmission(k) = exp(−(2*pi/(817.35))*imag(Xi));%(2*pi/(817.35)+∆p)*imag(Xi)*10E−6)
%wp=2*pi*frequency=2*pi*c/lambda=2*pi*c/(817.35E−9)+∆p

Polarization(k) = (rhoSteady(2)+rhoSteady(4))/(rhoSteady(5)+rhoSteady(1)+rhoSteady
(2)+rhoSteady(4));

k=k+1;
end

variables = sprintf(' T= %0.1f C=%0.2f P=%0.2f ∆c=%0.1f B=%0.1f Wc=%0.2f Wp=%0.3f G21
=%0.6f G41=G14=%0.9f G32=G31=G34=%0.1f G12=%0.9f' ,T,C,P,∆c,B,Wc,Wp,G21,G41,G32,G12)

hold on
subplot(3,3,1),plot(∆ptmp,pop1);
title('pop1');
maxX = max(∆ptmp);
minX = −maxX;
maxY = max(pop1)%+0.000001;
minY = min(pop1)%−0.000001;
axis([minX maxX minY maxY]);
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subplot(3,3,2),plot(∆ptmp,pop2);
title('pop2');
maxX = max(∆ptmp);
minX = −maxX;
maxY = max(pop2);%+0.000001;
minY = min(pop2);%−0.000001;
axis([minX maxX minY maxY]);

subplot(3,3,3),plot(∆ptmp,pop3);
title('pop3');
maxX = max(∆ptmp);
minX = −maxX;
maxY = max(pop3);%+0.000001;
minY = min(pop3);%−0.000001;
axis([minX maxX minY maxY]);

subplot(3,3,4),plot(∆ptmp,pop4);
title('pop4');
maxX = max(∆ptmp);
minX = −maxX;
maxY = max(pop4)−0.000001*(levelfour−1);
minY = min(pop4)+0.000001*(levelfour−1);
axis([minX maxX minY maxY]);

subplot(3,3,5),plot(∆ptmp,pop5);
title('pop5');
maxX = max(∆ptmp);
minX = −maxX;
maxY = max(pop5)−0.000001*(levelfive−1);
minY = min(pop5)+0.000001*(levelfive−1);
axis([minX maxX minY maxY]);

subplot(3,3,6),plot(∆ptmp,ReXi);
title('ReXi');
maxX = max(∆ptmp);
minX = −maxX;
maxY = max(ReXi);%+0.000001;
minY = min(ReXi);%−0.000001;
axis([minX maxX minY maxY]);

subplot(3,3,7),
plot(∆ptmp,ImXi);
title('ImXi ');
maxX = max(∆ptmp);
minX = −maxX;
maxY = max(ImXi);
minY = min(ImXi);
axis([minX maxX minY maxY]);

subplot(3,3,8),
plot(∆ptmp,Transmission+supplot);
title('Transmission');
maxX = max(∆ptmp);
minX = −maxX;
maxY = max(Transmission);%+0.000001;
minY = min(Transmission);%−0.000001;
axis([minX maxX minY maxY]);

subplot(3,3,9),
plot(∆ptmp,Polarization);
title('Polarization (fraction down)');
maxX = max(∆ptmp);
minX = −maxX;
maxY = max(Polarization);%+0.000001;
minY = min(Polarization);%−0.000001;
axis([minX maxX minY maxY]);
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Clear@"Global`*"D
H*Red text inside the program, are parameters that can be changed*L

Ni = 1; H*Number of nuclei*L
Ii = 3 � 2; H*Nuclear spin of each nuclei. Consider all nuclear spins equal*L
L = 0; H*Orbital angular momentum*L
S = 1 � 2; H*total electron spin*L
J = L + S; H*Orbit angular momentum of the electron*L

If @Mod@Ni, 2D � 0 , Itotal = Table@i, 8i, 0, Ni * Ii, 1<D,

Itotal = Table@i, 8i, Ii, Ni * Ii, 1<DD;

H*even number of nuclei Itotal runs from 0 to Ni*Ii in

steps of 1. Odd runs from Ii to Ni*Ii in steps of 1*L

H*The eigenfunctions has to be

calculated in each subspace with equal Itotal*L
eigenvalues = ConstantArray@0, Length@ItotalDD;

storeF = ConstantArray@0, Length@ItotalDD;

H*eigenvectors=ConstantArray@0,Length@ItotalDD;*L
H*eigensystem=ConstantArray@0,Length@ItotalDD;*L
plot = ConstantArray@0, Length@ItotalDD;

H*START OVERALL FORLOOP*L
For@solnr = 1, solnr < Length@ItotalD + 1, solnr++,

Isubtot = 8Itotal@@solnrDD<;

mI = ConstantArray@0, Length@IsubtotDD;

For@x = 1, x < Length@IsubtotD + 1, x++,

mI@@xDD = Table@i, 8i, -Isubtot@@xDD, +Isubtot@@xDD, 1<DD
For@x = 1, x < J + 1, x++, mJ = Table@i, 8i, -J, +J, 1<

D;

D;

JmJImI = ConstantArray@0, Length@Flatten@mIDD * Length@mJDD;

q = 1;

For@x = 1, x < Length@mJD + 1, x++,

For@y = 1, y < Length@mID + 1, y++,

For@z = 1, z < Length@mI@@yDDD + 1, z++,

JmJImI@@qDD = 88J, mJ@@xDD<, 8Isubtot@@yDD, mI@@y, zDD<<; q++D
D;

D;

H*For every Isubtot we need F to run from Isubtot-J to Isubtot+J*L
Ftemp = ConstantArray@0, Length@IsubtotDD;

For@x = 1, x < Length@IsubtotD + 1, x++,

Ftemp@@xDD = Table@i, 8i, Abs@Isubtot@@xDD - JD, Isubtot@@xDD + J, 1<D;

D;

;



F = Flatten@FtempD; H*Flatten is used to rearrange all

elements from the vector F in one array. NOT USE UNiON HERE!!!*L
storeF@@solnrDD = F;

H*Now create a matrix with all corresponding FmF values*L
mF = ConstantArray@0, Length@FDD;

H*the projection of F: mF runs from -F to +F*L
For@x = 1, x < Length@FD + 1, x++, mF@@xDD = Table@i, 8i, -F@@xDD, +F@@xDD, 1<D;

D;

FmFtemp = ConstantArray@0, Length@FDD;

For@x = 1, x < Length@FD + 1, x++,

FmFtemp@@xDD = Table@8F@@xDD, mF@@x, iDD<, 8i, Length@mF@@xDDD<D;

D;

H*Construct the brackets in FmFtemp in a different

way for ease acces for use with the ClebschGordan solver*L
FmF = ConstantArray@0, Length@Flatten@FmFtempDD � 2D;

H*construct an empty array*L
q = 1;

For@x = 1, x < Length@FD + 1, x++,

H*For each value of F, collect the corresponding mF values*L
For@y = 1, y < Length@mF@@xDDD + 1, y++, H*MF values for the corresponding F*L

FmF@@qDD = 8F@@xDD, mF@@x, yDD<; q++H*write them in the FmF vector*L
D;

D;

H*Defining Hyperfine energie Hf here*L
Hftemp = ConstantArray@0, Length@Flatten@FtempDDD;

q = 1;

