
faculteit Wiskunde en
Natuurwetenschappen

On the robust
synchronisation of
multi-agent systems

Bachelor Thesis in Applied Mathematics

August 2012

Student: J. Lanting

Supervisor: dr. M.K. Camlibel

Second supervisor: dr. M. Cao

Abstract

Recently H.L. Trentelman and K. Takaba proposed a protocol that robustly
synchronises uncertain linear multi-agent systems. Given a network we allow each
of the agents to deviate (within a certain radius) from a given nominal linear dy-
namic system, while still achieving synchronisation. we present an implementation
of Trentelman-Takaba protocol and study several examples. We also modify the
protocol to make it suitable for solving formation control problems and generate
an animation of an example problem where agents moving on a plane while trying
to form a formation.

Contents

1 Introduction 3

2 Preliminaries 4
2.1 Graph theory . 4
2.2 System Theory . 4

2.2.1 Transfer matrices . 5

3 Synchronisation 5
3.1 Robust synchronisation . 6
3.2 Computation . 7

3.2.1 Maximizing the robust synchronisation radius η 8
3.3 Formation control . 8

4 MATLAB implementation 9
4.1 Explanation of the inner workings of the tool-set 9

5 Results and examples 10
5.1 Synchronisation . 10
5.2 Formation control . 12

6 Conclusion 13

7 Acknowledgments 14

A Source code listings 15
A.1 Graph related functions . 15
A.2 Protocol generating functions . 16
A.3 MATLAB state space object returning functions 18
A.4 Demonstrating scripts . 19

B Results 28
B.1 Additional results for the synchronisation of the double integrator . 28
B.2 Additional snapshots of the formation control animation 30

2

1 Introduction

Recently interest has risen in networked multi-agent systems. These are systems
where instead of one agent trying to achieve a goal, there are instead a number
of network connected identical copies of agents trying to achieve a common goal.
Each agent tries to achieve this by exchanging information with its neighbours. An
agent is represented by an input/state/output system. Each agent is accompanied
by its own controller. This controller uses the output of the neighbouring agents.
The combination of all controllers is called a protocol. An important part of the
theory of networked multi-agent systems concerns with the design of such protocols.
The topology of the network is given by the network graph. The vertices represent
the agents and the edges represent a connection between to agents. Depending on
the problem the network graph might be a directed graph or a digraph, a weighted
graph and even state- or time- dependent.

Several problems can be formulated in the setting described above. A good
introduction to some of these is given in [1]. The most famous of these problems
is perhaps the consensus (or agreement) problem where the agents are required to
agree upon a certain quantity of interest. The agents could for instance be sensors
and the value to agree upon could be sensor data.

Related is the alignment problem where the agents, which are initially moving
in different directions, are required to move in the same direction i.e. to align as
described in [2].

The synchronisation problem describes the problem of finding the conditions
and protocol under which a network of agents converge to a common trajectory.
This could for instance be the synchronisation of phase and frequency of coupled os-
cillators [1, p.218]. These coupled oscillators arise in many fields including physics,
chemistry, biology, neuroscience and mathematics.

Also relevant are flocking theory and related the rendezvous in space problem.
To flocks three basic rules apply [3]:

• “Flock Centering: attempt to stay close to nearby flockmates,”

• “Obstacle Avoidance: avoid collisions with nearby flockmates,”

• “Velocity Matching: attempt to match velocity with nearby flockmates.”

The rendezvous in space problem is equivalent to reaching consensus in position.
In both flocking theory and the rendezvous in space problem the network graph
depends on the actual position of the agents.

Finally there is also distributed formation control where agents are required to
assume a state relative to that of their neighbours. This could for instance be a
cluster of satellites orbiting in close proximity to each other around earth while
keeping formation [4].

Of particular interest in all of the above problems and in systems theory in
general are robust controllers. These are controllers that even achieve their goal
if the agents have certain perturbations (within a certain neighborhood from the
original)[5]. In real world examples these perturbations might for instance be caused
by external forces not included in the model or minor defects that occur during the
production process.

In this thesis we present an implementation of the protocol that was developed
in [6] and that achieves robust synchronisation for linear multi-agent systems. We

3

modify the equations to make them work as a formation control problem and show
some example simulations.

2 Preliminaries

2.1 Graph theory

A graph is a set of objects, called nodes or vertices, of which some might be con-
nected by lines, called edges. If two vertices have an edge in between them we call
those nodes adjacent. The degree of a node is the number of nodes it is adjacent
to. More precisely a graph is an ordered pair G = (V,E) with V the set of vertices
and E the set of edges. In the case that each element of E is an unordered pair of
elements from V we speak of an undirected graph and there is an edge between both
vertices. If on the contrary the elements of E are ordered pairs (i, j) then there is
an edge going from i to j, but not necessary back from j to i, then we call the graph
directed. A graph is called connected if for every pair of distinct vertices there is a
path between those vertices. In this thesis we only look at networks whose network
topology is represented by undirected connected graphs.

The adjacency matrix is the matrix A = (aij) where aij = 1 if (i, j) ∈ E and 0
otherwise. The degree matrix is the matrix D = (dij) where dij = deg(vi) if i = j
and 0 otherwise. The Laplacian matrix of a graph is the matrix L = D−A. If the
graph is undirected, then the Laplacian is a real symmetric positive semi definite
matrix of rank p−1, where p is the number of vertices. For each vertex i, we define
the set of its neighbors as Ni := {j ∈ V |(i, j) ∈ E}.

2.2 System Theory

In this paper we consider linear time-invariant input/state/output systems of the
form:

ẋ(t) = Ax(t) +Bu(t)

y(t) = Cx(t) +Du(t)
(2.1)

We call the vector x(t) the state vector, u(t) the input vector and y(t) the output
vector. Here x(t) ∈ Rn is the state, u(t) ∈ Rm is the input and y(t) ∈ Rq is the
output of the system, and all the matrices involved are of appropriate sizes.

If for any initial value x0 ∈ Rn and zero input it holds that limt→∞ x(t, x0) = 0,
then the system is called stable. An important property of stable systems is that
they are also bounded, thus for every bounded input function u(t) the output y(t)
will also be bounded.

A matrix is called stable or Hurwitz if every eigenvalue has strictly negative
real part. If the matrix A of the system [A,B,C,D] is Hurwitz, then the system is
stable.

A system is called controllable if for any two states x0, x1, a time 0 < t1 < ∞
and input function u(t) exist such that x(t1, x0, u(t1)) = x1.

