
Analysis of the Euclidean

Feature Transform

algorithm

Bachelor thesis - Computing Science

21st August 2012

Student: Sebastian R. Verschoor

Primary supervisor: prof. dr. Gerard R. Renardel de Lavalette

Secondary supervisor: prof. dr. Wim H. Hesselink

Abstract

In this thesis I mechanically verify the correctness and linear time complexity of the core of the
Euclidean Feature Transform (EFT) algorithm, using the proof assistant PVS. The EFT algorithm
computes the EFT function for a data grid of arbitrary dimension. The EFT function calculates the set
of nearest �background� data points, for each data point in the grid. The distance between data points
is measured by the standard Euclidean distance.

Contents

1 Introduction 3

2 Context 4
2.1 Program Correctness . 4

2.1.1 Hoare triples . 4
2.1.2 Total correctness while rule . 5
2.1.3 Notation . 5

2.2 Mechanical veri�cation . 5
2.2.1 Concept of mechanical veri�cation . 6
2.2.2 Using the computer . 6
2.2.3 Conclusions from mechanical veri�cation . 6
2.2.4 Mechanically verifying algorithms . 7

2.3 PVS . 7
2.3.1 PVS properties . 8
2.3.2 Proving with PVS . 8
2.3.3 programs.pvs . 9

3 Euclidean Feature Transform 10
3.1 Mathematical de�nition . 10

3.1.1 Two dimensional binary EFT . 10
3.1.2 Generalising the de�nition . 11
3.1.3 Formal de�nition . 11

3.2 The EFT algorithm . 11
3.2.1 Reduction of the dimensions . 11
3.2.2 Original algorithm . 12

4 Mechanical Veri�cation of the EFT algorithm 14
4.1 Speci�cation . 14

4.1.1 Mathematics . 14
4.1.2 Algorithm version 2 . 15

4.2 Proof . 18
4.2.1 Mathematics . 18
4.2.2 Algorithm . 22
4.2.3 Time complexity . 29

5 Conclusion and evaluation 30

6 Future work 31

7 Acknowledgement 32

1

A PVS Speci�cation 34
A.1 EFT_program.pvs . 34
A.2 EFT_program_statements.pvs . 39
A.3 EFT.pvs . 42
A.4 programs.pvs . 47
A.5 ith_element_theory.pvs . 49
A.6 more_�oor.pvs . 50
A.7 max_nat.pvs . 51
A.8 auxilCard.pvs . 51

2

Chapter 1

Introduction

In this thesis I analyse an algorithm that computes the Euclidean Feature Transform (EFT). The goal
of this project is to mechanically verify that the algorithm by Hesselink [3] correctly calculates the EFT
and does so in linear time complexity.

The Feature Transform is an abstract mathematical notion of distances involving digital data. The
high level of abstraction gives the algorithm a broad range of applications, for example calculating the
Euclidean skeleton of digital images and volume data [4]. On the other hand, this abstraction makes it
di�cult to understand why the algorithm is correct, or even whether it is correct.

Both the algorithm and a mathematical proof of its correctness are provided in [3]. I do not derive
a new algorithm or proof, instead I analyse the existing ones and, ultimately, mechanically verify the
correctness of the algorithm.

In chapter 2, I set the context of the project. I describe the theory for proving the correctness of
algorithms (Program Correctness), explain the idea of mechanical veri�cation and analyse the proof
assistant software tool called PVS.

In chapter 3, I analyse the Euclidean Feature Transform itself. After explaining what the function
calculates, I derive a formal mathematical de�nition. Subsequently, I transform it to a de�nition that
the algorithm of [3] can compute.

In chapter 4, I analyse the given proof and extend it with the details that are required for mechanical
veri�cation. The mechanical veri�cation in the PVS proof �les follows the outline from this chapter.

I draw conclusions in chapter 5, recommend future work in chapter 6 and state my acknowledgement
in chapter 7. For completeness, appendix A contains the complete PVS speci�cation.

3

Chapter 2

Context

The goal of this project is to prove that a certain algorithm, called the Euclidean Feature Transform
algorithm, is correct. For this purpose, I need to be able to make formal mathematical statements about
what it means for an algorithm to be correct. To do this, I use the theory of Program Correctness, which
I explain in section 2.1.

The concept of mechanical veri�cation is that almost anything in mathematics can be formally veri-
�ed. Using a formal language like predicate calculus, mathematics can be built up from a limited set of
axioms and rules. By using these rules, almost any mathematical statement can be mechanically veri�ed
to be true or false. I elaborate on this idea in section 2.2.

The actual veri�cation heavily depends on the characteristics of the used tools. The most important
tool is a proof assistant computer program. In this project I use PVS, and I analyse its characteristics
in section 2.3.

2.1 Program Correctness

The basic theory on which the proof of this project relies is that of Program Correctness. The idea of
Program Correctness is that a program statement changes the state of the executing machine to some
other state. These states can be described by mathematics. To change the state, only a limited set of
program commands are allowed. Each command has its rules as to how it changes the state, which is
described by a Hoare triple.

2.1.1 Hoare triples

A Hoare triple consists of a precondition, a program statement and a postcondition, where both the
pre- and postcondition are predicates that describe the machine state. When the precondition is met
beforehand, the program statement establishes the postcondition.

Let P , P ′, Q, Q′, R and J be predicates about the machine state, B a predicate about the program
variables, S and T be program statements, E be an expression in the program language and x be a
program variable. Then the theory provides the following proof rules for Hoare triples.

The skip command does not change the state:

{P} skip {P}

The assignment command (←) rewrites variable x with expression E:

{P [E/x]} x← E {P}

Sequential composition (∧)1 couples two statements together:

{P} S {Q}, {Q} T {R}
{P} S∧T {R}

1The standard symbol `;' is not available as PVS operator, therefore it is replaced with `∧'.

4

Branching is described by the if-then-else rule:

{P ∧B} S {Q}, {P ∧ ¬B} T {Q}
{P} if B then S else T end if {Q}

Repetition is described by the (conditional correctness) while rule:

{J ∧B} S {J}
{J} while B do S end while {J ∧ ¬B}

But the most important rule is the consequence rule. By applying this rule before and after the
statements, mathematical theorems can be applied to the proof. In many algorithms, the di�culty of
proving the correctness is not to �nd the correct program statements, but to �nd the correct application
of the consequence rule:

P ′ ⇒ P, {P} S {Q}, Q⇒ Q′

{P ′} S {Q′}

2.1.2 Total correctness while rule

The above while rule guarantees the conditional correctness of a program, meaning that if it will termi-
nate, the postcondition will hold. What remains is to prove that it terminates. An additional function
is introduced: the variant function vf . Initially vf ≥ 0. Furthermore, each execution of the while body
needs to lower the function value. The result is the (total correctness) while rule:

{J ∧B ∧ vf = V } S {J ∧ vf < V }, J ∧B ⇒ vf ≥ 0

{J} while B do S end while {J ∧ ¬B}

Time complexity

The variant function gives information about the time complexity of the while loop. Because vf decreases
each time the body is executed, the total number of repetitions of the body can be no more than the
initial value of vf . The order of time complexity can be derived directly from the vf if the body is
O(1). In case a statement inside the body has a greater order, the time complexity of the loop is the
multiplication of the loop-order and the statement-order.

However, in the case of the EFT algorithm, which has nested loops, multiplication is not enough to
prove linear time complexity. A method is applied where the vf of the inner- and outer loop are equal
and the vf decreases in both loops. Then, the complexity of the outer loop can be derived directly from
the vf .

2.1.3 Notation

The notation of a program correctness proof resembles the above notation. The program statements are
numbered lines, the curly brackets, `{' and `}', surround the state predicates and if a consequence rule
is not obvious, additional comment is added between `(∗' and `∗)'.

2.2 Mechanical veri�cation

As stated before, a formal system is built up from a small set of axioms and rules, an example being
the predicate calculus. Mechanical veri�cation checks whether a mathematical sentence could have been
built up from the set of axioms, using the available rules. This section explains the advantage of building
up mathematics using a formal system, it shows how the computer can assist with mechanical veri�cation
and �nally it discusses which conclusions can be drawn from mechanical veri�cation.

5

2.2.1 Concept of mechanical veri�cation

Mechanical veri�cation is the ultimate extension of formalising mathematics. The foundation of this
process was laid by the ancient Greeks, a well-known example being Euclid's Elements. In this work,
Euclid formulated �ve axioms from which he derived a rich set of theorems, using only logical derivations
from the axioms and already proven theorems.

The problem with this method of proving mathematics is that a theorem and its proof grow complex
and unmanageable very fast. To solve this problem, mathematicians skip many logical steps in a proof
that are considered to be trivial. Although this usually results in a proof that is much more understand-
able, there is also a lot more room for errors. A classical fallacy is the following proof, deriving 2 = 1
from the assumption a = b:

a = b

a2 = ab

2a2 = a2 + ab

2a2 − 2ab = a2 + ab− 2ab

2a2 − 2ab = a2 − ab

2(a2 − ab) = 1(a2 − ab)

2 = 1

The problem lies in dividing by the term a2 − ab in the last step, because a2 − ab = 0. A mechanical
veri�cation would require for every division the additional proof that the denominator is non-zero.2

2.2.2 Using the computer

By using the computer, the complexity that arises from formalising mathematics can be managed. Almost
all mathematical statements can be written down in a formal language, such as a predicate calculus. This
language can be parsed and interpreted by a computer program, called a proof assistant. The kernel of
the proof assistant de�nes a predicate calculus, in which the user can state well- formed formulas (w�s).
These w�s are either true or false, although the goal is usually to state truths. Using the inference rules
of the predicate logic, the user must rewrite the formulas to other formulas, until an axiom has been
derived.

The proof assistant can help in two ways. First of all, it gives all the proof obligations that occur
when using rules or stating w�s, meaning all w�s that need to be true. When all proof obligations have
been veri�ed to be true, the proof assistant validates that the w� is indeed true. In this case the proof
assistant acts as a bookkeeper.

The other advantage of using software is that there is some automation in inferring rules. Automation
can be very useful when the proof uses exhaustive case distinction, but also when the proof contains
arithmetic operations. Some propositional assertions can be computed by the proof assistant. The
amount of automation varies for di�erent proof assistants.

2.2.3 Conclusions from mechanical veri�cation

An important question remains: �What conclusions can be inferred from having mechanically veri�ed a
formula?� Surprisingly, the answer is not immediately: �That the formula is true.� The reason is that
there remains some room for errors and there is always human interpretation of the result.

Errors

The proof assistant could contain bugs. The predicate calculus is speci�ed in some programming language
and is possibly speci�ed wrong. The solution is to keep the kernel of the proof assistant very small, so
that there is little room for errors. The automation module of the proof assistant could contain errors

2In fact, the EFT proof contains this non-zero requirement for division at TCC g_TCC1.

6

as well, but luckily there is a solution for that problem. By separating the automation module from the
kernel, the kernel can actually be used to mechanically verify the automation module.

Another place for errors is only a theoretical one. The mechanical veri�cation is done upon a real
machine, with underlying hardware. There could be a hardware failure, leading to the incorrect veri�ca-
tion a formula. By executing the veri�cation multiple times, preferably on di�erent machine, the chances
of this happening are negligible.

Interpreting the result

The formula could be stated wrong, which means that the wrong formula has been veri�ed to be true.
There is always the part where a human must interpret the result, and humans make mistakes. By
keeping the formula as simple as possible, the room for interpretation is minimal, which is the best that
can be achieved. There is no point in trying to verify that interpretation of the formula is the correct
one, because this would require a new speci�cation for correctness, which needs interpretation itself.

Value of mechanical veri�cation

With all this room for errors and interpretation, one might believe that there is not much additional value
in a mechanical veri�cation compared to mathematical proofs. But there are many bene�ts, because
mechanical veri�cation eliminates many possible errors in a proof, but does not introduce any errors.
Program bugs and hardware failures are comparable to typing- and printing errors. There is always
interpretation of a mathematical statement, so this is not an issue introduced by mechanical veri�cation.
The conclusions that can be drawn from mechanically verifying a speci�c problem depend most heavily
on two factors: how simple is the problem speci�ed and which proof assistant was used?

2.2.4 Mechanically verifying algorithms

Mechanically verifying an algorithm is not any di�erent from verifying mathematics, in theory. Using
the Hoare triples from program correctness, a program can be described by a mathematical statement.
Yet there are some minor di�erences.

The �rst di�erence is the speci�cation of the Hoare triples in the proof assistant. The speci�cation
itself could contain bugs. Now there is room for errors in both the speci�cation of the states and in the
speci�cation of Hoare triples. The solution is to keep the speci�cation as simple as possible.

The interpretation of the program statements themselves is di�cult. The speci�cation of statements
could be wrong, meaning that the wrong algorithm is being veri�ed. If the result is an executable
algorithm with a Hoare triple that has the same pre- and postcondition, then there is no real harm done.
But one must be careful when drawing any conclusions about the algorithm.

An actual implementation of the algorithm is a whole other problem. It can contain typing errors or
other bugs, depend upon the language in which it was implemented, possibly depend on the compiler
that was used, etcetera. One important assumption underlying the theory of Program Correctness, is
that the state is not altered in between or during statements, except by the speci�ed commands. In
concurrent machines, this assumption is often incorrect. Therefore, there is a big di�erence between the
correctness of the algorithm and the correct execution of a computer program.

2.3 PVS

PVS stands for Prototype Veri�cation System. It was developed by the Computer Science Laboratory
of Stanford Research Institute (SRI) International. I chose PVS based on the advice of my supervisor,
Wim Hesselink, because he has the most extensive experience with this proof assistant.

As explained in section 2.2.3, the properties of the proof assistant are very important for drawing
conclusions of mechanical veri�cation, so these properties are examined in this section. To get an idea
of working with a proof assistant, the interface of PVS is explained. Finally, the implementation of the
Program Correctness theory in PVS is analysed.

7

2.3.1 PVS properties

One can say something about the quality of PVS as a proof assistant, by looking at some of its properties.
On the one hand it should be user friendly, making speci�cation of problems easy and interpretation of
those speci�cations straightforward. On the other hand, the underlying code of the program should be
small and veri�ed where possible, so that there is very little room for errors, which makes it possible to
draw strong conclusions.

PVS is quite user friendly, although there is a steep learning curve. PVS notations are very close to
standard mathematical notation, so that a PVS speci�cation can easily be checked by a mathematician.

On the other hand, the conclusions that can be drawn from veri�cation with PVS are not very strong.
PVS has quite a large kernel and its proof automation is not veri�ed. This means PVS has a lot of room
for errors, but not necessarily that it contains errors. Even if it did, that does not directly mean that
such an error a�ects the proof of this project. There is a world wide community of PVS users that send in
bug reports regularly. These reports are treated, leading to improved versions of PVS. Most of the bugs
reported are not about the soundness of the prover, but about other aspects of its behaviour. Therefore
the implicit assumption of this project, that PVS contains no signi�cant errors, is a reasonable one.

2.3.2 Proving with PVS

A PVS proof consists of two major parts. First, there is the speci�cation language. PVS uses a typed
higher order logic in which the user can formally specify the problem, using de�nitions and theorems.
The other part is the prover, in which the speci�ed theorems can be rewritten to logically equivalent
statements, until they are considered true.

PVS Speci�cation Language

In the speci�cation language, the user speci�es the mathematics in formal logical sentences. First, the
user de�nes everything to be used in the proof: constants, variables, functions, sets, etcetera. Then the
user states theorems and lemmas, which are logical sentences that can be either true or false.

The speci�cation �le is the most important tool for interpreting the resulting proof. When the
problem can be stated in a clear sentence, using only simple de�nitions, it is clear what is actually being
proven and there is very little room for errors.

Each of the de�nitions have a type, which possibly inherits from other types. Because of the types,
PVS derives Type Correctness Conditions (TCCs) from de�nitions. In addition to the correctness of the
main theorem, proof obligations are generated to prove the correctness of all TCCs.

A much occurring example of a TCC is the non-negativity of natural numbers. Assume the user
de�nes a function f : (N2 → N) as f(a, b) = a− b. This de�nition would only result in a natural number
if a ≥ b, which can not be derived from the current context. Two solutions are possible: change the type
to f : (N2 → Z), or add the context to the de�nition: f(a, b) = (a ≥ b ? a− b : 0). The �rst solution has
the problem that the result of f cannot be used directly as a natural number, so this possibly introduces
many TCCs in other de�nitions where f is used. The second de�nition has the problem that the user
might inadvertently use f when a < b and still get a result, which is incorrect.

There is no best solution, it is the user who must decide which one to use, depending on the context
of the de�nition in the speci�cation. The TCCs are a very tricky part of specifying a problem, which
results in some non-straightforward de�nitions.

PVS Prover

Once the problem has been stated in theorems, the user can try and prove that the given theorems are
correct. For each theorem, the user starts the prover, which gives a proof obligation that always has the
same form3:

P0 ∧ P1 ∧ . . . ∧ Pm ⇒ Q0 ∨Q1 ∨ . . . ∨Qn (2.1)

3In the prover the notation is vertical, where a horizontal line represents the `⇒', but the meaning is the same.