For@ x = 1, x < Length@IsubtotD + 1, x++,

For@y = 1, y < Length@Ftemp@@xDDD + 1, y++,

Hftemp@@qDD = hbar^2 * Ahf � 2 * HFtemp@@x, yDD * HFtemp@@x, yDD + 1L -

Isubtot@@xDD * HIsubtot@@xDD + 1L - J * HJ + 1LL; q++

D;

D;

H*For each FmF state define theire corresponding hyperfine energy*L
Hf = ConstantArray@0, Length@FmFDD;

q = 1;

For@x = 1, x < Length@FD + 1, x++,

For@y = 1, y < Length@FmFtemp@@xDDD + 1, y++,

Hf@@qDD = Hftemp@@xDD; q++

D;

D;

H*Constructing States J,mJ,I,mI>*L
mI = ConstantArray@0, Length@IsubtotDD;

For@x = 1, x < Length@IsubtotD + 1, x++,
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mI@@xDD = Table@i, 8i, -Isubtot@@xDD, +Isubtot@@xDD, 1<D;

D;

For@x = 1, x < J + 1, x++, mJ = Table@i, 8i, -J, +J, 1<D;

D;

JmJImI = ConstantArray@0, Length@Flatten@mIDD * Length@mJDD;

q = 1;

For@x = 1, x < Length@mJD + 1, x++,

For@y = 1, y < Length@mID + 1, y++,

For@z = 1, z < Length@mI@@yDDD + 1, z++,

JmJImI@@qDD = 88J, mJ@@xDD<, 8Isubtot@@yDD, mI@@y, zDD<<;

q++

D;

D;

D;

H*Calculating the Clebsch Gordan Coefficients*L
j1 = ConstantArray@0, 8Length@JmJImID<D;

m1 = ConstantArray@0, 8Length@JmJImID<D;

j2 = ConstantArray@0, 8Length@JmJImID<D;

m2 = ConstantArray@0, 8Length@JmJImID<D;

j3 = ConstantArray@0, 8Length@JmJImID<D;

m3 = ConstantArray@0, 8Length@JmJImID<D;

Rule1 = ConstantArray@0, 8Length@JmJImID, Length@FmFD<D;

Rule2 = ConstantArray@0, 8Length@JmJImID, Length@FmFD<D;

Rule3 = ConstantArray@0, 8Length@JmJImID, Length@FmFD<D;

Rule4 = ConstantArray@0, 8Length@JmJImID, Length@FmFD<D;

ClebschGordanMatrix = ConstantArray@0, 8Length@JmJImID, Length@FmFD<D;

For@y = 1, y < Length@JmJImID + 1, y++,

H*extract all mi and ji put them in an array*L
j1@@yDD = JmJImI@@y, 1, 1DD;

m1@@yDD = JmJImI@@y, 1, 2DD;

j2@@yDD = JmJImI@@y, 2, 1DD;

m2@@yDD = JmJImI@@y, 2, 2DD;

D;

For@x = 1, x < Length@FmFD + 1, x++,

j3@@xDD = FmF@@x, 1DD;

H*For each y extract new F mF values and put refresh the j3 and m3 arrays*L
m3@@xDD = FmF@@x, 2DD;

D;

For@x = 1, x < Length@FmFD + 1, x++,

For@y = 1, y < Length@JmJImID + 1, y++,

H*rules from: http:��mathworld.wolfram.com�WigIer3j-Symbol.html*L
Rule1@@y, xDD = If@m1@@yDD + m2@@yDD - m3@@xDD == 0, 1, 0D;

H*MINUS SIgI IN FRONT OF m3!!!*L
Rule2@@y, xDD = If@Abs@m1@@yDDD <= j1@@yDD &&

Abs@m2@@yDDD <= j2@@yDD && Abs@m3@@xDDD <= j3@@xDD, 1, 0D;
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Rule3@@y, xDD = If@m1@@yDD � 0 && m2@@yDD � 0 && m3@@xDD � 0, Mod@j1@@yDD +

j2@@yDD + j3@@xDD, 2D, Mod@j1@@yDD + j2@@yDD + j3@@xDD, 1DD; H*If m1=

m2=m3 ® j1+j2+j3=even integer. If satisfied a zero is returned!*L
Rule4@@y, xDD = If@Abs@j1@@yDD - j2@@yDDD £ j3@@xDD &&

j3@@xDD £ j1@@yDD + j2@@yDD, 1, 0D;

ClebschGordanMatrix@@y, xDD = If@Rule1@@y, xDD � 1 && Rule2@@y, xDD � 1 &&

Rule3@@y, xDD � 0 && Rule4@@y, xDD � 1, ClebschGordan@
8j1@@yDD, m1@@yDD<, 8j2@@yDD, m2@@yDD<, 8j3@@xDD, m3@@xDD<D, 0D

D;

D;

H*Clebsch Gordan Constants for the transformation JmJImI->FmF*L
H*Clebsch Gordan Constants for the transformation FmF->JmJImI*L

H*Zeeman Splitting of the Fine levels*L
Jz = ConstantArray@0, 8Length@JmJImID<D; H*Operator Jz*L
For@x = 1, x < Length@JmJImID + 1, x++,

Jz@@xDD = JmJImI@@x, 1, 2DD;

D;

H*Zeeman Splitting of the Hyperfine levels*L
Iz = ConstantArray@0, 8Length@JmJImID<D; H*Operator Jz*L
For@x = 1, x < Length@JmJImID + 1, x++,

Iz@@xDD = JmJImI@@x, 2, 2DD;

D;

H*HamiltoNian including Hhf and the Hz*L
H*inverse=Inverse@ClebschGordanMatrixD;*L
H*this way only have to calculate it once*L
H*A=inverse.HJz*ClebschGordanMatrixL;

B=inverse.HIz*ClebschGordanMatrixL;*L
H*MatrixForm@DiagonalMatrix@-hbar*gJ*omega0*Jz-hbar*gI*omegan*IzDD;*L
H*MatrixForm@ClebschGordanMatrix.DiagonalMatrix@HfD.inverse*hbar^2D;*L
H*JmJImI Basis*L
H*Matrix=DiagonalMatrix@HfD*hbar^2-hbar*gJ*omega0*A-hbar*gI*omegan*B;*L
H*FmF Basis*L
H*eigensystem@@solnrDD=Eigensystem@MatrixD;*L
H*eigenvalues@@solnrDD=eigensystem@@solnr,1DD;*L
H*eigenvectors@@solnrDD=eigensystem@@solnr,2DD;*L
eigenvalues@@solnrDD = Eigenvalues@

HClebschGordanMatrix.DiagonalMatrix@HfD.Inverse@ClebschGordanMatrixD +

DiagonalMatrix@-hbar * gJ * omega0 * Jz - hbar * gI * omegan * IzDL �
hbar � H2 * PiL * 10^H-9LD;

H*JmJImI Basis*L
If@ solnr � 1,

StylePrint@"RESULTS:", FontFamily ® "Helvetica", FontColor ® RedD &&

Print@"The outcome for each subspace of Itotal. Returns the corresponding

total angular momentum F, and theire hyperfine energy splitting

energy relative to the orbital angular momentum here taken zero.\n",
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energy relative to the orbital angular momentum here taken zero.\n",

"Isubtot=", IsubtotD, Print@"Isubtot=", IsubtotDD;

Print@"wherefor F=", F, "<Hhf>=", HftempD;