A weaker property is stabilizability. A system is called stabilizable if for any
state x0, an input function u(t) exists such that limt→∞ x(t, x0, u(t)) = 0. Or more
precisely, there exists a real m×n matrix F such that A+BF is a Hurwitz matrix.
Controllability implies stabilizability.

4

A system is called observable if a time 0 < t1 < ∞ exists such that for each
input function u(t), it follows from y(t, x0, u(t)) = y(t, x1, u(t)) for all t ∈ [0, t1],
that x0 = x1.

A weaker condition is detectability. A system is called detectable if those parts
of the linear space that form the state vector that are not observable are stable.
I.e. there exists a real n × q matrix K such that the matrix A − KC is hurwitz.
Observability implies detectability.

If A is an m × n matrix and B is a p × q matrix, then the Kronecker product
A⊗B is the mp× nq matrix given by:

A⊗B =

a11B · · · a1nB

...
. . .

...

am1B · · · amnB

2.2.1 Transfer matrices

An alternative representation is given in the form of a transfer matrix. Although
the transfer matrix can be calculated each time by hand by applying a Laplace
transformation, for the system (2.1) the transfer matrix G(s) is simply given by
G(s) = C(sI − A)−1B + D and in this case each of the elements of the transfer
matrix takes the form of a rational function.

A proper transfer matrix is a transfer matrix for wich limt→∞H(s) is well-
defined. And a transfer matrix is called rational if all of its elements are rational
functions. A rational transfer matrix thus is proper if for each of the elements
the degree of the numerator does not exceed the degree of the denominator of an
element.

In the case of a system of the form (2.1) the properties of the transfermatrix
(such as stability and eigenvalues) are inherited from the state space representation.

We denote the set of all proper and stable rational transfer matrices by RH∞.
The norm that is of interest to us on this set is given by ||G||∞ = supRe(λ)≥0 ||G(λ)||.

For a more complete introduction to systems theory we would like to refer the
reader to [7] and for an introduction to the Laplace transformation to [8].

3 Synchronisation

Consider a network of p identical systems. The network topology given by an
undirected connected graph with graph Laplacian L and the dynamics of each
agent are given by:

ẋi = Axi +Bui

yi = Cxi
(3.1)

The assumption is made that this agent is both detectable and stabilizable. The the
proof that the requirement of stabilizability (and not controllability) is sufficient
can, together with a stabilizing protocol, be found in [9]. A protocol of the following
form is suggested in [6]:

ẇi = Awi +BF
∑
j∈Ni

(wi − wj) +G(
∑
j∈Ni

(yi − yj)− Cwi), ui = Fwi (3.2)

5

the closed loop dynamics of the whole network are thus given by:

ẋ = (I ⊗A)x+ (I ⊗B)u

y = (I ⊗ C)x

ẇ = [I ⊗ (A−GC) + L⊗BF]w + (L⊗G)y

u = (I ⊗ F)w

With F and G matrices of size m × n and n × q and I the identity matrix of size
p. The previous can be assembled into a single system:ẋ
ẇ

 =

 I ⊗A I ⊗BF

L⊗GC I ⊗ (A−GC) + L⊗BF

x
w

The network is said to be synchronised by the protocol if for all i, j = 1, 2, . . . , p we
have xi − xj → 0 and wi − wj → 0 as t→∞.

3.1 Robust synchronisation

For this section we again consider a network where the individual agent dynamics
are given by (3.1). However, we now take into consideration that even though the
systems might be more or less equal, there still might be minor differences. We
limit these differences to within a certain ball η around our original agent with
respect to the H∞ norm. Recall that if we put the system (3.1) in it’s transfer
matrix form we get G(s) = C(sI −A)−1B. We now consider the perturbed system
G(s) + ∆i(s), where ∆i ∈ RH∞ and ||∆i|| ≤ η, where η is the uncertainty radius.
Of course if we write:

∆i(s) = C∆i(sI −A∆i)
−1B∆i +D∆i

then we can easily put the perturbation in state space form:

ξ̇i = A∆i +B∆izi

di = C∆iξi +D∆izi
(3.3)

which is interconnected with the original agent as follows:

ẋi = Axi +Bui

yi = Cxi + di

zi = ui

(3.4)

Trentelman and Takaba [6] modify the protocol (3.2) to include a weighting
factor on the Laplacian L, which leads to the protocol

ẇi = Awi +BF
∑
j∈Ni

1

N
(wi − wj) +G(

∑
j∈Ni

1

N
(yi − yj)− Cwi)

ui = Fwi

(3.5)

6

The closed loop dynamics of the whole network are thus given by:

ẋ = (I ⊗A)x+ (I ⊗B)u

y = (I ⊗ C)x+ (I ⊗ I)d

z = u

ẇ = [I ⊗ (A−GC) +
1

N
L⊗BF]w +

1

N
(L⊗G)y +

1

N
(L⊗G)d

u = (I ⊗ F)w

d =

∆1 0 · · · 0

0 ∆2 · · · 0

...
...

. . .
...

0 0 · · · ∆p

z (3.6)

Or alternatively combining the agents ẋ and protocols ẇ:ẋ
ẇ

 =

 I ⊗A I ⊗BF
1
NL⊗GC I ⊗ (A−GC) + 1

NL⊗BF

x
w

+

 0

1
NL⊗G

 d (3.7)

z =
(

0 I ⊗ F
)x

w

 (3.8)

3.2 Computation

Computation of suitable F,G and N goes as follows[6]:

1. Take λ2 and λp respectively the eigenvalues of smallest non zero magnitude
and largest magnitude of L,

2. Choose N >
λ2p
λ2

,

3. Choose γ in the interval
(
λ2p
N2 ,

λ2
N

)
,

4. Compute the maximal real symmetric solutions P̄ (σ) and Q(τ):

AT P̄ + P̄A− P̄BBT P̄ + σI = 0 (3.9)

AQ+QAT −QCTCQ+ τI = 0 (3.10)

(although any Q for which the previous is smaller than 0 will do)
and let

P (γ) :=
1

γ
P̄ (3.11)

where σ and τ are positive real numbers and we take limσ,τ→0. The equa-
tions (3.9) and (3.10) are forms of continuous-time algebraic Riccati equations.
There are algorithms available that can produce solutions to these problems
and a numerical solver is for instance included within the matlab control sys-
tem toolbox [10].

7

5. Choose a value of the synchronisation radius η < 1√
ρ(P (γ)Q)

, where the func-

tion ρ returns the spectral radius.

