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AbstractData mining involves the use of data analysis tools to discover andextract information from a data set and transform it into an understand-able expression. One of its central problems is to identify a representa-tive subset of features from which a learning model can be constructed.Feature selection is an important pre-processing step before data miningwhich aims to select a representative subset of features with high predic-tive information and eliminate irrelevant features with little importancefor classi�cation. By reducing the dimensionality of the data, feature se-lection helps to decrease the time for training and by selecting the mostrelevant features and removing the irrelevant and noisy data, the classi-�cation performance may be improved. Besides, with a smaller featuresubset, the learned model may be more intuitive and easier to interpret.This thesis investigates the extension of Generalized Matrix LVQ (GM-LVQ) model on feature selection. Generalized Matrix LVQ employs a fullmatrix as the distance metric in training. The diagonal and o�-diagonalelements of the distance matrix respectively measure the contribution ofeach feature and feature pair for classi�cation; therefore, their distribu-tion can provide a quantitative measurement of feature weight. Moresteps and analysis are performed to force a more e�ective feature selec-tion result and remove the weighting ambiguity. Besides, compared toother methods which perform feature ranking �rst and learning a modelafter selecting the feature subset, GMLVQ based methods can combinethe process of feature ranking and classi�cation together which helps todecrease the computation time.Experiments in this thesis were performed on data sets collected fromthe UCI Machine Learning Repository [29]. The GMLVQ based featureweight algorithm is compared with other state-of-the-art methods: Infor-mation Gain, Fisher and Relie�. All these four feature ranking methodsare evaluated using both GMLVQ and RBF based Support Vector Ma-chine (RBF-SVM) methods by increasing the size of the selected featuresubset with a stepsize rate. The results indicate that the performanceof GMLVQ based feature selection method is comparable to other meth-ods and on some of the data sets, it consistently outperforms the othermethods.
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Chapter 11 Introduction and Background1.1 MotivationFor a machine learning algorithm to be successful on a given task, the repre-sentation and quality of the data are the �rst and most important. With theadvancing of database technology, data is easier to assess and more features canbe gathered for a speci�c task. However, more features do not necessarily resultin more discriminative classi�ers. Instead, when there are too many redundantor irrelevant features, the computation can be much more expensive and theclassi�er may have a poor generalization performance due to the interferenceof noises; therefore, proper data preprocessing is essential for the successfultraining of machine learning algorithms.Feature selection is one of the most important and frequently used prepro-cessing techniques [5] which aims to identify and select the most discriminativesubset from the original features while eliminating irrelevant, redundant andnoisy data. Some studies have shown that irrelevant features can be removedwithout signi�cant performance downgrade [6]. The application of feature se-lection can have some bene�ts:1. It reduces the data dimensionality which helps the learning algorithms towork faster and more e�ectively;2. In some cases, the classi�cation accuracy can be improved by using asubset of all features;3. The selected feature subset is usually a more compact result which can beinterpreted more easily;To perform feature selection, the training data can be with or without labelinformation, corresponding to supervised or unsupervised feature selection. Inunsupervised tasks [1, 2], without considering the label information, featurerelevance can be evaluated by measuring some intrinsic properties within thedata, such as the separability or covariance. In practice, unlabeled data iseasier to obtain compared to labelled ones, thereby indicating the signi�canceof unsupervised algorithms. However, these methods ignore label information,which may lead to performance deterioration when the label information isavailable. Supervised feature selection is proposed to take the label informationinto account. It can be generally divided into two major frameworks: the �ltermodel [14, 15, 16, 17] and the wrapper model [18, 19, 20]. The �lter modelperforms the feature selection as a pre-processing step, independent of the choiceof the classi�er. The wrapper model, on the other hand, evaluates subsets offeatures according to their usefulness to a given predictor.Feature selection techniques can be further categorized into feature rankingand feature subset selection. Feature ranking methods assign a weight to each4



feature, indicating their importance in terms of some criterion. It is the user toselect the subset of features by choosing a threshold and eliminate all featureswhich do not achieve that score. Feature subset selection searches for the op-timal subset which collectively has the best performance with respect to somepredictor. In this thesis, a new method for feature ranking will be investigatedand compared with other state-of-the-art ones.Learning Vector Quantization is one of the most famous prototype-basedsupervised learning methods. It was �rst introduced by Kohonen [3]. After that,several advanced cost functions were proposed to improve the performance, oneexample being Generalized LVQ [4] which is only based on Euclidean distance.To model the di�erent contributions of features for classi�cation, GeneralizedRelevance LVQ is proposed [4, 7] to extend the Euclidean distance with scalingor relevance factors for all features. The recently introduced Generalized MatrixLVQ (GMLVQ) [33] extends the distance measurement further to account forpairwise contribution of features. The distance matrix in GMLVQ contains someinformation which may be useful for feature selection. For example, the diagonalelement Λii of the dissimilarity matrix can be regarded as a measurement of theoverall relevance of feature i for classi�cation and the o�-diagonal element Λijcan be interpreted as the contribution of feature pair i and j. A high absolutevalue indicates the existence of a highly relevant relationship while an absolutevalue closer to zero may suggest that is is not that important for classi�cation.The above discussion illustrates the potential application of GMLVQ in fea-ture ranking which has not yet been fully investigated. Early studies includeapplying GMLVQ to select the best feature in the classi�cation of lung disease[39] and select the most discriminative marker in the diagnosis of Adrenal Tumor[41]. In this thesis, a further investigation will be conducted and experimentson more data sets will be carried out.1.2 Research QuestionsThis thesis will attempt to answer the following questions:1. Can GMLVQ method be extended to perform feature ranking?2. How well does the feature ranking perform? In this thesis, the GMLVQbased feature ranking technique will be compared with three other state-of-the-art feature ranking methods. All these four methods will be evalu-ated by GMLVQ and RBF-SVM in terms of their AUC metric.3. Can GMLVQ combine the feature ranking and classi�cation into one singleprocess and how well does the classi�cation perform compares to othermethods in which feature ranking and classi�cation are performed in twosteps?1.3 Thesis OutlineThis thesis has six chapters and is organized as follows. Chapter 2 presentsthe basic concepts in machine learning and the algorithm details of the Sup-5



port Vector Machine (SVM) and GMLVQ which will be used to evaluate theperformance of various feature ranking algorithms in a later stage. Chapter 3discusses the idea of feature selection, its general framework and three state-of-the-art feature ranking techniques which will be compared with the GMLVQbased ranking method. Chapter 4 gives a description about the GMLVQ basedfeature ranking method. In this chapter, details will be given to extract featureranking from GMLVQ, the waypoint averaging algorithm and how to obtain aunique feature ranking result. Chapter 5 elaborates on the experiments con-ducted to compare the four feature ranking techniques discussed above and isfollowed by Chapter 6 that states the conclusion and future work for this thesis.
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Chapter 22 Machine LearningIn this chapter, we �rstly give a brief introduction to machine learning andsome of its basic concepts. The data representation, classi�cation and learningalgorithms are further presented. We further present some speci�c learning algo-rithms which are RBF-based SVM, basic LVQ and its two other variations. Thelearning algorithms introduced in this chapter will be later utilized to evaluatethe feature selection algorithms introduced in Chapter 3.2.1 Basic Concept of Machine Learning2.1.1 De�nition of learningWhat is learning? Learning is generally referred to the mutual interaction be-tween the environment and the person through which one gains or modi�esknowledge or skills. A more formal de�nition was given by Runyon in 1977 [36]:�Learning is a process in which behavior capabilities are changed as the result ofexperience provided the change cannot be accounted for by native response ten-dencies, maturation, or temporary states of the organism due to fatigue, drugs,or other temporary factors.�One of the examples in learning is the association between events. Forexample, if a normal person tastes an apple for the �rst time and �nds it verydelicious, he will assume that the next apple he meets will also be deliciousalthough he has not eaten it and that apple is di�erent from the one he ate.The important discovery here is the association of the facts that the apple istasty. This association is the knowledge someone gains by the experience to eatan apple.2.1.2 De�nition of machine learningLearning for computers falls into the �eld of machine learning. A widely ac-cepted de�nition is: A computer program is said to learn from experience Ewith respect to some class of tasks T and performance measure P, if its perfor-mance at tasks in T, as measured by P, improves with experience E [37]. Theexperience here usually refers to the data which demonstrates the relationshipbetween observed variables.There are many example applications in Machine Learning. One of thelargest groups lies in the categorization of objects into a set of pre-speci�edclasses or labels. Some of the practical examples are:1. Optical Character Recognition: classify images of handwritten charactersto the speci�c letters;2. Face Recognition: categorize facial images to the person it belongs to;7



Figure 1: The �Golf� example demonstrating the data representation in machinelearning.3. Medical Diagnosis: determine whether or not a patient su�ers from somedisease;4. Stock Prediction: predict whether a stock goes up or down2.1.3 Data representationIn the �eld of machine learning, data is represented by a table where each rowcorresponds to one sample or instance and each column describes one attributeor feature. In the case of supervised learning, there will be another columncontaining the label information for each instance. One of the examples isshown in Figure 1. There are 14 instances in this example and each instanceconsists of the data with four features: �Outlook�, �Temperature�, �Humidity�,�Wind� and the label information specifying whether or not to play.The mathematical expressions of the data and labels are presented here toserve as the notations in this thesis. Let {xi, yi} denote the ith instance where
xi ∈ RNdenotes the data in the N dimensional space and yi is the correspondinglabel information with C di�erent possible values. To be brief, the combinationof data and label are expressed as below:

{xi, yi} ∈ RN × C (1)2.2 Classi�cationAs discussed in the previous section, the major task in machine learning is tolearn how to classify objects into one of the pre-de�ned set of labels. In such task,8



it is crucial to identify the common characteristics from a set of representativeobjects in a class. For example, to identify whether a fruit is a banana, peoplehave to check its color, size, shape and infer its label from this information.2.2.1 Unsupervised and supervised learningThe classi�cation task discussed above is generally referred to as supervisedlearning where the labels of training data are provided and the learning algo-rithm tries to generalize from the training instances to enable novel objectsto be classi�ed to correct categories. In contrast to supervised learning, un-supervised learning refers to the learning in which the labels of training dataare unknown. Its goal is to group the training data into di�erent clusters byevaluating some intrinsic properties within the data, such as the separability orcovariance; therefore, the quality of the data provided for training is crucial.If irrelevant or noisy data are provided, misclassi�cations will happen on noveldata.2.3 Learning AlgorithmsIn this section, two supervised learning algorithms will be described which arethe SVM algorithm with RBF kernel and the LVQ algorithm with its two vari-ants: GRLVQ and GMLVQ. The GMLVQ and RBF-SVM will be later utilizedto evaluate the performance of four feature ranking methods.2.3.1 SVM with RBF kernelThe Support Vector Machine (SVM) was originally proposed by Vapnik forclassi�cation and regression [25, 24, 26, 27] and then it was also extended forother application [28]. It has attracted large attention in recent years due toits superior performance and soundly developed theoretical foundation. As aresult, it also serves as an evaluation method for the feature selection results inthis thesis.The SVM is a method to �nd an optimal hyperplane to separate trainingdata of two or more classes and at the same time, maximizing its margin. Thelinear Support Vector Machine, as the simplest and most basic case, will beintroduced �rst. Then we will show how it can classify non-linearly separabledata in a feature space in higher dimensions.Linear SVM and separating hyperplane maximization The linear SVMis a supervised learning method which is built upon a group of labelled samplesand that performs binary classi�cation in the feature space. Let's denote thedata and labels as (xi, yi) where xi ⊆ RN is a N-dimensional feature vectorand yi is the label of sample xi. In a two-class problem, yi ∈ {+1,−1}. Theclassi�cation process of a supervised learning algorithm can then be regardedas a mapping process f(xi):RN → R which maps the feature vector from aN dimensional space to the class membership of the vector. Without loss of9



