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INTRODUCTION

1.1 X-RAY FREE ELECTRON LASERS

In recent years, a large interest in high rep-rate X-ray Free Electron
Lasers (XFELs) has stimulated the development of high rep-rate high
quality electron sources (here, rep-rate refers to repetition rate; the
number of electron pulses per second):

Inside a free electron laser, relativistic electron bunches are guided
through an undulator that forces the electrons to emit synchrotron ra-
diation. Given that the electron beam’s emittance is sufficiently small
(< Tmm - mrad, where emittance refers to the spread in phase space
of the electrons), the radiation is emitted in the form of a parallel
coherent laser beam. Since the electron beam’s emittance cannot be
improved along the beam line, requiring a beam of low emittance
implies requiring an electron source of high quality.

Cavity Coaxial line

UV-in = > e-out

Figure 1.1: Schematic representation of an RF-photogun.

There are only two types of sources known to be capable of delive-
ring the required quality, one of them being the RF-photogun. Here,
particular interest goes to normal conducting guns (since they can
sustain stronger acceleration fields than super conducting ones) that
support high rep-rates (some applications require the laser to support
high rep-rates).

1.2 NORMAL CONDUCTANCE AND HIGH REP-RATES

Normal conducting high rep-rate RF-photoguns still only exist on the
drawing table. Their design includes an excitation laser that expels
electrons from a cathode (just like low rep-rate photoguns, Figure 1.1).
These electrons are then accelerated from approximately zero up to
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extreme-relativistic speeds (4-7MeV [3, p. 42]), by a standing elec-
tromagnetic wave pattern inside a 1.5 or 2.5-cell copper cavity. To
produce electron bunches of the required quality, field strengths of
100-120MV/m are applied. Unlike low rep-rate guns however, they
should repeat their shots with rates up to TkHz (currently, photoguns
are typically limited to about 360Hz or less). Since their cavity walls
are normal conducting, large amounts of internal heat will be gener-
ated during their operation: 16-18kW [1] is dissipated into a volume
the size of a cookie jar.

When combining this with the fact that RF-photoguns are notori-
ously sensitive to temperature (the resonance frequency shifts with a
rate of 50kHz/°C [3, p. 65]), we can see that the development of such
a photogun will be an interesting engineering challenge: Even though
heat fluxes of up to 225MW/ m? [1] will flow through the cavity walls
(with the potential of causing significant temperature differences), the
temperature should remain uniform and constant up to 0.05°C [,
p- 56]. The best (and perhaps the only) way to achieve this, is by de-
signing the cavity’s cooling channels in such a way that the spatial
distribution of the cooling capacity matches the spatial distribution
of the current density in the cavity walls.

1.3 SCOPE OF THIS PROJECT

As part of a design study for a compact high rep-rate soft X-ray Free
Electron Laser at the University of Groningen (ZFEL), we have per-
formed a numerical and experimental study of the thermal and elec-
tromagnetic behaviour of RF-photoguns. More specifically, we have
developed numerical models (finite element) that support the basic
(multi) physics, reproduce existing (low rep-rate) results and allow
for studies in the high rep-rate domain.

Apart from using different solving methods, cavity theory and com-
mon sense to validate our results, we have tried to benchmark our
numerical models experimentally: We have done extensive measure-
ments of thermal and electromagnetic behaviour of an existing nor-
mal conducting low rep-rate gun from the Eindhoven University of
Technology (TU/e). We have performed the first half of our research
in Groningen at the KVI (developing models), the other half has been
done in Eindhoven at the TU /e (comparing simulations to actual mea-
surements).

This thesis presents both the numerical an experimental work: In
order to introduce and grasp the subject, it starts with a theoretical
approach (Chapter 2). Then, it proceeds by treating several aspects
of modelling (Chapter 3, roughly representing the work done in Gro-
ningen) and measuring (Chapter 4, representing the work done in
Eindhoven). Finally, in Chapter 5 we present some conclusions and
recommendations for future work.
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This chapter starts by treating the inner workings of an RF-photogun,
using our TU/e gun as an example; Section 2.1. We then proceed
with an analytical description using a lumped element model (Sec-
tion 2.2), and finish with a treatment of the multiphysics approach
(Section 2.3).

2.1 INNER WORKINGS

The gun we have investigated at the TU/e in Eindhoven is a normal
conducting low rep-rate 1.5-cell 2.998GHz S-band gun. During opera-
tion, its cavity is thermostrated at 40.00 & 0.05°C. About three times a
second, a pulse of electromagnetic energy from a klystron flows from
the right through the coaxial line and reaches the cavity’s first iris
(Figure 1.1). These pulses should have a peak height of about 8 5MW
and a full-width half-maximum of 3us (in reality however, they’'re
usually limited to about 4.TMW, mainly because of discharges occur-
ring inside the cavity and waveguides [4, p. 62]).

Assuming that the system is at perfect resonance (and that the
impedances between cavity and transmission line match), all incident
power will be dissipated into the cavity’s walls (no reflections will oc-
cur). The average power dissipated is determined by the amount of
energy contained in a single pulse (about 25]) times the number of
pulses per second (3Hz). This means that about 75W of power is dissi-
pated on average, causing little or no change in the cavity’s geometry
(no temperature gradients, no deformation; typical behaviour for low
rep-rate guns).

This power dissipation is primarily caused by a standing wave pat-
tern that forms inside the cavity, having two fundamental modes (in
a 1.5-cell cavity, the single pillbox’s TMo1o-mode splits up in two):
The 0-mode, in which the fields inside both cells oscillate in phase (at
about 2.992GHz, Figure 2.1 on the left) and the m-mode, in which they
oscillate in antiphase (at about 2.998GHz). Of these two modes, the
m-mode is the one suitable for particle acceleration. Here, the on-axis
electrical field vectors in the right cell will be of equal and opposite
size relative to the ones in the left cell.

Indeed. Suppose at some point in time the electric field strength
has reached its peak while a bunch of electrons is expelled from the
cathode by an excitation laser: The bunch will start accelerating to-
wards the left iris, while the electric field reduces in strength (since
it oscillates). Then, one quarter of an oscillation period later, the mo-
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Figure 2.1: The 0-mode and 7-mode of a 1.5-cell cavity.

ment the bunch crosses the left iris, the field changes sign. By the
time the bunch enters the second cell, the field configuration will
have changed in such a way that the electrons will be accelerated
once more.

Bunch charges are typically on the order of I1nC or less, and the fi-
nal kinetic energy of the electrons is about 3.0MeV. This corresponds
to maximum field strengths of about 76MV/m (the design values are
4.4MeV and 110MV/m respectively).

2.2 LUMPED ELEMENT DESCRIPTION

The simplest way to model our cavity’s resonance behaviour is by us-
ing a lumped element description (Figure 2.2). Here, the coaxial line
is modelled by a source impedance Z;,. and the cells are modelled by
parallel RLC circuits (harmonic oscillators). The resistors in these cir-
cuits represent the dissipation into the walls, the inductors represent
the magnetic fields and the capacitors represent the electric fields. To
model the coupling irises, inductors (Z, Zg) are used.
If we now substitute the impedance of the total load given by

1 1\
)= (402, 02,) o

(where Z% = Ri] + w]L] +iwCy and z% = R% + iujLz +1iwCy) into the

equation for the complex reflection coefficient defined as

_ Zl (w) - Zsrc

- Zl ((U) + Zsrc’

we can plot the relative magnitude and phase of the reflected power
as a function of frequency:

P (f) = Tqp (27tf) = 101og;, IT (w)|?, (2.1)

I (w)

@ (f) =T, (2nf) = %arg (T'(w)). (2.2)

The resulting curves will prove to be a very effective tool when trying
to determine the behaviour of a resonant structure.
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Figure 2.2: Lumped element description of a 1.5-cell cavity.

2.2.1  Model building

To illustrate the power of this simple model, we will pick one of the
measurements from our 1.5-cell TU/e gun, and see if we can achieve
the same results by strategically choosing the values of the different
lumped elements. In order to do this we will need some rules of
thumb, mostly coming from classical cavity theory [2, p. 334]. We
will not treat classical cavity theory here, as many others have already
done so. Instead, we will just list the relevant concepts and equations
and use them to build our model.

We start by estimating the angular eigenfrequencies of both cells:
Since each cell loosely resembles a pillbox cavity, we use the pillbox
cavity resonance frequency relation;

~o0 _ Poi 9

@3 = ~ 2m-2.749 -10”Rad/s, 2.
V= / @3)

-0 Po1 9

W5 = ~ 2m-2.751-10"Rad/s, 2.
2= e / (2.4)

where Po; represents the first root of the zeroth order Bessel function
(2.405) and 11, 1 are the radii of the left and right cell respectively
(note that @9, @9 approximate the eigenfrequencies of the two sepa-
rate RLC circuits, not the eigenfrequencies of the circuit as a whole).

We then proceed by determining the unloaded quality factor [3,
p- 381, [2, p. 356] and shunt-impedance [3, p. 29]. The quality factor
of normal conducting cavities is usually between 1-10% and 2 - 10%.
Although any value in this interval would suffice to prove our point,
the ones coming from our simulations (Table 3.1) should yield the
best results. Since the same goes for the shunt-impedance, we set
Qui ~ 11.580 - 103 and Ry ~ 50.327 - 10°Q/m for both cells.

Using the shunt-impedance, we can now determine the values of
Ry and R;. If we rewrite the shunt-impedance’s definition; Rgp =
U(z) /Plossle, we can determine the total power loss; Pioss = Ué /Rsnle.
We also know that most of this power will be dissipated in the cylin-
drical outer surfaces of the cells. Since the right cell is twice as long
as the left one, two third is dissipated in the right and one third is
dissipated in the left cell.
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Figure 2.3: Fitted magnitude and phase curves.

Combining these results with the standard power loss equation for
resistors; Pioss = UU/2R = U(Z) /2R, gives the values Ry and R;:

1 u uz 3
“Ploss = —9— = —0 - Ry = ZRyplec ~5.662-10°Q
3 loss 3Rsh1c 2R1 .. 1 2 shtc ,

2 pAUP; us 3
Pl = 0 — 0 . Ry = Renlc~2.831-10°0.
3 loss 3Rsh1c ZRz S R2 2 shlc 3 0
The values for Ly, L, C; and C; can be estimated by using the

equations for eigenfrequencies and quality factors. Since both cells
are modelled with parallel RLC circuits, we use w® = 1/V/LC and

Q =Ry/C/L and find

. R - R

i, = 710 ~2831-10°8H, T, = 2~o ~1.414-1078H,
Qulw] ul;

Cr= L 118410 9F, Gy = 4L < 2366107 13F,
R](JJ] szz

To complete our model, we set the source impedance Zs,. equal to
the characteristic impedance of the coaxial feeding line (Zs.. = 50Q)).
The values Z and Zg are determined by fitting.

2.2.2  Model fitting

By putting our model in suitable plotting software, we have fitted the
magnitude and phase curves (Equation 2.1 and Equation 2.2) to one
of our measurements (Section 4.3.1) using four fitting parameters; L,
Lg, wy and wg (Figure 2.3):

Zo=iwly, Zp=iwlg,

1 1
w?:d)?—i—wa—zwﬁ, wg:cbg—i—wa—i—zwﬁ,
R R
]—1 = ! 0’ I—Z = 720/ C] = QU—l 7 CZ = QU1 7
Qulw] Qulwz le] szz

with L, and Lg the inductances used to model the coupling irises
and wy, wp the correction factors for the eigenfrequencies given by
Equation 2.3 and Equation 2.4.
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Figure 2.4: Relation between H-field, geometry and Q-dissipation.

Using strategically chosen (first) estimates and root finding algo-
rithms, we have found the following values for the fit parameters:

Lo ~ 9.508-107°H, Lp ~4.678-107"H,
w? ~ 1.087387 - @Y, w9 ~ 1.073186 - @S.

These values suggest that our initial estimates for w? and w9 were
off by about 8% (admittedly, these results could just as well have been
attributed to errors in Q. or Rgp).

The point we want to make here is that the resonance behaviour
of a cavity can be described using a fairly simple analytical model
(even when using rather crude initial estimates for its input values).
In terms of cavity geometry optimisation however, analytical models
have almost no predictive value when compared to the numerical
models that will be introduced in the next subsection.

2.3 MULTIPHYSICS

A more comprehensive way of modelling the behaviour of the cavity
is by numerically solving the coupled partial differential equations
describing electromagnetic wave propagation, heat production and
transport and thermal expansion. These processes are coupled as il-
lustrated schematically in Figure 2.4:

1. The electromagnetic field distribution is determined by the cav-
ity’s geometry. This determines the distribution of electromag-
netic power deposited into the cavity’s walls.

