university of faculty of mathematics
4% groningen / and natural sciences

Scalable monitoring of a
highly dynamic metric set

Master’s thesis

August 2012

Student: P.C. Noordhuis

Primary supervisor: A. Lazovik, University of Groningen

Secondary supervisor: M. Lucovsky, VMware Inc.

CONTENTS

INTRODUCTION 1
2 PROBLEM DOMAIN 3
2.1 Why Monitoring? 3
2.2 Types of Failures 4
2.3 Types of Monitoring 6
2.3.1 Interactive/Non-Interactive 7
2.3.2 Active/Passive 7
2.4 Types of Data to Monitor 9
2.5 Context: Cloud Foundry 10
2.5.1 Components 10
2.5.2 Monitoring Challenges 12
3 RELATED WORK 13
3.1 Logs 13
3.2 Metrics 14

4 ANALYSIS & DESIGN 17
4.1 Data Model 17
4.1.1 Logs or metrics? 17
4.1.2 Dimensionality 18
4.1.3 Encoding more dimensions into one 19

4.1.4 Adding more context 19
4.2 Querying 23
4.2.1 What about grep and tail? 23
4.2.2 Goals 25
4.3 Storage And Retrieval 27
4.3.1 Flat Files 29
4.3.2 Relational Database 30
4.3.3 Key/Value Database 31
4.3.4 Evaluation 34
4.4 Distribution 36
4.4.1 Topology 36
4.4.2 Partitioning 42
5 IMPLEMENTATION 45
5.1 Time 45
5.2 Locality 47
5.3 Format 49
5.4 Indexing 52
55 Querying 53
6 CONCLUSION 55

BIBLIOGRAPHY 57

LIST OF FIGURES

Figure 1 Log entry formatted using the Common Log
Format. Example taken from [20]. Note: the \
denotes line continuation. 20

Figure 2 Trade-off between read-time and write-time cost 22

Figure 3 Example use of grep and tail. (these lines use an
abbreviated version of the Common Log Format) 24

Figure 4 What a querying the described system could
look like. 26

Figure 5 Topology where all processes run on a single
node 37

Figure 6 Topology where querying processes are dis-
tributed 38

Figure 7 Topology where log record production is dis-
tributed 38

Figure 8 Topology with a separate tier for storing pro-
cesses 40

Figure 9 Topology with external reliable storage 41

Figure 10 Memory usage and a locality measure for stor-

ing log records with constant size from multi-
ple streams in a sing]le file. Streams are buffered,
and buffers are flushed when the cumulative
memory usage exceeds 64 kB. 49

Figure 11 Serialized format of groups of log records and
log records themselves. 51

iv

INTRODUCTION

Over the past decade, more companies have started applying virtual-
ization in their data centers. Because of the continuously growing de-
mand for computing resources, more efficient data center operation
becomes increasingly important. Virtualization enables consolidation
of physical resources, making it a key technique to allow data centers
to operate more efficiently.

The ability to allocate resources at run-time makes scaling appli-
cations up or down less involved than it would be with a static set
of resources. Without virtualization, applications require a static set
of resources that is able to handle peak load, even when mostly idle.
With virtualization the allocation of resources can closely follow the
load pattern the application experiences, reducing cost when load is
low.

Dynamic resource allocation can be done in the scope of a single
virtual machine, where the amount of processing power and memory
it can use can throttled by the hypervisor. While this can be useful
for equally distributing the resources of a physical machine among
many virtual machines it hosts, this approach is not often used to
scale application. In practice, dynamic resource allocation is more
often done by starting new virtual machines and shutting existing
ones down.

While this does require the application in question to be able to
run on multiple machines — be it virtual or physical — it eliminates
the capacity ceiling as present for a single machine, while retaining
fine grained control over the set of resources that is used.

Applications that run following this ephemeral approach tend to
not depend on the underlying physical hardware and geographical
location. Their scaling model can make individual virtual machines
extremely short-lived.

The network topology that is associated with such application can
be characterized as highly dynamic. This in contrast to older topolo-
gies, where physical machines are long-lived and bound to a single
geographical location. Assumptions made in tooling that was created
in the era of static network topologies may not hold true when ap-
plied to highly dynamic network topologies. In particular, how can
applications that move through physical hardware and geographical
locations be monitored without losing track of the big picture?

In this thesis, we focus on the difficulties that arise when monitor-
ing applications that run in highly dynamic network topologies, scale
dynamically, and have a dynamic set of properties to keep track of.

INTRODUCTION

We start with exploring various types of monitoring, and the con-
text for the work in this thesis in Chapter 2. In Chapter 3, we briefly
discuss existing monitoring techniques, their models and implemen-
tations. An exploration of different data models and storage tech-
niques is presented in Chapter 4. In Chapter 5, the challenges in the
implementation of a proof of concept are discussed. We conclude in

Chapter 6.

PROBLEM DOMAIN

Why do systems need to be monitored? How can monitoring be exe-
cuted? What are different types of data points that can be monitored?
We discuss the rationale for monitoring systems and make an attempt
to answer these questions in this chapter. Additionally, we introduce
Cloud Foundry, the opportunities in monitoring it, and discuss the in-
tricacies of the data that it produces and the challenges in capturing
and analyzing this data.

2.1 WHY MONITORING?

System monitoring has different meaning for different people. A per-
son involved with operating a system likely thinks of ensuring system
availability when talking about monitoring, while a person who is in-
volved with monetization of a system likely thinks about day-by-day
sales when talking about monitoring. The sets of quality attributes
people in different roles are interested are different, but may over-
lap. Both interpretations are concerned with visibility into a system:
what has been happening recently, and what is happening right now.
For the person involved with operating a system this means having
access to historical and current values of properties that affect avail-
ability, such as resource usage on individual servers or network usage.
For the person involved with monetizing a system this means having
access to historical and current values of properties that affect rev-
enue, such as sales, discounts, or effectiveness of advertising. Access
to the current values of these properties alone is not enough; only
when the values are put in historical perspective, a judgement can be
made if the current values are abnormal. When they are considered
abnormal, action needs to be taken. For operations, this can translate
to adding extra hard disks when hard disks utilization reaches some
threshold. For monetization, this can translate to adding specialized
discounts when the sales for a particular product decreases. Regard-
less of the role these people have, they both follow the same steps
to finally come to a solution, known as the OODA* loop [27]. First,
an event is observed. Then, that event is put in context, or the observer
orients itself. Orienting can both mean placing the event in a historical
perspective, and comparing it to other events. After that, a decision is
formulated and finally it is executed, or acted upon.

Proper system monitoring is instrumental in observing events in
a timely fashion, and providing ample context to put events in per-

1 Observe, Orient, Decide, and Act

PROBLEM DOMAIN

spective. In this thesis, the automated system monitoring that we talk
about is only concerned with observing events and providing con-
text. Automating the last two steps of the OODA loop — formulating
decisions and acting on them — is outside the scope of this thesis.

The set of quality attributes that is relevant in monitoring some sys-
tem highly depends on the nature of that system. For example, where
responsiveness is important for interactive systems, it is less so for
non-interactive systems. While responsiveness in itself can be a valu-
able attribute to keep track of, variations in its value depends on a va-
riety of other attributes. Consider a web application, where requests
are handled by a cluster of backend servers. A sudden decrease in re-
sponsiveness can be caused by a sudden increase in request volume.
It can also be caused by an outage of one or more backend servers, re-
sulting in all requests suddenly being handled by less capacity. It can
also be that new software was recently deployed, or software configu-
ration was modified, negatively impacting responsiveness. The list of
possible causes for a decrease in responsiveness is endless. To be able
to find out what the cause of such an event is, one needs as much con-
text as possible to put the event in perspective to try to find out and
explain the cause of the event. Only with enough context and intri-
cate knowledge of the system that is monitored can abnormal values
for attributes be explained. Where responsiveness is used here, other
quality attributes can be substituted and the requirement for enough
context remains the same.

A sudden spike in responsiveness of a system can be seen as a
failure. Any unexpected value for a quality attribute can be seen as
a failure. Failures are not necessarily black and white, or working or
not working. The different types of failures are discussed in the next
section.

2.2 TYPES OF FAILURES

Failures come in different types and forms. In Byzantine Fault Toler-
ance [19], failures are classified as being either failures by omission or
failures by commission. Omission failures are failures when the sys-
tem does not execute what is expected. Commission failures are fail-
ures where the system executes something that is not expected [25].
A system being unavailable is an example of a omission failure. A
system that responds incorrectly is an example of a commission fail-
ure. Aside from these Byzantine failures, we also see failure to execute
within a certain amount of time as failure. A single request for a sys-
tem not returning within the allotted time is therefore another type
of failure.

While the impact of these failures greatly differs, they all violate a
specific quality of service constraint. We can define such failures as
the inability to meet a quality of service constraint. In the first example,

2.2 TYPES OF FAILURES

this constraint can be formulated as: the system must be available.
In the second example, this constraint can be formulated as: every
request must result in a corresponding correct response. In the third
example, this constraint can be formulated as: every request must re-
turn to the requester within 100 milliseconds. It depends on what the
quality of service constraints for a system are, before it can defini-
tively be said if a system is experiences failure or not.

Also important to consider in determining whether or not a system
is experiencing a failure or not is the duration that it happens, or the
rate at which it happens. When we take unavailability, a system can
be required to be available 99.99% per week. This means that every
week approximately 1 minute of unavailability is allowed. If the sys-
tem becomes unavailable, it depends on this constraint whether or
not the unavailability is considered to be a failure or not. Similarly, it
is unlikely that a single request failing to return within 100 millisec-
onds should be interpreted as a failure. However, when a significant
percentage, say 10%, of the requests fail to return within those 100
milliseconds, it is more likely that this should be interpreted as a fail-
ure. A short, or single instance of a failure to meet a quality of service
constraint is unlikely to be a problem in itself. Rather, the duration
of a violation of a constraint, or the rate of violation of a constraint is
more likely to be indicative of a failure. Therefore, the previous def-
inition can be refined to be the inability to meet a quality of service
constraint for some period of time, or at some rate.

There is a wide variety of causes for any type of failure. To illustrate
this, we discuss several examples. System failures can be caused by
failures in the computer hardware that is used to run the system. Dif-
ferent components failing can result in different system failures. For
example, mechanical hard disk spindles can wear out and cause hard
disk failure, or a cooling failure can cause the CPU to overheat. These
are typical hardware failures that result in omission failures for the
system; it no longer executes what it is expected to execute. Other op-
erational examples include power outages caused by natural disaster,
a third party accidentally shutting down power, or a backup gener-
ator running out of fuel. Lastly, human error may cause systems to
fail not only only the hardware level but also on the software level.
Authors of any hardware or software component may have forgotten
to implement an edge case scenario, that is only triggered every few
years. There is no way to predict these kinds of failures, and it is only
a matter of time before they happen. These failures are all examples
of omission failures, where as a result a subset of the system experi-
ences an outage. Another type of failure that should be considered is
the case where the system is no longer accessible for external users,
but seems to be fully functional otherwise. This can be caused by ei-
ther a high load on the system itself blocking out some of its users,
or by (intermittent) network failures. This is just as important from

PROBLEM DOMAIN

the users point of view as any other failure. Commission failures can
for example be caused by a spontaneous bit flip in one of the server’s
internal memory [32]. Arguably, such a failure is worse than a failure
by omission since it may result in users being presented with incor-
rect data, or data that belongs to other users. Also, such failures that
corrupt the state of a system may propagate through the system when
they are not caught. Propagating corrupt data throughout a system
may result in a cascading failure, taking an entire system down (a
failure of this type happened to Amazon S3 in 2008 [2]).

2.3 TYPES OF MONITORING

Because it is impossible to prevent every possible failure, it is ar-
guably less important to minimize probability of failure, and more
important to have plans to resolve failures and minimize outage du-
ration.

To be able to detect imminent failures, a system developer or ad-
ministrator needs to keep a close look on the system’s internals, the
platform it runs on and the network it is attached to. When failures
are detected soon after they happen, the duration of an outage can
be minimized. When a failure can be detected before it happens, an
outage may even be avoided.

Periodically checking if a system is reachable for its users is one
of the ways an administrator can set up monitoring. However, with
this data alone, it can be hard to find the root cause for failures af-
ter they have happened. Other system properties can be much more
valuable in deducing causality. Think of properties such as CPU us-
age, memory usage, or network usage. When these properties are
available over time, in combination with the binary property of reach-
ability, an administrator might conclude that his systems have run
out of memory or that network bandwidth is insufficient. Following
this line of thought, we can say that the more properties are being
monitored, the better a system administrator is able to detect causal-
ity in the event of failure, or even is able to prevent failure in the first
place.

There are several different types of monitoring that can be applied.
Only after establishing what these different types are, how they work
and what their benefits are, can we determine how a system is best
monitored. For example, some system administrators may like to con-
tinuously watch a computer screen showing the output of the top(1)
tool. Others rather receive an email when a periodic check failed.
While this is a simplistic example, these are both techniques to moni-
tor a system, and can be identified as system monitoring.

2.3 TYPES OF MONITORING

2.3.1 Interactive/Non-Interactive

The first distinction that we can make is between interactive and non-
interactive monitoring systems [33]. System failure is not a binary
condition; failures may be transient. Transient failures on the soft-
ware level may be caused by sudden peak load, buggy software, or
resource exhaustion, to name a few. Because transient failures can
come and go at a moments notice, a small and static set of system
properties that is sampled every 5 seconds may not reveal enough
information to find the root cause for a failure. Rather, when a tran-
sient failure is observed a system administrator or application devel-
oper wants to introspect a larger number of properties, sampled at a
higher frequency, to be able to more quickly determine the root cause.
monitoring systems that facilitate drilling down in real-time data can
be said to fall in the interactive category.

Next to making data available in real time, the possibility to drill
down to individual processes, their resource consumption and inter-
nal activity makes this category of monitoring tools invaluable for re-
solving transient failures. Tools in this category are typically started
by administrators when they are needed instead of running contin-
uously. The reason for this is that sampling a large set of properties
at a high frequency can come at a high cost in terms of resources.
While it may be acceptable to put a temporary load on a system for
immediate monitoring purposes, imposing such a load permanently
can be too costly.