6. Compute:

F := −BTP (γ) (3.12)

G := (I − η2QP (γ))−1QCT (3.13)

3.2.1 Maximizing the robust synchronisation radius η

From 3.2 we learn that we must choose η < 1√
ρ(P (γ)Q)

=
√
γ√

ρ(P̄Q)
. It can be seen

that if γ increases then η increases as well. Thus, if we take a value δ > 0 as small
as possible, optimal choices are:

Nopt =
λ2
p + δ

λ2
(3.14)

γopt =
λ2

N
=

λ2
2

λ2
p + 2δ

(3.15)

η =
1√

ρ(P (γ)Q)
− δ =

λ2√
λ2
p + 2δ

1√
ρ(P̄Q)

− δ (3.16)

3.3 Formation control

In this section we try to modify the previous problem in a problem of formation
control. Recall that in our previous problem what we in fact where trying to do
was to minimize the differences in the output:∑
j∈Ni

(yi − yj)

In the formation control problem we instead require the outputs yi and yj to be a
certain vector rij apart:∑
j∈Ni

(yi − yj − rij) =
∑
j∈Ni

(yi − yj)−
∑
j∈Ni

rij =
∑
j∈Ni

(yi − yj)− bi

We call bi the bias on the ith output. A nonzero bias has no effect on the choice
of the protocol [1]. If we apply this new theory to our previously computed state
space system (3.7), that represented the global network dynamics, we get:ẋ
ẇ

 =

 I ⊗A I ⊗BF
1
NL⊗GC I ⊗ (A−GC) + 1

NL⊗BF

x
w

+

 0 0

1
NL⊗G

1
N I ⊗G

d
b

 . (3.17)

Instead of manually trying to compute the bias for the neighbours of each agent
we create a reference signal yref that contains the formation though can be shifted

8

along each of the q axis.ẋ
ẇ

 =

 I ⊗A I ⊗BF
1
NL⊗GC I ⊗ (A−GC) + 1

NL⊗BF

x
w

+

 0 0

1
NL⊗G − 1

NL⊗G

 d

yref

 (3.18)

4 MATLAB implementation

In the following section we provide a small toolbox around the above protocol in
MATLAB [11, 12]. MATLAB was chosen for its advanced capabilities in linear
algebra and its large set of well-written toolboxes. These toolboxes (most notably
the Simulink and control systems toolboxes) allowed us to focus on the problem
itself rather than on language quirks and badly documented external libraries. Us-
ing MATLAB also meant we could use the same environment we used to compute
our results to visualise our data. Another important factor for the choice was the
familiarity of the author of this report with the environment.

4.1 Explanation of the inner workings of the tool-set

The goal of the tool-set is to see the protocol described by Trentelman and Tak-
aba ‘in action’. The working of tool-set is globally explained by Figure 1. Each
block represents the data that needs to be generated at that point. The MATLAB
functions and scripts that achieve this are included in the appendices. Obviously

Figure 1

visualisation of the generated data in a nice manner is problem dependent. Two
example problems will be reviewed in the next section. Instead of actually calcu-
lating the limits in equations (3.9) and (3.10), we force a fixed small value of σ and
τ . MATLABs internal care function is used for computing the solutions to the
Riccati equations. We also choose a fixed small value for δ when we try to maximise
the radius of stability η.

9

After all the data is gathered, it’s then all put together in a Simulink model,
where the system of additive perturbations and the function or constant containing
the formation are interconnected with the main system (figure 2). A second output
is added to the main state space system to allow output to the workspace. In
our examples this output is the same as the output of the agents visible to the
controllers. The Simulink system is then simply ‘run’ using the default integrator
and the output of the Simulink model can then be further processed.

Figure 2

5 Results and examples

Two example problems are implemented in MATLAB scripts. We first look at a
synchronisation problem and then modify that into a formation control problem.

5.1 Synchronisation

Let the agent dynamics of the nominal system be given by:

ẋ =

0 1

0 0

x+

0

1

u

y =
(

1 0

)
x

(5.1)

The above system is called a double integrator. In the demo file any network
topology can be given, but a full graph, circle graph and star graph of n nodes
are predefined and easily selectable (figure 3). The simulink system is then seeded
with a random initial condition and run for a fixed amount of time. For all three
of the above types of graphs synchronisation was achieved in our tests. One thing
of particular interest that we see in the results is that for graphs of the same type,
but with a different amount of nodes, synchronisation is reached at about the same
time. The results of one of those runs is given in figure 4 and further results are
given in appendix B.

As a second test we slightly modify our previous system. Our new system is

10

Figure 3: Different types of common graphs.

Figure 4: Synchronisation of a full graph with 5 nodes.

now given by:

ẋ =

0.1 1

0 0.1

x+

0

1

u

y =
(

1 0

)
x

(5.2)

The eigenvalues of the new system are now both 0.1 instead of purely imaginary
as with our previous system. Even though this system is both controllable and
observable (and thus stabilizable and detectable) the model failed to run. Figure 5
shows why. Even though the differences in output of the different agents behave just
like our previous model, the overall value they’re trying to agree upon quickly grows
out of bounds. Manually checking if the protocol is indeed working by checking the
stability of the system in equation (27) in [6] shows that for all but λ = 0 equation
(27) is indeed stable. MATLAB thus appears not suitable for integrating unbounded

11

systems.

Figure 5: The tool-set fails for unbounded systems. Note the logarithmic scale used here.

5.2 Formation control

The previous example of the double integrator makes perfect sense when modified
into a formation control problem: If an agent is made out of two double integrators,
then the input might represent acceleration or force in the x and y direction and
the output the position. The bias might thus represent the actual difference in
position of two different agents. We thus have:

ẋ =

0 1 0 0

0 0 0 0

0 0 0 1

0 0 0 0

x+

0 0

1 0

0 0

0 1

u

y =

1 0 0 0

0 0 1 0

x

(5.3)

As a bias we have chosen for a constant value. Since we already had the code to
generate the coordinates of n nodes on a circle, we chose the circle as our formation.
In our example we’ve also chosen for a circle graph as our network topology. The
initial condition of each agent is a random position, and no initial velocity. The
whole state is rendered as an animation over time. The final result can be seen in
figure 6 with additional snapshots of the animation available in appendix B.

12

Figure 6: The colored lines represent the path traveled by each node.

