
Quby

A domain-specific language for
non-programmers

Master's thesis computer science

August 18, 2012

Student: M. Veldthuis

Primary supervisor: Prof. M. Aiello

Secondary supervisor: Prof. N. Petkov

Secondary supervisor: A.C. Emerencia

i

Abstract

Periodically taken questionnaires are used by mental health-care institu-
tions to monitor the well-being and satisfaction of patients. It is preferable
to let patients fill out these questionnaires digitally from home. Therefore,
web-based applications that display these questionnaires and record the
answers are used in practice.

Several web applications that deal with this already exist. In order to
get such an application to display a questionnaire, it first needs to be
defined using its editing interface, which is done by non-programmers.
Questionnaires often require a large set of features like input validation and
non-linearity due to dependencies between possible answers and further
questions. Because of this, the graphical user interfaces for defining
questionnaires in the existing tools are complex.

An alternative to defining questionnaires using a graphical user interface
would be to use a text-based interface, using a domain-specific language
(DSL). No research has been found that surveyed the use of domain-
specific languages for constructing questionnaires by non-programmers.
In fact it has been stated that further research into the more general case
of DSL usage by non-programmers is needed.

This thesis examines the use of DSLs for the purpose of defining ques-
tionnaires. We designed, implemented and tested Quby: a web-based
application written in Ruby that reads in questionnaires defined in a cus-
tom DSL and presents these to psychiatric patients. These questionnaire
definitions can be built by psychiatric research staff.

We show a method of working with DSLs that cleanly seperates application
logic from the code that supports the DSL by using expression builders,
a method which has not been in wide use in the Ruby programming
community.

We found that non-programmer domain experts were not only capable of
using the DSL we designed, but they preferred it over traditional GUI-
based tools. Additionally, experts who work day-to-day with GlobalPark
were able to create new questionnaires as quickly using our DSL as they
were using GlobalPark.

Based on our findings, we conclude that it is possible to design domain-
specific languages based on the Ruby language, and have non-programmers
work effectively with them with minimal support from on-site developers.

Keywords: domain-specific Languages, Language Design, Ruby, Rails,
Questionnaires, Psychiatrics, Web-Applications

Contents

1 Introduction 1
1.1 Non-programmer DSLs . 2
1.2 Thesis organisation . 2

2 Related Work 5
2.1 Domain-Specific Languages . 5
2.2 Nonprogrammer domain experts using DSLs 6
2.3 Web-based survey editors . 7

3 Architecture 11
3.1 Creating and editting questionnaires 12
3.2 Filling out a questionnaire . 13

4 Underlying Model 15
4.1 Basic structure of a questionnaire 15
4.2 Example: the “Phamous Algemeen” questionnaire 16
4.3 The Quby DSL . 16
4.4 Managing dependencies between questions 19
4.5 Working with validations . 22
4.6 Calculating scores . 22

5 Expression Builders 25
5.1 A questionnaire DSL without expression builders 25
5.2 Nested closures . 26
5.3 Expression builders in Ruby . 27
5.4 Delegating to other expression builders 29
5.5 Convenience methods . 30
5.6 Score definitions . 30

6 Results 33
6.1 Trial setup . 33
6.2 Timings . 34
6.3 Ratings . 35
6.4 Answers to interview questions 35

7 Discussion and Conclusions 37
7.1 Trial . 37
7.2 Successes . 38
7.3 Problems . 38

ii

CONTENTS iii

7.4 Future work . 40

A Full questionnaire definitions 43
A.1 Phamous Algemeen . 43
A.2 ROM AZM . 45

B Documentation provided to trial participants 47
B.1 Phamous Algemeen . 47
B.2 ROM AZM . 48

C Ruby Syntax Guide 49

References 51

Chapter 1

Introduction

Domain-specific languages (DSLs) have existed for a very long time. Ancient
Unix utilities like sed, which dates back to 1973, offer mini-languages that serve
to aid users to accomplish their goals within a small, well-defined problem
domain.

In recent years, domain-specific languages have seen a large uptake in usage.
In his book on DSLs [9], Fowler gives his thoughts on why this uptake is
happening now. He outlines how around the year 2000, the software development
community was largely standardizing towards C-like languages, specifically Java
and C#. However, not everything felt right being expressed in these languages,
which led to XML taking a leading position in being the place to store all sorts
of declarative information, most importantly configuration data.

Of course, it did not take long for developers to start feeling overwhelmed by
the amount of syntactical overhead that XML has. Around this time, in 2004
the web application framework Ruby on Rails was released. Its approach to
configuration was not to use XML, but instead have lots of small domain-specific
languages for everything ranging from logging levels to describing relations
between models in its object-relational mapper. While the Ruby programming
community has long had a love for making interacting with libraries as fluent
as possible, Rails was probably the most prominent project that caused this
style to become popular in the wider programming community.

A domain-specific language can be a great way of making a piece of code easier
to understand, sometimes even clear enough for domain experts to be able to
read it, providing a great communication channel that developers and experts
can use to talk about how their domain is codified in the software.

Taking this idea a step further is the notion of making DSLs so understandable
by domain experts that they are able to write programs in them by themselves.
However, it is far from clear what the elements of success are for a given DSL to
actually be usable by domain experts. Very little research has actually focused
on this problem [7] even though software projects greatly benefit from better
understanding between the development team and the business experts [2, 8].

In this thesis, we will give an account of a DSL that we implemented for a
company developing web-based psychiatric software.

1

2 CHAPTER 1. INTRODUCTION

In the psychiatric health-care industry, it is valuable to periodically assess the
well-being of patients. In order to do so in an objective fashion, standardized
questionnaires are used, a practice called routine outcome assessment [5, 17]. In
the last few years, Dutch health insurance companies have started requiring
that mental health-care institutions perform these periodic surveys, which has
rapidly expanded the market for software applications that can help lift the
administrative overhead in performing these surveys.

One such software application is called RoQua, which is a web application that
integrates with electronic patient dossier (EPD) software to provide these routine
outcome assessments in an automated manner. In order to let patients and
psychiatric professionals fill out questionnaires, the questionnaires themselves
have to be defined in a subsystem called a questionnaire engine.

Commercial web services that implement questionnaire engines exist, and RoQua
was using one of them called GlobalPark. However, in the pages that follow
it will be argued that these services have certain undesirable properties when
used on a large scale, such as is done within RoQua, where a database of nearly
200 psychiatric questionnaires is built up.

1.1 Non-programmer DSLs

Domain-specific languages can be helpful in the communication between the
customer and developers. They can even help offload work from the developers
on to domain experts.

The objective of this thesis is to determine whether it is possible to build an
internal domain-specific language that non-programmer domain experts are
able to use to write declarative programs, based on the Ruby programming
language.

To determine this, we will show the domain-specific language created Quby,
which is a web-based questionnaire engine we built. We will explain the syntax
of the DSL, the implementation of the DSL parser, and evaluate how well-suited
the DSL and the web-based editor we built to support it are for usage by domain
experts by comparing it against state-of-the-art professional solutions.

1.2 Thesis organisation

The next chapter will describe the history of domain-specific languages, and
explain a few classifications and key concepts. We will also discuss work related
to the use of DSLs by nonprogrammers, and discuss the state of web-based
questionnaire engines. In chapter 3 we will discuss the overall design of the Quby
application. We will briefly outline the different parts of the questionnaire engine,
and go into a more detailed overview of the architecture relating to the DSL.
Chapter 4 describes the various elements found in psychiatric questionnaires,
and discusses how the DSL is set up to capture these elements in a manner
that is close to how domain experts reason about these elements. In chapter 5
we discuss how we implemented the domain-specific language using expression

1.2. THESIS ORGANISATION 3

builders and nested closures. In chapter 6 we go into our findings with regard
to building a DSL, and building a DSL specifically for non-programmer domain
experts. Finally, chapter 7 discusses the results we found.

Chapter 2

Related Work

We will be looking at domain-specific languages: what kinds of classifications
exist, what are the advantages and disadvantages. We will also look at what
kind of research there is with regard to usage of domain-specific languages by
nonprogrammers. Finally, we will elaborate on the state of the art with regards
to web-based questionnaire builders.

2.1 Domain-Specific Languages

A domain-specific language is a type of programming language which is distinct
from general purpose languages such as C or Java. General purpose languages
are designed to be able to handle pretty much any kind of programming task.
Domain-specific languages on the other hand are designed with a specific
problem domain in mind, and are set up to be able to solve a specific problem
as easily, quickly and/or elegantly as possible.

Domain-specific languages have existed for a long time. Unix utilities have
used them to make tasks easier to accomplish, and the use of DSLs has been
considered idiomatic in dynamic languages like Lisp for a long time. They are
commonly divided into external and internal DSLs, as described by Fowler [10]:

External DSLs are written in a different language than the main
(host) language of the application and are transformed into it using
some form of compiler or interpreter. The Unix little languages,
active data models, and XML configuration files all fall into this
category. Internal DSLs morph the host language into a DSL itself -
the Lisp tradition is the best example of this.