Opposite to interactive monitoring is non-interactive monitoring.
This term covers monitoring systems that instead of being run ad-
hoc and by administrators, run constantly and without intervention.
These tools typically sample and store values obtained from a static
set of properties periodically, to be inspected at some time in the fu-
ture. The properties that are sampled and stored by non-interactive
tools usually are the primary source of information to detect failures
or failure-like behavior. Consequently, administrators who observe
such values using non-interactive monitoring systems may then be
urged to dig deeper and use interactive tooling for further investiga-
tion.

Systems not necessarily belong to the interactive or non-interactive
category exclusively, and can perfectly both provide interactive in-
sight in real-time data and non-interactive insight in historical data.

2.3.2 Active/Passive

The next distinction to make is one between active and passive mon-
itoring systems. Tools that fall in the active category can be thought
to be focused on externalizing the state that they monitor. State that
is expected does not need to be externalized; operators of a system

PROBLEM DOMAIN

don’t need to be notified when the system operates as expected. How-
ever, unexpected state does need to be externalized. When a state is
observed that is not expected, an active monitoring tool acts on it.
Acting on unexpected state can range from executing a corrective
measure to move back to a desired state, to paging on-duty system
operators. As an example, consider a cluster of web servers fronted by
a load balancer. If a web server process on one of the web servers un-
expectedly quits, the corrective action can be to restart it. If one of the
web servers in the cluster experiences an outage, the corrective action
the monitoring system can take is to remove that server from the con-
figuration of the load balancer. As long as the total number of servers
in the cluster is large, and the load can be handled by the remain-
ing servers, this does not necessarily require on-duty operators to be
paged. If more servers in the cluster experience an outage, and the ca-
pacity margin to handle extra outages becomes dangerously low, this
likely requires immediate action from on-duty operators. It depends
on the type of system if corrective measures can be taken, and also
if they should be taken. Regardless of what the externalizing action
of this type of monitoring system is, as long as some action is taken
when an unexpected state is observed this type can be categorized as
an active monitoring system.

A superset of the category of active monitoring systems is the cate-
gory of passive monitoring systems. This category of monitoring sys-
tems does not necessarily make a distinction between expected and
unexpected state, and only observes state. It is a superset because ex-
ternalizing observed state can be done additional to observing state.
Systems in this category generally persist observed state and allow it
to be queried, and with that allow other tools to make interpretations
of both historical and real-time state.

In this distinction systems only in the passive category tend to be
more focused towards tracking state over a longer term. Longer term
data can be used to perform trend analysis and make pre-emptive
scaling decisions if needed. On the other hand, systems that also be-
long to the active category tend to be more focused towards tracking
state in the short term. With short term data it is easier to uncover im-
mediate issues, that in some cases may be actionable for the system
itself.

An example of an active monitoring system is Nagios [26]. Not
only is it able to take corrective action, it also tracks observed state
over time and allows its users to visualize it. An example of a passive
monitoring system is Ganglia [14]. It allows its users to visualize his-
torical and near real-time data, but cannot judge if observed state is
expected or not and take corrective action.

2.4 TYPES OF DATA TO MONITOR

2.4 TYPES OF DATA TO MONITOR

Having discussed different types of monitoring systems, it is impor-
tant to take a look at the different types of data that can be monitored.

Operating systems expose a wide variety of metrics that are worth
keeping track of. Many Unix systems have a virtual file system /proc
that exposes many kernel level parameters regarding CPU usage, (vir-
tual) memory usage, hard disk usage, network usage, etcetera. Be-
cause of the vast quantity of available kernel level parameters, it is
not always necessary to keep track of every single one of them. Be-
sides the numeric parameters exposed via /proc, it is also useful to
keep track of log messages emitted by the kernel. In failure scenarios
this can provide invaluable leads to tracking down root cause, as they
usually contain stack information that can influence the direction of
an investigation. The same rationale holds for application level met-
rics and log messages. While the operating system alone can point
in the right direction when investigating a failure cause, parameters
specific to an application give much more context regarding what it
was doing and how it was doing at the time of a failure.

Examples of types of data to keep track of include:

NUMERIC
The snapshot of some value at any given time. For example, the
memory usage, or hard disk usage on a system, or the number
of connected clients to a web server. Another example is coun-
ters, such as the total number of packets sent or received by a
network interface since the server was started.

DISTRIBUTION

The statistical distribution of some population. When the cor-
pus of data is too large to sample, it can be useful to only keep
track of its distribution. For instance, the 50", 9o, and g9
percentile in a web server’s request latency distribution. Where
keeping track of every individual request may be too costly, the
distribution of request latencies can be used to determine if a
server is healthy or not.

TEXT
Textual data can be anything. It can be logs emitted by the ker-
nel, or stack traces or debug logs emitted by an application.

Of these types there is none that is by itself enough monitor a sys-
tem. Arguably, all types are needed together to form an impression
of how a system is behaving, if it is healthy or not, and lastly, to be
able to track down the cause of unexpected or unhealthy state when
it happens.

10

PROBLEM DOMAIN

2.5 CONTEXT: CLOUD FOUNDRY

The system that sparked the work described in this thesis is Cloud
Foundry [6]. It is an open source Platform-as-a-Service (PaaS) created
and maintained by VMware. Where an Infrastructure-as-a-Service
(IaaS) allows its users to stop worrying about their infrastructure
(e.g. hardware, network, data center, etc.), a PaaS allows its users
to stop worrying about their platform (e.g. operating system, lan-
guage runtime, data services, etc.). Cloud Foundry takes care of man-
aging infrastructure to facilitate running applications in a dynamic
mesh of resources. The system is not explicitly tied to one, or any,
infrastructure layer. The components that make up Cloud Foundry
can all be co-located and run on a single machine, or can be dis-
tributed over a vast number of physical machines in a data center.
The source code of Cloud Foundry is publicly available to allow peo-
ple to run their own instance and contribute code back to the source
tree. Additionally, VMware runs Cloud Foundry commercially on
http://cloudfoundry.com/.

Web applications are the unit of trade in Cloud Foundry. A single
Cloud Foundry deployment can server multiple users, who in turn
can deploy many applications. Every application can optionally be
bound to a number of data services. Cloud Foundry can bind appli-
cations to a number of data services, including MySQL, MongoDB,
and Redis, and can be extended to support more. Provisioning these
data services is transparent to the user. For example, if a user wants
to bind his application to a MySQL database, he tells the system to
do so and his application is provided with credentials to access a
MySQL database. The process of binding to other data services is
similar. Applications are scaled by increasing or decreasing the num-
ber of instances they run. Instances are dynamically distributed over
the infrastructure pool. Application traffic is automatically balanced
over available instances by the pool of HTTP routers managed by the
system. These HTTP routers are the entry point for all traffic to all
applications, and make sure application traffic is routed to available
instances.

2.5.1 Components

To give an impression of the way applications and data flows through
Cloud Foundry, we give a short overview of the core components in
the system and how they interact.

ROUTER
Cloud Foundry’s routers are HTTP routers that proxy requests
to the applications they are intended for, by mapping URLs to
applications. If there are multiple available instances for a sin-
gle application, the router makes an effort to fairly distribute

http://cloudfoundry.com/

2.5 CONTEXT: CLOUD FOUNDRY

requests over these instances. As new instances are started, and
existing instances are stopped, the routing map is updated such
that requests can always be served by live instances.

CLOUD CONTROLLER

DEA

Like regular applications, the cloud controller is an HTTP end-
point whose traffic flows through the routers. It exposes the
API for users to interact with the system. Applications are up-
loaded to cloud controllers, application metadata is updated via
the cloud controllers, services are bound to applications via the
cloud controllers, and so forth. To fulfill API calls the cloud con-
trollers may interact with other components in the system. For
example, when an application needs to be started a cloud con-
troller starts a discovery phase to find available resources, and
instructs the node with available resources to start the applica-
tion.

The Droplet Execution Agents (DEAs) together form the resource
pool that is used to run application instances. DEAs keep track
of their own resource usage and depending on the amount of
available resources it may or may not respond to discovery re-
quests from the cloud controller. Upon starting an application
it notifies the router to update its routing map, such that the
instance can participate in handling the application’s load. Sim-
ilarly, when an instance crashes it notifies the router to remove
the instance from its routing map, such that no new requests
are forwarded to this instance.

HEALTH MANAGER

To ensure that for any given application the number of instances
that are supposed to be running is equal to the number of in-
stances that is actually running, the health manager continu-
ously monitors the system’s state. It does so by formulating
an expected state from the application metadata stored with
the cloud controllers, and comparing this to the actual state ob-
served by heartbeats that are broadcasted by the DEAs. When
there are too few instances running for a particular application,
the health manager instructs the cloud controller to start extra
instances. Similarly, when there are too many instances running
for a particular application, the health manager instructs the
cloud controller to stop the superfluous instances. Categorizing
this component in terms of the different types of monitoring
systems discussed earlier in this chapter, the health manager is
a non-persistent and active monitoring system.

Internal communication happens over a publish/subscribe mes-
sage bus named NATS [7]. It is both used to issue requests from one

11

12

PROBLEM DOMAIN

component to another, and to broadcast messages to all components
in the system.

2.5.2 Monitoring Challenges

While the Health Manager already tracks the state of the system, and
performs corrective actions when the observed state is incorrect, this
does not solve all problems. For example, only keeping track of cur-
rent state does not give any insight into how often applications need
to be restarted, or how the distribution of load over the DEA pool
changes over time. Having access to historical state data creates a
new domain for data analysis, and data that can be made visible to
users of the system. Following the categorization of monitoring sys-
tems discussed earlier in this chapter, the type of monitoring system
that provides this is a persistent and passive monitoring system.

Conventional monitoring systems of this type often rely on static
network topologies. The system is configured once, to fit this topol-
ogy, and provides access to data based on that topology. Usually, ker-
nel and application metrics, or streams of logs are made available on
a per-host basis. Some monitoring systems can aggregate data from
multiple hosts into one or more global metrics that give an overview
of system-wide state.

This type of monitoring tool is inappropriate for use in Cloud
Foundry. While the network topology of the infrastructure that run
Cloud Foundry may be static, the nature of applications that Cloud
Foundry runs is highly dynamic. Applications can move through the
system at a fast pace: they can be updated often and be scaled up
and down in a matter of seconds. To get a system-wide overview
of the status of a single application may require using data points
from every single one of the system’s nodes. Data points that give
information about state and performance of an application may orig-
inate from any node in the system. Additionally, the data points can
no longer be identified using the host alone, because every host is
equally likely to run every application. Aggregation of data points
on a per-host basis is therefore not enough; data points may need to
be aggregated on a per-user, per-application, or per-URL basis. The
dynamicity of the data points that are used to track state of an appli-
cation throughout the system asks for a thorough evaluation of the
data model, approach to storage, and querying capabilities.

RELATED WORK

This chapter gives an overview of a number of commonly applied
tools for system monitoring. Because a distinction between collecting
and monitoring logs and collecting and monitoring metrics is made,
we also make that distinction when discussing different tools.

The protocols and tools that we put forward in this chapter is by no
means an exhaustive list. The problem domain concerned with mon-
itoring logs and metrics is so common that many companies build
their own tools that exactly fit their needs, instead of adopting ex-
isting tooling. Arguably, the work that we put forward in this thesis
does the same.

3.1 LOGS

A widely used protocol that is used to deal with logs is the syslog
protocol. It specifies a format to transport log messages between pro-
cesses living on the same machine or living on the same network. Pro-
cesses can use the protocol to send their log messages to one or more
syslog daemons, that in turn can act on these messages by writing
them to a file, sending them via email, forwarding them to another
syslog daemon, etcetera.

Its wide use can be attributed to it being usable through standard
libraries such as glibc [36], and the general availability of syslog dae-
mons on Unix-like systems. It was first defined in 2001, in the infor-
mational RFC 3164 [22].

The attributes of a log message that the protocol defines include
the facility that generated the message, and the severity of the message.
These attributes allow system administrators to define policies for log
messages depending on their source and importance.

For instance, log messages that are generated by the operating sys-
tem and are marked with a high severity may require immediate at-
tention. On the other hand, log messages that are generated by some
user space process and are marked with informational severity may
not even be stored on disk.

The facilities that can be used to specify the source of a message
are predefined by the protocol. They include the kernel, the email
daemon, and security related processes. Predefined severities vary
from debug messages (the least important), to emergency messages
(the most important). In between are severities for informational mes-
sages, warning messages, alert messages, and others.

13

14

RELATED WORK

The default transport layer for syslog is UDP*. This choice con-
tributes to the simplicity of the protocol. Because UDP is stateless,
producers of log messages can hand off the messages they generate
by sending them to a pre-known address at a pre-known port (typ-
ically port 514) without requiring negotiation. This means that mes-
sages are lost if no daemon is listening on this port.

Besides the required facility and severity of a log message, the pro-
tocol also requires log messages to contain a timestamp and the host
name of the originating machine. Because log messages may be for-
warded through a number of hosts on a network, this information is
required for tracing a message back to its producer and the time it
was produced. The remainder of a message is free form data accord-
ing to the protocol. However, many implementations of the protocol
use strict formatting of this free form data to encode more informa-
tion about the context in which the message was produced. Extra
context may be added by means of process IDs, thread IDs, user IDs,
or identifiers specific to the process that allow an administrator to
retrieve context not accessible through syslog.

There are several implementations of syslog daemons. Examples of
widely used implementations are syslogd, syslog-ng, and rsyslog.

These implementations allow the creation of complex forwarding topolo-

gies, where after logs are created, they are forwarded through a num-
ber of intermediate syslog nodes before being written to disk, or dis-
carded.

Only using syslog to capture a system’s log data does not result
in a data set that allows easy querying. The individual log lines are
unstructured strings and are stored in flat files. These problems is
what logstash [21] attempts to solve. It runs as a daemon that can
receive log data from a variety of inputs, including syslog and files.
After receiving logs, they can be transformed according to a number
of steps, such as serialization and deserialization, regular expression
matching, and more. Once transformed, possibly into a more struc-
tured representation of the data, logs can be forwarded to variety of
outputs. The possible outputs include regular files and a number of
databases.

Another example of a log management tool is Splunk [35]. This is
a commercial product that can index large amounts of log data, and
allows querying and analysis.