6 Conclusion

In this thesis we have looked into a numerical implementation of the protocol devel-
oped by H.L. Trentelman and K. Takaba described in [6]. Even though MATLAB
is capable of computing the protocol for all our tested problems, we encountered
problems integrating the state space system containing the network dynamics that
followed. Even though the output of the different agents might be synchronised,
the value of this output might still grow out of bounds quickly. This limits the use
of the MATLAB implementation, since we basically can’t use agents which have
eigenvalues on the right side of the imaginary plane. This is a problem inherent
to finite precision. Furthermore agents for which all eigenvalues have a negative
real part are a bit boring to investigate, since those are exponentially stable by
themselves. This leaves us with agents for which at least some of the eigenvalues
are purely imaginary and have no eigenvalues with a positive real part, such as the
double integrator.

We also modified the problem into a formation control problem while keeping
most of the original protocol untouched. This allowed us to use the same solvers
for the matrices F and G.

For the double integrator both demonstration scripts generated good results.
Apart from generating static images we also generated an illustrative animation to
go with the formation control problem.

13

7 Acknowledgments

The author would like to thank dr M.K. Camlibel, for all his support and excelent
guidance, dr. M. Cao, for willing to be the second supervisor, Prof. dr. H.L.
Trentelman and K. Takaba, for providing me the article to base my thesis on and
S. Baars BSc., for willing to proofread my thesis on such short notice.

References

[1] R. Olfati-Saber, J. Fax, and R. Murray, “Consensus and cooperation in net-
worked multi-agent systems,” Proceedings of the IEEE, vol. 95, no. 1, pp. 215–
233, 2007.

[2] A. Jadbabaie, J. Lin, and A. S. Morse, “Coordination of groups of mobile
autonomous agents using nearest neighbor rules,” IEEE Transactions on Au-
tomatic Control, vol. 48, pp. 988–1001, June 2003.

[3] R. Olfati-Saber, “Flocking for multi-agent dynamic systems: Algorithms and
theory,” IEEE Transactions on Automatic Control, vol. 51, pp. 401–420, March
2006.

[4] R. Burns, C. McLaughlin, J. Leitner, and M. Martin, “Techsat21: Formation
design, control, and simulation,” Proceedings of the IEEE Aerospace Confer-
ence, pp. 19–25, 2000.

[5] H. Trentelman, A. Stoorvogel, and M. Hautus, Control Theory for Linear
Systems. London: Springer, 2001.

[6] H. Trentelman and K. Takaba, “Robust synchronisation of uncertain linear
multi-agent systems.” accepted for publication in IEEE Transactions in Auto-
matic Control, December 2011.

[7] H. Trentelman, A. Stoorvogel, and M. Hautus, Mathematical Systems Theory.
Delft: VSSD, 3rd ed., 2005.

[8] H. ter Morsche and G. Meinsma, “Signals and systems.” lecture notes, 2001.

[9] Z. Li, G. Chen, and L. Huang, “Consensu of multi-agent systems and synchro-
nisation of complex networks: a unified point of view,” IEEE Transactions on
Circuits and Systems, vol. 57, pp. 213–224, January 2010.

[10] MathWorks, http://www.mathworks.nl/help/toolbox/control/, Control Sys-
tems Toolbox Documentation.

[11] MathWorks, http://www.mathworks.nl/help/techdoc/, MATLAB Documen-
tation.

[12] MathWorks, http://www.mathworks.nl/help/toolbox/simulink/, Simulink
Documentation.

14

Appendices

A Source code listings

A.1 Graph related functions

These functions where used to generate some different types of graphs and calculate
their Laplacian.

../MATLAB/CircleGraph.m

1 function G = CircleGraph(P)
2 % Returns the a d j o i n t matrix f o r a c i r c l e graph wi th P nodes
3 G = VEtoAdj(P,[[1:P]’, [2:P, 1]’]);
4 end

../MATLAB/CompleteGraph.m

1 function G = CompleteGraph(P)
2 % Returns the a d j o i n t matrix f o r a complete graph wi th P

nodes
3 G = ones(P)-eye(P);
4 end

../MATLAB/StarGraph.m

1 function G = CompleteGraph(P)
2 % Returns the a d j o i n t matrix f o r a complete graph wi th P

nodes
3 G = zeros(P);
4 G(1,2:P)=1;
5 G(2:P,1)=1;
6 end

../MATLAB/VEtoAdj.m

1 function Adj = VEtoAdj(P, E)
2 % Adj = VEtoAdj (P, E)
3 % Returns the adjacency matrix o f the u n d i r e c t e d graph wi th

p v e r t i c e s t o g e t h e r wi th i t s s e t o f edges .
4 % P i s the number o f v e r t i c e s
5 % E i s an nx2 matrix c o n s i s t i n g o f the n p a i r s o f v e r t i c e s

forming the edges .
6 Adj = zeros(P,P);
7 for i = E’
8 Adj(i(1),i(2)) = 1;
9 Adj(i(2),i(1)) = 1;

10 end
11 end

../MATLAB/GraphLaplacian.m

15

1 function L = GraphLaplacian(P, E)
2 % L = GraphLaplacian (P, E)
3 % Returns the l a p l a c i a n o f the u n d i r e c t e d graph wi th p

v e r t i c e s t o g e t h e r wi th i t s s e t o f edges .
4 % P i s the number o f v e r t i c e s
5 % E i s an nx2 matrix c o n s i s t i n g o f the n p a i r s o f v e r t i c e s

forming the edges .
6 %
7 % L = GraphLaplacian (A)
8 % Returns the graph l a p l a c i a n o f the adjacency matrix A
9

10 if nargin == 2
11 A = VEtoAdj(P, E);
12 else
13 A = P;
14 end
15 L = diag(sum(A)) - A;
16 end

A.2 Protocol generating functions

The following two functions calcultate the matrices F and G together with their
variables that maximise the radius of robust synchronisation.