Figure 2: Linear Support Vector Machine. Function f(x) divides the featurespace into two halvesgenerality, it is assumed that f(xi) > 0 and yi = 1 indicate the feature vectorbelongs to class 1 and f(xi) < 0 and yi = −1 specify the class 2. Then a formalde�nition about linearly separable data can be given as: a data set is linearlyseparable if the following equations hold:
∀ yi = 1 : f(xi) > 0 (2)
∀ yi = −1 : f(xi) ≤ 0 (3)An illustration example is shown in Figure 2. As can be seen from the �gure,all the points with yi = 1 are classi�ed into the positive side of the hyperplaneand others with yi = −1 are in the opposite side.The discriminant function in Figure 2 is a linear model and can be expressedas:

f(x) = wTx+ b (4)where w indicates the weight vector and b is the bias. The hyperplane whichdivides the plane into two half-planes is expressed as:
f(x) = wTx+ b = 0The discriminant function f(x) can also help to measure the distance of adata point to the hyperplane. Consider the point xd and its normal projection

x0 on the hyperplane in Figure 2. The coordinates of the point xd can then beexpressed as:
xd = x0 + d

w

‖w‖
(5)10



where d describes the algebraic distance between the point xd and x0. Be-cause x0 is on the hyperplane, f(x0) = 0. We have:
f(xd) = f(x0 + d

w

‖w‖
) = wT (x0 + d

w

‖w‖
) + b (6)

= f(x0) + d
wTw

‖w‖
= d ‖w‖ (7)It follows that: d = f(xi)

‖w‖ and to enforce that d is always positive undercorrect classi�cation, we de�ne:
di =

yif(xi)

‖w‖
(8)Then the term margin p can be de�ned here as the distance between thehyperplane and the closest data points from both sides:

p =

min
i=1,2···n

yif(xi)

‖w‖
(9)where n is the number of examples in the training data set. The linear SVMis trained to �nd an optimal hyperplane to maximize the margin p. As shownin the formula above, this can be achieved by either maximizing the value of

yif(xi) of the closest points or by minimizing ‖w‖. Since wTx+ b can be scaledwithout changing its sign, it is reasonable to impose the constraint that:
yi(w

Txi + b) ≥ 1 (10)
i = 1, 2, · · ·n (11)Therefore, the optimization problem can be formulated as [25]: given a set oftraining samples {xi, yi}

n
i=1, try to �nd the optimal parameters w and b whichsatis�es the constraint that:
yi(w

T xi + b) ≥ 1 (12)
i = 1, 2, · · · , n (13)and minimizes the following function:

L =
1

2
wTw (14)This is called the primary problem and can be solved by constructing theLagrange function [30] as below:

J(w, b, a) =
1

2
wTw −

n∑

i=1

ai[yi(w
Txi + b)− 1] (15)11



The ai here are called the Lagrange multipliers and the solution of this opti-mization problem should be minimized with respect to w and b and maximizedwith respect to ai. As a result, it follows that
∂J(w, b, a)

∂w
= w −

n∑

i=1

aiyixi = 0 (16)and
∂J(w, b, a)

∂b
=

n∑

i=1

aiyi = 0 (17)which gives rise to
w =

n∑

i=1

aiyixi (18)and
n∑

i=1

aiyi = 0 (19)Then by substituting the above two equations into equation (15), the equa-tion becomes:
Q(a) =

n∑

i=1

ai −
1

2

n∑

i=1

n∑

j=1

aiajyiyjx
T
i xj (20)The corresponding problem is called the dual problem and is formulatedas below: given training samples {xi, yi}

n
i=1, try to �nd the optimal Lagrangemultipliers {ai}ni=1 which maximize the objective function above and also satisfythe following constrains:1.

n∑

i=1

aiyi = 0;2. ai ≥ 0 for i = 1, 2, . . . , nAfter the Lagrange multipliers are determined, the weight vector can be easilydetermined by
w =

n∑

i=1

aiyixi (21)and the bias b can be determined by arbitrarily choosing a labeled sample
{xi, yi} and calculate:

12



yi(w
T xi + b) = 1 (22)
∀ yi = 1 : b = 1− wTxi (23)

or (24)
∀ yi = −1 : b = −1− wTxi (25)It is also important to state the Karush-Kuhn-Tucker theorem [25, 30] whichgives the following constraint on the saddle point of the Lagrange:

ai0[yi(w
T
0 xi + b0)− 1] = 0 for i = 1, 2, . . . , n (26)It states that ai0 6= 0 only for the points which satisfy yi(w

T
0 xi + b0) = 1.These points are called the support vectors.To sum up, we have:

f(x) =

m∑

i=1

ai0yix
T
i x+ b0 (27)where {xi}

m
i=1 are the support vectors and {ai0}mi=1 are the correspondingLagrange multipliers.Non-linear separable data and soft margin In practical applications,many of the data sets are non-linearly separable which makes the algorithmin the previous section infeasible. One example is shown in Figure 3. As can beseen from the �gure, although most of the points are classi�ed into the correctside, there are still some points which violate the hyperplane. These pointseither cross the boundary of the margin but are still located on the correct half-space, or have been misclassi�ed onto the incorrect half-space. In such cases, itis impossible to �nd a hyperplane which completely removes the errors; instead,a solution can be proposed to minimize the errors on the training data.Slack variables are introduced to solve this problem. For a data set with nsamples, there are n slack variables {εi}ni=1 which satisfy:

∀ yi = 1 : wTxi + b > 1− εi (28)
∀ yi = −1 : wTxi + b 6 −1 + εi (29)The slack variable εi here is a measure of the violation to the margin. If

0 < εi < 1, then the sample violates the margin but is still correctly classi�ed.When εi > 1, the sample is classi�ed into the wrong half-space. Since the goalis to have fewer training samples misclassi�ed, a penalty force can be added:
η(ε) =

n∑

i=1

εi (30)13



Figure 3: Non-linearly separable situation in SVMwhich should be minimized. It can be incorporated into the cost function inthe previous section as:
f =

1

2
wTw + C

n∑

i=1

εi (31)The parameter C here controls the trade-o� between the margin rigidityenforcement and the number of errors it can tolerate during training. A largervalue of C will produce a more accurate model while at the same time increasingthe risk of over-�tting; therefore, the value of C has to be optimized by the userduring the experiment.The corresponding Lagrange function for this problem is:
J(w, b, a, u, ε) =

1

2
wTw+C

n∑

i=1

εi−

n∑

i=1

µiεi−

n∑

i=1

αi[yi(w
Txi+b)−1+εi] (32)where µi is the Lagrange multiplier for the slack variables.Kernel trick Consider the typical XOR problem which tries to separate fourexamples in four corners of a rectangle such that the two examples connectedby a diagonal belong to the same class. It is impossible to make this in atwo-dimensional space but when projecting it to a three-dimensional space, itbecomes much easier. This example indicates that a non-linearly separable dataset may become linearly separable in a higher dimensional space. This kind ofmapping increases the separability of the data set.Let the function θ de�nes the non-linear mapping:

θ : RN → H (33)14



Therefore, the discriminant function can be formulated as:
f(x) =

n∑

i=1

aiyiθ(xi)
T θ(x) + b (34)The kernel function is de�ned here by:

K(x, y) = θ(x)T θ(y) (35)and the discriminant function turns into:
f(x) =

n∑

i=1

aiyiK(xi, x) + b (36)This expression avoids providing the exact representation in a higher dimen-sional space. Numerous kernels have been proposed to solve various kinds ofproblems. One of the most popular kernels is the RBF kernel which is used inthis thesis. The RBF kernel can be expressed as:
K(x, y) = e(−

1

2σ2 ‖x−y‖2) (37)
σ indicates the kernel width. A larger σ indicates a smoother function toavoid over�tting and also avoid reproducing the noises in the training data; Onthe other hand, a smaller σ implies a more �exible function to produce highlyirregular decision boundaries. Hence, it is important to determine the optimalvalue for σ by means of cross validation.2.3.2 LVQLearning Vector Quantization is one of the most famous prototype-based su-pervised learning methods which was �rst introduced by Kohonen [3]. It hassome advantages over the other methods. Firstly, this method can be easilyimplemented and the complexity of the classi�er can be controlled and deter-mined by the user. Secondly, multi-class problems can be naturally tackled bythe classi�er without modifying the learning algorithm or decision rule. Lastly,the resulting classi�er is intuitive and easy to interpret due to its assignmentof class prototypes and intuitive classi�cation mechanism of new data points tothe closest prototype. The resulting prototypes can then provide class-speci�cattributes for the data. This is a big advantage over the methods such as SVMor Neural Networks which su�er from the drawback of being like a black box andbecause of that, LVQ has been applied into many �elds, such as bioinformatics,satellite remote sensing and image analysis [34, 35, 39]Training data for LVQ can be denoted as:

{xi, yi}
n
i=1 ∈ RN × {1, 2, . . .C} (38)where xi denotes the data in N dimensional space and yi is the label with Cdi�erent classes. 15



Figure 4: Example for LVQ with 3 Di�erent PrototypesLVQ can be parameterized by a set of prototypes representing the classesin feature space and the distance measurement which may be a traditionalEuclidean distance or a full matrix trained from the data. One of the examplescan be seen in Figure 4 where there are 4 di�erent prototypes representing 3di�erent classes.Traditional LVQ employs Euclidean distance measurement and is based onnearest prototype classi�cation. To be more speci�c, a set of prototypes arede�ned to represent the di�erent classes. If one prototype per class is de�ned,the prototypes can be represented as: W = {wj , c(wj)} ∈ RN × {1, 2, . . . , C}.Each unseen example xnew will be assigned a label whose prototype has theclosest distance to it with respect to the distance measurement:
c(xnew)← c(wk)withwk = argmin

j

d(wj , xnew) (39)It is called a winner-takes-all strategy.Training of this model is guided by the minimization of the cost function:
F =

n∑

i=1

φ(εi)with εi =
d(xi, wH)− d(xiwM )

d(xi, wH) + d(xiwM )
(40)where φ is any monotonic function and in this thesis, φ(x) = x; wH and

wM are respectively the closest prototype with the same and di�erent label tosample xi:
wH = argmin

j

d(xi, wj)∀c(wj) = c(xi) (41)
wM = argmin

j

d(xi, wj)∀c(wj) 6= c(xi) (42)In traditional LVQ systems, only the locations of the prototypes are updatedduring the training to minimize the errors. wH is pushed toward the sample xi16



and wM is pushed away from it. Their derivatives to the cost function F areexpressed as:
4wH = −α · φ

