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Abstract

The Dark Ages of the Universe ended with the formation of the first structures. The formation
of these first structures was accompanied by the heating and the subsequent reionization of the
intergalactic medium. The Epoch of Reionization (EoR) is thought to hold the key to how and
when the first galaxies formed. A promising probe to study this epoch is the redshifted 21-cm
line of neutral hydrogen. In this thesis, we investigate the sensitivity of current and future low
frequency radio telescopes to measure the redshifted 21-cm power spectrum during the Epoch of
Reionization. In our comparison of current arrays we find for a bandwidth of 10 MHz, integration
time of 1000 hr at redshift z = 10 and scale size k = 0.1 Mpc~!, that LOFAR outperforms MWA
and PAPER by an order of magnitude in power spectrum sensitivity. This comes mostly from
LOFAR’s larger collecting area. MWA and PAPER compensate their lack of collecting area by
increasing their field of view (FoV) and making their arrays compact. This however shifts their
sensitivity to smaller k-values (i.e. larger scale modes), which are more relevant for cosmology
than reionization studies. We also find that the LOFAR-AARTFAAC extension can increase the
sensitivity of LOFAR by a factor ~ 5 for & < 0.1 Mpc™!, below redshift z = 12. This comes
from the combination of the FoV of a single tile and the total collecting area of the LOFAR-
Superterp, which contains 288 antenna tiles in 12 stations. The LOFAR-Superstation in Nancy,
which will consist of 96 stations each containing 19 LBA dipoles, has half an order of magnitude
more sensitivity than even the LOFAR-AARTFAAC system in LBA mode, making it one of the
most promising instruments for very high redshift 21-cm EoR observations (z > 15) in the coming
decade until the SKA comes online. We finally calculate the sensitivity of different SKA lay-
outs, finding that compact arrays are the most sensitive, but that station size should be carefully
considered since this constrains the range of measurable scale variations. Concentrating a large
collecting area, e.g. 1km?, in only few stations could even lead to less power spectrum sensitivity
than current arrays, due to the small field of view and increased sample variance. We also find
that increasing the number of antennas increases the sensitivity on all scales, as expected. But the
maximum number of antennas is constrained by computational power, hence we need to balance
collecting area and stations size within the limits of the correlator.
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Chapter

Introduction

Astronomers are no longer long bearded individuals who spend night after night looking through
a copper telescope!. Pen and paper have been replaced by the CCD and the arm and eye have
made way for auto guiders and tracking systems. Astronomy has changed over the centuries and
so did the eyes of the astronomers. Astronomy is no longer limited to the visual spectrum, by
going into space one can now detect high energy gamma rays, and by building enormous groups
of antennas on earth we can observe low-energy radio waves.

Radio waves are the lowest frequencies electromagnetic waves can have and can become important
when looking deep into the furthest ”corners” of our Universe. Looking at these corners, light
we receive is not the same as when it was emitted. Apart from propogation effects due to the
matter between us and the source, the whole spectrum of the object is redshifted down to lower
frequencies. This is due to the expansion of the Universe, and is named cosmological redshift.
When looking at the early phases of the Universe, we see light (e.g. the CMB of HI 21-cm emission)
which is redshifted towards the radio side of the electromagnetic spectrum. Radio observations
can therefore play an important role in cosmology, which studies the universe as a whole: its
origin, evolution and its ultimate fate. One of the evolutionary phases of the Universe predicted
by cosmologists is called the Epoch of Reionization (EoR). This epoch is caused by the formation
of the very first objects, and thus holds the key to how the structure we observe today is formed
[Barkana and Loeb, 2001]. While radio arrays such as the Low Frequency Array (LOFAR)?2, the
Precision Array for Probing the Epoch of Reionization (PAPER) ® and the Murchison Widefield
Array (MWA)?* aim to be the first to observe this phase through redshifted 21-cm emission, a
much more ambitious project called the Square Kilometer Array (SKA)® is under development.
One of the key science projects of SKA will be the epoch of reionization, and thus the question
arises: what would be an optimal array configuration for this project? Studying the EoR can
be done by observations of the hyperfine 21 cm transition of neutral hydrogen, a more precise
formulation of the question behind this klein onderzoek is as follows: What is an optimal array
configuration of SKA for 21 cm observations of the Epoch of Reionization?

The outline of the report is as follows: the remaining of Chapter 1 will give a short introduction
on Reionization. Chapter 2 introduces some concepts from radio astronomy and the theory used
in this research. Chapter 3 describes additional concepts necessary to implement the theory into
a working code, which calculates the power spectrum sensitivity of different array configurations.
Chapter 4 presents and discusses results from this research. Chapter 5 contains a summary of this
report and a discussion for future work which can complement this research.

1The majority of astronomers no longer fits this discription, some might.
2www lofar.org
Shttp://astro.berkeley.edu/ dbacker/eor/

www.mwatelescope.org

Swww.skatelescope.org



1.1 A short biography of the Universe

If one had the remote control of the Universe and pressed rewind, we would see the universe con-
tract until it has shrunk into a point. This moment in time, when our whole universe compressed
into a hot dense state, is called the Big Bang. Now press play to see the baby Universe expand
into the version we see today.

Somewhere around ~ 10734 seconds after the Big Bang the expansion was exponential, a phase
called inflation. Inflation caused the volume of the universe to increase dramatically, with a factor
of ~ 10%6. The inflationary phase did not last very long, but even after this phase the universe
continued to expand, although slower. Due to this expansion the temperature of the Universe
decreased, giving rise to many processes which are studied by particle physicists today. Eventu-
ally these processes led to the formation of the particles which fill our Universe: bosons, leptons,
neutrinos and more. The Universe is now about 10~2 seconds old and still cooling.

After the first second, the Universe reached the temperature and density required to combine
protons and neutrons together to form form heavier atomic nuclei. This period of nuclear fusion
is called big bang nucleosynthesis. Elements such as Helium and a small fraction of heavier ele-
ments such as lithium were formed in this period. However it was not until long before expansion
cooled the Universe enough, to end nucleosynthesis and the Universe was left primarily filled with
hydrogen and helium. Because of the large photon energy density, nuclei and electrons were not
be able to form neutral atoms. High-energy photons would knock the electrons out of their bound
states into a soup nuclei and electron. The free electrons kept colliding with photons, scattering,
transferring energy from the electrons to the photons and back. This caused the Universe to be
nearly in perfect thermodynamic equilibrium creating the Blackbody spectrum which can be ob-
served today in every direction on the sky: the Cosmic Microwave Background (CMB). However
the energy of this spectrum was trapped between the electrons until the expansion rate of the
universe surpassed the scattering rate of the electrons. Some 350 000 years after the Big Bang the
Universe cooled such that electrons could recombine with nuclei to form atoms. The photons, no
longer hindered by electrons, could travel freely through the Universe while carrying information
of its state at the time of last scattering. [Ryden, 2002]

The universe became almost completely neutral and dark at this stage, but it was far from un-
interesting. Apart from the (sub)atomic physics that played its part during the first few seconds
of the Universe, a process dominated by gravity also played a role on the larger scales. After the
inflationary phase of the universe an imprint of the inflation process was left on the energy density
of the Universe. The quantum fluctuations in the energy field that caused the Universe to expand
by a factor of ~ 10%%, were enhanced and caused fluctuations in the mass density. This created
overdense and underdense regions. When the Universe became cold enough, these regions of over-
and under density grew by the accretion of matter under the influence of gravity. Until the density
in the overdense regions was high enough to form the first objects such as stars.

1.2 Epoch of reionization

During the EoR, hydrogen which was neutral during the Dark Ages, was ionized again. This all
started with the primordial fluctuations in density after the inflationary phase. Gravity causes
overdense regions of dark matter to collapse to form even more dense regions. When the gas
pressure lost its battle against gravity, due to cooling, this becomes a runaway process until the
gas is so dense, that nuclear fusion starts and a star is born. Possibly collapse proceeded even
further leading to the formation of a black hole, however this is still unclear. These first objects
would not simple relight the Universe but, if massive enough, which they probably were,would
emit ultraviolet photons. Photons in the UV and higher energies can ionize hydrogen atoms and
this is why this epoch is not called the re-enlightenment. The main change was in the state of the
gas, which changes from the neutral phase to the ionized phase.

The stars formed, were most likely clustered together in the first galaxies, which would emit the
combined ionizing photon flux to ionize the gas between those galaxies. However, it is still unclear
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Figure 1.1: History of the universe [Barkana and Loeb, 2001]

how many of these ionizing photons would actually escape to ionize the intergalactic medium.
Other (partial) explanations for the reionization process may be the formation of (mini)quasars.
Since black holes are very efficient in converting mass into energy, they could emit even more
ionizing photons. Also even more exotic theories have been developed such as the self-annihilation
of dark matter particles.[Barkana and Loeb, 2001]

What processes caused reionization ultimately determined the structures we see around us today.
The formation of the very first stars caused a change in the chemical composition of the Universe.
Metals® were formed in these first stars, since the Big Bang Nucleosynthesis only gave us hydrogen,
helium and a small fraction of heavier elements. These stars would later on release their metals
when they ended as a supernova, after which it would be re-used in the formation of a new
generation of galaxies, stars, and eventually planets and bachelor students.

Now we have collected motivation to observe the EoR using the redshifted 21-cm line as our
probe. To summarize, the EoR holds the formation of the first stars. Their formation proceeded
in an environment very different from today, since it was metal poor. Also the first clusters of
stars lead to the formation of the first galaxies. And these in turn clustered into galaxy clusters
and super clusters. In other words, the structures we observe all around us were seeded in this
epoch, and the key to understanding the formation of structure must then also lie there. How
reionization proceeded and how neutral hydrogen was distributed can also tell us something about
the cosmology which dominates our universe today.