2. The cavity’s geometry is deformed by thermal expansion.

3. The deformations change the electromagnetic field distribution
and thus the distribution of power deposited into the walls.

When the power distribution generated in the deformed cavity
equals the power distribution causing the cavity deformation, the
system reaches a stationary state. It is this stationary state we will
try to simulate; we will not consider any transient effects. Since we
have to calculate electromagnetic wave propagation, heat conduction
and thermal expansion simultaneously in the same 3D structure, the
problem may become quite intricate and maybe too large considering
our limited computational resources (Section 3.2).
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T

Heat, expansion, 2D

Figure 2.5: The three stages of the coupled simulation.

However, it is possible to partly decouple the system: Since the oc-
curring deformation is on the order of several micrometres (i.e. small
with respect to our typical length scale, even for high rep-rate situa-
tions), the deformation of the electromagnetic field and the deforma-
tion of the walls surrounding it will be practically the same (given
that the system is kept at resonance). In other words, the two (field
and wall) will deform together in the same way. We may therefore
assume that, regarding the interaction between field and wall, the ef-
fects of thermal expansion can be neglected. The resulting simulation
is done in three stages (Figure 2.5):

1. First, we perform a coupled electromagnetic wave and heat con-
duction simulation, where electromagnetic power is injected at
resonance (using the coaxial line). The wave equation is solved
to determine the field distribution and the resulting dissipation
of electromagnetic energy into the cavity walls. The distribution
of the dissipated energy is used to determine the heat transport
and the resulting temperature distribution (note that deforma-
tion is not included here).

2. The computed temperature distribution is then used to deter-
mine the cavity deformation caused by thermal expansion (here,
we will not include electromagnetic waves). During this second
stage the temperature is regarded as a local material property.
The temperature distribution and the cavity’s geometry will
therefore deform in the same way.

3. The deformed cavity geometry is used in a third stage to per-
form again a coupled electromagnetic wave and heat conduc-
tion simulation (at the new resonance frequency). The resulting
heat distribution is used to test the system for self-consistency:
It should be equal to the deformed version obtained in the sec-
ond stage. In this case the system is in a stationary state.

Simulations like the one described above are referred to as multi-
physics simulations. Although most modern simulation packages in-
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Figure 2.6: Locations of the respective domains and boundaries.

corporate some form of multiphysics, we have chosen Comsol Multi-
physics’, since it appears to be the most flexible one. Comsol uses the
finite element method as its mathematical cornerstone (Appendix A).
The various fields (electromagnetic, temperature and material dis-
placement) are calculated by solving the corresponding partial dif-
ferential equations subject to appropriate boundary conditions.

2.3.1 Field equations and boundary conditions

Before presenting and discussing the results of these multiphysics si-
mulations, we will first introduce and examine some of the used field
equations and boundary conditions. We treat the different processes
by following the flow of energy: We start with electromagnetic waves
and then proceed with dissipation, heat flow, temperature distribu-
tion and expansion.

In Comsol, the electric field distribution E (¥) in the photogun is
determined using a generalized Helmholtz equation and appropriate
boundary conditions (Figure 2.6);

qu:l (Vxﬁ)—k(z) <£T—L:SO>E:0, (2.5)
assuming a harmonic time variation. Here, ¢, and p, are the rel-
ative permittivity and permeability of the medium through which
the wave propagates and o is its electrical conductivity. The value
ko = w+/€oHp refers to the vacuum wave number with ¢¢ and o the
permittivity and permeability of the vacuum. Equation 2.5 follows di-
rectly from Faraday’s law, V x E = —9B/dt, and Ampere-Maxwell’s
law, V x B = LLT—I— endE/0t, with T: oF. It is solved in the vacuum
region of the photogun where 1, =1, ¢, =1 and 0 = 0S/m.

Inside the walls (near the surface) the oscillating magnetic field de-
cays exponentially (due to the finite conductivity o = 5.91-10”S/m of
the copper cavity walls [2, p. 336]) with a spatial scale length given by

1 http://www.comsol.com/
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the skin depth & = /2/pwo (the skin depth of copper at a frequency
of w = 2n3GHz is 1.2um). The magnetic field induces a current den-
sity Js that decays exponentially as well (that is, s oc e =%/, with & a
perpendicular depth coordinate). Since $ is small with respect to the
cavity’s dimensions, we may define an effective surface current

—

Keff = JO Ts df =1 x HH/ (2.6)

assumed to exist only at the boundary (we may omit H, here; since
we have 0 > ¢ = ¢, our approximation may neglect electrostatics [2,
p- 3371)- The resulting boundary condition

LT X }jl” + EH =0, (2.7)

is known as the impedance boundary condition (Figure 2.6), with i a
unit vector normal to the boundary surface and ﬁ||, EII the tangential
magnetic and electric field components at the boundary (E is omit-
ted, since 0 > ¢ = ¢¢). The value Z; = \/iwu/o = (1 +1i) /wpu/20 =
wpd (14+1) /2 = (1 +1) /0d, the coefficient of proportionality linking
E” and K¢ is known as the surface impedance [2, p. 339] (actually,
Comsol’s implementation uses a more general version of the impe-
dance boundary condition that includes electrostatics as well).

Since limgy_,o Zs (0) = 0, perfectly conducting walls will have EH =
0. This means that the electrical field along the surface induced by the
electromagnetic waves will be completely cancelled by an induced
tield of equal and opposite size. In case of normally conducting walls
however, E” will be finite and a current K¢ will dissipate power at
the boundary equal to

aPloss o L ]—<’
da 208 ‘ erf
with 0P,s/0a denoting the electromagnetic power loss per unit sur-
face area at the boundary.

Since this power is dissipated in the form of heat, it is described
as a heat flux § = —kVT in W/m? at the boundary (with k the ther-
mal conductivity): It is inserted directly into the thermal simulation
as a Neumann boundary condition. Together with several Dirichlet
boundary conditions (boundaries with known temperature), some in-
sulating boundary conditions and the Laplace equation (V2T = 0), it
will completely determine the stationary temperature distribution.

Using the calculated temperature field T (7), the cavity deformation
caused by thermal expansion and elastic strains can be determined:
The thermal strain tensor is given by &in = ot (T — Tref) 1, with « the
thermal expansion coefficient, T,¢ the temperature at which there are
no thermal stresses and 1 the 3D unit tensor. The total strain tensor is
defined as the sum of the elastic and thermal strain tensors, i.e.

2
, (2.8)

g = (Vﬁ + VﬁT) = @el + éth/ (29)

N —
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with Vii and Vii" the normal and transposed displacement gradients,
respectively.

In a stationary situation, the elastic strains &.; are in equilibrium
with stresses inside the cavity walls described by the stress tensor &.
Their relation is given by a generalized form of Hooke’s law;

A N

6=C:8, =C:(8—%in), (2.10)

with C a fourth rank stiffness (or elasticity) tensor generally having
21 non-zero components (in case of anisotropic materials). In case
of isotropic materials however, C is fully determined by two param-
eters; Ci)’kl = 7\51)'5]{1 +u (6ik6jl +6116jk)/ with A and p the Lamé
coefficients which are related to the more familiar Young’s modulus
E and Poisson’s ratio v by:

Ev B E
A—2v(0+v) "7 20+

A= (2.11)

The displacement field is finally obtained by determining for each
volume element the virtual work done by internal stresses and strains
(the internal virtual work; dW;) and external forces and displace-
ments (the external virtual work; 6W,), integrating over the entire
domain;

SW; = —J 08er : 64V, (2.12)
A\
SW,e = J 5t - FsdS +J 5t - FydV, (2.13)
S Vv

and setting SW = —6W; — dW, = 0. Here, ]_fs, I?v are forces acting
on the surface and within the volume of the domain. This method is
known as the principle of virtual work.

With the displacement field Ui determined, the geometry can be
deformed and used as input for other simulations, such as the third
stage simulations mentioned in the previous subsection.

2.3.2 Important considerations

In order to keep ourselves from overcomplicating the matter, we have
considered simulating only one specific situation up to this point:
The one where a stationary stream of electromagnetic energy from
an external source flows into a cavity and is dissipated there. Some
software packages however, namely Superfish, use internal excitation
(as opposed to external excitation).

This can be done by defining a so-called magnetic current (mea-
sured in volts), that flows through a fictitious loop inside one of the
cells. In case of a 2D axisymmetric simulation, this loop reduces to a
single point. It serves as a boundary condition that forces a nonzero
solution to the wave equation (and is therefore known as the drive
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point). Consequently, since now the cavity has its own wave source,
the external source can be modelled using a matched load. Indeed. If
we picture a situation where a klystron and a cavity perfectly match
the transmission line between them, we see that both klystron and
cavity will dissipate half of the total energy, independent of the ac-
tual location of the wave source. The only thing that will change if
one moves the source from klystron to cavity or back again is the di-
rection of the power flow through the transmission line (in our model,
this equals switching between internal and external sources).

The location of the wave source does become important however,
when the match between cavity and transmission line is less than per-
fect (thus creating a bottleneck). Having this bottleneck might seem
favourable if the source is placed inside the cavity: The losses are
reduced, the quality factor is raised and the same amount of input
energy can sustain much stronger fields. The problem here of course,
is that this very same bottleneck prevents the input energy from en-
tering the cavity in the first place. To prevent misleading results, the
safest approach would be to only consider simulations where the
source is placed outside the cavity (as we have done so far). How-
ever, since sometimes internal excitation is the only option, we will
have to keep in mind the effects of source location and mismatching.

Secondly, we should be aware of the difference between average
power and peak power. If we consider our cavity to be a resonant
structure accelerator, we will only be interested in its peak power
(because during the power peak our electrons will be accelerated). If
we consider our cavity to be a heat source on the other hand, we
will have to take into account its average power. Or to put it more
directly: If we want to simulate fields that will be used to accelerate
electrons, we will have to use peak power. If we want to simulate
power dissipation, heat transport and deformation, we will have to
use average power. After all, it is the average power (and thus, the
necessary cooling capacity) that distinguishes high rep-rate cavities
from low rep-rate ones.

Lastly, since our goal is to perform a numerical and experimen-
tal study of RF-photoguns in general, our simulations should not
depend too much on our benchmark setup’s intended functioning:
Even operating our setup in a completely inappropriate way may
turn out to be an excellent means for validating our simulations. For
example, if we want our model to include deformations typical for
high rep-rate situations, even though our wave source isn’t power-
ful enough to create these situations, we should apply heat in other
ways: By using the cavity’s cooling channels for instance (by pump-
ing hot coolant). Because our models will have to support situations
like these, we will have to add alternative heat sources in the form of
extra boundary conditions.
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Discovering the ins and outs of resonant structure modelling has
proven to be a diverse challenge. This chapter will treat several of its
aspects starting with numerical methods (Section 3.1) and optimisa-
tions (Section 3.2). We then proceed with basic validation (Section 3.3)
and tuning (Section 3.4). The chapter is concluded with some exam-
ples (Section 3.5).

3.1 NUMERICAL METHODS

One of the tools we have used to benchmark our Comsol simulations
is a software package called Poisson Superfish®. Comparable to Com-
sol, Superfish simulates electromagnetic fields inside a cavity using
partial differential equations and boundary conditions. Superfish is
an interesting benchmark for two reasons: To start with, it has earned
its stripes as a reliable resonant structure analysis tool for over three
decades (originally written in 1976). Secondly, since it uses a solving
method that differs from the one Comsol uses, it allows us to examine
the effects of different solving methods on the obtained results.

Instead of using the finite element method, Superfish uses the less
advanced finite difference method. The main difference between the
two methods is the way discretisation takes place. Whereas the finite
element method solves partial differential equations by expanding
the total solution in a linear combination of so-called shape functions,
the finite difference method solves the partial differential equations
by replacing their derivatives with finite differences [5, p. 589-600].

The process of numeric solving can be rather complicated and treat-
ing its details is beyond the scope of this text. Even so, since these
methods form one of the cornerstones of this work, we have exam-
ined their basic principles: A simplified example of both methods
solving the heat equation is included as Appendix A.

3.2 OPTIMISATIONS

When one moves from a theoretical description of what an outcome
should be like to actually calculating the outcome, one will discover
hardware and software limitations play an important role: The prob-
lem has to be specified in such a way that the used computing sys-
tem can determine a reasonably accurate solution within a reasonable
amount of time.