External DSLs are built by designing a grammar and implementing a parser for
the language. The upside is that you have a lot of control over the intricacies
of the design of your language, but the obvious downside is that for more
complicated languages it can be a lot of work to implement. Because the
language is external, you do not have access to any of the functions already

5

6 CHAPTER 2. RELATED WORK

built in to the host language from it. This means that if, for example, you want
to support basic integer math in your DSL, you will have to build that.

On the other hand, internal DSLs take advantage of the host language, using
its parser and data structures. For internal DSLs, you mold the host language
to look like a DSL. The degree to which easily usable internal DSLs can be
constructed varies between programming languages. The Ruby language is
one of the more flexible languages when it comes to internal DSLs, and this
has caused its developer community to embrace the usage of DSLs as a design
pattern. Ruby does not require much syntax, which allows you to design elegant
languages. Libraries like RSpec (for unit testing [16]), and Cucumber (for
system testing [4]) are great examples of this.

In recent years the style of programming where you develop and make use
of many small DSLs has been called language oriented programming, a term
first coined by Ward [20]. In this style of programming, you solve problems by
creating languages in which it is easy to abstract them.

However, working with DSLs takes time and effort of its own. Especially editing
programs written in a DSL is something that can be harder to do than working
in a general purpose language, because programming environments do not
offer the same level of editing features for custom DSLs as they do for well
known programming languages. This point was reiterated in 2008 by a panel at
COOPSLA [11]. The overall trend observed in the positions of the panelists is
that while DSLs offer a number of benefits, tool support is behind compared to
the state of the art for general purpose languages.

Language workbenches are one possible solution to this tooling problem [10,
12]. In essence, language workbenches are supposed to be tools that make not
only the development of DSLs easier, but also make it easy to create editing
environments to support programming in a DSL. Since we developed both a
DSL and a web-based editor to support it, this could have been very useful to
us. However, these tools are still in the early stages and considered far from
mature [9]. So while there is great potential here, it is still too early to tell
how well language workbenches will work in practice. In addition, none of
the language workbenches currently available support the Ruby programming
language, which unfortunately made them unsuitable for our purposes.

Interestingly close to the topic of this thesis, in the 1990’s a group of software
engineers at Cap Volmac worked on a DSL for questionnaires called RISQUEST
[3], which translated DSL text into Tcl/Tk programs which could then be used
by financial engineers to build up financial products in yet another DSL called
RISLA. RISLA was a DSL that compiled into COBOL code. However, the DSL
programs written in RISQUEST were still written by software developers.

2.2 Nonprogrammer domain experts using DSLs

A debatable topic is the viability of non-programmer domain experts (people
who are not programmers, but who do have knowledge of the domain) reading
and/or writing DSL programs.

2.3. WEB-BASED SURVEY EDITORS 7

Certainly, if important areas of software projects where business logic is encapsu-
lated can be written in a DSL that is clear enough for domain experts to be able
to read and understand, it can be much easier for development teams to commu-
nicate with their customers, and vice versa. Given that better communication
is one of the main points of current software development methodologies [1, 8],
the viability of getting domain experts to understand parts of the software code
by writing it in a customized programming language is an important research
topic.

Donohue [7] found evidence that non-programmers can successfully read, vali-
date, write and maintain DSL programs. However, he found that success was
far from uniform, and there were also accounts where DSLs specifically designed
for non-programmers had only limited success.

It would be interesting to see an analysis of what types of DSLs worked, and
what types of DSLs didn’t work. For instance, it might be possible that purely
declarative DSLs, such as the one described in this thesis, are more often
successful than DSLs that support some form of imperative programming (that
contain a “state” beyond the lexical scope of the current line of DSL text).
Unfortunately, to the best of our knowledge no such analysis has been performed.
As Deursen, Klint, and Visser [6] noted, literature around DSLs is fragmented,
and a lot of DSLs are not described in software engineering literature, which
might be a possible reason why no survey of DSL styles has been performed to
date.

2.3 Web-based survey editors

Most web-based questionnaire editors currently employ a set of forms to let
the user define questionnaires. We will look at two big players in our space of
questionnaire editors: GlobalPark and NetQ. Both of these systems present a
GUI editor that provides users a series of web forms to build questionnaires.

The areas of these systems that we will look at are text formatting, data
validations and relations between questions.

Text Formatting

It is often needed to add some simple formatting like bold or italics to the
texts within a questionnaire. Although occurring less frequently, bulleted and
numbered lists are also needed.

For displayed texts, GlobalPark supports writing HTML into the text boxes
(Figure 2.1) in order to add formatting. NetQ has a WYSIWYG editor for
descriptions (Figure 2.2) but not for any other places where text is entered.

Data Validation

Before saving data, it is of course important to ensure that the entered data is
in a valid format. The simplest validation is probably the one that ensures that

8 CHAPTER 2. RELATED WORK

Figure 2.1: GlobalPark lets users write HTML to add formatting

Figure 2.2: NetQ’s WYSIWYG editor

Figure 2.3: Checking if a date is correctly entered in GlobalPark

a question is actually answered. Validations that are a bit more complex are
those that validate the format of some entered string, or validate that an entered
integer, float or date lies within some predefined limits. Some validations can
also span multiple questions.

In terms of validation, both GlobalPark and NetQ supports making questions
required by simply checking a check box.

NetQ has no support for conditions beyond marking questions as required.
GlobalPark also supports more complicated validations (e.g. requiring that at
least one question is filled in within a group of questions, or ensuring that text
entered in a text field matches a certain format) as can be seen in Figure 2.3.
In that figure, the validations for a date field (which is seen as three fields in

2.3. WEB-BASED SURVEY EDITORS 9

Figure 2.4: The error presented to the user when
leaving both values for a range check empty

GlobalPark) are shown.

It seems that based on these graphical controls, behind the scenes some form of
script gets automatically generated, because leaving some fields in for instance
a range check empty, results in the error that can be seen in Figure 2.4.

Relations between questions

In psychiatric questionnaires, most questions are not dependent on each other.
However, some questions can have dependencies between them. One of the
things a survey editor must do is be able to work with these dependencies in a
simple and straight-forward manner.

One type of relation that happens often is that some questions are only applicable
when a preceding question is answered in a certain way. For instance, one
question might ask “Do you drink alcohol?”. If the patient then answers
“Sometimes” or “Often”, follow-up questions about drinking habits need to be
filled out. But if the patient answers “Never”, these are not applicable and
should be hidden or at least disabled.

A somewhat special case of this type of relation is when an option of a multiple-
choice question asks for more details in a text field. GlobalPark supports
subquestions under multiple choice questions, but only one subquestion can be
added to each option. This is designated by writing \%s somewhere into the text
for that option, and upon saving an extra item will appear which represents a
new question. However, this question does not have the same configurability as
a regular (top-level) question, but instead shows far fewer configurable options.

In chapters 4 and 5 we show how Quby offers greatly simplified constructs for
the three types of features introduced in this section.

Chapter 3

Architecture

Quby is a web application in which domain experts can define questionnaires,
and patients can fill out questionnaires. With the exception of the questionnaire
editor, it is not designed to work stand-alone. Instead it provides a web service
API for integration with other web applications. An overview of Quby and the
systems it interfaces with is shown in Figure 3.1.

Quby has two types of users, both with their own use case: nonprogrammer
domain experts that define questionnaires, and both patients and medical
professionals that fill out questionnaires.

There are two places where data is stored: questionnaire definitions are stored
in a version control system (VCS), and filled out questionnaires (answers) are
stored in a database.

Quby exposes an API to communicate with RoQua. From RoQua it receives
the age and gender of a patient, which are used to calculated scores from a
filled out questionnaire. These scores are then communicated back to RoQua.

Quby

Answers

Question
naires

Database

VCS

Patient /

Professional

Render

questionnaire

Nonprogrammer

domain expert

Define

questionnaire

RoQua

Scores

Patient

age & gender

Figure 3.1: An overview of the Quby questionnaire engine

12 CHAPTER 3. ARCHITECTURE

Figure 3.2: The web based questionnaire definition editor called QubyAdmin

3.1 Creating and editting questionnaires

To let nonprogrammer domain experts create and edit questionnaires in Quby,
we have developed a web-based editing environment called QubyAdmin, shown
in Figure 3.2. Within this editor it is possible to write questionnaires in the
DSL, preview how they render, and test the score calculations.

Because questionnaires are written in a DSL, it is possible to save them as text
files in the same version control system that is also used by the development team
to manage the source code for Quby and RoQua. This allows questionnaire
definitions to be part of the same code review process that is used for the
application code. Code reviews on the questionnaire definitions are used to
ensure that no accidental changes get made to questionnaires that are already
being used in a production environment.

Upon saving a definition, the editor checks that the definition is valid, both
syntactically and semantically. In case of an error, the error is reported back to
the domain expert with a line number. If the definition is valid, the definition
gets saved to the version control system.