8

In order to prove a theorem, it needs to be rewritten with the logical rules that PVS provides. These
rules rewrite a w� to a logically equivalent one, until the whole rule is equivalent to an axiom or the w�
true.

An example rule rewrites (2.1) according to the following equivalence:

P ⇒ Q ≡ ¬P ∨Q

P representing the conjunction of Pi, Q the disjunction of Qj , with i ∈ [0..m) and j ∈ [0..n). The
consequence is that a w� is considered to be true when any of Pi is false, or any of Qj is true, or any Pi

is equal to any Qj . This applies directly to standard form of PVS proof obligations.
Now a proof obligation (P ⇒ Q) could occur where Q is of the form Q0 ∧ Q1. Assuming P , both

Q0 and Q1 need to be proven. Using the �split� rule, PVS breaks the proof down in two smaller proof
obligations: P ⇒ Q0 and P ⇒ Q1. Only if both obligations have been proven, the original theorem is
proven. Breaking up proofs like this is so common, that PVS provides another tool for keeping track of
all branches in a proof: the proof tree. There is no functionality in the proof tree, but it is essential for
the user to keep an overview of the proof status.

When a theorem has been proven, PVS stores the proof, so there is no need to prove it again. A
proven theorem is not yet complete, as the proof could rely on auxiliary lemmas. Only when these
lemmas have all been proven, the theorem is considered complete. The advantage of using unproven
lemmas is that it can greatly simplify a proof, leaving the proof obligation of the lemma for a later time.

The proof of a theorem could depend upon lemmas, which in their turn could depend on other
lemmas, creating a large dependency tree of proofs. In a sense, the speci�cation is no di�erent from
a prover session, which is also a tree of proofs. The only di�erence is that the rules have been made
explicit, so that the proof becomes manageable.

Automation

PVS has a small amount of automation. It can do some basic arithmetic operations and some very basic
rewriting of logical operators, but no more than that. PVS has strategies, which just chains several
basic rules behind each other. Strategies can be used just like regular rules. Users can specify their own
strategies, which potentially heighten the amount of automation in the proof. No custom strategies have
been used in this project.

2.3.3 programs.pvs

In order to prove algorithms with PVS, an implementation of the Program Correctness theory is required.
This is provided by the �le programs.pvs, which contains:

• The de�nitions for program statements (if-then-else, composition etc.)

• The de�nitions for total and conditional correctness

• Useful proven lemmas, stating properties of statements and their correctness

The most important de�nition is that of tcHoare: it states that if the precondition is true before the
program is run, the program both terminates and the postcondition is true after the program is run.

The programs theory is just what one would expect, but for a small detail. The theory distinguishes
between a program and a command, the di�erence being that commands always terminate. A command
can be lifted to a program (with the lift function) and by doing so, the user creates a program that will
terminate. A while-program obviously has no equivalent command, so termination of a while-program
needs to be proven explicitly, usually by applying the whileTheorem.

The implementation of the Program Correctness theory is small and straightforward, therefore it can
be considered to be correct.

9

Chapter 3

Euclidean Feature Transform

In this chapter, I will analyse the Euclidean Feature Transform (EFT). In section 3.1, I explain what the
EFT is and give formal de�nition. For a long time, it was thought that the EFT could not be computed
in linear time and had to be approximated by the chamfer distance [1]. In section 3.2, I analyse the
de�nition and rewrite it into one that can be computed in linear time. The linear time algorithm is fully
stated in the same section.

3.1 Mathematical de�nition

Before any analysis of the EFT can be done, the exact meaning will have to be formulated. This section
does that, starting with a simple example and inferring a general de�nition from there.

3.1.1 Two dimensional binary EFT

The EFT can be explained easiest by an example:

Figure 3.1: Binary image with background pixels

Figure 3.1 represents a binary image A (with A ⊆ N2) and each square represents a pixel. The black
pixels (b1, b2 and b3) are elements of the background pixel set, denoted by B (with B ⊆ A). For every
a ∈ A, the distance to the nearest background pixel b ∈ B is called the distance transform of a, or dt(a).
In case of the Euclidean distance transform (edt), the distance is measured by using the Pythagorean
formula. In the example: edt(a) = ||a− b1|| = ||a− b2|| =

√
(a.x− b1.x)2 + (a.y − b1.y)2 (=

√
10).

10

Feature transform is an abbreviation of nearest feature transform. The Euclidean Feature Transform
(EFT) is a function that calculates a set of nearest background pixels for each pixel. More formally:
EFT : A → 2B and b ∈ EFT (a) i� ||a − b|| = edt(a). In the example: EFT (a) = {b1, b2}, because
edt(a) = ||a− b1|| = ||a− b2||. But b3 /∈ EFT (a), because ||a− b3|| > edt(a). Note that for calculating
the EFT, the calculation of the square root is super�uous, because

√
x =
√
y ≡ x = y1.

3.1.2 Generalising the de�nition

The above de�nition works for two-dimensional binary images, but can be extended to a broader range
of datasets. Let d be the dimension, then the data is represented by a rectangular box A, where A ⊆ Nd

is a subspace of the standard Euclidean vector space Rd. For grid points x and p, the squared distance
is ||x− p||2 =

∑d
i (xi − pi)

2.
In order to address more than binary images, the grey-level function h is introduced (h : A → R),

which is added to the squared distance. This gives the new �distance� function f : A2 × (A→ R)→ R:

f(x, p, h) = ||x− p||2 + h(p) (3.1)

Note that there is no distinction any more between foreground and background. Because h is de�ned
for all data-points in A, B is made equal to A. There is an instance of h that is equivalent with the
binary case: h(p) = (p ∈ B ? 0 :∞)2, so introducing h is indeed a generalization of the original problem.

By adding h to the de�nition, the multi-dimensional problem can be reduced to the one-dimensional
problem. This reduction is a very important step in development of the algorithm, so the details will be
explained in section 3.2.1.

3.1.3 Formal de�nition

The generalised distance function (3.1) is used for the de�nition of edt (with edt : A× (A→ R)→ R):

edt(x, h) = Min{f(x, p, h) | p ∈ A} (3.2)

The de�nition of edt leads to the de�nition of EFT (with EFT : A× (A→ R)→ 2A)

EFT (x, h) = {p ∈ A | f(x, p, h) = edt(x, h)} (3.3)

Note that both de�nitions do not carry any explicit information about the dimension. Implicitly, the
dimension is embedded in the types of the variables.

3.2 The EFT algorithm

Both the algorithm and the mathematical proof are adapted from [3]. The important step of the proof
is the reduction on the dimensions, which is explained in section 3.2.1. The algorithm has some elegant
properties, which are examined in section 3.2.2.

3.2.1 Reduction of the dimensions

The reduction of the higher dimensional EFT problem to the one dimensional EFT problem is done by
induction on the dimensions. By giving a recursive formula for the edt, a recursive formula for EFT can
be found. Assuming a solution is available for solving the one-dimensional case, all that remains is to
�nd a solution that solves the inductive step: computing the EFT in dimension d > 1, using the EFT
in dimension d− 1.

One line of data is extracted from the rectangular dataset A. Let A ⊆ Nd be the Cartesian product
of the form A = A′ × [0..n), where A′ ⊆ Nd−1 and n ∈ N+. For every y ∈ A′, edt(x, h) (and eventually
EFT (x, h)) can be computed for all grid points x = (y, z), where z ∈ [0..n):

edt(x, h) = edt((y, z), h) = Min{||(y, z)− (p, q)||2 + h(p, q) | q ∈ [0..n), p ∈ A′}
1Assuming x and y are both ≥ 0, which is true when they represent distances.
2A practical implementation might replace ∞ with a value W (with W > diagonal2). In this case, diagonal is the

length of the diagonal of the grid, so that W is bigger than the largest distance inside the grid.

11

Let y be �xed, while z varies over the range [0..n). With the Theorem of Pythagoras, the de�nition
is split in two parts, giving the following formula:

edt((y, z), h) = Min{(z − q)2 +Min{||y − p||2 + h(p, q) | p ∈ A′} | q ∈ [0..n)}

The inner minimum is actually the distance transform in dimension d−1. By the inductive hypothesis,
this can be computed. Replacing the inner distance transform by the function h′ gives the following
formula:

edt((y, z), h) = Min{(z − q)2 + h′(q) | q ∈ [0..n)}

where h′(q) = Min{||y − p||2 + h(p, q) | p ∈ A′}. Again a familiar form can be recognised: the new
formula is a one dimensional distance transform, with the new function h′. So, both the base case (d = 1)
and the inductive step (d > 1) can be computed by computing the one dimensional case.

A minor detail for implementing this is the data-structure. The assumption is that the case d = 1
is solvable, when the data points are integers. In terms of equation (3.2): p ∈ A ≡ p ∈ [0..n). But for
di�erent dimensions, the data could be of di�erent size. Therefore, we need to add n as a parameter to
the algorithm, so that the function h over interval [0..n) represents the data line. Renaming the variables
(z with x and p with q) gives the �nal formula:

edt(x, n, h) = Min{(x− p)2 + h(p) | p ∈ [0..n)} (3.4)

The corresponding alteration is required for the EFT :

EFT (x, n, h) = {p ∈ [0..n) | (x− p)2 + h(p) = edt(x, n, h)} (3.5)

Finding the correct data representations for h′ is not trivial and it is considered outside the scope of
this project to give the details of higher dimension implementation. A requirement for this implementa-
tion is that each element of h′ can be found in O(1). Such implementation exists and [3] even provides
an example for three dimensional EFT .

The important conclusion from the above discussion is that it is enough to verify the one dimensional
algorithm. Technically, the above reduction could be mechanically veri�ed as well. This is further
discussed in chapter 6.

3.2.2 Original algorithm

The complete algorithm, as given by the article, is stated in algorithm 1. There are some interesting
properties of this particular implementation that are discussed in this section.

The �rst thing that might be noticed is the absence of the parameter h in the body of the algorithm.
This is actually embedded in the functions f (lines 5 and 25) and g (line 11). Function f(x, p) corresponds
to equation 3.1:

f(x, p) = ||x− p||2 + h(p)

Function g(p, q) solves the equation f(x, p) = f(x, q), or more precisely: the inequality
f(x, p) ≤ f(x, q) ≡ x ≤ g(p, q). For the EFT, this solution is given by:

g(p, q) =

⌊
q2 − p2 + h(q)− h(p)

2(q − p)

⌋
The reason for not making these functions explicit is that they can be changed to compute the Feature

Transform for di�erent types of distances. For example, the solutions for the Manhattan distance and
the chessboard distance are provided by Meijster et al. [5]. Although a solution exists for a broad class
of distances, not all types of distances will necessarily have a solution for g that can be computed in
O(1).

12

Algorithm 1 Original OneFT

1. procedure OneFT(n : N; h : [0..n)→ R)
2. var k, q : Z; w, j, y, y1, p : N; t, at : [0..n]→ Z; FT : [0..n)→ P(Z)
3. q ← 0; t(0) ← 0; at(0) ← 0
4. for k ← 1 to n - 1 do
5. while q ≥ 0 ∧ f(t(q), at(q)) > f(t(q), k) do
6. q ← q - 1
7. end while
8. if q < 0 then
9. q ← 0; at(0) ← k
10. else
11. w ← 1 + g(at(q), k)
12. if w < n then
13. q ← q + 1
14. t(q) ← w; at(q) ← k
15. end if
16. end if
17. end for
18. t(q + 1) ← n; at(q + 1) ← n - 1
19. for j ← 0 to q do
20. y1 ← t(j + 1) - 1
21. for y ← t(j) to y1 do
22. FT(y) ← {at(j)}
23. end for
24. for p ← at(j) + 1 to at(j + 1) do
25. if f(y1, p) = f(y1, at(j)) then
26. FT(y1) ← FT(y1) ∪ {p}
27. end if
28. end for
29. end for
30. return FT
31. end procedure

Closer inspection of the algorithm reveals that it actually consists of two phases. The �rst phase (lines
3-17) is called the build phase, the second phase (lines 18-29) is called the harvest phase. By adjusting
only the harvest phase, it is possible to compute the simple EFT or the Euclidean distance transform
edt. The simple EFT computes just one element of the EFT set per data point and can be computed
by removing the second inner loop (lines 24-28) from the harvest phase. The edt can be computed by
removing the same loop and replacing line 22 with �dt(y) ← f(y, at(j))�.

Existing proof

The other reason for choosing this particular implementation is that it comes from an article with a very
formal proof, whereas other proofs rely on geometric arguments [5] or miss argumentation regarding the
separation of the two phases [2]. The proof that this thesis analyses is exactly the same as the proof in
[3], only with more detail.

13

Chapter 4

Mechanical Veri�cation of the EFT

algorithm

In this chapter I give more detail regarding the mechanical veri�cation of the EFT algorithm. Since the
speci�cation of the problem is subject to human interpretation, in section 4.1, I discuss every detail of
it and argue why it is correct. In section 4.2, I give the details of the PVS veri�cation.

4.1 Speci�cation

As explained in section 2.2.3, the speci�cation of the problem can not be veri�ed and is subject to
interpretation. In this section I will pass each part of the speci�cation and argue why it is correct.

Since the ultimate goal of the mechanical veri�cation is to prove one theorem, I will split out all the
details of this theorem:

EFT_program.pvs

370 program_correct_oneft : THEOREM
371 tcHoare (f u l l s e t [s t a t e] , program_oneft , Q_oft)

The surrounding predicate tcHoare is part of the programs theory. This theory was already provided
and I assume it to be correct, as explained in section 2.3.3.

In section 4.1.1, I discuss the precondition and postcondition of the algorithm and in section 4.1.2, I
discuss the program statements.

4.1.1 Mathematics

The precondition is not a very interesting one: the set fullset[state] is by de�nition the whole state
space, meaning that it does not matter what the state is before executing program_oneft.

The postcondition is a lot more interesting, as it contains the de�nition of the EFT : Qoft ≡ Qfth ≡
∀(x ∈ N) : x < n⇒ EFT ′(x) = EFT (x, n, h).1 This predicate states that the EFT has been calculated
and stored in variable EFT ′, for each x ∈ [0..n).

What remains is the exact de�nition of EFT , which should be equivalent to the equations (3.4) and
(3.5). The speci�cation is kept as close as possible to the mathematics:

EFT.pvs

58 % One−dimens iona l squared Eucl idean d i s t ance
59 d i s t (x , p) : nat =
60 (x − p) ∗ (x − p)
61
62 % Distance , i n c l ud ing h
63 f (x , p , h) : nat =
64 d i s t (x , p) + h(p)
65
66 % Nearest d i s t ance to any point

1The notation, with the accents, is explained in section 4.1.2.

14

67 edt (x , n , h) : nat =
68 min ({ d | EXISTS p : d = f (x , p , h) AND p < n })
69
70 % Al l po in t s with the nea r e s t d i s t ance
71 EFT(x , n , h) : s e t o f [nat] =
72 { p | p < n AND f (x , p , h) = edt (x , n , h) }

There are subtle di�erences in the set-notation, but these only move the predicates left of the `|'
symbol to the right side, because this is the only formally correct set notation in PVS. The variable d is
introduced in combination with the existential quanti�er ∃ in the de�nition of edt, to store the value of
f(x, p, h). Note that the de�nition of f is the one dimensional implementation of equation (3.1).

Types

The types di�er slightly from the mathematical de�nitions from chapter 3, which has mostly to do with
the TCCs generated by PVS, see also section 2.3.2. I list the di�erences here and explain why I changed
them. These changes in variable types are also re�ected by the function types.

h New type is N → N, not [0..n) → R. Since n is a variable, it can not be used in type declaration
[0..n), so I used the next closest type: N. The return type should just have been R, but N was
an unfortunate choice made in the beginning of the project. Changing it at this stage gives some
unsolvable TCCs and requires some proofs to be redone, which is too much work for now.

p, x New type is N, not [0..n). This applies to all variables that represent data points. Again, the
reason is that n is a variable and can not be used in a type declaration.

d Now of type N, not R. Since the return type of h is N, the distance (including h) is always a natural
number.

All type changes are small and I believe they do not a�ect the correctness of the speci�cation. The
speci�cation of the mathematics itself is very small and is syntactically very similar to the mathematical
de�nitions, leaving very little room for errors.

Variables h and n

Both h and n are variables in the theory EFT, while both remain constant throughout the whole speci�-
cation. The same applies to the algorithm variables, where s`h and s`n are parameters to the procedure
OneFT, but are not changed inside the procedure. Only the solution for the higher dimension EFT
algorithm gives arguments for h and n that are variable. I did not �x this problem in this project, but I
recommend it as future work, see also chapter 6.

To see that this is a problem, consider the program �n← 1 ∧ EFT ′(0)← {0}�. This program ful�ls
the postcondition, but it is not a satisfying solution to the problem. A simple solution would be to add
information to the precondition and postcondition, stating that s`h and s`n remain constant.