H*D;*LH*END OVERALL FORLOOP*L
H*upto here everything is solved analytically*L
percentage = N@H solnr � Length@ItotalDL * 100, 4D;

StylePrint@ percentage "% of data is generated.",

FontFamily ® "Helvetica", FontColor ® GreenD;

DH*END OVERALL LOOP, all data is generated analytically*L

H*Before filling in the constants, analytical information can be extracted*L
Print@eigenvalues * hbar * H2 * PiL * 10^H9LD;

H*CONSTANTS*L
H*Adjustable*L
Mn = 70 * 1.660538921 * 10^H-27L; H*Mass Nucleus average Gallium and Arsenic*L
H*Automatically pick the parameters for the electron or the hole*L
If @L � 0, gJ = +0.44, gJ = 0.2D; H*g-factor electron and g-factor hole*L
If @L � 0, Ahf = +90 * 10^H-6L * e � hbar^2 , Ahf = -15 * 10^H-6L * e � hbar^2 D;

H*Hyperfine coupling in

Joules.Hconverting to MHz or eV happens in the HamiltonianL*L
gL = 1 - me � Mn; H*g-factor "1-me�Mn" orbital angular momentum,

usually set to 1*L
gI = +1.3; H*g-factor nucleus, proton:+5.585694713*L
UptoField = 20; H*in Tesla*L

H*Non-Adjustable,taken from http:��physics.nist.gov�cuu�Constants�*L
me = 9.10938291 * 10^H-31L; H*Mass electron*L
H*Mu=me*Mn�Hme+MnL;*LH*reduced mass*L
e = 1.602176565 * 10^H-19L;

hbar = 1.054571726 * 10^H-34L;

omega0 = -e � H2 * meL * B0; H*B0 in Gauss*L
omegan = e � H2 * MnL * B0;

H*mu0=1.2566370614*10^H-6L;*L
H*e0=8.854187817*10^H-12L;*L
H*a0=4*Pi*e0*hbar^2�HMu*e^2*ZL;*LH*4*Pi*e0*hbar^2�HMu*e^2*ZL;*L
H*5.2917721092*10^H-11L*LH*5.2917721092*10^H-11L;*L
H*mun=He*hbar�H2*MnLL;*LH*Nuclear magIeton*L
H*mub=e*hbar�H2*meL;*LH*Bohr magneton*L
H*Ahf Hyperfine constant for different levels*L
H*Ahf�hbar*10^H-6L�2�Pi;*LH*Return value of Ahf in Mega Hertz*L
H*1420.40575177 MHz for hydrogen ground level*L

H*In Low field we want to know gF to identify

which line correspond to which projection of mF*L
Print@ "Calculated gF factors \n Husing gI=gn*me�MnL:"D;
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gF = ConstantArray@0, Length@ItotalDD;

For@solnr = 1, solnr < Length@ItotalD + 1, solnr++,

H*For every subItotal pick the array with possible F values*L
gF@@solnrDD = ConstantArray@0, Length@storeF@@solnrDDDD;

For@q = 1, q < Length@storeF@@solnrDDD + 1, q++,

H*pick the different F values from the array and calculate gF*L
If @storeF@@solnr, qDD � 0 ,

gF@@solnr, qDD = 0, H*If F=0 also the projections are zero,

so in low field there is no zeeman term*L
gF@@solnr, qDD = gJ * HstoreF@@solnr, qDD * HstoreF@@solnr, qDD + 1L -

Itotal@@solnrDD * HItotal@@solnrDD + 1L + J * HJ + 1LL �
H2 * storeF@@solnr, qDD * HstoreF@@solnr, qDD + 1LL +

me � Mn * gI * HstoreF@@solnr, qDD * HstoreF@@solnr, qDD + 1L +

Itotal@@solnrDD * HItotal@@solnrDD + 1L - J * HJ + 1LL �
H2 * storeF@@solnr, qDD * HstoreF@@solnr, qDD + 1LL;

D;

D;

Print@"F values for subItotal=", Itotal@@solnrDD, "\n", storeF@@solnrDD,

"\nFor each F their corresponding Lande factor gF \n", gF@@solnrDDD;

D;

H*gF Factor per F, because gF is F dependend*L

StylePrint@"Data is now generated, Data is beeing processed to be plotted",

FontFamily ® "Helvetica", FontColor ® GreenD;

H*Store plots*L
For@x = 1, x < Length@eigenvaluesD + 1, x++,

plot@@xDD = Plot@eigenvalues@@xDD, 8B0, 0, UptoField<, PlotStyle ® BlackD;

Print@"Progress: plot ", x,

" of ", Length@eigenvaluesD, " plots processed" D;

D;

H*show all pLots in one frame*L
Show@plot, PlotRangePadding ® None, Frame ® True,

Axes ® True, GridLines ® Automatic, PlotRange ® Automatic,

FrameLabel ® 8"B0 HTeslaL", "Energy HGHzL"<D
RESULTS:
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The outcome for each subspace of Itotal. Returns the corresponding

total angular momentum F, and theire hyperfine energy splitting

energy relative to the orbital angular momentum here taken zero.

Isubtot=

: 3

2
>

wherefor F=81, 2<<Hhf>=:-

5 Ahf hbar2

4
,

3 Ahf hbar2

4
>

100.0 % of data is generated.

:: 3 Ahf hbar2

4
-

gJ hbar omega0

2
-

3 gI hbar omegan

2
,

3 Ahf hbar2

4
+

gJ hbar omega0

2
+

3 gI hbar omegan

2
,

1

4
hbar -Ahf hbar - 2 4 Ahf2 hbar2

+ gJ2 omega02
- 2 gI gJ omega0 omegan + gI2 omegan2 ,

1

4
hbar -Ahf hbar + 2 4 Ahf2 hbar2

+ gJ2 omega02
- 2 gI gJ omega0 omegan + gI2 omegan2 ,

1

4
hbar I-Ahf hbar + 4 gI omegan - 2 ,I4 Ahf2 hbar2

+ 2 Ahf gJ hbar omega0 +

gJ2 omega02
- 2 Ahf gI hbar omegan - 2 gI gJ omega0 omegan + gI2 omegan2MM,

1

4
hbar I-Ahf hbar + 4 gI omegan + 2 ,I4 Ahf2 hbar2

+ 2 Ahf gJ hbar omega0 +

gJ2 omega02
- 2 Ahf gI hbar omegan - 2 gI gJ omega0 omegan + gI2 omegan2MM,

1

4
hbar I-Ahf hbar - 4 gI omegan - 2 ,I4 Ahf2 hbar2

- 2 Ahf gJ hbar omega0 +

gJ2 omega02
+ 2 Ahf gI hbar omegan - 2 gI gJ omega0 omegan + gI2 omegan2MM,

1

4
hbar I-Ahf hbar - 4 gI omegan + 2 ,I4 Ahf2 hbar2

- 2 Ahf gJ hbar omega0 +

gJ2 omega02
+ 2 Ahf gI hbar omegan - 2 gI gJ omega0 omegan + gI2 omegan2MM>>

Calculated gF factorsHusing gI=gn*me�MnL:

F values for subItotal=

3

281, 2<
For each F their corresponding Lande factor gF8-0.109987, 0.110008<

Data is now generated, Data is beeing processed to be plotted

Progress: plot 1 of 1 plots processed
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In[182]:=