′

(εi) · ε
′

i,H · ∇wH
d(xi, wH) (43)

4wM = α · φ
′

(εi) · ε
′

i,M · ∇wM
d(xi, wM ) (44)where α is the learning rate; φ

′

(εi) = 1 because φ(x) = x; ε
′

i,H = 2 ·

d(xiwM )/[d(xi, wH)+d(xiwM )]2 and ε
′

i,M = 2·d(xiwH)/[d(xi, wH)+d(xiwM )]2;
∇wH

d(xi, wH) and∇wM
d(xi, wH) are respectively the derivatives of wH and wMto the distance d(xi, wH orM ) and therefore depend on the distance measure-ment.2.3.3 Two variants of LVQ: GRLVQ and GMLVQHow the distance is calculated is very important in the LVQ system. One ofthe most popular metrics is the Euclidean distance which is a special case ofMinkowski distance. The Euclidean distance from a data point xi to a prototype

w can be expressed as:
d(w, xi) =

√
√
√
√

N∑

j=1

(xj
i − wj)2 (45)The Euclidean distance assigns the same weight for each feature, indicat-ing that each feature has the same contribution for classi�cation. However, inpractical applications, it is usually observed that di�erent features contributedi�erently toward the classi�cation. Therefore, relevance learning [7, 4] is pro-posed to assign adaptive weight values for di�erent feature inputs:

d(w, xi) =

√
√
√
√

N∑

j=1

λj(x
j
i − wj)2 (46)The corresponding LVQ system is called GRLVQ [7, 4].Each feature, besides their individual contribution for the classi�cation, willalso correlate with the others to in�uence the performance. Generalized MatrixLVQ (GMLVQ) [38] is proposed to extend the previous methods. A full matrixof adaptive relevance is employed as the similarity metric and the distance iscalculated as:

d(w, xi) = (xi − w)TΛ(xi − w) (47)where Λ is a full N ×N matrix whose o�-diagonal element Λi,j account forthe contribution of feature pair i and j for classi�cation. The matrix Λ has tobe positive de�nite to keep the distance result positive. Its positive de�nitenessis achieved by constructing:
Λ = ΩTΩ (48)17



where Ω is an arbitrary real M × N matrix with M 6 N . However, in thisthesis, we only consider the case : M = N . Substituting Eq. (42) into Eq. (41),obtain:
(xi − w)TΛ(xi − w) = (xi − w)TΩTΩ(xi − w) = [Ω(xi − w)]2 > 0 (49)It is noticed the GRLVQ is a special case of GMLVQ with diag(Λ) = {λi}

N
i=1.The derivative of the distance d(w, xi) with respect to prototype w is:

∇wd(w, xi) = −2Λ(xi − w) (50)Substituting Eq. (50) into Eq. (43) and Eq. (44), we can obtain the updaterule for closest correct and incorrect prototype.In the model of GMLVQ, the update rule of the distance matrix Ω also needto be computed. The derivative of d(w, xi) with respect to one single element
Ωlm is:
∇Ωlm

d(w, xi) =
∑

k

(xm
i − wm)Ωlk(x

k
i − wk) +

∑

j

(xj
i − wj)Ωlj(x

m
i − wm)(51)

= 2 · (xm
i − wm)[Ω(xi − w)]l, (52)The derivative of the cost function F with respect to one single element Ωlmcan then be expressed as:

4Ωlm = 4ΩH
lm +4ΩM

lm (53)
= −β · 2 · φ

′

(εi) · ε
′

i,H · ∇ΩH
lm
d(xi, wH) + β · 2 · φ

′

(εi) · ε
′

i,M · ∇ΩM
lm
d(xi, wM )where β is the learning rate for Ω.
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Chapter 33 Feature Selection3.1 ChallengeIn this section, two topics about the challenges in feature selection will be dis-cussed. The �rst issue about the curse of dimensionality and the second one isthe relevance and redundancy of features.3.1.1 Curse of dimensionalityIn machine learning, the term curse of dimensionality was initially de�ned byRichard Bellman [10] when he conducted the work on dynamic optimization[9, 10] and found it quite di�cult to tackle the problem of the curse of dimen-sionality. He stated:�In view of all that we said in the foregoing sections, the manyobstacles we appear to have surmounted, what casts the pall over ourvictory celebration? It is the curse of dimensionality, a maledictionthat has plagued the scientist from the earliest days." [10]Up to date, there are already many de�nitions about it, but generally it refersto the problem incurred by adding extra features to the space. The reliability ofthe learning model depends on the density of training examples in the featurespace. The increase of data dimensionality will sparse the feature space andthus deteriorate the generalization performance.It states that the predictive performance of a learning algorithm will deteri-orate with the increase of data dimensionality. With the increase of the featurespace, the feature space will become more sparse and more training examplesare required. For example, if 5 samples are enough in each dimension, then 25samples are su�cient to �ll a two-dimensional cube. However, this number willincrease to 520 for a 20-dimensional hypercube.It is also observed that it becomes more di�cult to estimate the kernel ina higher dimension [11]. Table 1 illustrates the number of samples required toestimate a kernel at density 0 with a certain accuracy.Dimensionality Sample Size1 42 195 7867 10,70010 842,000Table 1: Sample size required for kernel estimation [11].19



3.1.2 Irrelevance and redundancyThere are some controversies in the de�nition of feature relevance. There is areview [8] which introduces the di�erent relevance de�nitions that have beenproposed in the literature. The authors then present an example to indicatethat all the other relevance de�nitions produce unexpected results and based onthat, the authors suggest that two di�erent degrees of relevance are required:strong relevance and weak relevance. The de�nition of weak relevance can alsobe regarded as the de�nition of redundancy.Let < X, Y > denote the training examples where X ∈ RN is the dataand Y indicates the labels. Let F be the full feature set and Fi is the ithfeature; therefore each instance X is one element of the combination of the set
F1×F2× · · ·FN . Let Si = F −{Fi} denote the feature subset with all featuresexcept for Fi and si denote one value instantiation of Si. Let P denote theconditional probability of the label Y given a feature subset.Strong relevance A feature Fi is strongly relevant i�
∃xi ∈ Fi, y ∈ Y where P (xi, si) > 0 and P (Y = y|Si = si, Fi = xi) 6= P (Y =

y|Si = si)Weak relevance A feature Fi is weakly relevant i� it is not stronglyrelevant and
∃xi ∈ Fi, si ⊆ Si, y ∈ Y, such that P (Y = y|Si = si, Fi = xi) 6= P (Y =

y|Si = si)A feature Fi is called relevant if it is either strongly or weakly relevant tothe class label; otherwise it is irrelevant. A feature Fi which is weakly relevantcan become strongly relevant after removing a certain feature subset. The weakrelevance can be interpreted as the existence of other relevant features whichcan provide similar prediction power as the one we are measuring. This is alsowhat we call redundant. It is important to note that the feature Fi which isweakly relevant or redundant should not be removed if the feature subset whoseremoval makes Fi strongly relevant has been removed by the feature selectionalgorithm.3.2 General FrameworkThe framework in Figure 5 shows that a typical feature selection system usuallyconsists of four components. They include: feature subset generation, featuresubset evaluation, stopping criterion and feature subset validation. As indicatedin the �gure, the complete feature set is �rstly sent to the �Generation" modelwhich produces di�erent feature subset candidates based on some search strat-egy. Each subset candidate will then be evaluated in the �Evaluation" model bya certain evaluation measurement. A new subset which turns out to be betterwill replace the previous best one. This subset generation and evaluation willbe repeated over and over until the given stopping criterion is met. After that,20



Figure 5: Framework of Feature Selectionthe ultimately selected feature subset will be sent to the �Validation" model forvalidation by certain learning algorithms.Two basic issues have to be addressed in the �Generation model". Thoseare: Starting point and search strategy.
• Starting Point. Choose a point to start the search in the feature space.One choice is to begin with no feature and then for each iteration, expandthe current feature subset with each feature that is not yet in the subset.The feature whose addition produces the best evaluation performance isadded to the current subset. This is called forward selection. Anotheroption is to do it conversely. The search starts with a full feature set andthen successively eliminates the feature whose removal results in the bestevaluation performance. This search is called backward selection. A thirdalternative is to start by selecting a random feature subset [13] and thensuccessively add or remove features depending on the performance. Thisrandom approach can avoid being trapped into local optima.
• Search Strategy. There are three di�erent search strategies: complete,heuristic and random. The complete strategy examines all the possiblefeature subsets and guarantees to �nd the optimal one. When there are
N features, the search will examine 2N subsets which makes it unrealisticfor large N . Heuristic search is guided by some heuristic. It is less com-putationally demanding but the optimal subset is not guaranteed. Theguideline determines whether or not a better subset can be found. Therandom strategy just simply chooses the next feature at random; therefore,the probability to �nd the optimal subset depends on how many epochsare tried.3.3 Wrapper and Filter ApproachThe evaluation methods in feature selection can be generally divided into twobasic models: the �lter model [14, 15, 16, 17] and the wrapper model [18, 19, 20].The �lter model selects a feature subset as a pre-processing step, withoutconsidering the predictor performance. It is usually achieved by designing an21



evaluation function and then choosing a set of features to maximize it. Someevaluation functions that are frequently used are distance measures, informationmeasures, dependency measures and consistency measures. The �lter modeldoes not involve any training of learning algorithm and is thus much fasterwhich makes it suitable to be applied on large data sets.In the wrapper model, a predetermined data mining algorithm is utilizedto evaluate the feature subset and the candidate with highest prediction per-formance will be selected as the �nal subset. The wrapper model can usuallyselect a feature subset with superior performance because it selects features bet-ter suited to the predetermined algorithm. However, because the algorithm hasto be trained and tested for each subset candidate, the wrapper model tends tobe very computationally expensive, especially with large feature size.3.4 Feature Ranking Technique3.4.1 Information gainInformation gain [21] measures the dependency between a feature Xi and theclass label Y . It is a very popular technique in feature selection because it iseasy to understand and compute. Information gain can also be regarded as ameasure of the reduction in uncertainty about a feature Xi when the value of
Y is known. Uncertainty is usually measured by Shannon's entropy:Entropy Entropy measures the amount of uncertainty that a feature Xi con-tains. It is given by