A better implementation would be to declare h and n as constants or as parameters of the theory EFT.
Both variables s`h and s`n should be removed from the state variable s and replaced by the constant of
the EFT theory. The parameter solution has the advantage that it can be used in a proof of the higher
order EFT algorithm.

For the remainder of this thesis, I will explicitly state h and n as parameters of the de�nitions, to
ensure correspondence with the PVS speci�cation. To understand the de�nitions, it might help to ignore
these parameters since they remain constant at all times.

4.1.2 Algorithm version 2

Algorithm 1 is not yet ready, some adjustments are required to be able to verify it. The fully adjusted
algorithm is given in algorithm 2 and is attached in appendix A.2, which contains the entire PVS
speci�cation of program_oneft.

Even if algorithm 2 is not the same as algorithm 1, that is not a real problem. It just means I have
found an alternative implementation to the same problem. However, I discuss all di�erences between
the algorithms in this section, because the di�erences are not essential and the adjusted algorithm still
represents the original algorithm.

15

Algorithm 2 Adjusted OneFT (full)

1. procedure OneFT(n : N+; h : Z→ N)
2. var q', w : Z; t', at' : Z→ N; k : N+; j, y, y1, r : N; EFT' : N→ P(N)
3. q' ← 0; t'(0) ← 0; at'(0) ← 0
4. k ← 1
5. while k < n do
6. while q' ≥ 0 ∧ f(t'(q'), at'(q'), h) > f(t'(q'), k, h) do
7. q' ← q' - 1
8. end while
9. if q' < 0 then
10. q' ← 0; at'(0) ← k
11. else
12. w ← 1 + g(at'(q'), k, h)
13. if w < n then
14. q' ← q' + 1
15. t'(q') ← (w ≥ 0 ? w : 0); at'(q') ← k
16. else
17. skip

18. end if
19. end if
20. k ← k + 1
21. end while
22. t'(q' + 1) ← n; at'(q' + 1) ← n - 1
23. y ← 0; r ← at'(0) + 1
24. j ← 0
25. while j ≤ q' do
26. y1 ← (t'(j + 1) - 1 ≥ 0 ? t'(j + 1) - 1 : 0)
27. while y ≤ y1 do
28. EFT'(y) ← {at'(j)}
29. y ← y + 1
30. end while
31. while r ≤ at'(j + 1) do
32. if f(y1, r, h) = f(y1, at'(j), h) then
33. EFT'(y1) ← EFT'(y1) ∪ {r}
34. else
35. skip

36. end if
37. r ← r + 1
38. end while
39. j ← j + 1
40. end while
41. return EFT'
42. end procedure

Loops

First, the for-loops need to be rewritten to while-loops and the if-statements to if-else-statements. This
is because Program Correctness only provides tools to validate these. Besides, for-loops can be seen as
syntactic sugar for while- loops.

Renaming

I did some renaming, which has no in�uence on the functionality. For example, the article uses q as both
a mathematical function and a program variable. Although this is a very natural thing to do, because
the program variable stores the function-value, in a veri�ed proof the distinction is important. I gave

16

the program variables an accent to distinguish them: q is the mathematical object, q' is the program
variable.

The PVS speci�cation separates between variables and mathematical objects by the �le in which they
are declared. The �le EFT.pvs contains all mathematical de�nitions, while the �le EFT_program.pvs
contains a state variable s, in which the variables are declared. EFT_program.pvs distinguishes by
adding the scope to the parameter: EFT.q is the mathematical object, s`q is the program variable.

Types

A more substantial change has to do with the types. As stated before in section 2.3.2, this is mainly
because of the TCCs generated by PVS. I implemented both solutions (changing types and adding
context to the de�nitions):

n, k New type is N+, not N. n < 1 is trivial and not really interesting. The type N+ has the intrinsic
property > 0, which makes speci�cation simpler, because [0..n) is never empty.

h New type is Z→ N, not [0..n)→ R. The return type is equal to that of the mathematical de�nition,
which I discussed in section 4.1.1. The argument type has been broadened from N to Z, because
of problematic TCCs that arose from the former implementation.

w New type is Z, not N. This is simply due to some problematic TCCs.

t', at' New type is Z→ N, not [0..n)→ Z. Analogously to h, [0..n) has been replaced by N, which in
its turn has been replaced by Z because of problematic TCCs. The return type has been narrowed
down to N, because these variables represent indexes of data elements, which are in the range
[0..n], so there is no need to include negative numbers.

FT' New type is N→ P(N), not [0..n)→ P(Z). [0..n) has been replaced by N and the return type has
been narrowed to N, following the same argumentation as t' and at'.

t'(q') ← (w ≥ 0 ? w : 0) (Update, line 4). Here I added the context to the statement. Line 1 assigns
a value to w. State condition P0u states that u(k, h, n) = min(n,w), while the if-guard (line 2)
states that w < n, thus u(k, h, n) = w. Now u(k, h, n) is of type N, so w ≥ 0. Therefore, the added
context always reduces to true and the statements have the same functionality.

y1 ← (t'(j + 1) - 1 ≥ 0 ? t'(j + 1) - 1 : 0) (FTHarvest, line 5). Here I added the context again.
Lemma t_positive veri�es that the function-value of t is > 0 if j + 1 > 0, which is true because
the type of j is N. The while-guard guarantees that j ≤ q, so that property stacks_filled (part
of the invariant) guarantees that t'(j + 1) = t(j + 1, n, h, n) and the program variable corresponds
with the mathematical function. Again, the added context reduces to true and the statement has
the equal e�ect as the original statement.

Altering the harvest phase

There is one last alteration in the algorithm, which is in the harvest phase. The initialisation of the
inner for-loops has been moved to outside the outer loop (of FTHarvest). The reason for doing so is that
I could specify a variant function that decreases in both outer- and inner loops. Of course, this change
does not change any functionality, so I argue that the algorithm still calculates the same.

Because the only thing that has changed is the initialisation, it su�ces to prove that the initialisation
is correct. The �rst outer loop is easy: j has value 0, so that y ← t'(j) reduces to y ← t'(0), so y gets
value 0. r ← at'(j) + 1 reduces to r ← at'(0) + 1, so that initialisation is correct as well.

When the SimpleHarvest-loop (lines 27-30) exits, y has the value y1 + 1, which reduces to
t(j + 1) - 1 + 1 = t(j + 1). At the end of the FTHarvest-loop, j is incremented, so y = t(j). An-
other initialisation before the next SimpleHarvest- loop is not required. The argumentation for the
MultiHarvest-loop (lines 31-38) runs analogously: after the inner MultiHarvest-loop, r has the value at(j
+ 1) + 1. Incrementing j means that r has the value at(j) + 1, so initialisation before the next inner
MultiHarvest- loop is super�uous.

17

4.2 Proof

In this section I explain the mechanical veri�cation of the EFT itself. I do not repeat every detail of
which the proof consists, but I try to sketch the thought process behind the proof.

In section 4.2.1 I do a bottom-up analysis the proof, by building up the mathematics required for the
algorithm. This roughly corresponds with the �le EFT.pvs. Section 4.2.2 contains a top-down analysis,
placing the mathematics in the right context. This analysis is formalised in the �le EFT_program.pvs.

4.2.1 Mathematics

The problem with the de�nition of EFT is that direct calculation is computationally expensive. Cal-
culating the edt is done by comparing each pair of data points. Then to �nd the EFT , at each point
the distance is compared to the edt. With tricks like dynamic programming, the complexity could be
reduced, but it still requires comparing each pair of data points, so the result is at least O(n log n), which
is not good enough.

Mathematical de�nitions

The �rst step is to introduce a new upper bound k for the range of p in de�nition (3.5), so the new range
op p is [0..k) while the range of x remains [0..n). Now let M(x, k, h) be the set of �background� points
in the range [0..k) which have a smaller distance to x than all other �background� points in the same
range:

M(x, k, h) = {p | p < k ∧ ∀q : q < k ⇒ f(x, p, h) ≤ f(x, q, h)} (de�nition M)

For k = n, M covers the full range, so M(x, n, h) = EFT (x, n, h). According to (de�nition M):
M(x, 1, h) = 0, because the range [0..1) contains only 0. We search for an inductive de�nition of M in
order to compute M . Incrementing k adds one possible value to the range: p = k, so comparing this to
an element already in M gives the following equation:

p ∈M(x, k, h)⇒ (M_inductive)

M(x, k + 1, h) =

M(x, k, h) if f(x, p, h) < f(x, k, h)

M(x, k, h) ∪ {k} if f(x, p, h) = f(x, k, h)

{k} otherwise

If (M_inductive) is applied directly, M(x, n, h) can be calculated in n steps. But M needs to be
calculated for each x, resulting in an O(n2) algorithm. To solve that problem, the (non-decreasing)
monotonicity of M is used:

x < y ∧ p ∈M(x, k, h) ∧ q ∈M(y, k, h)⇒ (M_nondecreasing)

p ≤ q

This is true, because when p ∈M(x, k, h) and q ∈M(y, k, h), it follows that (q − p)(y − x) ≥ 0.
Let a(x, k, h, n) be the minimum element of M(x, k, h), which always exists (veri�ed by a_TCC2):

a(x, k, h, n) =

{
k − 1 if x = n

min(M(x, k, h)) otherwise
(de�nition a)

The case x = n is outside the data range, but choosing the value k − 1 for this case turns out quite
convenient later in (de�nition u). Because (M_nondecreasing), a is non-decreasing as well. Using this
property, it is possible to further limit the range of p in the de�nition of M :

x < n ∧ k ≤ n⇒ (M_def_a)

M(x, k, h) = {p | a(x, k, h, n) ≤ p ∧ p ≤ a(x+ 1, k, h, n) ∧ f(x, p, h) = f(x, a(x, k, h, n), h)}

18

Assuming a(x, n, h, n) can be calculated for all x ∈ [0..n], the value of M(x, n, h) (= EFT (x, n, h))
can be derived, by using an inductive formula for (M_def_a). A new upper bound r is introduced for p:

N(r, x, k, h, n) = {p | a(x, k, h, n) ≤ p ∧ p < r ∧ f(x, p, h) = f(x, a(x, k, h, n), h)} (de�nition N)

Replacing r with a(x + 1, k, h, n) in (de�nition N) returns the (M_def_a) again. Beginning at r =
a(x, k, h, n), the formula is rewritten to an inductive formula:

x < n ∧ k ≤ n⇒ (N_inductive)

N(r + 1, x, k, h, n) =

{
N(r, x, k, h, n) ∪ {r} if f(x, r, h) = f(x, a(x, k, h, n), h)

N(r, x, k, h, n) otherwise

This concludes the mathematics for the harvest phase. What remains is to compute a(x, n, h, n) for
all x ∈ [0..n]. Therefore, the remainder of this section aims to �nd a formula for a(x, k+1, h, n) in terms
of a(x, k, h, n). Remember that M(x, 1, h) contains only one element, 0, so a(x, 1, h, n) = 0 as well, so
we start from k = 1 and then increment k.

It follows from the monotonicity and the range of M that there is one �nal segment in the range
[0..n], for which a(x, k + 1, h, n) = k. Note that this segment is never empty, because of the case x = n
in the de�nition of a. Let u(k, h, n) be the �rst data point in this segment:

u(k, h, n) = min{x | a(x, k + 1, h, n) = k} (de�nition u)

Because of (M_nondecreasing), (de�nition u) and (de�nition M), replacing p with a(x, k+1, h, n) and
q with k, it follows that:

x < n⇒ (u_iff_f)

(x < u(k, h, n) ≡ f(x, a(x, k, h, n), h) ≤ f(x, k, h))

Applying (u_iff_f) to (M_inductive), replacing p with a(x, k, h, n), gives the inductive formula for
a:

x < n⇒ (a_inductive)

a(x, k + 1, h, n) =

{
a(x, k, h, n) if x < u(k, h, n)

k otherwise

In order to compute the value of u(k, h, n), the function g is introduced, which can be applied to
(u_iff_f):

g(p, q, h) =

{⌊
q∗q−p∗p+h(q)−h(p))

2∗(q−p)

⌋
if p < q

0 otherwise
(de�nition g)

The case p < q should always be true, it is only added context to be able to prove g_TCC1. Therefore,
the case is added to the precondition of the following formula.

p < q ⇒ (f_iff_g)

(f(x, p, h) ≤ f(x, q, h) ≡ x ≤ g(p, q, h))

Actually, g is derived from solving the inequation (f_iff_g) for x. Since g can be computed directly,
combining (f_iff_g) and (u_iff_f) gives the value of u (the exact values that are used for g are discussed
later with lemma (u_eq_g)).

19

The function a is non-decreasing, but we can represent it by an increasing set, leaving out all the points
where a remains constant (how to reconstruct all values of a is discussed later with lemma (a_eq_at)):

Q(k, h, n) = {x | x = 0 ∨ 1 ≤ x ∧ x < n ∧ a(x− 1, k, h, n) < a(x, k, h, n)} (de�nition Q)

Again an inductive formula is required, to compute Q(k+1, h, n) from Q(k, h, n). Incrementing k to
k + 1 means that k is added as possibly nearest background points. Because of the monotonicity of a
in x, this point a�ects only the last segment, which is marked by u, see (de�nition u). Before this point
the data remains una�ected, by (a_inductive).

Q(k + 1, h, n) = {x | x < u(k, h, n) ∧ x ∈ Q(k, h, n) ∨ x < n ∧ x = u(k, h, n)} (Q_inductive)

Data representation

The set Q minimizes the required amount of data to be stored, but how do you actually store it? The
answer is to use a stack that enumerates the elements of Q in an increasing order. Unfortunately, this
seemingly simple notion of enumerating set elements translates poorly to PVS.

In order to get the top of the stack, the elements in Q need to be counted:

q(k, h, n) = #Q(k, h, n) (de�nition q)

The function t enumerates the elements of Q:

t(i, k, h, n) = ith_element(i, Q(k, h, n), n) (de�nition t)

In order to understand that de�nition, the implementation of ith_element is required:

ith_element(i, U, upb) =

{
min(U ∪ {upb}) if i = 0

ith_element(i− 1, U \ {min(U ∪ {upb})}, upb) otherwise

(de�nition ith_element)

What happens in (de�nition ith_element) is that in each recursive step the smallest element is
removed from U . The problem is that U could be empty and there is no smallest element. Therefore
an element upb is added to U before the minimum is taken, upb standing for upper bound. For the
de�nition to work as intended, it is required that ∀x : x ∈ U ⇒ x < upb. In (de�nition t), it turns out
that choosing n ful�ls this requirement.2

(de�nition ith_element) is a de�nition that not only looks imposing, but is also di�cult to build
proofs with. Therefore, the �le ith_element_theory.pvs not only gives the de�nition, but also states
many useful properties about the de�nition that appear simple enough, but are not always simple to
prove, such as the monotonicity of ith_element.

Not only are the index values of the set Q required, but also the value of a at these points. This is
speci�ed in at:

at(i, k, h, n) = a(t(i, k, h, n), k, h, n) (de�nition at)

This function helps to restore the value of a(x, k, h, n) if x /∈ Q(k, h, n):

i < q(k, h, n) ∧ t(i, k, h, n) ≤ x ∧ x < t(i+ 1, k, h, n)⇒ (a_eq_at)

a(x, k, h, n) = at(i, k, h, n)

2It turns out that n is the only valid choice for upb, but this is not discussed until section 4.2.2.

20

It also provides a value that can be applied to (u_iff_f):

i < q(k, h, n)⇒ (tu_iff_f)

(t(i, k, h, n) < u(k, h, n) ≡ f(t(i, k, h, n), at(i, k, h, n), h) ≤ f(t(i, k, h, n), k, h))

By (Q_inductive), all t(i, k, h, n) ≥ u(k, h, n) are not in the set Q(k + 1, h, n), and the one before
the biggest i with that property remain in the set. Therefore the biggest i needs to be found. This is
speci�ed in maxI:3

maxI(k, h, n) =

{
max{i | i < q(k, h, n) ∧ t(i, k, h, n) < u(k, h, n)} if 0 < u(k, h, n)

0 otherwise
(de�nition maxI)

This value can be found by linear search from high to low, searching for a value of i where
f(t(i, k, h, n), at(i, k, h, n), h) ≤ f(t(i, k, h, n), k, h), using (u_iff_f).