3.2 METRICS

Next to the domain of tooling that is primarily concerned with mov-
ing log data around, there is the domain of tooling that is primarily
concerned with sampling, collecting, storing, and aggregating metric
data. This domain deserved to be explicitly called out next to the log

1 User Datagram Protocol

3.2 METRICS

data domain, because instead of spuriously receiving log data, met-
rics sampling can have a predefined cadence. Tools in this domain
commonly assume metric data to be numeric, and can provide a num-
ber of ways to work with this numeric data. For example, historical
numeric data can be used for trend analysis, real-time numeric data
collected from multiple sources can be subjected to statistical analysis
to detect outliers, and so forth.

An example of a tool that can be used for metrics sampling, col-
lection and visualization is Ganglia [14]. It runs a collection agent on
every node that monitors a configurable set of metrics over time. It
forwards the metric data that it collects to upstream nodes in a hierar-
chical topology. The root node of this topology receives data from all
nodes in the system and provides a single view of this data. Ganglia
uses RRDtool [31] to store the metrics it collects.

The RRD in RRDtool stands for Round Robin Database, which ex-
plains how it persist metric data to disk. Data points are stored in
round robin archives (commonly abbreviated as RRA’s), or circular
buffers. Because this type of metric data is periodically sampled, the
number of data points only grows. As new data points stream in, ex-
isting data points are slowly aging. The round robin archives leverage
the fact that data points age, and at some point in time are no longer
interesting and can be discarded. This enables them to have a con-
stant size, which in turn imposes a fixed upper limit on their file size.
Every round robin database can hold multiple round robin archives,
where every archive stores a different time interval. For instance: a
high resolution archive can store data points for the last 10 minutes,
a medium resolution archive can store data point for the last 2 hours,
and a low resolution archive can store data points for the last 24 hours.
Such a configuration allows people who are interested in both high
resolution data and day to day data to use the same graph, while the
on disk size of the archive remains constant. RRDtool requires every
archive to have an associated function that consolidates multiple high
frequency data points into a single lower frequency data point. Com-
mon examples of such functions are MIN, MAX or AVG, for minimum,
maximum or average respectively.

A similar approach to storing metric data — or time series data — is
used by Graphite [15]. Unlike Ganglia, Graphite does have separate
metric collection agents and requires its user to provide the metric
data himself. By doing this, it moves complexity to its user (the data
needs to be massaged such that Graphite can interpret it), but at the
same time is more flexible. Graphite is not distributed itself. It runs
on a single node and acts as a sink for metric data; all its users send
their data and Graphite stores and visualizes it.

These and other metric storage and visualization systems generally
use simple string identifiers to tell different time series apart. Such
identifiers are usually made up from the host name of the node they

15

16

RELATED WORK

are sampled, and some string containing what kind of data they hold
(e.g. serverl:memory or total:memory). In a dynamic environment
such as Cloud Foundry there may be a large number of time series
that are not necessarily can be pinned to a single node or single in-
stance. Rather a time series for an individual instance may contribute
to aggregate time series for the node it is running on, for the applica-
tion it is a part of, for the user that owns it, etcetera. To our knowl-
edge, efficiently representing time series data in a way that it can be
aggregated along multiple axes is not possible using existing open
source log storage or metrics storage software.

ANALYSIS & DESIGN

4.1 DATA MODEL

Existing tooling for logging is often opaque in terms of resources be-
ing logged and monitored, and the data that is involved. Logs are per-
host streams of plain text, and derived metrics are string-identified
time series. Because of the lack of semantical information, it is rarely
possible to mix and match data from different sources without first
manually massaging it. This section discusses positive and negative
traits of this lack of semantical information, proposes alternatives and
discusses their trade-offs.

4.1.1 Logs or metrics?

Collecting plain text logs and collecting metrics is often treated as
two separate problems. We have seen this in the chapter discussing
related work; some tooling explicitly collects logs over time, and some
tooling explicitly collects metrics over time. Rather than treating the
two as different problems, we like to see them as one and the same,
being system visibility.

If only tooling to collect metrics is used, valuable context about the
nature of those metrics may be lost. Consider a web shop that keeps
track of the number of purchases per minute. If this number suddenly
decreases, it is very valuable to be able to quickly find out why this is
happening. The number of purchases per minute doesn't tell a lot in
isolation; it is merely an indicator that something is wrong. Having
access to plain text logs can be instrumental in finding out the cause
of the sudden decrease in purchases. Maybe a third-party payment
provider is suffering from an outage that makes purchases fail. Maybe
the application running the web shop has crashed, logging a stack
trace of the crash. Maybe the database backing the web shop is no
longer available. While these examples can all be translated into a
specific metric, the probability that application developers included
a number of print statements in the application code is higher than
the probability of a specific metric being instrumented for every edge
case. Metrics that could have quickly identified the cause of a failure
are often added after the failure happened. Having access to more
rudimentary system visibility facilities such as plain text logs can
greatly assist in quickly finding the cause of a failure.

Conversely, if only tooling to collect plain text logs is used, a brief
summary of the status of a system is hard to create and maintain.

17

18

ANALYSIS & DESIGN

In the same example of the web shop, only keeping an eye on the
plain text logs and not the metrics that can be derived might make a
sudden decrease in the number of purchases go unnoticed.

We believe that both approaches to achieving visibility into a sys-
tem are complementary, and that the value of a combination of the
two is greater than the sum of its parts.

4.1.2 Dimensionality

Traditionally, logging and monitoring systems capture data over time.
The data being logged or monitored can be a simple numeric or string
value, or a complex composite type with nested numeric and string
values. At its core, though, the semantics of this data is opaque to the
logging system; it is merely a chunk of data where interpretetation
is left to the consumer of the data. Logging and monitoring systems
can keep many of these opaque data over time streams, where these
streams can be identified by some string identifier. Individual streams
can tranditionally be traced back to a single source that emitted or
produced the data that it contains. For example, a syslog implemen-
tation can write logging data to a file identified by the originating
hostname and logging facility. Or, Graphite can keep the number of
requests per second for a specific HTTP frontend on a specific ma-
chine. These are examples where opaque streams of data over time are
identified by some arbitrary string.

This string can contain important additional data that can help in-
terpreting the data that is stored in the stream. In the syslogd ex-
ample, this string contains a hostname and a logging facility. In the
Graphite example, this string contains an identifier of the HTTP fron-
tend, and the fact that the data it identifies is the number of requests
per second.

However, the additional data that the string holds must be valid
for the entire lifetime of the stream. If the hostname in the syslogd
example changes, the string identifier of the stream changes. Simi-
larly, if the identifier of the HTTP frontend in the Graphite exam-
ple changes, the string identifier of the stream also changes. In other
words: the string identifying a stream changes when metadata that
uniquely identifies that stream changes. If this happens, the streams
appear to be different without any relation to each other, unless an
explicit effort is made to preserve this relationship.

This is not necessarily a bad thing. Because these identifiers can
be any string, and therefore can contain a serialization of any meta-
data, the string can be made arbitrary rich. Besides the properties
mentioned before, it can contain more information such as the kernel
version of originating machine, the process ID of the originating pro-
cess, and so forth. All properties that do not change over time can be
embedded in this identifier, since only properties that not change over

4.1 DATA MODEL

time can uniquely identify a single stream of logging or monitoring
data.

In this model, all data can be said to be 3-dimensional. First, there
are the actual data points. These can be arbitrary data: simple nu-
meric values or complex composite types. Whatever they are, they
make up the first dimension. These data points are captured over
time, which makes up the second dimension. Every 2-dimensional
plane of data over time is then identified by a string, which makes up
the third dimension.

4.1.3 Encoding more dimensions into one

On a per-system basis, the string identifier of a stream can possibly
be deconstructed into more dimensions. If the identifier encodes the
originating hostname, for example, this could be called out as sepa-
rate dimension. Or, the logging facility could be called out as separate
dimension. The problem with this is that this can only be done by con-
vention, and on a per-system basis. If syslog decides to encode this
data by prefixing it on every log line, in pre-specified order, separated
by whitespace, the consumer of the data needs to know this in order
to extract it. A different system may use a different convention to
encode extra dimensions, and the consumer needs to adapt.

What follows from this, is that it is not trivial to combine data
logged or monitored by different systems. Because the way that the
source hostname is encoded in the string identifier can differ from
system to system, correlating data logged or monitored by different
systems requires a manual step to align these. For example, the sys-
log protocol explicitly calls out the hostname of the machine that pro-
duced the data, whereas Graphite uses an arbitrary point-delimited
naming scheme where this is up to the user. Correlating data from
these systems cannot be done automatically, without adding explicit
semantics to the Graphite naming scheme.

4.1.4 Adding more context

The problem of being restricted to only two data dimensions (recall
that the third dimension is time) becomes worse when an attempt is
made to capture more context for every log line or sample.

4.1.4.1 More information in the data points

Going back to the syslog example, consider it being used to capture
log messages from an HTTP server. A widely used logging format
for HTTP servers is the Common Log Format [8]. This log format
specified a sequencing and formatting style for various properties
involving an HTTD, resulting in a human readable line of text. See

19

20

ANALYSIS & DESIGN

127.0.0.1 - frank [10/0ct/2000:13:55:36 -0700] \
"GET /apache_pb.gif HTTP/1.0" 200 2326

Figure 1: Log entry formatted using the Common Log Format. Example
taken from [20]. Note: the \ denotes line continuation.

Figure 1 for an example. The properties that it encodes include the
client IP address, the date and time, the HTTP request method, the re-
quested path, the response status code, and the number of bytes that
make up the response. While this format may encode enough prop-
erties for some, it lacks for others. Examples of properties that are
not included are the user agent *, the hostname that the client makes
its request for, or the referring URL 2. Because the Common Log For-
mat cannot be used to log additional properties, it needs different
adaptations or versions to make this happen. The more versions of a
log format there are, where different versions have only subtle differ-
ences, the more difficult it becomes to tell one format from another.
Interpretation of the data they encode becomes harder, as ambiguity
increases.

However additional context for an HTTP request is encoded, this
approach adds data to every point in the data dimension. The stream
dimension and time dimension remain unaltered, while the amount
of information per data point increases. This additional context may
be perfectly decomposable into more extra dimensions, but the model
that I have described so far only allows to store more information per
data point. Note that the number of data points does not change, only
the information per data point. The interpretation of the extra infor-
mation per data point is left to the consumer of the data. A syslogd
process cannot derive any information from the data points, without
explicitly being instructed to do so with rules to extract this informa-
tion.

4.1.4.2 More information in the string identifier

Another approach to add data is to include it in the dimension of the
string identifier. Going back to the example of Ganglia being used
to monitor the number of requests per second, the data dimension
cannot be used to store more information; it must be a numeric value.
This means that adding extra context for every data point is only
possible by extending the string identifier. Because the string iden-
tifier identifying a stream of log entries or samples uniquely identi-
fies a single stream, regardless of the time the log entries or samples
were added, changing it means increasing the number of streams. The
properties that are called out in the example above, talking about the

1 Client identification. This usually contains the name and version of the web browser,
and the name and version of the operating system.
2 Uniform Resource Locator

4.1 DATA MODEL 21

Example identifier Worst-case number of streams
rps-srvl 1
rps-srvl-ip:192.168.1.1 #A
rps-srvl-path:/home #B
rps-srvl-ip:192.168.1.1-path:/home #(A x B)

Table 1: Example identifiers and worst-case number of streams when the
substring representing the client IP address or requested path is
extrapolated.

Common Log Format, also are interesting in this example. If, for in-
stance, there is interest in knowing the number of requests per second
per client IP address, this is only possible by adding an extra stream per
client IP address. These extra streams can be constructed by including
the client IP address in their indentifier. This means that the worst
case growth factor for the number of monitoring streams in this sys-
tem is equal to the number of IP addressess: 232 (or 2'28 for IPvé).
While it is unlikely that every possible IP address will make at least
one request, it is perfectly possible. The total number of requests per
second can be derived from this potentially large number of individ-
ual streams. The total number of requests per second is equal to the
sum of the number of requests per second per IP address.

Consider that there is interest in knowing the number of requests
per second per requested path, and there are 1MM possible paths
for the website that is served by the HTTP server. In the worst case,
every path is requested at least once, and because there is a single
monitoring stream per path, this requires 1IMM monitoring streams.
When these two interests are combined — interest in the number of
requests per second per client IP address per requested path — the worst
case number of monitoring streams is a multiplication of the two
worst case numbers.

This is expected, because every dimension that is added needs to be
encoded in the stream’s identifier. Suppose the set of possible client
IP addresses is set A and the set of possible request paths is set B,
the worst case number of monitoring streams is the cardinality of the
product set A x B. An example is given in Table 1. Every additional
discrete dimension — for discriminating requests per second in this
example —is another input for the product set, and thereby causes the
worst case number of monitoring streams to grow by its cardinality.

Adding more information to the data points themselves does not
increase the cardinality of any of the dimensions. Adding more infor-
mation to the stream identifier does increase the cardinality of that di-
mension. In practice, the individual monitoring streams in this model
may map to individual files, while their contents may map to a series

22

ANALYSIS & DESIGN

additional context in data additional context in identifier
sequential writes random writes
higher write throughput lower write throughput
few different files many different files
filtering at read-time no filtering at read-time

Figure 2: Trade-off between read-time and write-time cost

of (time, data) tuples, where time is monotonically increasing. This
approach is very common for logging systems, such as syslogd.

Applying the previously discussed example to this materialized
version of the model results in the following. When more informa-
tion is added to the data points, the number of streams — thus the
number of files — remains constant, yet the size of their contents will
increase. When more information is added to the identifiers, the num-
ber of streams — thus the number of files — grows with respect to the
cardinality of the dimensions they encode, while the size of their con-
tents will decrease.

4.1.4.3 Consequences and trade-offs

The consequence of the first option is that the complexity of extracting
data from the stream is moved to read-time. In the example, figuring
out how many requests in a certain time frame came from a specific
client IP address will require scanning the entire file, and filtering
relevant entries. The cost at read-time is therefore potentially large,
while the cost at write-time is kept low because the logging system
sequentially appends new data to a single file.

The consequence of the second option is that the complexity is
moved to write-time. In the example, data points are appended to
their respective streams. Because many data points may end up in
many different files, this puts a lot of pressure on the file system
and the backing disk. Concurrently writing to many different files is
likely to result in many random disk writes, which is considerably
more costly than sequential disk writes. At read-time, however, the
consumer of the data only needs to locate the file of interest to ex-
tract data. No extra filtering is needed because this has already been
done by writing data to different files.