1.3 Observing the epoch of reionization

There are many scenarios which explain reionization and structure formation, so we need obser-
vations to lift the degeneracy between these scenarios. There have already been several indirect
observations of the EoR which put constraints on the models. One observation is called the Lyman-
« forest, an effect in the spectra of high redshift quasars. The Lyman-« forest is the collection of
all absorption lines due to the neutral hydrogen between the quasar and the observer. Photons
are continuously redshifted when they are hurdling towards us over cosmological distances. At
a certain redshift their wavelength has been stretched to 121.6 nm. If this redshifted photon
travels trough a cloud of neutral hydrogen, there is a high probability that it will be absorbed
in a so called Lyman-«a transition. This effect is called the Gunn-Peterson effect. Depending on
the density of neutral hydrogen the absorption line will be deeper. Measuring the depth of the
Lyman-a absorption gives information on the amount of hydrogen at a certain redshift in the
direction of that specific quasar. The Lyman-« forest show that reionization took place before
z = 6.5, however the state of the intergalactic medium at higher redshifts is unclear since there is

6 Astronomy 101: Metals indicate every element heavier than Helium.



no detection of a quasars beyond redshift z = 7.1. [Zaroubi, 2012b]

Other observations come from the polarization of the CMB, due to scattering by electrons, the
current temperature of the intergalactic medium and several other measurements. More details
can be found in Zaroubi [2012Db].

These observations are however not direct, and as such can only constrain general features of
the EoR. If we want to measure the reionization process directly and in detail we need a probe
which observes the intergalactic medium itself. We need some characteristic to observe neutral
hydrogen. Observing neutral hydrogen in galaxies can be done by using the 21-cm transition of
atomic hydrogen. The transition is caused by the spin-transition of the electron from parallel to
anti-parallel. However when radiation reaches us, it will redshifted to longer wavelengths.

- Aobsv = Aemit _ Vemit — Vobsv (1 1)

>\obsv Vobsv

Using the constraints given by Lyman-« forest, which shows reionization to take place beyond a
redshift ofz = 6, the 21-cm line has been redshifted to a wavelength of 1.5 m or 202 MHz. However
this part of the radio spectrum is affected by radio-transmitters, RFI and the ionosphere. On top
of that emission from the sky is dominated by synchrotron emission from electrons interacting
with the magnetic field of the galaxy. These factors pose a big challenge for EoR projects and
demand enormous sensitivity of radio arrays to measure this weak spin transition in a mix of
galactic emission, ionospheric and instrumental distortions and radio broadcasts. To really image
the hydrogen in the Universe we have to resort to an even more ambitious project such as the
SKA. However this does not make current arrays useless for EoR observations. Instead of mapping
the hydrogen distribution during the EoR, current arrays will employ the 21-cm power spectrum
to observe global processes during reionization. This will be discussed in chapter 2.
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Figure 1.2: Reionization signal hidden in the foregrounds. Courtesy to V. Jelic.



Chapter

Radio Astronomy

To observe reionization of neutral hydrogen in the universe the 21-cm power spectrum is used,
instead of direct imaging of hydrogen itself. This chapter discuss a few basic concepts behind
radio interferometry and the 21-cm power spectrum itself. Using those basic concepts the errors
on the 21-cm power spectrum will be calculated. The results will be used to find an optimal array
configuration which reduces the errors for the desired EoR observations.

2.1 The Universe in brightness temperature

The emission of a photon at a wavelength of 21-cm is caused by a small transition in which the
orbiting electron changes its spin from parallel to anti-parallel as depicted in figure 2.1. The
amount of 21-cm radiation we receive from a patch of neutral hydrogen, depends on how many
atoms are in the parallel state n; and how many in the anti-parallel state ng. More atoms in state
ny will lead to more 21-cm emission when they decay to the ground state ng. The distribution of
energy levels is given by the Boltzmann distribution.

E _ 3€—T21/Tspm (2.1)

o
Where T5; = 68 mK is related to the energy corresponding to the 21-cm transition via Tp; =
Es1/kp, kp is the Boltzmann constant. Ty, is the temperature corresponding to a certain ratio
of energy levels, and not specifically the temperature of the gas. This is because the n; level
can also be populated in other ways than collisions, of which the rate is determined by the gas
(kinetic) temperature. The factor 3 comes in because of the degeneracy of the excited state nj.
The spin temperature Ty, depends on several energy sources, the details can be found in [Field,
1958]. In short it depends on the temperature of the CMB photons T, which can be absorbed.
The kinetic temperature of the gas T}, which determines the collisional excitations. And on the
amount of Lyman-a photons, which we can assign a temperature T,,. Lyman-« excitations can
lead to a decay to the n; state. Different ionizing sources will lead to different spin temperatures
because they lead to a different kinetic temperature T} and Lyman-« temperature T, the CMB
temperature is globally the same. So the spin temperature is related to the physical processes
which drive reionization.
The photon energy detected by radio arrays is low enough that we can assume hv < kT, i.e. the
photon energy is much lower than the equilibrium temperature. Which means we can take the
Rayleigh-Jeans limit of the Planck function, resulting into

202
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Figure 2.1: The 21-cm line transition. Courtesy to Pearson Prentice Hall.

As seen in equation (2.2) the brightness depends linearly on temperature, so we can relate our
brightness I,, directly to a temperature.. In the case of the 21-cm line we can relate it directly to
the spin temperature. From now on we will use Kelvin as our unit of choice to express brightness,
because this relates to physical processes behind the 21-cm emission.

2.2 Beginners guide to radio interferometry

A radio interferometer works quite differently than an optical telescope. An optical telescope is
just a big photon bucket, and works in the same way as our eye does. It counts the number of
photons from a given location and this is what we call the power. An interferometer is not just
one (radio)telescope, it consists of several and together they observe the sky as if they were one
radio telescope, with equivalent size. Interferometry refers to interference, which is the interaction
between waves. So in order to do an interferometric measurement the wavelike nature of light
should be captured. These signals can then be combined digitally to recreate the effect of a single
imaging telescope.

2.2.1 The visibility

The purpose of an antenna receiver in an interferometer is to collect two characteristics of the
incoming lightwave: amplitude and phase. When we assume the wave is sinusoidal®, we have all
the information we need to describe the incoming signal:

V(t) = E cos(wt + ¢). (2.3)

We will now assume we have two antennas which form our interferometer and there is a point
source infinitely far away emitting a signal (figure 2.2). One of the antennas will receive a delayed
signal with respect to the other. If b is the vector from antenna 1 to antenna 2, and s is the vector
pointing in the direction of the source, the signal has to travel an extra distance b - s to reach
antenna 2. The vector b is our baseline vector, hereafter baseline.? So the time delay is 7 = %.
The different signals from the antennas are multiplied in a cross-correlator and averaged over an

appropriate time-interval. The resulting signal is given by:

1This example is a simplification of the actual EM wave, which is far more complex and better discribed by a
gaussian random field.

2 Baselines are measured in wavelengths, the distance separation between two antennas divided by the wavelength
of observation.



Figure 2.2: Schematic overview of an interferometer.

Ro = (Vi - V)
= (E? cos(wt) cos(wt — wT)) (2.4)
= P cos(wT).
This resulting signal depends only on the received power P, the baseline orientation and the
source direction. Determining the location of sources on the sky does not depend on our pointing
accuracy, but on our clock which measures the time delay 7. Aside from the normal delay due to
antenna separation, we can also artificially shift one of the input signals with 90°. This will result

in a sine as output instead of a cosine. If we then follow the same path through the correlator,
the resulting signal per baseline is:

Rg = P sin(wT) (2.5)

We can extract two components of the source signal from the baseline, an even part (the cosine)
Rc and an odd part (the sine) Rg. This is the information our interferometer has given us about
our source, together they form the ”complex visibility” which is defined as [Perley, 2011]

V = Rec +iRs. (2.6)
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Figure 2.3: Hypothetical antenna lay-out (left) for MWA and corresponding baselines in the uv-
plane (right). The number of baselines is given by N, = %Na (N, — 1), so high amount antennas
leads to a very high amount of baselines. Every point in the uv-plane will collect data about our
source. [Zaroubi, 2012a

2.2.2 UV-plane

Instead of just one antenna pair, astronomical interferometers are built out of several antennas,
N. Each one of these antennas can form a baseline with one of the other N — 1 and produce
a visibility. We need to define a so called uv-plane, which collects all of the baseline vectors
b =ui+ vj, present in the array®. Where we define the coordinates with respect to our source
in direction s. Every baseline will represent a point in this uv-plane, of which the size is defined
by the size of the antenna. Each of these points measures a visibility, so for an array consisting
out of several antennas we can define a visibility function: V(u,v). See figure 2.3 for an antenna
lay-out and its corresponding uv-plane.

2.2.3 Fourier relations

Now we know what complex information an interferometer gives us about the source, but this has
to be related to more natural real quantities. Normally we measure the brightness I(l, m,v),where
l,m are some coordinates on the sky, and v indicates the observing frequency. The translation
from visibility to brightness is given in the title of this subsection: Fourier transform. The intensity
and the visibility are Fourier conjugates, related via equation (2.7).

I(l,m,v) = // V(u,v,v)e?™@WHvmdidm (2.7)

In order to get as much information as possible about the brightness distribution, we need to
sample the visibility function as densely as we can. This is why radio-astronomers talk about
uv-coverage: gathering a lot of visibilities at different coordinates in the uv-plane. This can be
done in two ways:

e Using a large number of baselines, since every single baseline will be a point in the uv-plane.
The problem with this strategy is the difficulty with cross-correlating a large amount of data,
which takes a lot of computer power.

3If the baselines are extended such that we have to take into account the curvature of the earth, b = u§+vj+wlz
since all the antennas do not lie on the same plane.
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e A computationally less expensive method is integration time. Since the earth rotates, the
direction vector of the source on the sky s will change. Our baseline vectors are defined with
respect to the direction of the source, in other words they also change. So by taking a long
integration time, the baselines will move in the uv-plane, covering tracks.