It follows from (de�nition u) and (de�nition Q) that if u(k, h, n) = 0, then Q contains only 0. This
case is simple and needs no further analysis. The other case where u is positive is more interesting. Two
cases can be distinguished: u(k, h, n) < n and u(k, h, n) = n. By (de�nition u), the value can not be
higher than n. Using (u_iff_f) and (f_iff_g), we can compute u by computing g, only this value can
be > n. The following de�nition catches that case:

0 < u(k, h, n)⇒ (u_eq_g)

u(k, h, n) = min(n, 1 + g(at(maxI(k, h, n), k, h, n), k, h))

What remains is to �nd the inductive de�nitions of q, t and at. (Q_inductive) adds element u(k, h, n)
to Q(k + 1, h, n) when u(k, h, n) < n, while in the case u(k, h, n) = n this element is left out. From
(de�nition maxI) and monotonicity of t follows ∀i : i ≤ maxI(k, h, n) ⇒ t(i, k, h, n) < u(k, h, n), thus
these elements are all in Q(k + 1, h, n), according to (Q_inductive). This leads to the inductive de�ni-
tions:

0 < u(k, h, n)⇒ (q_inductive)

q(k + 1, h, n)− 1 = maxI(k, h, n) + (u(k, h, n) < n ? 1 : 0)

0 < u(k, h, n) ∧ i ≤ maxI(k, h, n)⇒ (t_inductive_bounded)

t(i, k + 1, h, n) = t(i, k, h, n)

0 < u(k, h, n) ∧ u(k, h, n) < n⇒ (t_inductive_newElement)

t(maxI(k, h, n) + 1, k + 1, h, n) = u(k, h, n)

0 < u(k, h, n) ∧ i ≤ maxI(k, h, n)⇒ (at_inductive_bounded)

at(i, k + 1, h, n) = at(i, k, h, n)

This concludes the algorithmic analysis. The following section will show how the above mathematical
notions are used in the algorithm.

3Although PVS provides no de�nition for max, the auxiliary �le max_nat.pvs contains an de�nition that works very
intuitive.

21

4.2.2 Algorithm

The algorithm is stated in this section, using the standard notation for annotated algorithms with Hoare
triples. The standard strategies for proving loops and statements apply to most of the algorithm, but
not to all. Only the non-standard parts of the proof are discussed in this section. I will give the full
preconditions, postconditions and invariants for each part of the algorithm. Corresponding to the way
the PVS �le is built up, I will build the algorithm from the bottom up, creating the complete loop body
before the encompassing loop.

Recall that the program variables have primes, whereas their mathematical counterparts are un-
primed.

Build phase

The build phase consists of an outer while-loop, incrementing k. The inductive de�nitions that increment
k apply to this section. The goal of the build phase is to build up the stacks t' and at', so that eventually
they contain the values of (de�nition t) and (de�nition at) for k = n.

To avoid repetition in the predicates, to keep a clear overview and to ease the proofs a bit (using the
mixedHoare lemma), the predicates have been split up into shorter ones. Throughout the build phase,
the following (shorter) predicates occur on multiple places and have been split up:

t′(0) = 0 (T0)

T0 ∧ k < n (Ib)

stacks_partially_filled (Spf) states that the stacks t′ and at′ are �lled up to q(k, h, n), with the
corresponding function value:

q′ = q(k, h, n)− 1 ∧ (∀i : i ≤ q′ ⇒ t′(i) = t(i, k, h, n) ∧ at′(i) = at(i, k, h, n)) (Spf)

Linear Search

The linear search fragment searches for the value of maxI. Remember that it is in the body of the outer
build loop, so k remains �xed.

q′ = −1 ∧ u(k, h, n) = 0 ∨ (Qls)

q′ ≥ 0 ∧ q′ = maxI(k, h, n) ∧ 0 < u(k, h, n) ∧
(∀i : i ≤ q′ ⇒ t′(i) = t(i, k + 1, h, n) ∧ at′(i) = at(i, k + 1, h, n)) ∧
at′(q′) = at(q′, k, h, n)

Note that ∧ has a higher precedence than ∨, so Qls is a disjunction of conjunctions.

− 1 ≤ q′ ∧ q′ ≤ q(k, h, n)− 1 ∧ (Jls)

(q′ < q(k, h, n)− 1⇒ f(t(q′ + 1, k, h, n), at(q′ + 1, k, h, n), h) > f(t(q′ + 1, k, h, n), k, h)) ∧
(∀i : i ≤ q′ ⇒ t′(i) = t(i, k, h, n) ∧ at′(i) = at(i, k, h, n))

22

Algorithm 3 LinearSearch: Find maxI(k, h, n)

Precondition: Prels: Ib ∧ Spf
Postcondition: Postls: Ib ∧ Qls

{ Prels } (∗ inv_init_ls ∗)
{ Invls: Ib ∧ Jls }

(∗ vfls = vfb = 2(n− k) + q′ ∗)
1. while q' ≥ 0 ∧ f(t'(q'), at'(q'), h) > f(t'(q'), k, h) do (∗ Bls ∗)

{ Invls ∧Bls }
2. q' ← q' - 1

{ Invls }
3. end while

{ Invls ∧ ¬Bls }
(∗ post_implied_ls: Ib ∧ Jls ∧¬Bls ⇒ Ib ∧ Qls ∗)

{ Postls }

There are many things going on here, especially in the de�nitions of Qls and Jls. Notice that Bls is
a conjunction of two conditionals, that correspond to the disjunction Qls. If the loop is exited on the
�rst condition q′ < 0, the �rst disjunct of Qls becomes true. The di�cult part is in the second disjunct,
where Jls and ¬Bls must imply Qls. The important conjunct to prove is q′ = maxI(k, h, n), the rest is
not too hard, using the inductive de�nitions of section 4.2.1.

The trick is in the second line of Jls, which contains an extra conditional q′ < q(k, h, n) − 1, that
becomes true once the loop has been entered once. If the loop has not been entered, q′ = maxI(k, h, n),
because it is the biggest element in the range of i, see (de�nition u). If the loop has been entered at
least once, q′ < q(k, h, n)− 1 becomes true. The second line of Jls combined with ¬Bls and (tu_iff_f)
proves that q′ = maxI(k, h, n).

Reset

The reset fragment, also in the build loop, comes after the linear search fragment and is entered when
the �rst disjunct of Qls is true. The goal is to reset the stacks to contain one correct element again.

T0 ∧ u(k, h, n) = 0 (Pr)

Algorithm 4 Reset: Reset the stacks when u(k) = 0

Precondition: Prer: Ib ∧ Pr

Postcondition: Postr: Ib ∧ Spf [k + 1/k]
{ Prer }

1. q' ← 0; at'(0) ← k
{ Postr }

This justi�es the introduction of predicate T0. It makes sure that t′(0) does not have to be reset to
0 every time.

Update

The update fragment, also in the build loop, comes after the linear search fragment and is entered when
the second disjunct of Qls is true. The goal is to update the stacks with the new element (if this applies).

q′ = maxI(k, h, n) ∧ 0 < u(k, h, n) ∧ (Pu)

(∀i : i ≤ q′ ⇒ t′(i) = t(i, k + 1, h, n) ∧ a′t(i) = at(i, k + 1, h, n)) ∧
a′t(q′) = at(q′, k, h, n)

23

Algorithm 5 Update: Update the stacks when 0 < u(k)

Precondition: Preu: Ib ∧ Pu

Postcondition: Postu: Ib ∧ Spf [k + 1/k]
{ Preu }

(∗ u_eq_g ∧ q′ = maxI(k, h, n) ∧ at′(q′) = at(q′, k, h, n) ∗)
{ Preu ∧ u(k, h, n) = min(n, 1 + g(at′(q′), k, h)) }

1. w ← 1 + g(at'(q'), k, h)
{ Pu ∧ u(k, h, n) = min(n,w) }

2. if w < n then
{ Preu ∧ 0 ≤ u(k, h, n) = w < n }

(∗ (q_inductive) ∧ (t_inductive_newElement) ∗)
{ Postu[q

′ + 1/q′, w/t′(q′ + 1), k/at′(q′ + 1)] ∧ w ≥ 0 }
3. q' ← q' + 1

{ Postu[w/t
′(q′), k/at′(q′)] ∧ w ≥ 0 }

4. t'(q') ← (w ≥ 0 ? w : 0); at'(q') ← k
{ Postu }

5. else
{ Preu ∧ u(k, h, n) = n }

(∗ (q_inductive) ∧ (t_inductive_newElement) ∗)
{ Postu }

6. skip

{ Postu }
7. end if

{ Postu }

The if-else statement distinguishes between the case u(k, h, n) < n and u(k, h, n) = n, as required by
the inductive de�nitions of q and t.

In the above proof I have added w ≥ 0, as required for line 4. It follows from line 1 and 2 that this
condition is true, however, this is not mechanically veri�ed.

Build

What remains is to tie the above fragments together. This is done in the build fragment, completing the
build phase. The precondition fullset[state] applies here, leading to the following predicates:

The postcondition is equivalent to Spf [n/k]:

q′ = q(n, h, n)− 1 ∧ (∀i : i ≤ q′ ⇒ t′(i) = t(i, n, h, n) ∧ at′(i) = at(i, n, h, n)) (Qb)

k ≤ n ∧ Spf (Jb)

24

Algorithm 6 Build: Build the stacks t′ and at′

Precondition: Preb: >
Postcondition: Postb: Qb

{ > }
1. q' ← 0; t'(0) ← 0; at'(0) ← 0

{ T0 ∧ Spf [1/k] }
2. k ← 1

{ T0 ∧ Spf } (∗ 1 ≤ n ∧ spf ⇒ Jb ∗)
{ Invb: T0 ∧ Jb }

(∗ vfb = 2(n− k) + q′ ∗)
3. while k < n do (∗ Bb ∗)

{ Invb ∧Bb }
(∗ T0 ∧ Jb ∧ Bb ⇒ Ib ∧ Spf ∗)

{ Prels: Ib ∧ Spf }
4. LinearSearch

{ Postls: Ib ∧ Qls }
5. if q' < 0 then

{ Postls ∧ q′ < 0 }
(∗ Select correct disjunct of Qls ∗)

{ Prer: Ib ∧ Pr }
6. Reset

{ Postr: Ib ∧ Spf [k + 1/k] }
7. else

{ Postls ∧ q′ ≥ 0 }
(∗ Select correct disjunct of Qls ∗)

{ Preu: Ib ∧ Pu }
8. Update

{ Postu: Ib ∧ Spf [k + 1/k] }
9. end if

{ Ib ∧ Spf [k + 1/k] }
10. k ← k + 1

{ Invb }
11. end while

{ Invb ∧ ¬Bb } (∗ k = n, post_implied_build ∗)
{ Postb }

The build fragment simply initialises the values of q′, t′ and at′ for k = 1, then updates k until k = n.
The guard of �if� in line 5 guarantees that the correct disjunct of Qls is applied to the correct fragment,
reset or update. Ib is made true after line 3 and remains true until just before line 10.

Harvest phase

The second phase of the algorithm is the harvest phase, the goal of which is to reconstruct the value of
EFT from the built up stacks. Again, some predicates have been split up.

The reader might have noticed that the stacks are still said to be only partially �lled. The reason for
this name is that in order to harvest the stacks, an extra value is required. This is where the choice of
n as upb in (de�nition t) becomes important.

q′ = q(n, h, n)− 1 ∧ (∀i : i ≤ q′ + 1⇒ t′(i) = t(i, n, h, n) ∧ at′(i) = at(i, n, h, n)) (Sf)

Note that Sf 6≡ Spf [n+1/k], it is just that one extra element has been added to the stacks. Because
of Sf , the stacks values can be used as their corresponding mathematical function values. Again there
is an invariant that remains true in the inner fragments.

Sf ∧ j ≤ q′ ∧ y1 = t′(j + 1)− 1 (Ih)

25

Simple Harvest

The simple harvest fragment collects only the smallest element, a, in the variable EFT ′. Collecting
happens by using (de�nition N).

(∀x : x < t′(j)⇒ EFT ′(x) = EFT (x, n, h)) ∧ (Psh)

y = t′(j) ∧ r = at′(j) + 1

(∀x : x < y1⇒ EFT ′(x) = EFT (x, n, h)) ∧ EFT ′(y1) = N(at′(j) + 1, y1, n, h, n) ∧ (Qsh)

y = t′(j + 1) ∧ r = at′(j) + 1

(∀x : x < t′(j)⇒ EFT ′(x) = EFT (x, n, h)) ∧ (Jsh)

t′(j) ≤ y ∧ y ≤ t′(j + 1) ∧ (∀(x) : t′(j) ≤ x ∧ x < y ⇒ EFT ′(x) = N(at′(j) + 1, x, n, h, n)) ∧
r = at′(j) + 1

Algorithm 7 SimpleHarvest: Get the minumum element of EFT

Precondition: Presh: Ih ∧ Psh

Postcondition: Postsh: Ih ∧ Qsh

{ Presh } (∗ inv_init_sh ∗)
{ Invsh: Ih ∧ Jsh }

(∗ vfsh = vffth = 3n− j − y − r ∗)
1. while y ≤ y1 do (∗ Bsh ∗)

{ Invsh ∧Bsh }
2. EFT'(y) ← {at'(j)}

{ Ih ∧ Jsh[y + 1/y] }
3. y ← y + 1

{ Invsh }
4. end while

{ Invsh ∧ ¬Bsh } (∗ post_implied_sh ∗)
{ Postsh }

Psh tells that the EFT has been found for the range [0..t′(j)), plus some information about y and r.
Qsh has extended this range to [0..y1), while only part of the EFT has been found for x = y1, according
to (de�nition N).

This is re�ected in Jsh. The �rst line tells that the range of Psh remains unaltered. The second
line is about the range of y in the loop and states that for each x in that left side of that range
EFT ′(x) = N(at′(j) + 1, x, n, h, n). The third line states that the value of p remains constant.

The post_implied_sh proof is the tricky part: it contains the proof that EFT (x, n, h) = N(at′(j)+
1, x, n, h, n) for x ∈ [t′(j)..y1). This follows from (a_eq_at) and (M_def_a), because p can only have one
value: at′(j).

Multi Harvest

The multi harvest fragment �nishes what the simple harvest fragment started. It adds the remaining
elements to EFT (y1, n, h), using (de�nition N).

(∀x : x ≤ y1⇒ EFT ′(x) = EFT (x, n, h)) ∧ (Qmh)

y = t′(j + 1) ∧ r = at(j + 1) + 1

26

(∀x : x < y1⇒ EFT ′(x) = EFT (x, n, h)) ∧ (Jmh)

at′(j) < r ∧ r ≤ at′(j + 1) + 1 ∧ EFT ′(y1) = N(r, y1, n, h, n) ∧
y = t′(j + 1)

Algorithm 8 MultiHarvest: Get the full set EFT (y1, n, h)

Precondition: Premh: Ih ∧ Qsh

Postcondition: Postmh: Ih ∧ Qmh

{ Premh } (∗ inv_init_mh ∗)
{ Invmh: Ih ∧ Jmh }

(∗ vfmh = vffth = 3n− j − y − r ∗)
1. while r ≤ at'(j + 1) do (∗ Bmh ∗)

{ Invmh ∧Bmh }
2. if f(y1, r, h) = f(y1, at'(j), h) then

(∗ f(y1, r, h) = f(y1, at′(j), h) ∧ (N_inductive) ∗)
{ Ih ∧ Jmh[r + 1/r, EFT ′(y1) ∪ {r}/EFT ′(y1)] }

3. EFT'(y1) ← EFT'(y1) ∪ {r}
{ Ih ∧ Jmh[r + 1/r] }

4. else
(∗ f(y1, r, h) 6= f(y1, at′(j), h) ∧ (N_inductive) ∗)

{ Ih ∧ Jmh[r + 1/r] }
5. skip

{ Ih ∧ Jmh[r + 1/r] }
6. end if

{ Ih ∧ Jmh[r + 1/r] }
7. r ← r + 1

{ Invmh }
8. end while

{ Invmh ∧Bmh } (∗ post_implied_mh ∗)
{ Postmh }

Nothing surprising happens in this fragment. The value of r gets incremented in the range [at′(j)..at′(j+
1)] (Jmh line 2), so that (N_inductive) is computed. The if guard (line 2), guarantees that only elements
that are really in N are added to EFT ′.

FT Harvest

The harvest fragments are tied together in the FT harvest fragment.

∀x : x < n⇒ EFT ′(x) = EFT (x, n, h) (Qfth)

j ≤ q′ + 1 ∧ (∀x : x < t′(j)⇒ EFT ′(x) = EFT (x, n, h)) ∧ (Jfth)

y = t′(j) ∧ r = at′(j) + 1

27

Algorithm 9 FTHarvest: Harvest EFT using t′ and at′

Precondition: Prefth: Qb

Postcondition: Postfth: Qfth

{ Prefth }
1. t'(q' + 1) ← n; at'(q' + 1) ← n - 1

{ Sf }
(∗ 0 ≤ q′ + 1, 0 = t′(0) ∗)

{ Sf ∧ Jfth[0/j, 0/y, at′(0) + 1/r] }
2. y ← 0; r ← at'(0) + 1

{ Sf ∧ Jfth[0/j] }
3. j ← 0

{ Invfth: Sf ∧ Jfth }
(∗ vffth = 3n− j − y − r ∗)

4. while j ≤ q' do (∗ Bfth ∗)
{ Invfth ∧Bfth }

(∗ Sf ⇒ t′(j + 1) = t(j + 1, n, h, n) > 0 ∗)
{ Invfth ∧Bfth ∧ t′(j + 1)− 1 ≥ 0 }

5. y1 ← (t'(j + 1) - 1 ≥ 0 ? t'(j + 1) - 1 : 0)
{ Presh: Ih ∧ Psh }

6. SimpleHarvest

{ Postsh ≡ Premh }
7. MultiHarvest

{ Postmh ≡ Invfth[j + 1/j] }
8. j ← j + 1

{ Invfth }
9. end while

{ Invfth ∧ ¬Bfth } (∗ post_implied_fth ∗)
{ Postfth }

In this fragment, �rst the stacks get updated with the new value, so that Qb becomes Sf . Then the
values of y, r and j get initialised. The loop increases j until j = q′ + 1, so that at the end the entire
stack has been evaluated. post_implied_fth con�rms that this indeed covers the entire range [0..n).