../MATLAB/RobustSyncControl.m

1 function [F G] = RobustSyncControl(A, B, C, L, N, eta, gamma
, ssigma, tau)

2 % [F G] = RobustSyncControl (A, B, C, L , N, eta , gamma)
3 % Returns the ga ins F and G given by (33) and (34)
4 %
5 % [F G] = RobustSyncControl (A, B, C, L , N, eta , gamma, sigma

)
6 % [F G] = RobustSyncControl (A, B, C, L , N, eta , gamma, sigma

, tau)
7 % The o p t i o n a l arguments ’ sigma ’ and ’ tau ’ f o r c e AQ+QA’−QC’

CQ = − tau I thus making
8 % sure the c o n d i t i o n AQ+QA’−QC’CQ < 0 i s met . (d e f a u l t s to

tau =10ˆ−10)
9 % and A’P + PA − gamma PBB’P = − sigma I making computation

e a s i e r i f A has (c l o s e to)
10 % p u r e l y imaginary e i g e n v a l u e s (d e f a u l t s to sigma=10ˆ−10)
11
12 % compute the e i g e n v a l u e s o f the graph l a p l a c i a n .
13 E = sort(real(eig(L)));
14 lambda2 = E(2);
15 lambdaP = E(end);
16
17 % t e s t f o r s u i t a b l e c h o i c e s o f N and gamma (eq (30) and

(31))

16

18 if N <= lambdaPˆ2/lambda2
19 warning(’N out of bounds’);
20 end
21 if ˜((lambdaPˆ2/Nˆ2 <= gamma) && (gamma < lambda2/N))
22 warning(’gamma out of bounds’);
23 end
24
25 % s e t t i n g ssigma , tau
26 if nargin < 8
27 tau = 10ˆ-10;
28 end
29 if nargin < 9
30 ssigma = 10ˆ-10;
31 end
32 % c a l c u l a t e P and Q as g iven by (28) and (29)
33 P = care(A, B, ssigma*eye(size(A)), 1/gamma*eye(size(B,2))

);
34 Q = care(A’, C’, tau*eye(size(A’)));
35
36 % t e s t i f our e ta i s a good ch o ic e (eq 32)
37 if eta >= 1/sqrt(max(abs(eig(P*Q))))
38 warning(’eta out of bounds’);
39 end
40
41 % c a l c u l a t e F and G (eq (33) and (34))
42 F = -B’*P;
43 G = inv(eye(size(Q*P)) - etaˆ2*Q*P) *Q*C’;
44 end

../MATLAB/RobustSyncOptimalVars.m

1 function [N, eta, gamma] = RobustSyncOptimalVars(A, B, C, L,
delta, ssigma, tau)

2 % [N, eta , gamma] = RobustSyncOptimalvars (A, B, C, L)
3 % g i v e s c h o i c e s f o r N, e ta and gamma maximising e ta us ing

s e c t i o n 6 o f the a r t i c l e .
4 % D e f a u l t v a l u e s f o r are used f o r d e l t a , and sigma and tau .
5 %
6 % [N, eta , gamma] = RobustSyncOptimalVars (A, B, C, L , d e l t a ,

sigma , tau)
7 % g i v e s opt imal c h o i c e s f o r N, e ta and gamma maximising e ta .
8
9 %s e l e c t d e f a u l t v a l u e s f o r d e l t a , sigma , tau

10 if nargin < 5
11 delta = 10ˆ-6;
12 ssigma = 10ˆ-6;
13 tau = 10ˆ-6;
14 end
15
16 % compute the e i g e n v a l u e s the graph l a p l a c i a n .

17

17 E = sort(real(eig(L)));
18 lambda2 = E(2);
19 lambdaP = E(end);
20
21 % c a l c u l a t e P and Q as g iven by (48) and (49)
22 P = care(A, B, ssigma*eye(size(A)));
23 Q = care(A’, C’, tau*eye(size(A’)));
24
25 eta = lambda2 / sqrt(lambdaPˆ2 + 2 * delta) * 1/sqrt(max(

abs(eig(P*Q)))) - delta;
26 gamma = lambda2ˆ2/(lambdaPˆ2 + 2*delta);
27 N = (lambdaPˆ2 + delta)/lambda2;
28
29 %t e s t i n g i f the found numbers are sane
30 if ˜((0 < eta) && (eta < (1/sqrt(max(abs(eig(P*Q)))))))
31 warning(’eta out of bounds. Choose a smaller value delta

’);
32 end
33 if N <= lambdaPˆ2/lambda2
34 warning(’N out of bounds. Choose a smaller value delta’)

;
35 end
36 if ˜((lambdaPˆ2/Nˆ2 <= gamma) && (gamma < lambda2/N))
37 warning(’gamma out of bounds. Choose a smaller value

delta’);
38 end
39 end

A.3 MATLAB state space object returning functions

../MATLAB/CreateMAS.m

1 function MAS = CreateMas(A, B, C, L, F, G, N)
2 % MAS = CreateMas (A, B, C, L , F, G, N)
3 % c r e a t e s an SS o b j e c t MAS r e p r e s e n t i n g the continuous−t ime

s t a t e−space model d e s c r i b e d in eq . (1 9) (20) (21)
4 p = size(L,1);
5 I = eye(p);
6
7 SSA = [kron(I, A), kron(I, B * F);
8 1/N * kron(L, G * C), kron(I, A - G * C) + kron(

1/N * L, B * F)];
9 SSB = [zeros(p * size(G)); kron(1/N * L, G)];

10 SSC = [zeros(p * size(F)), kron(I, F)];
11 SSD = 0;
12 MAS = ss(SSA, SSB, SSC, SSD);
13 end

../MATLAB/perturbation.m

18

1 function [sys] = perturbation(m, q, eta)
2 % [sys] = p e r t u r b a t i o n (m, q , e ta)
3 % Returns a random s t a b l e space s t a t e system with m i n p u t s

and q o u t p u t s such t h a t i t s norm i s s m a l l e r than e ta
4
5
6 n=max(m,q);
7 A=rand(n,n);
8 B=rand(n,m);
9 C=rand(q,n);

10 D=rand(q,m);
11 A = A - eye(n)*2*max(real(eig(A))); %move the e i g e n v a l u e s

to l e f t o f the imaginary a x i s
12 A = - rand * eta * A / min(real(eig(A))); %s c a l e s the

e i g e n v a l u e s s . t . | | sys | | < e ta
13 sys = ss(A,B,C,D);
14 end

../MATLAB/perturbations.m

1 function [sys] = perturbations(p, m, q, eta)
2 % f u n c t i o n [sys] = p e r t u r b a t i o n s (p , m, q , e ta)
3 % Returns p random s t a b l e space s t a t e systems with m i n p u t s

and q o u t p u t s such t h a t
4 % each i t s norm i s s m a l l e r than e ta and A i s hurwiz , then

puts them a l l in
5 % a s i n g l e b l o c k d i a g o n a l system .
6
7 n=max(m,q);
8 sys = ss(zeros(p*n), zeros(p*n,p*m), zeros(p*q, p*n),

zeros(p*q, p*m));
9 for i=0:p-1,

10 tmpsys = perturbation(m, q, eta);
11 sys.A(((i*n)+1):((i+1)*n), ((i*n)+1):((i+1)*n)) = tmpsys