The combination of both, a sufficient number of antennas and integration time, will lead to a good
sampling of the uv-plane and thus a better measurement of the source brightness. [Perley, 2011]

2.3 The 21-cm Power Spectrum

Now we have a basic idea of how we can image the hydrogen in the Universe. This gives us the
possibility of truly mapping reionization in 3D (tomography), since we can Fourier Transform from
uv-coordinates to sky coordinates, 2 dimensions. But we can also measure the 21-cm line over
different frequencies. This gives us information on distance (or time), when using the appropriate
cosmological formulas to convert redshift to distance, the 3rd dimension. However one major
setback comes from the foregrounds. As said before the 21-cm signals from reionization travel
a vast distance before reaching the array and when it arrives it will be outmatched by signals
from extragalactic sources, galactic synchrotron radiation and distorted by the ionosphere. This
causes our signal-to-noise ratio to be rather low and therefore 3D-imaging of reionization will be
difficult. A second approach is a statistical detection which employs the power spectrum which
we will discuss now.

The radio array which we use to observe the EoR, has observed a small volume* of the Uni-
verse at the redshift corresponding to the observing frequency. We can calculate the width of
the volume with simple trigonometry. This width is given by the Field of View (FoV) of each
station, in other words the angular size, multiplied with the distance x to the source of emission.
The depth of the volume corresponds to the bandwidth of the observation, since this can also
be translated to distance [McQuinn et al., 2006]. Since the density of hydrogen and the spin
temperature of neutral hydrogen will vary at different places in the volume, the brightness of the
21-cm signal I(x) will fluctuate as well. These fluctuations can be described by the 21-cm power
spectrum. The very short recipe for extraction of the 21-cm power spectrum out of a volume filled
with fluctuating 21-cm signals is as follows.

e Take a 3D-Fourier transform of the volume, this would expand all these fluctuations in terms
of waves with a wave vector k. From now on we will refer to these wave vectors as Fourier
modes.

e This has given us I (k), the magnitude of the brightness fluctuations as a function of wave
vector k. In other words how much the brightness variation there is at different scales. The
tilde indicates Fourier transformed brightness, which should remind us of the visibility: also
a Fourier transform of the brightness but only in 2D.

e Then we take the absolute square |I(k)|2.

e After which we take the average over shells at a radius k]|

Resulting in the magnitude of the fluctuation in 21-cm brightness at a given scale length, which
gives us information about the fluctuations in density and ionization fraction at different scales.
Important to note: k = 27/, small k correspond to large scales and large k correspond to small
scales.[Lidz et al., 2007] [Morales and Wyithe, 2010]

Because the 21-cm power spectrum is hidden in the Fourier representation of the sky, we do
not need to transform the visibility function back to brightness as a function of sky coordinates.
However the interferometer only performed a 2D-Fourier transform over the spatial coordinates.
So there is only one dimension that still needs to be transformed: frequency direction. The

4When looking at cosmological scales you may call this megaparsec sized volume small.
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Figure 2.4: Very schematic overview of how the 21-cm power spectrum is extracted from a hypo-
thetical volume filled with ionized bubbles.
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transform will take place over the range of the bandwidth, since this correspond to the size of our
observed volume. [Geil, 2011]

(b,n) = / V (b, v)e=2" 1y (2.8)

The next step would be to relate our coordinates to k-space coordinates which correspond to
scale sizes within the volume, after which which we can start the averaging. However while a
Fourier transform of a hypothetical volume of the universe has a completely filled Fourier space
corresponding to that volume, the Fourier representation given by the interferometer does not. An
interferometer can only sample the Fourier transform of the observed volume partially. As shown
in figure 2.2, the number and location of baselines determines how the uv-plane was filled. By
using the rotation of the earth the baselines moved and we could fill the uv-plane even more. But
it would be impossible to fill the uv-plane completely, we cannot place antenas closer than their
diameter and we cannot place antennas infinitely far away. Because we cannot fill our uv-plane
completely it is impossible to fill our k-space completely, which is just a coordinate transformation
from u, v to k;, ky. This means the array has to be optimized in a way, that the interesting shells
of k are filled with enough baselines to get an accurate determination of the 21-cm power spectrum.

We were forced to employ the 21-cm power spectrum due a low signal-to-noise ratio created by
foregrounds. However in the process of extracting the power spectrum from from three-dimensional
information we lost detailed information, leaving only global information. This could be a problem
because different models may produce more or less the same 21-cm power spectrum. However the
benefits from the power spectrum comes from the following. Because the 21-cm power spectrum
is an average over a certain number of points within a shell at k, the error on that part of the
power spectrum is reduced by 1/v/N., where N, is the number of points measured in that shell.

2.4 Errors on the Powerspectum

To find an optimal array configuration we need to estimate the errors on the 21-cm power spectrum,
and its dependence on design parameters of the array. This section will discuss the main equations
on which the code is based. The derivation of the errors on the power spectrum will follow the
formalism described in [McQuinn et al., 2006].

12



2.4.1 System noise

From antenna theory we can deduce the root mean square (r.m.s.) noise per visibility per antenna
pair:

N Tsys
Aeff vV Al/to

Where T, is the system temperature, i.e. the antenna temperature and temperatures of fore-
grounds. Aeg is the effective area of a single antenna, which will be discussed in chapter 4. And
Av is the frequency resolution. This has to be transformed in the frequency direction to get into
the same Fourier representation as the 21-cm power spectrum. If we assume Av < B, we can
replace the Fourier integral by a sum.

AVY = (2.9)

B/Av
IN(b,n) = Z VN(b,v)e? i Ay (2.10)
i=1
To find the error on the power spectrum we follow more or less the same path of its extraction, by
taking the square and taking the average over the bandwidth. Which gives us the average error
on our power spectrum within the observed volume.

O (bi,by) = (AN (b, m)ATY (bj, )") (2.11)
We can rewrite this using equation 2.10.
B/Av B/Av N
CN(b b <[ Z VN bz,l/ ) 2mivym l/:| |: Z VN(bj,ym)eQTriVm"’])AV} >
m=1
B/Av B/Av

<[ Z VN (by, 1y )2 ive H Z VN (b zmumn)r>(Ay)2 (2.12)

:<V (by, )V (bj, 11)* + oo + VN (s, 1) VY (b, 1)
+C(bi,bj,yn,1/m)>(Ay)2

Since the frequency resolution Av is constant, we can take it out of the sum and the averaging.
Writing out the product of the sums gives the last line, where the complex exponential drops out
for the same frequencies v, leaving only the noise products for baselines i and j. C(b;, bj, vy, Ui,)
are cross terms between different baselines i and j and different frequencies v,, and v,,, i.e. they
do contain complex exponentials.

B
CN(bi,b;) = — (AVN)2(Av)26,; + <O(bi,bj, Vn, Vm)>(AV)2

Av
= (AVN)QBAyéij

(2.13)

We reach the final line by noting that noise signals from different baselines are uncorrelated, the
mean of their product is zero. While for correlated signals the mean of the product equals the
r.m.s squared. The mean of the cross terms is also zero. Substituting our expression for the r.m.s.
noise per visibility in equation (2.13) gives us
\2BT, 21

CV(b) = (S 2.14

) = () i (2.14)

The kronecker delta is dropped because we consider a single baseline. However we are talking
about an array consisting out of several antennas, all measuring a visibility for a certain b. This
visibility is only measured for a certain amount of time because our array is turning and its baseline
coordinates change. The baseline vector b is related to our fourier modes k| , so we can translate
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our noise per baseline, to a noise per Fourier mode as follows. Using the definition k; = 2wb/x
and using the fact that visibility is measured for a time given by equation (2.15).

~ AefftO
tx ~ 2

Where ) is the wavelength corresponding to the observing frequency. The first term Acg/\2
determines what area the antenna samples in the uv-plane. The number density of baselines
n(|b|) comes in, because we want to know how many baselines sample this value of k. Where
we have assumed the array is circular symmetric, which gives the circular symmetric baseline
distribution n(b). But since we are interested in the noise per Fourier mode, u has been rewritten
as a function of k. The angle 6 is the angle between our line of sight (LOS), see figure and the
direction of the Fourier mode k, see figure 2.4. Our array can only measure projections of Fourier
modes which fit the covered area in the uv-plane. In other words modes smaller than the shortest
baseline and longer than the longest baseline cannot be measured. This boundary is defined by
the baseline distribution n(]|b||), which will be discussed in chapter 3. Using equation (2.15) we
can rewrite the system noise per Fourier mode as

n[z| k|| sin(@) /2] (2.15)

A2BT.ys )2 1

220) B (2.16)

k) = ( Bty

LOS

Figure 2.5: The angle between our line of sight (LOS) through our volume and Fourier modes k.
This volume is in an earlier stage of reionization than the one depicted in figure 2.3.

2.4.2 Sample Variance

This research has focussed primarily on reducing the system noise, since observations are cur-
rently in the noise dominated region. Therefore the sample variance will be discussed in a short
descriptive manner. The sample variance can be understood as follows. Since we are measuring
a finite volume of space, defined by the FoV, and bandwidth. We can only sample Fourier modes
a certain number of times, depending on how many can fit into the k-space volume. The large
modes (i.e. small k-values) corresponding to scales on the same order of the survey volume, will
be sampled only once or twice. While the smaller modes, corresponding to small scales, will be
sampled much more often. So sample variance is not an actual noise like the system noise, but
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rather an uncertainty set by the finite number of measurements (even if the S/N-ratio is high).
The sample variance is given by:

A2 B2

SV —
V() = Par () 5

(2.17)

Where z is the width of the volume and y is the depth of volume, corresponding to the bandwidth.

2.4.3 Total noise

We can sum the two error contributions, system noise and sample variance, to get the total error
per observed point in k-space. Because the power spectrum is an average over the number of
measured points at a certain scale k, we have to determine first what the number of point in that
shell is. As mentioned before this depends on the number of baselines, because they determine
the points which are sampled in the visibility function V(u,v). However the approach used in
the derivation of the error assumed we have actually sampled the complete surface between the
shortest and longest baseline. This is due to the assumption of a circular symmetric baseline
distribution. This assumes there is some density of baselines at every point in the uv-plane, so
every point within the baseline range is sampled. In other words the N,(N, — 1) baselines have
been smeared out over an area in the uv-plane.