In the above proof I have added t′(j + 1) − 1 ≥ 0, as required for line 5. It is immediate from the
precondition that this condition is true, however, this is not mechanically veri�ed.

OneFT

One last step is required: tying the two phases together, which is done in the OneFT fragment.

Algorithm 10 OneFT: Get EFT in one dimension

Precondition: Preoft: >
Postcondition: Postoft: Qfth

1. procedure OneFT(n : N+; h : Z→ N)
2. var q', w : Z; t', at' : Z→ N; k : N+; j, y, y1, r : N; EFT' : N→ P(N)

{ Preoft ≡ Preb ≡ > }
3. Build

{ Postb ≡ Prefth }
4. FTHarvest

{ Postoft ≡ Postfth ≡ ∀x : x < n⇒ EFT ′(x) = EFT (x, n, h) }
5. return EFT'
6. end procedure

28

4.2.3 Time complexity

In section 2.1.2 I explained how to derive the time complexity of algorithms, especially the ones with
nested loops. The above algorithm fragments contain a variant function, denoted by vf just above the
while-loop.

Indeed the vf of the entire build phase is the same: vfb = 2(n− k)+ q′, just as the vf of the harvest
phase: vffth = 3n− j − y− r. If we enter the initial values of the variables in these functions, the order
of time complexity can be derived. Initially, vfb = 2(n− 1)+0 = O(n) and vffth = 3n− 0− 0−at′(0)+
1. Following from (Sf), at′ corresponds with the function value at, which is equal to a according to
(a_eq_at) and that is bounded by n according to a_bounded. Therefore vffth = O(n) and the entire
algorithm is O(n).

The correctness of the variant functions has been mechanically veri�ed. What has not been mechan-
ically veri�ed is the conclusion about the time complexity.

29

Chapter 5

Conclusion and evaluation

The correctness and time complexity of the speci�ed Euclidean Feature Transform algorithm in one
dimension have been mechanically veri�ed successfully, see chapter 4. The speci�ed function EFT is
computed in O(n) by the speci�ed algorithm. A total of 141 PVS theorems were required to prove the
correctness of the algorithm, distributed over 8 PVS speci�cation �les.

The assumptions underlying this project have been given in chapter 2, which shows that very plausible
assumptions were made in this project and that he number of assumptions is minimal. The assumptions
contain two arguably weak points: the correctness of PVS and the correctness of the method to derive
the time complexity from the variant function. Despite these points, the conclusion from chapter 2 is
that the discussed mechanical veri�cation is indeed a formal and correct mathematical proof.

Chapter 3 proves that the speci�ed EFT function is correct. It also proves that this one dimensional
solution provides (a part of) the solution in higher dimensions.

Evaluation

The EFT algorithm is correct, but this is not something I expected to disprove in this project. I under-
stood the provided proof with the little mathematical knowledge I posses, therefore I believe intuition
remains a very powerful �tool� for proving algorithms and mathematics. I did not encounter any devia-
tions from the provided proof, it only lacked details that were required for mechanical veri�cation.

What misled me, is the amount of work that is required to mechanically verify the EFT algorithm.
The original algorithm consists of only 31 lines of code, which is practically nothing compared to modern
software implementations, yet it took more than six months to verify its correctness. That does not even
include the higher dimension algorithm.

It must be said that I did not use the automation provided by PVS in a lot of places. I tried the
grind command at several points, but was disappointed at how little it helped in most situations. My
personal belief is that mechanical veri�cation will only become a useful tool once the level of automation
will increase signi�cantly.

30

Chapter 6

Future work

There are many aspects of the project that have been proven, but have not been mechanically veri�ed.
In order to minimize the amount of assumptions and possible errors, many of these proofs can be veri�ed
as well. For each of these projects the most important factor to be considered is: does the estimated
amount of work weigh up to the achieved result?

Variables h and n

As mentioned in section 4.1.1, the procedure parameters h and n should not have been declared as
variables. In that section I also gave possible solutions to �x this: strengthen the precondition and
postcondition, or change the declaration of h and n.

Reduction of dimensions

The most logical next step would be to mechanically verify the dimension reduction, in section 3.2.1.
Assuming this can be done, the veri�cation is probably only useful if it can be applied to an algorithm.
An implementation in any dimension would su�ce, but a more powerful veri�cation would be one of an
algorithm in arbitrary dimension. This means that such an algorithm must be found �rst.

On the other hand, this process can be reversed, by �rst creating the proof and subsequently deriving
an algorithm for arbitrary dimension from the proof. This technique is the same as the one proposed in
the Program Correctness course. In this case, proving the correctness of the reduction of dimensions is
not only valuable from a research perspective, but also from a practical perspective.

Deriving time complexity from the variant function

The method from section 2.1.2, deriving the time complexity from the variant function, is one that is not
mechanically veri�ed. This would require an extension of the �le programs.pvs, which could strengthen
many other proofs about time complexity of algorithms.

Converting the algorithm

During the project, I spent quite some time investigating the built-in PVS data structures, hoping
they would reduce the amount of work that went into ith_element_theory.pvs. But because PVS is
implemented in lisp, the built-in data structures are functional ones. If a functional implementation of
the algorithm could be constructed, this would make the PVS implementation of the proof easier. This
could be especially lucrative when an implementation in arbitrary dimension is sought.

PVS

A totally di�erent approach would be to extend PVS. More automation could be added so that proving
becomes less laborious. But one could also try to verify the PVS implementation. Before doing so, a
research project comparing other proof assistants is probably in order.

31

Chapter 7

Acknowledgement

I would like to thank Wim Hesselink for his assistance with PVS. His expertise with PVS and the many
hours he has assisted me, have made the completion of this project possible. I have learned many
techniques from him, most about PVS, but also more general proof techniques.

I would also like to thank Gerard Renardel for helping me with bringing together my over-abundant
ambitions into a project that I was enthusiastic for, but that was �tted for a bachelor project.

32

Bibliography

[1] G. Borgefors, �Distance transformations in arbitrary dimensions,� Computer Vision, Graphics,

and Image Processing, vol. 27, no. 3, pp. 321 � 345, 1984. [Online]. Available: http:
//www.sciencedirect.com/science/article/pii/0734189X84900355

[2] W. H. Hesselink, �A linear-time algorithm for euclidean feature transform sets,� Information

Processing Letters, vol. 102, no. 5, pp. 181 � 186, 2007. [Online]. Available: http:
//www.sciencedirect.com/science/article/pii/S0020019006003681

[3] W. H. Hesselink, �Distance transforms and feature transform sets,� http://www.cs.rug.nl/~wim/
imageproc/whh426.pdf, May 2009, an extension and modi�cation of the IPL paper[2].

[4] W. H. Hesselink and J. B. T. M. Roerdink, �Euclidean skeletons of digital image and volume data in
linear time by the integer medial axis transform,� Pattern Analysis and Machine Intelligence, IEEE

Transactions on, vol. 30, no. 12, pp. 2204 � 2217, dec. 2008.

[5] A. Meijster, J. B. T. M. Roerdink, and W. H. Hesselink, �A general algorithm for computing dis-
tance transforms in linear time,� Mathematical Morphology and its Applications to Image and Signal

Processing, vol. 27, pp. 321 � 345, 2000.

33

http://www.sciencedirect.com/science/article/pii/0734189X84900355
http://www.sciencedirect.com/science/article/pii/0734189X84900355
http://www.sciencedirect.com/science/article/pii/S0020019006003681
http://www.sciencedirect.com/science/article/pii/S0020019006003681
http://www.cs.rug.nl/~wim/imageproc/whh426.pdf
http://www.cs.rug.nl/~wim/imageproc/whh426.pdf

Appendix A

PVS Speci�cation

Appendix A contains the complete PVS speci�cation of the EFT algorithm and the proof of its correct-
ness. Figure A.1 displays the dependencies for each of the proof �les.

Figure A.1: PVS Proof hierarchy

A.1 EFT_program.pvs

The �le EFT_program.pvs contains the proof of correctness for the EFT algorithm.

EFT_program.pvs

% The co r r e c t n e s s o f the EFT algor i thm
%
% Author : Sebast ian Verschoor
% Last modi f i ed : 28 July 2012

5
EFT_program : THEORY

BEGIN

10 IMPORTING EFT, EFT_program_statements

%%%%%%%%%%%%%%%%%%%%%
% PVS de c l a c r a t i o n s %

15 %%%%%%%%%%%%%%%%%%%%%

34

% i t e r a t o r over s tack elements
i : VAR nat

20 % i t e r a t o r over data po in t s
x : VAR nat

% program s t a t e
s : VAR s t a t e

25

%%%%%%%%%%%%%%%%%%%%
% State p r ed i c a t e s %
%%%%%%%%%%%%%%%%%%%%

30
% To avoid r e p e t i t i o n in the pred i ca t e s , to keep a c l e a r overview and to ease to
% proves a b i t (us ing the mixedHoare−lemma) , the p r ed i c a t e s have been s p l i t up
% into s e v e r a l s ho r t e r ones . The f u l l p r ed i c a t e s are con junct i ons o f the sho r t e r
% ones . For example , the f u l l p r e cond i t i on o f LinearSearch i s "P_ls AND

35 % I_b " .

% Build phase . Parts o f the bu i ld i nva r i an t are t rue in the e n t i r e while−body ,
% some j u s t in part o f the while−body .

40 % Build , a f t e r l i n e 2 to be f o r e l i n e 11 : r equ i r ed f o r Reset (t_0)
t_set_zero (s) : bool =

s ` t (0) = 0

% Build , a f t e r l i n e 4 to be f o r e l i n e 10
45 I_b(s) : bool =

t_set_zero (s) AND s ` k < s ` n

% Build , part o f loop−i nva r i an t : s t a ck s f i l l e d up to q (k , h , n) (sp f)
s t a c k s_pa r t i a l l y_ f i l l e d (s) : bool =

50 s ` q = EFT. q (s ` k , s ` h , s ` n) − 1 AND
(FORALL(i) : i <= s ` q IMPLIES s ` t (i) = EFT. t (i , s ` k , s ` h , s ` n) AND

s ` at (i) = EFT. at (i , s ` k , s ` h , s ` n))

% Update/Reset , part o f po s t cond i t i on : s t a ck s f i l l e d up to q (k+1, h , n)
55 % (sp f (k = k + 1))

% Postcond i t i on o f both Reset and Update
s t a ck s_par t i a l l y_ f i l l ed_nex t (s) : bool =

s ` q = EFT. q (s ` k + 1 , s ` h , s ` n) − 1 AND
(FORALL(i) : i <= s ` q IMPLIES s ` t (i) = EFT. t (i , s ` k + 1 , s ` h , s ` n) AND

60 s ` at (i) = EFT. at (i , s ` k + 1 , s ` h , s ` n))

% LinearSearch , p r e cond i t i on
% Pre_ls : I_b AND P_ls

65 P_ls (s) : bool =
s t a c k s_pa r t i a l l y_ f i l l e d (s)

% LinearSearch , po s t cond i t i on
% Post_ls : I_b AND Q_ls

70 % Either the f i r s t l i n e or the r e s t i s true , depending on the ex i t−cond i t i on o f
% the loop . The f i r s t l i n e i s (part o f) the pr econd i t i on f o r Reset , the r e s t
% f o r Update . The extra l i n e about the value o f at i s r equ i r ed f o r Update .
Q_ls (s) : bool =

s ` q = −1 AND EFT. u(s ` k , s ` h , s ` n) = 0 OR
75 s ` q >= 0 AND s ` q = EFT.maxI (s ` k , s ` h , s ` n) AND 0 < EFT. u(s ` k , s ` h , s ` n) AND

(FORALL(i) : i <= s ` q IMPLIES s ` t (i) = EFT. t (i , s ` k + 1 , s ` h , s ` n) AND
s ` at (i) = EFT. at (i , s ` k + 1 , s ` h , s ` n)) AND

s ` at (s ` q) = EFT. at (s ` q , s ` k , s ` h , s ` n)

80 % LinearSearch , while−loop inva r i an t
% Inv_ls : I_b AND J_ls
% To make the i nva r i an t s t rong enough f o r (J_ls AND NOT B_ls IMPLIES Q_ls) , we
% int roduce a cond i t i on that i s only va l i d when the loop has been entered at
% l e a s t once (and s ` q < EFT. q (k , h , n) − 1)

85 J_ls (s) : bool =
−1 <= s ` q AND s ` q <= EFT. q (s ` k , s ` h , s ` n) − 1 AND
(s ` q < EFT. q (s ` k , s ` h , s ` n) − 1 IMPLIES

EFT. f (EFT. t (s ` q + 1 , s ` k , s ` h , s ` n) , EFT. at (s ` q + 1 , s ` k , s ` h , s ` n) , s ` h)
> EFT. f (EFT. t (s ` q + 1 , s ` k , s ` h , s ` n) , s ` k , s ` h))

90 AND

(FORALL(i) : i <= s ` q IMPLIES s ` t (i) = EFT. t (i , s ` k , s ` h , s ` n) AND
s ` at (i) = EFT. at (i , s ` k , s ` h , s ` n))

95 % Reset , p r e cond i t i on
% Pre_r : I_b AND P_r
P_r(s) : bool =

t_set_zero (s) AND EFT. u(s ` k , s ` h , s ` n) = 0

35

100 % Reset , po s t cond i t i on
% Post_r : I_b AND Q_r
Q_r(s) : bool =

s ta ck s_par t i a l l y_ f i l l ed_nex t (s)

105
% Update , p r e cond i t i on
% Pre_u : I_b AND P_u
P_u(s) : bool =

s ` q = EFT.maxI (s ` k , s ` h , s ` n) AND 0 < EFT. u(s ` k , s ` h , s ` n) AND
110 (FORALL(i) : i <= s ` q IMPLIES s ` t (i) = EFT. t (i , s ` k + 1 , s ` h , s ` n) AND

s ` at (i) = EFT. at (i , s ` k + 1 , s ` h , s ` n)) AND
s ` at (s ` q) = EFT. at (s ` q , s ` k , s ` h , s ` n)

% Update , po s t cond i t i on
115 % Post_u : I_b AND Q_u

Q_u(s) : bool =
s ta ck s_par t i a l l y_ f i l l ed_nex t (s)

% Update , a f t e r l i n e 1 : in t e rmed ia te cond i t i on
120 P0_u(s) : bool =

P_u(s) AND EFT. u(s ` k , s ` h , s ` n) = min (s ` n , s `w)

% Build , po s t cond i t i on (sp f (k = n))
125 % Post_b : Q_b

Q_b(s) : bool =
s ` q = EFT. q (s ` n , s ` h , s ` n) − 1 AND

(FORALL(i) : i <= s ` q IMPLIES s ` t (i) = EFT. t (i , s ` n , s ` h , s ` n) AND
s ` at (i) = EFT. at (i , s ` n , s ` h , s ` n))

130
% Build , i nva r i an t
% Inv_b : t_0 AND J_b
J_b(s) : bool =

s ` k <= s ` n AND s t a c k s_pa r t i a l l y_ f i l l e d (s)
135

% Harvest phase . Again some p r ed i c a t e s have been s p l i t o f f .