1 http://laacgl.lanl.gov/laacg/services/serv_codes.phtml
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Figure 3.1: The cavity as a 2D or 3D problem.

Our modelling system is equipped with a Core i7-2600 Processor
running at 3.40GHz, 16.0GB DDR3 memory at 1333MT/s (21GB/s),
and a 250GB SATA hard disk at 7.2Krpm (6.0Gb/s). Additionally, we
used Windows 7, 64bit and Comsol 4.2a (4.2.1.166). Using the oper-
ating system’s own tools, we have monitored the processor and mem-
ory activity during simulations. We have found that the amount of
memory forms the most important limitation. The performance dra-
matically decreases as soon as more than 16GB of memory is needed
(forcing the system to use the hard drive).

Consequently, we have done most simulations in two dimensions
(most notably the thermal expansion ones), by ignoring the rectangu-
lar waveguide (Figure 3.1, right) and treating the cavity and coaxial
line as an axisymmetric problem (Figure 3.1, left). Some simulations
have been developed as 2D-3D hybrids, with stages one and two in
two dimensions and stage three in 3D (here, the stages refer to the
ones mentioned in Section 2.3).

In order to further improve performance, we have developed a
meshing optimisation scheme: To start with, we multiply all mesh
spacing parameters by a factor of o = 0.5%/P, with 8 a mesh tuning
parameter and D the number of dimensions used for the geometry.
As a rule of thumb, lowering 6 by one will half the number of mesh
points, the number of degrees of freedom and the amount of memory
needed. As an example we have;

§m (0,D) &{pm}- & = {pm}-0.5%/P
©Sm (0—1,2) & {pm}-0.5071)/2
= {pm}-0.5%2. V2 & 5 (6,2)- V2,

with 5., the average mesh size and {p} a collection of mesh spacing
parameters (since 5., also depends on the geometry itself, we have
used semi proportionality). However, apart from decreasing the total
number of mesh points, lowering 0 will also decrease the quality of
the results. The optimal settings are found by examining the conver-
gence of the results as a function of 6.
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\

Figure 3.2: The spatial distribution of mesh points in a 2D geometry.

Secondly, we improve the mesh by simplifying the geometry: The
spatial distribution of an optimised mesh is mostly based on geom-
etry features (Figure 3.2). The mesh size is increased in large open
spaces and reduced near narrow regions and bends. By removing de-
tails from the geometry that are not crucial to the outcome of the
simulation, the number of mesh points can be reduced by more than
thirty per cent. Lastly, we increase the number of mesh points in
places where high accuracy is important.

3.3 BASIC VALIDATION

Before validating our simulations using detailed temperature and re-
flection measurements, we will first do some basic validation using
existing measurements, cavity theory and Superfish. When working
with Superfish, we have to keep in mind that Superfish does not
support three dimensional geometries or impedance boundary con-
ditions. Instead, the electromagnetic fields are determined using per-
fectly conducting walls in two dimensions. Once the field geometry
is known, the losses are introduced during a post processing step and
field strengths are scaled down accordingly.

This happens to be a pretty good approximation. After all, the
difference between good conducting walls and perfectly conducting
walls is not that large (the frequency shifts only about 128KHz, or
0.0043%). However, if we want to compare Superfish’s results to those
from Comsol, we will have to be aware of the implications: In Super-
fish, the field lines and eigenfrequencies correspond to perfectly con-
ducting walls, whereas other parameters such as the quality factor,
shunt impedance and field strength correspond to normally conduct-
ing walls.

3.3.1 Eigenfrequency

Since the eigenfrequency is the most characteristic property of a res-
onant structure, we will use it as our first benchmark criterion. Since
Superfish’s eigenfrequency corresponds to perfectly conducting walls,

15
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Figure 3.3: Convergence of the eigenfrequency for different solvers.

we use perfectly conducting walls in Comsol as well (normally con-
ducting walls will be introduced later on). The used geometries are
based on our setup’s design drawings.

e Comsol < Superfish (both eigenvalue solvers, perfect conductor,
2D): Figure 3.3 shows the eigenfrequency as a function of the average
mesh size. Superfish starts at 2.999719GHz (5, = 0.880mm) and goes
to 2.998072GHz (31, = 0.050mm). It drops 1647KHz when going from
0.880mm to 0.050mm. The last iteration shows a drop of about 7KHz,
suggesting the eigenfrequency will continue to drop for values 5,
smaller than 0.050mm. A straight line fitted through the last four
iterations (R? = 0.97) suggests an eigenfrequency of 2.998067GHz at
S = 0.000mm.

Comsol shows a much more stable convergence pattern. It starts
at 2.998052GHz (0 = 0, 5, = 4.790mm) and goes to 2.998060GHz
(6 =12,5,, = 0.15Tmm). At 6 = 7 (§,, = 0.865mm), the difference
with respect to the final value is already below 53Hz. The difference
between the last two iterations is less than 6Hz which is on the order
of the numerical noise. We see large differences between Superfish
and Comsol with respect to convergence behaviour (in favour of Com-
sol). Their final eigenfrequencies however, are in good agreement.

e Two dimensions < three dimensions (both eigenvalue solvers,
perfect conductor, Comsol): Since we have determined that Superfish
and Comsol are in agreement, we can move on and compare 2D to
3D (the 3D geometry is a revolved version of the 2D geometry). As a
function of average mesh size, the eigenfrequencies seem to be about
the same (differences are on the order of 1KHz, figure Figure 3.3).
The 2D version starts at 2.998052GHz and arrives at 2.998060GHz (the
same convergence pattern as described above). The 3D version does
not show a clear convergence pattern, as we couldn’t use mesh sizes
smaller than 3.973mm (because of limited computing power).

Judging from the convergence pattern of the 2D case and the lack
of differences between 2D and 3D, the 3D version would have arrived
at 2.998060GHz as well. This means that even though we have never
had the processing power to test the 3D version below 3.973mm, we
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Figure 3.4: The magnetic current and the lossy dielectric.

still can determine our calculated eigenfrequency to be within 6KHz
of its final value (the same error estimation can be done for other
parameters as well, like Q1 or Ry, for instance). These findings be-
come important when 3D is the only option i.e. when including the
rectangular waveguide.

e Frequency scan: magnetic current < eigenvalue solver (2D, per-
fect conductor, Comsol): The frequency scan has several advantages
when compared to the eigenvalue solver. Whereas the eigenvalue
solver can take several hours to complete without giving transparent
feedback about its progress, the frequency scan only takes a couple of
seconds per frequency and gives a live recording of its heading. Fur-
thermore, the frequency scan doesn’t give arbitrary field strengths
and often gives a useful response (even in cases that need multi-
physics or complex geometries). The frequency scan can be stopped
and (re)started at any time and the user may choose frequency inter-
vals and resolutions as he or she wishes.

The magnetic current type frequency scan uses an internal mag-
netic current to excite the cavity. This magnetic current is measured
in volts and flows through a fictitious loop placed inside the right cell
(Figure 3.4). It is Comsol’s analogue to Superfish’s drive point. The
eigenfrequency is found by scanning a suitable frequency interval
using a resolution of 500Hz, and looking for the frequency that max-
imises the electromagnetic energy stored inside the cavity. Figure 3.3
shows a perfect correspondence between the magnetic current type
frequency scan and the eigenvalue solvers.

e Freq scan: magnetic current < freq scan: coax port (2D, perfect
conductor, Comsol): The coax port type frequency scan excites the
cavity externally (using the coaxial line). To our surprise, we find a
consistent difference of about 12KHz independent of mesh size, be-
tween frequency scans that use internal and external excitation (Fig-
ure 3.3). This can be explained as follows: When looking at the solvers
that use internal excitation, we see that the power flows from the cav-
ity to the end of the coaxial line. In order to keep it from reflecting,
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Figure 3.5: Influence of wall conductance on eigenfreq. and electric field.

we should have terminated the coaxial line using a matched load.
However, Superfish does not support matched loads.

Instead, we have terminated the coaxial line using a lossy dielectric
having &, = pu, = 0.6+ 0.8i (in both Superfish and Comsol, Figure 3.4).
Because the magnitudes of ¢, and p, are equal to v0.62 +0.8%2 =1,
there will be no reflections at the vacuum to dielectric interface. If the
length of the lossy dielectric were infinite, all incoming power would
be absorbed (which would make the dielectric effectively the same as
a matched load). However, since the length of the dielectric is finite
(30mm), a small fraction of the escaping power will return, changing
the resonance properties of the cavity.

Indeed. Replacing the dielectric by a matched load resolves the
matter (this can be done in Comsol by removing the dielectric and
adding a coaxial port that is turned off). Magnetic current and coax
port type simulations are now both equipped with a coaxial port (in
the coax port case it’s turned on). They now both converge to the
same eigenfrequency of 2.998072GHz.

3.3.2  Wall conductance

We will study the effects of a finite wall conductance using the im-
pedance boundary condition node in Comsol. We start with a wall
conductance that approaches infinity (this should reproduce the re-
sults we have had so far). After that, we proceed by reducing the
conductance to normal values.

e Perfect conductor < normal conductor (2D, frequency scan:
coax port, Comsol): Figure 3.5 shows the eigenfrequency as a func-
tion of wall conductance (here, we have used external excitation).
For conductance values o > 10'2S/m the eigenfrequency stays con-
stant at 2.998072GHz, and drops to 2.997944GHz when o is reduced
to 5.91-107S/m (the actual conductance of C10100 OFHC Copper).
This is in good correspondence to the design frequency of this cav-
ity; 2.99795GHz. Other parameters follow the same pattern: The un-
loaded quality factor drops from 11.548 - 10° to 11.580 - 103, the shunt-
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Figure 3.6: Magnetic field and heat production along the wall surface.

impedance drops from 50.173 - 10°Q/m to 50.327 - 10°Q/m and the
phase shift (between the cells) drops from 180.000° to 177.638° (note
that this results equals 2.362°; the design value is 2.3°).

Additionally, we have examined the field strengths as a function of
wall conductance (at constant input power). Figure 3.5 shows us, the
on-axis electric field strength drops to about 50% of its original value
when going from perfectly conducting walls to normally conducting
walls. The top curve represents the fields as determined by all perfect
conductor type solvers (in order to compensate for the eigenvalue
solver’s arbitrary field strengths, these are all normalized to one).

Finally, we have validated dissipation and thermal expansion: We
have checked that the distribution of electromagnetic power deposited
into the cavity’s walls follows the local magnetic field distribution (as
the used boundary conditions would suggest). That this is indeed the
case, is shown in Figure 3.6. Thermal expansion has been validated by
heating the cavity up to a certain point and checking if the acquired
expansion corresponds to what one would expect given the thermal
expansion coefficients used.

Judging from the nice correspondence and stable convergence of
all results up to this point, our basic validation seems to be complete.

3.4 TUNING

One of the main points of having a valid model is the ability to max-
imise performance by optimising various input parameters. In the
case of the 1.5-cell TU/e gun, we will examine the geometry’s influ-
ence on the structure’s performance.

As an example, we will vary the position of the antenna (the inner
conductor of the coaxial line) and determine if a position closer to or
farther from the iris would be preferable. To start with, we will choose
a performance criterion: The amount of power needed at resonance
to establish field strengths equal to the ones mentioned in the design
specifications. More specifically, when looking at the on-axis electric
field, we want the average of the two peak heights to be 110MV/m.
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Secondly, we will choose a parameter definition: The distance in mil-
limetres between the antenna’s tip and the centre of the right iris.

This illustrates our challenge: For each value of the antenna’s posi-
tion, we first have to find the eigenfrequency and secondly, we have
to determine how much power should be applied to get the desired
field strengths. The situation gets even more complicated when ther-
mal expansion is included. In that case, the eigenfrequency will not
only depend on the parameter’s value, but also on the amount of
power applied.

Clearly, the methods we have used so far are impractical: The eigen-
frequencies have to be picked by hand, the resolutions are 500Hz at
best (higher resolutions are possible, but not without increasing the
number of iterations beyond unpractical levels) and there is no easy
way to determine the amount of power needed. Using these scans to
find optima will therefore be an extremely laborious task.

3.4.1 PPF-Scans

Our solution is to combine a coax port type simulation with multi-
dimensional scans and polynomial interpolation. To start with, we
equipped our simulations with a large number of probes. These al-
low us to get a maximum insight into the system’s reaction to our
input parameter. They can be applied to domains, boundaries, edges,
points or the system as a whole. They measure the amount of power
dissipated, the amount of energy stored, reflections, phase shifts, field
strengths, voltage gains, temperatures and many more. Consequently,
each separate simulation generates a (large) dataset, stored in a so-
called accumulated probe table.