Now we have to determine the number of points in some annulus with thickness Ak at k. We can
only sample as much as fit inside the annulus, and this depends on the size of each point. This
size of each point is determined by size of the observed Fourier volume and equals (27)3/V, where
V = 22y\?/Aeg in real space.

The number of cells in a spherical annulus is given by equation

N.(k,0) = 2nk? sin(o)AkM@::)S. (2.18)
The term 27k2Ak determines the volume of the annulus, typical values for Ak = 0.5k. But we
have to take into account that our observational volume is finite. The baseline distribution takes
care of modes whose projection does not fit the baseline ranges. However modes much larger
than the depth of our volume can have a projection on the uv-plane which fits inside the baseline
distribution. This is possible when the angle between LOS and the mode k is small enough. To
exclude these Fourier modes, the number of points NV, is set to zero when, the k£ no longer fits
inside the volume: 27/kcos(f) > y. The total error on the power spectrum becomes,

1 Aeffoy

JN. \2B2

Where the factor 1/4/N, is introduced because the error is reduced by the number of cells which
measured the power spectrum.

6Py (K, 0) = [CV (k,0) + OV (k,0)] (2.19)

2.4.4 Angular Averaged Power Spectrum

Since the interest was in the fluctuations as a function of k-scale only, we still have to average the
error over angle . Which is done using

Lo

Which results in our final estimation on the errors on the 21-cm power spectrum. Equation 2.20
will be used to determine the sensitivity of an array for power spectrum measurements, as a
function of its design.
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Chapter

The Code

This chapter outlines the implementation of theory into a code which calculates the sensitivity of
an array given initial parameters, after which this can be used to optimize the array for power
spectrum measurements. The code is written in the language Python!. The actual calculating
work such as interpolations, integrations and optimization is done by functions within the module
SciPy. Because Python is open source, the use of python makes it also possible for distribution
among interested within the astronomical community. I will not discuss the program in great
detail, for the program itself I refer to the appendix, but I will discuss several components of the
program and their relation to theory, and why several assumptions have been made.

3.1 General assumptions

For the system temperature Tsys we assume we can neglect the temperature of the antennas and
only consider the sky temperature, this can be easily modified by adding an antenna temperature
component if required. The sky is dominated by synchrotron emission from the galaxy, whose
brightness temperature is approximated by a power law as a function of frequency, given in equa-
tion (3.1)2. Although this varies along different lines of sight, being at its strongest near the
Galactic center and weaker out of the Galactic plane. [Jelic et al., 2008]

=

v —2.55
Ty = 4 (7) K 1
sy = 400 { 508 (3.1)

For dipoles we cannot really talk about a physical area, when looking at figure 3.1 this becomes
clear. However, we can define an effective area which is determined by the sensitivity of a dipole.
The sensitivity of a dipole has some angular dependancy. This angular sensitivity pattern is called
a beam, the size of this beam and wavelength of observation define the so called effective area of
the dipole. For the effective area we assume the following function.

_ v 2
Aot = 4p (120 MHZ) m (3.2)

Where A, is the physical area of the dipole, which is related to the dimensions of the antenna.
Equation (3.2) shows that the dipoles are less sensitive to higher frequencies.

We also assume a flat universe with €, = 0.3, Qy = 0.7, Qx = 0 and a Hubble constant of
Hy = 70 (km/s)/Mpc. These cosmological parameters are used to calculate the distances to the
source of emission x and the depth of the observed volume y. Which are calculated using equation
(3.3). [Hogg, 2007]

Thttp://www.python.org/
2This equations holds for frequencies below 200 MHz.
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Figure 3.1: LOFAR HBA Dipole, courtesy to R. van den Brink.

C

D= —
Hy

/zmx(Qm (1+2)° +Q (1+2)? + Qp) " 2dz (3.3)

Zmin

3.2 Antenna distribution

The distributions of the antennas has great influence on the array sensitivity. Since the locations
of the antennas with respect to each other determine what baseline lengths are present and as such
what sensitivity the array has on different scales lengths. A small dense array will have antenna
stations close to each other, i.e. short baselines, and thus sensitivity on large scales. While a
large diffuse array will have long baselines and thus more sensitivity on small scales. A sensible
choice for a function which spans several scales is a power law. So we assume the following antenna
distribution, a core area which has a constant array density, and an outer area in which the density
follows a power law as a function of radius. The core area will provide us with sensitivity on large
scales, and the outer area will provide us with sensitivity on the smaller scales. This function
is of course continuous, while a true array will have a discrete distribution, but this is a good
approximation to first order when discussing arrays consisting of a large number of antennas. For
this distribution the antenna density is given by [Geil, 2011]:

Ne 0<r<r,
P
n(r) = nc<%) Te < T < Tmax (3.4)
0 T > Tmax

Where n. is a normalization constant such that the integral over the surface of the array results
in the total number of placed antennas N.

N = // na(r) sin(¢)dedr (3.5)

The crucial parameters for this power law antenna distribution are: the core radius r.,the outer
radius Tmax and the slope p. The outer radius determines the maximum baseline length. The
slope will determine how fast the sensitivity decreases over k and how dense the core array will
be. A steeper slope will lead to more antennas in the core area. To prevent overfilling of the core
an upper limit has been placed where the total area of the antennas in the core n. Aeg cannot
exceed the physical area of the core 712

c*
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3.3 Baseline Distribution

For a given antenna distribution the corresponding baseline distribution is given by the convolution
integral[Geil, 2011]

Tmax 2
ny(b,v) = Cb(z/)/ 2mr na(r)dr,/ na(r — Ab)de (3.6)
0 0

Where Cy(v) is a frequency dependent normalization constant such that the integral over the
baseline distribution equals the total number of baselines N, (N, — 1) = [ Ny(b,v)db. By taking
the convolution integral, the result is again a continuous function. A secondary effect is the
creation of baselines below d, /A, where d, is the antenna diameter. These short baselines are
physically impossible, since it is not possible to place two antennas closer than twice their antenna
radius. This already implies that while a larger antenna station has more collecting area, it makes
it impossible for the array to measure large scale fluctuations, because of the smaller FoV. In
order to correct for these artifacts, the code removes all baselines below the limiting length. After
which the distribution is renormalized to match the total number of baselines. The convolution
is calculated numerically, therefore it can also handle all types of antenna distributions as long
as they are circularly symmetric. Because the convolution is quite time consuming, the baseline
distribution is calculated once per realization. The results are further used by one-dimensional
interpolation in the b direction. An interpolation in the frequency direction is replaced by selecting
the nearest frequency.
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Figure 3.2: The antenna distribution (left) and the baseline distributions (right) for an MWA like
instrument. [Geil, 2011]

3.4 Theoretical Power Spectrum

For calculation of the cosmic variance and optimization of the array configuration a theoretical
power spectrum was provided by Prof. Dr. S. Zaroubi. The simulated power spectra are created
using the reionization code 2lemFast [Mesinger et al., 2010], which produces 21 cm brightness
boxes with dimensions of 400 Mpc. The power spectrum is extracted from these brightness tem-
perature boxes with the aid of a FastFourierTransform routine in IDL.

The power spectra were provided for redshifts z= 12,11,10,9.5,9 and 8.5, and sensitivity calcula-
tions for intermediate redshifts is done by interpolation. Except for frequencies outside this range
when the nearest frequency will be used. The range in scale lengths is —1.5 < logk < 0.8. The
minimum £k is defined by the size of the box and the maximum k is defined by the resolution of
the simulation. Other power spectra can be used in the code by simply replacing the input file
containing the data. Figure 3.3 shows the power spectrum for several redshifts.
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Figure 3.3: 21-cm power spectrum produced by 2lemFast, (zp) indicates the mean fraction of
neutral hydrogen at the corresponding redshift z.
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Chapter

Results

After implementation into a code, which passed several test against literature [McQuinn et al.,
2006], an analytic case and against a similar code developed by the group of Garrelt Mellema, the
next step was to run calculations using parameters of current arrays. Over the years a number
have been published on several arrays, but due to de- and rescopes or other factors, several changes
have been made in the final array designs. To obtain a more updated state of affairs we first made a
comparison between the arrays: PAPER, MWA and LOFAR. We also looked at implementation of
two LOFAR-extensions for power spectrum measurements, LOFAR-AARTFAAC and the french
LOFAR-Superstation (LSS). Calculations were also made for several SKA lay-outs. As future
research we plan to use an optimization routine, to find the optimal SKA lay-out for power
spectrum measurements. The results of these calculations will be presented in this chapter.

4.1 Comparison between Current Arrays

There are several arrays trying to measure the 21-cm power spectrum of reionization. But all
arrays employ a different configuration strategy, hence each array will have a different k-regime at
which its sensitivity is optimal. For the comparison the sensitivity of MWA, PAPER and LOFAR
were calculated.

PAPER located in South Africa, is a radio array with a design focused on a high number of
antenna stations, i.e. baselines. PAPER is build out of 128 station, each with a collecting
area of 1.52r m? . These stations are distributed uniformly in an area with a radius of 150
m, except in a central cavity with a radius of 10 m [Jacobs et al., 2011]. This creates a dense
array, with a high number of baselines inside a small area of the uv-plane. The large FoV of
each individual antenna gives PAPER instantaneous sensitivity to large scale fluctuations.

MWA located in Australia, follows a similar strategy as PAPER. MWA also has a large number
of stations, 112 to be precise, creating a large number of baselines. Each antenna station
has a physical collecting area of 14.5 m?, and are more spread out than the stations in the
PAPER configuration. MWA consists of a central region with a uniform distribution of
stations and a less dense outer region. This outer region has a power law distribution with
an index of 2 [Beardsley et al., 2012]. The increase in collecting area gives MWA a higher
sensitivity, within the ranges of the FoV. By placing stations in a more extended area, the
MWA contains somewhat longer baselines and thus sensitivity on smaller scales.