% FTHarvest , part o f i nva r i an t : s t a ck s f i l l e d up to "q (n , h , n) + 1" (s f)
140 s t a c k s_ f i l l e d (s) : bool =

s ` q = EFT. q (s ` n , s ` h , s ` n) − 1 AND
(FORALL(i) : i <= s ` q + 1 IMPLIES s ` t (i) = EFT. t (i , s ` n , s ` h , s ` n) AND

s ` at (i) = EFT. at (i , s ` n , s ` h , s ` n))

145 % FTHarvest , b e f o r e l i n e 6 to a f t e r l i n e 7
I_h(s) : bool =

s t a c k s_ f i l l e d (s) AND s ` j <= s ` q AND s ` y1 = s ` t (s ` j + 1) − 1

150 % SimpleHarvest , p r e cond i t i on
% Pre_sh : I_h AND P_sh
P_sh(s) : bool =

(FORALL(x) : x < s ` t (s ` j) IMPLIES s `EFT(x) = EFT.EFT(x , s ` n , s ` h)) AND
s ` y = s ` t (s ` j) AND s ` r = s ` at (s ` j) + 1

155
% SimpleHarvest , po s t cond i t i on
% Post_sh : I_h AND Q_sh
Q_sh(s) : bool =

(FORALL(x) : x < s ` y1 IMPLIES s `EFT(x) = EFT.EFT(x , s ` n , s ` h)) AND
160 s `EFT(s ` y1) = EFT.N(s ` at (s ` j) + 1 , s ` y1 , s ` n , s ` h , s ` n) AND

s ` y = s ` t (s ` j + 1) AND s ` r = s ` at (s ` j) + 1

% SimpleHarvest , while−loop inva r i an t
% Inv_sh : I_h AND J_sh

165 J_sh(s) : bool =
(FORALL(x) : x < s ` t (s ` j) IMPLIES s `EFT(x) = EFT.EFT(x , s ` n , s ` h)) AND
s ` t (s ` j) <= s ` y AND s ` y <= s ` t (s ` j + 1) AND
(FORALL(x) : s ` t (s ` j) <= x AND x < s ` y IMPLIES

s `EFT(x) = EFT.N(s ` at (s ` j) + 1 , x , s ` n , s ` h , s ` n)) AND
170 s ` r = s ` at (s ` j) + 1

% MultiHarvest , p r e cond i t i on
% Pre_mh : I_h AND P_mh

175 P_mh(s) : bool =
Q_sh(s)

% MultiHarvest , po s t cond i t i on
% Post_mh : I_h AND Q_mh

180 Q_mh(s) : bool =
(FORALL(x) : x <= s ` y1 IMPLIES s `EFT(x) = EFT.EFT(x , s ` n , s ` h)) AND
s ` y = s ` t (s ` j + 1) AND s ` r = s ` at (s ` j + 1) + 1

36

% MultiHarvest , while−loop inva r i an t
185 % Inv_mh : I_h AND J_mh

J_mh(s) : bool =
(FORALL(x) : x < s ` y1 IMPLIES s `EFT(x) = EFT.EFT(x , s ` n , s ` h)) AND
s ` at (s ` j) < s ` r AND s ` r <= s ` at (s ` j + 1) + 1 AND
s `EFT(s ` y1) = EFT.N(s ` r , s ` y1 , s ` n , s ` h , s ` n) AND

190 s ` y = s ` t (s ` j + 1)

% FTHarvest , p r e cond i t i on
% Pre_fth : P_fth

195 P_fth (s) : bool =
Q_b(s)

% FTHarvest , po s t cond i t i on
% Post_fth : Q_fth

200 Q_fth (s) : bool =
FORALL(x) : x < s ` n IMPLIES s `EFT(x) = EFT.EFT(x , s ` n , s ` h)

% FTHarvest , i nva r i an t
% Inv_fth : s f AND J_fth

205 J_fth (s) : bool =
s ` j <= s ` q + 1 AND
(FORALL(x) : x < s ` t (s ` j) IMPLIES s `EFT(x) = EFT.EFT(x , s ` n , s ` h)) AND
s ` y = s ` t (s ` j) AND s ` r = s ` at (s ` j) + 1

210
% OneFT, pos t cond i t i on
% Post_oft : Q_oft
Q_oft (s) : bool =

Q_fth (s)
215

%%%%%%%%%%%%%%%%%%%%%
% Variant f unc t i on s %
%%%%%%%%%%%%%%%%%%%%%

220
% Build phase , va r i ant func t i on
vf_b (s) : i n t =

2 ∗ (s ` n − s ` k) + s ` q
vf_ls (s) : i n t = vf_b (s)

225
% Harvest phase , va r i ant func t i on
vf_fth (s) : i n t =

3 ∗ s ` n − s ` j − s ` y − s ` r
vf_sh (s) : i n t = vf_fth (s)

230 vf_mh(s) : i n t = vf_fth (s)

%%%%%%%%%%%%%%%%%%%%%
% Prove c o r r e c t n e s s %

235 %%%%%%%%%%%%%%%%%%%%%

% LinearSearch , s tep 1
post_implied_ls : LEMMA

subset ?(I_b AND J_ls ANDNOT B_ls , I_b AND Q_ls)
240

% LinearSearch , s tep 2
% There i s no a c t i v e i n i t i a l i s a t i o n . This lemma i s a c tua l l y equal to :
% tcHoare (I_b AND P_ls , l i f t (sk ip) , I_b AND J_ls)
inv_in i t_l s : LEMMA

245 subset ?(I_b AND P_ls , I_b AND J_ls)

% LinearSearch , s tep 3
v f_ i sva r i ant_l s : LEMMA

i sVar i an t (vf_ls , I_b AND J_ls , B_ls , l i f t (body_ls))
250

% LinearSearch , s tep 4
inv_keptval id_ls : LEMMA

tcHoare (I_b AND J_ls AND B_ls , l i f t (body_ls) , I_b AND J_ls)

255 % LinearSearch , s tep 5
program_correct_ls : LEMMA

tcHoare (I_b AND P_ls , program_ls , I_b AND Q_ls)

260 % Reset
program_correct_reset : LEMMA

tcHoare (I_b AND P_r , l i f t (command_reset) , I_b AND Q_r)

265 % Update

37

program_correct_update : LEMMA
tcHoare (I_b AND P_u, l i f t (command_update) , I_b AND Q_u)

270 % Build , s tep 1
post_implied_build : LEMMA

subset ?(J_b ANDNOT B_b, Q_b)

% Build , s tep 2
275 % Since we make no assumptions about the s t a t e be f o r e the a lgor i thm i s

% executed , the pr econd i t i on i s equal to t rue . The f u l l s e t [s t a t e] i s the s e t
% conta in ing a l l s t a t e s , so t h i s i s the " p r ed i c a t e " we use as p r e cond i t i on .
inv_init_bui ld : LEMMA

tcHoare (f u l l s e t [s t a t e] , l i f t (i n i t_bu i ld) , t_set_zero AND J_b)
280

% Build , s tep 3
v f_isvar iant_bui ld : LEMMA

i sVar i an t (vf_b , t_set_zero AND J_b , B_b, body_build)

285 % Build , s tep 4
inv_keptval id_bui ld : LEMMA

tcHoare (t_set_zero AND J_b AND B_b, body_build , t_set_zero AND J_b)

% Build , s tep 5
290 loop_correct_bui ld : LEMMA

tcHoare (t_set_zero AND J_b , loop_build , Q_b)

% Build
program_correct_build : LEMMA

295 tcHoare (f u l l s e t [s t a t e] , program_build , Q_b)

% SimpleHarvest , s tep 1
post_implied_sh : LEMMA

300 subset ?(I_h AND J_sh ANDNOT B_sh , I_h AND Q_sh)

% SimpleHarvest , s tep 2
% No ac t i v e i n i t i a l i s a t i o n
inv_init_sh : LEMMA

305 subset ?(I_h AND P_sh , I_h AND J_sh)

% SimpleHarvest , s tep 3
vf_isvar iant_sh : LEMMA

i sVar i an t (vf_sh , I_h AND J_sh , B_sh , l i f t (body_sh))
310

% SimpleHarvest , s tep 4
inv_keptvalid_sh : LEMMA

tcHoare (I_h AND J_sh AND B_sh , l i f t (body_sh) , I_h AND J_sh)

315 % SimpleHarvest , s tep 5
program_correct_sh : LEMMA

tcHoare (I_h AND P_sh , program_sh , I_h AND Q_sh)

320 % MultiHarvest , s tep 1
post_implied_mh : LEMMA

subset ? (I_h AND J_mh ANDNOT B_mh, I_h AND Q_mh)

% MultiHarvest , s tep 2
325 % No ac t i v e i n i t i a l i s a t i o n

inv_init_mh : LEMMA
subset ? (I_h AND P_mh, I_h AND J_mh)

% MultiHarvest , s tep 3
330 vf_isvariant_mh : LEMMA

i sVar i an t (vf_mh , I_h AND J_mh, B_mh, l i f t (body_mh))

% MultiHarvest , s tep 4
inv_keptvalid_mh : LEMMA

335 tcHoare (I_h AND J_mh AND B_mh, l i f t (body_mh) , I_h AND J_mh)

% MultiHarvest , s tep 5
program_correct_mh : LEMMA

tcHoare (I_h AND P_mh, program_mh , I_h AND Q_mh)
340

% FTHarvest , s tep 1
post_implied_fth : LEMMA

subset ? (s t a c k s_ f i l l e d AND J_fth ANDNOT B_fth , Q_fth)
345

% FTHarvest , s tep 2
inv_init_fth : LEMMA

tcHoare (P_fth , l i f t (i n i t_ f th) , s t a c k s_ f i l l e d AND J_fth)

38

350 % FTHarvest , s tep 3
v f_i svar iant_fth : LEMMA

i sVar i an t (vf_fth , s t a c k s_ f i l l e d AND J_fth , B_fth , body_fth)

% FTHarvest , s tep 4
355 inv_keptval id_fth : LEMMA

tcHoare (s t a c k s_ f i l l e d AND J_fth AND B_fth , body_fth ,
s t a c k s_ f i l l e d AND J_fth)

% FTHarvest , s tep 5
360 loop_correct_fth : LEMMA

tcHoare (s t a c k s_ f i l l e d AND J_fth , loop_fth , Q_fth)

% FTHarvest
program_correct_fth : LEMMA

365 tcHoare (P_fth , program_fth , Q_fth)

% OneEFT
% Precond i t ion = true

370 program_correct_oneft : THEOREM
tcHoare (f u l l s e t [s t a t e] , program_oneft , Q_oft)

END EFT_program

A.2 EFT_program_statements.pvs

The �le EFT_program_statements.pvs contains the program statements in the PVS syntax.

EFT_program_statements.pvs

% EFT algor i thm statements
%
% Author : Sebast ian Verschoor
% Last modi f i ed : 26 July 2012

5
EFT_program_statements : THEORY

BEGIN

10 IMPORTING EFT, programs

%%%%%%%%%%%%%%%%%%%%%%%%
% Program de c l a r a t i o n s %

15 %%%%%%%%%%%%%%%%%%%%%%%%

% Program s t a t e type , a l i s t o f v a r i a b l e s and t h e i r types
s t a t e : TYPE = [# q : int , % stack he ight

t , at : [i n t −> nat] , % s tack s
20 k : posnat , % bu i ld i t e r a t o r

n : posnat , % data boundary
h : [nat −> nat] , % grey−value func t i on
w: int , % separa to r func t i on r e s u l t
j : nat , % stack i t e r a t o r

25 y , y1 : nat , % harvest i t e r a t o r (t)
r : nat , % upper bound o f N
EFT: [nat −> s e t o f [nat]] % r e s u l t s t o rage

#]

30 % Program s t a t e
s : VAR s t a t e

%%%%%%%%%%%%%%%%%%%%%%
35 % Program statements %

%%%%%%%%%%%%%%%%%%%%%%

% The sk ip command does nothing and can be used f o r implementing the i f (with
% no e l s e)

40 sk ip (s) : s t a t e = s

% LinearSearch , l i n e 1 : guard while−loop
B_ls (s) : bool =

45 s ` q >= 0 AND EFT. f (s ` t (s ` q) , s ` at (s ` q) , s ` h) > EFT. f (s ` t (s ` q) , s ` k , s ` h)

% LinearSearch , l i n e 2 : body while−loop

39

body_ls (s) : s t a t e =
s WITH [` q := s ` q − 1]

50
% LinearSearch , l i n e s 1−3: while−loop
program_ls : program [s t a t e] =

whi le (B_ls , l i f t (body_ls))

55
% Reset , l i n e 1
command_reset (s) : s t a t e =

s WITH [` q := 0 , ` at (0) := s ` k]

60
% Update , l i n e 1
command1_update (s) : s t a t e =

s WITH [`w := 1 + EFT. g (s ` at (s ` q) , s ` k , s ` h)]

65 % Update , l i n e 2 : i f−guard
ifguard_update (s) : bool =

s `w < s ` n

% Update , l i n e 3 : i f−body
70 command2_update (s) : s t a t e =

s WITH [` q := s ` q + 1]

% Update , l i n e 4 : i f−body
% The IF−THEN−ELSE cons t ruc t i on i s introduced to avoid akward TCCs . In the

75 % program , s `w >= 0 i s always t rue .
command3_update (s) : s t a t e =

s WITH [` t (s ` q) := IF s `w >= 0 THEN s `w ELSE 0 ENDIF, ` at (s ` q) := s ` k]

% Update , l i n e s 3−4: compos it ion i f−body
80 command23_update : command [s t a t e] =

command2_update ^ command3_update

% Update , l i n e s 2−7: i f (no e l s e)
commandif_update : command [s t a t e] =

85 i fThenElse (ifguard_update , command23_update , sk ip)

% Update , l i n e s 1−7: compos it ion
command_update : command [s t a t e] =

command1_update ^ commandif_update
90

% Build , l i n e 1 : i n i t i a l i s a t i o n
in i t1_bu i ld (s) : s t a t e =

s WITH [` q := 0 , ` t (0) := 0 , ` at (0) := 0]
95

% Build , l i n e 2 : i n i t i a l i s a t i o n
in i t2_bu i ld (s) : s t a t e =

s WITH [` k := 1]

100 % Build , l i n e s 1−2: compos it ion i n i t i a l i s a t i o n
in i t_bu i ld : command [s t a t e] =

in i t1_bu i ld ^ in i t2_bu i ld

% Build , l i n e 3 : while−guard
105 B_b(s) : bool =

s ` k < s ` n

% Build , l i n e 5 : i f−guard
i fguard_bui ld (s) : bool =

110 s ` q < 0

% Build , l i n e 10 : while−body
body1_build (s) : s t a t e =

s WITH [` k := s ` k + 1]
115

% Build , l i n e s 5−9: i f−e l s e
command_ifelse_build : command [s t a t e] =

i fThenElse (i fguard_bui ld , command_reset , command_update)

120 % Build , l i n e s 4−10: composit ion while−body
body_build : program [s t a t e] =

program_ls ^ l i f t (command_ifelse_build ^ body1_build)

% Build , l i n e s 3−11: while−loop
125 loop_build : program [s t a t e] =

whi le (B_b, body_build)

% Build , l i n e s 1−11: composit ion
program_build : program [s t a t e] =

130 l i f t (i n i t_bu i ld) ^ loop_build

40

% SimpleHarvest , l i n e 1 : while−guard
B_sh(s) : bool =

135 s ` y <= s ` y1

% SimpleHarvest , l i n e 2 : while−body
body1_sh (s) : s t a t e =

s WITH [`EFT(s ` y) := s i n g l e t on (s ` at (s ` j))]
140

% SimpleHarvest , l i n e 3 : while−body
body2_sh (s) : s t a t e =

s WITH [` y := s ` y + 1]

145 % SimpleHarvest , l i n e s 3−4: compos it ion while−body
body_sh : command [s t a t e] =

body1_sh ^ body2_sh

% SimpleHarvest , l i n e s 1−4: while−loop
150 program_sh : program [s t a t e] =

whi le (B_sh , l i f t (body_sh))

% MultiHarvest , l i n e 1 : while−guard
155 B_mh(s) : bool =

s ` r <= s ` at (s ` j + 1)

% MultiHarvest , l i n e 2 : i f−guard
ifguard_mh (s) : bool =

160 EFT. f (s ` y1 , s ` r , s ` h) = EFT. f (s ` y1 , s ` at (s ` j) , s ` h)

% MultiHarvest , l i n e 3 : i f−body
commandif_mh(s) : s t a t e = % l i n e 5

s WITH [`EFT(s ` y1) := add (s ` r , s `EFT(s ` y1))]
165

% MultiHarvest , l i n e s 2−6: i f (no e l s e)
bodyif_mh : command [s t a t e] =

i fThenElse (ifguard_mh , commandif_mh , sk ip)

170 % MultiHarvest , l i n e 7 : while−body
body1_mh(s) : s t a t e =

s WITH [` r := s ` r + 1]

% MultiHarvest , l i n e s 2−7: compos it ion while−body
175 body_mh : command [s t a t e] =

bodyif_mh ^ body1_mh

% MultiHarvest , l i n e s 1−8: while−loop
program_mh : program [s t a t e] =

180 whi le (B_mh, l i f t (body_mh))

% EFTHarvest , l i n e 1 : i n i t i a l i s a t i o n
in i t 1_f th (s) : s t a t e =

185 s WITH [` t (s ` q + 1) := s ` n , ` at (s ` q + 1) := s ` n − 1]

% EFTHarvest , l i n e 2 : i n i t i a l i s a t i o n
in i t 2_f th (s) : s t a t e =

s WITH [` y := 0 , ` r := s ` at (0) + 1]
190

% EFTHarvest , l i n e 3 : i n i t i a l i s a t i o n
in i t 3_f th (s) : s t a t e =

s WITH [` j := 0]

195 % EFTHarvest , l i n e s 1−3: compos it ion i n i t i a l i s a t i o n
in i t_ f th : command [s t a t e] =

in i t 1_f th ^ in i t 2_f th ^ in i t 3_f th

% EFTHarvest , l i n e 4 : while−guard
200 B_fth (s) : bool =

s ` j <= s ` q

% EFTHarvest , l i n e 5 : while−body
% The IF−THEN−ELSE cons t ruc t i on i s introduced to avoid akward TCCs . In the

205 % program , s ` t always corresponds to the func t i on EFT. t , which i s always
% po s i t i v e (v e r i f i e d by LEMMA t_pos i t i v e) .
body1_fth (s) : s t a t e =

s WITH [` y1 := IF s ` t (s ` j + 1) − 1 >= 0 THEN s ` t (s ` j + 1) − 1 ELSE 0 ENDIF]

210 % EFTHarvest , l i n e 8 : while−body
body2_fth (s) : s t a t e =

s WITH [` j := s ` j + 1]

41

% EFTHarvest , l i n e s 5−8: compos it ion while−body
215 body_fth : program [s t a t e] =

l i f t (body1_fth) ^ program_sh ^ program_mh ^ l i f t (body2_fth)

% EFTHarvest , l i n e s 4−9: while−body
loop_fth : program [s t a t e] =

220 whi le (B_fth , body_fth)

% EFTHarvest , l i n e s 1−9: compos it ion
program_fth : program [s t a t e] =

l i f t (i n i t_ f th) ^ loop_fth
225

% OneEFT, l i n e s 3−4: compos it ion
program_oneft : program [s t a t e] =

program_build ^ program_fth
230

END EFT_program_statements

A.3 EFT.pvs

The �le EFT.pvs contains the speci�cation of the mathematics that underlay the EFT algorithm.