Clear@"Global`*"D

H*LOW FIELD*L
H*8F,mF,J,L,S,I<*L
FmFJLSI1 =

8H*Lower S1�2 bundle*L81, -1, 1 � 2, 0, 1 � 2, 3 � 2<, 81, 0, 1 � 2, 0, 1 � 2, 3 � 2<,

81, +1, 1 � 2, 0, 1 � 2, 3 � 2<, 82, +2, 1 � 2, 0, 1 � 2, 3 � 2<H*Upper S1�2 bundle*L,

82, -2, 1 � 2, 0, 1 � 2, 3 � 2<, 82, -1, 1 � 2, 0, 1 � 2, 3 � 2<,

82, 0, 1 � 2, 0, 1 � 2, 3 � 2<, 82, +1, 1 � 2, 0, 1 � 2, 3 � 2<<;

FmFJLSI2 = H*Lower P3�2 bundle:*L883, 0, 3 � 2, 1, 1 � 2, 3 � 2<,

83, +1, 3 � 2, 1, 1 � 2, 3 � 2<, 83, +2, 3 � 2, 1, 1 � 2, 3 � 2<,

83, +3, 3 � 2, 1, 1 � 2, 3 � 2<H*Second P3�2 bundle:*L,

83, -1, 3 � 2, 1, 1 � 2, 3 � 2<, 82, 0, 3 � 2, 1, 1 � 2, 3 � 2<,

82, +1, 3 � 2, 1, 1 � 2, 3 � 2<, 82, +2, 3 � 2, 1, 1 � 2, 3 � 2<H*Third bundle:*L,

83, -2, 3 � 2, 1, 1 � 2, 3 � 2<, 83, -1, 3 � 2, 1, 1 � 2, 3 � 2<,

81, 0, 3 � 2, 1, 1 � 2, 3 � 2<, 81, +1, 3 � 2, 1, 1 � 2, 3 � 2<H*Fourth bundle:*L,

83, -3, 3 � 2, 1, 1 � 2, 3 � 2<, 82, -2, 3 � 2, 1, 1 � 2, 3 � 2<,

81, -1, 3 � 2, 1, 1 � 2, 3 � 2<, 80, 0, 3 � 2, 1, 1 � 2, 3 � 2<<;

H*HIGH FIELD*L
H*8J,mJ,I,mI,L<*L
JmJImILS1 = 8H*Lower S1�2 bundle*L81 � 2, +1 � 2, 3 � 2, -3 � 2, 0, 1 � 2<,

81 � 2, +1 � 2, 3 � 2, -1 � 2, 0, 1 � 2<, 81 � 2, +1 � 2, 3 � 2, +1 � 2, 0, 1 � 2<,

81 � 2, +1 � 2, 3 � 2, +3 � 2, 0, 1 � 2<H*Upper S1�2 bundle*L,

81 � 2, -1 � 2, 3 � 2, +3 � 2, 0, 1 � 2<, 81 � 2, -1 � 2, 3 � 2, +1 � 2, 0, 1 � 2<,

81 � 2, -1 � 2, 3 � 2, -1 � 2, 0, 1 � 2<, 81 � 2, -1 � 2, 3 � 2, -3 � 2, 0, 1 � 2<<;

JmJImILS2 = H*Lower P3�2 bundle*L883 � 2, +3 � 2, 3 � 2, -3 � 2, 1, 1 � 2<,

83 � 2, +3 � 2, 3 � 2, -1 � 2, 1, 1 � 2<, 83 � 2, +3 � 2, 3 � 2, +1 � 2, 1, 1 � 2<,

83 � 2, +3 � 2, 3 � 2, +3 � 2, 1, 1 � 2<, H*Second bundle*L
83 � 2, +1 � 2, 3 � 2, -3 � 2, 1, 1 � 2<, 83 � 2, +1 � 2, 3 � 2, -1 � 2, 1, 1 � 2<,

83 � 2, +1 � 2, 3 � 2, +1 � 2, 1, 1 � 2<, 83 � 2, +1 � 2, 3 � 2, +3 � 2, 1, 1 � 2<,

H*Third bundle*L83 � 2, -1 � 2, 3 � 2, -3 � 2, 1, 1 � 2<,

83 � 2, -1 � 2, 3 � 2, -1 � 2, 1, 1 � 2<, 83 � 2, -1 � 2, 3 � 2, +1 � 2, 1, 1 � 2<,

83 � 2, -1 � 2, 3 � 2, +3 � 2, 1, 1 � 2<, H*Fourth bundle*L
83 � 2, -3 � 2, 3 � 2, -3 � 2, 1, 1 � 2<, 83 � 2, -3 � 2, 3 � 2, -1 � 2, 1, 1 � 2<,

83 � 2, -3 � 2, 3 � 2, +1 � 2, 1, 1 � 2<, 83 � 2, -3 � 2, 3 � 2, +3 � 2, 1, 1 � 2<<;

H*The detail level of the output: 0 only transition strengths,

1 also the outcome of the wigner matrices,

2 also the outcome of all rules of the wigner matrices*L
Detailed = 0;

H*Calculation transition strengths: *L

H*-------------------LOW FIELD---------------------------------*L
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H*Dipole transition strength for FmFJLSI1->FmFJLSI2*L
StylePrint@"RESULTS HFmFJLSI1->FmFJLSI2L:",

FontFamily ® "Helvetica", FontColor ® RedD
StylePrint@"LOW FIELD:", FontFamily ® "Helvetica", FontColor ® RedD
For@q = -1, q < 2, q++, H*-1,0,+1 polarization*L

Print@"-------------------POALARIZATION q= ", q, "----------------------"D;

H*-----------------------Factor*WIGNER 3J----------------------*L
H*Factor=Sqrt@H2J+1LH2J'+1LH2F+1LH2F'+1LD*L
j1 = ConstantArray@0, 8Length@FmFJLSI1D<D;

m1 = ConstantArray@0, 8Length@FmFJLSI1D<D;

j2 = ConstantArray@0, 8Length@FmFJLSI1D<D;

m2 = ConstantArray@0, 8Length@FmFJLSI1D<D;

j3 = ConstantArray@0, 8Length@FmFJLSI2D<D;

m3 = ConstantArray@0, 8Length@FmFJLSI2D<D;

Rule1 = ConstantArray@0, 8Length@FmFJLSI2D, Length@FmFJLSI1D<D;

Rule2 = ConstantArray@0, 8Length@FmFJLSI2D, Length@FmFJLSI1D<D;

Rule3 = ConstantArray@0, 8Length@FmFJLSI2D, Length@FmFJLSI1D<D;

Rule4 = ConstantArray@0, 8Length@FmFJLSI2D, Length@FmFJLSI1D<D;

FactorWigner3jMatrix =

ConstantArray@0, 8Length@FmFJLSI2D, Length@FmFJLSI1D<D;

For@x = 1, x < Length@FmFJLSI1D + 1, x++,

j1@@xDD = FmFJLSI1@@x, 1DD;

m1@@xDD = FmFJLSI1@@x, 2DD;

j2@@xDD = 1;

m2@@xDD = q;

D;

For@y = 1, y < Length@FmFJLSI2D + 1, y++,

j3@@yDD = FmFJLSI2@@y, 1DD;

m3@@yDD = FmFJLSI2@@y, 2DD;