LOFAR located in Europe (we only consider the core area) is built out of 48 stations, which is less
than half of the stations of PAPER and MWA station. This is however compensated by the
size of each station. Each station has a collecting area of 1627 m?, which is much larger than
the station size of PAPER and MWA. LOFAR is also a more diffuse array then the before
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mentioned arrays with its stations distributed uniformly in a central region and a power law,
also with index 2, decreasing outer region. The central region, a.k.a. the ”Superterp”, has
a radius of 150 m and the outer region stretches out until 1500 m. The array parameters
can be found in table 4.1. The antenna lay-out and the corresponding baseline distribution
of these arrays is displayed in figure 4.1.
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Figure 4.1: The antenna distribution (left) and the baseline distributions (right) at 150 MHz for
LOFAR: red dotted line, PAPER: green dashed line and MWA: blue solid line.

Array Ap (m?) Nant P e (m) Tmax (M)
PAPER 7.1 128 0 150 -
MWA 14.5 112 2 25 750
LOFAR 804 48 2 150 1500

Table 4.1: Array parameters

Using the parameters for the arrays given in table 4.1 and a binning size of Ak = 0.5k, we calcu-
lated the power spectrum sensitivity at redshift z = 8,10 and 12, for an observation time of 1000
hours and a bandwidth of 10 MHz. The results are shown in figure 4.2 and tabulated in table
4.2. The sample variance and system noise are tabulated separately because sample variance is
dependent on the power spectrum model, while the system noise is universal.

From figure 4.2 we can conclude the following:

e LOFAR is the most sensitive array and PAPER is the least sensitive array at the relevant
scales for the 21-cm power spectrum.

e MWA and PAPER are unlikely to measure the 21-cm power spectrum, while LOFAR can
measure it partially until a redshift of z = 10.

Looking at figure 4.1, we see MWA and PAPER outmatch LOFAR in antenna and baseline density
by orders of magnitude. We also note that PAPER and MWA contain much shorter baselines
than LOFAR. This is due to LOFAR’s station size, which limits the minimum baseline to by, =
da/\ where d, is the antenna diameter. Despite these orders of magnitude difference in baseline
densities, LOFAR still has at least half a magnitude more sensitivity, see figure 4.2. This seems to
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indicate that sensitivity lies in station size, since this is where LOFAR exceeds the other arrays.
The other arrays have much more shorter baselines and larger FoV’s, making them more interesting
for cosmological studies rather than EoR observations. Since the more detectable part of the 21-
cm power spectrum is around k ~ 0.2 Mpc™!.

So it seems sensitivity is easily gained by increasing the collecting area of a station, rather than
increase of the amount of stations. MWA and PAPER are most likely not able to measure the

21-cm power spectrum, while LOFAR can until a redshift of about z=10.

z=28 z =10 z=12
Array SPyY 5PN 5Py PN SPyY SPY
[1073 mk?) [mk?] (1073 mk?] [mk?] (1073 mk?] [mk?]
PAPER 3.45 46.0 19.0 194 4.86 1.10 - 103
MWA 4.94 38.1 27.2 176 6.97 1.08 - 103
LOFAR 36.8 1.25 202 4.88 51.8 26.2

Table 4.2: Noise Calculation results at k = 0.2Mpc™,6P5}" is the sample variance component
of the noise and 0PJ) is the system noise component. Power spectrum values at k = 0.2 are
k3P, /272 = 4.84, 29.8, 8.58 mk?, at respectively redshift z=8,10,12.

101 10°
kIMpct]

Figure 4.2: Comparison between MWA (blue dotted), PAPER (red dotted) and LOFAR (green
dotted). The black solid line represents the power spectrum generated by 21-cmFAST.
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4.2 The LOFAR-AARTFAAC and -Superstation Extensions

In the previous section we showed that all current arrays have marginal sensitivity to measure the
21-cm power spectrum. LOFAR has some sensitivity until a redshift of about z = 10, after which
the 21-cm signal becomes too noisy. Even though construction of the LOFAR core has finished,
the project is still evolving and undergoing exciting developments. We will consider two of these
developments to investigate whether they can be used for 21-cm power spectrum measurements.

AARTFAAC stands for ASTRON Radio Transients Facility and Analysis Centre! and is an

extension for the LOFAR~superterp. In standard operating mode a group of 48 HBA anten-
nas or 48 LBA antennas operate as one antenna station. The superterp in Exloo contains
6 HBA-stations and 6 LBA-stations. The signals from each station are normally cross-
correlated with another station producing the visibilities. The AARTFAAC system however
cross-correlates the signals from all the individual antennas. The 288 LBA-stations or 288
HBA stations in the superterp can thus create a very dense array since the superterp has
a radius of 150 m. [Prasad and Wijnholds, 2012]. The FoV increases because the station
size has been reduced to the area of a single LBA or HBA receiver. This creates sensitivity
on large scales. AARTFAAC was initially designed for large sky surveys in the search for
transient sources, which requires the large FoV. The smaller station size might decrease the
sensitivity. However compensation might come from the large baselines density, since the
”station” number has increased by a factor of 24 thus a factor of ~ 2304 increase in number
of baselines.

Superstation the LOFAR-Superstation is a project in Nancy. The superstation is planned to

n, (Nim?]

consist of a group of 96 LBA stations placed in an area with a radius of 175 m, which
is comparable to that of the superterp. Although the number of individual elements is
much lower than the 288 antennas of the LOFAR-AARTFAAC system, the collecting area
of these antennas is much larger than the collecting area of a single antenna in the superterp,
300m? to be precise. The LOFAR-Superstation favors collecting area , while the LOFAR-
AARTFAAC system favors a large number of baselines and wider FoV. However, the results
from the previous section imply that collecting area is favored over number of baselines.

10!

Figure 4.3: The antenna distribution (left) and the baseline distributions (right) at 150 MHz for
LOFAR: red solid line, AARTFAAC: blue dashed line, Superstation: green dotted line.

Thttp://www.aartfaac.org/
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Array Nant A, [m?] re [m] D
Superstation 96 300 175 0
AARTFAAC 288 25 150 0

Table 4.3: Parameters for the AARTFAAC-system and Superstation project

4.2.1 Reionization

Using the parameters listed in table 4.3 and the parameters for LOFAR in table 4.1 we compared
LOFAR and LOFAR-AARTFAAC in their capability of detecting the 21-cm power spectrum, at
redshifts z=8,10 and 12 (LSS does not have HBA receivers). The results of this calculation are
shown in figure 4.4 and detailed noise component values can be found in table 4.4. Looking at the
results we can draw the following conclusions:

e LOFAR-AARTFAAC has a higher sensitivity than LOFAR on scales k& < 0.1 Mpc~!
e LOFAR itself has a higher sensitivity than AARTFAAC beyond k > 0.1 Mpc~1.

k3 P(k)/2m? [mk? ]

k[Mpc'1 ]

Figure 4.4: Comparison between LOFAR (red solid) and LOFAR-AARTFAAC (blue dashed). The
black solid line represents the power spectrum generated by 21-cmFAST.
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Array PV 5PN PV 5PN sPyY SPN

(1073 mk?] [mk?] (1073 mk?] [mk?) [1073 mk?] [mk?]
LOFAR 36.8 1.25 202 4.88 51.8 26.2
AARTFAAC 6.48 1.37 35.6 5.74 9.15 32.1

Table 4.4: Noise Calculation results at k¥ = 0.2Mpc~!,6Pg" is the sample variance component
of the noise and 0PJ) is the system noise component. Power spectrum values at k = 0.2 are
k3P, /272 = 4.84, 29.8, 8.58 mk?, at respectively redshift z=8,10,12.

We can explain LOFAR’s sensitivity on smaller scales (large k) with its larger baselines, LOFAR’s
antenna distribution stretches out until 7, = 1500m. AARTFAAC’s sensitivity on larger scales
can be explained with the large FoV of each station. When we look at the numbers in table 4.4,
we see:

e LOFAR has the lowest level of system noise, although it does not differ much from AART-
FAAC.

e The AARTFAAC system has the lowest level of sample variance.

How strongly a noise component contributes is more or less determined by the effective area Aeg
of each station within the array. Increasing the area lowers the system noise, see equation (2.2).
However it also decreases the FoV, i.e. the size of the observed volume, therefore the sample
variance increases because we are less able to measure all modes accurately. While it might seem
tempting to maximize the effective area to decrease the system noise, this in turn increases the
sample variance. This sample variance does not depend on integration time, so it is impossible
to diminish this uncertainty by integrating longer. The choice of a certain station size, creates a
lower limit for the measurable modes of k.

The results show that LOFAR and its extension AARTFAAC have promising sensitivity to measure
the 21-cm power spectrum. The LOFAR-AARTFAAC system has increased sensitivity on scales
below k < 0.2 Mpc™!, using the AARTFAAC system with the ”standard” LOFAR system would
be an interesting application of the LOFAR-system in Holland.

4.2.2 Cosmic Dawn

In Visbal et al. [2012] a power spectrum at redshift z = 20 was presented which took into account
the velocity difference between collapsing dark matter and baryons, this velocity difference would
boost the power spectrum. This gives an interesting opportunity for the LOFAR-LBA system to
potentially measure the power spectrum at much earlier times. The LOFAR-LBA system operates
in the range of 10-70 MHz, the range required for measurements out to redshift z = 20.

To estimate which of the extensions would be more suitable for power spectrum measurements at
z = 20 we compared LOFAR, AARTFAAC and the Superstation with an observation time of 1000
hours and a bandwidth of 10 MHz. The power spectrum at this redshift was created by taking
a simple piecewise linear interpolation of the power spectrum displayed in Visbal et al. [2012].
The collecting area of an LBA antenna is given by A?/3. this is valid when the wavelength of
observation is smaller than the distance separating each antenna. So A, = 25/3 around 60 MHz.
The other parameters remain the same. The results of the comparison are displayed in figure 4.1
and tabulated in table 4.4.