H(Xi) = −

p
∑

j=1

P (j)log2P (j) (54)Where p is the number of possible values in Xi and P (j) indicates the obser-vation probability of the value j. Form this formula, a more uniform distributiontends to produce a higher entropy. For example, if you toss a fair coin, thereare two possible values each with equal probability 0.5. Its entropy value is
H(coinToss) = −2× (0.5× log20.5) = 1In another example, if you toss a die, there are six possible outcomes, eachwith probability 1/6. Its entropy value is

H(diceT oss) = −6× ((1/6)× log2(1/6)) = 2.585Therefore, the higher the entropy is, the more uncertainty it contains andthe more di�cult to predict the output.
22



Figure 6: Example to illustrate the algorithm Information GainInformation Gain The information gain of a feature Xi and the label Y is:
I(Xi, Y ) = H(Xi)−H(Xi | Y ) (55)Where H(Xi) and H(Xi | Y ) are respectively the entropy of feature Xi andthe entropy of Xi after knowing the value of Y . H(Xi | Y ) is calculated as

H(Xi | Y ) = −
∑

j

P (Yj)
∑

k

P (xk | Yj)log2P (xk | Yj) (56)A better understanding can be gained from Figure 6. As can be seen inFigure 6, H(X) and H(Y ) respectively measure the entropy of X and Y . Theinformation gain I(X,Y ) is a measure of the information shared by X and Y .
H(X,Y ) is the information that X and Y collectively contain.
H(X,Y ) = −

∑

x

∑

y

p(x, y)log2p(x, y) = H(X | Y )+I(X,Y )+H(Y | X) = H(X)+H(Y )−I(X,Y )(57)If X and Y are highly correlated, then the information they share is veryhigh, indicating a large value of I(X,Y ). Then if Y is known, much of theinformation about X can be �guessed� from Y , suggesting a low H(X | Y ) andvice versa for H(Y | X).3.4.2 Relie�Relief [22] is a univariate feature weighting algorithm in the �lter model. Itis based on the principle that the attribute which can better separate similarinstances but with di�erent classes is more important and should be assigned alarger weight. The three basic steps to compute the feature weight are:23



Algorithm 1 Pseudo code of Relief algorithmDescription: There are P instances described by N features and there are Cdi�erent classes: x ∈ RN c(x) ∈ {1, 2, . . .C}; T iterations are performed.1. Set all the feature weights to 0: ∀i, w(i) = 0;2. For t = 1 to T , do:3. Randomly pick an instance x ∈ RN ;4. Find nearest hit NH(x) and nearest miss NM(x):5. NH(x) ← xh, with xh = argmin
j

d(x, xj)∀c(xj) = c(x)6. NM(x) ← xm with xm = argmin
k

d(x, xk)∀c(xk) 6= c(x)7. For i =1 to N , do:8. w(i) = w(i) + d(xi, NM(x)i)/(P × T )− d(xi, NH(x)i)/(P × T )9. end do.10. end do.1. Find the nearest miss and nearest hit where nearest hit is the closestsample with the same class as the test sample and nearest miss speci�esthe closest sample with a di�erent label as the test sample;2. Calculate the weight of a feature;3. Return a ranked list of feature weights or the top k features according toa given threshold;The algorithm starts by initializing all the feature weights to be zero and itrandomly select an instance from the samples and calculates its nearest hit NHand nearest miss NM. Each feature weight is then updated based on its abilityto discriminate NH and NM. The detailed pseudo code is given in Algorithm 1.Relie� [23] extends the original Relief algorithm to deal with the multi-classsituation. It incorporates two important improvements. First, the result ismore robust to noises because of the consideration of k nearest neighbourhoods.Second, it can deal with the multi-class problem. The detailed pseudo code isshown in Algorithm 2.3.4.3 FisherFisher [40] is an e�ective supervised feature selection algorithm which aims toselect features that assign similar values to the same class and di�erent valuesto di�erent classes. The evaluation score of Fisher's algorithm is:24



Algorithm 2 Pseudo code of Relie� algorithmDescription: Instances described by N features and there are C di�erent classes:
x ∈ RN , c(x) ∈ {1, 2, . . .C}; Look for k nearest neighbours; perform T iteration;
p(y) the class probability specifying the probability of an instance being fromthe class y.1. Set all the feature weights to 0: ∀i, w(i) = 0;2. For t = 1 to T , do:3. Randomly pick an instance x ∈ RN with label yx;4. for y = 1 to C, do5. �nd k nearest instances of x from class y: x(y, l) where l = 1, 2, · · ·k6. for i = 1 to N , do:7. for l = 1 to k, do:8. if y = yx (nearest hit), then9. w(i) = w(i)− d(xi−x(y,l)i)

T×n10. else (nearest miss),11. w(i) = w(i) + p(y)
1−p(yx)

× d(xi−x(y,l)i)
T×n12. end if.13. end for.14. end for.15. end for.16. end for.
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Fisher(fi) =

∑c
j=1 nj(µi,j − µi)
∑c

j=1 njσ2
i,j

(58)where fi is the ith feature to be evaluated, nj is the number of instancesin class j, µi is the mean of feature i, µi,j and σi,j are respectively the meanand the variance of feature i on class j. Fisher algorithm is computationallye�ective and widely applied in many applications, however, because it considersthe features individually, it has no ability to deal with redundant features.
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Chapter 44 GMLVQ Based Feature Selection Algorithms4.1 Entropy Enforcement for Feature Ranking ResultsIt is stated that the element Λi,j in matrix Λ measures the correlation betweenfeature i and j and the diagonal element Λi,i quanti�es the contribution offeature i for classi�cation. The above statement only makes sense when thefeatures have similar magnitude, therefore a z-score transformation is alwaysperformed on the data before the training starts. One example is shown inFigure 7 where 32 features are ranked with respect to their value of the diagonalelements. The 19th feature contains the highest value, indicating that it has thelargest correlation with the classi�cation. Another constraint is added so thatafter each adaption, the sum of the diagonal elements is equal to zero:
N∑

i=1

Λi,i = 1 (59)

Figure 7: One example of diagonal elements of ΛOne of the ideal situations in feature ranking is that some of the featuresare much more important than others and the least important features cantherefore be removed from the feature set without deteriorating the classi�cationperformance. An external entropy force is added to the cost function to pushthe diagonal elements to this ideal situation.The de�nition of the entropy force is:27



Figure 8: Classi�cation performance with respect to di�erent values of regular-ization force
Entropy(Λdiag) = −

N∑

i=1

Λi,ilog2Λi,i (60)where N is the data dimension. This external force will reach the maxi-mum when all the diagonal elements are equal, i.e. all the features are equallyimportant for classi�cation. Its minimization will, on the other hand, push togenerate a discriminative feature relevance and at the extreme, only one featureis identi�ed as relevant for classi�cation and the relevances of other features arezero.It is integrated into the cost function by:
Fnew = F + α× Entropy(Λdiag) (61)where the regularization parameter α controls the trade-o� between the clas-si�cation accuracy and the discrimination between features. A larger value of

α will produce a more discriminative feature ranking result by sacri�cing theclassi�cation performance. Their mutual relation on one of the data sets isvisualized in Figure 8.The choice of the regularization value depends on how important the accu-racy and the discrimination are for the user and di�ers per data set. A safe wayis to post their relation for each data set and choose the optimal point based onthe requirement. A more e�cient way in this thesis is to choose the value by N2

10where N is the data dimension. On all of the data sets conducted in this thesis,28



Figure 9: Comparison of feature ranking result with and without entropy forcesuch a value can generate a considerable discriminative feature ranking resultwithout deteriorating the performance to a large extent. One of the exampleswith and without entropy force can be seen in Figure 9.4.2 Way-Point Average AlgorithmGradient based minimization is a popular and powerful method in non-linearoptimization [31]. In this thesis, batch gradient descent is employed to train theGMLVQ model. One of the critical choices in gradient descent methods is theappropriate choice of the step size. Too small step sizes will slow the conver-gence, however large steps can result in oscillatory or even divergent behavior.In this section, a modi�cation of batch gradient descent [32] is introducedwhich aims at better convergence behavior. The idea is that, during the trainingprocedure, we compare the cost function of normal descent adaption with that ofthe gliding average over the most recent steps and if the latter produces a loweroptimization value, minimization jumps to the latter con�guration and decreasesthe step size at the same time. A more detailed description is described below.Consider we want to minimize an objective function F with respect to aN-dimensional vector x ∈ RN . A gradient descent process is started at x0 andproceeds to generate a sequence of steps iteratively:
xt+1 = xt − at

∇F

|∇F |
(62)29



Note that the gradient has been normalized by ∇F
|∇F | and therefore, at hereis exactly the step size length during adaption: |xt+1 − xt| = at.The waypoint averaging algorithm starts at x0 with initial step size a0 andperforms k steps with gradient steps unchanged:

xt+1 = xt − at
∇F

|∇F |
for t = 0, 1, 2 . . . k − 1 with at = a0 (63)After that (t > k), the procedure proceeds as below:1. perform the normal gradient descent step and evaluate the correspondingcost function:

x∗
t+1 = xt − at

∇F

|∇F | t
and calculate F (x∗

t+1) (64)2. perform the waypoint average over the previous j steps:
xt+1 =

1

j

j−1
∑

i=0

xt−i and calculate F (xt+1) (65)3. determine the new step size and adaption position by comparison:
{
xt+1=x∗

t+1 and at+1=at if F (x∗

t+1)6F (xt+1)

xt+1=xt+1 and at+1=λat else
(66)with the parameter 0 < λ < 1.As can be seen from the algorithm, as long as the normal gradient descentprocedure produces a position with lower cost than the waypoint average algo-rithm, the iteration proceeds as a normal gradient descent algorithm.On the other hand, F (xt+1) < F (x∗

t+1) indicates the potential existence ofoscillatory behavior because under oscillatory condition, the position �uctuatesaround the local minimum and it is expected that the average over the previoussteps may provide a closer estimate to the minimum than the normal gradientdescent adaption. It also indicates that the step size may be too large to get tothe minimum and should be decreased for better convergence.An intuitive example is shown in Figure 10 [32] which visualizes the adaptionsteps of both the normal gradient descent and waypoint averaging algorithm.The dotted lines mark the update trajectory of normal gradient descent algo-rithm with constant step sizes which display strong oscillatory behavior. Thewaypoint averaging algorithm shares the same trajectory with the normal gra-dient descent in the �rst four steps. However, after that it jumps to the averageposition over the previous steps and reduces the step size at the same time whichenables it to move closer to the minimum in the middle.When considering its application in GMLVQ, since the cost function in GM-LVQ has to be optimized with respect to both the prototype w and the matrix
Ω, two independent waypoint averaging algorithms about w and Ω have to beperformed. The typical scheme is formulated as below:30



Figure 10: Comparison between way-point average algorithm and normal gra-dient descent. From [32]Given a GMLVQ system represented by Ω and a set of prototypes {wk}
M
k=1with cost function represented by F, respectively choose the start points Ω0 and