3.2. FILLING OUT A QUESTIONNAIRE 13

Expression

Builders

Semantic

Model

Answer record
from database
 Answer

Paginated view

Bulk view

Print view

Questionnaire
definition

Persistence
 DSL
 Model
 View

Controller

Controller

Figure 3.3: Rendering an HTML form for filling out a questionnaire

3.2 Filling out a questionnaire

Once a questionnaire has been defined by a domain expert it can be filled out
by patients and medical professionals. For this to be possible, a form must be
rendered for the given questionnaire, and in the case of editing an already filled
out questionnaire, the form must be repopulated with the existing answers.
In addition, the form can be rendered in three different ways. The complete
pipeline to render a questionnaire can be seen in Figure 3.3.

Semantic Model and Expression Builders

A clean pattern for implementing domain-specific languages is to split them
into two parts: the semantic model and the expression builders. The semantic
model is a modeling of the domain of the DSL. Expression builders take the
input text written in the DSL, and transform it into objects in the semantic
model.

There are a number of reasons why this division of labor is beneficial. Firstly, it
makes it easy to test the parts independently (in isolation). Secondly, it means
that the rest of the application only has to see the semantic model, and that
you can reuse existing knowledge on domain modeling. Finally, it is easier to
switch to an external DSL if needed later on, because the semantic model is
decoupled from the way the DSL instantiates the models.

The semantic model is often a subset of the domain model, although it does not
have to be. Consider if the domain model is a modeling of a questionnaire, the
domain model would consist of classes like Questionnaire and Question. If the
domain-specific language was about questionnaires as well, then the semantic
model and the domain model would overlap greatly. However, when dealing,
within the same application, with a DSL that makes database usage easier,
that DSL would probably have a semantic model that is in terms of Table and
Association, and be completely separate from the domain model.

Controllers

The controller layer coordinates communication between the model layer and
the view layer. In Quby, this means that controllers receive web requests from

14 CHAPTER 3. ARCHITECTURE

Figure 3.4: Paged view Figure 3.5: Bulk view

a browser. They fetch the correct questionnaire and answer for the request,
determine which view should be rendered, and tell that view to render the
questionnaire and answer. The controller then returns the rendered view to the
browser.

Output formats

Given a questionnaire Quby can render three views: paginated, bulk and print.

The paginated view (Figure 3.4) shows questions with their full texts, and splits
questionnaires into multiple pages with previous and next navigational buttons.
The pages are determined by the domain expert in the questionnaire definition.

The bulk view (Figure 3.5) is targeted at quick data-entry, mostly for copying
over the answers on a paper form into Quby. To this end, the division of the
questionnaire into pages is ignored, and questions are shown in a compact form.

Finally, the print view only shows the questions and their chosen options or
entered texts.

All three views are automatically determined from a single questionnaire defini-
tion, which is an improvement over GlobalPark where they had to be created
as separate questionnaires.

In the next chapter we will go into more detail regarding the semantic model.

Chapter 4

Underlying Model

In this chapter, we will describe the structure of psychiatric questionnaires, and
the semantic model we built around it. In the next chapter we will dive into
details on how we implemented the expression builders for the DSL we show
here.

4.1 Basic structure of a questionnaire

Questionnaires are the top-level elements in our system. Questionnaires have a
title and a description, and have panels and scores. Panels are pages of questions,
which are used to group related questions together, and additionally serve to not
overwhelm the patient with a single large list of questions. Scores are calculations
that are performed after the patient has completed the questionnaire, the result
of which is presented to the doctor treating the patient afterwards.

Each panel can have a title, and then contains a series of items: pieces of
informational text and questions (see Figure 4.1).

Informational texts are simply strings, although they go through a markup
processor that generates HTML from intuitive markup formatting (Markdown

Questionnaire
 Panel

Score

Item

Text
 Question

Option

Figure 4.1: Semantic Model

15

16 CHAPTER 4. UNDERLYING MODEL

[13]), e.g. *bold* text, or 1. A list item.

Every question has a few pieces of required information: an identifier, a type
and a title. The identifier is used to look up the value of an answer later. The
type determines the type of data the question asks for and can be one of radio,
check_box, scale, string, date, integer, float, textarea and select. The last
required attribute is the title of a question, which is a string of text that is
displayed with the input field.

Radio buttons, check boxes and select questions have a limited number of
options that the patient can choose from, and these options are given as a list
to the question. Options have identifiers of their own, a value and a description.
The value is used by score calculations that are performed after filled out
questionnaires are saved, and the description is what gets shown to the patient
for that radio or check box. Some radio buttons or check boxes have one or
more subquestions that are applicable only if that option is chosen.

4.2 Example: the “Phamous Algemeen” questionnaire

With all these properties in mind, we can have a look at a real questionnaire.
The “Phamous Algemeen”, shown in Figure 4.2, is an introductory questionnaire.
Besides questionnaires that are self-reports, designed to be filled out by the
patients themselves, there are some questionnaires that are designed to be filled
out by staff members of the health-care facility as well, and this is one of them.
The questionnaire belongs to a set of Phamous questionnaires, which are part
of a global research initiative in the Netherlands.

While as a questionnaire it is atypical in its form, as an example it serves one
goal nicely: it exercises a lot of the features needed in a questionnaire system.

It has a single page that asks for a date, the name of the professional who
performed the observations, and a reason for this particular moment of observa-
tion. The first two questions require an answer. It then continues with three
questions, all of which are optional, and record the year of the first psychotic
episode, the year the patient first went to see psychiatric help, and the patient’s
ethnic background.

The full domain-specific definition for this questionnaire is listed in the appen-
dices, in listing A.1. The “Phamous Algemeen” questionnaire will be used as
the running example in the rest of this chapter.

4.3 The Quby DSL

Having established the basic structure of a questionnaire, and what the semantic
model looks like, we can go into further detail regarding how to structure the
domain-specific language around the semantic model. An overview of the DSL
is shown in Figure 4.3.

Every questionnaire has one required attribute: a title. There are some addi-
tional attributes like description or outcome_description that define metadata

4.3. THE QUBY DSL 17

Figure 4.2: The “Phamous Algemeen” questionnaire as rendered by Quby

that is not used within Quby, but are specified so that other applications can
read and use them. listing 4.1 lists the lines of DSL text that deal with the
attributes for the “Phamous Algemeen” questionnaire.

Listing 4.1: Attributes of the Phamous Algemeen questionnaire
title " Phamous Algemeen "
short_description ""
description ""
outcome_description ""

Besides these pieces of textual information about a questionnaire, Quby also
has a couple of behavioral options. For example, the Phamous Algemeen
questionnaire should be abortable, which is to say that it should be possible to
save the answers in the state they are currently in, regardless of whether the
answers are in a state that pass validating constraints. This can be done by
specifying the abortable keyword in the top level of the questionnaire definition.

In addition, this questionnaire needs to have hotkeys enabled, which enables
the use of e.g. the arrow keys for jumping from question to question, and the

18 CHAPTER 4. UNDERLYING MODEL

panel

Questionnaire DSL

score

title

description

short_description

outcome_description

abortable

allow_hotkeys

enable_previous_questionnaire_button

css

default_answer_value

default_question_options

title

text

html

table

question

Panel DSL

option

validates_presence_of_answer

validates_minimum

validates_maximum

validates_in_range

validates_one_of

validates_format_with

id

type

title

description

presentation

hidden

lines

unit

size

left_label

right_label

depends_on

Question DSL

values

sum

age

gender

id

Score DSL

Figure 4.3: A slightly simplified version of Quby DSL. The inner workings of
table and options are not shown.

number keys for selecting options in radio-type questions. This is done with
the allow_hotkeys :all statement. Configuring both these behaviors is done
by the code in listing 4.2.

Listing 4.2: Behavioral configuration for the Phamous Algemeen questionnaire
abortable
allow_hotkeys :all

After the questionnaire configuration, the DSL text for a questionnaire follows
with a series of panels. Panels are containers for items, and thus introduce
a scope for the definitions of the items they contain. We considered two
possibilities in the DSL for managing this scope: implicit (listing 4.3) and
explicit (listing 4.4).

Listing 4.3: Implicit scope
panel
question here
question here

panel
question here
question here

Listing 4.4: Explicit scope
panel do

question here
question here

end

panel do
question here
question here

end

4.4. MANAGING DEPENDENCIES BETWEEN QUESTIONS 19

The advantage of implicit scoping is that the domain expert does not need
to ensure that the do’s and ends are balanced. However, we opted to use the
explicit scoping style because implicit scoping would be cumbersome for some
of the other places we need scoping, as we will see in section 4.4.
Within the scope of a panel, the items of that panel are defined. We described
the items as either textual strings, or questions. In the DSL we have three ways
of adding textual items that are formatted differently: title, text and html.
The title method that adds the given string formatted as a heading (large font,
bold), shown in listing 4.5. The text method processes the given string through
a converter that transforms plain text into formatted HTML, and finally html
simply passes any given string as-is into the rendered HTML-versions of the
questionnaire.