We then proceeded by adding a multidimensional scan (a nested
parametric sweep): Comsol will apply several parameter values. For
each parameter value, it will apply several power levels and for each
power level, it will apply several frequencies (this is why we dubbed
it the Parameter-Power-Frequency scan, or PPF-scan for short).

In our example, the input parameter’s design value is 3.165mm,
at 40°C (as dictated by the TU/e). In our sweep, we will use the in-
terval [3.00,0.05,4.00] mm, at 40°C (where the first value is the start-
ing point, the second value is the step size and the third is the stop-
ping point). Additionally, the frequencies and power levels will be
[2997890, 30,2998010] kHz and [2.00, 1 .00,4.00]2 MW (where we have
squared our power levels in order to achieve a linear increase in field
strength). Comsol will iterate through 21 parameter values, 3 power
levels and 5 frequencies, creating a collection of 315 datasets;

D= {6 eC™: D (Xi,pj,fk) = [d] (Xi,pj,fk) A

-, dn1 (x4, pj, i), dn (Xi,Pj,fk)]T, VXi,Pj,fk},
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where 1, j, k are integers, x;, p;, fx are the used PPF-values, d is the
probe data and n is the total number of probes. Once these datasets
have been created, they will be exported into a PPF-script, that puts
them in a three dimensional array (having dimensions 21 x 3 x 5).
The main goal of this script is to collapse the dimensions, leaving us
with one single dataset (note that we will need orthogonality here;
the PPF-values shouldn’t be dependent on one another). This dataset
will then contain all the information that we would have obtained,
had we done the simulation using the optimum antenna position and
the correct amount of power, at resonance.

We start by collapsing the frequency dimension. From cavity the-
ory, we know the relation between the angular frequency and the
electromagnetic energy stored inside the cavity to be

U 1 (3.1)

(w—w?)? + (w°/2Q)*

with w® the angular eigenfrequency and Q the quality factor of the
cavity [2, p. 357]. When dw = w — w® approaches zero, we have

. 1 (w— wo)z
lim U 5 — T
Sw=0 (w/2Q)"  (w°/2Q)

(3-2)

i.e. close to the eigenfrequency U (w) can be approximated by a para-
bola (and its derivative by a straight line).

This allows the PPF-script to find the 21 x 3 eigenfrequencies: It
iterates through all used parameter-power combinations; x;, p;. For
each combination, it checks all used frequencies fy and picks the one
(that we will label fy) that has the largest energy stored value in its
dataset. Then, it uses finite differences;

1
(fo+f-1), fi1 =5 +f0),

AU_y =U(fo) =U(f1), AU, =U(f11)—U(fo),

f_1=

NI
N —

N

and first order polynomial interpolation (Figure 3.7);

fe:fi% —|—f+1 , VXi,p]’,

where f_; and f,; are the previous and next frequencies respec-
tively, U (fy) is the energy stored value in the dataset of fy and f. is
the to-be-determined eigenfrequency. There is one value f. for each
parameter-power combination i.e. fe = fe (xi,pj). Tests have shown
that even for frequency resolutions of fix — fx_1 = 30kHz, the accu-
racy of fe is < 75Hz. This is on the order of the accuracy of the simu-
lations themselves (assuming a mesh parameter of 6 = 6 is used).
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Figure 3.7: Use of first order polynomial interpolation to find fe.

The datasets corresponding to the eigenfrequencies, D (xi,pj,fe),
are obtained by assuming all probe data shows a second order de-
pendency on f at most i.e. dy, (f) € P, Vm. This allows us to use
polynomial interpolation once more;

D (fe)=D (f_1)-L_q (fe)+D (fo) - Lo (fe)+D (f11) - Lyq (fe),

for all x;, pj, where L_; (f), Lo (f) and L4 (f) are the second order
interpolating Lagrange polynomials corresponding to the nodes f_j,
fo and f (thatis; Ly (fx) =1, Lk (fi) =0, Vk, 1, 1 # k). For frequency
resolutions of fi — fx_; = 30kHz, the acquired values d., (fe) were
tested to be off by about 1-1072 to 1-107%%, when compared to the
values determined by a simulation actually running at fe.

Now, by replacing the dataset collections D (fy) by the single data-
sets D (fe) for all values of x; and Pj, we have effectively collapsed
the frequency dimension:

D (Xi,Pj,fe) =D (Xi;pj/fe (Xi/pj)) =D (Xifpj) ’ VXi,Pj-

In order to collapse the power dimension, we use P o IEIZ: The
script iterates through all used parameter values. For each value, it
checks all used power levels p; and picks the one (that we will label
po) that has the electric field peaks closest to TT0MV/m. Then, it
determines the average peak heights for p_1, po, and p1;

E+] = E (E] (p+])+F—2 (p+] ))I vxi/

with p_7 and p,1 the previous and next power levels respectively
and E' (p;), E? (p;) the two electric field peak values in the dataset of
P;- The correct power levels are then determined by setting the value
E. = 110MV/m and using second order polynomial interpolation;

Pe=p-1-L1(Ec)+po-Lo(Ec)+pi1-Lyr(Ee),  Wxi,
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with p. the to-be-determined power level and £_; (E), £o(E), £ (E)
the second order interpolating Lagrange polynomials corresponding
to the nodes E_1, Eg and E ;. There is one value p. for each param-
eter value i.e. pc = pc (xi).

The datasets for the correct power levels, D (xi,pc), are obtained in
the same way as for D (xi,pj, fe), but with one important difference:
Some of our probe data shows a half order dependency on p that is;
dm (p) < \/p, preventing a proper second order polynomial fit. This
is solved by a variable transformation: When using the nodes ,/p; in
the Lagrange polynomials instead of pj, root functions will change
into first order ones and first order functions will change into second
order ones, allowing second order interpolation nonetheless;

D (pc)=D (p_1)-£_1(v/P)+D (po) - Lo(vP)+D (p11) - L£41(vPe),

for all x;, with £_; (\fp), £o (\fp) and £ (ﬁ) the Lagrange poly-
nomials corresponding to the nodes \/p—1, \/po and /p11. As before,
this allows us to collapse a dimension;

D (xi,pc) = D (xi, e (xi)) =D (x1), Vx4,

leaving 21 datasets (one for each parameter value). These allow us to
plot probe data as a function of x; dm (X).

Finally, we may choose to collapse the last dimension as well. The
most straightforward way to do this is to find the smallest amount of
power needed to maintain the required field strength;

P(xi) <P(x5), Vi, j#1,

and use finite differences and polynomial interpolation once more
(in case P is applied using the coax port and x refers to the antenna
position, P (x) tends to resemble a parabola; Figure 3.8). The result is
one dataset D (Xc, Pe,fe) containing all probe data for a single, but
optimal situation.
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TU/E VALUES DEFAULT OPTIMUM

T(°C) 40 40.00 40.00
x(mm) 3.165 3.165 3.425
fe(GHz) 2.99795 2997944  2.997952
Fap(dB) — —29.869  —41.788
©sn(?) 23 2.362 2.357
Pin (MW) 8.5 8.315 8.308
Ploss (MW) 8.5 8.301 8.303
Eo(]) 5.0 5.103 5.107
Ep1(MV/m) 110 109.060  108.953
Epr(MV/m) 110 110.940  111.047
Epw(MV/m) 100 100.807  100.905
Up(MV) — 5.599 5.600
Qut 11278 11580.266  11585.469
Reh(MQ/m) — 50.327 50.343
Rsn/Qui(kQ/m)  — 4.346 4.345

Table 3.1: PPF-scan results compared to values provided by the TU/e.

Temperature of the cavity.
Position of the antenna.
fe Eigenfrequency of the cavity.
I'aB Power reflected back into the coaxial line.
@sn  Phase shift between the cells.
Pin  Power inserted into the coaxial line.
Pioss Power dissipated inside the cavity.
Es¢  Energy stored inside the cavity.
Ept Maximum on-axis field strength in the left cell.
Ep,r  Maximum on-axis field strength in the right cell.
Ep,w  Maximum field strength at the left iris surface.
Uo Total voltage gain.
Qui  Unloaded quality factor.
Rsh Shunt impedance.



3.4 TUNING

3.4.2 Results

The optimum antenna position turns out to be x = 3.425mm. The
resulting dataset is listed in Table 3.1 (rightmost column), together
with results from simulations using default settings (the antenna’s
default position, its design value is 3.165mm, at 40°C) and results
from simulations done during the gun’s design process (as provided
by our TU/e colleagues).

The cavity-coax border used to obtain these values has been de-
fined to be at the centre of the right iris (Figure 3.8). Apart from
defining what readings are from in- or outside the cavity, it sets the
length of the integration path used for Uy and Rg1. As can be seen,
our values are in fairly good agreement with the ones used in the
TU/e design. Moving the antenna from 3.165mm to 3.425mm leads
to a small but significant improvement.

3.4.3 Discussion

Finally, even though the PPF-scan already achieves significant im-
provements performance-wise, it is often worth the effort to look for
ways to reduce the computational costs even further. For example, in
order to obtain the results mentioned above, we should have included
expansion, but we didn’t. Instead, we utilised the fact that this specific
cavity (the one in our test setup) is designed for very low rep-rates
(about 3Hz). During operation it is supposed to be kept at a constant,
uniform temperature of 40°C, independent of antenna position, peak
power, average power or frequency. This allows us to use the original
design drawings, scaled up to 1+ «AT = 1.000338 (with « the ther-
mal expansion coefficient and AT the difference between fabrication
and operating temperature; 20°C).

We used this approximation primarily because we know expansion
simulations to be quite costly (even without scans). Moreover, having
no expansion means having no power level dependent eigenfrequen-
cies either (for each x;, our PPF-script may use the same f. for all p;).
It also means having no higher order effects in the relation P IEIZ,
which allows us to test one single value P, check |E|, and use the re-
lation P IE\2 to scale up or down accordingly. Besides, once the
values x., p. and f. have been obtained, it is a fairly easy task to
include expansion still and check if the assumptions were correct. If
not, at least we have a fairly good first approximation.

All in all, expansion can often be excluded from low rep-rate si-
mulations (which should not have come as a surprise). Even so, we
have included the expansion option in our simulations as well as our
PPF-scan algorithms. After all, our goal is to develop simulations that
support low rep-rate studies as well as high rep-rate ones.
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3.5 EXAMPLES

During this project we have done many simulations, most of them
have not been discussed here. We have included several of these si-
mulations in Appendix B.



EXPERIMENTAL STUDY

This chapter starts by describing the setup on which all measure-
ments have been performed (Section 4.1). We then proceed by treating
some measurements specifically, starting with temperature gradient
measurements (Section 4.2). The chapter concludes with RF-reflection
measurements (Section 4.3) and phase thermostration (Section 4.4).

4.1 SETUP

Figure 4.1: Photo of the TU/e 1.5-cell S-band gun.

The setup primarily consists of a six year old normal conducting
low rep-rate 1.5-cell 2.998GHz S-band gun from the Eindhoven Uni-
versity of Technology (Figure 4.1). Since its beam line has been dis-
mantled for years and since it has not been properly trained for years
either (due to discharges occurring inside the cavity and waveguides,
we have not been able to feed more than about TMW of electromag-
netic power into the cavity), we have chosen to decouple the klystron
and connect the rectangular waveguide to a network analyser. Fur-
thermore, we have restored and improved its temperature control
systems and designed and installed a multichannel thermometer.

Although the setup in its present state cannot produce an electron
beam (it has no klystron, no active bucking coil or solenoid, no ex-
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Cavity Coaxial line
Sink
Heat source
——— Sink

Backplate

Figure 4.2: Location of the photogun’s heat sources and sinks.

citation laser and no beam line), we have performed several fruitful
experiments. After all, our goal isn’t to accelerate electrons; our goal
is to validate our models. This gives us some freedom to improvise:
During the experiments we have used the temperature control sys-
tems to establish several well-defined temperatures and temperature
gradients, while examining the cavity’s temperature distribution and
resonance behaviour. The results have been used to benchmark our
analytical and numerical models.

4.1.1  Network analyser

The electromagnetic properties of the system have been studied us-
ing the Rohde & Schwarz ZVHS8 cable and antenna analyser. This net-
work analyser applies small amounts of electromagnetic power and
measures the cavity’s reflection as a function of frequency. In order
to get realistic operating conditions, we have put the cavity under the
same vacuum as used during particle acceleration (=~ 10~mbar).