{w0
k}

M
k=1 and initial step sizes aΩ0 and aw0 for Ω and w;1. perform k (k=3 in this thesis) steps with gradient steps unchanged:

Ωt+1 = Ωt − aΩt
∇F

|∇F |
for t = 0, 1, 2 . . . k − 1 with aΩt = aΩ0 (67)

wt+1 = wt − awt
∇F

|∇F |
for t = 0, 1, 2 . . . k − 1 with awt = aw0 (68)After that (t > k), the procedure proceeds as below:2. perform the normal gradient descent step and evaluate the correspondingcost function for both Ω and w:

Ω∗
t+1 = Ωt − aΩt

∇F

|∇F | t
and calculate F (Ω∗

t+1) (69)
w∗

t+1 = wt − awt
∇F

|∇F | t
and calculate F (w∗

t+1) (70)3. perform the waypoint average over the least previous j (j=3 in this thesis)steps:
Ωt+1 =

1

j

j−1
∑

i=0

Ωt−i and calculate F (Ωt+1) (71)31



wt+1 =
1

j

j−1
∑

i=0

wt−i and calculate F (wt+1) (72)4. determine the new step size and adaption position for both Ω and w:
{

Ωt+1=Ω∗

t+1 and aΩ
t+1=aΩ

t if F (Ω∗

t+1)6F (Ωt+1)

Ωt+1=Ωt+1 and aΩ
t+1

=λaΩ
t else

(73)
{
wt+1=w∗

t+1 and aw
t+1=aw

t if F (w∗

t+1)6F (wt+1)

wt+1=wt+1 and aw
t+1

=λaw
t else

(74)with the parameter λ = 2/3.4.3 Feature Ranking Ambiguity RemovalUp to this step, we have the input vectors and class labels:
{x, yi}

n
i=1 with xi ∈ RN , yi ∈ {1, 2, . . .C} (75)associated with a set of prototypes:

{wk}
M
k=1 whereM > C (76)And the distance is calculated as:

d(xi, wk) = (xi − wk)
TΛ(xi − wk) = (xi − wk)

TΩTΩ(xi − wk) =| Ω(xi − wk) |
2(77)where Λ,Ω ∈ RN×N and Ω = [z1,z2, · · · zN ]T where {zi}Ni=1 are column vec-tors with dimension N . The feature ranking results can be obtained from thevalues of diagonal elements in matrix Λ. However, an issue is raised whetherthere is another matrix Λ which can keep the distance measurement unchanged.It that matrix exists, the feature ranking results can be di�erent without mod-ifying the classi�er, which means the feature ranking results we have obtainedin previous steps are not unique.Consider a vector vj which satis�es the following constraints:

∀ i : vTj xi = 0 (78)
∀ k : vTj wk = 0 (79)If we add such a vector vj to any row zTi of the matrix Ω, consider, forinstance, i = 1:

Ωnew = [z1 + vj , z2, · · · zN ]T (80)we can easily verify that the following mappings keep unchanged:32



∀ i : Ωnew xi = Ωxi (81)
∀ k : Ωnew wk = Ωwk (82)Therefore, the distances between any pair of input samples and prototypeswill keep the same:

d(xi, wk) =| Ω(xi − wk) |
2=| Ωnew(xi − wk) |

2 for all i, k (83)Since the mapping and distance calculation are the same between Ω and
Ωnew, the cost functions, classi�cation errors and classi�ers they produce willalso stay the same. However, the feature ranking results may vary between Ωand Ωnew , because there is no constraint on the consistency of their diagonalelements in matrix Λ and Λnew.Without loss of generality, we assume that there are J such spurious vectors
{vj}

J
j=1 and as it will be proved in later stages all such vectors are actuallyeigenvectors of a construction matrix, we can additionally assume that all thevectors {vj}Jj=1 are orthonormal:

vj • vk = δjk =
{
1 if j=k
0 otherwise

(84)The proposed solution is to project out all the spurious directions {vj}Jj=1 froma given matrix Ω:
ΩT

new = [I −

J∑

j=1

vjv
T
j ]Ω

T (85)It follows that:
ΩT

new(xi − wk) = ΩT (xi − wk)−

J∑

j=1

vj(xi − wk)
︸ ︷︷ ︸

0

vTj Ω
T = ΩT (xi − wk) (86)

vTk Ωnew = vTk Ω−

J∑

j=1

vjvk
︸︷︷︸

δjk

vTj Ω = vTk Ω− vTk Ω = 0 (87)Hence, we can interpret the resulting matrix Ωnew as the minimal represen-tation of the mapping which contains no contribution of the spurious direction
vj . The next question is how to �nd all these vectors {vj}Jj=1. The conditionsthat ∀ i : vTj xi = 0 and ∀ k : vTj wk = 0 can be rewritten as

XT vj = 0 whereX = [x1, x2, · · ·xL, w1, w2, · · ·wM ] (88)33



This in turn, is equivalent to
[XT vj ]

2 = 0⇔ vTj Cvj = 0 whereC = XXT =
L∑

i=1

xix
T
i +

M∑

k=1

wkw
T
k (89)The matrix C here is a positive (semi-) de�nite matrix. Let's assume that theset of its orthonormal eigenvectors {gi}Ni=1 with eigenvalues {γi}Ni=1 >0 forma basis of RN . Then any vector vj ∈ RN can be written as a linear combinationof all the eigenvectors vj = ∑N

i=1 aigi with coe�cients ai ∈ RN and we obtain:
vTj Gvj =

∑

i,j

aig
T
i Gajgj =

∑

i,j

aiajγj g
T
i gj
︸︷︷︸

=δij

=
∑

j

a2jγj (90)Hence, except for the nontrivial solutions in which v = 0, the other vectors vwhich satisfy vTGv = 0 should meet the requirement {aj=0
or aj 6=0,for γj=0. Combinedtogether, the solution {vj}Jj=1 are those eigenvectors with zero eigenvalues. Sincein practical applications, it is di�cult to obtain exactly zero eigenvalues, the Jsmallest eigenvalues are selected here.To sum up, the typical scheme to obtain unique feature ranking results forGMLVQ is formulated as below:Given a GMLVQ system represented by Ω and a set of prototypes {wk}

M
k=1,the training examples are {x, yi}ni=1, construct the matrix X as:

X = [x1, x2, · · ·xL, w1, w2, · · ·wM ] (91)and then calculate its eigenvalues and eigenvectors and perform the projec-tion as:
Ωnew = [I −

J∑

j=1

vjv
T
j ]Ω (92)where {vj}Jj=1 are the J eigenvectors of X with smallest eigenvalues.It is therefore important to determine the number J . It can be representedas the delete rate which is the ratio between the value of J and dimension N .The delete rate is determined by experiment and di�ers per data set. Sinceno additional training is required when testing with multiple delete rates, thechoice of an optimal delete rate will not signi�cantly increase the computationtime.
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Chapter 55 Experiments and Results5.1 Data Set DescriptionTable 2 summarizes all the datasets that are chosen in our experiments forfeature selection evaluation. Except for the �rst data �Adrenal Tumor�, all theother datasets in the table are selected from the UCI data set repository [29].The selected datasets describe diverse real-world problems and thus show avariety of characteristics. They are utilized to assist the comparison of di�erentfeature selection algorithms. The table below provides a summary about thevarious characteristics of the datasets, including the number of instances andthe number of input attributes and output classes.Name of Datase Number of Instances Attribute Type Number of Attributes Number of ClassesAdrenal Tumor 147 Real 32 2Breast Cancer Wisconsin 569 Real 30 2Ionosphere 351 Integer and Real 34 2SPECTF Heart 267 Integer 44 3Connectionist Bench Sonar 208 Real 60 2Table 2: The �ve datasets above are selected for the experiments. For eachdataset, its number of instances, attribute type, number of attributes and num-ber of output classes are illustrated in the table.5.2 Experiment DesignWe now turn to the experimental procedure to perform feature selection andevaluate the results. The various algorithms used in our experiments includethe four feature selection algorithms (information gain (IG), Relie� (RFF),�sher (FR) and GMLVQ-based (GMLVQFS) feature selection and two eval-uation methods (GMLVQ and rbf-kernel SVM). A �ve-fold cross-validation isused in the experiment. As shown in Figure 11, the data is divided into �vefolders. In each cross-validation, one folder is chosen as the test set, one forvalidation and the other three as the training set. Feature selection algorithmsare performed on the dataset constituting of the training and validation set. Forthe GMLVQ-based feature selection algorithm, the GMLVQ model is trained onthe training set and validated on the validation set to prevent over�tting. Aslong as the feature ranking result is obtained, new data sets are constructed byselecting di�erent numbers of features, in term of their importance indicatedfrom the feature ranked list. For each new data set, which has the same dis-tribution of training, validation and testing set, only di�erent in the number offeatures, the two evaluation methods are trained on the training and validation35



Figure 11: Experiment design of data set.set and then tested on the test data. Their performances on the test set areevaluated by the ROC curve and the AUC.5.3 Results and DiscussionIn this section, the experimental results on the �ve datasets are presented anddiscussed. Each dataset will serve as a case-study. The abilities of the fourfeature selection algorithms to deal with irrelevant and redundant features willalso be demonstrated in independent sections.5.3.1 Case Study 1: Adrenal TumorAs shown in Table 2, the Adrenal Tumor data set consists of 32 features and 2classes. There are a few missing values in this data set and those missing valuesare replaced by the mean of that feature. Four di�erent feature ranking tech-niques (IG,RFF,FR,GMLVQ) have been used on the Adrenal Tumor dataset.After that, two di�erent evaluation methods, GMLVQ and RBF based SVM,are built to evaluate the feature selection results. The performance is evaluatedin terms of the AUC metric.Feature Ranking Results Comparison The di�erences between featureranking algorithms are essentially measured by the di�erent feature ranking liststhey generate; therefore it is important to compare the di�erent feature rank-ing lists they have produced. Figure 12 illustrates the average feature rankingresults over 125 epochs from the four feature ranking methods. It is shown thatthe features 5, 6 and 19 are ranked as the top three most important featuresby all the four algorithms. Closer inspections on the feature distributions ofthe top 3 features are demonstrated in Figure 13. It is obvious that althoughthe average ranking results of the top 3 features are the same among the fourfeature ranking algorithms, their top three feature distributions are di�erent.36