This is not a binary trade-off; some information may be encoded in
the stream identifiers, while other information may be encoded in the
data points themselves. The extremes of this trade-off are illustrated
in Figure 2.

Where on the trade-off scale this solution will be depends on how
it will be queried, and how it will storage and retrieve data. Only

4.2 QUERYING

after these aspects are discussed can we determine what place on this
scale the solution will take.

4.2 QUERYING

This solution should support two modes of operation.

e It should allow data to be extracted after-the-fact. This means
that after log data has been received by a logging agent, it
should be possible for an external client to retrieve a subset
of the the log data after some amount of time.

¢ It should allow data to be extracted in near real-time. This means
that while log data is being received by a logging agent, it
should be possible for an external client to subscribe to a subset
of the log data. The logging agent should then forward all data
is receives, that is contained in the subset the external client it
interested in.

These two modes of querying log data should not only be usable
in isolation, but also in combination. For instance, an external client
should be able to subscribe to a subset of the log data that has been
received since 10 minutes. The logging agent (or multiple logging
agents) should then serve up the data that has already been written to
disk, and switch to a near real-time subscription when this completes.

4.2.1 What about grep and tail?

Querying log data after it has been stored can be done with the grep
utility. It allows its user to specify a regular expression and one or
more file names, and prints the lines in the files that match the reg-
ular expression. This is a well understood approach, because of the
ubiquity of the utility, and the wide use of plain text files to store log
data. It can also be easily combined with a near real-time subscrip-
tion to log data as it is generated or received by using the tail utility.
This utility takes one or more file names as input and prints lines that
are added to those files as they are added. The output of tail can be
sent to grep by means of a pipe to get a near real-time subscription
to log lines that match the specified regular expression. An example
is given in Figure 3. While this can be a very powerful technique for
extracting data, it doesn’t take into account the semantics of the log
lines that are scanned.

First, these tools work on inputs with line-delimited content. Every
log line is delimited with a newline character (LF or \n) to separate
it from following lines. This means that the data itself cannot contain
this character, or it will be misinterpreted. If log data contains newline
characters, they should to be escaped to ensure correct interpretation.

23

24

ANALYSIS & DESIGN

log/httpd.log:

127.0.0.1 - - [13:55:36] "GET /pl HTTP/1.1" 200 100
10.0.11.1 - - [13:55:37] "GET /p2 HTTP/1.1" 200 100
127.0.0.1 - - [13:55:38] "GET /p3 HTTP/1.1" 404 100
10.0.11.2 - - [13:55:39] "GET /p4 HTTP/1.1" 404 100
127.0.0.1 - - [13:55:40] "GET /p5 HTTP/1.1" 500 100
10.0.11.3 - - [13:55:41] "GET /p6 HTTP/1.1" 500 100
$ grep " 127.0.0.1 " log/httpd.log

127.0.0.1 - - [13:55:36] "GET /pl HTTP/1.1" 200 100
127.0.0.1 - - [13:55:38] "GET /p3 HTTP/1.1" 404 100
127.0.0.1 - - [13:55:40] "GET /p5 HTTP/1.1" 500 100
$ tail -4 -f log/httpd.log

127.0.0.1 - - [13:55:38] "GET /p3 HTTP/1.1" 404 100
10.0.11.2 - - [13:55:39] "GET /p4 HTTP/1.1" 404 100
127.0.0.1 - - [13:55:40] "GET /p5 HTTP/1.1" 500 100
10.0.11.3 - - [13:55:41] "GET /p6 HTTP/1.1" 500 100
$ tail -4 -f log/httpd.log | grep " 127.0.0.1 "
127.0.0.1 - - [13:55:38] "GET /p3 HTTP/1.1" 404 100

127.0.0.1 - - [13:55:40] "GET /p5 HTTP/1.1" 500 100

Figure 3: Example use of grep and tail.
(these lines use an abbreviated version of the Common Log Format)

After extracting the data, the escaped newline characters should again
be unescaped again to preserve the original data.

Second, while every log line encodes a number of different dimen-
sions, these tools are completely oblivious to this. Every line is just
a series of characters, followed by a newline. All information that is
encoded in these lines needs to be decoded by the consumer of the
data. This also means that filtering the lines can be hard when the
tools used for filtered are not able to decode the data themselves. For
instance, if in the example showed in Figure 3 the requested path con-
tains the string " 127.0.0.1 ", grep will match those lines as well as
the lines containing that IP address. Or, when the lines are filtered for
the status code 200, unintentional matches may include lines with a
response body size of 200 bytes, or lines where an IP address octet
equals 200. There are many more ambiguities when properties of a
log line are encoded without context.

Related to this concern is that time is not explicitly called out. The
inputs to these tools are opaque streams where any filtering — includ-
ing filtering on time — needs to be specified by the consumer of the
data. A widely applied technique for being able to filter log lines in a
certain interval is to include the offset of that interval in the file name
storing the log lines. Then, for every interval that passes, the old log
file is closed, and a new one is opened for writing (known as log file
rotation). How the interval is chosen, and how time is encoded in the
file name varies between logging systems and configurations. It may

4.2 QUERYING

use an interval equal to a full day, and encode only the date in the
file name (e.g. log/httpd.2000-10-10.10g). Or, it may use an interval
equal to 5 minutes, and encode the offset as integer timestamp (e.g.
log/httpd.971211300. log, when the integer timestamp is the num-
ber of second since the Unix epoch — January 1, 1970 at midnight —
in the UTC timezone). Either way, the task of scoping a query to a
certain time interval is left as an excersise for the consumer of the
data.

4.2.2 Goals

The problems that exist for querying log data without contextual in-
formation should be addressed in this solution.

First, the problem that line delimiting illustrates — required encod-
ing and decoding of "special” characters — should be addressed. Log
data should be allowed to be arbitrary binary data, without requir-
ing an encoding and decoding step when the data is produced and
consumed respectively. Log data being arbitrary of size and contents
should be transparent to both the producer and the consumer. As a
consequence, it may no longer appropriate to talk about log lines. For
the remainder of this chapter they will be referred to as log records.

Second, the ambiguity problem should be addressed. If a consumer
of the log data wants to apply a filter, it should be possible to un-
ambiguously specify conditions for any of the properties in any log
record. This not only has consequences for the interface towards the
consumer of the data, but also for the interface towarda the producer
of the data. The producer of log records alone is able to attach seman-
tical information to the log records it creates.

In the example of the Common Log Format, this semantical infor-
mation is only available implicitly. It depends on the contract between
the producer and the consumer that the log lines that are produced
follow the predefined formatting rules. Only when this contract is
strictly followed, the consumer is able to extract the semantical infor-
mation it holds. The Common Log Format is specific to HTTP servers,
so producers of log data that does not originate from HTTP requests
will need their own formatting standard to transfer semantical infor-
mation to the consumer. If executed, this is not only a daunting task,
but all producers and consumer must be in perfect alignment in the
formatting and interpretation of the log data. Also, it does not solve
the ambiguity problem on the level of the logging system. As long
as the logging system is unaware of a distinction between different
properties of a log record, it cannot make filtering decisions.

These considerations lead to the need for explicit inclusion of se-
mantical information. Only when semantical information is included
in the log records can the consumer direct the logging system to filter
certain records. For instance, in the example of an HTTP server, the

25

26

ANALYSIS & DESIGN

$ query --time="-5s.." --filter="client_ip=127.0.0.1"

t > 971211339.000000
client_ip > 127.0.0.1
http_request_method —— GET

http_request_path —— /p4
http_request_version —— 1.1
http_response_status —— 404
http_response_body_size - 100

Y

t
client_ip

971211341.000000
127.0.0.1
http_request_method —— GET

Y

http_request_path —— /p6
http_request_version —— 1.1
http_response_status —— 500
http_response_body_size - 100

Figure 4: What a querying the described system could look like.

consumer should be able to filter based on the client IP address, HTTP
request method, requested resource, response status code, etcetera.
When these properties are explicitly called out in every log record,
the logging system is able to make these filtering decisions.

Last, the one property that is shared among all log records is time,
and should be treated as first-class. The consumer of the data should
not be concerned with selecting which file contains the time interval
of interest, or where this file is located. Also, the consumer of the data
should not be concerned with how time is stored in the log records,
or how to address a certain time interval. Time is an important di-
mension when talking about log data. The importance of log data
often decays over time; the information stored in records that were
created 2 weeks ago is usually less important than the information
stored in records that were created 5 seconds ago. Consumers of the
data should be able to easily navigate through log records over time.
To enable this, addressing log records by a specific point in time, or
by time interval should be possible.

Putting these goals together, invoking a tool that executes a query
against log data could look like Figure 4. To illustrate that log lines no
longer use naive record delimiters such as newlines, the records are
shown as distinct objects. While in practice the text-only output of a
command line tool will need to use some kind of delimiting scheme,
this is intentionally omitted in this example by using a graphical rep-
resentation.

The different properties are explicitly called out for every record.
This means that it is no longer necessary to use a static formatting

4.3 STORAGE AND RETRIEVAL

scheme to encode semantical information implicitly. Rather, it is pos-
sible to include arbitrary properties and their values just by adding
them to the record. This is enough information for the logging system
to make decisions regarding filtering or aggregation of log records, as
illustrated in the figure.

Time looks like just another property in every log record. The dif-
ference with the other properties is that time is mandatory. If it is not
specified by the producer of the log record, the logging agent that re-
ceives it can choose to automatically add it, or to reject the log record
altogether.

It is the primary source for determining causality between records.
Other means for determining causality between log records can be
added by their producers, leaving interpretation for the consumers,
when it is not possible to rely on monotonicity of clocks. For instance,
clocks in a distributed system can never be in perfect synchronization.
Determining causality in a distributed system by using numeric time
alone is therefore not possible.

However, the causality relationship does exist for log records that
were created with their time being read from the same monotonically
increasing clock.

4.3 STORAGE AND RETRIEVAL

There are many approaches to storing and retrieving log records. A
number of key characteristics that inherently apply to log records
need to be kept in mind when discussing the possible approaches,
and when the choice for a particular approach is made.

The first characteristic of the data can be found in the property that
applies to all log records: time. Log records can be traced back to a
single process that was responsible for creating them. They are a re-
action to events taking place, and being noticed by this process. The
log records that are created following an event can be seen as a mate-
rialization of that event. Besides information about the event itself, it
can contain additional context that captures the process’s state when
the event was noticed. After they are created, they cannot change.
They provide a point-in-time snapshot, and are therefore immutable.
Events can be caused by entities external to some system, such as
clients requesting a web page, or entities internal to some system,
such as a timer firing every second. Either way, when a process has
expressed its interest in being notified when a particular event hap-
pens, and it does happen, there will be a point in time where the
event is noticed and is picked up by the process. When an event is
noticed, it is not possible for this event to be un-noticed at some later
point in time. The moment it is noticed, it affects the state of the pro-
cess that is interested in it, and this cannot be undone. The corpus
of events that are noticed over time — and therefore the log records

27

28

ANALYSIS & DESIGN

that they may create — can only grow. Old log records can be deleted
after some amount of time, but that doesn’t mean they never existed.
It only means they are no longer available. The data set containing all
log records that were captured for some system can therefore be char-
acterized as a monotonically growing set of immutable elements.

Another characteristic can be identified by looking at the form of
the data. As is discussed in the previous section about querying, the
data that makes up a log record is arbitrary. A record may contain
any number of properties, as long as it includes the time the record
was created. Properties are identified by some string identifier, and
associate to values that can be arbitrary binary data. This may be
seen as a 1-to-1 mapping, but there not really is a reason not to allow
a property mapping to multiple values. Therefore, instead of seeing it
as a 1-to-1 mapping, it can be seen as a set of tuples (property, value).
The only restriction on this set is that it includes a single tuple that
holds the time the log record was created. This restriction can be
ignored for the sake of simplicity when talking about the structure
of the log records. Individual log records can be characterized as an
immutable set of 2-element tuples.

The next characteristic can be identified by looking at the relation
between log records. It can be argued that it is more likely for two
log records to be part of the same query result when they are tem-
porally close, than when they are temporally distant. For example,
a query more likely asks for all records that were created in the
last 5 minutes, than for a random sample of records that were cre-
ated in the last 5 minutes. Also, it can be argued that it is more
likely for two log records to be part of the same query result when
they are spatially close, than when they are spatially distant. Where
the temporal relation comes natural for data that is ordered in time,
the spatial relation is less natural. The spatial relation bwteen log
records (or, recall, sets of 2-element tuples) can be viewed as a mea-
sure for similarity. Log records that have more tuples in common can
be said to be spatially closer than log records that have fewer tuples
in common. This means that it is more likely for a query to ask for
records that contain tuples ty,..., tn, than to ask for records without
restriction. An example of this in the context of the HTTP server is
a query that asks for all records that contain (client_ip,127.0.0.1)
and (http_request_method, GET). Or, a query that asks for all records
that were created by the same producer. These examples of how log
records — or sets of 2-element tuples — can be related show that there
exists temporal and spatial affinity between sets.

These characteristics should drive the design of the storage and re-
trieval layer of this solution. The described data can be mapped to
a variety of storage techniques and databases, such as flat files, rela-
tional databases and key/value databases. Some techniques will be a
better fit for the described characteristics than others. The question is:

4.3 STORAGE AND RETRIEVAL

which technique is the best fit for the described characteristics? Which
technique can best handle monotonic growth? Which technique can
best store and retrieve records without predefined schema? Which
technique can best optimize for spatial and temporal affinity? And
lastly, which technique is the simplest?

4.3.1 Flat Files

The first storage technique is straightforward. The use of flat files is
the default way to store log data for syslog-like systems. While it
may seem a contrived example to use as a storage technique for the
type of data that is being discussed, it is a surprisingly good fit. For
storing log records, the only task of a logging agent that uses flat files
to store the records it receives is to serialize them to a format that
can be written to disk, and write it to disk. Because log records are
immutable, every record is written once and only once. This means
that the write operations that the logging agent performs can be se-
quential and append-only. Once data has been written, it will never
be modified or rewritten. The fact that log records that are tempo-
rally close together will also be stored close together is an implicit
side-effect of writing them sequentially.

Just like syslogd-like systems, log rotation can be used to partition
files over time. This gives the ability for files with older log records
to be moved to cheaper storage for archiving, or to be removed alto-
gether when there is no need to keep them around.