D;

For@y = 1, y < Length@FmFJLSI2D + 1, y++,

For@x = 1, x < Length@FmFJLSI1D + 1, x++,

H*rules from: http:��mathworld.wolfram.com�WigIer3j-Symbol.html*L
Rule1@@y, xDD = If@m1@@xDD + m2@@xDD - m3@@yDD == 0, 1, 0D;

H*MINUS SIgI IN FRONT OF m3!!!*L
Rule2@@y, xDD = If@Abs@m1@@xDDD <= j1@@xDD &&

Abs@m2@@xDDD <= j2@@xDD && Abs@m3@@yDDD <= j3@@yDD, 1, 0D;

Rule3@@y, xDD = If@m1@@xDD � 0 && m2@@xDD � 0 && m3@@yDD � 0, Mod@j1@@xDD +

j2@@xDD + j3@@yDD, 2D, Mod@j1@@xDD + j2@@xDD + j3@@yDD, 1DD; H*If m1=

m2=m3 ® j1+j2+j3=even integer. If satisfied a zero is returned!*L
Rule4@@y, xDD = If@Abs@j1@@xDD - j2@@xDDD £ j3@@yDD &&

j3@@yDD £ j1@@xDD + j2@@xDD, 1, 0D;

FactorWigner3jMatrix@@y, xDD =
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If@Rule1@@y, xDD � 1 && Rule2@@y, xDD � 1 && Rule3@@y, xDD � 0 &&

Rule4@@y, xDD � 1, Sqrt@H2 * FmFJLSI1@@x, 3DD + 1L * H2 * FmFJLSI2@@y, 3DD + 1L *

H2 * FmFJLSI1@@x, 1DD + 1L * H2 * FmFJLSI2@@y, 1DD + 1LD * ThreeJSymbol@
8j1@@xDD, m1@@xDD<, 8j2@@xDD, m2@@xDD<, 8j3@@yDD, -m3@@yDD<D, 0D;

D;

D;

If@Detailed > 0,

Print@"Factor*Wigner3J = " MatrixForm@FactorWigner3jMatrixDD, NullD;

If@Detailed � 2,

Print@"Rule1:", Rule1D &&

Print@"Rule2:", Rule2D &&

Print@"Rule3:", Rule3D &&

Print@"Rule4:", Rule4D, NullD;

H*-----------------------Factor*WIGNER 3J----------------------*L

H*-----------------------Second WIGNER 6J----------------------*L
H*Wigner6j8j1,j2,j3<,8m1,m2,m3<*L

j1 = ConstantArray@0, 8Length@FmFJLSI2D<D;

m1 = ConstantArray@0, 8Length@FmFJLSI1D<D;

j2 = ConstantArray@0, 8Length@FmFJLSI2D<D;

m2 = ConstantArray@0, 8Length@FmFJLSI1D<D;

j3 = ConstantArray@0, 8Length@FmFJLSI1D<D;

m3 = ConstantArray@0, 8Length@FmFJLSI2D<D;

Rule1 = ConstantArray@3, 8Length@FmFJLSI2D, Length@FmFJLSI1D<D;

Rule2 = ConstantArray@0, 8Length@FmFJLSI2D, Length@FmFJLSI1D<D;

Rule3 = ConstantArray@0, 8Length@FmFJLSI2D, Length@FmFJLSI1D<D;

Rule4 = ConstantArray@0, 8Length@FmFJLSI2D, Length@FmFJLSI1D<D;

Rule5 = ConstantArray@0, 8Length@FmFJLSI2D, Length@FmFJLSI1D<D;

SecondWigner6jMatrix =

ConstantArray@0, 8Length@FmFJLSI2D, Length@FmFJLSI1D<D;

For@x = 1, x < Length@FmFJLSI1D + 1, x++,

m1@@xDD = FmFJLSI1@@x, 1DD;

j3@@xDD = FmFJLSI1@@x, 6DD;

m2@@xDD = FmFJLSI1@@x, 3DD;

D;

For@y = 1, y < Length@FmFJLSI2D + 1, y++,

j1@@yDD = FmFJLSI2@@y, 3DD;

m3@@yDD = 1;

j2@@yDD = FmFJLSI2@@y, 1DD;

D;

For@y = 1, y < Length@FmFJLSI2D + 1, y++,

For@x = 1, x < Length@FmFJLSI1D + 1, x++,

H*rules from: http:��mathworld.wolfram.com�WigIer3j-Symbol.html*L
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H*Each triad satisfies the triangular inequalities*L
Rule1@@y, xDD =

If@Abs@j1@@yDD - j2@@yDDD <= j3@@xDD && j3@@xDD <= j1@@yDD + j2@@yDD, 1, 0D;

Rule2@@y, xDD = If@Abs@j1@@yDD - m2@@xDDD <= m3@@yDD &&

m3@@yDD <= j1@@yDD + m2@@xDD, 1, 0D;

Rule3@@y, xDD = If@Abs@m1@@xDD - j2@@yDDD <= m3@@yDD &&

m3@@yDD <= m1@@xDD + j2@@yDD, 1, 0D;

Rule4@@y, xDD = If@Abs@m1@@xDD - m2@@xDDD <= j3@@xDD &&

j3@@xDD <= m1@@xDD + m2@@xDD, 1, 0D;

H*The sum of the elements of each triad is an integer*L
Rule5@@y, xDD = If@Mod@j1@@yDD + j2@@yDD + j3@@xDD, 1D � 0

H*&&Mod@j1@@yDD+m2@@xDD+m3@@yDD,1D�0&&Mod@m1@@xDD+j2@@yDD+m3@@yDD,1D�

0&&Mod@m1@@xDD+m2@@xDD+j3@@xDD,1D�0*L, 1, 0D; H*If m1=

m2=m3 ® j1+j2+j3=even integer. If satisfied a zero is returned!*L
SecondWigner6jMatrix@@y, xDD = If@Rule1@@y, xDD � 1 && Rule2@@y, xDD � 1 &&

Rule3@@y, xDD � 1 && Rule4@@y, xDD � 1 && Rule5@@y, xDD � 1,

SixJSymbol@8j1@@yDD, j2@@yDD, j3@@xDD<, 8m1@@xDD, m2@@xDD, m3@@yDD<D, 0D;

D;

D;

If@Detailed > 0,

Print@"Second Wigner 6j = " MatrixForm@SecondWigner6jMatrixDD, NullD;

If@Detailed � 2,

Print@"Rule1:", MatrixForm@Rule1DD &&

Print@"Rule2:", MatrixForm@Rule2DD &&

Print@"Rule3:", MatrixForm@Rule3DD &&

Print@"Rule4:", MatrixForm@Rule4DD &&

Print@"Rule5:", MatrixForm@Rule5DD &&

Print@"Rule4*Rule5:", MatrixForm@Rule4 * Rule5DD, NullD;

H*-----------------------Second WIGNER 6J----------------------*L

H*-----------------------First WIGNER 6J-----------------------*L
H*Wigner6j8j1,j2,j3<,8m1,m2,m3<*L

j1 = ConstantArray@0, 8Length@FmFJLSI2D<D;

m1 = ConstantArray@0, 8Length@FmFJLSI1D<D;

j2 = ConstantArray@0, 8Length@FmFJLSI2D<D;

m2 = ConstantArray@0, 8Length@FmFJLSI1D<D;

j3 = ConstantArray@0, 8Length@FmFJLSI1D<D;

m3 = ConstantArray@0, 8Length@FmFJLSI2D<D;