Figure 12: Di�erent feature ranking results on data set Adrenal Tumor.For example, while the GMLVQ based feature ranking algorithm always choosesfeatures 5, 6 and 19 as the top 3 features, the Information Gain algorithm alsooccasionally ranks feature 2, 12, or 14 as the top three most important. It isthese di�erences in feature distribution that causes the performance di�erencesduring the valuation even when the average ranking results are the same. Thisanalysis also demonstrates the more stable ranking results from GMLVQ basedmethod compared to other algorithms.Feature Ranking Algorithm Evaluation In this section, di�erent featureranking algorithms are evaluated by both the GMLVQ and SVM with RBFkernel in terms of the AUC metric. Figure 14 describes the average evaluationperformance over 125 epochs using GMLVQ as the evaluation method on thefour feature ranking algorithms. It is seen from the �gure that GMLVQ basedmethod outperforms other feature ranking algorithms when the feature subsetcontains less than 13 features. This is essential for feature selection algorithmsbecause we always aim to achieve relatively better results by using smaller fea-ture subsets. For example, when using only the top six most important features,GMLVQ based method can achieve a AUC metric of 0.956 which is already quiteclose to the 0.961 when all the features are included.Furthermore, the line with squares illustrates the evaluation performancewhen we directly utilize the prediction model from the feature ranking trainingprocess to test on unseen data. In this way, the feature ranking training andmodel learning process are combined together as one process which saves muchcomputation time. From Figure 14, it is shown that its performance is evenbetter than other feature ranking algorithms by using the top eight or less mostimportant features.The evaluation result by RBF-based SVM in Figure 15 demonstrates thatGMLVQ based feature ranking method consistently outperforms methods �Fisher�and �Information Gain� no matter how many features are selected. The method�Relie� � performs slightly better when in the range of (16,20) and (24,26) thanthe GMLVQ based method. Another notable feature about GMLVQ basedranking method is that it achieves the maximum performance when the numberof features is 6 and then decreases when more features are added into the sub-37



Figure 13: Top three feature distribution among methods Fisher (top left),GMLVQ based (top right), Information Gain (bottom left) and Relie� (bottomright)
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Figure 14: Evaluation on test set using GMLVQ on di�erent feature selectionmethods. Data set: Adrenal Tumor.set. This is the ideal situation for feature selection algorithms because a betterperformance can be achieved with less features and thus less computation time.Irrelevant Features Irrelevant features are added to the original data set totest their ability to �lter out irrelevant features. To be more speci�c, three uni-formly random boolean attributes, three uniformly random 4-valued attributesand three uniformly random 8-value attributes are added to the dataset. Fig-ure 16 demonstrates the average number of irrelevant features included in thesubset with various feature subset sizes. The ideal method will include no irrel-evant feature in the top 32 features, leaving all the irrelevant attributes rankedthe least important ones. It is shown from Figure 15 that Information Gainmethod can generate such ideal result while for the GMLVQ based method, its32-feature subset will contain 2 irrelevant features by average, �ltering out 7irrelevant features. The performance di�erence here depends on how we con-struct the irrelevant features. It is therefore expected that di�erent methods ofirrelevant feature generation will produce di�erent �ltering out performance.Redundant Features 9 Redundant features were added to the original dataset to form a data of 41 dimensions and test their ability to �lter out redundantfeatures. Speci�cally, the 5th,20th and 25th feature in the original data set wereselected as they represented di�erent importances to the classi�cation. Each ofthese three features was duplicated for three times to generate three more re-dundant features and for these three redundant features, Gaussian noises with39



Figure 15: Evaluation on test set using SVM on di�erent feature selection meth-ods. Data set: Adrenal Tumor

Figure 16: Irrelevant feature detection performance between di�erent featureselection methods. Data set: Adrenal Tumor40



di�erent signal-to-noise ratios of respective 10, 50 and 80 were added. Thefeature ranking results are shown in Figure 17. The top �gure illustrates theaverage number of redundant features that a feature subset contains. Althoughthe GMLVQ based method performs relatively better than the Fisher and Reli-e� methods, the overall performances of all four methods are poor. To be morespeci�c, with a feature subset of 32 features which is the same size of the orig-inal feature sets before adding redundant features, even the method with bestperformance already contains 7 redundant features, �ltering only 2 features. Acloser inspection about their exact ranking results was conducted to investigatethe reason of bad performance. It reveals that the redundant features can notbe e�ciently removed by all these four methods. For example, the 33th,34 and
35th feature is the noisy copy of the 5th feature. In all the feature ranking resultshere these three features are all ranked in the top 9 features. A similar situationcan also be observed for the 20th and 25th feature and their noisy copies.5.3.2 Case Study 2: IonosphereThe �Ionosphere� data set describes the radar data collected by a system inGoose Bay. As shown in Table 2, it consists of 34 features and 2 classes.The second feature contains all zeros and is removed during the experiment.There are 351 instances in total from which 210 random ones are selected fortraining, the other 70 randomly picked samples for validation and the remain-ing 71 instances used for testing. Four di�erent feature ranking techniques(IG,RFF,FR,GMLVQ) have been used on this dataset. After that, two di�erentevaluation methods, GMLVQ and RBF based SVM, are built to evaluate thefeature selection results. The performance is evaluated in terms of the AUCmetric.Feature Ranking Comparison Figure 18 illustrates the average featureranking results over 125 epochs from the four feature ranking methods. Themethods �Fisher� and �GMLVQ based� have closer average feature rankingresults and both rank the feature 1,4 and 2 as the most important features.Method �Relie�� and �Information Gain�, on the other hand, display quite dif-ferent average ranking results. For example, while the Relie� feature rankingalgorithm chooses features 26, 23 and 7 as the top 3 features, the InformationGain algorithm ranks features 5, 4, and 32 as the top three most important.Feature Ranking Algorithm Evaluation In this section, di�erent featureranking algorithms are evaluated by both the GMLVQ and SVM with RBFkernel in terms of the AUC metric. Figure 19 describes the average evaluationperformance over 125 epochs using GMLVQ as the evaluation method on thefour feature ranking algorithms. It is seen from the �gure that GMLVQ basedmethod consistently outperforms other feature ranking algorithms in the top30 features. Considering there are only 33 features in total, this phenomenondemonstrates the big advantage of the GMLVQ based feature ranking method41



Figure 17: Feature ranking results after adding 9 redundant features. Data set:Adrenal Tumor

Figure 18: Di�ernt feature ranking results. Data set: Ionosphere.42



Figure 19: Evaluation on test set using GMLVQ on di�erent feature selectionmethods. Data set: Ionosphere.on this data set. Furthermore, the dash-dot line illustrates the evaluation per-formance by the classi�er directly from the feature ranking training process totest on unseen data. It means the feature ranking training and model learningprocess are combined together as one process and as long as the feature rankingresults are obtained, the classi�cation can be performed without retraining thelearning model again. Figure 19 shows it outperforms other feature rankingalgorithms when the number of feature selected is larger than 4.Figure 20 present the evaluation results on the four feature ranking algorithmusing RBF-based SVM. It is shown that in the top 6 features, GMLVQ basedfeature ranking results can provide a better AUC measurement and after themethods �Relie�� and �Information Gain� take turns to lead the performance.Irrelevant Features 20 irrelevant features were added to the original dataset to test their ability to �lter out irrelevant features. The way to construct theirrelevant features here is di�erent from that of data set �Adrenal Tumor�. In thisexperiment, the irrelevant features added are not discrete uniformly distributedvalues but truly random continuous signals. From Figure 21, it is observed thatInformation Gain method outperforms other methods by containing about only1 irrelevant feature in the top 32 features, compared to 2 irrelevant features frommethod Relie� and GMLVQ. Fisher algorithm performs worst on this data set.Redundant Features 9 Redundant features were added to the original dataset to form a data of 42 dimensions and test their ability to �lter out redundant43



Figure 20: Evaluation on test set using SVM on di�erent feature selection meth-ods. Data set: Ionosphere.

Figure 21: Irrelevant feature detection performance between di�erent featureselection methods. Data set: Ionosphere.44



Figure 22: Feature ranking results after adding 9 redundant features on dataset �Ionosphere�. Data set: Ionosphere.features. Speci�cally, the 5th,20th and 25th features in the original data setwere selected as they represented di�erent importances to the classi�cation.Each of these three features was duplicated for three times to generate threemore redundant features and for these three redundant features, Gaussian noiseswith di�erent signal-to-noise ratios of respective 10, 50 and 80 were added. Theresults are shown in Figure 22. The �gure indicates that in the top 32 features,the GMLVQ based method consistently outperforms other methods no matterhow many features are selected in the feature subset.5.3.3 Case Study 3: Connectionist Bench SonarThe �Connectionist Bench Sonar� data set describes features of the cell nucleipresent from the digitized images of a breast mass. As shown in table 2, it con-sists of 208 instances with 60 features and 2 di�erent classes. 125 random onesare selected for training, the other 42 randomly picked samples for validationand the remaining 42 instances used for testing. Four di�erent feature rankingtechniques (IG,RFF,FR,GMLVQ) have been used on this dataset. After that,two di�erent evaluation methods, GMLVQ and RBF based SVM, are built toevaluate the feature selection results. The performance is evaluated in terms ofthe AUC metric.Feature Ranking Comparison Figure 23 describes the average feature rank-ing results over 100 epochs from the four feature ranking methods. Since it is45



Figure 23: Feature ranking results on data set Connectionist Bench Sonar.di�cult to display all the 60 features clearly, only the top 30 features are vi-sualized here for the ease of observation. It is observed that these four featureranking methods have similar results on this data set. For example, in the top 8most important features ranked by these four methods, 6 of them are the samewhich are respectively the 11th, 12th, 10th, 9th, 10th and 48th feature.Feature Ranking Algorithm Evaluation In this section, di�erent featureranking algorithms are evaluated by both the GMLVQ and SVM with RBFkernel in terms of the AUC metric. Figure 24 describes the average evaluationperformance over 100 epochs using GMLVQ as the evaluation method on thefour feature ranking algorithms. It is observed that in the top six features, the�Relie�� method outperforms other methods and achieves the maximal perfor-mance at number of features being 4. Thereafter, the GMLVQ based featureranking methods take the lead. It is also noticed that the model which combinesthe feature ranking training and evaluation process together still demonstratessome considerable performance, indicating the advantage of GMLVQ featureranking method.The evaluation results by RBF-based SVM in Figure 25 demonstrates thatthe evaluation performances of all these four feature ranking methods consis-tently improve with the increase of the number of features. Speci�cally, theGMLVQ method starts at 0.82 when the number of features is 2 and achievesthe maximal performance among all these feature ranking methods at 0.95 withthe number of features being 36. Besides, the GMLVQ based method has asimilar performance with the �Relie�� method and consistently outperforms theother two methods.Irrelevant Features 20 irrelevant features were added to the original dataset to test their ability to �lter out irrelevant features. The irrelevant featuresadded are truly random continuous signals. From Figure 26, it is observed thatInformation Gain method outperforms other methods by containing about only1 irrelevant feature in the top 60 features, compared to 2 irrelevant featuresfrom method Relie� and GMLVQ based one. Fisher algorithm, on this data set,46



Figure 24: Evaluation on test set using GMLVQ on di�erent feature selectionmethods. Data set: Connectionist Bench Sonar.