4.1.2  Temperature control

First, we will briefly describe the existing temperature control sys-
tems (the modifications that we added in order to perform our ex-
perimental studies are introduced later on): Under normal operating
conditions, 75W of electromagnetic energy is dissipated in the cavity
(on average). Since the cavity is mounted inside a vacuum chamber,
its thermal insulation is rather good in the radial direction. In the lon-
gitudinal direction however, there are two main heat sinks; one at the
backplate and one near the coaxial line (Figure 4.2).

At the backplate (near the cathode) a cooling ring has been moun-
ted with a 6mm diameter cooling channel. Through this channel
coolant (demineralised water) is pumped by a gear pump with a flow
rate of about 31/min ensuring turbulent heat transmission (Reynolds
number is on the order of 105). Outside the photogun, the coolant is
fed through a 175W Peltier system that can add or remove heat as
needed. A Proportional-Integral (PI) controller connected to one of
the thermocouples mounted in the cavity wall regulates the Peltier
system’s power supply. It is able to keep the temperature inside the
cavity constant within 0.05°C.



4.1 SETUP

Figure 4.3: Normal and thermal image of the used heating wire.

At the other side (near the coaxial line) however, no cooling or
heating elements have been installed. The cavity is clamped directly
onto a copper waveguide resulting in good thermal contact between
the cavity and the setup’s environment (we have confirmed this using
temperature probes and a thermal camera). On this side, blowing or
walking by easily causes temperature variations of about 0.5°C or
more (normally this does not have to be a problem since the area is
evacuated during operation).

Now (returning to the present situation), in order to control the
temperature near the backplate, we have modified the already in-
stalled PI-controlled system by replacing its wall-mounted thermo-
couple with one placed inside the coolant reservoir. This way, the two
thermocouples in the cavity wall both become available for tempe-
rature measurements. Admittedly, it also causes the system to have
a shorter reaction time since the cavity’s heat capacity has been re-
moved from the feedback loop. This however, has had no consequen-
ces for our experiments.

Realising accurate temperature control near the coaxial line has
been less obvious: We have wrapped a heating wire (normally used
during bake-out) around the waveguide (Figure 4.3) and added some
insulation. The heating wire is connected to a variable power supply,
allowing us to manually control the applied heat. Not surprisingly,
since there is no feedback loop of some sort, typical times needed
to reach stable temperatures (within 0.05°C) are on the order of 4-6
hours (with regular monitoring and manual feedback). Nevertheless,
when combined with the PI controller, this allowed for rather precise
temperature control on both sides of the photogun.

4.1.3 Multichannel thermometer

Initially, the photogun was equipped with two temperature probes
(two thermocouples mounted inside the cavity wall). However, two
probes are not sufficient to test our numerical models. Since our
heat simulations need several realistic Dirichlet boundary conditions
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Figure 4.4: Location of the used temperature sensors.

(boundaries with known temperature), we need multiple simultane-
ous temperature measurements.

This creates the need for an accurate multichannel thermometer:
The sensors we have used are of the semiconductor type; LM35-DZ.
We’ve chosen LM35 sensors since they are cheap and easy to install,
have high output levels proportional to temperature (no amplifica-
tion needed) and do not require cold junction compensation (as op-
posed to thermocouples). In order to compensate for their disadvan-
tages (low accuracy and sometimes, instability) we have carefully cali-
brated them (increasing relative accuracy from +3°C to £0.01°C) and
applied redundancy (using them in pairs). More details on the multi-
channel thermometer are included as Appendix C.

4.2 TEMPERATURE GRADIENT MEASUREMENTS

In order to study the thermal behaviour of the system, we have sub-
jected the cavity to several heat gradients (in the longitudinal direc-
tion). These gradients have been applied by fixing the backplate tem-
perature of the photogun significantly above or below the environ-
ment’s temperature and waiting for the coaxial line temperature to
become stationary as well (we have not used the heating wire).

Figure 4.5: Two LM35 sensors clamped against a steel flange (Ch9, 11).



4.2 TEMPERATURE GRADIENT MEASUREMENTS

4.2.1  Measuring

Measuring the resulting temperatures is done using the multichannel
thermometer. A total of 12 channels has been used; 2 internal (the
two thermocouples) and 10 external (the LM35 sensors, Figure 4.4):

0 Reference channel (used to identify the other channels).
1,2 Coaxial line; surface (copper).

3 Not used (unstable).

4,6 Reservoir; coolant (demi water).

5,10  Cavity wall; thermocouples (right, left cell, copper).
7,8 Flange; coaxial line, surface (left, right flange, steel).
9,11 Flange; backplate, surface (right, left flange, steel).
12,13 Environment (solenoid surface; steel, ring; copper).
14,15 Not used (unstable, vacant).

Channels 1,2,7,8,9,11 are all connected to LM35 sensors clamped
against the photogun’s outer surface (Figure 4.5). In order to increase
thermal contact with the surface and minimise thermal contact with
the environment, thermal paste and cork is used. Channels 12,13 are
clamped against surfaces as well, but without insulation (they are in-
tended to measure the temperature of the setup’s environment, the
lab temperature). Channels 4, 6 are connected to LM35 sensors sub-
merged in coolant. The coolant is kept turbulent by a flow rate of
about 3l/min and insulated from the environment (all tubing has
been insulated and a thermos bottle is used as a reservoir, leakage
has been checked using a thermal camera). The remaining channels
(5,10) are connected to the cavity’s thermocouples.

We have applied two gradients, with coolant temperatures of 1.25°C,
47.55°C and coaxial line temperatures of 10.97°C, 36.70°C. We have
waited until these temperatures became fairly stable (AT < 0.15°C
in 5 minutes), and taken data for over 6 minutes at a sampling rate
of about 0.42Hz. In order to reduce noise, a Gaussian-shaped moving
average with a standard deviation of 60 seconds has been applied dur-
ing post processing. The averaged value of measurement 75 (exactly
halfway the 6 minutes measuring interval) is listed as the final result.
Since temperature differences between channels are rather large (or-
der of 10°C), we have chosen +0.05°C as our expected measurement
error (as explained in Appendix C).

4.2.2  Modelling

In our thermal simulations, we have used the measurements from
channel 2 (copper), 6 (coolant) and 7,8, 9 (steel) as boundary condi-
tions (Figure 4.6), and determined the temperature values of both
thermocouples. The measured and simulated values are shown in
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Figure 4.6: Temperatures applied as boundary conditions in thermal model.

Figure 4.7. As can be seen, the measured thermocouple values are sig-
nificantly closer than simulated (ATs ;9 = 0.37°C instead of 1.71°C).
It thus appears we have used unrealistic parameters for the cavity’s
thermal resistance (assuming the used equations and solving meth-
ods are valid).

Indeed. While the material between the two thermocouples con-
tains practically no interfaces (resulting in direct thermal contact;
ATs 10 x Qx1/k1, with x; the distance and k; the thermal conductiv-
ity), the material between the thermocouples and LM35 sensors actu-
ally contains several: AT, 5 oc Q (x1/k1 +1/hy +x2/k2 +1/hy+---),
where h; and h, are heat transfer coefficients. Since we have ne-
glected hy, hy, --- in our model, our simulated values for AT, 5 and
ATg,10 have become too small, making ATs 19 too large.

4.2.3 Discussion

What this experiment tells us is that, using our current setup, we are
not able to determine what is actually going on inside our photogun
(heat-wise that is); there is too little data and too much unknown.

Admittedly, we could have acquired estimates for heat transfer co-
efficients from literature, but this would still have left us with the
problem that we are unable to accurately verify them. The main prob-
lem here, is that the material between our measuring points contains
several interfaces. Since these interfaces are placed in series, we are
unable to determine how much each interface contributes to the to-
tal measured temperature gradient. Besides, we are left with several
other issues as well:

e Too much detail: In our setup, axial symmetry has been broken
in many ways; the cavity’s walls are full of holes (in the longitu-
dinal direction). We have not been able to determine how this in-
fluences the heat distribution, since 3D models containing such
detail would have required far too much computational power.

e Direction: In our setup, we have applied heat gradients in the
longitudinal direction. In existing high rep-rate designs how-
ever, heat primarily flows in the radial direction. This is impor-
tant since the heat crosses different interfaces in this direction
(the materials might be isotropic, the geometry is not).
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Figure 4.7: Measured and simulated temperature values compared.

o Interface related issues: To start with, the cavity parts are clam-
ped together. We have not been able to determine how clam-
ping pressure influences heat transfer. Additionally, there is a
coolant-copper interface. We have not been able to determine
the roughness or cleanliness of the cooling channel allowing us
to use heat transfer coefficients from literature, and we have not
been able to measure the heat transfer coefficient directly.

e Sensor attachment: The sensors at channels 1,2 have been cal-
ibrated simultaneously and attached side by side on the same
copper surface. They have not shown any signs of instability.
When the surface reaches temperatures significantly above or
below the temperature of the environment however, their read-
ings start to differ (up to ATy, ~ 0.4°C, this is why we have
used channel 2 in our models; its readings have always been
closest to those from channel 6). The reason for this is proba-
bly just an incorrect attached sensor at channel 1 (the sensors at
channels 1,2 are attached under difficult conditions), but since
we cannot be absolutely sure of this, we have chosen to raise the
error estimate for all LM 35 sensors clamped to the outer surface
(to +0.2°C, not for temperature stability of course; just for the
temperature reading itself).

Considering all of the above, we recommend using numerical as
well as experimental prototypes during the development stages of
high rep-rate photoguns. Although we have every reason to believe
the equations and solving methods used in numerical models are
valid, we are not convinced this is enough to ensure reliable results.
For example; in some areas, heat fluxes inside a high rep-rate cavity’s
wall may approach 108W/m?2. When heat fluxes are that large, even
small errors in the heat transfer coefficients h are enough to spoil
simulation results (that is; AT < Q/6h).

In cases like these, numerical prototypes shouldn’t be seen as a
substitute for experimental ones; they should be seen as an extension
(note that these prototypes do not necessarily have to resemble the
end result, they just should allow for validation).
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Ch2°C Ch5°C Che°C Chl10°C ATLC AT6°C  Atmin

2247 2247 2248 22.47 +£0.01  0.01 27
45.07  45.06  45.03 45.05 +£0.02  0.04 19
22.52 22.53 22.53 22.52 +0.01  0.01 16
45.04  45.00  45.00 45.01 +0.01  0.04 10

37.61 37.57 37.54 37.56 +£0.02 0.07 7

| B~ W N =

29.94 30.04 30.08 30.06 +0.02 0.14 8

Table 4.1: Temperatures measured during the reflection experiments.

4.3 REFLECTION MEASUREMENTS

The electromagnetic properties of the system (in relation to heat) has
been studied by examining its resonance behaviour at different con-
stant temperatures using measurements and simulations. These tem-
peratures have been applied using the PI controller and the heating
wire. We have not applied any temperature gradients, since these are
difficult to simulate accurately (see discussion in the previous subsec-
tion; Section 4.2.3).

4.3.1  Measuring

Measuring the resulting temperatures is done using our multichannel
thermometer (the sensor configuration is the same as for the tempera-
ture gradient measurements; Section 4.2.1). In order to determine the
resonance behaviour, frequency scans have been applied (we mea-
sured the magnitude and phase of the cavity’s reflection). We used
the following settings:

Device: Rohde & Schwarz ZVHS8 cable, antenna analyser.
Mode: Network analyser (measure reflections; S11).
Centre: 2.995GHz (centre of interval).

Span: 10MHz (length of interval).

Band width: 10kHz (band width of a single measurement).
No points: 1201 (number of measurements in interval).

Trace mode: Average, 10 (moving average of 10 measurements).

In total, we have done 6 measurements, at 4 temperatures (in in-
crements of 7.5°C; about 22.5, 30.0, 37.5 and 45.0°C). The tempera-
ture at the backplate reached fairly stable values after about 2 hours
(AT < 0.01°C in 10 minutes). The temperatures near the coaxial line
however, took a bit longer (about 4-6 hours), and were less stable;
AT < 0.02°C in 10 minutes.
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Figure 4.8: Comparison of measurement and simulation (no correction).

The temperature measurements have been done the same way as
in Section 4.2.1, but with different timing and accuracy: Instead of
picking measurement 75, we’ve picked measurements done around
the same time as our frequency scans (exact timing hasn’t been pos-
sible, but given the achieved temperature stabilities this should not
be a problem). As for the accuracy; we have chosen +0.2°C for the
LM35 sensors clamped to the outer surface (see discussion in the pre-
vious subsection, Section 4.2.3), £0.05°C for the thermocouples and
+0.01°C for the other sensors (as explained in Appendix C).