Another aspect that was already discussed in the section about
querying, is that partitioning files by time allows log record retrieval
to quickly find the files of interest when querying for a certain time
interval. The larger the partitions, the more log records need to be
scanned to find the start of a particular time interval. Conversely, the
smaller the paritions, the fewer log records need to be scanned to find
the start of a particular time interval.

A downside to using flat files is that is does not provide a way
to index log records out of the box. The only primitive index that is
implicitly present is that of time. It is implicitly present because it
is facilitated by partitioning files with log records over time. Queries
that besides time put extra constaints on the log records that should
be extracted require scanning all log records. Every log record is then
tested against the set of constraints, and included in the result if it
matches. This may put an unacceptable load on the system at read-
time, if the ratio of log records included in query results to all avail-
able log records is low. Conversely, if this ratio is high (when - for
instance — a log record is included in the result of 50% of the queries
that scan a particular time partition) this may be acceptable.

29

30

ANALYSIS & DESIGN

4.3.2 Relational Database

Log records can be transformed to fit the relational model. Whether
this is an idea to pursue depends on how well the characteristics that
describe log records map to this model.

To begin, there are different interpretations of the relational model,
and different implementations of relational databases, where each has
its upsides and downsides. Because of this diversity, it is not feasible
to address the subtleties of every different interpretation and imple-
mentation. The following discussion assumes the widely known rela-
tional model as made popular by the SQL3 standard.

The basic building blocks of the relation model are sets of n-ary
tuples. In more widely known terms these sets are called tables, the
n-ary tuples are called rows, and the rows contain n columns. Tables
must be defined before they can be used. Their definition includes the
columns every row can use, and the data types they can contain. This
means that storing free-form data is not inherently possible when
applying this model.

Intuitively, every log record in this model should map to a single
row in a table. However, since log records are arbitrarily sized sets
themselves, it is not possible to use a single table alone when ev-
ery log record should map to a single row with a predefined and
fixed number of columns. Rather, every 2-element tuple that defines
a property in a log records needs to be represented in a separate ta-
ble, where it references the log record it belongs to. For this to work,
every log record, and all the properties that it contains need to share
a common identifier. Without a common identifier, it is not possible
to talk about the same log record — or entity — in multiple tables. This
is unfortunate, because it increases the amount of data required to
store a single log record, while only artificial data is added. Another
problem with requiring a separate table that stores every 2-element
tuple is that it prevents creating indexes on certain tuples. Either all
tuples are indexed by their property name, by their value, or both.
This inflexibility can be very costly. Storing and maintaining indexes
comes at a cost, so when an index contains more information than is
required by the queries that it serves, this is a waste. Not only does it
waste storage space, it also wastes processing power, because indexes
need to be updated whenever data is added or modified.

This requirement of a split log record and log record properties ta-
ble can be avoided when the set of properties that log records may
contain is restricted to be a fixed set. The set of properties then needs
to be defined before any log record is added to the database, and
properties that are included in log records but not defined as part of
the database schema need to be discarded. Every predefined prop-
erty will then map to its own column. Because SQL databases allow

3 Structured Query Language

4.3 STORAGE AND RETRIEVAL

indexing of individual columns, extracting for subsets of log records
matching certain criteria is as easy as formulating a SQL query. While
this approach allows for querying the data as the relational model pre-
scribes, it ignores the key characteristic that log records can contain
an arbitrary number of tuples, and can therefore not be used.

Regardless of the use of a split-table approach or a single-table ap-
proach, the number of log records can only increase. Unlike the case
with flat files, it is not possible to partition SQL database tables over
time, without resorting to techniques that are not inherently part of
the SQL standard. An example of such a technique is partitioning
over time by using separate tables. If applied, this makes the con-
sumer of the data responsible for choosing the right tables to run
a query on, and combine the results. While technically possible, the
framework that SQL provides in this case needs to be circumvented
to solve this practical problem.

Of the explored approaches to storing log records in a relational
database, none appear to be a good fit. The idea to use the relational
model to store log records with the described characteristics is there-
fore be rejected.

4.3.3 Key/Value Database

To determine if the key/value model is a good fit for storing log
records with the described characteristics, we need to take a look at
how storage and retrieval would be implemented. There is a wide
range of use cases where the key/value model is applied in prac-
tice, ranging from ephemeral in-memory caching to durable storage.
Examples of databases that use the key/value model somewhere
along this range include: Memcached [23] for in-memory caching,
Redis [30] for durable in-memory caching and storage of rich values,
and Riak [5] for fault-tolerant, distributed and durable object storage.
Depending on the intended use, every product has its advantages
and disadvantages. For example: Memcached is not durable, where
Redis and Riak are. Memcached and Redis require the data set to fit
in main memory, where Riak doesn’t have this requirement. Redis
can store rich values such as lists and sets, where Memcached and
Riak require values to be arbitrary blobs. Riak is distributed out of
the box, where Memcached and Redis are not. Regardless of their dif-
ferences, they all use the key/value model. In this model, there is a
1-to-1 mapping between keys and values. Both keys and values can
be arbitrary sized data. To extract values from a key/value database,
the consumer needs to know the keys that identify them. Some key/-
value databases support range queries over the set of all keys, or
support secondary indexes that can be used to annotate and extract
subsets of keys, where others require the user to create these indexes
themselves.

31

32

ANALYSIS & DESIGN

In the absence of secondary indexes or range queries, it is wise to
use keys that can be computed or derived from data related to the
value they store. For example, if the value stores log records that orig-
inate from the HTTP server previously talked about in this chapter,
the key could contain the fact that the log records come from a HTTP
server, the time offset for the log records, and the client IP address
shared by all log records in that value. Then, if a consumer has the
intent to query log records generated by a HTTP server, in a particu-
lar time interval, for a specified client IP address, he can generate the
keys that are expected to store these records and retrieve them.

However, if the consumer wants to query the same set of log records,
for all client IP addresses, this presents a problem. It is not feasible
for the consumer to compute a key for every possible client IP ad-
dress and retrieve every key, because the total number of keys will
simply be too large. This is better feasible if the database supports
range queries over all keys, although this also has restrictions. Range
queries typically use lexicographical key ordering. Then, if keys are
structured like this: httpd:<time offset>:<client ip>, all keys that
store log records for a particular time offset regardless of client IP
address can be extracted following the lexicographical order between
keys. The inclusive start of this range will be httpd:<time offset>,
and the exclusive stop of this range will be httpd:<time offset+1>.
Clearly, the lexicographical order between keys only helps when the
dimension that needs to be iterated over is the last part of the key. For
example, if the syslogd file naming scheme as previously discussed
is adopted, and the the request path is added as suffix to the current
format, it is no longer possible to use lexicographical order to iterate
over the dimension storing storing the client IP address, without also
iterating over the request paths. This means that either only one di-
mension can be encoded in the key when lexicographical key ranges
are used, or that we need to resort to a different approach for iterating
over keys where one or more dimensions are not specified.

Going back to the definitions of the characteristics of the log records,
they can be seen as sets of 2-element tuples. Every tuple contains an
identifier of a particular dimension, and the value in that dimension.
Instead of sets of 2-element tuples, they can therefore also be seen as
points in a space with arbitrary dimensionality. In the example talking
about log records generated by an HTTP server, the different dimen-
sions include time, the client IP address, the HTTP request method,
the HTTP request path, and the HTTP status code. The cardinality of
these dimensions widely varies: a dimension storing the HTTP status
code has a low cardinality (there are only a few dozen defined HTTP
status codes [12]), where a dimension storing an IP address has a sig-
nificantly higher cardinality (232 for IPv4 [28], 2128 for IPv6 [10]). For
every dimension that we want to allow querying on, we can maintain
a separate index. In this index, every possible value that is an element

4.3 STORAGE AND RETRIEVAL

of the indexed dimension points to a list of log records that contain
that value. In the case of the client IP address, the index contains an
entry for every IP address that the system has seen, that maps to the
list of log records that contain the tuple for a particular client IP ad-
dress. Now, if a consumer wants to query log records generated by
an HTTP server, in a particular time interval, for a particular client IP
address, the system can use the indexes to determine the matching
subset per dimension, and use the intersection between these subsets
to get the final result.

To be able to refer to individual log records in the key/value model,
every log record needs to be stored under its own key. For non-
distributed key/value stores, this problem can be solved by using
an incrementing integer. For distributed key/value stores, however,
an incrementing integer cannot be used because its value can only
be guaranteed to be unique locally, not globally. This can in turn
be solved by using a consistent distributed store for locking (e.g.
ZooKeeper [4], Doozer [11]), or by applying theory for parallel gener-
ation of rougly sequential integers [1]. Another approach to creating
unique identifiers for log records is to compute a hash for every log
record and use that as its key. The only requirement for the hash func-
tion is that its output domain needs to be large enough such that the
probability of hash collisions is very low. An example of such a hash
function is SHA-1 [34], with an output domain of 160 bits. This key
can be used to store the log record itself (in serialized form), and as
key identifying the log record in the indexes.

This approach appears to be a solution to any possible query that
can be formulated for the data. Queries can be transformed into con-
straints on a per-dimension basis, that in turn are combined by one or
more set operations. The per-dimension results not necessarily have
to be combined by set intersection; they can be combined by any set
operation.

Unfortunately, the approach also has downsides. Listed at key char-
acteristic of log record data, is that the number of log records mono-
tonically grows. For only storing the log records themselves, this is
not a problem. While there may be spatial and temporal affinity be-
tween log records, they are not inseperable. Values can be distributed
over multiple nodes if the capacity of a single node is lacking, using
well known distribution techniques such as consistent hashing. Stor-
ing the indexes, however, this is a problem. Indexes refer to the log
records by their keys, so a growing number of log records means a
growing index. The larger the number of log records that are associ-
ated with a single entry in an index, the most costly querying it be-
comes. With an increasing number of keys returned by per-dimension
queries, the final set operations combining the per-dimension results
into the final result become more costly over time.

33

34

ANALYSIS & DESIGN

To alleviate from this increasing cost over time, the indexes need
to be partitioned over time. By partitioning over time, the size upper
bound of an index is determined by the upper bound of the number
of log records that in a time window as large as the time window the
indexes are partitioned by. Only then is it possible to keep the cost of a
query for a particular time interval relatively constant, if no other pa-
rameters change. Complexity for executing a query slightly increases,
because a query now potentially needs to be executed across multiple
time partitions, after which the results need to be combined.

If we consider the growing indexes as a solved problem, there is
another — more practical — downside to this model. It can be found in
the fact that log records may have temporal and spatial affinity. In the
application of the key/value model so far, this has been ignored. Us-
ing the hash of a log record as its key means all affinity information
is lost (for example: log records that were created after each other,
or log records that are created by the same producer). This means
that log records that are likely to be part of the same query result
(when they are temporally close, spatially close, or both) are likely
stored on different nodes in the distributed system. If they are stored
on a single node, it is highly likely they are stored on different disk
blocks. In other words, there is no data locality whatsoever. The lack
of data locality is bad for performance when the throughput for look-
ing up log records on disk is bound by disk I/O throughput. Namely,
performing a single disk seek and read is cheaper than performing
mulitple.

Looking back at the characteristics of the data, the key/value model
appears to be well-suited with respect to storing log records without
a predefined schema. It is also well-suited with respect to monotonic
growth, albeit with the requirement that indexes are partitioned over
time. It is less suited with respect to the spatial and temporal affinity
of log records. This is not so much an issue at write-time, but can
severly hurt performance at read-time.

4.3.4 Evaluation

Now we have discussed different models for storage and retrieval of
log records, we can evaluate how they perform with respect to the
different characteristics of log data.

First, handling monotonic growth can be problematic in both the
relational model as in the key/value model. Intrinsic properties of
both models need to be circumvented to make sure the query cost
remains constant under growth. To partition log records over time in
the relational model we need to use a different set of tables for ev-
ery partition, losing the expressiveness of SQL when a query spans
multiple partitions. Partitioning over time is easier in the key/value
model. There, the only requirement is that indexes are partitioned

4.3 STORAGE AND RETRIEVAL

over time. However, it does not provide a vehicle for moving older
data to cheaper storage. Using a hash to identify log records removes
the information required to determine if log records can be moved to
alternative storage, or be removed altogether. It can therefore only be
done by manually iterating over log records to determine if they can
be moved or removed. Such workarounds are not needed when log
records are stored in flat files. Here, partitioning over time is easily
achieved by creating a different file for every time partition. As time
progresses, new files are created, and older files become immutable.
Moving older log records to cheaper storage can be done by mov-
ing files. Removing older log records can be done by removing files.
When we take a look at the simplicity of every solution to cope with
the growing nature of the data set, it is clear that storing log records
in flat files is the easiest in terms of operational ease of use.

Second is the fitness of the model to store log records without pre-
defined schema. This only appears to be a problem in the relational
model. If log records are stored following this model, every log record
needs to be stored in two tables: one to store an identifier for the log
record and one to store every 2-element tuple. With every tuple stored
as a separate row, it is difficult to maintain indexes over a subset
of dimensions; either every tuple is indexed, or no tuple is indexed.
Storing log records without a predefined schema is not a problem in
the key/value model or when using flat files. In either case the log
records need to be serialized and are treated as arbitrary blob of data
after that, and indexing needs to be handled separately. Ignoring the
fact that log records need to be indexed, we find treating log records
as arbitrary blobs the simplest, and preferable, solution.

Lastly, there is the spatial and temporal affinity between log records.
In the relational model there is little control over where the data is
stored. This largely depends on whether or not the database im-
plements key clustering, which indexes are being maintained, and
log record insertion order. Affinity between log records — be it spa-
tial or temporal — does not necessarily result in improved locality.
In the key/value model there is no control whatsoever. Because log
records are identified by hashes as keys, all affinity information is lost
when the log records are added to the database. Consequently, the de-
scribed approach for storing log records in a key/value model does
not result in a locality advantage. In the case of flat files, temporal
affinity directly results in temporal locality because the files can be
written sequentially. This means that log records that are created af-
ter each other, by the same producer, are very likely to be stored after
each other on disk. Not only does sequentially writing log records to
disk result in high throughput at write-time, allowing the log records
to be sequentially read also results in high throughput at read-time.