Figure 25: Evaluation on test set using SVM on di�erent feature selection meth-ods. Data set: Connectionist Bench Sonar.47



Figure 26: Irrelevant feature detection performance between di�erent featureselection methods. Data set: Connectionist Bench Sonar.performs worst.Redundant Features 9 Redundant features were added to the original dataset to form a data set with 69 dimensions and test their ability to �lter outredundant features. The results are shown in Figure 27. It indicates that theGMLVQ based feature ranking method contains about 3.5 redundant features inthe top 44 features which is the best performance compared to other methods. Itis observed that the GMLVQ based method consistently outperforms the Fisherand Relie� method for the whole range of subset size. When the size of featuresubset is over 52, the Information Gain method performs a little better thanGMLVQ based method.
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Figure 27: Feature ranking results after adding 9 redundant features. Data set:Connectionist Bench Sonar.5.3.4 Case Study 4: Breast CancerThe �Breast Cancer� data set describes characteristics of cell nuclei from digi-tized images of �ne needle aspirates of breast masses. It consists of 30 featuresand 569 instances. There are two possible labels for each instance, indicatingwhether the cancer is benign or malignant.Feature Ranking Results Comparison Figure 28 describes the averagefeature ranking results over 100 epochs from the four feature ranking results ondata set �Breast Cancer�. It shows that these four feature ranking methods havesimilar ranking results on this data set. For example, all these fours methodsrank the nine features: 23th, 21th, 28th, 24th, 8th, 3th, 1th, 4th, 7th as the top 10most important ones.Feature Ranking Results Evaluation In this section, all these four featureranking methods are evaluated by GMLVQ and RBF-SVM in terms of theirAUC metric. Figure 29 describes the performance evaluated by GMLVQ. Acloser inspection reveals that there is no dominant method on this data set withthe methods of Relie�, Information Gain and Fisher take turn to lead. GMLVQbased method performs a little worse than others on this data set.Figure 30 describes the evaluation performance of RBF-SVM. It is seen fromthe �gure that all these four methods perform quite similarly while the GMLVQbased method slightly outperforms others when the subset size is between 14 to24. 49



Figure 28: Feature Ranking Results on data set Breast Cancer

Figure 29: Evaluation on test set using GMLVQ on di�erent feature selectionmethods. Data set: Breast Cancer
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Figure 30: Evaluation on test set using SVM on di�erent feature selection meth-ods. Data set: Breast CancerIrrelevant Features 20 more random features are added to the original datato form a 50 dimensional data set. It is seen from Figure 31 that the InformationGain method performs best followed by the GMLVQ based method. Speci�cally,when selecting the top 30 features, the GMLVQ based method contains about3 irrelevant features on average, �ltering out the other 18 noisy features.Redundant Features 9 redundant features are added into the original datato form a data set of 39 features. All the 9 features are duplicates of one of thefeatures in the original data set and added with Gaussian noises. It is shownin Figure 32 that the GMLVQ based method performs consistently better thanthe others when the size of subset is smaller than 30. However, even the bestperformance still contains 6 redundant features in the top 30 important list,indicating that all these four methods can not e�ectively �lter out redundantfeatures on this data set.5.3.5 Case Study 5: SPECTF HeartThe SPECTF Heart data set describes the diagnosis of the Single Proton Emis-sion Computed Tomography (SPECT) images. It consists of 267 instances and44 dimensions with each dimension describing one feature extracted from theSPECT images. Each instance is labeled as normal or abnormal, indicatingwhether the patient su�ers from the disease. There are no missing values inthis data set. In each run of training, 160 examples are randomly selected for51



Figure 31: Irrelevant feature detection performance between di�erent featureselection methods. Data set: Breast Cancer

Figure 32: Feature ranking results after adding 9 redundant features. Data set:Breast Cancer 52



Figure 33: Feature ranking results on data set SPECTF Heart.training, the other 53 are randomly selected for validation and the remaining54 examples serve as the test data.Feature Ranking Results Comparison Figure 33 describes the averagefeature ranking results over 100 epochs on data set SPECTF Heart. In the top12 most important features, 7 of them are the same which are the 40th, 41th,
26th, 6th, 25th, 43th and 30th features. It indicates that on this data set, thesefeature ranking results have similar ranking results.Feature Ranking Algorithm Evaluation All the feature ranking methodsare evaluated in this section. Figure 34 illustrates the evaluation performanceby GMLVQ. It is seen from the �gure that when selecting the top eight mostimportant features, GMLVQ based method performs the best and after that the�sher method takes the lead and in the end they converge to about 0.77 in termsof AUC. It is noticed that the GMLVQ based method achieves the maximumperformance by selecting only the top six features which means that these sixfeatures may be most informative and strongly relevant for classi�cation.Figure 35 illustrates the evaluation performance by SVM. As seen from the�gure, the Relie� method takes the lead in the top 8 features and after thatthe GMLVQ based method performs better than others when the number offeatures is larger than 16.Irrelevant Features 9 continuous random features are added to the originaldata to form a 53 dimensional data set. The feature ranking results are shownin Figure 36. It is noticed that the Information Gain method performs thebest in this case. On the other hand, GMLVQ based method performs worst.Speci�cally, the number of irrelevant features it contains increases linearly withthe size of feature subset, indicating that most of the irrelevant features can notbe detected and �ltered out.Redundant Features The 21th,10th and 43th feature in the original data setwere selected to generate redundant features. The ranking results are shown in53



Figure 34: Evaluation on test set using GMLVQ on di�erent feature selectionmethods. Data set: SPECTF Heart

Figure 35: Evaluation on test set using SVM on di�erent feature selection meth-ods. Data set: SPECTF Heart 54



Figure 36: Irrelevant feature detection performance between di�erent featureselection methods. Data set: SPECTF HeartFigure 37. On this data set, the GMLVQ based method performs much betterthan the others. For example, by choosing a subset of 40 features, only 1.5redundant features on average are included, indicating that the GMLVQ basedmethod can �lter out most of the redundant features and assigning them as theleast important ones.

Figure 37: Feature Ranking Results After Adding 9 Redundant Features. Dataset: SPECTF Heart 55



5.4 Discussion and SummaryFive experiments have been conducted in this chapter to compare the perfor-mances of the four features ranking algorithms. Their performances di�er perdata set, and a summary is provided here to conclude their comparison.The performances are evaluated by GMLVQ and RBF-SVM in terms of theirAUC metric. An easy way to compare their evaluation performance may be tocount the percentage that each method dominates among these four rankingalgorithms. An algorithm which dominates on more features may be regardedas providing a better ranking results with respect to the evaluation methods.The summaries can be seen in Table 3 and Table 4. It is obvious from Table3 that GMLVQ related feature ranking methods, including the �rst and secondcolumns, dominate the performances, indicating the advantage of GMLVQ basedmethods. Table 4 also demonstrates the advantage of the GMLVQ based featureranking method. To be more speci�c, on three of these �ve data sets, theGMLVQ based method has a dominance over 50%.To compare their performances on �ltering out irrelevant features, we countthe number of irrelevant features they contain when the sizes of subset areequal to the original feature set before adding irrelevant features. The resultsare shown in Table 5. It is shown from the table that the Information Gainmethod performs best among the �ve experiments and in three of these exper-iments, the GMLVQ based method performs in the second place. On average,the Information Gain method has the best performance. The GMLVQ basedmethod is in the second place. The Relie� and Fisher methods are respectivelyin the third and fourth place.The performances on �ltering out redundant features are also compared bycounting the number of redundant features the four algorithms contain whenthe size of subset is equal to the original data set before adding redundantfeatures. The results are shown in Table 6. It is shown that the GMLVQ basedmethod contains 29.08 redundant features in total over the �ve data sets. Thisperformance is close to that of the method Information Gain which contains28.8 redundant features in total. On the other hand, the Relie� and Fishermethods respectively contain 34.6 an 34 redundant features in total.Name of Dataset GMLVQ Based GMLVQ Based Using Original Omega Information Gain Fisher Relie�Adrenal Tumor 31.25% 12.50% 43.75% 0% 12.50%Ionosphere 12.50% 75.00% 6.25% 0% 6.25%Connectionist Bench Sonar 13.33% 53.33% 13.33% 6.67% 13.33%Breast Cancer Wisconsin 6.67% 33.33% 13.33% 26.67% 20.00%SPECTF Heart 28.57% 0% 42.86% 7.14% 21.43%Table 3: Percentage of dominance of each method, evaluated by GMLVQ
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Name of Dataset GMLVQ Based Information Gain Fisher Relie�Adrenal Tumor 56.25% 0% 0% 43.75%Ionosphere 25.00% 56.25% 6.25% 12.50%Connectionist Bench Sonar 66.66% 0% 0% 33.33%Breast Cancer Wisconsin 20.00% 33.33% 20.00% 26.67%SPECTF Heart 71.43% 0% 14.29% 14.29%Table 4: Percentage of dominance of each method, evaluated by RBF-SVMName of Dataset GMLVQ Based Information Gain Fisher Relie�Adrenal Tumor 2 0 6.8 3.4Ionosphere 1.6 1 6.2 1.8Connectionist Bench Sonar 7.2 1.2 8.0 3.6Breast Cancer Wisconsin 2.8 0 3.2 8.6SPECTF Heart 8.6 0 2.8 7.2Table 5: Comparing the performances on irrelevant featuresName of Dataset GMLVQ Based Information Gain Fisher Relie�Adrenal Tumor 8.28 7.2 9.0 8.4Ionosphere 5.8 6.4 6.2 5.4Connectionist Bench Sonar 5.5 4.8 6.6 8.2Breast Cancer Wisconsin 6 6 6 6SPECTF Heart 3.5 4.4 6.2 6.6Table 6: Comparing the performances on redundant features
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Chapter 66 Conclusion and Future WorkThis thesis investigates the application of GMLVQ model on the the featureranking problems. The basic concepts in classi�cation and feature selection arediscussed in the �rst three chapters as background information. Three state-of-the-art feature ranking techniques are then described and introduced to work ascomparison methods for the GMLVQ based method. The GMLVQ based featureranking technique is intensively described in Chapter 4 and then followed byexperimental results on the data sets collected from the UCI repository [29].The experimental results, evaluated by GMLVQ and RBF-SVM, indicatethat GMLVQ based feature ranking method is comparable with other state-of-the-art methods. Sometimes it consistently outperforms other methods. Forexample, on the data set �Ionosphere� evaluated by �GMLVQ�, the GMLVQbased method consistently has superior performance to others.Another noticeable feature about GMLVQ based feature ranking method isthat it can combine the processes of feature ranking and classi�cation togetherwhich can help to save much computation time. Because the feature rankingresult is extracted from the distance metric from the training, after a speci�cfeature subset is selected the distance metric can then directly be obtained bycollecting the corresponding columns and removing the others. In this way,there is no need to retrain the learning model and the classi�cation result canbe directly obtained. The experimental results in this thesis demonstrate thatits performance is comparable to other results which perform feature ranking�rst and model training in two steps.The ability of the feature ranking methods to deal with irrelevant and redun-dant feature is also tested and the results demonstrate that these four featuremethods have better ability to tackle irrelevant features than redundant fea-tures. On average, these four methods will contain more redundant featuresthan irrelevant features when a speci�c feature subset is evaluated.To answer the three research questions proposed in Chapter 1:1. Can GMLVQ method be extended to perform feature ranking?Yes, GMLVQ can be extended for feature ranking. The algorithm is de-tailed in Chapter 4. The feature ranking results are obtained by measuring thediagonal elements of the relevance matrix in GMLVQ. The diagonal elementsare regarded as a measurement of the contributions of the features for classi-�cation. External force is incorporated to enforce more discriminative rankingresults and to obtain a unique ranking list, the feature-pair linear dependencyin the relevance matrix is removed.2. How well does the feature ranking perform?The performances of the GMLVQ based method are comparable to the otherthree state-of-the-art feature ranking methods. It is shown that on some of the58