The measurement results from our most relevant channels are listed
in Table 4.1. Here, AT, refers to the temperature stability (within
10 minutes), AT, ¢ refers to the total temperature gradient (between
channels 2,6) and At refers to the time discrepancy in minutes be-
tween temperature measurement and frequency scan (note that we
have tested reproducibility as well; the measurements 3,4 were done
three weeks later than 1,2). The corresponding results from the fre-
quency scans are listed in the next subsection; Table 4.2.

4.3.2  Modelling

Like before, we have used the measurements from channel 2 (copper),
6 (coolant) and 7,8, 9 (steel) as boundary conditions in our thermal
simulations (this time, the values of channel 2, 6 were about the same
and heat flows through the cavity walls were minimal). The tempe-
rature distribution that formed has been used to determine the ge-
ometry’s expansion (second stage). The expanded geometry is used
in electromagnetic wave simulations (third stage). The resulting reso-
nance behaviour is shown in Figure 4.8, together with an actual mea-
surement from our network analyser.

Although the general behaviour is reproduced rather well, the de-
picted curves do not match, suggesting differences between model
and measurement. How large these differences are however (and
whether they’re within specifications), remains less clear. In order to
solve this problem, we have fitted our models to the measurements:
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Figure 4.9: The four parameters of the absorption spectrum.

The corrections needed to achieve this have allowed us to get an indi-
cation of the differences between measurement and simulation.

To start with, there are several corrections that can be applied with-
out correcting the model itself. For instance; without losing validity,
the phase curve can be shifted up and down (the zero-point is arbi-
trary) and an extra slope can be added to it (which is equivalent to
elongating the optical path length; we added about 1.4m). The mag-
nitude curve is shifted down with 0.9dB. This seems reasonable since
the simulations exclude several parts of the experimental setup, sit-
uated between the cavity and the measurement point (the network
analyser’s antenna or the RF window for instance).

However, once these corrections were applied, there were still some
differences left. In order to minimise these, we defined four parame-
ters to characterise the measured absorption curves; 1) the magnitude
difference, 2) the frequency difference, 3) the magnitude average and,
4) the frequency average (Figure 4.9):

aln = (Pﬂ - PO) 7 a%n = (f7(eT - fg) ’ (41)

1 1
an =5 (P +P), a =5 (fE+7fe). (4-2)
Here, aln, a%n, a,3n, and afn refer to the four parameters, P”, PO refer

to the measured magnitude (in dB) of the m-mode’s and 0-mode’s
absorption line and f7, fO refer to the T-mode’s and 0-mode’s eigen-
frequency respectively (the r-mode is the one at near 2.998GHz).

The values P™, P9, f7 and fg are found by fitting second order
polynomials to the measured absorption lines (using the same meth-
ods as used by our PPF-script; Section 3.4.1). Using high resolution
scans, we have determined them to have accuracies of about +0.2dB
and +200Hz respectively (even though the original scans used resolu-
tions of 25/3kHz). After having defined these parameters for our sim-
ulated absorption curves as well (with accuracies of about +0.05dB
and +50Hz), we have minimised the differences between measure-
ment and simulation (that is; al, —al = 8a' — 0, where i is the pa-
rameter number and al,, al are the parameters from the measured
and simulated absorption spectra respectively).
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ffGHz P™dB fOGHz P°dB AZ,mm ARjum ATPC

1 299896 —16.5 2992573 —114 —1.136 15 2.95
2 2997820 —18.1 2991435 -—-10.7 —-0914 2.7 1.25
3 2998966 —l6.7 2.992574 —-114 —1.110 1.5 3.00
4 2997822 —18.0 2991434 —109 —0.949 2.7 1.33
5 2998198 —17.6 2991810 —11.0 —0.994 24 1.77
6 2.998580 —17.2 2992188 —11.0 —-1.032 2.0 2.28

Table 4.2: Overview of spectrum values and used correction factors.

For this, we have used three degrees of freedom. The first degree
of freedom used is the antenna’s position (the same as the one men-
tioned in our PPF-scan example; Section 3.4.1). This one mostly in-
fluences a!, and a2. The second one (the ratio between the cell’s
diameters) is used to tune a2, and a third one (the cavity’s fabrica-
tion temperature), is used to set ai. These degrees of freedom are
orthogonal enough to allow for three simultaneous root finding algo-
rithms (each one optimising one degree of freedom). As stop criteria
we have used 5a', 6a3 < 0.1dB and 6a?, §a* < 400Hz. The resulting
fit is shown in Figure 4.10.
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Figure 4.10: Comparison of measurement and simulation (with correction).

For each measurement (numbered the same as in Table 4.1), the
resulting eigenfrequencies, absorption line magnitudes and correc-
tion factors are listed in Table 4.2. Here, AZ, refers to the position
of the antenna (in millimetres at 20°C), relative to the design value
(3.164mm, at 20°C). A negative value corresponds to a position closer
to the iris. Furthermore, ARy and AR, = —AR; denote the radii correc-
tions of the left and right cell respectively (positive means larger), and
ATy is the correction of the fabrication temperature (a positive value
means a higher fabrication temperature and thus a smaller cavity at
the reference temperature; 20°C).
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Figure 4.11: Temperature dependence of AR; and location of steel rim.

When comparing Table 4.1 and Table 4.2 it appears that the correc-
tion factors depend linearly on temperature. The temperature depen-
dence of the antenna’s correction factor AZ, is the one least signifi-
cant and most easily explained: AZ, becomes smaller with increasing
temperature, suggesting that in the simulations the antenna heats up
and expands more than in reality. Given that we do not know the an-
tenna’s actual temperature and given that the temperature of the one
in our model had to be based partly on guess work, the simulations
seem adequate: They suggest the real antenna is placed 1.0 £0.Tmm
closer to the iris than the one in the design drawings (which is not
unlikely since its position has been adjusted several times).

The explanation for the temperature dependence of ARy is less ob-
vious however. It appears that ARy increases with increasing tempe-
rature (Figure 4.11). Apparently, the left cell doesn’t expand enough
in the simulations. A possible explanation could be the presence of a
stainless steel rim between the vacuum chamber and the cavity, limit-
ing the expansion of the left cell (Figure 4.11, it has a lower tempera-
ture and a lower thermal expansion coefficient). Since the photogun’s
design drawings aren’t clear about the mechanical and thermal con-
tact between the rim and the cavity, we may reduce the rim without
losing validity (creating a gap between rim and cavity). The resulting
values for two of the six measurements are listed in Table 4.3.

4.3.3 Discussion

Table 4.3 shows fairly constant values for AR;. Assuming the initial
model represents the original design and the fitted model represents
the actual setup, this suggest the left cell’s radius is 1.2-1.3um larger
than originally intended (meaning the right one is equally smaller).
As a side effect, the temperature correction becomes stable as well
(note that the temperature and radius corrections are interchangeable;
a temperature correction of 1°C equals a radius correction of about
0.7um). The resulting model reproduces the measured values quite
well over a temperature interval of more than 20°C.
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ffGHz P™dB fOGHz P°dB AZ,mm ARjum ATPC

3 2998966 —l6.7 2.992574 —-114 —-1.110 1.3 3.22

4 2997822 —18.0 2991434 —-10.9 —0.965 1.2 3.01

Table 4.3: Overview of results obtained using a reduced steel rim.

4.4 PHASE THERMOSTRATION

When examining measurements 3 and 4, we see that the spectrum
shifts with about 50kHz/°C (as it should considering the thermal ex-
pansion coefficients used). Furthermore, when looking at the phase
curve depicted in Figure 4.10, we see that within a small frequency
interval (about 70kHz), the phase becomes linearly dependent (R? =
0.999) on the frequency (with a slope of about —1.2° /kHz).

Now; if we measure the phase of the reflected signal at one specific
frequency (close to the eigenfrequency), a temperature change of 1°C
leads to a phase change of about 50 - 1.2 = 60°. Therefore, monitoring
the phase should be an accurate way to detect temperature changes:
It could greatly improve cavity thermostration. To investigate this, we
have done several measurements regarding phase stability.

4.4.1  Measuring

Measuring the temperatures and resonance behaviour has been done
the same way as for the other experiments (Section 4.2.1, Section 4.3.1;
using our multichannel thermometer and network analyser). How-
ever, we now deliberately create temperature changes of +0.4°C by
varying the current through the heating wire every 15-30 minutes.
The resulting temperature and phase changes have been measured
during extended periods of time (up to several hours).

One of the results is depicted in Figure 4.12. Here, we have con-
verted the phase signal to degrees Celsius, using the coefficient of
proportionality mentioned before (60°/°C). As we can see, the con-
verted phase curve follows the same pattern as the thermocouples,
but with better stability. Stationary measurements suggest the noise
on the phase signal has a standard deviation of about 0.1°, corre-
sponding to 0.002°C; certainly more stable than the thermocouples
and (to a lesser extent) the LM35 sensors. This, indeed, promises to
be a very accurate way of determining temperature fluctuations.

4.4.2 Discussion

There are some things to consider however: First, the network analy-
ser uses fairly small bandwidths (10kHz-300Hz) and low power levels;
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Figure 4.12: Long-term temperature reading with phase values.

we haven’t tested the system in combination with high-power broad-
band klystron pulses.

Secondly, depending on where the phase is measured, the wave-
guide temperature might introduce additional errors. Suppose we
have 5m waveguide between the measurement device and the cavity;
the difference in optical path length between incoming and reflected
signal is then 10m. If the waveguide’s temperature increases by 1°C,
the difference in optical path length changes with

AL = LaAT ~ 1.69-104m ~ 1.69-1073A,

with « the thermal expansion coefficient of copper and A the wave-
length at 2.998GHz; 10cm. This means that a fluctuation in the wave-
guide’s temperature of 1°C leads to a phase fluctuation of about 0.6°
(or when converted to cavity temperature; 0.01°C).

Thirdly, phase thermostration can only be applied in a relative
sense: Although the measured phase can be used for stabilising the
temperature once it has reached its correct level, finding this level will
have to be done using other means. This is because the phase shows
linear behaviour in an interval of about 70kHz. If one were to use the
derivative of the phase curve (a bell shaped curve having a minimum
at the eigenfrequency) to determine the eigenfrequency (and thus the
absolute temperature), one finds this is only possible with an accu-
racy of about £35kHz, or £0.7°C (besides, since the signal may be
quite noisy, it’s derivative may show large spikes).

We have further found that the success of this technique greatly de-
pends on the coupling between coaxial line and cavity. If we change
this coupling in the simulations by moving the antenna to a more op-
timal position (as done in Section 3.4.1), the reflected power will ap-
proach zero and the phase becomes undefined (Figure 4.13). On both
sides of this point of optimum coupling, the phase curve’s derivative
shows asymptotically rising and descending behaviour. This is also
evident from the lumped element model, discussed in Section 2.2.

When combined with noise, asymptotic behaviour may lead to un-
stable behaviour (to prevent this, one should use sub-optimal cou-
pling). On the plus side however, this effect allows us to tune the
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Figure 4.13: Phase curve on both sides of point of optimum coupling.

system’s sensitivity (the ratio °/°C) by adjusting the position of the
antenna. An adjustable antenna (without dismantling) would there-
fore be preferable. All in all, phase thermostration appears to be a
promising technique and should be investigated further, preferably
using fully operational RF-photoguns.

41






CONCLUSIONS AND RECOMMENDATIONS

As part of a design study for a compact high rep-rate soft X-ray Free
Electron Laser at the University of Groningen (ZFEL)', we have per-
formed an initial feasibility study of high rep-rate RF-photoguns: We
have developed and benchmarked numerical models (finite element)
that describe the dissipation of electromagnetic energy, heat trans-
port and thermal expansion. The models are able to reproduce exist-
ing (low rep-rate) results and allow for studies in the high rep-rate
domain. Below, we list our most important conclusions and recom-
mendations:

e Lumped element description: A lumped element description
rather accurately reproduces the cavity’s resonance behaviour
(Section 2.2.2). It has helped us understanding the influence of
the antenna’s position on phase thermostration (Section 4.4.2).

e PPF-Scan example: Our optimisation methods suggest the an-
tenna’s optimal position to be 3.425mm (at 40°C), instead of
its design value (3.165mm, Section 3.4.2). The influence of the
antenna’s position is limited however; both simulations (the
3.165mm one as well as the 3.425mm one) agree fairly well with
the design values (Table 3.1).

e Temperature gradient measurements: Several practical limita-
tions (listed in Section 4.2.3) led us to believe that, regarding
heat transport, numerical as well as experimental prototypes
should be used during the development stages of high rep-rate
photoguns. When developing a photogun for ZFEL, special in-
terest should go to experimentally obtaining accurate input pa-
rameters for the used models. Only then will they be accurate
enough to realistically simulate the gun’s extreme conditions.

e Reflection measurements: Our electromagnetic wave simulati-
ons have shown not one single unaccountable or uncorrectable
flaw (Section 3.3 and Section 4.3.3). Given that the used thermal
model is proven to be solid, adding wave phenomena should
not lead to any difficulties.

e Phase thermostration: Phase thermostration appears to be a pro-
mising technique and should be investigated further. More re-
search is needed, preferably on fully operational RF-photoguns.