The approach that appears to work best on all fronts is the use of
flat files. After files are created, populated and closed, they become

35

36

ANALYSIS & DESIGN

immutable. Monotonic growth of the log data can be handled by mov-
ing files with older log records to cheaper storage, or by removing
them. Log records can contain arbitrary data because no schema is
imposed. The temporal affinity between log records can directly re-
sult in a locality advantage, if they are stored sequentially. The only
disadvantage with the use of flat files is that there needs to be an
additional indexing step to make sure querying doesn’t require a full
scan of all log records stored in a file. Because this needs to be done
out-of-band, there is complete flexibility in choice of indexing algo-
rithm and storage, as well as complete flexibility in choosing which
dimensions to index.

4.4 DISTRIBUTION

After establishing an approach for storing and retrieving log data, we
need to take a look at how this approach fits in a distributed environ-
ment. The logging system needs to cater to many producers of log
data, distributed over a vast number of (virtual) machines. Not only
needs the system to be ready for a significant number of producers,
it needs to be ready for significant growth. Linear scalability in this
type of environment is not just a desirable property, it is a requirment.
This section describes various techniques that can be used to achieve
scalability, and how they can be applied for the problem at hand.

4.4.1 Topology

To understand the scope of the problem of distribution, we must first
establish how the problem is distributed. We do this by discussing pos-
sible network topologies for the logging system, with an increasing
degree of distribution.

The simplest network topology for the logging system is one with-
out a network. In this contrived topology the various processes and
tasks that collectively make up this logging system are all co-located
on a single machine. These processes are:

THE PRODUCING PROCESS
The source of log records.

Every process in the system that is connected to the logging
system may be capturing events, transforming them into log
records and sending them to the storing process. An increase
in the number of producing processes, or the number of log
records they emit likely requires an increase in the number of
storage processes as well, to handle the increasing production
load. The more log records are sent to the storage processes, the
more resources are needed to receive and store them. In this

4.4 DISTRIBUTION

basic topology, the producing process, or multiple producing
processes, are co-located with the other processes.

THE STORAGE PROCESS
The sink for log records.

The storage of log records is a composite task. First, there is
the intake of log records sent by producing processes. After re-
ceiving them, they may be initially kept in an in-memory buffer
before finally being written to disk. The storage process is also
responsible for indexing the log records it stores, and serving
querying processes. Querying processes can connect to the stor-
age process and make queries on the set of log records that it
stores. The required scale of the storage process is influenced by
both the load generated by producing processes, as well as the
load generated by the querying processes. In this basic topology,
the only storage process is co-located with the other processes.

THE QUERYING PROCESS
A filter for log records.

Querying can be done by any process connected to the logging
system. After a query is formulated, it is sent to one or more
storage processes. These storage processes are responsible for
extracting matching log records from the set that they manage
and send them back to the querying process. An increase in the
number of querying process, or the complexity of the queries
they want to execute likely requires an increase in the number
of storage processes as well, to handle the increasing query load.
In this basic topology, the querying process, or multiple query-
ing processes, are co-located with the other processes.

This contrived topology is shown in Figure 5. The topology figures
use the letters P, S, and Q to denote the different processes. White
boxes are nodes in the system. Lines between nodes are communica-
tion paths.

PSQ

Figure 5: Topology where all processes run on a single node

In the stand-alone topology, there is no flow of information out-
side the single node that hosts every process. In reality however, it is
likely that other nodes besides the one producing and storing the log
records is interested in that data. As an example, imagine administra-
tors who want to know how their system is doing. Likely the nodes
they use to retrieve the query result are different from the nodes that

38

ANALYSIS & DESIGN

produce and store the log records. It is possible that a node that pro-
duces and stores log records has zero or more incoming connections
from nodes that want to execute queries against its data set. While
this does not mean that the node can no longer query itself, Q is
omitted from the node that executes PS to prevent ambiguity. The
corresponding topology is shown in Figure 6.

PS

/ N\

ol o

Figure 6: Topology where querying processes are distributed

Only systems that are run on a single node also produce log records
on a single node. When a system grows beyond the capacity of a
single node and requires more than one node to execute, there will be
more than one node producing log records. If we take the topology
from Figure 6 as a basis, the difference is that we get multiple PS
nodes, shown in Figure 7. Instead of one node producing and storing
log records, there are now multiple. The nodes that coordinate query
execution now have to connect to every PS node to get a complete
view of the system. If they do not do this, they may miss log records
that should have been part of the query result. Because the tuples
that form a log records are completely arbitrary, any PS node may be
responsible for creating a log record that is of interest to a particular

query.

PS | --- | PS

ol |o

Figure 7: Topology where log record production is distributed

This can be illustrated by the following example. Imagine a cluster
of HTTP servers that serves traffic for a number of different web sites,
where load-balancing is achieved through round-robin DNS. The re-
sponsibility of picking a server to talk to is moved to the client when
this technique is applied. This means that the cluster itself doesn’t
have control over where traffic is routed; every server is equally likely
to receive a request for any of the web sites. Now, assume every HTTP
server creates a log record for every request it receives, and that this

4.4 DISTRIBUTION

log record includes the requests HTTP headers. Included in a requests
HTTP headers is the hostname of the web site that the request is try-
ing to talk to. Now, if a querying process wants to know how many
requests a particular web site has received, it needs to query every
single HTTP server, because every HTTP server is equally likely to
hold log records that are relevant for the outcome of the query.

There are two problems with this topology. First, the performance
characteristics of the core tasks that these nodes execute may be im-
pacted when the logging system starts claiming (potentially sparse)
resources. How significant these resource claims are depends on how
many queries are being executed, and the complexity of these queries.
The higher this resource claim by the logging system, the fewer re-
sources that can be used to execute the tasks these nodes are meant
to execute. Second, the number of connections every querying pro-
cess needs to make is equal to the number of nodes that produce log
records. This imposes an inherent maximum to the number of queries
that can be concurrently executed. If all queries that can possibly be
executed follow a request-response flow, this is not a significant prob-
lem because queries can be executed serially. However, this system
is also required to execute streaming queries, where log records are
forwarded to the querying process immediately after being received
by the storage process. The number of concurrently running queries
can therefore be large, and not serializable.

These concerns form the motivation for the topology shown in Fig-
ure 8. Here, the production and storage of log records is decoupled.
The nodes that are responsable for the production of log records hand
them off to nodes that are responsible for storing them. Querying
nodes only need to communicate with the storage nodes, and there-
fore no longer have a direct resource impact on the producing nodes.
Also, because the nodes hosting the storage processes have a focused
and dedicated responsibility there can be fewer nodes in the storage
tier than in the production tier. With #S < #P the querying processes
are also alleviated in terms of the number of connections they have
to make. Instead of having to connect to #P different nodes, they now
have to connect to #S different nodes to execute a query.

This topology also raises a number of questions. Are log records
pushed to the storage tier by the producing tier, or pulled from the
producing tier to the storage tier? If they are pushed, how do pro-
ducing nodes know to which storing node they should push their log
records? If they are pulled, how do storing nodes know which pro-
ducing nodes to pull log records from? What happens when a storing
node becomes unavailable? Are log records dropped on the floor? Are
log records stored in some transient store, that can be sourced when
the storing node becomes available again?

Some of these problems can be addressed by treating the commu-
nication between the producing tier and the storing tier as querying,

39

40

ANALYSIS & DESIGN

P| -+ | P | — Producing tier
S| " | S| — Storage tier
ol |a

Figure 8: Topology with a separate tier for storing processes

as in the more simple topology shown in Figure 7. This is achieved by
adding S to the producing tier, and adding Q to the storage tier. As a
result, the storage tier is required to actively query the producing tier
for its log records. Note that this does not mean that the storage tier
needs to poll the producing tier for new records; it can use a stream-
ing query and the producing tier will stream new log records directly
to the storing tier.

The fact that every node in the producing tier now has its own
local storage process has positive side-effects. For example, it pro-
tects log records from being lost in the event of storage node un-
availability. When this happens, a different storage node can pick up
streaming log records where the unavailable storage node left off,
without loss of information. Similarly, multiple nodes in the storage
tier can stream log records from a single node in the producing tier
(e.g. for stand-by redundancy). Another positive side-effect is that it
re-enables administrators to execute a query directly against a node
in the producing tier. In the case of an outage in the storage tier, this
may be crucial in still being able to extract information from the sys-
tem.

For a node in the storage tier to be able to pick up where a node
that became unavailable left off, it needs to know where it left off.
It it not possible to simply run a streaming query for all new log
records, as that may result in the loss of log records that were sent
to the unavailable node and were not acknowledged. This leads to
questioning acknowledgement.

So far, we have only talked about storage as writing to flat files and
indexes, partitioned by time. For every node in the storage tier, this
results in an immutable set of files per time interval. What happens to
these immutable sets of files once they become immutable is not yet
defined. If nothing happens, and the storage node is itself responsible
for maintaining the sets of files it created, a failure of this node means
that a subset of all log records is immeditaly unavailable. This is not
acceptable if the failure results in permanent data loss. The options

4.4 DISTRIBUTION

for protecting against data loss in the case of a node failure are to ei-
ther build replication into the storage tier, or to decouple it from the
storage tier and use an off-the-shelf solution for reliable storage. Key
in choosing between one or the other is that the sets of files become
immutable over time. This property means that there is a small, fixed
set of files that is being written to by the storage tier, and there is a
large, growing set of files that is read-only. We can therefore choose to
use an off-the-shelf solution for reliable storage, while not impacting
write performance of the storage tier, as long as the sets of files are
copied to the reliable storage once they become immutable. It does
not matter which specific solution is chosen, as long as it provides
full, shared access for all nodes in the storage tier. Because of the
shared access, nodes can now determine the most recent set of files
stored by sibling nodes, and thereby determine to what point in time
sibling nodes have acknowledged the log records they have received.
The modified topology including the reliable storage is shown in Fig-
ure 9.

PS | -+ | PS | — Producing tier
Reliable o .
Storage SQ SQ | — Storage tier
ol |a

Figure 9: Topology with external reliable storage

The reliable storage can be implemented using a wide variety of
products and techniques. For example, it can be implemented using
the Hadoop Distributed File System [16]. This not only serves as a
reliable storage backend, but it also allows the use of Hadoop MapRe-
duce [17] on the immutable sets of files it stores, for offline processing.
Reliable storage can also be implemented using NFS#. The file system
that is served over NFS can in turn be hosted on a cheap hard disk,
or on an expensive SAN?. The choice for one or the other depends
on the reliability requirements of the logging system, but does not
matter for the logging system as long as it fulfills the shared access
requirements.

4 Network File System
5 Storage Area Network

42

ANALYSIS & DESIGN

A node in the storage tier can now use the reliable store as the pri-
mary source in determining where it should pick up work where a
node that became unavailable left off. How much work is duplicated
in doing so depends on the length of the time intervals that are used
to partition the sets of files. Choosing the length of the interval that is
partitioned by significantly impacts other aspects of the system. For
example, for any node in the storage tier to recreate a set of files oth-
erwise created by a sibling node, nodes in the producing tier should
keep at least one interval worth of log records around. To keep disk
usage in the producing tier under control, the interval can be cho-
sen to be short. In turn, a short interval means more partitions, thus
more sets of files, thus more pressure on the storage tier in execut-
ing queries. These effects should influence choosing the length of the
interval to partition by.

4.4.2 Partitioning

In the topologies shown so far, the storage tier receives streams of
log records from the producing tier by querying it. This bypasses the
fact that the nodes in the storage tier need to be directed which nodes
in the production tier to query. Because #S < #P every node in the
storage tier queries at least 1 node in the producing tier. In reality
the number of streams received per node in the storage tier will be
higher, because the nodes in the storage tier are meant to be dedicated
to this task and therefore should be able to handle multiple streams.
The problem that needs to be solved is to determine which nodes
in the storage tier are responsible for querying which nodes in the
producing tier.

Every node in P should be queried by at least one node in S. It
is possible that a node in P is queried by more than 1 node in S for
availability reasons, but for a large S it should not be queried by all
nodes in S for scalability reasons. Namely, if every node in S would
query every node in P, the system cannot scale P beyond the capacity
of a single node in S.

The mapping between nodes in S and nodes in P can be made using
hashing. Here, every node in P has a unique identifier. This identifier
can be a random string, or something inherently unique to the node
such as its IP address, as long as it is unique. To determine which
node s € S is responsible for querying a node p € P, we compute
i1 = (hash(p) mod #S) and use i to index an ordered version S’ of
S. This gives us a way to map every p € P to a single s € S, but it
breaks down when #S changes, and therefore the range of i changes.
When this happens, almost every mapping of p € P to s € S changes,
and almost every node in the storage tier will need to start querying
a different node in the producing tier. This is not catastrophic for our
use case, though. Since every node in the storage tier needs to be

4.4 DISTRIBUTION

queried to get a complete query result, it should not matter where log
records are stored, as long as they are stored somewhere. It does mean,
however, that log records for two different producing nodes that were
once colocated, may no longer be after #S changes. Given an identifier
of a node p, it is not possible to determine which set of files its log
records is stored in without knowing #S at the time the set of files was
created.

This problem can be solved using consistent hashing [18, 9]. Instead
of bounding the range of the hashing function by the variable #S, it
uses a very large constant to bound its range. The nodes s € S to map
nodes p € P to then randomly pick one or more values vy, ..., v, that
lie in the same range. Then, the value i for some node p maps to the
node with the lowest v with v > 1, or v > 0 if none matches. If the
range of the hash function is visualized as a ring, the node is found by
starting at position i and walking clockwise until a node is found for
which v = i. Because the range of the hash function is constant, every
p consistently maps to the same i. When nodes are added to S, they
will take over part of the range of their neighbors, and when nodes
are removed from S, neighbors will take over their range. Instead of
changing almost every mapping from nodes in the producing tier
to nodes in the storage tier, only few mappings change. Because the
values v are chosen randomly, given an identifier of a node p, it is
only possible to determine which set of files its log records is stored
in when a different set of files is used for every p. This is infeasible
when P is large; ideally we want to coalesce log records from multiple
producers in a single set of files per node in the storage tier. Another
downside to randomly choosing values v is that no guarantees about
load distribution can be made. A slight variation of the algorithm
partitions the range of the hash function in a predefined number of
partitions, or virtual nodes [9]. Every virtual node is responsible for
a predefined and equal range of the hash range. The different nodes
in the storage tier then each become responsible for multiple of these
virtual nodes, in an approximate uniform distribution over the range.
Now, when nodes are added to S they will take over virtual nodes
from other nodes, and when they are removed other nodes will take
over their virtual nodes. Given an identifier of a node p, it can now be
consistently mapped to a single virtual node. The index of a virtual
node can be used to identify the set of files that contains all the log
records for that virtual node, solving the problem of determining in
which set of files the log records produced by a specific node should
be stored.