.A;
12 sys.B(((i*n)+1):((i+1)*n), ((i*m)+1):((i+1)*m)) = tmpsys

.B;
13 sys.C(((i*q)+1):((i+1)*q), ((i*n)+1):((i+1)*n)) = tmpsys

.C;
14 sys.D(((i*q)+1):((i+1)*q), ((i*m)+1):((i+1)*m)) = tmpsys

.D;
15 end
16 end

A.4 Demonstrating scripts

demoDoubleIntegratorSynchronisation.m and demoFormationControl.m
both set up the complete simulink model and run the simulation.

demoDoubleIntegratorSynchronisation.m then generates a nice plot of
its results. If an anmiation of the results of demoFormationControl.m should

19

be generated and then be saved as an .avifile the following commands should be
executed in MATLAB:

1 demoFormationControl;
2 animateFormationControlFancy;
3 movie2avi(M, ’DemoFormationControl.avi’);

../MATLAB/demoDoubleIntegratorSynchronisation.m

1 %c r e a t e a sma l l s imu l ink model to t e s t i f a system of
i n t e g r a t o r s s y n c h r o n i s e s :

2
3 %%i n d i v i d u a l agent dynamics (doub le i n t e g r a t o r)
4 A = [0 1; 0 0]; B = [0; 1]; C = [1 0];
5
6 %uncomment to s e l e c t the network t o p o l o g y and number o f

agents
7 Graph=CompleteGraph(10);
8 %Graph=CircleGraph (9) ;
9 %Graph=StarGraph (7) ; %s t a r graph

10
11 L = GraphLaplacian(Graph);
12
13 %some u s e f u l numbers
14 n=size(A,1);
15 m=size(B,2);
16 q=size(C,1);
17 p = size(L,1);
18
19 StopTime = ’5000’; %time to run the s i m u l a t i o n
20 OutputTimes = mat2str(0:5:5000); %p o i n t s t h a t shou ld be

saved
21
22 %s e t t i n g up the i n i t i a l c o n d i t i o n (w(t =0) i s l e f t 0 , x (t =0)

i s seeded wi th random numbers (−1 ,1))
23 X0=zeros(2*p*n,1);
24 X0(1:p*n)=2*rand(p*n,1)-1;
25
26 %Compute the p r o t o c o l
27 [N, eta, gamma] = RobustSyncOptimalVars(A, B, C, L);
28 [F G] = RobustSyncControl(A, B, C, L, N, eta, gamma);
29
30 %compute the added p e r t u r b a t i o n s
31 pertsys = perturbations(p, m, q, 0*eta);
32
33 %compute the o v e r a l network dynamics
34 I = eye(p);
35 SSA = [kron(I, A), kron(I, B * F);

20

36 1/N * kron(L, G * C), kron(I, A - G * C) + kron(
1/N * L, B * F)];

37 SSB = [zeros(p * size(G)); kron(1/N * L, G)];
38 SSC = [zeros(p * size(F)), kron(I, F)];
39
40 %b u i l d the s i mu l i nk system :
41 sys = ’Model’;
42 bdclose(sys)
43 new_system(sys) % Create the model
44 open_system(sys) % Open the model
45
46 %some c o n s t a n t s d e f i n i n g the spac ing in s i mu l i nk
47 x = 50;
48 y = 50;
49 w = 50;
50 h = 50;
51 offset = 100;
52
53 %adding b l o c k s and l i n k s
54 pos = [(x+offset*0) (y+offset*0) (x+offset*0)+w (y+offset*0)

+h];
55 add_block(’built-in/State-Space’,[sys ’/SS’],’Position’,pos)

;
56
57 pos = [(x+offset*1) (y+offset*0) (x+offset*1)+w (y+offset*0)

+h];
58 add_block(’built-in/Gain’,[sys ’/Xstate’],’Position’,pos);
59
60 pos = [(x+offset*1) (y+offset*1) (x+offset*1)+w (y+offset*1)

+h];
61 add_block(’built-in/Gain’,[sys ’/Z’],’Position’,pos);
62
63 pos = [(x+offset*0) (y+offset*1) (x+offset*0)+w (y+offset*1)

+h];
64 add_block(’built-in/State-Space’,[sys ’/Perturbation’],’

Position’,pos);
65
66 pos = [(x+offset*2) (y+offset*0) (x+offset*2)+w (y+offset*0)

+h];
67 add_block(’built-in/Scope’,[sys ’/Scope1’],’Position’,pos);
68
69 pos = [(x+offset*2) (y+offset*1) (x+offset*2)+w (y+offset*1)

+h];
70 add_block(’built-in/Gain’,[sys ’/Cx’],’Position’,pos);
71
72 pos = [(x+offset*2) (y+offset*2) (x+offset*2)+w (y+offset*2)

+h];
73 add_block(’built-in/Outport’,[sys ’/Out1’],’Position’,pos);
74

21

75 add_line(sys,’SS/1’,’Xstate/1’,’autorouting’,’on’);
76 add_line(sys,’Xstate/1’,’Scope1/1’,’autorouting’,’on’);
77 add_line(sys,’SS/1’,’Z/1’,’autorouting’,’on’);
78 add_line(sys,’Z/1’,’Perturbation/1’,’autorouting’,’on’);
79 add_line(sys,’Perturbation/1’,’SS/1’,’autorouting’,’on’);
80 add_line(sys,’Xstate/1’,’Cx/1’,’autorouting’,’on’);
81 add_line(sys,’Cx/1’,’Out1/1’,’autorouting’,’on’);
82
83 %adding parameters
84 set_param([sys ’/SS’], ’A’, mat2str(SSA), ’B’, mat2str(SSB),

’C’, mat2str(eye(size(SSA))), ’D’, mat2str(zeros(size(
SSB))), ’X0’, mat2str(X0));

85 set_param([sys ’/Z’], ’Multiplication’, ’Matrix(K*u)’, ’Gain
’, mat2str(SSC));

86 set_param([sys ’/Perturbation’], ’A’, mat2str(pertsys.A), ’B
’, mat2str(pertsys.B), ’C’, mat2str(pertsys.C), ’D’,
mat2str(pertsys.D), ’X0’, mat2str(zeros(size(pertsys.A
,1),1)));