1 http://www.rug.nl/kvi/experimentalfacilities/zfel/index
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NUMERICAL METHODS

During our studies, we have used different numerical methods (as
explained in Section 3.1); the Finite Difference Method (FDM) and
the Finite Element Method (FEM) [5, p. 589-600]. This appendix will
give a short introduction to both.

A.1 HEAT EQUATION

In order to illustrate the main concepts of these methods we will use
a simple, one dimensional version of the heat equation. In mathemat-
ics, the heat equation is the prototypical parabolic partial differential
equation. We will include a short, intuitive description here.

First, a difference in temperature (as a function of location) results
in a flow of heat;

ou (1, t)
oL’

q(lLt)=—k 0<l<IL,

where q (1,t) represents the heat flow, k represents the thermal con-
ductivity of the material, ou (1,t) /0l represents the heat gradient and
L is chosen as the total length of the domain (we assume no work is
done and there are neither heat sources nor sinks).

Then, at any given point along our domain a variation in this heat
flow (again, as a function of location) will result in an accumulation
or dissipation of thermal energy over time. Given a constant heat
capacity of the material, this will result in an increasing or decreasing
temperature;

ou(lt) oq (1,t)

PCp T TR O0<l<I, Vt>0,

where p represents the mass density of the material and ¢, represents
the specific heat capacity. The combination of these two principles
completes our heat equation;

ou(Lt)  k [*u(Lt)
ot pep 012 !

or, equivalently,

ou(lt) %u (1,t) B
m - 2 =0, O<l<L, Vt>0, (A.1)

where the coefficient « is called the thermal diffusivity of the material.
Equation A.1 still gives a somewhat general description. If we want
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it to apply to a specific situation we will have to add some boundary
conditions;

u(0,t) =Ty, uw(Lt)=T,, vt >0, (A.2)
and an initial condition;
u(l,0)=us (1), 0<1LL. (A.3)

Consequently, one can view our desired result u(l,t) as being a
two dimensional scalar field with three of its four boundaries fixed.
The fourth boundary u (1, te) and the surface in between will be de-
termined by our heat equation and our stop criteria.

A.2 STANDARD FORM

Before proceeding with an introduction to FDM and FEM, we will
first convert our scalar field u (1,t) into a standard form w (x, t), by
shrinking en tilting it. For reasons that will become apparent later on,
the form w (x, t) will be easier to implement in both methods.

First, we shrink our domain from [0, L] to [0, 1] by setting | = xL,
substituting and changing from variable 1 to variable x;

u(l,t)=ukxLt)=v(x,t), 0<x<1, Vt>0.

We then proceed by choosing a straight line that interpolates the val-
ues at the end points; v (x) = xTp + (1 —x) Tp and subtracting it from
our desired solution; v (x,t) — v (x) = w (x, t). The result is a function
w (x, 1), defined on a standard interval [0, 1], having standard boun-
dary conditions

w(0,t) =w(1,t) =0, vt >0, (A.4)

and the initial condition
w(x,0) =ws (x), 0<x«<l. (A.5)
As it turns out, in order to determine u (1, t) it is sufficient to solve

ow (x,t) 2w (x, 1) B
n %l =0, O<x<1, Vt>0, (A.6)

using the conditions from Equation A.4 and Equation A.5.

Once the field w (x, t) is known, one can choose to convert back to
the original form u (1, t), by adding v (x) again and by changing back
from variable x to 1. The idea that adding and subtracting v; (x) has
no effect on the outcome may sound a bit counter intuitive, but bear
in mind that v (x) has no first derivative with respect to time and no
second derivative with respect to position. It will therefore vanish in
Equation A.6.
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A.3 FINITE DIFFERENCE METHOD

One way of solving Equation A.6 is by using the finite difference
method. We start by introducing the nodes {xi}i-, given by x; = ih,
where n > 2 is an integer and h = 1/n is the node spacing. We
then proceed by replacing 32w (x, t) /dx? by the second order centred
finite difference;

owi (t) LWisl (t) — 2wy (1) +wigq (B) 0 0<i<nm,
ot h? - Yt >0,

wo () =wn (t) =0, vt >0,

wi (0) =ws (xi), 0<ig<n

where the functions w; (t) approximate the exact solutions w (x;, t).
In effect, we have now applied space discretisation, converting our
problem into a system of ordinary differential equations;

wi (t) 2 -1 wi (t)
0 x
7 Tz |71 2 =0,
Wn_1 (1) Wn1 (1)
w1 (0) ws (x1)
wn—1 (0) Ws (Xn—1)

or, equivalently,

W) | AW () =0, ViSO,
ot (A7)

—

V_\} (O) = WS/

where A¢q is the symmetric finite difference matrix. We then proceed
by introducing a new integer k > 0 and set w* = W (kAt). This allows
us to replace 0w (t) /0t by a finite difference as well and follow the
forward Euler scheme;
Sk+1 _ ok
w W aAWE =0,  Vk>0,

At (A.8)
W0 = W.

Although the forward Euler scheme is not our most stable option (it
is only stable iff At < h?/2a), it does have the nice advantage of giv-
ing each following vector explicitly; W**! = (I — aAtA¢q) Wk. This
allows us to start with w® = W and see how our vector w* develops
over time by recursively multiplying it by the matrix (I — aAtA¢q).
An approximate answer to Equation A.6 in the form of W (x,t) can
then be determined by taking the points {{wX}1* o}tke:/? ' and interpo-

lating where necessary (using polynomials).
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A.4 FINITE ELEMENT METHOD

The finite element method is generally a more powerful tool than
the finite difference method. It is a better choice for solving partial
differential equations in cases having complex geometries, deforming
geometries or varying desired precision. Since illustrating the true
power of this method lies beyond the scope of this text, we will restrict
ourselves to a simplified description of the method’s concepts.

First, we will denote by V a test function space. This space consists
of all functions v (x) that are continuous on [0, 1], vanish at x = 0 and
x = 1 and whose first derivative is piecewise continuous, i.e., continu-
ous everywhere except at a finite number of points in [0, 1] where the
left and right limits (dv (x) /0x)_ and (dv (x) /0x), exist but do not
necessarily coincide. Using nontrivial proofs, one can determine V to
be a Hilbert space, which is denoted by H} (0, 1). More precisely,

HA(0,1) = {v(x) € L3(0,1) : dv (x) /ax € L%(0,1) : v(0) =v (1) =0},

where L2 indicates the space of square-integrable functions (note that
v (x) /x can only be part of L? in a piecewise sense).

The functions inside this Hilbert space are considered to be in-
finitely dimensional vectors where every value of x represents one
dimension. Consequently, an inner product can be defined as

g (xo) :

Flxo) - Flxa)l | : | =(fg) = JO fgdx.

g (X0)

After having determined our function space and its inner product,
we will proceed by multiplying Equation A.6 by one of the test func-
tions v = v (x) and integrate over [0, 1];

1 1 A2 vt >0,

J aw(x't)v(x)dxcxj Owlxt) W(X't)v(x) dx =0

0 ot 0 aXZ - WEV,
Vv e V.

Then, by using integration by parts we obtain

1 1
JO Wlot), oy ax+ OLL (awa(;"t)> (ava:‘)> dx =0, (A.9)

ot

for all t > 0, where we have used the assumption that v (0) =v (1) =
0. This result is called the weak formulation of our problem Equa-
tion A.6. Since it contains only the first derivative of w (x, t), it might
cover cases in which a classical solution to our problem does not exist
although the physical problem itself is well defined.

Space discretisation (discretisation of the x variable) will take place
by moving to a finite dimensional subspace of V called V4. In order




A4 FINITE ELEMENT METHOD

to do this, we take the interval [0, 1], choose n — 1 values for x (not
necessarily equidistant) with 0 = xp < x1 < -+ < xn = 1 and set
the subintervals I; = [xi,xi+1]. We now can define our piecewise
polynomial space to be

Vh:{vh(x):[O,]]H]R:vh(x)lIi celP;(I;), 0<i<n
(VR (0) = v (1) =0},

with P the space of first order polynomials. In other words, each
function within collection V4, consists of linear segments that connect
the dots {vp (xi)}i_, (note that, in order to create smoother results,
we could also have chosen IP, or higher order polynomials).

To complete the discretisation, we must select a basis of Vj,. For
each node xi, 0 < i < n, we choose a piecewise linear function
@i (x) € Vi, whose valueis 1 at x; and O at x5, j # 1, i.e,

X —Xi—-1
—— for xj_1 <x < xq,
X{—Xi-1
_ Xi41 —X
pi(x)=4¢ % for Xi <X < Xi+1,
Xi41 —Xi
0 elsewhere,

for 0 < i < n. This results in n — 1 tent functions {@; (x)}?;1 , who's
linear combination may describe any function from the collection V,
including our approximate answer;

Nn
wh (x,t) = ZW]’ (t) @5 (x),
=1

with wj (t) = wp (xj,t), 0 < j < n, the unknown coefficients and
Np =n — 1 the dimension of the finite element space Vi
We can then approximate Equation A.g by

1 1
J oW, (X't)vh(x) dx—i—ocJ (awh (x,t)) <avh(x)> dx — 0,

0 ot 0 aX aX
1 Nn
ow; (t)
[, 3 ™0 0 s ) ax
1 Nn
9¢; (x)) (0@i(x) .
. = <
—i—ocjoj;w)(t)< ™ oo ) dx=0 0<i<Ny,

for all t > 0, where we have chosen vy, (x) to be the whole basis
{1 ()T

49



NUMERICAL METHODS

Once again, we can convert our result to a system of ordinary dif-
ferential equations;

Nn

' 1
> a“gt(t) L @ (%) @i (x) dx

=1

Nn 1 . .
ra X min], (952) (%57 ax=o

Np

d
Zwa’ mll—i-ocZw] Jay =0, 0<i<Np, V>0,
=1

or, equivalently,

ow (t)
+ xAfew (t) =0, vt >0,
ot fe ( ) (A.IO)

W (0) = Ws,

M

where M = my; = fg) @j (x) @i (x) dxand Afe = ajj = fé (0j (x) /0x)
(0@i (x) /0x) dx forj,i =1,--- , Ny, are the matrixes containing the in-
ner products of the space V},. The matrix M is also known as the mass
matrix, whereas the matrix Ay, is known as the stiffness matrix.

Time discretisation can now be done by proceeding in exactly the
same manner as was done for Equation A.7 (note the similarities
between Equation A.7 and Equation A.10). After following the for-
ward Euler scheme, one can once again determine an approximate
answer to Equation A.6 in the form of W (x,t) by taking the deter-
mined points {{wk}“ ohel E/ At
polynomials.

and interpolate where necessary using



EXAMPLES

B.1

3D RF-PSCAN (COUPLER, RECTPORT)

Freq.=2.998967e9 Surface: Electric field norm (V/m)

A 7.7821x10°
x10°

V¥ 4.8186x107

Figure B.1: Electric field plot of the input coupler (3D).

Electromagnetic wave simulation (no heat and expansion).
Average mesh size: 3.9mm (min: 0.4mm, max: 11.4mm).
Time needed: 3 minutes, 16 seconds.

Memory needed: 7.62GB (RAM memory installed: 16GB).

e Temperature: 293.15K.

Frequency: 2.998966511GHz.
Rectangular power in: 8.296MW.

Absorbed by rectangular waveguide and doorknob: 13.156kW.
Coaxial power out: 8.279MW (throughput efficiency: 99.8%).
Wall electric field peak: 7.789MV/m.