Listing 4.5: A panel with a textual heading item
panel do

title " Algemeen "
questions here

end

The first two questions of the Phamous Algemeen questionnaire ask for a date
and a string (listing 4.6). Questions are defined with the same scoping style as
panels are, however they have two properties that need to be specified outside
of the scope.1 The first is the identifying key for the question, and the other is
the type of question being defined.
Within the block for the question, a lot of attributes are available, although
not all attributes are applicable to all types of questions. All question types
have attributes like a title and a description, but for instance the unit attribute
is only applicable to integer and float typed questions.

Listing 4.6: First two questions of the Phamous Algemeen
question :v_date , type: date do

title "Datum:"
validates_presence_of_answer

end

question :v_143 , type: string do
title "Naam beoordelaar "
validates_presence_of_answer

end

4.4 Managing dependencies between questions

The third question in the Phamous Algemeen questionnaire is a multiple choice
question (listing 4.7). Possible choices for a multiple choice question are defined
with option.

1This is because the Question model expects these properties to be given to the constructor,
and the implementation of the expression builder calls its constructor before evaluating the
block. Work-arounds for this issue are possible, but domain expert comprehension did not
seem to suffer from this small abnormality.

20 CHAPTER 4. UNDERLYING MODEL

Occasionally, choosing a specific option will need to require further questions to
be answered. This is the case for the third question of the Phamous Algemeen
questionnaire.

In the Quby DSL, we made it possible to pass in these further questions directly
to the option they should fall under, using the same block syntax that the
domain experts already use for describing the scope of panels and questions.

Listing 4.7: The third question from the Phamous Algemeen questionnaire
question :v_144 , type: radio do

title "Reden voor screening :"
option :a, value: 1, description : " Jaarlijkse screening "
option :b, value: 2, description : "Ander interval " do

question :v_145 , type: string do
title " Screening na"

end
question :v_146 , type: string do

title "Reden"
end

end
end

The method described above can be used when questions are only applicable
when a specific option is chosen. In other cases, the relation is the other way
around and questions are only applicable unless a specific option is chosen. For
these cases, it is possible to specify a set of questions that need to be disabled
and hidden when a given option is selected. Defining this relation can be done
by specifying which questions should be hidden when a given option is selected,
as shown in listing 4.8.

At other times, more complicated relations between questions exist. For instance,
it might be required that at least some number of questions of a larger set of
questions have an answer. For this, we support adding questions to a group,
and specifying the minimum and maximum number of questions that need to
have an answer for each group (listing 4.9).

Listing 4.9: Defining groups for questions, and setting limitations on them
question :v9 , type: radio , question_group : :eetlust ,

group_minimum_answered => 1,
group_maximum_answered => 2 do

title and options here
end

question :v10 , type: radio , question_group : : eetlust do
title and options here

end

At the moment, due to time constraints this last type of relation is not yet
nicely implemented in the DSL, and is hence managed by the development
team instead of the domain experts. This is possible because any additional
arguments passed to the question method that do not belong to the DSL get
passed on to the semantic model directly. Once added, a domain expert can

4.4. MANAGING DEPENDENCIES BETWEEN QUESTIONS 21

Listing 4.8: An example of hiding questions, taken from the “FIOS” question-
naire
panel do

question :v_13 , type: radio do
title "Is the patient sociably present in the group?"
option :a1 , value: 1, description : "Never"
option :a2 , value: 2, description : " Occasionally "
option :a3 , value: 3, description : " Sometimes ",

hides_questions : [: v_13a , :v_13b]
option :a4 , value: 4, description : "Often",

hides_questions : [: v_13a , :v_13b]
option :a5 , value: 5, description : " Always ",

hides_questions : [: v_13a , :v_13b]
end

end

panel do
text "In what manner is the patient present in the group?"

question :v_13a , type: radio do
title " Dominantly present ?"
option :a1 , value: 1, description : "Never"
option :a2 , value: 2, description : " Occasionally "
option :a3 , value: 3, description : " Sometimes "
option :a4 , value: 4, description : "Often"
option :a5 , value: 5, description : " Always "

end

question :v_13b , type: radio do
title " Solitairily present ?"
option :a1 , value: 1, description : "Never"
option :a2 , value: 2, description : " Occasionally "
option :a3 , value: 3, description : " Sometimes "
option :a4 , value: 4, description : "Often"
option :a5 , value: 5, description : " Always "

end
end

22 CHAPTER 4. UNDERLYING MODEL

understand it, but it is not implemented in an intuitive enough manner for a
domain expert to be able to work with it on his or her own.

It is possible to imagine far more complicated relations between questions, but
in practice we have found that for psychiatric questionnaires the relations we
described are enough to support the questionnaires we have seen so far.

4.5 Working with validations

In order to perform validations, we chose to add a number of different methods
to the question builder, for different types of questions and validations. These
validations are within the scope of a question. The first two questions (shown
in listing 4.6) required an answer, and the validates_presence_of_answer adds
the needed data validations in that case.

Another question asks for a year of the patients first psychotic episode, and
needs to ensure that this year makes some logical sense. For integer and float-
typed questions, Quby can validate that the value is between some upper and
lower bound. For this, the DSL has validates_minimum, validates_maximum and
a shorthand that defines both validates_in_range. The last method is used by
one of the questions of the Phamous Algemeen questionnaire to ensure that a
year entered is between 1900 and the year 3000 (listing 4.5)2. This question also
uses the size method to specify that the width of the text box shown should
adjust to have room for only 4 digits, instead of the default of taking up as
much width as is available.

question :v_1274 , type: integer do
title "Jaar van eerste psychotische episode :"
size 4
validates_in_range 1900..3000

end

For string-type questions, the DSL also supports specifying a regular expression
with validates_format_with to validate the string that was entered against,
although obviously this is not something a domain expert is expected to be
able to add. At the moment, there are only two questionnaires that use this
type of validation, since most data format validations are automatically added
by choosing the correct type of question.

4.6 Calculating scores

When answers are saved, a set of scores can be calculated. These scores are
defined in the questionnaire definition. An example of a score can be seen
in listing 4.10. This score calculates the sum of the value of 6 radio-typed
questions, where the value of a radio-typed question is the value of the selected
option. It also specifies the norm value for this score, which is to say that if the
value is greater than 5, the score should be considered higher than normal.

2This questionnaire changes yearly so we are not to worried about a Y3K problem.

4.6. CALCULATING SCORES 23

Listing 4.10: An example of a score definition
score :total , label: "Total" do

{
value: sum(values (:v1 , :v2 , :v3 , :v4 , :v5 , :v6)),
norm: 5

}
end

Defining multiple scores for a questionnaire can be done by simply repeating
the given example, albeit with a different key, label and calculation.

A large proportion of the scores that are used in psychiatric questionnaires
are as simple as a summation or average of some values. In those cases, the
domain experts are able to define the score calculations on their own. In a
small portion of the cases however, calculations are more intricate, and in those
cases a developer will define the calculation. The body of a score definition
supports the full usage of Ruby, which is a benefit we have for creating our DSL
as an internal DSL in Ruby, and a developer can use that to write complicated
procedural calculations when needed.

In the next chapter we will look at the implementation of the domain-specific
language we have shown.

Chapter 5

Expression Builders

In this chapter, we will describe how we implemented expression builders in the
Ruby language. In order to explain the usefulness of separating the DSL away
from the domain models into expression builders, we will first look at a simpler
way of creating domain-specific languages that does not use this separation.

We will call methods that are part of the DSL fluent methods, and methods that
are part of the regular domain model command-query methods. The name for
fluent methods comes from fluent interfaces, which is a common name for the
interfaces exposed by DSLs. Command-query comes from the Command-Query
Separation Principle [14] which describes that methods on domain models
should either modify state, or return data, but not both.

5.1 A questionnaire DSL without expression builders

The problem with implementing a DSL directly (as opposed to using expression
builders) is that fluent methods then live in the same namespace as command-
query methods. This easily leads to name conflicts. To illustrate why these name
conflicts happen, we will start implementing a part of the DSL we described in
the previous chapter. The pattern for implementing a DSL in this section is
described in Design Patterns in Ruby [15].

For example, we could give the Questionnaire class a method called question
that takes some parameters, constructs an instance of a Question object from
them, and appends the question to an array of questions (appending to an array
can be done with array << element in Ruby).
class Questionnaire

def question (id , title)
@questions << Question .new(id , title)

end
end

In order to use this as a DSL, we can construct a Questionnaire object, and tell
it to evaluate some DSL text. Ruby, being a dynamically interpreted language,
has various methods to evaluate a string as code. The instance_eval method

25

26 CHAPTER 5. EXPRESSION BUILDERS

takes a string (or a block, which will be explained in section 5.2), and evaluates
it within the context of the object it was called on.

questionnaire = Questionnaire .new
questionnaire . instance_eval " question :v1 , ’What is your

name?’"