The results in table 4.4 show that the AARTFAAC system is less limited by sample variance
than the Superstation, which is due to the large FoV. This would enable LOFAR-AARTFAAC
to measure the smallest k-modes, which is more interesting for Cosmology rather than for EoR-
studies. The Superstation has more overall sensitivity, due to its large collecting area. This shows
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that the total collecting area has more importance than the collecting area per station. Which
means there is some optimal balance between station number and collecting area per station.
The detection capabilities of the LOFAR-~Superstation are very promising, since this exceed both
LOFAR and the AARTFAAC system at these high redshifts. So given the power spectrum in
Visbal et al. [2012] it might even be possible to detect the 21-cm power spectrum out to a redshift
of z = 20 with the LOFAR-superstation in Nancy. This makes the Superstation the most promising
instrument for Cosmic Dawn observations during the next decade, since this is the timescale over
which the SKA should be build.

k =0.03 k=0.10 z=10.20
Array P o1 P P sPsY PN
LOFAR 2.29 167 1.17 2.09 - 102 0.563 12.4-103
AARTFAAC 0.404 102 0.212 2.29 - 102 0.061 4.16 - 10*
Superstation 2.42 4.99 1.27 106 0.367 1.08 - 103

Table 4.5: Noise calculation results for the LOFAR-AARTFAAC and -Superstation extensions.
All results are in mk?. The used 21-cm power spectrum values are k® Py /272 = 75, 284, 410 mk?,
at respectively k = 0.03, 0.10, 0.20 Mpc~!.

k3 P(k)/2n? [mk? ]
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Figure 4.5: Comparison between LOFAR, LOFAR-AARTFAAC and the -Superstation exten-
sions.The red solid line is the sensitivity of LOFAR’s LBA system, the blue dashed line is the
sensitivity of the superterp-LBA’s using AARTFAAC, the green dotted line is the sensitivity of

the superstation. The black solid line represents the crude reproduction of the predicted power
spectrum

4.2.3 Scaling relation

To get a better understanding and quantification of the influence of design parameters on the
sensitivity, we adopt a scaling relation? from Mellema et al. [2012], which is based on the derivation

2This equation is not valid for SKA, because SKA has high enough sensitvity that sample variance has to be
included as well.
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Figure 4.6: A comparison between the analytical scaling relation and a numerical calculation.
The numerical results are plotted in blue, the analytical result is plotted in green. The LOFAR
parameters as listed in table 4.1 were used in this calculation.

of McQuinn et al. [2006].

) ()

coll

The scaling relation assumes the number density of baselines in the uv-plane is constant. This
does not hold completely for real arrays, see figures 4.1 and 4.3. But the equation is valid in
the central region of the uv-plane, since changes in the density of baselines are small here. A
comparison between the scaling relation and a numerical calculation for LOFAR is depicted in
figure 4.6. The numerical results diverge at larger k, since at larger k the density of baselines
converges to zero, leading to an infinite noise. And at lower k the noise becomes dominated by
sample variance, which is not taken into account for in the scaling relation. If we note that the
FoV Qpov = A2Acg, we can rewrite this equation into one which only contains design parameters.
For the details, read Mellema et al. [2012].

5Py = (%)k%[wzy : onv]%( (4.1)

Acorc
3/2
N Ak

ant

SPy) o (4.2)
The new parameter Acore is the area of the core area of the array, i.e. Acore = wrf. Equation 4.2
tells us that an increase of N, has the strongest effect on the sensitivity, after which the effective
area per antenna A.g has the strongest effect. Reduction of the core area, compactifying the array,
also increases the sensitivity of the array. The results indicated that collecting area influences the
sensitivity most dominantly, but this is merely due to the fact the effective area is more easily
increased. The ratio between LOFAR and PAPER for the effective area was about 100, while the
ratio for the number of antenna was about % And for the AARTFAAC-Superstation comparison,
the ratio between the collecting area per antenna is about 36, while AARTFAAC has only a factor
of 3 more antennas.
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So we can adopt equation 4.2, which tells us how the sensitivity of an array scales in the noise
dominated region within an order of a magnitude accuracy. One form of this scaling relation
shows that the sensitivity it not determined by only the effective antenna area, but by the ratio
of the effective area and the core area. The number of antennas has the strongest influence on the
the sensitivity, after which the effective area and the core area follow. However since it easier to
increase the effective area of a station, than increasing the amount of stations, the sensitivity of
an array can be increased dramatically by increasing the station size and compactifying the array.

4.3 SKA configurations

So far our analysis of current arrays. Our next goal is to find an optimal SKA lay-out, which fits
the requirements for EoR science requirements. The already constructed arrays showed us that
there is considerable amount of sensitivity to gain in the size of a station.We will now look at
the influence of different design parameters on the sensitivity. Our next calculation consisted of
varying the following parameters: the number of antennas Ny, the total collecting area Nyys - Ap,
the slope of the antenna distribution and the outer radius of the array. This was done at a fixed
redshift of z=10 or 130 MHz, an observation time tg of 1000 hours and core radius r. of 1 km.
The results are shown in figure 4.3.

10t b Acoll=0.33km?] 141 Acoll=0.33km”| ;1 Acoll=0.33km” |
Nant=50.0 Nant=150.0 Nant=450.0

I3 P(k)/2m? [mk? ]

10t b Acoll=1.0km? | o1 [ Acoll=1.0km? | o1 [ Acoll=1.0km’ ]
Nant=50.0 Nant=150.0 Nant=450.0

10t Acoll=3.0km* | 141 Acoll=3.0km? | 41 Acoll=3.0km? |
Nant=50.0 Nant=150.0 Nant=450.0

L L 102 L L 102 . .
0.10 1.00 10.00 0.10 1.00 10.00 0.10 1.00 10.00

Figure 4.7: The results for different SKA lay-outs at redshift z = 10, note the red and blue dashed
lines. The blue dashed line: p = 1, rpax = 2km, the green dashed line: p = 1, rpax = 5km, the
red dashed line: p = 2, rpax = 2km and the magenta dashed line: p = 2, ryax = 5km. The solid
blue line represents the 21-cm power spectrum.

From figure 4.7 we can conclude the following:

e Compact arrays, i.e. in this case ryax = 2 km, are the most sensitive configurations
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Array A, (m?) Nant D e (m) Tmax (M)
SKA 0.33,1.0,3.0 - 10°/Noms 50, 150, 450 1,2 1000 2000, 5000

Table 4.6: SKA parameters

e Arrays with a dense core, p = 2, are the more sensitive than configuration with p = 1.

e Increasing the total collecting area, at fixed antenna number, increases the sensitivity on a
decreasing range of measurable k-scales.

e Sample variance limits all configurations, with different slopes p and outer radius 7,4, at
fixed Aeg and Napt, to the same scale.

e Increasing the number of antennae increases the sensitivity on all scales.

So overall the most densest configurations lead to the highest sensitivity, as predicted by scaling
relation (2.2). Decreasing rmax and increasing the slope p increase the antenna density in the core
area. Increasing the slope, adds antennae to the core of the array while taking antennae from the
outer regions, both are a way of making the array more compact. A more shallow slope ensures
there is a certain number of long baselines present in the array, but the results indicate that the
presence of long baselines do not affect the sensitivity on smaller scales (large k). Figure 4.7 shows
that increasing the area of a station for a fixed collecting area increases the overall sensitivity, at
the cost of making it impossible to measure large scale variations in the 21-cm signal. These large
scale variations do not fit in the small FoV of large stations. So in order to observe the small
k-scales we must limit the station size. Although increasing the antenna number N,,; increases
the sensitivity on all scales, the main problem with increased antenna number is correlation cost.
Increasing the antennas increases the data output and this requires more computing power and
data storage, which is an issue of technological feasibility.

So we find an ideal SKA-lay out for power spectrum measurements would follow these guidelines.
It should be compact; a dense core has more sensitivity than a diffuse core. This can be achieved
by increasing the slope or a decrease in core radius. Constrain station size since this limits sample
variance, since system noise can be compensated for with integration time, while sample variance
does not depend on the observation itself. Most favorable would be the increase of the number of
stations, but this will be limited by the available computational power.
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Chapter

Conclusion

5.1 Summary

The main goals of this research were to properly compare current arrays EoR arrays and to find
an optimal configuration of the Square Kilometer Array (SKA) for observations of the 21-cm
power spectrum of Reionization. To find this optimal configuration we looked at the sensitiv-
ity of a few precursors and pathfinders in the HBA regime; LOFAR, LOFAR-AARTFAAC, the
LOFAR-Superstation, MWA and PAPER. These sensitivities were calculated using a numerical
adaptation of the equations derived in McQuinn et al. [2006] complemented by a 21-cm power
spectrum generated with the reionization code 21cmFast. We also compared the sensitivity of the
LOFAR-AARTFAAC and LOFAR-Superstation extensions at the LBA regime. We compared our
numerical results with an analytical scaling relation to quantify the influence of design parameters
on the sensitivity. Finally we calculated the sensitivities of different SKA lay-outs, which we used
to discuss an optimal SKA lay-out The results of these calculations are summarized here. This
chapter will also discuss some future work which can be performed to complement this research.

e LOFAR is currently the array which is most sensitive to the 21-cm power spectrum. PAPER,
and MWA have sensitivity on larger scales, which are less relevant for Reionization. However
this sensitivity is relevant for cosmological studies.

e LOFAR and the LOFAR-AARTFAAC system have promising sensitivity to measure the
21-cm power spectrum out to redshift z = 10, with single beam observations.

e The LOFAR-Superstation is the most promising instrument we have for the next decade to
measure the 21-cm power spectrum out to redshift z = 20.

e The sensitivity of an array can be described with a scaling relation: §PJy o< Acore/ (N2 Az’éz).
However this equation is only valid within the central region of the uv-plane and when the
S/N < 1. When S/N~1 the sample variance has to be included or a numerical calculation
has to be made.

e An SKA lay-out would ideally follow the following guidelines. Compactify the array, adding
more longer baselines does not enhance power spectrum sensitivity significantly. Constrain
station size, since larger stations have small FoV’s which increases the sample variance,
which can not be diminished by increasing the observation time. A large number of antennae
increases the sensitivity, as expected, however the number of antennas will be constrained
by the available computing power.