43

IMPLEMENTATION

In this chapter we discuss the trade-offs and decisions made in imple-
menting a prototype of the system discussed in Chapter 4. Recall that
the log record data that the system is concerned with is immutable;
it doesn’t change once it has been created. This leads us to think that
is it possible to sequentially write every log record that is received to
disk, and be done. There are a number of subtleties that need to be
reviewed before we can judge if this is indeed the case.

5.1 TIME

Observations of discrete time by different entities are likely to be dif-
ferent. With respect to log records, there are multiple points in time,
observed by multiple entities. First, there is the point in time when
the log record is created. Next, there are points in time when the log
record is received by a storage node, when it is queried by a query-
ing node, when it is stored again, queried again, etcetera. Every time
an interaction with a log record takes place, its "time" needs to be
reinterpreted. In Chapter 4, we claimed that time should be treated
specially. It is the dimension that is required to be specified in every
query, that is used to group data as time progresses, and that can be
used to determine causality. Yet, interpreting it suffers from ambigu-
ity. With multiple entities operating on log records, there are multiple
clocks involved. With multiple clocks, there are different versions of
time.

For every individual node, we assume its clock is monotonically
increasing. That means that the clock can only move forward in time,
not backward. This is an issue when the clock needs to move back-
wards in time (e.g. a leap second is inserted, and happens twice). This
can be solved by stopping the clock or slowing it down and distribut-
ing a single leap second over multiple slower seconds [24]. Forward
jumps in time do not violate the constraint that time only moves for-
ward, so are not a problem.

This assumption alone is not enough, because it doesn’t put con-
straints on the synchronization of different clocks in the system. There-
fore, we also assume that every individual node goes through a phase
of clock synchronization when it starts. This can be executed using
NTP*. This protocol, and the associated tooling, uses a single author-
itative server as its synchronization target, whose clock is assumed
to be correct. Not only should synchronization be executed when a

1 Network Time Protocol

45

46

IMPLEMENTATION

node is started, it should also run periodically to compensate for clock
drift.

With these assumptions in place, we can consequently dare to as-
sume that the clocks participating in the system are approximately
synchronized. This is a dangerous assumption to make, because it
is impossible to fully prevent out of sync clocks. We therefore need
to put additional protective measures in place to prevent clocks that
have drifted too far from corrupting the system. This can be done by
by formulating an upper bound for the tolerable difference in time.
When the time encoded in a log record fails to meet this bound, it can
for example be discarded. The fact that a log record is discarded in it-
self deserves a log record to be created to capture that event, because
it is not something that should remain unnoticed as it can possibly
indicate a clock de-synchronization in the system.

It is required to include a time interval in queries for the system.
When events take place that trigger the creation of a log record, time
may be the property that can correlate them. For instance, if an event
takes place on a node that results in sharing the local time on that
node with an external entity, that time will be used by that external
entity to try and find related events. Now, if instead of using the local
time for log records, the time on the node that stores the log records
is used, these two may be out of sync causing the external entity
not being able to find related events. Because this behavior is not
intuitive, we choose to always capture time the moment a log record
is created. This means that if local time on a node is externalized,
it will always be possible for the entities that captured that time to
find events that took place on that node around that same time. For
example, a HTTP server encodes time in its responses in the Date
header field. The client making the request can observe that time, and
want to query the logging system for events that happened during the
execution of its request. A difference between the local time that the
log records were created and the remote time that they were stored
and they are associated with makes it impossible to get the intended
results. Then, the difference between the time that is encoded in log
records and the local time on the nodes that eventually store those
log records is effectively the latency between creating and storing
them. The distribution of this latency can then in itself be captured,
resulting in a measure of timeliness (again, assuming the clocks of
the producing and storing nodes are approximately synchronized).

Storing processes may receive multiple streams of log records orig-
inating from multiple different remote sources. This means that at
time of arrival, the log records from these different remote sources
may encode slightly differing time. If the different streams are multi-
plexed to a single stream, the time encoded by the log records in that
stream may no longer be monotonically increasing. Monotonically in-
creasing time can be used as the primary way to determine causality

5.2 LOCALITY

(albeit primitively). When the multiplexed stream is directly streamed
to a file, and the monotonicity property no longer applies, it is only
possible to determine if other log records happened before a specific
log record by scanning the entire file, because they may appear any-
where in the stream. All but one stream in the multiplexed stream
can be paused for some amount of time. This causes log records from
the stream that is not paused to appear at a position in the file be-
fore log records from the temporarily paused streams, while the time
encoded by the latter log records happened before the time encoded
in the former log records. Conversely, one stream can be paused for
some amount of time, which causes its log records to appear at a
position in the file after log records from the other streams.

This is not necessarily a bad property, because the monotonicity
property still holds for log records that are created by the same pro-
ducer, even in a file with interleaved streams. Interleaving streams on
a per-record basis does, however, negatively impact locality.

5.2 LOCALITY

When streams from multiple sources are multiplexed into a single
stream, extracting log records from one of those sources can be costly.
If every stream equally contributes to the multiplexed stream, every
log record in the file storing the stream needs to be examined and
filtered to reconstruct a single source stream. This is not a problem
in itself, but we can think of common query workloads where this
is suboptimal. Namely, queries will likely be interested in the log
records that are created by one particular producer. An example of
such a producer/query pattern is where a single producer emits log
records capturing the resource usage on the node where it is running.
A consumer of this data is more likely to be interested in a series
of these samples rather than a single sample in particular. Having a
some degree of data locality in the files produced by multiplexing
multiple streams helps in keeping the cost of answering such queries
relatively low.

To achieve data locality on a per-stream basis in the file produced
by multiplexing multiple streams, the storing process needs to keep
a per-stream buffer that is periodically flushed to that file. The size
of this buffer depends on a number of aspects. As every stream uses
its own buffer, the more streams are multiplexed, the more buffers
need to be allocated. If the ideal time interval to coalesce log records
on disk is a minute, the buffer size also depends on the rate at which
new log records are received. If the ideal number of log records to
coalesce on disk is 50, the buffer size also depends on the byte size of
the serialized representation of the log records. Clearly, the optimal
size of this buffer depends on many aspects of the workload, and
needs to be set accordingly.

47

48

IMPLEMENTATION

Instead of choosing a fixed buffer size, we choose to make it dy-
namic. Picking a fixed buffer size can result in unpredictable memory
usage for the storage process. For example, the number of streams
may suddenly spike, the rate at which they are received may spike,
the size of individual log records may spike, etcetera). We set the tar-
get memory usage to be constant, thus predictable, and make buffer-
ing dynamic. Now, it is still possible to flush a buffer based on its
serialized byte size, the number of log records it contains, or the time
interval the log records it contains spans, but it may also need to be
flushed when the total target memory usage is exceeded. This hap-
pens when none of the per-buffer limits is reached, but the memory
usage of all buffers combined is higher than the target memory us-
age. When this happens, one or more buffers need to be flushed to
disk to disk such that the combined memory usage is reduced until
it is lower than the target memory usage. Choosing which buffers are
flushed can be done in a number of ways. One way to choose buffers
is by picking them at random. A buffer is chosen from the set of avail-
able buffers, it is written to disk and its memory is deallocated. This
process is repeated until the combined memory usage no longer ex-
ceeds the target memory usage. When there are many small buffers
and only a few large buffer this strategy is suboptimal, because flush-
ing fewer buffers keeps the total cost of flushing low, and results in
better locality for the other buffers. Instead of choosing buffers ran-
domly, another way to choose buffers from the set of available buffers
is to use order between the buffers. The buffers are ordered by their
serialized byte size and are stored in a priority queue. Then, when
the combined memory usage exceeds the target memory usage, the
largest buffer is removed from the priority queue, is written to disk,
and its memory is deallocated. This process is also repeated until the
combined memory usage no longer exceeds the target memory us-
age. With this strategy, fewer buffers need to be flushed every time
the combined memory usage exceeds the target memory usage. It
gives us the ability to both keep the memory usage of the storage
process under control and store log records with good locality.

The effects of both of these approaches are presented in Figure 10.
The data in these figures is generated by executing an experiment
where log records of constant size are generated and are tied to a
series of streams. Log records are distributed over these streams fol-
lowing an exponential distribution with A = 1. This is done to sim-
ulate the varying rate at which log records are added to different
streams. The artificial memory limit is set to 64 kilobytes. Whenever
this limit is reached or exceeded, one buffer is chosen following either
approach, and is committed to disk. Because the serialized byte size
of the log records is constant, and the rate at which they are added
is constant, this results in a sawtooth pattern. The regularity of the
sawtooth depends on which approach is used to choose a buffer to

5.3 FORMAT

flush. To evaluate the locality fitness of both approached, both graphs
include the average number of log records contained in every individ-
ual commit operation. The more log records are contained in an indi-
vidual commit, the better the locality for its stream, because more log
records can be read from disk in a single sequential read operation.
Clearly, the locality is better when the largest buffer is committed
to disk every time the combined memory usage exceeds the target
memory usage.

68 bined (kB)] g
8 | Avg# o e e e ey | 2
= 1 ol
) 1408
264 E
&] &
5 1 &

00

| -

qg) 60 g,
E 20 '§
9]

.QS) 56 F g
§S) 4 10-
g [S
8 3
)

2 o >

> Z

Number of records —

(a) Committing a random bulffer

N
o]

| Avg # of TRRaAS par SR HeAEs ()]

SNNENENE

(@)
=
o
o

(5%}
o

N
o

U1
o)}
I

|
S
Avg. # of records per committed buffer

Combined memory usage (kB)
N
o

U1
N
o

Number of records —

(b) Committing the largest buffer

Figure 10: Memory usage and a locality measure for storing log records
with constant size from multiple streams in a single file. Streams
are buffered, and buffers are flushed when the cumulative
memory usage exceeds 64 kB.

5.3 FORMAT

With a strategy in place to preserve some data locality while multi-
plexing multiple streams to a single file, we now discuss the format

49

50

IMPLEMENTATION

of this file is. Recall from Chapter 4 that every log record is an im-
mutable set of 2-element tuples. In every tuple, both the dimension
identifier and the value in that dimension can contain arbitrary bi-
nary data. This requires the backing storage format to be binary safe.
Also, log records need to be individually addressable for indexing
purposes. There are a number of existing serialization technologies
that can be used for storing this type of data. Examples are Thrift [3],
Protocol Buffers [29], and MessagePack [13]. Where both Thrift and
Protocol Buffers require a schema and a compiler to generate code
for encoding and decoding, MessagePack does not require a schema.
Because it does not require a schema, MessagePack is said to be self-
describing, that is: given a encoded record, a decoder can figure out
what the structure of the record is and what the data types of its
fields are. This property is useful when the producer of the data
doesn’t know what the consumer is. The consumer can decode the
data it received entirely by itself. In this case, the producer and the
consumer are the same process, which means that a self-describing
serialization technology is not an absolute necessity. However, when
code upgrades are performed, the producer and consumer may no
longer be the same process, and a self-describing serialization tech-
nique can be beneficial for extensibility. When requirements change
over time and additional data needs to be added to the log records,
this can be done without breaking backwards compatibility (e.g. older
code can read data generated by newer code). The same can be pos-
sible for serialization techniques that require a schema to be defined,
but is less light-weight. We therefore choose to use a self-describing
serialization technology to serialize individual log records.

This takes care of serializing individual log records, but does not
give a solution for storing a large number of log records in a single
file. Because every log record is an individual unit, we may choose to
not add additional data to the file have simply be a continuous stream
of these log records. There are two problems with this approach.

First, log records are written in groups at a time. Because every
group of log records originates from the same source, it is useful to
know where the group starts and stops. This allows the represen-
tation of data in memory and in the file to be the same, reducing
complexity. Without having this information, the data in log records
needs to be inspected to find out to what group it belongs (e.g. by
comparing the values in their source dimension). We will see in the
next section that having log records be addressable by groups is also
advantageous when indexing the data.

Second, every log record needs to be fully interpreted before being
able to move to the next log record. This is not a problem of seman-
tics, but a problem of optimization. When a consumer of the data is
iterating over log records to seek to a certain point in time, it is more
optimal if only the time property needs to be extracted than if the

5.3 FORMAT 51

Timestamp

Size (byt‘es)
b

Record sit|dy|dz|...|dn
Group |s|v|ri|T2]|...[Tn

bt
Size (bytes)

Version

Figure 11: Serialized format of groups of log records and log records
themselves.

entire log record needs to be decoded, to be able to figure out if the
log record should be used or not. To avoid having to decode an entire
log record, and being able to skip over it in reading log records from
a stream, its byte size needs to be known. When the byte size of a log
record is known, iterating over encoded log records becomes an op-
eration that is not constrained by the number of dimensions encoded
in individual log records.

These two problems need to be addressed in the format of the stor-
age files. The first problem is addressed by prefixing every group of
log records with the total byte size of the group. Similarly to knowing
the byte size of individual log records, this allows a consumer of the
data to quickly iterate over groups of log records, without having to
iterate over the individual log records. For robustness, we also prefix
every group with a version byte for robustness. With the version byte
in the header, future modifications can be made while maintaining
backwards compatibility. The second problem is addressed by prefix-
ing every log record with its byte size. The format with these modi-
fications is shown in Figure 11. The tuples in individual log records
are denoted as d; through d,,. The log records in individual groups
are denoted as 17 through r,. A file storing log records consists of
consecutive blocks of groups. With the prefixed size in bytes of both
groups of log records and log records themselves, a consumer of the
data can easily seek over a large file without having to fully interpret
all data.

52

IMPLEMENTATION

5.4 INDEXING

To be able to quickly retrieve a subset of log records, the files storing
log records need to be indexed. Not doing so requires a scan of all
data, and testing every log record for a match, to compute query
results.

Indexing is done per dimension. Not necessarily all dimensions
need to be indexed. For example, consider log records produced by
a HTTP server that include the User-Agent header as a separate di-
mension. Only if queries are executed that filter specifically on this
dimension, it should be indexed. If such queries are never executed,
that dimension does not necessarily need to be indexed, and doing
so regardless incurs unnecessary cost. Indexing is therefore be con-
trolled on a per-dimension basis.