After evaluating that string of DSL text, the questionnaire object would have a
question object with a title of “What is your name?”.

However, the lack of explicit separation between the fluent methods and the
command-query methods quickly becomes an issue once a command-query
method must be added to the Questionnaire class that retrieves the question for
a given key. A logical name for this method would be question, however that
name is already in use by the fluent interface. This leaves two options: either
change the fluent interface to use e.g. add_question, or use a less desirable
name in the command-query interface, e.g. get_question. Neither option is
particularly desirable, since both solve the problem by muddying up the interface
with method names that are less intuitive in their respective contexts.

5.2 Nested closures

The solution is to use separate classes for the fluent methods. These types
of classes are called expression builders. An expression builder is a class that
translates the fluent interface into method calls on the command-query interface.

Various design patterns exist for the implementation of expression builders, for
instance function sequences, method chaining or nested functions. Each pattern
supports a specific style of DSL. The style of DSL as described in chapter 4 can
be implemented by a pattern that is called a nested closure [9].

A closure is inline code stored in an object, to be evaluated at a later time. In
the process of wrapping it up into an object, the scope of the block of code
gets captured, so that any references to variables that are defined outside of
the block of code will remain intact.

Ruby has three different types of closures: blocks, procs and lambdas [15]. There
are some differences in the exact workings between the three types [18], but for
the purposes of this thesis they can be considered synonyms.

To demonstrate how closures can be used in a DSL, we can have a look at the
example in listing 5.1. To construct a block the syntax methodname do ... end
is used, where the block itself is whatever code is between the do and end. The
example defines a class called Example. Example has getters and setters for a
variable called base, and a method calculate that takes a block as an argument.

The calculate method then uses instance_eval to evaluate the block within a
different scope than the one where the block was originally defined. For this
reason, the code in listing 5.1 will ignore the global variable base with a value
of 200, and instead use the identically named attribute with a value of 100,
which results in the value 105 being printed by the last line.

5.3. EXPRESSION BUILDERS IN RUBY 27

Listing 5.1: Using closures in Ruby
class Example

attr_accessor :base

def calculate (& block)
instance_eval (& block)

end
end

example = Example .new
example .base = 100

base = 200
result = example . calculate do

base + 5
end

puts result # prints 105

5.3 Expression builders in Ruby

Expression builders can be implemented by defining classes for each builder,
defining methods to build the desired fluent interface.

The nested closure style of DSLs can then be implemented by taking a block of
DSL text, and using instance_eval to evaluate that block in the scope of the
expression builder, which makes the fluent interface available to the block.

An expression builder for the nested closure is implemented by defining a class
method build that instantiates a new builder, evaluates the given definition
string or block within the scope of that builder, and finally returns the object
the builder built (listing 5.2, lines 2-7). A instance of an expression builder then
has an attribute to hold the object it is building (line 9), and its constructor
fills that attribute with a new object (line 12).

Expression builder classes inherit from the BasicObject class (line 1). This is
done so that they contain as few methods of their own as possible, so that
almost only the fluent interface is available. This reduces the chance that a typo
would cause a method that is built into the Ruby language to be called, and
therefore reduces the chance of confusion when the DSL text gets evaluated.

This expression builder can then be used by calling the QuestionnaireBuilder.
build class method with either a string of DSL text, or a block containing DSL
text (listing 5.3).

Implementing the DSL as shown in Figure 4.3 is then done by adding methods to
QuestionnaireBuilder that call command-query methods on the Questionnaire
instance. A few examples are shown in listing 5.4.

28 CHAPTER 5. EXPRESSION BUILDERS

Listing 5.2: Empty expression builder for questionnaires
1 class QuestionnaireBuilder < BasicObject
2 def self.build(definition = nil , &block)
3 builder = self.new
4 builder . instance_eval definition if definition
5 builder . instance_eval &block if block_given ?
6 return builder . questionnaire
7 end
8
9 attr_accessor : questionnaire

10
11 def initialize
12 @questionnaire = Questionnaire .new
13 end
14 end

Listing 5.3: Two ways of using an expression builder
1 QuestionnaireBuilder .build("# DSL text")
2
3 QuestionnaireBuilder .build do
4 # DSL text
5 end

Listing 5.4: Examples of how to implement the fluent interface
1 class QuestionnaireBuilder < BasicObject
2 def title(string)
3 @questionnaire .title = string
4 end
5
6 def abortable
7 @questionnaire . abortable = true
8 end
9

10 def allow_hotkeys (value = :all)
11 @questionnaire . hotkeys = value
12 end
13 end

5.4. DELEGATING TO OTHER EXPRESSION BUILDERS 29

5.4 Delegating to other expression builders

Fluent methods that introduce a new scope, e.g. panel or question, are imple-
mented as methods that take a block, and pass it on to another builder. For
instance, the panel fluent method delegates to PanelBuilder.build to construct
a panel from the definition within the block given to the panel method (list-
ing 5.5), and appends that panel to the array of panels that the questionnaire
has.

Listing 5.5: The panel fluent method delegates to PanelBuilder

class QuestionnaireBuilder < BasicObject
def panel (& block)

panel = PanelBuilder .build (& block)
@questionnaire . panels << panel

end
end

The fluent method question takes some arguments, as discussed in section 4.3.
In the fluent method in the PanelBuilder class, these options are received and
passed on to the QuestionBuilder (listing 5.6).

Listing 5.6: The question fluent method
class PanelBuilder < BasicObject

def question (id , options = {}, &block)
@panel .items << QuestionBuilder .build(id , options , &

block)
end

end

Within the QuestionBuilder (listing 5.7), the type parameter is retrieved from
the options. The class for the given type is automatically determined. This
works by taking the type (e.g. :radio), transforming it to a strings ("radio"),
concatenating it with "_question" ("radio_question"). After that, the classify
method turns that string into a camel-cased version ("RadioQuestion"), and the
constantize method turns that into an actual class (RadioQuestion).

After this trick to find the correct class for the given type of question, the code
is similar to other expression builders.

Listing 5.7: The QuestionBuilder

class QuestionBuilder < BasicObject
def self.build(id , options = {}, &block)

type = options . delete (: type)
klass = (type.to_s + " _question "). classify . constantize
@question = klass.new(id , options)
@question . instance_eval &block
return @question

end
end

30 CHAPTER 5. EXPRESSION BUILDERS

5.5 Convenience methods

The type parameter for a question in the semantic model is a symbol. However,
in the DSL we wanted to minimize the amount of syntax needed. In order to
make it possible to write question :v1, type: radio in DSL text, a convenience
method for radio can be added that returns a :radio symbol (listing 5.8).1

Listing 5.8: Convenience methods added to QuestionBuilder

class QuestionBuilder < BasicObject
def radio

:radio
end

def check_box
: check_box

end

same for scale , string , date , integer ,
float , textarea and select

end

5.6 Score definitions

For score calculations, the block of the definition needs to be stored to be
evaluated against a specific filled out questionnaire when an answer gets saved.
To do this, we store the block in a Scorer object. Upon saving an answer, the
block stored in the scorer is run against expression builder that also knows the
values of the answer and the age and gender of the patient.

In order to do this, instead of using instance_eval, we pass the block directly
into the Scorer class to be stored.
class QuestionnaireBuilder < BasicObject

def score(id , options = {}, &block)
scorer = Scorer .new(id , options , &block)
@questionnaire . scores << scorer

end
end

Before an answer is saved, its scores are calculated. To this end, the answer model
loops over all scores defined in the questionnaire, and calls the ScoreCalculator
class.

It is only at this point that the block from the questionnaire definition get
executed. This is done by the ScoreCalculator class. Its structure is similar
to the rest of the expression builders. To calculate to scores, it is given the
answer values for the filled out questionnaire, patient data and the block that
was originally defined in the questionnaire definition.

1Note to Rubyists: The implementation in this paper is written in this manner for
pedagogical reasons. In the actual code we loop over an array and dynamically define methods
for each element.

5.6. SCORE DEFINITIONS 31

Listing 5.9: Score calculator
class ScoreCalculator

def self. calculate (values , patient , &block)
calculator = self.new(values , patient)
calculator . instance_eval (& block)
return calculator . score

end
end

Chapter 6

Results

We have shown how to create domain-specific languages in the Ruby language
using expression builders, in a manner that is extensible and testable.

Quby’s DSL is currently working to satisfaction at the RGOc. Our questionnaire
database currently contains over 190 different questionnaires, and all of these
have been defined by two of our domain experts with almost no help from the
development team. The domain experts frequently mention how much easier
their work is with Quby than it was with the GlobalPark system.

Quby is also used by RoQua as its questionnaire engine to deliver all question-
naires to patients. We are currently working on expanding the DSL to include
the calculation of scores from the answered questionnaires.

So clearly, in terms of actual usage, Quby has not been unsuccessful. However,
in order to see how well Quby’s DSL approach performs (in terms of usability
by domain experts) when compared to GlobalPark, we have also performed a
small trial.