The result of this research is a code which calculates baseline density of a radio array given several
input parameters. This baseline density is used to calculate the sensitivity to the 21-cm power
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spectrum. The code can handle various array configuration, only to be constrained by circular
symmetry. The free parameters are: station area Ap, antenna number Ny, slope of antenna
distribution p, core radius r., outer radius ryu.x and an additional parameter inner radius rmip.
Which allows for ring like arrays such as PAPER. However there was not enough time to exactly
calculate which values these parameters should take for the SKA to fit the requirements of the
EoR key science project.

5.2 Future Work

To fulfill the ultimate goal of this research an optimization routine, see appendix A, should be
implemented in the code to actually calculate parameter values which fit the requirements of the
EoR key science project of SKA. Not only should such a code optimize for a sensitivity such to
measure the difference in the power spectrum at different redshifts, it should also take into account
economical effects such as increasing the amount of antennas. In other words apart from science
demands it should take into account technical feasibility.

The code itself could also become more user friendly, by building a general users interface around
the existing functions. However creating user friendly program also limits the codes flexibility,
since all possible demands of the user have be taken in account for. A user unfriendly code, the
calculating part of the code itself, has more flexibility if the users knows how to use it. However
for basic calculations given initial parameters, the user friendly version should suffice.

The code could also be extended to calculate the imaging capabilities of radio arrays. For this
only the system noise should be considered.
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Chapter

Nederlandse Samenvatting

Radio golven bieden niet alleen de mogelijkheid om naar het nabije waterstof gas te kijken in
onze eigen melkweg, maar ook om naar het waterstofgas in het vroege heelal. Het waarnemen
van het waterstofgas in het vroege heelal biedt namelijk de mogelijk om de vorming van de eerste
structuren, sterren en sterrenstelsels, waar te nemen. Deze periode wordt ”the Epoch of Reioniz-
ation” (EoR) genoemd. En over het ontstaan van de structuren tijdens deze periode is nog veel
onduidelijk. Observaties van het vroege heelal zouden echter duidelijkheid kunnen bieden aan wat
er zich heeft afgespeeld. LOFAR en andere radiotelescopen zoals PAPER en MWA zijn in staat
om deze radiogolven uit het vroege heelal waar te nemen om zo het waterstofgas waar te nemen.
Het probleem op dit moment is echter dat deze radiotelescopen niet gevoelig genoeg zijn om gede-
tailleerde afbeeldingen van het vroege heelal te maken. De 21-cm straling die wordt uitgezonden
door het waterstofgas zit namelijk verscholen in een overweldigende hoeveelheid radiostraling van
de Melkweg zelf. Dus in plaats van het direct observeren van het waterstofgas is er een andere
strategie ontworpen om toch uitspraken te kunnen doen over het vroege heelal. De huidige strategie
is om te kijken naar verschillen in de hoeveelheid 21-cm emissie, op verschillende schaal groottes.
Varieert de hoeveelheid neutraal waterstof op kleine afstanden of op grote afstanden? Maar ook
met, deze observatiestrategie zal het een uitdaging voor de huidige en toekomstige telescopen om
het vroege heelal waar te nemen.

Een toekomstig telescoop project is de Square Kilometre Array (SKA) die onder andere ook op
zoek zal gaan naar het waterstofgas in het vroege heelal. In dit onderzoek zal worden gezocht naar
de richtlijnen waaraan het ontwerp van de SKA zal moeten voldoen om het waterstof te kunnen
meten. De gevoeligheid van huidige telescopen zal ook worden vergeleken om uit te vinden welke
al dusdanig gevoelig zijn om het waterstofgas te observeren.

Uit dit onderzoek blijkt dat de radiotelescopen MWA en PAPER niet gevoelig genoeg zijn om uit-
spraken te kunnen over de vorming van de eerste structuren tijdens de EoR. LOFAR heeft enige
gevoeligheid tot een zeker moment terug (roodverschuiving z = 10) in het heelal. Ontwikkelingen
aan LOFAR; het LOFAR-AARTFAAC systeem en het LOFAR-Superstation bieden interessante
mogelijkheden om deze structuren nu al te meten. Het Nederlandse gedeelte van LOFAR zou in
combinatie met het AARTFAAC-systeem verschillen in 21-cm emissie kunnen meten. Maar het
LOFAR-superstation zal de komende tien jaar waarschijnlijk het meest gevoelige instrument zijn
dat we hebben om het vroege heelal te kunnen observeren. Het bouwen van de SKA zal namelijk
tenminste 10 jaar in beslag nemen.

Richtlijnen voor een SKA-ontwerp zijn als volgt: compact, een dusdanig groot aantal radio-
antennes, waarvan de oppervlakte niet te groot mag zijn. Een te groot aantal stations zal echter te
veel computerkracht vergen om de data te kunnen verwerken. Er moet dus nog naar een optimale
balans tussen het antenne oppervlak en het aantal stations gezocht worden.
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Appendix

Optimization Scheme

This appendix will describe an attempt to calculate detailed design parameters for an optimal
SKA lay-out which fits the EoR science requirements. However, there was not enough time to
successfully implement the optimization.

The optimization routine was chosen from the available functions in the SciPy libraries. The
fmin_l_bfgs_b method was chosen for its speed, since the calculation of the errors on the power spec-
trum are already quite time consuming. The routine makes use of the limited-memory Broyden-
Fletcher-Goldfarb-Shanno (BFGS) method,which tries to calculate the hessian of the function
which is to be optimized. This gives the algorithm information about the shape of the function,
i.e. the extrema which we are after. The fmin_1_bfgs_b also allows for the input of bounds, which
reduces the chance on runaway maximization of parameters such as the amount of antennas or
their physical area.

For the optimization a target function is required, which contains the demands for the EoR project.
The target function of choice is a 3-sigma certainty between the power spectrum at redshift z=8
and z=12. The difference between those power spectra must be three times as large as the error
on the power spectrum. Possible issues could arise because the 3-sigma certainty is demanded on
all scales, within the range of the given power spectrum. Which could to a decrease in S/N at
certain scales to gain minimal sensitivity at other scales. Overall the configuration will resemble
the target function the most, but in practice this configuration is less useful than a configuration
which does have a peak sensitivity at a certain k. Or on the other hand the function will maximize
sensitivity on smaller k which are easier measurable because most baselines are present at these
scales.
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Appendix

Parameter File

#!/usr/bin/env python

» oy

stokok ok ok kR sk okkokskokokokokokok USer TN form atson sk sk ok skok skok skok skok sk ok ok ok ok
This file contains the controlling parameter for pyRadio.py,
The parameters control which mode has been chosen:

Calculation of Errors on the 21 c¢cm Power spectrum
— Calculate Total noise = Sample Variance + System Noise
— Calculate only system noise
— Clalculate only sample variance

Calculation of S/N using total noise
Comparison between different array configurations by calculating several arrays in one run
Optimization of a single array configuration .

stk sk ok ok ksk ok ook ok skokskokskokokok C'aleulation  Modes s s sk sk sk sk skok skok sk ok sk sk sk sk ok
Set optimize_key to "no”.
Then choose whether you want to calculate the errors and signal—to—noise.
If only signal—to—noise: set snr_key to "yes” and errornoise_key to "mno”.
If BOTH S/N and noise: set snr_key to "yes” and savenoise_key to "yes”
If only errors on the power spectrum, set snr_key to "mo”:
— for total noise: set tnoise_key to yes and set savenoise_key to
yes
— if also separate components necessary set savesys_key and/or
savesv_key to "yes”

— for system mnoise ONLY set everything to "no” except

Y Y g p
snoise_key and savesys_key

— for sample variance ONLY set everything to "no” except

vnoise_key and savesv_key

299

file_names = [”SKA.param” |

#enter the filenames between ”” and separated by commas.

#FEverything before .param will be used to mame output files.

#By leaving [”7], the code will look for all .param files in parent directory

#Calculation type

optimize_key = "yes”

snr_key = "no”
tnoise_key = "no”
snoise_key = "no”
vnoise_key = ”no”
#optimize_key: optimization “yes” or calculation "no”
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#snr_key : calculate signal to noise profile and errors on P_21

#tnoise_key : calculate the total noise on power

# spectrum (Limited between power spectrum range)
#Note: Can save components and total noise separately

#snoise_key : ONLY calculate system mnoise, can

# take any range in k and frequency

#vnoise_key : ONLY calculate sample wvariance,

# limited by power spectrum range

#Output and saving for further use

savesnr_key = "no”

savenoise_key = "no”

savesys_key = "no”

savesv_key = "no”

#savesnr_key : save signal to moise profile to ..._snr.txt
#savenoise_key: save total noise to ... _tnoise.txt

#savesys_key : save system mnoise component separately to ..._system.txt
#savesv_key : save sample wvariance separately to ..._svar.tzt

#Binning size for spherical averaging
deltak = 0.5

#Calculation ranges

#Upper and lower limit for frequency, calculation wtill be done for intervals
#the bandwidth. Unit: MHz

#Power spectrum in PowerSpecData2. txt limits are 120 < nu <150 MHz

lowernu = 120.

uppernu = 150.