data sets, the GMLVQ based method consistently performs better than otherranking algorithms and on average, the GMLVQ based method performs betterthan any of the other three algorithms. For example, when the performancesare evaluated by RBF-SVM, the GMLVQ based method demonstrates its per-formance dominance on three out of �ve data sets that have been tested. Whenthe GMLVQ model is used for evaluation, the combination of the two GMLVQbased methods also illustrates the performance superior to other methods onthree out of �ve experiments.3. Can GMLVQ combine the feature ranking and classi�cation into onesingle process and how well does the classi�cation perform compares to othermethods in which feature ranking and classi�cation are performed in two steps?Yes, the process of feature ranking and classi�cation can be combined to-gether under the framework of GMLVQ model. Its performances are comparedwith four other feature ranking algorithms and it indicates the performances arestill comparable with other methods which perform feature ranking and classi-�cation in two steps. Among all the �ve data sets that have been tested, it hasdominant performances on three of them which is a quite promising results.Some challenges and future work can still be extended after this thesis.Feature Selection with Larger Data Set Some data sets in practi-cal applications contain hundreds or thousands of features. Such data setsrequire e�cient feature selection methods to select the most representative fea-ture subset. Experiments on such data sets may also demonstrate some newcharacteristics of the feature ranking methods in this thesis.Feature Selection with Active Data Selection In this thesis, the train-ing, validation and test data are selected randomly from the original data set, ig-noring the di�erent data characteristic that di�erent instances can have. Activedata selection means to explore the data characteristics �rst and then activelyselect the instances with higher probability to be informative for the trainingof feature selection. Such active training may improve the stability and perfor-mance of feature selection.Investigate The GMLVQ Based Method on Feature RedundancyAlthough some of the experiments in this thesis demonstrate that the GMLVQbased method has better performance to �lter out redundant features comparedto other state-of-the-art methods, its theoretical foundation to deal with redun-dancy has not yet been investigated. Since the GMLVQ model already accountsfor feature pair contribution for classi�cation, the study may be extended toinvestigate the feature pair correlation and try to reduce their in�uence on theclassi�cation. 59



References[1] Jennifer G. Dy and Carla E. Brodley and Avinash C. Kak and Lynn S.Broderick and Alex M. Aisen. �Unsupervised Feature Selection Applied toContent-Based Retrieval of Lung Images.� IEEE Transactions on PatternAnalysis and Machine Intelligence, 25:373-378, 2003.[2] Jennifer G. Dy and Carla E. Brodley. �Feature selection for unsupervisedlearning.� Journal of Mach. Learn. Res., 5:845-889, 2004.[3] Teuvo Kohonen. �Self-Organizing Maps.� Second. Berlin, Heidelberg:Springer, 1997.[4] A Sato, K Yamada. �Generalized learning vector quantization.� In: G.Tesauro, D. Touretzky, & T. Leen, (eds.), Advances in Neural InformationProcessing System 7, (1995), 423-429. MIT Press, 1995.[5] Avrim L. Blum and Pat Langley. �Selection of Relevant Features and Ex-amples in Machine Learning." Arti�cial Intelligence, vol. 97, pp. 245-271,1997.[6] Manoranjan Dash and Huan Liu. �Feature selection for classi�cation.� In-telligent Data Analysis: An International Journal, 1(3):131-156, 1997.[7] Barbara Hammera, Thomas Villmann. �Generalized relevance learning vec-tor quantization.� Neural Networks 15(2002), Nr. 8-9, S. 1059-1068.[8] George H. John, Ron Kohavi and Karl P�eger. �Irrelevant features and thesubset selection problem." International Conference on Machine Learning,pp. 121-129, 1994.[9] Richard Ernest Bellman; Rand Corporation. "Dynamic programming."Princeton University Press. ISBN 978-0-691-07951-6, 1957.[10] Richard Ernest Bellman. "Adaptive control processes: a guided tour."Princeton University Press. 1961.[11] Bernard W. Silverman. �Density estimation for statistics and data analy-sis." London, Chapman and Hall, 1986.[12] Michel Verleysen and Damien François. �The curse of dimensionality indata mining and time series prediction." International Work-Conferenceon Arti�cial and Natural Neural Networks, volume 3512, pages 758-770.Springer-Verlag, 2005.[13] Justin Doak. �An evaluation of feature selection methods and their appli-cation to computer security.� technical report, Univ. of California at Davis,Dept. Computer Science, 1992. 60



[14] Manoranjan Dash, Kiseok Choi, Peter Scheuermann and Huan Liu. �Fea-ture Selection for Clustering - A Filter Solution.� IEEE International Con-ference on Data Mining, pp. 115-122, 2002.[15] Mark A. Hall. �Correlation-based Feature Selection for Discrete and Nu-meric Class Machine Learning.� International Conference on MachineLearning, pp. 359-366, 2000.[16] Lei Yu and Huan Liu. �Feature Selection for High-Dimensional Data: A FastCorrelation-Based Filter Solution.� International Conference on MachineLearning, pp. 856-863, 2003.[17] Huan Liu and Rudy Setiono. �A Probabilistic Approach to Feature Selection- A Filter Solution.� International Conference on Machine Learning, pp.319-327, 1996.[18] Jennifer G. Dy and Carla E. Brodley. �Feature Subset Selection and Or-der Identi�cation for Unsupervised Learning.� International Conference onMachine Learning, pp. 247-254, 2000.[19] YeongSeog Kim and Filippo Menczer. �Feature selection in unsupervisedlearning via evolutionary search.� Knowledge Discovery and Data Mining,pp. 365-369, 2000.[20] Ron Kohavi and George H. John. �Wrappers for feature subset selection.�Arti�cial Intelligence, vol. 97, nos. 1-2, pp. 273-324, 1997.[21] Thomas M. Cover and Joy A. Thomas. �Elements of information theory.�Wiley, 1991.[22] Kenji Kira and Larry A. Rendell. �A Practical Approach to Feature Selec-tion.� International Conference on Machine Learning, pp. 249-256. MorganKaufmann, 1992.[23] Igor Kononenko. �Estimating Attributes: Analysis and Extensions of RE-LIEF.� The European Conference on Machine Learning and Principles andPractice of Knowledge Discovery in Databases, pp. 171-182, 1994. Berlin:Springer-verlag, 1995.[24] Nello Cristianini and John Shawe-Taylor. �An Introduction to Support Vec-tor Machines and Other Kernel based Learning Methods.� Cambridge Uni-versity Press, 2000.[25] S. Haykin. � Neural Networks: A Comprehensive Foundation.� Prentice-Hall, 2nd edition, 1999.[26] Vladimir N. Vapnik. �The Nature of Statistical Learning Theory.� Springer-Verlag, New York, USA, 1995.[27] Vladimir N. Vapnik. �The support vector method of function estimation.�Neural Networks and Machine Learning, pp. 239�268, 1998.61



[28] Bernhard Schölkopf and Alex Smola. �Learning with Kernels.� MIT Press,Cambridge, MA, 2002.[29] Catherine Blake and Christopher J. Merz (1998).�UCI repository of machine learning databases.�http://www.ics.uci.edu/~mlearn/MLRepository.html.[30] L.Rade and B. Westergren. �Mathematics Handbook for Science and Engi-neering.� 4th ed: Springer-Verlag: Berlin, 1999.[31] Roger Fletcher. �Practical methods of optimization.� John Wiley & Sons,New York, 2nd edition, 1987.[32] G. Papari, Kerstin Bunte, and Michael Biehl. �Waypoint averaging andstep size control in learning by gradient descent.� In F.-M. Schleif and T.Villmann, eds., MIWOCI 2011, Mittweida Workshop on ComputationalIntelligence. Univ. of Bielefeld, pages 16�26, 2011.[33] Petra Schneider, Michael Biehl and Barbara Hammer. �Adaptive RelevanceMatrices in Learning Vector Quantization.� Neural Computation, vol. 21,pp. 3532-3561, 2009.[34] Michael Biehl and Rainer Breitling and Yang Li. �Analysis of Tiling Mi-croarray Data by Learning Vector Quantization and Relevance Learning.�Intelligent Data Engineering and Automated Learning, pp. 880-889, 2007.[35] Barbara Hammer and Marc Strickert and Thomas Villmann. �PrototypeBased Recognition of Splice Sites.� Bioinformatic using Computational In-telligence Paradigms, Springer-Verlag, pp. 25-26, 2005.[36] K.E. Runyon. �Consumer behavior and the Practice of Marketing.� CharlesE. Merrill Publishing Company, Columbus, Ohio, 1977 .[37] Tom M. Mitchell. �Machine Learning.� McGraw Hill. ISBN 0-07-042807-7,1997.[38] Petra schneider, Michael Biehl and Barbara hammer. �Distance Learningin Discriminative Vector Quantization.� Neural Computation, vol. 21, no.10, 2009.[39] Markus B. Huber, Kerstin Bunte, Mahesh B. Nagarajan, Michael Biehl,Lawrence A. Ray, Axel Wismuller. �Texture feature selection with relevancelearning to classify interstitial lung disease patterns.� In Medical Imaging2011: Computer Aided Diagnostics. 2011.[40] R.O. Duda, P.E. Hart, and D.G. Stork. �Pattern Recognition.� John Wiley& Sons, New York, 2 edition, 2001.
62



[41] W. Arlt, M. Biehl, A.E. Taylor, S. Hahner, R. Libe, B.A. Hughes, P.Schneider, D.J. Smith, H. Stiekema, N. Krone, E. Por�ri, G. Opocher,J. Bertherat, F. Mantero, B. Allolio, M. Terzolo, P. Nightingale, C.H.L.Shackleton, X. Bertagna, M. Fassnacht, P.M. Stewart. �Urine steroidmetabolomics as a biomarker tool for detecting malignancy in adrenal tu-mors.� Journal of Clinical Endocrinology and Metabolism 96: 3775-3784,2011.

63