6.1 Trial setup

In this trial, we asked three users of GlobalPark to try and build two question-
naires (that we provided). We asked them to record how long it took them for
each questionnaire/system-combination and at the end we asked them to fill
out a short survey.

These users are not developers, but do have some experience working with
scripting in programs like SPSS, which they use to analyze datasets for their
day jobs.

None of these users had ever worked with Quby or our DSL before. They did
have experience with building psychiatric questionnaires in the GlobalPark
system.

We realize that a small trial with only three participants is not enough to
provide any definitive answers, but it does help to provide some insights into
the effectiveness and understandability of the DSL and editor for new users.

33

34 CHAPTER 6. RESULTS

The questionnaires we asked the participants to create were the “Phamous
Algemeen” (PHAM) and the “ROM AZM” (AZM). The PHAM is the ques-
tionnaire as seen in Figure 4.2, a questionnaire with a few different types of
questions: a few text fields and a few radio buttons. The AZM is a more
repetitive questionnaire, consisting of 12 radio questions where the questions
are all similar except for the question text itself. We chose these in order to
see if there is some difference in working with repetitive questionnaires versus
working with a questionnaire where each question is unique in form.

Both are types of questionnaires that we often have to build although in
practice we tend to find that 90% of the 140 questionnaires we currently have
implemented in Quby are almost only repetitive of nature.

While they worked on building the questionnaires, the screen of the participants
was captured for later analysis.

At the end their session, the participants were given a set of questions to answer
about their experiences.

In the following sections, the names of the participants are fictional.

6.2 Timings

One of the things we measured where how long it took the participants to build
each of the questionnaires. First of all, in table 6.1 are the raw durations that
the participants took to build.

Table 6.1: Time taken per participant, per questionnaire

Who Questionnaire System Time Order
Andrew phamalg globalpark 10m (fourth)
Andrew phamalg quby 13m (second)
Andrew romazm globalpark 13m (third)
Andrew romazm quby 11m (first)
Barbara phamalg globalpark 13m (first)
Barbara phamalg quby 44m (third)
Barbara romazm globalpark 18m (second)
Barbara romazm quby 21m (fourth)
Claire phamalg globalpark 15m (second)
Claire phamalg quby 20m (third)
Claire romazm globalpark 27m (first)
Claire romazm quby 7m (fourth)

Another way of looking at these times is by tallying them up for each system,
and measuring the difference between the two (table 6.2).

We can see that there is no conclusive answer arising from these times. One
participant took about twice as long in Quby as she did in GlobalPark, while

6.3. RATINGS 35

Table 6.2: Summarized times per participant per engine

Who GlobalPark Quby Difference
Andrew 23m 24m 104%
Barbara 31m 65m 209%
Claire 42m 27m 64%

another spent about the same time in either, and a third was about one-thirds
quicker in Quby. In the discussion section we will explain these findings.

6.3 Ratings

Upon completion of the tasks set to the participants, we asked them to give
their opinions on a few areas, rated on a scale of 1 to 9. These ratings are
shown in table 6.3. On the scale used, a 1 represents a strong preference to
GlobalPark, a 9 represents a strong preference to Quby, and thus a 5 represents
an indifference between the two.

Table 6.3: Ratings given by participants

Area Andrew Barbara Claire Average
General impression 6 3 7 5.3
Workflow 7 3 7 5.6
Intuitiveness 7 4 7 6.0
Usage for ROM AZM 7 2 3 4.0
Usage for PhamAlg 7 4 3 4.6

6.4 Answers to interview questions

After the participants had built the questionnaires, we also asked them a few
open-ended questions.

If you had to create 20 questionnaires, where a large number would
be similar in terms of structure, which system would you prefer to
use, and why?
Andrew: Quby. Copying and pasting is much faster.
Barbara: GlobalPark, because I know the most about it. But in order to make
a good judgement I would have to work a little more with Quby.
Claire: I think GlobalPark. The advantage of GlobalPark is that you can easily
copy a question, or an entire questionnaire. You can do that in Quby too, but
in GlobalPark it is a little easier because there is a button for it.

Would you recommend GlobalPark or Quby to a collegue?
Andrew: Both, depending on their computer knowledge. With larger question-
naires rather Quby.

36 CHAPTER 6. RESULTS

Barbara: I don’t really have any experience with Quby, which I do have with
GlobalPark, so I would sooner recommend GlobalPark.
Claire: I would recommend Quby because it is easier to enter different datatypes
(in GlobalPark I could not find the ‘date’ type). I also found the layout easier
to customize.

What level of programming knowledge do you estimate someone
needs in order to be able to work with Quby? More or less than
your own level?
Andrew: A little more. I have a basic knowledge of HTML, but no more.
Barbara: It is probably about my level, but having time to learn about the
questionnaire to be built, and learn about existing examples in the editor instead
of having work with it immediately would make it easier.
Claire: About the same, so 5.

Do you have any recommendations or things that need improvement
for either of the questionnaire systems?
Andrew: Make error messages clearer.
Barbara: -
Claire: With both of the systems I had to look at the manual frequently, because
it has been over a year since I last used GlobalPark and Quby was completely
new to me. Before I started answering these questions, I had the impression
that Quby was easier than GlobalPark. Yet I did take longer in Quby, because
I had to keep looking for (typing) errors. Quby does give an error message,
but it is very unclear. It would be easier if it clearly stated what error it was
(and not just what line). Or even better: if while typing it would immediately
indicate that you are doing something wrong (e.g. Word when the spell checker
is enabled).

Chapter 7

Discussion and Conclusions

We set out to determine if it is possible to develop a Ruby-based internal
DSL that is suitable for use by non-programmer domain experts. To this
end, we designed and implemented a DSL for questionnaires, and evaluated its
effectiveness through a trial. The trial results are somewhat inconclusive: out
of three domain experts one as twice as fast in Quby, while another was twice
as slow.

Apart from the trial, Quby has been in commercial use and nearly 200 ques-
tionnaires have been defined by non-programmers. This is evidence that the
DSL is comprehensible.

Overall, we have found DSLs to be simpler to use than graphical user interfaces.
The benefits of a DSL include that it’s easier to work with repetitive structures
by copy/pasting previous sections of DSL text, and that it is easier to maintain
overview of a questionnaire because no unused GUI elements are shown, but
only relevant information.

The biggest problem is that non-programmers are not used to the precision
required by parsers. In our case this manifested itself in string quoting and
block delimiters. This problem is exacerbated by the fact that parsers are
usually bad at determining the line of these types of parse errors.

7.1 Trial

In the previous chapter we described the results from a trial we took to find out
whether domain experts would be able to effectively work with Quby’s DSL. To
this end, we asked three domain experts to build two different questionnaires
in both GlobalPark, which is a web-based questionnaire service they were
accustomed to, and in Quby, the system we built.

We realize that doing a trial with only three people can in no way be considered
statistically relevant, however finding a large group of domain experts was un-
feasible. It is also important to remember that the participants were GlobalPark
users, and that we are thus comparing a known system (GlobalPark) to an
unknown system (Quby).

37

38 CHAPTER 7. DISCUSSION AND CONCLUSIONS

In addition to the results we measured in our trial, we also made observations
while working with domain experts to develop the Quby questionnaire engine.

7.2 Successes

In working with domain experts, the most often heard benefit of using a DSL-
based system over using GUI-based tools is that plain text is much easier to
copy and paste. This means that it is easy to provide examples on how to
approach certain more complicated questionnaire designs, and it is also easier
to communicate about those examples, because you can also paste them into
an e-mail. However, it also confused at least one participant because there was
no graphical button to click to copy/paste questions.

Looking at the time results from the trial (table 6.2), we conclude that working
with the DSL can be at least as fast as working with a GUI tool, especially when
we take into consideration that the users were already familiar with GlobalPark,
but were completely new to Quby. For this reason, we feel we can believe the
claims of the domain experts with whom we worked while building Quby, that
they indeed can work more efficiently with the DSL-based approach than they
were with the GUI-based approach used by GlobalPark.

There are also secondary benefits gotten from using a DSL. It meant that
questionnaire definitions could be treated more like regular source code, and
allowed us to manage them in a version control system. This means that we
get the benefits that such a system provides, like easily getting the differences
between two versions, and making sure that the version that is currently in
active use doesn’t change between releases of RoQua.

7.3 Problems

Early on in the project, the editor in the web interface was a very simple text
area with a submit and a preview button. This was functional, but in actual
usage we noticed that syntax errors were a frequent occurrence. Most of these
were missing opening or closing double quotes. Once we integrated syntax
highlighting into the editor, we noticed a very large drop in these types of
errors.

However, when they do occur, the error messages are still far to cryptic. We
have not had the time yet to have a look at how to get clear understandable
errors with good line number detection. Currently we are simply outputting the
stack trace Ruby gives us. From this, we can tell the user the line number, but as
is often the case in parsers, this number can be off by a few lines. Programmers
get used to this, and know how to look around for the source of an error. For
non-programmers, it is extremely confusing to get a line number for a line that
is in itself perfectly fine.