EFT.pvs

% Mathematics behind the EFT algor i thm
%
% The proo f i s based upon the a r t i c l e by Wim H. Hesse l ink , May 4 , 2009 :
% Distance trans forms and f e a tu r e transform s e t s

5 % s r c : http ://www. cs . rug . n l /~wim/ imageproc /whh426 . pdf
% In the proo f I r e f e r to equat ions in t h i s a r t i c l e , us ing the tag "whh426 " .
%
% Author : Sebast ian Verschoor
% Last modi f i ed : 26 July 2012

10

EFT: THEORY

BEGIN

15
IMPORTING more_floor , ith_element_theory , max_nat

%%%%%%%%%%%%%%%%%%%%
20 % PVS de c l a r a t i o n s %

%%%%%%%%%%%%%%%%%%%%

% "Fixed" va r i ab l e s , provided as parameters to the func t i on . I n s i d e the EFT
% theory , these are cons ide red to be constant s . I dec l a r ed them as va r i ab l e s ,

25 % making i t p o s s i b l e to import t h i s theory in to a theory o f the h igher dimension
% EFT, where both n and h vary .

% Boundary o f data
n : VAR posnat

30
% Grey−value func t i on
h : VAR [nat −> nat]

35 % Actual v a r i a b l e s

% With the in t r oduc t i on o f h , the re i s no r e a l d i s t i n c t i o n between background
% po int s and foreground po in t s . S t i l l , i t he lps to think about them in these
% terms .

40
% "Background" po in t s
p , q , r : VAR nat

% "Foreground" po in t s
45 x , y : VAR nat

% Distance
d : VAR nat

50 % Data i t e r a t o r
k : VAR posnat

% Stack indexes
i , j : VAR nat

42

55

%%%%%%%%%%%%%%%%%%%%%%%%%
% De f i n i t i o n o f the EFT %
%%%%%%%%%%%%%%%%%%%%%%%%%

60
% One−dimens iona l squared Eucl idean d i s t ance
d i s t (x , p) : nat =

(x − p) ∗ (x − p)

65 % Distance , i n c l ud ing h
f (x , p , h) : nat =

d i s t (x , p) + h(p)

% Nearest d i s t ance to any point
70 edt (x , n , h) : nat =

min ({ d | EXISTS p : d = f (x , p , h) AND p < n })

% Al l po in t s with the nea r e s t d i s t ance
EFT(x , n , h) : s e t o f [nat] =

75 { p | p < n AND f (x , p , h) = edt (x , n , h) }

%%%%%%%%%%%%%%%%%%%%%%%%%
% Auxi l i a ry Mathematics %

80 %%%%%%%%%%%%%%%%%%%%%%%%%

% Alt e rna t i v e d e f i n i t i o n o f EFT, in t roduc ing k as new bound f o r background po in t s
% whh426 (0)
M(x , k , h) : s e t o f [nat] =

85 { p | p < k AND FORALL (q) : q < k IMPLIES f (x , p , h) <= f (x , q , h)}

M_bounded : LEMMA
M(x , k , h) (p) IMPLIES p < k

90 % Proving that the d e f i n i t i o n s o f M and EFT are equal
M_equals_EFT : LEMMA
M(x , n , h) = EFT(x , n , h)

% Induct ive d e f i n i t i o n o f M
95 % whh426 (1)

M_inductive : LEMMA
M(x , k , h) (p) IMPLIES

M(x , k + 1 , h) = IF f (x , p , h) < f (x , k , h)
THEN M(x , k , h)

100 ELSE IF f (x , p , h) = f (x , k , h)
THEN add (k , M(x , k , h))
ELSE s i n g l e t on (k)

ENDIF

ENDIF

105
% M i s monotonica l ly non−dec r ea s ing in i t s f i r s t argument
% whh426 (2)
M_nondecreasing : LEMMA

x < y ANDM(x , k , h) (p) ANDM(y , k , h) (q) IMPLIES p <= q
110

% Minimal element o f M, in c l ud ing upper bound
% whh426 (3)
a (x , k , h , n) : nat =

115 IF x = n THEN k − 1 ELSE min(M(x , k , h)) ENDIF

a_bounded : LEMMA
a (x , k , h , n) < k

120 % Aux i l i a ry lemma f o r a_nondecreasing
p_leq_a : LEMMA

x < n ANDM(x , k , h) (p) IMPLIES p <= a (x + 1 , k , h , n)

a_nondecreasing : LEMMA
125 x < n IMPLIES a (x , k , h , n) <= a (x + 1 , k , h , n)

a_nondecreasing_general : LEMMA
x <= y AND y <= n IMPLIES a (x , k , h , n) <= a (y , k , h , n)

130 % M de f ined by a
% whh426 (4)
M_def_a : LEMMA

x < n AND k <= n IMPLIES

M(x , k , h) = { p | a (x , k , h , n) <= p AND p <= a (x + 1 , k , h , n) AND
135 f (x , p , h) = f (x , a (x , k , h , n) , h) }

43

% New d e f i n i t i o n o f M, adding the new upper bound r
N(r , x , k , h , n) : s e t o f [nat] =

140 { p | a (x , k , h , n) <= p AND p < r AND f (x , p , h) = f (x , a (x , k , h , n) , h) }

% Proving the d e f i n i t i o n s o f N and M are equal
N_eq_M: LEMMA

x < n AND k <= n IMPLIES N(a (x + 1 , k , h , n) + 1 , x , k , h , n) = M(x , k , h)
145

% Induct ive d e f i n i t i o n o f N
N_inductive : LEMMA

x < n AND k <= n IMPLIES

N(r + 1 , x , k , h , n) = IF f (x , r , h) = f (x , a (x , k , h , n) , h)
150 THEN add (r , N(r , x , k , h , n))

ELSE N(r , x , k , h , n)
ENDIF

155 % Star t o f f i n a l " segment"
u(k , h , n) : nat =

min ({ x | a (x , k + 1 , h , n) = k })

u_bounded : LEMMA
160 u(k , h , n) <= n

% Aux i l i a ry lemma f o r u_if f_f
u_iff_a : LEMMA

x < n IMPLIES

165 (x < u(k , h , n) IFF a (x , k + 1 , h , n) < k)

% Aux i l i a ry lemma f o r u_if f_f
a_i f f_f : LEMMA

x < n IMPLIES

170 (a (x , k + 1 , h , n) < k IFF f (x , a (x , k , h , n) , h) <= f (x , k , h))

% The righthand−s i d e o f t h i s lemma i s the t e s t from LinearSearch , whi le the
% le f thand−s i d e i s the conc lu s i on to be drawn from LinearSearch .
% whh426 (5)

175 u_if f_f : LEMMA
x < n IMPLIES

(x < u(k , h , n) IFF f (x , a (x , k , h , n) , h) <= f (x , k , h))

180 % Aux i l i a ry lemma f o r a_inductive
a_inductive_if_f : LEMMA

x < n IMPLIES

f (x , a (x , k , h , n) , h) <= f (x , k , h) IMPLIES
a (x , k + 1 , h , n) = a (x , k , h , n)

185
% Induct ive d e f i n i t i o n o f a
% whh426 (6)
a_inductive : LEMMA

x < n IMPLIES

190 a (x , k + 1 , h , n) = IF x < u(k , h , n) THEN a (x , k , h , n) ELSE k ENDIF

% Solut i on f o r x : f (x , p , h) <= f (x , q , h)
% The context p < q i s added to the d e f i n i t i o n , but should always be true

195 g (p , q , h) : i n t =
IF p < q
THEN f l o o r ((q ∗ q − p ∗ p + h(q) − h(p)) / (2 ∗ (q − p)))
ELSE 0

ENDIF

200
% Aux i l i a ry lemma f o r u_eq_g
% The requ i r ed context f o r us ing g i s added by "p < q IMPLIES"
% whh426 (7)
f_i f f_g : LEMMA

205 p < q IMPLIES

(f (x , p , h) <= f (x , q , h) IFF x <= g (p , q , h))

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
210 % Prope r t i e s o f da ta s t ruc tu r e %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Se l e c t only the minimal amount o f po in t s o f a , so that i t i s r ep re s ented
% by a (s t r i c t l y) i n c r e a s i n g s e t . The enumeration o f t h i s s e t i s s to r ed as a

215 % stack in the algorithm , so the e lements o f Q are r e f e r r e d to as s tack va lues .
% S l i g h t dev i a t i on o f whh426 : Q(k , h , n) (0) , s imp l i f y i n g the d e f i n i t i o n o f t
Q(k , h , n) : s e t o f [nat] =

{ x | x = 0 OR 1 <= x AND x < n AND a (x − 1 , k , h , n) < a (x , k , h , n) }

220 % A i s s t r i c t l y i n c r e a s i n g in i t s f i r s t argument , IF y in Q

44

Q_monotonic_general : LEMMA
x < y AND Q(k , h , n) (y) IMPLIES a (x , k , h , n) < a (y , k , h , n)

% Induct ive d e f i n i t i o n o f Q
225 Q_inductive : LEMMA

Q(k + 1 , h , n) = { x | x < u(k , h , n) AND Q(k , h , n) (x) OR
x < n AND x = u(k , h , n) }

% Counting the e lements in Q
230 q (k , h , n) : nat =

card (Q(k , h , n))

q_pos i t ive : LEMMA
q (k , h , n) > 0

235
q_one : LEMMA

q (1 , h , n) = 1

u_zero_q_one : LEMMA
240 u(k , h , n) = 0 IMPLIES q (k + 1 , h , n) = 1

q_bounded : LEMMA
q (k , h , n) <= n

245
% Enumerating the e lements o f Q in i n c r e a s i n g order , with the ith_element
% theory . By doing so , the func t i on t corresponds with the stack t in the
% algor i thm .
t (i , k , h , n) : nat =

250 ith_element (i , Q(k , h , n) , n)

% The ith_element theory makes p roo f s with t qu i t e l abor i ous , t h e r e f o r e I added
% some requ i r ed bas i c p r op e r t i e s to the theory

255 t_in_Q : LEMMA
i < q (k , h , n) IMPLIES
Q(k , h , n) (t (i , k , h , n))

t_bounded : LEMMA
260 t (i , k , h , n) <= n

t_bounded_strong : LEMMA
i < q (k , h , n) IMPLIES

t (i , k , h , n) < n
265

t_overf low : LEMMA
i >= q(k , h , n) IMPLIES

t (i , k , h , n) = n

270 % whh426 (8)
t_increas ing : LEMMA

i < q (k , h , n) IMPLIES
t (i , k , h , n) < t (i + 1 , k , h , n)

275 t_increas ing_genera l : LEMMA
i < j AND j < q (k , h , n) IMPLIES

t (i , k , h , n) < t (j , k , h , n)

t_ex i s t s : LEMMA
280 Q(k , h , n) (x) IMPLIES

EXISTS (i) : i < q (k , h , n) AND x = t (i , k , h , n)

t_zero : LEMMA
t (0 , k , h , n) = 0

285
t_pos i t i v e : LEMMA

i > 0 IMPLIES

t (i , k , h , n) > 0

290
% Value o f a , at po in t s indexed by t (i) . The func t i on at corresponds with the
% stack at in the a lgor i thm .
at (i , k , h , n) : nat =

a (t (i , k , h , n) , k , h , n)
295

% at i s monotonica l ly i n c r e a s i n g in the f i r s t argument
% whh426 (8)
at_increas ing : LEMMA

i + 1 < q(k , h , n) IMPLIES
300 at (i , k , h , n) < at (i + 1 , k , h , n)

% The func t i on value o f a f o r x between t (i) and t (i + 1) i s equal to at (i)
% whh426 (8)

45

a_eq_at : LEMMA
305 i < q(k , h , n) AND t (i , k , h , n) <= x AND x < t (i + 1 , k , h , n) IMPLIES

a (x , k , h , n) = at (i , k , h , n)

% Appl i cat ion o f lemma u_if f_f to s tack va lues
310 % whh426 (9)

tu_i f f_f : LEMMA
i < q (k , h , n) IMPLIES

(t (i , k , h , n) < u(k , h , n) IFF

f (t (i , k , h , n) , at (i , k , h , n) , h) <= f (t (i , k , h , n) , k , h))
315

% maxI i s the b i gg e s t index where t (i) < u(k) , or i f no such index e x i s t s : 0 .
% Note that the cond i t i on "0 < u(k , h , n)" i s part o f the d e f i n i t i o n and not
% added context . Therefore , maxI can be used r e g a r d l e s s o f t h i s cond i t i on .

320 % whh426 mentions a va r i ab l e j with the same prope r t i e s , but prov ides no exact
% d e f i n i t i o n
maxI (k , h , n) : nat =
IF 0 < u(k , h , n)
THEN max({ i | i < q (k , h , n) AND t (i , k , h , n) < u(k , h , n) })

325 ELSE 0
ENDIF

maxI_bounded : LEMMA
maxI (k , h , n) < q(k , h , n)

330
% The cond i t i on 0 < u(k) i s part o f the update pre−cond i t i on . The remainder o f
% the theory i s about f i nd i ng the c o r r e c t va lues to update with in that part
% of the a lgor i thm .

335 % The range o f u(k) , u s e f u l f o r apply ing a_eq_at to u(k)
u_range : LEMMA

0 < u(k , h , n) IMPLIES
t (maxI (k , h , n) , k , h , n) < u(k , h , n) AND
u(k , h , n) <= t (maxI (k , h , n) + 1 , k , h , n)

340
% Aux i l i a ry lemma f o r u_eq_g
u_leq_g : LEMMA

0 < u(k , h , n) AND t (maxI (k , h , n) , k , h , n) <= x AND
x < t (maxI (k , h , n) + 1 , k , h , n) IMPLIES

345 x < u(k , h , n) IMPLIES x <= g (at (maxI (k , h , n) , k , h , n) , k , h)

% Aux i l i a ry lemma f o r u_eq_g
u_leq_g1 : LEMMA

0 < u(k , h , n) IMPLIES
350 u(k , h , n) <= 1 + g (at (maxI (k , h , n) , k , h , n) , k , h)

% Aux i l i a ry lemma f o r u_eq_g
u_geq_g : LEMMA

u(k , h , n) < n IMPLIES 1 + g (at (maxI (k , h , n) , k , h , n) , k , h) <= u(k , h , n)
355

% The exact value o f u(k) , de f ined by the (d i r e c t l y computable) g
% whh426 prov ides t h i s equation , only not enumerated
u_eq_g : LEMMA

0 < u(k , h , n) IMPLIES
360 u(k , h , n) = min (n , 1 + g (at (maxI (k , h , n) , k , h , n) , k , h))

% maxI i s an app l i c a t i on o f the more gene ra l absMaxI , de f ined in the
% ith_element_theory .
maxI_abstracted : LEMMA

365 0 < u(k , h , n) IMPLIES
maxI (k , h , n) = absMaxI (Q(k , h , n) , n , u(k , h , n))

% Aux i l i a ry lemma f o r q_inductive , the s e t de f ined here i s a subset o f the one
% de f ined in Q_inductive

370 maxI_card : LEMMA
0 < u(k , h , n) IMPLIES

maxI (k , h , n) = card ({ x | x < u(k , h , n) AND Q(k , h , n) (x)}) − 1

% The induc t i v e d e f i n i t i o n f o r q
375 q_inductive : LEMMA

0 < u(k , h , n) IMPLIES
q (k + 1 , h , n) − 1 = maxI (k , h , n) + IF u(k , h , n) < n THEN 1 ELSE 0 ENDIF

% Using the property " i <= maxI IMPLIES t (i) < u(k)" and a_inductive , i t can
380 % be concluded that the data be f o r e t (maxI) i s unchanged . Therefore , the s tack s

% are the same as we l l .
t_inductive_bounded : LEMMA

0 < u(k , h , n) AND i <= maxI (k , h , n) IMPLIES
t (i , k + 1 , h , n) = t (i , k , h , n)

385
% Getting the added element o f

46

t_inductive_newElement : LEMMA
0 < u(k , h , n) AND u(k , h , n) < n IMPLIES

t (maxI (k , h , n) + 1 , k + 1 , h , n) = u(k , h , n)
390

% Analogue to the reason ing o f t_inductive_bounded , at remains unchanged be f o r e
% maxI
at_inductive_bounded : LEMMA

0 < u(k , h , n) AND i <= maxI (k , h , n) IMPLIES
395 at (i , k + 1 , h , n) = at (i , k , h , n)

END EFT

A.4 programs.pvs

The �le programs.pvs contains the implementation of the Program Correctness theory: the Hoare triples.

programs.pvs

% W.H. Hes s e l i nk
% F i r s t v e r s i on 6 th August 2003 . Last mod i f i c a t i on 11 October 2006

% Last mod i f i c a t i on (by Sebast ian Verschoor) 25 July 2012 :
5 % Added compos i t ion_assoc ia t ive , tcHoareIfThenElse , ccHoareI fThenElse

programs [s t a t e : TYPE] : THEORY
BEGIN

10 program : TYPE = pred [[s tate , l i f t [s t a t e]]]
prog , body , progA , progB , progC : VAR program
x , y , z : VAR s t a t e
yy , zz : VAR l i f t [s t a t e]

15 % prog (x , yy) means : i f prog s t a r t s in x i t may r e s u l t in yy ,
% where yy = bottom means nonterminat ion

guard , inv , p0 , p1 , pre , post : VAR pred [s t a t e]
n , i : VAR nat

20 t : VAR i n t
v f : VAR [s t a t e −> in t]

AND (p0 , p1) : pred [s t a t e] = {x | p0 (x) AND p1 (x)}
NOT (p0) : pred [s t a t e] = {x | NOT p0 (x)}

25
% NOTE that these f unc t i on s AND and NOT are l i f t e d v e r s i on s o f the boolean
% opera to r s with the same names . There fore you may have to expand them at
% unexpected po in t s ! Moreover , t h i s AND can se rve as an i n f i x operator .