87 set_param([sys ’/Xstate’], ’Multiplication’, ’Matrix(K*u)’,
’Gain’, mat2str([eye(size(A)*p), zeros(size(A)*p)]));

88 set_param([sys ’/Cx’], ’Multiplication’, ’Matrix(K*u)’, ’
Gain’, mat2str(kron(I,C)));

89 set_param(sys, ’StopTime’, StopTime, ’OutputOption’, ’
SpecifiedOutputTimes’, ’OutputTimes’, OutputTimes);

90 %e nab l e s imu l ink a c c e l e r a t o r mode . Requires a compat i b l e C
compi ler . Run ’mex −setup ’ i f matlab isn ’ t y e t
c o n f i g u r e d

91 %set param (sys , ’ SimulationMode ’ , ’ a c c e l e r a t o r ’) ;
92
93 %run the s i m u l a t i o n
94 sim(sys);
95
96 %p l o t t i n g the output :
97 fig=figure;
98 subplot(2,2,1);
99 plot1=plot(tout, yout);

100 title(’Output’);
101
102 %p l o t the d i f f e r e n c e between each node and the average
103 subplot(2,2,2);
104 plot2=plot(tout, bsxfun(@minus,yout,mean(yout’)’));
105 title(’Difference from average’);
106
107 %p l o t the graph
108 subplot(2,2,3);
109 %put the nodes e q u a l l y spaced on a c i r c l e
110 xy = [cos(0:2*pi/size(L,1):2*pi-2*pi/size(L,1))’, sin(0:2*pi

/size(L,1):2*pi-2*pi/size(L,1))’];
111 gplot(Graph, xy,’-*’);

22

112 axis off;
113 for j = 1:p,
114 text(xy(j,1), xy(j,2), [’ ’ int2str(j)], ’FontSize’,12);
115 end
116 title(’Graph’);
117
118 %add a le gen d
119 sh=subplot(2,4,7);
120 s = cell(1, floor(p/2));
121 for i = 1:p,
122 s{i} = sprintf(’Agent %d’, i);
123 end
124 leg1=legend(sh,plot1(1:floor(p/2)),s{1:floor(p/2)});
125 set(leg1,’position’, get(sh,’position’));
126 title(sh,’Legend’);
127 axis(sh,’off’);
128 sh=subplot(2,4,8);
129 leg2=legend(sh,plot1(floor(p/2+1):p),s{floor(p/2+1):p});
130 set(leg2,’position’, get(sh,’position’));
131 axis(sh,’off’);
132
133 width=800;
134 height=480;
135 set(fig, ’Position’, [0 0 width+1 height+1]);

../MATLAB/demoFormationControl.m

1 %c r e a t e s a sma l l s imu l ink model to t e s t r o b u s t formation
c o n t r o l l .

2 %2 doub le i n t e g a t o r s are used to s i m u l a t e a c c e l e r a t i o n −−>
speed −−> p o s i t i o n o f o f the agent in the x and y
d i r e c t i o n .

3
4 %i n d i v i d u a l agent dynamics
5 A = [0 1 0 0; 0 0 0 0; 0 0 0 1; 0 0 0 0];
6 B = [0 0; 1 0; 0 0; 0 1];
7 C = [1 0 0 0; 0 0 1 0];
8
9 %uncomment to s e l e c t the network t o p o l o g y and number o f

agents
10 %Graph=CompleteGraph (6) ;
11 Graph=CircleGraph(15);
12 %Graph=StarGraph (6) ; %s t a r graph
13
14 L = GraphLaplacian(Graph);
15
16 %some u s e f u l numbers
17 n=size(A,1);
18 m=size(B,2);
19 q=size(C,1);

23

20 p = size(L,1);
21
22 StopTime = ’8000’; %time to run the s i m u l a t i o n
23 OutputTimes = mat2str(0:8:8000); %p o i n t s t h a t shou ld be

saved
24
25 %i n i t i a l c o n d i t i o n
26 X0=zeros(2*p*n,1);
27 X0(1:2:p*n)=2*rand(p*n/2,1)-1;
28
29 xy = [cos(0:2*pi/size(L,1):2*pi-2*pi/size(L,1))’, sin(0:2*pi

/size(L,1):2*pi-2*pi/size(L,1))’]; %c o o r d i n a t e s o f the
nodes (on a c i r c l e)

30 Formation = reshape(xy’, 1, numel(xy))’;
31
32 %Compute the p r o t o c o l
33 [N, eta, gamma] = RobustSyncOptimalVars(A, B, C, L);
34 [F G] = RobustSyncControl(A, B, C, L, N, eta, gamma);
35
36 %compute the added p e r t u r b a t i o n s
37 pertsys = perturbations(p, m, q, eta);
38
39 %compute the o v e r a l network dynamics
40 I = eye(p);
41 SSA = [kron(I, A), kron(I, B * F);
42 1/N * kron(L, G * C), kron(I, A - G * C) + kron(

1/N * L, B * F)];
43 SSB = [zeros(p * size(G)) zeros(p * size(G)); kron(1/N

* L, G) kron(-1/N * L, G)];
44 SSC = [zeros(p * size(F)), kron(I, F)];
45
46 %b u i l d the s i mu l i nk system :
47 sys = ’Model’;
48 bdclose(sys)
49 new_system(sys) % Create the model
50 open_system(sys) % Open the model
51
52 %some c o n s t a n t s d e f i n i n g the spac ing in s i mu l i nk
53 x = 50;
54 y = 50;
55 w = 50;
56 h = 50;
57 offset = 100;
58
59 %adding b l o c k s and l i n k s
60 pos = [(x+offset*1) (y+offset*0) (x+offset*1)+w (y+offset*0)

+h];
61 add_block(’built-in/State-Space’,[sys ’/SS’],’Position’,pos)

;

24

62
63 pos = [(x+offset*2) (y+offset*0) (x+offset*2)+w (y+offset*0)

+h];
64 add_block(’built-in/Gain’,[sys ’/Xstate’],’Position’,pos);
65
66 pos = [(x+offset*2) (y+offset*1) (x+offset*2)+w (y+offset*1)

+h];
67 add_block(’built-in/Gain’,[sys ’/Z’],’Position’,pos);
68
69 pos = [(x+offset*1) (y+offset*1) (x+offset*1)+w (y+offset*1)

+h];
70 add_block(’built-in/State-Space’,[sys ’/Perturbation’],’