On the other hand, we saw in Figure 2.4 that while GlobalPark presents a
graphical editing interface, its errors are confusing as well.

7.3. PROBLEMS 39

Listing 7.1: An example of using implicit scoping
panel
question :q1 , type: string
title "What is your name"

question :q2 , type: string
title "What is your favorite colour ?"

panel
question :q3 , type: radio
title "A third question on a new panel"
option :a1 , description : "Yes"
subquestion :q3a , type: radio
subtitle "A subquestion "
suboption :a1 " Option A"
suboption :a2 " Option "B
option :a2 , description : "No"

With Quby we solve this issue by letting domain experts call in the help of
a developer when they get stuck, cannot quickly figure out some error, or
simply do not know how to do whatever they want to accomplish. In our case
developers are located in the same hallway as the domain experts. Domain
experts can visit one of the developers who can then provide the assistance
needed. This support takes about 5 minutes of developer time per week per
domain expert. Obviously, this is not a solution that will work for everybody,
or a solution that will scale to a large number of domain experts.

This explains what happened with Barbara, who took twice as long in Quby in
comparison to GlobalPark. Participants were instructed to contact a RoQua
developer in case they got stuck, in the same manner that we do for the domain
experts that we worked with to build Quby. However, this participant spent a
long time trying to figure out an error message before finally contacting us.

The types of syntax errors we saw participants make primarily were string
quoting (unescaped double quotes within a string), and unbalanced do [...]
end pairs.

It might be possible to change the DSL in such a way that these pairs would not
be needed, changing from explicit scoping to implicit scoping (e.g. listing 7.1).
For panels and top-level questions, this would probably work fine, but it causes
problems with nested questions (as discussed in section 4.4) because it would
be impossible to know if question should define a new top-level question, or if
it should be a subquestion for the last given option. One option would be to
add subquestion and suboption, but that might grow unwieldy once you get to
subsubsubsubquestion1.

1Reminiscent of Common Lisp’s cdadar function to retrieve the value of the first of the
rest of the first of the rest of a given list.

40 CHAPTER 7. DISCUSSION AND CONCLUSIONS

7.4 Future work

In designing our DSL we made various trade-offs in terms of the syntax supported
by the DSL, like the choice between implicit and explicit scoping (section 4.3).
In general, we have found little research that surveys the landscape of DSL
syntaxes. Such research could find common features and design decisions of
DSLs, and determine what types of DSLs are the easiest to comprehend.

For the implementation of DSLs, one idea we had was to develop a Ruby DSL
for developing DSLs. We have started implementing this in an open-source
library called ActiveDSL [19]. At the moment this library is able to simplify
the creation of DSLs in Ruby, but unfortunately it does not yet have enough
features to be able to use it for the DSL used in Quby.

Easier implementation of DSLs is one of the features of a language workbench,
and this might be a good direction to take ActiveDSL. A future version of
ActiveDSL could provide not only simplified implementation, but also provide
editing tools that are aware of the structure of the DSL.

A further study into the effect of the editing environment on DSL comprehension
could provide valuable insights. The editing environment we built for Quby
is pretty sparse, and such a study would be helpful to determine what types
of features we should add to the editor to improve the usability for domain
experts.

One possible editor feature would be to highlight lines in case of errors. For
instance, lines could be grayed out if it is certain the error is not in those lines,
colored orange if it is possible that the error is on one of them, and finally the
line that the syntax checker thinks the error is on could be highlighted red.
Highlighting lines in this manner could make it clear to non-programmers that
where the error occurred can not be determined precisely.

Another feature we intend on adding in the near future is to perform syntax
checking live in the background, as the user is typing. Currently this check is
performed only upon saving, and doing this live might be a better idea. One
issue might be that it could be too annoying if the editor complained constantly
until the final end for a panel was typed. This is something we will examine in
practice.

To help domain experts be more productive, a feature like text snippets could be
added. For instance, typing question could automatically expand to a complete
basic question, which the tab key moving between areas that need to be changed
in. Autocompletion could help with discoverability, typing question :v1, type:
could result in a drop down appearing, showing the various types of question
supported.

A final feature might be to have an importer that reads in questionnaires from
Word files and converts it to a DSL script, probably guided by the domain
expert. If the domain expert were to mark some pieces of text as questions
and options, the importer might be able to figure out the common format and
suggest a conversion for the rest of the document.

We also wish to instill some development practices onto the domain experts,
particularly unit testing. It would be useful to be able to automatically verify

7.4. FUTURE WORK 41

that score calculations are correctly written, and an extension of the Quby DSL
could make that possible. The questionnaire editor currently does provide the
ability to try out a calculation by filling out the questionnaire and looking at
the resulting scores. For automatic verification the known good value for a
given filled out questionnaire should be recorded somewhere.

Appendix A

Full questionnaire definitions

This appendix contains the full questionnaire definitions for the “Phamous
Algemeen” questionnaire that is used a a running example throughout this
thesis, and the “ROM AZM” questionnaire that was used in the trial we
conducted.

A.1 Phamous Algemeen

title " Phamous Algemeen "
short_description ""
description ""
outcome_description ""

abortable
allow_hotkeys :all

panel do
title " Algemeen "

question :v_date , type: date do
title "Datum:"
validates_presence_of_answer

end

question :v_143 , type: string do
title "Naam beoordelaar "
validates_presence_of_answer

end

question :v_144 , type: radio do
title "Reden voor screening :"
option :a, value: 1, description : " Jaarlijkse screening "
option :b, value: 2, description : "Ander interval " do

question :v_145 , type: string do
title " Screening na"

end

43

44 APPENDIX A. FULL QUESTIONNAIRE DEFINITIONS

question :v_146 , type: string do
title "Reden"

end
end

end

html "<hr/>"

question :v_1274 , type: integer do
title "Jaar van eerste psychotische episode :"
size 4
validates_in_range 1900..3000

end

question :v_1275 , type: integer do
title "Jaar van eerste GGZ - contact "
size 4
validates_in_range 1900..3000

end

question :v_178 , type: radio do
title " Etniciteit :"
option :a1 , value: 1, description : " Caucasisch (blank)"
option :a2 , value: 2, description : " Negroide "
option :a3 , value: 3, description : " Aziatisch "
option :a4 , value: 4, description : " Indiaans / latijns -

amerikaans "
option :a5 , value: 5, description : "Turks"
option :a6 , value: 6, description : " Marokkaans "
option :a7 , value: 7, description : " Anders " do

question :v_179 , type: string do
title " Namelijk "

end
end

end
end

A.2. ROM AZM 45

A.2 ROM AZM

title "ROM AZM"
short_description ""

panel do
text "Heel kort! Help ons begrijpen hoe u zich voelt"
text "Kunt u ons vertellen hoe u zich de afgelopen week ,

tot en met vandaag , hebt gevoeld ? We vragen u een ’
rapportcijfer ’ te geven op een aantal gebieden ."

text "Lees elke vraag goed door en omcirkel het getal dat
uw huidige situatie het best beschrijft ."

text " Hieronder wordt ’werk ’ gedefinieerd als baan , school
, huishoudelijk werk , vrijwilligerswerk , enz."

text "Bij ’belangrijke relaties met andere mensen ’ kunt u
denken aan echtgenoot /echtgenote , levensgezel /
levensgezellin , ouders /kinderen , vrienden ,
gezinsrelaties - wat voor u het belangrijkste is."

end

panel do
question :v_1 , type: radio do

title "1. Hoeveel last heeft u van psychische klachten ?"
option :a1 , value: 0, description : "Niet of nauwelijks "
option :a2 , value: 1, description : "Nogal"
option :a3 , value: 2, description : "Zeer veel"

end

question :v_2 , type: radio do
title "2. Hoeveel last heeft u van lichamelijke klachten

?"
option :a1 , value: 0, description : "Niet of nauwelijks "
option :a2 , value: 1, description : "Nogal"
option :a3 , value: 2, description : "Zeer veel"

end
end

panel do
question :v_3 , type: radio do

title "3. Hoeveel interfereren de psychische klachten
met uw (zoeken naar) werk?"

option :a1 , value: 0, description : "Niet of nauwelijks "
option :a2 , value: 1, description : "Nogal"
option :a3 , value: 2, description : "Zeer veel"

end

question :v_4 , type: radio do
title "4. Hoeveel interfereren de lichamelijke klachten

met uw (zoeken naar) werk?"
option :a1 , value: 0, description : "Niet of nauwelijks "
option :a2 , value: 1, description : "Nogal"

46 APPENDIX A. FULL QUESTIONNAIRE DEFINITIONS

option :a3 , value: 2, description : "Zeer veel"
end

question :v_5 , type: radio do
title "5. Hoeveel interfereren de psychische klachten

met belangrijke relaties met andere mensen ?"
option :a1 , value: 0, description : "Niet of nauwelijks "
option :a2 , value: 1, description : "Nogal"
option :a3 , value: 2, description : "Zeer veel"

end

question :v_6 , type: radio do
title "6. Hoeveel interfereren de lichamelijke klachten

met belangrijke relaties met andere mensen ?"
option :a1 , value: 0, description : "Niet of nauwelijks "
option :a2 , value: 1, description : "Nogal"
option :a3 , value: 2, description : "Zeer veel"

end
end

panel do
question :v_7 , type: radio do

title "7. Hoe tevreden bent u momenteel met uw leven in
zijn geheel ?"

option :a1 , value: 0, description : "Zeer Ontevreden "
option :a2 , value: 1, description : "Gaat wel"
option :a3 , value: 2, description : "Zeer Tevreden "

end

question :v_8 , type: radio do
title "8. Hoe tevreden bent u met de zorg op deze

afdeling tot nu toe?"
option :a1 , value: 0, description : "Zeer Ontevreden "
option :a2 , value: 1, description : "Gaat wel"
option :a3 , value: 2, description : "Zeer Tevreden "

end
end

Appendix B

Documentation provided to trial
participants

We provided the following documentation with regard to the structure of the
questionnaires that needed to be built during the trial.