30 i fThenElse (guard , progA , progB) : program =
{ (x , yy) |

IF guard (x) THEN progA (x , yy) ELSE progB (x , yy) ENDIF } ;

^ (progA , progB) : program = % sequ en t i a l compos it ion (i n f i x)
35 { (x , yy) |

yy = bottom and progA (x , yy)
OR (EXISTS (z) : progA (x , up(z)) and progB (z , yy)) }

compos i t i on_assoc ia t ive : LEMMA
40 progA ^ (progB ^ progC) = (progA ^ progB) ^ progC

whi le (guard , body) : program =
{ (x , yy) | EXISTS (s s : sequence [s t a t e]) :

s s (0) = x and

45 ((EXISTS (n) :
(FORALL (i) : i< n implies

guard (s s (i)) and body (s s (i) , up (s s (i +1))))
and ((not guard (s s (n)) and yy = up (s s (n)))

or (guard (s s (n)) and body (s s (n) , bottom)
50 and yy = bottom)))

or (yy = bottom and

FORALL (i) : guard (s s (i)) and

body (s s (i) , up (s s (i +1))))) }

55 tcHoare (pre , prog , post) : bool = % to t a l c o r r e c t n e s s Hoare t r i p l e
(FORALL (x) : pre (x) IMPLIES

NOT prog (x , bottom) AND
FORALL (y) : prog (x , up (y)) IMPLIES post (y))

60 up_in jec t ive : LEMMA (up (x) = up (y) IMPLIES x = y)

47

tcHoareWeakening : LEMMA
tcHoare (p0 , prog , p1) AND subset ?(pre , p0) AND subset ?(p1 , post)
IMPLIES tcHoare (pre , prog , post)

65
tcHoareI fThenElse : LEMMA

tcHoare (pre AND guard , progA , post) AND
tcHoare (pre ANDNOT guard , progB , post)
IMPLIES tcHoare (pre , i fThenElse (guard , progA , progB) , post)

70
tcHoareComposition : LEMMA

tcHoare (pre , progA , p0) AND tcHoare (p0 , progB , post)
IMPLIES tcHoare (pre , progA ^ progB , post)

75 i sVar i an t (vf , inv , guard , body) : bool =
(FORALL (x) : inv (x) AND guard (x) IMPLIES

vf (x) >= 0 AND
FORALL (y) : body (x , up (y)) IMPLIES vf (y) < vf (x))

80 whileTheorem : THEOREM
tcHoare (inv and guard , body , inv)
AND i sVar i an t (vf , inv , guard , body)
IMPLIES tcHoare (inv , whi le (guard , body) , inv and not (guard))

85 % A sp e c i a l theory f o r d e t e rm in i s t i c , t e rminat ing programs : "commands"

command : TYPE = [s t a t e −> sta t e]
com , comA, comB: VAR command

90 l i f t (com) : program = { (x , yy) | yy = up (com (x)) }

tcHoare (pre , com , post) : bool =
(FORALL (x) : pre (x) IMPLIES post (com (x)))

95 com_prog_tcHoare : LEMMA
tcHoare (pre , com , post) IMPLIES tcHoare (pre , l i f t (com) , post)

i sVar i an t (vf , inv , guard , com) : bool =
(FORALL (x) : inv (x) AND guard (x) IMPLIES

100 vf (x) >= 0 AND vf (com (x)) < vf (x))

com_prog_isVariant : LEMMA
i sVar i an t (vf , inv , guard , com) IMPLIES
i sVar i an t (vf , inv , guard , l i f t (com))

105
i fThenElse (guard , comA, comB) : command =

{x | IF guard (x) THEN comA (x) ELSE comB (x) ENDIF } ;

^ (comA, comB) : command = comB o comA
110 % Sequent i a l composit ion , s ee pre lude . Note the r e v e r s a l .

com_prog_ifThenElse : LEMMA
l i f t (i fThenElse (guard , comA, comB)) =

i fThenElse (guard , l i f t (comA) , l i f t (comB))
115

com_prog_composition : LEMMA
l i f t (comA ^ comB) = l i f t (comA) ^ l i f t (comB)

% Condi t iona l c o r r e c t n e s s a l l ows nonterminat ion
120

ccHoare (pre , prog , post) : boolean =
(FORALL (x , y) : pre (x) AND prog (x , up (y)) IMPLIES post (y))

ccHoare_implied : LEMMA
125 tcHoare (pre , prog , post) IMPLIES ccHoare (pre , prog , post)

com_prog_ccHoare : LEMMA
tcHoare (pre , com , post) IMPLIES ccHoare (pre , l i f t (com) , post)

130 ccHoareWeakening : LEMMA
ccHoare (p0 , prog , p1) AND subset ?(pre , p0) AND subset ?(p1 , post)
IMPLIES ccHoare (pre , prog , post)

mixedHoareConjunction : LEMMA
135 tcHoare (pre , prog , post) AND ccHoare (p0 , prog , p1)

IMPLIES tcHoare (pre AND p0 , prog , post AND p1)

ccHoareI fThenElse : LEMMA
ccHoare (pre AND guard , progA , post) AND

140 ccHoare (pre ANDNOT guard , progB , post)
IMPLIES ccHoare (pre , i fThenElse (guard , progA , progB) , post)

ccHoareComposition : LEMMA
ccHoare (pre , progA , p0) AND ccHoare (p0 , progB , post)

48

145 IMPLIES ccHoare (pre , progA ^ progB , post)

ccWhileTheorem : THEOREM
ccHoare (inv and guard , body , inv)
IMPLIES ccHoare (inv , whi le (guard , body) , inv and not guard)

150
boundedBy (vf , t) : pred [s t a t e] = {x | v f (x) <= t}

isVar iant_impl ied : LEMMA
(FORALL (x) : inv (x) AND guard (x) IMPLIES vf (x) >= 0) AND

155 (FORALL (n) : ccHoare (inv AND guard AND boundedBy (vf , n) ,
body , boundedBy (vf , n − 1)))

IMPLIES i sVar i an t (vf , inv , guard , body)
END programs

A.5 ith_element_theory.pvs

The �le ith_element_theory.pvs contains the theory that allows elements of a set to be enumerated in
ascending order.

ith_element_theory.pvs

% Def in ing the enumeration o f e lements in a s e t o f natura l numbers
%
% Author : Sebast ian Verschoor
% Last modi f i ed : 26 July 2012

5
ith_element_theory : THEORY

BEGIN

10 IMPORTING max_nat , auxi lCard

% Index va lues
i , j : VAR nat

15 % Sets o f natura l numbers
U, V: VAR f i n i t e_ s e t [nat]

% Upper bound o f the s e t
upb : VAR nat

20
% Element to be added to te s e t
newElement : VAR nat

% Set e lements
25 x , y : VAR nat

% Access ing the e lements o f s e t U with r e cu r s i on . A low index r ep r e s en t s a smal l
% element in U. I f i n i t i a l l y i >= card (U) , the upperbound (upb) i s returned . For

30 % the d e f i n i t i o n to work , the chosen upb must be b igge r than a l l e lements in U.
ith_element (i , U, upb) : RECURSIVE nat =
IF i = 0
THEN min(add (upb , U))
ELSE ith_element (i −1, remove (min (add (upb , U)) , U) , upb)

35 ENDIF

MEASURE i

% Basic p r op e r t i e s o f ith_element

40 ith_element_in_U : LEMMA
(FORALL (x) : U(x) IMPLIES x < upb) AND i < card (U) IMPLIES
U(ith_element (i , U, upb))

ith_element_bounded : LEMMA
45 (FORALL (x) : U(x) IMPLIES x < upb) IMPLIES

ith_element (i , U, upb) <= upb

ith_element_bounded_strong : LEMMA
(FORALL (x) : U(x) IMPLIES x < upb) AND i < card (U) IMPLIES

50 ith_element (i , U, upb) < upb

ith_element_overf low : LEMMA
(FORALL (x) : U(x) IMPLIES x < upb) AND i >= card (U) IMPLIES

ith_element (i , U, upb) = upb
55

ith_element_increas ing : LEMMA
(FORALL (x) : U(x) IMPLIES x < upb) AND i < card (U) IMPLIES

49

ith_element (i , U, upb) < ith_element (i +1, U, upb)

60 ith_element_increas ing_genera l : LEMMA
(FORALL (x) : U(x) IMPLIES x < upb) AND i < j AND j < card (U) IMPLIES

ith_element (i , U, upb) < ith_element (j , U, upb)

i th_element_exists : LEMMA
65 (FORALL (x) : U(x) IMPLIES x < upb) AND U(y) IMPLIES

EXISTS (i) : i < card (U) AND y = ith_element (i , U, upb)

% A new se t (V) i s cons t ructed from U by in t roduc ing newElement . Al l x in U
70 % where for x < newElement remain in V, whi le newElement i s added to V.

% Al l e lements x < newElement remain the same , thus so does ith_element
new_ith_element_bounded : LEMMA

(FORALL (x) : U(x) IMPLIES x < upb) AND newElement <= upb IMPLIES

75 LET V = { x | x < newElement AND U(x) } IN

i < card (V) IMPLIES ith_element (i , V, upb) = ith_element (i , U, upb)

% absMaxI i s the l a s t index where x < newElement
absMaxI (U, upb , newElement) : nat =

80 max({ i | i < card (U) AND ith_element (i , U, upb) < newElement })

% Two d e f i n i t i o n s f o r the new set , us ing newElement and us ing absMaxI
equa l s e t s : LEMMA

(FORALL (x) : U(x) IMPLIES x < upb) AND
85 0 < newElement AND newElement <= upb AND U(0) IMPLIES

{ x | U(x) AND x < newElement } =
{ x | EXISTS (i) : ith_element (i , U, upb) = x AND

i <= absMaxI (U, upb , newElement) }

90 % The r e l a t i o n s h i p between the number o f e lements in the new se t and absMaxI
equa l sets_card : LEMMA

(FORALL (x) : U(x) IMPLIES x < upb) AND
0 < newElement AND newElement <= upb AND U(0) IMPLIES

card ({ x | U(x) AND x < newElement }) = absMaxI (U, upb , newElement) + 1
95

% Adding newElement , b i gge r than a l l e lements in U, i s indexed by card (U)
ith_element_add_newElement : LEMMA

(FORALL (x) : U(x) IMPLIES x < newElement) AND newElement < upb IMPLIES

ith_element (card (U) , add (newElement , U) , upb) = newElement
100

% Applying the above lemma to
new_ith_element_add_newElement : LEMMA

(FORALL (x) : U(x) IMPLIES x < upb) AND
0 < newElement AND newElement < upb AND U(0) IMPLIES

105 LET V = add (newElement , { x | x < newElement AND U(x) }) IN

ith_element (absMaxI (V, upb , newElement) + 1 , V, upb) = newElement

END ith_element_theory

A.6 more_�oor.pvs

The �le more_�oor.pvs contains the theory for proving with the �oor- or div-function.

more_�oor.pvs

% Wim H. Hesse l ink , September 2005
% A s l i g h t extens i on o f the l i b r a r y pre lude . pvs

more_floor : THEORY
5

BEGIN

n , m: VAR i n t
x , y : VAR r e a l
b : VAR posnat

10
f l oo r_Galo i s : THEOREM

(n <= f l o o r (x)) = n <= x

floor_monotonic : LEMMA
15 x <= y IMPLIES f l o o r (x) <= f l o o r (y)

ndiv_f loor : LEMMA
ndiv (n , b) = f l o o r (n/b)

20 ndiv_Galois : LEMMA
(m <= ndiv (n , b)) = (m ∗ b <= n)

50

ndiv_monotonic : LEMMA
m <= n IMPLIES ndiv (m, b) <= ndiv (n , b)

25
ndiv_mult : LEMMA

ndiv (b ∗ n , b) = n

END more_floor

A.7 max_nat.pvs

The �le max_nat.pvs makes it possible to take the maximum element of a �nite set of natural numbers.

max_nat.pvs

% Getting the maximum value o f a s e t o f natura l numbers
%
% Author : Sebast ian Verschoor
% Last modi f i ed : 26 July 2012

5
max_nat : THEORY

BEGIN

10 % PVS de c l a r a t i o n s
S : VAR f i n i t e_ s e t [nat]
x : VAR nat

max(S) : RECURSIVE nat =
15 IF empty ?(S) THEN 0 ELSE

LET ms = min(S) ,
s s = remove (ms , S) IN

IF empty ?(s s) THEN ms ELSE max(s s) ENDIF
ENDIF

20 MEASURE card (S)

% While the d e f i n i t i o n o f max conta in s a case f o r g e t t i ng the maximum natura l
% number o f an empty set , t h i s a c tua l l y makes no sense . Therefore , the max_lemma
% adds the requirement that max i s only app l i ed to nonempty s e t s .

25 max_lemma : LEMMA
nonempty ?(S) IMPLIES S(max(S)) AND (FORALL x : S(x) IMPLIES x <= max(S))

END max_nat

A.8 auxilCard.pvs

The �le auxilCard.pvs makes it possible to count the elements in the image of an injective function.

auxilCard.pvs

% Extension o f the pre lude f i l e :
% counting e lements in the image o f an i n j e c t i v e func t i on
%
% Author : Wim Hes se l i nk

5 % Last modi f i ed : 24 July 2012

auxi lCard [T: TYPE] : THEORY

BEGIN

10 f : VAR [nat −> T]
i , n : VAR nat
t : VAR T

image (f , n) (t) : bool =
15 EXISTS i : i < n AND f (i) = t

i nv e r s e (f , n) (t : (image (f , n))) : below (n) =
ep s i l o n ({ i | i < n AND f (i) = t })

20 inverse_inject iveW : LEMMA
i n j e c t i v e ?(i nv e r s e (f , n))

i s_f in i te_image : LEMMA
i s _ f i n i t e (image (f , n))

25

51

inverse_bi ject iveW : LEMMA
i n j e c t i v e ?(r e s t r i c t [nat , below (n) , T] (f))
IMPLIES b i j e c t i v e ?(i nv e r s e (f , n))

30 card_image : LEMMA
i n j e c t i v e ?(r e s t r i c t [nat , below (n) , T] (f))
IMPLIES i s _ f i n i t e (image (f , n)) AND card (image (f , n)) = n

END auxi lCard

52

	Introduction
	Context
	Program Correctness
	Hoare triples
	Total correctness while rule
	Notation

	Mechanical verification
	Concept of mechanical verification
	Using the computer
	Conclusions from mechanical verification
	Mechanically verifying algorithms

	PVS
	PVS properties
	Proving with PVS
	programs.pvs

	Euclidean Feature Transform
	Mathematical definition
	Two dimensional binary EFT
	Generalising the definition
	Formal definition

	The EFT algorithm
	Reduction of the dimensions
	Original algorithm

	Mechanical Verification of the EFT algorithm
	Specification
	Mathematics
	Algorithm version 2

	Proof
	Mathematics
	Algorithm
	Time complexity

	Conclusion and evaluation
	Future work
	Acknowledgement
	PVS Specification
	EFT_program.pvs
	EFT_program_statements.pvs
	EFT.pvs
	programs.pvs
	ith_element_theory.pvs
	more_floor.pvs
	max_nat.pvs
	auxilCard.pvs