Position’,pos);
71
72 pos = [(x+offset*3) (y+offset*0) (x+offset*3)+w (y+offset*0)

+h];
73 add_block(’built-in/Gain’,[sys ’/Cx’],’Position’,pos);
74
75 pos = [(x+offset*3) (y+offset*1) (x+offset*3)+w (y+offset*1)

+h];
76 add_block(’built-in/Outport’,[sys ’/Out1’],’Position’,pos);
77
78 pos = [(x+offset*0) (y+offset*1) (x+offset*0)+w (y+offset*1)

+h];
79 add_block(’built-in/Constant’,[sys ’/Formation’],’Position’,

pos);
80
81 pos = [(x+offset*0) (y+offset*0) (x+offset*0)+w (y+offset*0)

+h];
82 add_block(’built-in/Mux’,[sys ’/SSinput’],’Position’,pos);
83
84 add_line(sys,’SS/1’,’Xstate/1’,’autorouting’,’on’);
85 add_line(sys,’SS/1’,’Z/1’,’autorouting’,’on’);
86 add_line(sys,’Z/1’,’Perturbation/1’,’autorouting’,’on’);
87 add_line(sys,’Perturbation/1’,’SSinput/1’,’autorouting’,’on’

);
88 add_line(sys,’Xstate/1’,’Cx/1’,’autorouting’,’on’);
89 add_line(sys,’Cx/1’,’Out1/1’,’autorouting’,’on’);
90 add_line(sys,’SSinput/1’,’SS/1’,’autorouting’,’on’);
91 add_line(sys,’Formation/1’,’SSinput/2’,’autorouting’,’on’);
92
93 %adding parameters
94 set_param([sys ’/SS’], ’A’, mat2str(SSA), ’B’, mat2str(SSB),

’C’, mat2str(eye(size(SSA))), ’D’, mat2str(zeros(size(
SSB))), ’X0’, mat2str(X0));

95 set_param([sys ’/Z’], ’Multiplication’, ’Matrix(K*u)’, ’Gain
’, mat2str(SSC));

96 set_param([sys ’/Perturbation’], ’A’, mat2str(pertsys.A), ’B
’, mat2str(pertsys.B), ’C’, mat2str(pertsys.C), ’D’,

25

mat2str(pertsys.D), ’X0’, mat2str(zeros(size(pertsys.A
,1),1)));

97 set_param([sys ’/Xstate’], ’Multiplication’, ’Matrix(K*u)’,
’Gain’, mat2str([eye(size(A)*p), zeros(size(A)*p)]));

98 set_param([sys ’/Cx’], ’Multiplication’, ’Matrix(K*u)’, ’
Gain’, mat2str(kron(I,C)));

99 set_param([sys ’/SSinput’], ’Inputs’, ’2’);
100 set_param([sys ’/Formation’], ’Value’, mat2str(Formation));
101 set_param(sys, ’StopTime’, StopTime, ’OutputOption’, ’

SpecifiedOutputTimes’, ’OutputTimes’, OutputTimes);
102
103 %run the s i m u l a t i o n
104 sim(sys);

../MATLAB/animateFormationControlFancy.m

1 %c r e a t e s an animation from the output o f
demoFormationControl

2
3 %p l o t t i n g the output :
4
5 width=800;
6 height=480;
7
8 clear M
9

10 fig=figure;
11 set(fig, ’Position’, [0 0 width+1 height+1]);
12
13 %path p l o t s i z e
14 pathmaxx=max(max(yout(:,1:2:end)))*1.05;
15 pathminx=min(min(yout(:,1:2:end)))*1.05;
16 pathmaxy=max(max(yout(:,2:2:end)))*1.05;
17 pathminy=min(min(yout(:,2:2:end)))*1.05;
18
19 pathaxishandle=axes(’position’, [0.05 0.05 0.5 0.9]);
20 currentformationaxishandle=axes(’position’, [0.65 0.55 0.3

0.4]);
21 targetformationaxishandle=axes(’position’, [0.65 0.05 0.3

0.4]);
22
23
24 axes(targetformationaxishandle);
25 gplot(Graph, xy);
26 hold on;
27 scatter(xy(:,1), xy(:,2));
28 hold off;
29 for j = 1:p,
30 text(xy(j,1), xy(j,2), [’ ’ int2str(j)], ’FontSize’,12);
31 end

26

32 title(’Graph topology/Target formation’);
33 grid on;
34
35 for k=1:size(tout,1)
36 axes(pathaxishandle);
37 plot(yout([1 1:k],1:2:end),yout([1 1:k],2:2:end));
38 hold on;
39 scatter(yout(k,1:2:end),yout(k,2:2:end));
40 hold off;
41 set(pathaxishandle,’xlim’,[pathminx pathmaxx], ’ylim’,[

pathminy pathmaxy]);
42 grid on;
43 title([’Time: ’ num2str(round(tout(k)))]);
44 for j = 1:p,
45 text(yout(k,2*j-1),yout(k,2*j),[’ ’ int2str(j)],’

FontSize’,14);
46 end
47
48 axes(currentformationaxishandle);
49 gplot(Graph, vec2mat(yout(k,:),2));
50 hold on;
51 scatter(yout(k,1:2:end), yout(k,2:2:end));
52 hold off;
53 title(’Graph topology/Current formation’);
54 for j = 1:p,
55 text(yout(k,2*j-1),yout(k,2*j),[’ ’ int2str(j)],’

FontSize’,12);
56 end
57 grid on;
58
59 M(k) = getframe(gcf);
60 end

27

B Results

B.1 Additional results for the synchronisation of the
double integrator

Additional results for the system

ẋ =

0 1

0 0

x+

0

1

u, y =
(

1 0

)
x

Full graph with 5 nodes:

Full graph with 10 nodes:

28

Full graph with 19 nodes

Star graph with 7 nodes

29

Circle graph with 9 nodes

B.2 Additional snapshots of the formation control an-
imation

30

31

32

	Introduction
	Preliminaries
	Graph theory
	System Theory
	Transfer matrices

	Synchronisation
	Robust synchronisation
	Computation
	Maximizing the robust synchronisation radius

	Formation control

	MATLAB implementation
	Explanation of the inner workings of the tool-set

	Results and examples
	Synchronisation
	Formation control

	Conclusion
	Acknowledgments
	Source code listings
	Graph related functions
	Protocol generating functions
	MATLAB state space object returning functions
	Demonstrating scripts

	Results
	Additional results for the synchronisation of the double integrator
	Additional snapshots of the formation control animation