Rule1 = ConstantArray@0, 8Length@FmFJLSI2D, Length@FmFJLSI1D<D;

Rule2 = ConstantArray@0, 8Length@FmFJLSI2D, Length@FmFJLSI1D<D;

Rule3 = ConstantArray@0, 8Length@FmFJLSI2D, Length@FmFJLSI1D<D;

Rule4 = ConstantArray@0, 8Length@FmFJLSI2D, Length@FmFJLSI1D<D;

Rule5 = ConstantArray@0, 8Length@FmFJLSI2D, Length@FmFJLSI1D<D;

FirstWigner6jMatrix = ConstantArray@0, 8Length@FmFJLSI2D, Length@FmFJLSI1D<D;

For@x = 1, x < Length@FmFJLSI1D + 1, x++,
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m1@@xDD = FmFJLSI1@@x, 3DD;

j3@@xDD = FmFJLSI1@@x, 5DD;

m2@@xDD = FmFJLSI1@@x, 4DD;

D;

For@y = 1, y < Length@FmFJLSI2D + 1, y++,

j1@@yDD = FmFJLSI2@@y, 4DD;

m3@@yDD = 1;

j2@@yDD = FmFJLSI2@@y, 3DD;

D;

For@y = 1, y < Length@FmFJLSI2D + 1, y++,

For@x = 1, x < Length@FmFJLSI1D + 1, x++,

H*rules from: http:��mathworld.wolfram.com�WigIer3j-Symbol.html*L
H*Each triad satisfies the triangular inequalities*L
Rule1@@y, xDD =

If@Abs@j1@@yDD - j2@@yDDD <= j3@@xDD && j3@@xDD <= j1@@yDD + j2@@yDD, 1, 0D;

Rule2@@y, xDD = If@Abs@j1@@yDD - m2@@xDDD <= m3@@yDD &&

m3@@yDD <= j1@@yDD + m2@@xDD, 1, 0D;

Rule3@@y, xDD = If@Abs@m1@@xDD - j2@@yDDD <= m3@@yDD &&

m3@@yDD <= m1@@xDD + j2@@yDD, 1, 0D;

Rule4@@y, xDD = If@Abs@m1@@xDD - m2@@xDDD <= j3@@xDD &&

j3@@xDD <= m1@@xDD + m2@@xDD, 1, 0D;

H*The sum of the elements of each triad is an integer*L
Rule5@@y, xDD = If@Mod@j1@@yDD + j2@@yDD + j3@@xDD, 1D � 0 &&

Mod@j1@@yDD + m2@@xDD + m3@@yDD, 1D � 0 && Mod@m1@@xDD + j2@@yDD + m3@@yDD,

1D � 0 && Mod@m1@@xDD + m2@@xDD + j3@@xDD, 1D � 0, 1, 0D; H*If m1=

m2=m3 ® j1+j2+j3=even integer. If satisfied a zero is returned!*L

FirstWigner6jMatrix@@y, xDD = If@Rule1@@y, xDD � 1 && Rule2@@y, xDD � 1 &&

Rule3@@y, xDD � 1 && Rule4@@y, xDD � 1 && Rule5@@y, xDD � 1,

SixJSymbol@8j1@@yDD, j2@@yDD, j3@@xDD<, 8m1@@xDD, m2@@xDD, m3@@yDD<D, 0D;

D;

D;

If@Detailed > 0,

Print@"First Wigner 6j = " MatrixForm@FirstWigner6jMatrixDD, NullD;

If@Detailed � 2,

Print@"Rule1:", Rule1D &&

Print@"Rule2:", Rule2D &&

Print@"Rule3:", Rule3D &&

Print@"Rule4:", Rule4D &&

Print@"Rule5:", Rule5D, NullD;

H*-----------------------First WIGNER 6J----------------------*L

H*-------------------DIPOLE TRANSITION STRENGTH---------------*L
If@Detailed > 0,

Print@
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"HFactorWigner3jMatrix*FirstWigner6jMatrix*SecondWigner6jMatrixL^2 = ",

MatrixForm@
HFactorWigner3jMatrix * FirstWigner6jMatrix * SecondWigner6jMatrixL^2DD,

Print@"Transition strengths:", MatrixForm@
HFactorWigner3jMatrix * FirstWigner6jMatrix * SecondWigner6jMatrixL^2DDD;

H*-------------DIPOLE TRANSITION STRENGTH----------------------*L
D; Print@"horizontal order of states HFmFJLSIL is:", FmFJLSI1,

"\n vertical order of states HFmFJLSIL is:\n", FmFJLSI2D;

H*--------------------------HIGH FIELD--------------------------*L

H*Dipole transition strength for JmJImILS1->JmJImILS2*L
StylePrint@"HIGH FIELD HJmJImILS1->JmJImILS2L:",

FontFamily ® "Helvetica", FontColor ® RedD
For@q = -1, q < 2, q++, H*-1,0,+1 polarization*L

Print@"----------------POALARIZATION q= ", q, "----------------------"D;

H*-----------------------Factor*WIGNER 3J----------------------*L
H*Factor=Sqrt@H2J+1LH2J'+1LH2F+1LH2F'+1LD*L
j1 = ConstantArray@0, 8Length@JmJImILS1D<D;

m1 = ConstantArray@0, 8Length@JmJImILS1D<D;

j2 = ConstantArray@0, 8Length@JmJImILS1D<D;

m2 = ConstantArray@0, 8Length@JmJImILS1D<D;

j3 = ConstantArray@0, 8Length@JmJImILS2D<D;

m3 = ConstantArray@0, 8Length@JmJImILS2D<D;

Rule1 = ConstantArray@0, 8Length@JmJImILS2D, Length@JmJImILS1D<D;

Rule2 = ConstantArray@0, 8Length@JmJImILS2D, Length@JmJImILS1D<D;

Rule3 = ConstantArray@0, 8Length@JmJImILS2D, Length@JmJImILS1D<D;

Rule4 = ConstantArray@0, 8Length@JmJImILS2D, Length@JmJImILS1D<D;

FactorWigner3jMatrix =

ConstantArray@0, 8Length@JmJImILS2D, Length@JmJImILS1D<D;

For@x = 1, x < Length@JmJImILS1D + 1, x++,

j1@@xDD = JmJImILS1@@x, 1DD;

m1@@xDD = JmJImILS1@@x, 2DD;

j2@@xDD = 1;

m2@@xDD = q;

D;

For@y = 1, y < Length@JmJImILS2D + 1, y++,

j3@@yDD = JmJImILS2@@y, 1DD;

m3@@yDD = JmJImILS2@@y, 2DD;

D;

For@y = 1, y < Length@JmJImILS2D + 1, y++,

For@x = 1, x < Length@JmJImILS1D + 1, x++,

H*rules from: http:��mathworld.wolfram.com�WigIer3j-Symbol.html*L
Rule1@@y, xDD = If@m1@@xDD + m2@@xDD - m3@@yDD == 0, 1, 0D;
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H*MINUS SIGN IN FRONT OF m3!!!*L
Rule2@@y, xDD = If@Abs@m1@@xDDD <= j1@@xDD &&