While it is possible to create indexes that contain pointers to indi-
vidual log records, doing so is not absolutely necessary. Because log
records are grouped in blocks that are produced by a single producer,
it is likely that there exists a relation between them. In the extreme
case, when a producer always includes the same value for a particular
dimension, it is enough to only index the block instead of indexing ev-
ery log record individually. On the other hand, if a value only occurs
for a single log record in the entire block, the entire block is indexed
and all its sibling log records need to be tested for a match when
executing a query. The overhead that is incurred when only a single
log record out of an entire block matches is limited by the maximum
number of log records that is stored in every group. This number
can depend on the dynamic buffering parameters as discussed in the
section about locality, or it can also be artificially limited. The extra
overhead is also limited by the fact that the log records need to be
tested for a match have good locality with at least a single matching
log record. If a group of log records can be read from file in a single
disk read, testing log records for matches is only bounded by CPU
and not I/0O.

Because of this, we choose to point to groups instead of individual
log records. If the average number of log records per group is 50, this
choice increases the worst case number of log records that need to be
tested and are not included in the result by a factor of 50, but reduces the
size of every index entry by a factor of 50, because it only contains a
pointer to a group instead of 50 pointers to log records.

The pointers to groups are only known when they are flushed to
disk. When this happens we capture the offset in the file where it
is written, and use that as pointer to the group. Because a group
of log records in entirely self-contained, this is all the information
that is needed to point to a group of log records. A problem that
this presents it that it is not possible to index log records as they
are received. The offset in the file is only known when the group is

5.5 QUERYING

flushed to disk. We therefore keep two separate indexes, an index on
disk Ip and an index in memory In1. The in-memory index consists
of a hash table per indexed dimension, with values pointing to a set
of buffer objects. Every time a log record is added to a buffer, it is
immediately indexed in In1. Then, when a buffer is flushed to disk,
its contribution to Ins is also "finalized" and is merged into Ip.

As time progresses and more records are added, eventually the set
of files that is used to store log records for a particular time slot will
roll over and can be finalized. When this happens, pending buffers are
flushed to disk, and their respective contributions to Ip; are merged
into Ip. After this, the file containing all log records for that time slot
will be accompanied by a set of indexes Ip that contain pointers to
all stored groups of log records.

Note that while indexes are instrumental for speeding up queries,
they are not required. Without indexes, it is still possible to execute
a query, though performance may be far worse. It is possible to add
indexes after the file for a particular time slot has been finalized, and
can be created outside of the storage process, or even by third party
tooling.

5.5 QUERYING

Executing queries against the storage format and its indexes follows
naturally. A query consists of a set of constraints for zero or more
dimensions, and always includes a time interval to execute against.
Using the interval the storage nodes determine which files they need
to answer the query. If some of these files have already been moved
to long-term storage, they can be retrieved when needed. Because
every file and its indexes contains an absolute and non-overlapping
time interval, executing a query spanning a longer interval means
sequentially executing it against every individual file. Executing a
query against a single file is harder. While there is temporal ordering
inside every group, there is no temporal ordering between groups in
the file. Temporal ordering is therefore done at query time.

Every query potentially scans every group in the file. The con-
straints of a query are used to eliminate groups from the sets of
groups to scan. Because groups of log records are identified identi-
cally across dimensions, this set operations can be used to reduce
the size of the set of groups to scan. For example, a query can limit
dy equal vy, and d; to v,. Then, the set of groups to scan is equal
to I4,[vi] N1g4,[v2], where 14, is the index for dimension d,. If con-
straints are put on dimensions that are not indexed, any log record
might match and the constraint is translated to the set of all groups.

The set of groups to scan is then translated into a set of cursors.
Because we have the guarantee that log records from a single source
have monotonically increasing time, we only need a single cursor

53

54

IMPLEMENTATION

per log record source. This is achieved by enumerating the groups in
the set of groups to scan. Every individual source that is seen when
enumerating is assigned its own cursor. Every cursor is associated
with a chronologically ordered list of groups for its source. Every
cursor maintains a pointer to its first log record. The cursors are then
inserted in a priority queue, and use the time encoded in their first
log record for ordering. The result of the query is then computed
by iteratively removing the cursor with the lowest timestamp from
the queue, returning it to the client, advancing its pointer, and re-
inserting it into the priority queue if it has a next log record. If the
next log record has a timestamp lower than the log record pointed to
by the cursor that is next in the priority queue, we can take a shortcut
and skip re-inserting and removing from the priority queue. These
steps are executed for every file that overlaps with the time interval
that the query limited to.

When the system consist of multiple storage nodes, queries effec-
tively become a map/reduce job over these nodes. The query is exe-
cuted on every individual storage node, and the client executing the
query is responsible for merging the results together.

CONCLUSION

While the trend that applications no longer depend on underlying
infrastructure brings advantages and flexibility in terms of cost and
scalability, it also presents a number of interesting problems. With
highly ephemeral application instances, how can the distributed state
of that application be monitored? Are existing monitoring systems
adequate to do so, or does the approach towards monitoring applica-
tions in such highly ephemeral environments need to be rethought?
These are questions we had going starting with the work presented in
this thesis. Concepts used in existing monitoring solutions appeared
to be unfit to represent the highly dynamic nature of this type of
application. Where conventional monitoring solutions often focus on
either monitoring log data or monitoring metrics data, we argue that
it is possible to derive metrics from log data when not embedded in
log data, and there proposed a single model that would be able to
satisfy both types of monitoring.

From the analysis, we concluded that modeling log records pro-
duced by these applications as sets of tuples gives the best expressive-
ness and flexibility. Based on the nature of the data, we formulated an
approach towards storing this type of log data. With the data model
and storage approach in mind, we evaluated different configurations
of processes producing log records, storing log records and query-
ing for log records. This lead to an approach for distribution of the
problem that allows the intake capacity of the storage processes to be
dynamically scaled up.

By storing log records in fixed interval files, and deferring fault-
tolerant storage to existing solutions, we explicitly allow the files to
be usable by third party software. These files with log records are
not tied to a particular database, and can be handled as any other
file. They can therefore be processed with frameworks like Hadoop
Map /Reduce, they can be copied to increase capacity for answering
queries, and they can be removed when they are no longer of use.

In future work, the storage format can be made more efficient.
There are various techniques that can be applied to remove dupli-
cation in the files storing log records, and to optimize the execution
of set operations against the indexes (e.g. using bitmap indices). Also,
indexes that support operations other than string equality should be
explored, to increase richness of queries.

55

BIBLIOGRAPHY

[1] Tom Altman and Yoshihide Igarashi. Roughly Sorting: Sequen-
tial and Parallel Approach. Journal of information processing,
12(2):154-158, 1989-08-30.

[2] Amazon S3 Availability Event: July 20, 2008. http://status.
aws.amazon.com/s3-20080720.html.

[3] Apache™ Thrift™. http://thrift.apache.org/.
[4] Apache™ zookeeper™. http://zookeeper.apache.org/.

[5] Basho | makers of the Riak distributed database. http://basho.
com/.

[6] Cloud Foundry. http://cloudfoundry.org/.

[7] Derek Collison. NATS. https://github.com/derekcollison/
nats.

[8] Common Log Format. http://en.wikipedia.org/wiki/Common_
Log_Format.

[9] Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gu-
navardhan Kakulapati, Avinash Lakshman, Alex Pilchin, Swami-
nathan Sivasubramanian, Peter Vosshall, and Werner Vogels. Dy-
namo: Amazon’s highly available key-value store. SIGOPS Oper.
Syst. Rev., 41(6):205—220, October 2007.

[10] S. Deering and R. Hinden. Internet Protocol, Version 6 (IPv6)
Specification. RFC 2460 (Draft Standard), December 1998. Up-
dated by RFCs 5095, 5722, 5871, 6437, 6564.

[11] Doozer. https://github.com/ha/doozer.

[12] R. Fielding, J. Gettys,]. Mogul, H. Frystyk, L. Masinter, P. Leach,
and T. Berners-Lee. Hypertext Transfer Protocol — HTTP/1.1.
RFC 2616 (Draft Standard), June 1999. Updated by RFCs 2817,
5785, 6266, 6585.

[13] Sadayuki Furuhashi. MessagePack: It’s like JSON, but fast and
small. http://msgpack.org/.

[14] Ganglia Monitoring System. http://ganglia.sourceforge.
net/.

[15] Graphite - Scalable Realtime Graphing. http://graphite.
wikidot.com/.

57

http://status.aws.amazon.com/s3-20080720.html
http://status.aws.amazon.com/s3-20080720.html
http://thrift.apache.org/
http://zookeeper.apache.org/
http://basho.com/
http://basho.com/
http://cloudfoundry.org/
https://github.com/derekcollison/nats
https://github.com/derekcollison/nats
http://en.wikipedia.org/wiki/Common_Log_Format
http://en.wikipedia.org/wiki/Common_Log_Format
https://github.com/ha/doozer
http://msgpack.org/
http://ganglia.sourceforge.net/
http://ganglia.sourceforge.net/
http://graphite.wikidot.com/
http://graphite.wikidot.com/

58

BIBLIOGRAPHY

[16] Hadoop™ Distributed File System. http://hadoop.apache.org/
hdfs/.

[17] Hadoop™ MapReduce. http://hadoop.apache.org/
mapreduce/.

[18] David Karger, Eric Lehman, Tom Leighton, Rina Panigrahy,
Matthew Levine, and Daniel Lewin. Consistent hashing and ran-
dom trees: distributed caching protocols for relieving hot spots
on the World Wide Web. In Proceedings of the twenty-ninth annual
ACM symposium on Theory of computing, STOC "97, pages 654—663,
New York, NY, USA, 1997. ACM.

[19] Leslie Lamport, Robert Shostak, and Marshall Pease. The Byzan-
tine Generals Problem. ACM Trans. Program. Lang. Syst., 4(3):382—
401, July 1982.

[20] Log Files - Apache HTTP Server. http://httpd.apache.org/
docs/2.2/1ogs.html#accesslog.

[21] logstash - open source log management. http://logstash.net/.

[22] C. Lonvick. The BSD Syslog Protocol. RFC 3164 (Informational),
August 2001. Obsoleted by REC 5424.

[23] memcached - a distributed memory object caching system. http:
//memcached.org/.

[24] David L. Mills. The NTP Timescale and Leap Seconds. http:
//www.eecis.udel.edu/~mills/leap.html.

[25] C. Mohan, R. Strong, and S. Finkelstein. Method for distributed
transaction commit and recovery using Byzantine Agreement
within clusters of processors. SIGOPS Oper. Syst. Rev., 19(3):29—

43, July 1985.

[26] Nagios - The Industry Standard in IT Infrastructure Monitoring.
http://www.nagios.org/.

[27] OODA loop. http://en.wikipedia.org/wiki/00DA_loop.

[28]]. Postel. Internet Protocol. RFC 791 (Standard), September 1981.
Updated by RFCs 1349, 2474.

[29] Protocol Buffers. http://code.google.com/p/protobuf/.
[30] Redis. http://redis.io/.
[31] RRDtool. http://0ss.oetiker.ch/rrdtool/.

[32] Bianca Schroeder, Eduardo Pinheiro, and Wolf-Dietrich Weber.
DRAM errors in the wild: a large-scale field study. In Proceedings

http://hadoop.apache.org/hdfs/
http://hadoop.apache.org/hdfs/
http://hadoop.apache.org/mapreduce/
http://hadoop.apache.org/mapreduce/
http://httpd.apache.org/docs/2.2/logs.html#accesslog
http://httpd.apache.org/docs/2.2/logs.html#accesslog
http://logstash.net/
http://memcached.org/
http://memcached.org/
http://www.eecis.udel.edu/~mills/leap.html
http://www.eecis.udel.edu/~mills/leap.html
http://www.nagios.org/
http://en.wikipedia.org/wiki/OODA_loop
http://code.google.com/p/protobuf/
http://redis.io/
http://oss.oetiker.ch/rrdtool/

BIBLIOGRAPHY

of the eleventh international joint conference on Measurement and mod-
eling of computer systems, SIGMETRICS ‘09, pages 193—204, New
York, NY, USA, 2009. ACM.

[33] Baron Schwartz, Peter Zaitsev, Vadim Tkachenko, Jeremy D. Za-
wodny, Arjen Lentz, and Derek J. Balling. High Performance
MySQL: Optimization, Backups, Replication, and Load-Balancing.
O'Reilly Media, 2.a. edition, 2008.

[34] SHA-1. http://en.wikipedia.org/wiki/SHA- 1.

[35] Splunk - Operational Intelligence, Log Management, Applica-
tion Management, Enterprise Security and Compliance. http:
//www.splunk.com/.

[36] Syslog — The GNU C Library. http://www.gnu.org/software/
libc/manual/html_node/Syslog.html.

59

http://en.wikipedia.org/wiki/SHA-1
http://www.splunk.com/
http://www.splunk.com/
http://www.gnu.org/software/libc/manual/html_node/Syslog.html
http://www.gnu.org/software/libc/manual/html_node/Syslog.html

	Contents
	List of Figures
	1 Introduction
	2 Problem Domain
	2.1 Why Monitoring?
	2.2 Types of Failures
	2.3 Types of Monitoring
	2.3.1 Interactive/Non-Interactive
	2.3.2 Active/Passive

	2.4 Types of Data to Monitor
	2.5 Context: Cloud Foundry
	2.5.1 Components
	2.5.2 Monitoring Challenges

	3 Related Work
	3.1 Logs
	3.2 Metrics

	4 Analysis & Design
	4.1 Data Model
	4.1.1 Logs or metrics?
	4.1.2 Dimensionality
	4.1.3 Encoding more dimensions into one
	4.1.4 Adding more context

	4.2 Querying
	4.2.1 What about grep and tail?
	4.2.2 Goals

	4.3 Storage And Retrieval
	4.3.1 Flat Files
	4.3.2 Relational Database
	4.3.3 Key/Value Database
	4.3.4 Evaluation

	4.4 Distribution
	4.4.1 Topology
	4.4.2 Partitioning

	5 Implementation
	5.1 Time
	5.2 Locality
	5.3 Format
	5.4 Indexing
	5.5 Querying

	6 Conclusion
	Bibliography