B.1 Phamous Algemeen

47

48
APPENDIX B. DOCUMENTATION PROVIDED TO TRIAL

PARTICIPANTS

B.2 ROM AZM

Heel kort! Help ons begrijpen hoe u zich voelt.....
Kunt u ons vertellen hoe u zich de afgelopen week, tot en met vandaag, hebt
gevoeld? We vragen u een “rapportcijfer” te geven op een aantal gebieden.

Lees elke vraag goed door en omcirkel het getal dat uw huidige situatie het best
beschrijft.

Hieronder wordt “werk” gedefinieerd als baan, school, huishoudelijk werk,
vrijwilligerswerk, enz.

Bij “belangrijke relaties met andere mensen” kunt u denken aan echtgenoot/echtgenote,
levensgezel/levensgezellin, ouders/kinderen, vrienden, gezinsrelaties - wat voor
u het belangrijkste is.

1. Hoeveel last heeft u van psychische klachten?

Niet of nauwelijks Nogal Zeer veel

2. Hoeveel last heeft u van lichamelijke klachten?

Niet of nauwelijks Nogal Zeer veel

3. Hoeveel interfereren de psychische klachten met uw (zoeken naar)
werk?

Niet of nauwelijks Nogal Zeer veel

4. Hoeveel interfereren de lichamelijke klachten met uw (zoeken
naar) werk?

Niet of nauwelijks Nogal Zeer veel

5. Hoeveel interfereren de psychische klachten met belangrijke re-
laties met andere mensen?

Niet of nauwelijks Nogal Zeer veel

6. Hoeveel interfereren de lichamelijke klachten met belangrijke re-
laties met andere mensen?

Niet of nauwelijks Nogal Zeer veel

7. Hoe tevreden bent u momenteel met uw leven in zijn geheel?

Zeer ONtevreden Gaat wel Zeer tevreden

8. Hoe tevreden bent u met de zorg op deze afdeling tot nu toe?

Niet of nauwelijks Nogal Zeer veel

Appendix C

Ruby Syntax Guide

For those who have no or little prior knowledge of the Ruby programming
language, in this appendix we will provide some details on some elements of
the language whose workings might not be immediately apparent. We do this
by listing a snippet of Ruby code, and showing the equivalent Java code.

Ruby Java

attr_accessor :foo private type foo;

public type getFoo () {
return foo;

}

public void setFoo (type foo) {
this.foo = foo;

}

def self. methodname
code

end

public static type methodname () {
// code

}

something if condition if (condition) { something ; }

something unless condition if (! condition) { something ; }

def initialize
code

end

public ClassName () {
// code

}

49

References

[1] K. Beck and C. Andres. Extreme programming explained: embrace change.
Addison-Wesley Professional, 2004.

[2] K. Beck and M. Fowler. Planning extreme programming. Addison-Wesley
Professional, 2001.

[3] M. Van den Brand et al. “Industrial applications of ASF+ SDF”. In:
Algebraic Methodology and Software Technology (1996), pp. 9–18.

[4] Cucumber. url: http://cukes.info/.
[5] E. De Beurs et al. “Routine outcome monitoring in the Netherlands: prac-

tical experiences with a web-based strategy for the assessment of treatment
outcome in clinical practice”. In: Clinical psychology & psychotherapy
18.1 (2011), pp. 1–12.

[6] Arie Van Deursen, Paul Klint, and Joost Visser. “Domain-Specific Lan-
guages : An Annotated Bibliography *”. In: ACM Sigplan Notices 35.June
(2000), pp. 26–36.

[7] Aran Donohue. “Debugging Domain-Specific Languages”. PhD thesis.
University of Toronto, 2010. url: http://www.arandonohue.com/
writing/MSc/ut-thesis.pdf.

[8] M. Fowler and J. Highsmith. “The agile manifesto”. In: Software Devel-
opment 9.8 (2001), pp. 28–35.

[9] Martin Fowler. Domain Specific Languages. 1st. Addison-Wesley Profes-
sional, 2010. isbn: 0321712943, 9780321712943.

[10] Martin Fowler. “Language workbenches: The killer-app for domain specific
languages”. In: Accessed online from: http://www. martinfowler. com/ar-
ticles/languageWorkbench. html (2005), pp. 1–27. url: http://www.issi.
uned.es/doctorado/generative/Bibliografia/Fowler.pdf.

[11] J. Gray et al. “DSLs: the good, the bad, and the ugly”. In: Companion
to the 23rd ACM SIGPLAN conference on Object-oriented programming
systems languages and applications. ACM. 2008, pp. 791–794.

[12] J. Greenfield et al. Software factories. Citeseer, 2004.
[13] John Gruber. Markdown. url: http://daringfireball.net/projects/

markdown/.
[14] B. Meyer. Object-oriented software construction. Prentice Hall PTR, 1997.

isbn: 9780136291558.

51

http://cukes.info/
http://www.arandonohue.com/writing/MSc/ut-thesis.pdf
http://www.arandonohue.com/writing/MSc/ut-thesis.pdf
http://www.issi.uned.es/doctorado/generative/Bibliografia/Fowler.pdf
http://www.issi.uned.es/doctorado/generative/Bibliografia/Fowler.pdf
http://daringfireball.net/projects/markdown/
http://daringfireball.net/projects/markdown/

52 REFERENCES

[15] Russ Olsen. Design Patterns in Ruby. 1st. Addison-Wesley Professional,
2007. isbn: 0321490452, 9780321490452.

[16] RSpec. url: https://www.relishapp.com/rspec.
[17] M. Slade. “Routine outcome assessment in mental health services”. In:

Psychological medicine 32.08 (2002), pp. 1339–1343.
[18] Robert Sosinski. Understanding Ruby Blocks, Procs and Lambdas. url:

http://www.robertsosinski.com/2008/12/21/understanding-ruby-
blocks-procs-and-lambdas/.

[19] M Veldthuis. ActiveDSL. 2011. url: https://github.com/marten/
active_dsl.

[20] M.P. Ward. “Language-oriented programming”. In: Software - Concepts
and Tools 15.4 (1994), pp. 147–161. url: http://citeseerx.ist.psu.
edu/viewdoc/download?doi=10.1.1.65.5062\&rep=rep1\&
type=pdf.

https://www.relishapp.com/rspec
http://www.robertsosinski.com/2008/12/21/understanding-ruby-blocks-procs-and-lambdas/
http://www.robertsosinski.com/2008/12/21/understanding-ruby-blocks-procs-and-lambdas/
https://github.com/marten/active_dsl
https://github.com/marten/active_dsl
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.65.5062\&rep=rep1\&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.65.5062\&rep=rep1\&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.65.5062\&rep=rep1\&type=pdf

	Introduction
	Non-programmer DSLs
	Thesis organisation

	Related Work
	Domain-Specific Languages
	Nonprogrammer domain experts using DSLs
	Web-based survey editors

	Architecture
	Creating and editting questionnaires
	Filling out a questionnaire

	Underlying Model
	Basic structure of a questionnaire
	Example: the ``Phamous Algemeen'' questionnaire
	The Quby DSL
	Managing dependencies between questions
	Working with validations
	Calculating scores

	Expression Builders
	A questionnaire DSL without expression builders
	Nested closures
	Expression builders in Ruby
	Delegating to other expression builders
	Convenience methods
	Score definitions

	Results
	Trial setup
	Timings
	Ratings
	Answers to interview questions

	Discussion and Conclusions
	Trial
	Successes
	Problems
	Future work

	Full questionnaire definitions
	Phamous Algemeen
	ROM AZM

	Documentation provided to trial participants
	Phamous Algemeen
	ROM AZM

	Ruby Syntax Guide
	References