Abs@m2@@xDDD <= j2@@xDD && Abs@m3@@yDDD <= j3@@yDD, 1, 0D;

Rule3@@y, xDD = If@m1@@xDD � 0 && m2@@xDD � 0 && m3@@yDD � 0, Mod@j1@@xDD +

j2@@xDD + j3@@yDD, 2D, Mod@j1@@xDD + j2@@xDD + j3@@yDD, 1DD; H*If m1=

m2=m3 ® j1+j2+j3=even integer. If satisfied a zero is returned!*L
Rule4@@y, xDD = If@Abs@j1@@xDD - j2@@xDDD £ j3@@yDD &&

j3@@yDD £ j1@@xDD + j2@@xDD, 1, 0D;

FactorWigner3jMatrix@@y, xDD = If@Rule1@@y, xDD � 1 &&

Rule2@@y, xDD � 1 && Rule3@@y, xDD � 0 && Rule4@@y, xDD � 1,

Sqrt@H2 * JmJImILS1@@x, 3DD + 1L * H2 * JmJImILS2@@y, 3DD + 1LD *

ThreeJSymbol@8j1@@xDD, m1@@xDD<, 8j2@@xDD, m2@@xDD<,

8j3@@yDD, -m3@@yDD<D, 0D;H*MINUS SIGN IN FRONT OF m3!!!*L
D;

D;

If@Detailed > 0,

Print@"Factor*Wigner3J = " MatrixForm@FactorWigner3jMatrixDD, NullD;

If@Detailed � 2,

Print@"Rule1:", Rule1D &&

Print@"Rule2:", Rule2D &&

Print@"Rule3:", Rule3D &&

Print@"Rule4:", Rule4D, NullD;

H*-----------------------Factor*WIGNER 3J----------------------*L

H*---------------------------WIGNER 6J-------------------------*L
H*Wigner6j8j1,j2,j3<,8m1,m2,m3<*L

j1 = ConstantArray@0, 8Length@JmJImILS2D<D;

m1 = ConstantArray@0, 8Length@JmJImILS1D<D;

j2 = ConstantArray@0, 8Length@JmJImILS2D<D;

m2 = ConstantArray@0, 8Length@JmJImILS1D<D;

j3 = ConstantArray@0, 8Length@JmJImILS1D<D;

m3 = ConstantArray@0, 8Length@JmJImILS2D<D;

Rule1 = ConstantArray@0, 8Length@JmJImILS2D, Length@JmJImILS1D<D;

Rule2 = ConstantArray@0, 8Length@JmJImILS2D, Length@JmJImILS1D<D;

Rule3 = ConstantArray@0, 8Length@JmJImILS2D, Length@JmJImILS1D<D;

Rule4 = ConstantArray@0, 8Length@JmJImILS2D, Length@JmJImILS1D<D;

Rule5 = ConstantArray@0, 8Length@JmJImILS2D, Length@JmJImILS1D<D;

Rule6 = ConstantArray@0, 8Length@JmJImILS2D, Length@JmJImILS1D<D;

Wigner6jMatrix = ConstantArray@0, 8Length@JmJImILS2D, Length@JmJImILS1D<D;

For@x = 1, x < Length@JmJImILS1D + 1, x++,

m1@@xDD = JmJImILS1@@x, 1DD;

j3@@xDD = JmJImILS1@@x, 6DD;

m2@@xDD = JmJImILS1@@x, 5DD;

D;
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For@y = 1, y < Length@JmJImILS2D + 1, y++,

j1@@yDD = JmJImILS2@@y, 5DD;

m3@@yDD = 1;

j2@@yDD = JmJImILS2@@y, 1DD;

D;

For@y = 1, y < Length@JmJImILS2D + 1, y++,

For@x = 1, x < Length@JmJImILS1D + 1, x++,

H*rules from: http:��mathworld.wolfram.com�WigIer3j-Symbol.html*L
H*Each triad satisfies the triangular inequalities*L
Rule1@@y, xDD =

If@Abs@j1@@yDD - j2@@yDDD <= j3@@xDD && j3@@xDD <= j1@@yDD + j2@@yDD, 1, 0D;

Rule2@@y, xDD = If@Abs@j1@@yDD - m2@@xDDD <= m3@@yDD &&

m3@@yDD <= j1@@yDD + m2@@xDD, 1, 0D;

Rule3@@y, xDD = If@Abs@m1@@xDD - j2@@yDDD <= m3@@yDD &&

m3@@yDD <= m1@@xDD + j2@@yDD, 1, 0D;

Rule4@@y, xDD = If@Abs@m1@@xDD - m2@@xDDD <= j3@@xDD &&

j3@@xDD <= m1@@xDD + m2@@xDD, 1, 0D;

H*The sum of the elements of each triad is an integer*L
Rule5@@y, xDD = If@Mod@j1@@yDD + j2@@yDD + j3@@xDD, 1D � 0 &&

Mod@j1@@yDD + m2@@xDD + m3@@yDD, 1D � 0 && Mod@m1@@xDD + j2@@yDD + m3@@yDD,

1D � 0 && Mod@m1@@xDD + m2@@xDD + j3@@xDD, 1D � 0, 1, 0D; H*If m1=

m2=m3 ® j1+j2+j3=even integer. If satisfied a zero is returned!*L
Rule6@@y, xDD = If@Abs@JmJImILS1@@x, 3DD - JmJImILS2@@y, 3DDD � 0 &&

Abs@JmJImILS1@@x, 4DD - JmJImILS2@@y, 4DDD � 0, 1, 0D;

H*extra restriction, no nuclear flip may occur*L
Wigner6jMatrix@@y, xDD = If@Rule1@@y, xDD � 1 && Rule2@@y, xDD � 1 && Rule3@@y,

xDD � 1 && Rule4@@y, xDD � 1 && Rule5@@y, xDD � 1 && Rule6@@y, xDD � 1,

SixJSymbol@8j1@@yDD, j2@@yDD, j3@@xDD<, 8m1@@xDD, m2@@xDD, m3@@yDD<D, 0D;

D;

D;

If@Detailed > 0,

Print@"Wigner6j" MatrixForm@Wigner6jMatrixDD, NullD;

If@Detailed � 2,

Print@"Rule1:", Rule1D &&

Print@"Rule2:", Rule2D &&

Print@"Rule3:", Rule3D &&

Print@"Rule4:", Rule4D &&

Print@"Rule5:", Rule5D &&

Print@"Rule6:", Rule6D, NullD;

H*--------------DIPOLE TRANSITION STRENGTH------------------*L
If@Detailed > 0,

Print@"HFactorWigner3jMatrix*Wigner6jMatrixL^2 = "

MatrixForm@HFactorWigner3jMatrix * Wigner6jMatrixL^2DD,
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In[182]:=

Print@"Transition strengths:" MatrixForm@
HFactorWigner3jMatrix * Wigner6jMatrixL^2DDD;

H*------------DIPOLE TRANSITION STRENGTH--------------------*L

D; Print@"horizontal order of states HJmJImILSL is:", JmJImILS1,

"\n vertical order of states HJmJImILSL is:\n", JmJImILS2D;

RESULTS HFmFJLSI1->FmFJLSI2L:
LOW FIELD:

-------------------POALARIZATION q= -1----------------------

Transition strengths:

0 0 0 0 0 0 0 1

15

0 0 0 1

45
0 0 0 0

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

0 0 0 0 0 0 2

15
0

0 0 1

36
0 0 0 0 1

12

0 0 0 1

18
0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 2

9
0 0

0 0 0 0 0 0 2

15
0

0 0 5

36
0 0 0 0 1

60

0 0 0 1

30
0 0 0 0

0 0 0 0 1

3
0 0 0

1

6
0 0 0 0 1

18
0 0

0 5

36
0 0 0 0 1

180
0

0 0 1

9
0 0 0 0 0

-------------------POALARIZATION q= 0----------------------
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Transition strengths:

0 0 0 0 0 0 1

5
0

0 0 0 0 0 0 0 8

45

0 0 0 1

9
0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 8

45
0 0

0 1

9
0 0 0 0 0 0

0 0 1

12
0 0 0 0 1

36

0 0 0 1

9
0 0 0 0

0 0 0 0 1

9
0 0 0

0 0 0 0 0 8

45
0 0

0 0 0 0 0 0 1

45
0

0 0 5

36
0 0 0 0 1

60

0 0 0 0 0 0 0 0

0 0 0 0 1

9
0 0 0

5

36
0 0 0 0 1

60
0 0

0 1

9
0 0 0 0 0 0

-------------------POALARIZATION q= 1----------------------

Transition strengths:

0 0 0 0 0 1

15
0 0

0 0 0 0 0 0 2

15
0

0 0 0 0 0 0 0 2

9

0 0 0 1

3
0 0 0 0

0 0 0 0 1

45
0 0 0

1

36
0 0 0 0 1

12
0 0

0 1

12
0 0 0 0 1

12
0

0 0 1

6
0 0 0 0 1

18

0 0 0 0 0 0 0 0

0 0 0 0 1

45
0 0 0

5

36
0 0 0 0 1

60
0 0

0 5

36
0 0 0 0 1

180
0

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

0 0 0 0 1

30
0 0 0

1

9
0 0 0 0 0 0 0
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horizontal order of states HFmFJLSIL is:

::1, -1,
1

2
, 0,

1

2
,

3

2
>, :1, 0,

1

2
, 0,

1

2
,

3

2
>, :1, 1,

1

2
, 0,

1

2
,

3

2
>, :2, 2,

1

2
, 0,

1

2
,

3

2
>,

:2, -2,
1

2
, 0,

1

2
,

3

2
>, :2, -1,

1

2
, 0,

1

2
,

3

2
>, :2, 0,

1

2
, 0,

1

2
,

3

2
>, :2, 1,

1

2
, 0,

1

2
,

3

2
>>

vertical order of states HFmFJLSIL is:

::3, 0,
3

2
, 1,

1

2
,

3

2
>, :3, 1,

3

2
, 1,

1

2
,

3

2
>, :3, 2,

3

2
, 1,

1

2
,

3

2
>, :3, 3,

3

2
, 1,

1

2
,

3

2
>,

:3, -1,
3

2
, 1,

1

2
,

3

2
>, :2, 0,

3

2
, 1,

1

2
,

3

2
>, :2, 1,

3

2
, 1,

1

2
,

3

2
>, :2, 2,

3

2
, 1,

1

2
,

3

2
>,

:3, -2,
3

2
, 1,

1

2
,

3

2
>, :3, -1,

3

2
, 1,

1

2
,

3

2
>, :1, 0,

3

2
, 1,

1

2
,

3

2
>, :1, 1,

3

2
, 1,

1

2
,

3

2
>,

:3, -3,
3

2
, 1,

1

2
,

3

2
>, :2, -2,

3

2
, 1,

1

2
,

3

2
>, :1, -1,

3

2
, 1,

1

2
,

3

2
>, :0, 0,

3

2
, 1,

1

2
,

3

2
>>

HIGH FIELD HJmJImILS1->JmJImILS2L:
----------------POALARIZATION q= -1----------------------

Transition strengths:

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
2

9
0 0 0 0 0 0 0

0 2

9
0 0 0 0 0 0

0 0 2

9
0 0 0 0 0

0 0 0 2

9
0 0 0 0

0 0 0 0 0 0 0 2

3

0 0 0 0 0 0 2

3
0

0 0 0 0 0 2

3
0 0

0 0 0 0 2

3
0 0 0

----------------POALARIZATION q= 0----------------------
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Transition strengths:

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
4

9
0 0 0 0 0 0 0

0 4

9
0 0 0 0 0 0

0 0 4

9
0 0 0 0 0

0 0 0 4

9
0 0 0 0

0 0 0 0 0 0 0 4

9

0 0 0 0 0 0 4

9
0

0 0 0 0 0 4

9
0 0

0 0 0 0 4

9
0 0 0

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

----------------POALARIZATION q= 1----------------------

Transition strengths:

2

3
0 0 0 0 0 0 0

0 2

3
0 0 0 0 0 0

0 0 2

3
0 0 0 0 0

0 0 0 2

3
0 0 0 0

0 0 0 0 0 0 0 2

9

0 0 0 0 0 0 2

9
0

0 0 0 0 0 2

9
0 0

0 0 0 0 2

9
0 0 0

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
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horizontal order of states HJmJImILSL is:

::
1

2
,

1

2
,

3

2
, -

3

2
, 0,

1

2
>, :

1

2
,

1

2
,

3

2
, -

1

2
, 0,

1

2
>,

:
1

2
,

1

2
,

3

2
,

1

2
, 0,

1

2
>, :

1

2
,

1

2
,

3

2
,

3

2
, 0,

1

2
>, :

1

2
, -

1

2
,

3

2
,

3

2
, 0,

1

2
>,

:
1

2
, -

1

2
,

3

2
,

1

2
, 0,

1

2
>, :

1

2
, -

1

2
,

3

2
, -

1

2
, 0,

1

2
>, :

1

2
, -

1

2
,

3

2
, -

3

2
, 0,

1

2
>>

vertical order of states HJmJImILSL is:

::
3

2
,

3

2
,

3

2
, -

3

2
, 1,

1

2
>, :

3

2
,

3

2
,

3

2
, -

1

2
, 1,

1

2
>,

:
3

2
,

3

2
,

3

2
,

1

2
, 1,

1

2
>, :

3

2
,

3

2
,

3

2
,

3

2
, 1,

1

2
>, :

3

2
,

1

2
,

3

2
, -

3

2
, 1,

1

2
>,

:
3

2
,

1

2
,

3

2
, -

1

2
, 1,

1

2
>, :

3

2
,

1

2
,

3

2
,

1

2
, 1,

1

2
>, :

3

2
,

1

2
,

3

2
,

3

2
, 1,

1

2
>,

:
3

2
, -

1

2
,

3

2
, -

3

2
, 1,

1

2
>, :

3

2
, -

1

2
,

3

2
, -

1

2
, 1,

1

2
>,

:
3

2
, -

1

2
,

3

2
,

1

2
, 1,

1

2
>, :

3

2
, -

1

2
,

3

2
,

3

2
, 1,

1

2
>, :

3

2
, -

3

2
,

3

2
, -

3

2
, 1,

1

2
>,

:
3

2
, -

3

2
,

3

2
, -

1

2
, 1,

1

2
>, :

3

2
, -

3

2
,

3

2
,

1

2
, 1,

1

2
>, :

3

2
, -

3

2
,

3

2
,

3

2
, 1,

1

2
>>
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