Optimal stop position relative to doorknob centre: 166.7mm.
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B.2 2D RF-SIM (CAVITY, COAXPORT)

Freq.=2.998957e9 Surface: Electric field norm (V/m)

A 1.1114x10°
x10°%

1
0.8
0.6
[m]
0.4
o H
| | 0.2

V¥ 4.9376x10°

Figure B.2: Electric field plot of the cavity (2D).

Electromagnetic wave simulation (no heat and expansion).
Average mesh size: 0.6mm (min: 0.2mm, max: 0.8mm).
Time needed: 7 seconds.

Memory needed: 1030MB (RAM memory installed: 16GB).

Temperature: 293.15K.

Frequency: 2.998957330GHz (1.032830MHz rel. to 10c).
Coaxial power in: 8.306MW.

Absorbed by coaxial line: 5.261kW.

Entering the cavity: 8.298MW.
Absorbed in the cavity: 8.301MW.
Energy in the cavity: 5.105].

0.5 Cell electric field peak: 108.85TMV/m.
1.0 Cell electric field peak: T11.149MV/m.

o Wall electric field peak: 100.997MV/m.

Total voltage gain: 5.721MV.
Unloaded quality factor: 11588.551.
Shunt impedance: 50.355M Q) /m.

R over Q: 4.345kQ /m.

Optimal antenna position relative to iris: 3.47mm.
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B.3 3D RF-SIM (CAV+COUP, RECTPORT)

Freq.=2.998967¢9 Surface: Electric field norm (V/m)

A 1.1093x10°
x10°
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Figure B.3: Electric field plot of cavity and coupler (3D).

Electromagnetic wave simulation (no heat and expansion).
Average mesh size: 3.9mm (min: 0.4mm, max: 11.4mm).
Time needed: 7 minutes, 42 seconds.

Memory needed: 15.80GB (RAM memory installed: 16GB).

Temperature: 293.15K.

e Frequency: 2.998966511GHz (9.181kHz > 2D).

Rectangular power in: 8.287MW.

Absorbed by rectangular waveguide and doorknob: 14.106kW.
Coaxial power in: 8.269MW (37.114kW < 2D).
Absorbed by coaxial line: 5.510kW (248.527W > 2D).

Entering the cavity: 8.252MW (46.451kW < 2D).
Absorbed in the cavity: 8.260MW (41.144kW < 2D).
Energy in the cavity: 5.079] (25.891m] < 2D).

0.5 Cell electric field peak: 108.689MV/m (161.855kV/m < 2D).
1.0 Cell electric field peak: 111.003MV/m (145.792kV/m < 2D).
Wall electric field peak: 101.745MV/m (747.654kV/m > 2D).

Total voltage gain: 5.706 MV (14.591kV/m < 2D).
Unloaded quality factor: 11587.224 (1.327 < 2D).
Shunt impedance: 50.349MQ/m (7.283kQQ/m < 2D).
R over Q: 4.345kQ) /m (same as 2D).
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B.4 2D HEAT-SIM (CAVITY, COAXPORT)

Surface: Temperature (°C)

A 25592

_ *

24

23

Figure B.4: Thermal plot of the cavity (2D).

Electromagnetic wave simulation, heat generation (no expansion).
Average mesh size: 0.6mm (min: 0.2mm, max: 0.8mm).

Time needed: 11 seconds.

Memory needed: 1066MB (RAM memory installed: 16GB).

Ambient temperature: 293.15K.
Cooling water temperature: 293.15K.
Outer surface boundary condition: 294.15K.

Frequency: 2.998957330GHz (1.032830MHz rel. to 10c).
Pulse height: 8.306MW.

Pulse length: 3pus.

Repetition rate: 10Hz.

Coaxial power in: 249.192W (Time average).
Heat generated in the cavity: 249.026W (Time average).
e Heat dissipated to sinks: 245.149W.

Energy in the cavity: 153u] (Time average).

0.5 Cell thermocouple: 22.244°C (At equilibrium).
1.0 Cell thermocouple: 24.877°C (At equilibrium).
Total voltage gain: 31.336kV (Time average).



B.5 3D HEAT-SIM (CAV+COUP, RECTPORT)

B.5 3D HEAT-SIM (CAV+COUP, RECTPORT)

Surface: Temperature (°C)

Figure B.5: Thermal plot of the cavity (3D).

Electromagnetic wave simulation, heat generation (no expansion).
Average mesh size: 3.9mm (min: 0.4mm, max: 11.4mm).

Time needed: 16 minutes, 15 seconds.

Memory needed: > 16GB (RAM memory installed: 16GB).

e Ambient temperature: 293.15K.
e Cooling water temperature: 293.15K.

Outer surface boundary condition: 294.15K.

Frequency: 2.998966511GHz (9.181kHz > 2D).
Pulse height: 8.302MW (Time average, 6kW < 2D).
Pulse length: 3pus.

Repetition rate: 10Hz.

Coaxial power in: 248.078W (Time average, 1.113W < 2D).

e Heat generated in the cavity: 247.792W (1.234W < 2D).

Heat dissipated to sinks: 238.659W.

Energy in the cavity: 152u] (Time average, TnJ] < 2D).

0.5 Cell thermocouple: 22.095°C (At equilibrium, 0.149°C < 2D).
1.0 Cell thermocouple: 24.435°C (At equilibrium, 0.442°C < 2D).
Total voltage gain: 31.256kV (Time average, 79.918V < 2D).






MULTICHANNEL THERMOMETER

As explained in Section 4.1.3, our experimental studies required a
multichannel thermometer. This appendix will start with a descrip-
tion of the device itself. We then proceed with a treatment of the
device during operation and conclude with some calibration proce-
dures.

C.1 DEVICE

Figure C.1: The LM35 sensor attached to a shielded two-wire cable.

The sensors we have used are of the semiconductor type; LM35-DZ.
Their specifications are as follows:

Calibrated directly in degrees Celsius.
Linear +10.0 & 0.2mV/°C scale factor.
+1.5°C accuracy guaranteed (at +25°C).
Rated for full —55°C to +150°C range.
Suitable for remote applications.

Low cost due to wafer-level trimming.
Operates from 4 to 30 Volts.

Less than 60puA current drain.

Low self-heating, 0.08°C in still air.
Nonlinearity only £0.25°C typical.

Low impedance output, 0.1W for TmA load.

The LM35 sensors have three connection pins (Figure C.1): A gr-
ound connection (GND), a positive input voltage (+Vs), and a lin-
early temperature dependent output voltage (Vout). These have been
connected (using about 60cm of shielded two-wire cable) to a printed
circuit board accommodating a 16-Ch analogue multiplexer of type
4067N. In order to stabilise the readings (to drain residual voltage
from the channels), a 10kQ) draining resistor has been added to the
output. A photo of the completed device is shown in Figure C.2.

57



58

MULTICHANNEL THERMOMETER

Figure C.2: The multichannel thermometer with calibration rings attached.

C.2 OPERATION

During operation, the +10.0mV/°C output signal from the multi-
plexer is fed directly into a Keithley 2000 high performance digital
multimeter, that converts it to a digital reading. The Keithley is set
to take a reading every 150ms, and then trigger the multiplexer to
go to the next channel. The digital readouts are fed into a computer
that functions as a demultiplexer; a Visual Basic script we’ve written
analyses the continuous stream of readings (Figure C.3).

Keithley - ReadOut 2.6:

- Connected to Keithley 2000.

- One measurement each 150ms.
- Build-in demultiplexer.

- Direct visual feedback.

Figure C.3: Graphical user interface of the demultiplexing software.

Since channel 0 is connected to a very specific, constant reference
voltage (outside the scope of the LM35 sensors), it can be recognized
as such (and therefore, the other 15 channels as well). When a com-
plete dataset is detected (15 normal readings between two reference
voltage readings), the Visual Basic script shows this on the screen
and stores the corresponding values. When a dataset is incomplete
(skipped channels), the channels cannot be identified and the dataset
is discarded. This happens about once every 500 readings.



C.3 CALIBRATION

e —

Figure C.4: Calibration setup with part of the insulation removed.

C.3 CALIBRATION

Although the sensors have already been calibrated at the wafer level
(during production), the acquired accuracy is rather poor (£1.5°C at
+25°C and +0.2mV/°C). On the plus side, semiconductor tempera-
ture sensors rely on the temperature dependency of band gaps (which
is linear by definition). As a consequence, we may assume the relation
between the temperature and the sensor reading in millivolts equals
T =a-Vout +b, where T is the temperature in degrees Celsius, Vout
is the LM35 output voltage in Volts, a ~ 100 and b ~ 0°C. What re-
mains, is finding more accurate values for a and b (for each sensor).

Once these values have been obtained, the readings from the mul-
timeter can be converted into the correct degrees Celsius values. This
has been done entirely during post processing: During our experi-
mental studies, all readings have been saved in Volts (the original
values from the multimeter). No attempts have been made to convert
the signal while measuring (except for display in the graphical user
interface, Figure C.3) and no attempts whatsoever have been made to
adjust the hardware itself (in such a way that a and b would show a
better similarity to their respective design values). This approach has
one major advantage: By applying the conversion (mV to °C) during
post processing, we can (re)calibrate our system at any time using
any set of measurements, without having to discard any data.

Finding a an b has been done primarily using temperature-drop
and -raise measurements: The LM35 sensors have been clamped to
a copper ring (ensuring a good mutual thermal contact), and placed
inside an insulated reservoir of well stirred water, together with an
accurate reference probe (the Testo 110, Figure C.4). During a pro-
longed period of time, the water is heated up and cooled down while
the readings from the LM35 sensors are saved, together with a pulse
signal that indicates when the last digit from the Testo reaches 0 or 5
(indicating values Tiesto = even/2 and Tiesto = uneven/2).

The data is then subjected (together with the Testo’s starting tem-
peratures) to linear regression analysis and the desired values a an
b are extracted. To ensure better accuracy, the outcome from several
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MULTICHANNEL THERMOMETER

Chl Ch2 Ch3 Ch4 Ch5 Cheé Ch7
a 100.71 100.59 — 100.23  100.17 100.84 100.74
b —0.6293 —0.0692 — 1.0821 —2.2689 0.4253 —0.6883

Table C.1: Values a and b determined for channels 1-7.

Chg8 Ch9 Ch10 Ch11  Chi2 Ch13  Chl4

a 101.24 100.86 100.72 9992 101.28 100.69  —

b 0.1630 —0.4540 —0.4935 0.3028 0.0246 —0.6466 —

Table C.2: Values a and b determined for channels 8-14.

temperature-drop and -raise measurements are compared and aver-
aged. The resulting values are listed in Table C.1 and Table C.2.

C.4 DISCUSSION

Since the device has been calibrated as a whole (probes, cables, mul-
tiplexer, multimeter) the relation between sensor and channel should
remain constant (swapping two sensors would effectively create a
new piece of hardware and require a new calibration procedure). Fur-
thermore, the resulting temperature values come with four different
error estimates:

e An absolute error on all measurements; 0.2°C.

e A relative error between LM35 sensors (AT < 1°C); 0.01°C.
e The same for AT > 1°C; 0.05°C.

e Contact error between probe and surface; 0.2°C.

The first one is primarily caused by an error on the reading of the
reference probe itself (the Testo 110). The second one is caused by
the inaccuracies of our calibration method (assuming calibration at
the same time, under the same conditions), the third one is caused
by inaccuracies becoming significant on larger temperature and time
scales (a-linearity, changing conditions, etc.), and the fourth one is in-
troduced in our heat gradient measurement discussion (Section 4.2.3).

Furthermore, we have discovered several LM35 sensors show a sig-
nificant form of a-linear behaviour near the zero point (below 2°C):
Since they are fed by positive input voltages only, they are unable to
return negative output voltages; Vout. As a consequence, they will
return Vot > 0V, even though their linear temperature to millivolt
curve might dictate otherwise.

To conclude, we should mention that the thermocouples inside the
cavity walls had to be calibrated as well (one of them had an error
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Figure C.5: Long term test reading without thermostration.

of over 2°C). We have done so during post processing, using data
from our reflection measurements (Section 4.3). During these mea-
surements, the coolant and coaxial line temperatures became equal
during prolonged periods of time. When combined with the assump-
tion that (given a stationary situation) the temperature near the ther-
mocouples should lie between these two temperatures, they gave us
the correct thermocouple readings.

Since the thermocouple’s signal to noise ratio is larger than the one
from our LM35 sensors, their relative error estimate had to be set to
0.05-0.10°C.

As a final test, we have installed all probes, waited several days (al-
lowing the system to reach thermal equilibrium without thermostra-
tion), and took several readings. One of them is depicted in Figure C.5
(note that only the most relevant channels are included).
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