#Upper and lower limit for k, in logl10[h Mpc"—1]

#Power spectrum in PowerSpecData2. tzt limits are —1.5 < log[k] < 0.8
lowerk = —1.5

upperk = 0.8

#Choose which parameters should be optimized
#flags free = 1 fized =0

Nantflag = 0
r.minflag = 0.
r_cflag =0
r-maxflag = 1
powerflag = 1
Areaflag =1
tOflag =0
#bounds for every parameter, if no upper— lowerbound enter None
#lowerbound
Nantmin = 20.
r_minmin = 0.
r-cmin = 5.
r_maxmin = 1500
powermin = 0
Areamin = 20
tOmin = 700.
#upperbound
Nantmax = 120.
r_minmax = 0.
r.cmax = 1000.
r_maxmax = 10000.
powermax = 5
Areamax = 10000
tOmax = 1200.
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#Cosmological parameters
#Hubble parameters

h = 0.7
#mass density parameter
omega.m = 0.3

#vacuum density parameter
omega_l = 0.7

#curvature density parameter
omega_k = 1l.—omega.m — omega_l

#Constants of nature
#Speed of light vacuum (m/s)

¢ = 2.9979%10.%%8.
#Hubble constant (km/s)/Mpc

HO = 100.xh

#frequency 21 em at z=0 (Mhz)
nu2l = ¢/0.21%10.%% —6.
#Megaparsec (m)

Mpc = 3.26%365.%24.%x3600.xc
#Hubble Distance (Mpc)

Dh = ¢/HO%10.%% —3.

#The amount of points used for

dbase = 100
drad = 100
dphi = 100
dk = 100

calculation
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Appendix

pyRadio

#!/usr/bin/env python

import numpy as n

from scipy.interpolate import interpld

from scipy.integrate import quad

from scipy.optimize import fmin_l_bfgs_b as fminb
from matplotlib import pyplot as plt

from matplotlib import rcParams

import os

import time

from parameters import =

#Start Clock for time keeping

start = time.clock ()
#setting Latex Math—text for lay—out
rcParams [’ mathtext.default ’]="regular’

#ignore zero division warnings
n.seterr (divide=’ignore ’)

#Create an array for log file
logfile = []

#systeem temperatuur definieren
def Tsys(nu):
Tsys = 400.%(nu/(150.))** —2.55
return Tsys

#Effective telescope area

def Aeff(nu, Areal):
Aeffl = Areal*(nu/(120.))** —2.
return Aeffl

#Redshift

def redshift (nu):

#Redshift formula
z = nu2l/nu —1.
return z

#inverse redshift

def frequency(z):
f = nu21/(1.42)
return f
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#Comoving Distances
def D(z-min ,z_max):
#function for integration
E = lambda z: (omegamx*(1l.4+z)**3. + omega_k*(1l.+2z)**2. + omega_l)**—0.5
#integrating the function
A = quad(E,z_min, z_max)
#Selecting integrand from output and multiply with hubble distance
D = DhxA[0]
return D

#Normalisation for Antenna distribution
def Normal (NantO,D_a0,r_c0 ,r-max0,power0):
#select the right normalisation
#when the slope has power=2
if power0 — 2.:
intb = —D_a0**2.xn.pi + r_cO**2.%n.pi + 2.xr_cO*x2.xn.pi*n.log(r-max0/r_c0)
N = Nant0/intb
#check whether this configuration is physically possible: antenna filling
if N¥D_a0#%2.%n.pi*(r_cO**2.—D_a0*%2.)>1.1%n.pixr_c0*%2.:
return ”impossible”
else:
return N
else:
#for any other power
#Integral over the antenna power law
intb = —((r-max0x*—power0#(2.xr_c0O*xpower0O*r_max0**2. — 2.xD_a0*%2.%xr_max0xxpower0Q \
+ D_a0#%2.xr_max0xxpowerO*power0) — r_cO**2.xr_max0*xpowerOxpower0)*n.pi) \
/(—=2.4 power0))
#corresponding normalisation factor
N = Nant0/intb
#check whether this configuration is physically possible: antenna filling
if NkD_a0#*2.%xn.pix(r_cO**2.—D_a0*%2.)>1.1*n.pixr_c0*%2.:
return ”impossible”
else:
return N

#Antenna Distribution

def N_a(rl,Nantl,D_al,r_cl,r_maxl, powerl):
#specify a range for integration over r
#creating n.pian empty array for number densities

antennal = n.zeros(len(rl))
#selecting correct normalisation
Norml = Normal (Nantl,D_al,r_cl ,r_maxl,powerl)

#loon .ping over the element of input
for il in range(len(rl)):
if Dal<= rl1[il] <=r_cl:
antennal [i1] = Norml
elif roel< rl1[il] <r-maxl:
antennal [i1] = Norml«(r_cl/r1[il])**powerl
else:
antennal [il] = 0.
return antennal

#Function which tabulates convolution results
def Table_b(Nant2,r-min2,r_c2 ,r-max2,power2,Area2,nu2):
#specify a range for integration over r
r2 = n.linspace (r-min2 ,r_max2 ,dbase)
#r2 = n.logspace(—2.xabs(n.logl0(r-min2)),2%n.logl0(r-max2),dbase)
#specify a range for baseline U
bas2 = n.logspace(—2.xabs(n.logl0(n.sqrt(Area2))),2*n.logl0(r-max2),dbase)
#specify a range for antenna convolution over phi
phi2 = n.linspace (0.,2.xn.pi,dphi)
#Create empty array for unnormalised results
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baseline2 = n.zeros ((len(nu2),dbase))
#Create empty array for normalisation values

normalis2 = n.zeros(len(nu2))

#check wheter configuration is physically possible
check = Normal(Nant2,r_min2,r_c2 ,r_max2,power2)
if check = ”impossible”:

return ”impossible”
else:

for i2 in range(len(nu2)):
#calculate wavelength corresponding to nu

12 = c¢/nu2[i2]*10.%* —6.

#calculate maximum number of baselines
Nbase2 = 0.5%(Nant2%%2. — Nant2)

#create array for unnormalised baseline density
unnorm2 = n.zeros (dbase)

for j2 in range(dbase):
#create array for integration over phi
n_ur2 = n.zeros(len(r2))
for 02 in range(len(r2)):
#calculate |r—lambdaxU| for a certain r and U for 0< phi<2Pi
a2 = n.sqrt (r2[o2]**2. —2.x12+bas2[j2]*r2[02]*n.cos(phi2) \
+12 %%2.xbas2 [j2]*x2.)
#calculate corresponding number of antennae
b2 = N_.a(a2,Nant2,r_min2,r_c2 ,r_max2, power2)
#integrate over phi
n_ur2[o2] = n.trapz(b2,phi2)
#Calculating integrand for 0 < r < r_max
c2 = 2.xn.pi*r2xN_a(r2,Nant2,r_min2,r_c2 ,r_-max2,power2)*n_ur?2
#integrating from 0 to r_max
#save Number of baseline for certain U in Table
#save number of baselines for proper normalisation
baseline2[i2,j2] = n.trapz(c2,r2)
#Removing all values below the impossible baselinedistribution
#define the minimum baseline
minbas2 = n.sqrt (Area2)/12
#select all indices of baselines below this value

indmin2 = n.where(bas2 < minbas2)
#set density values to zero
baseline2 [i2 ,indmin2 [0]] = 0.
#calculate integrand for integration over u
e2 = 2.xn.pixbas2xbaseline2 [i2 ,:]
#integrating over u
£2 = n.trapz(e2,bas2)

#calculate frequency dependent normalisation
normalis2 = Nbase2/{2
baseline2 [i2 ,:]=normalis2xbaseline2 [i2 ,:]
return baseline2

#Creating callable functions which interpolates row of Nbase for correct frequency
def N_b(nbase3 ,nu3,nuval3,u3,r-max3,Area3):
#Specify same range as in calculation the baselinedistribution

bas3 = n.logspace(—2.xabs(n.logl0(n.sqrt(Area3))),2+n.logl0(r-max3),dbase)
#calculate difference of input freq. with frequency range

diff3 = abs(nu3—nuval3)
#finding index at which difference is minimum

ind3 = n.where(diff3 = min(diff3))
#calculate wavelength corresponding to frequency.
13 = c*10.%xx—6./nuval3

#using index to interpolate the desired row of nbase

base3 = interpld(bas3,nbase3[ind3[0][0] ,:])
#creating an empty array for output

line3 = n.zeros(len(u3))
#Interpolation can only handle u—values in range, so need to check whether
#the u—values match range

for i3 in range(len(u3)):
#checking whether required ul is within interpolation range

if —2.xabs(n.loglO(n.sqrt(Area3)))< n.logl0(u3[i3]) \
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and n.logl0(u3[i3]) < 2.%n.logl0(r-max3):
#saving result for output

line3 [i3] = base3(u3[i3])
#if baseline isn’t within range
else:
line3 [i3] = 0.

#return result for further calculation
return line3

#Powerspectrum of 21—cm signal as a function of freq. and k
def P_21(k,nu):
#import the power spectrum

data = n.loadtxt(” PowerSpecData2.txt”)
#Extract redshift values from first row
zrange = data[0,1:data.shape[1]]
krange = data[l:data.shape[0],0]
#calculate redshift value corresponding to input freq.
znu = redshift (nu)
intfreq = n.zeros(len(krange))
if zrange[0] > znu or znu > zrange [len(zrange)—1]:
znu = zrange [n.where(zrange—znu=—min (abs (zrange—znu)))[0][0]]

print ”Warning frequency does not fit power spectrum range”
print ”Redshift z="+str (znu)+” will be used.”
#Create an interpolation of the power spectrum for a certain new frequency
for i21 in range(len (krange)):

intfreq[i21] = interpld (zrange,data[i21+41,1:data.shape[1]])(znu)
#Interpolate this power spectrum over k—range, for desired values
g
p-21 = interpld(krange,intfreq)

return p-21(k)

#Detector + Sample noise on the angular averaged power spectrum McQuinn [2006]
def Error(Nant5,r_-minb ,r_c5 ,r_max5,power5,Areab5,B5,t05,k5,nub):
#Calculate the spherically averaged error at a given frequency and mode k
#Create empty mathematica array for Noise values
global savenoise_key
global savesys_key
global savesv_key
tNoise5 = n.zeros((len(k5)*len(nub),3
sNoise5 = n.zeros((len(k5)*len(nub),3
vNoise5 = n.zeros((len(k5)*len(nub5),3
#create empty python array for noise val
PNoise5 = n.zeros ((len(nu5),len(k5)))
#arbitrary counter for saving values
countd =0
#use baseline table function to calculuate baselines
nbaseb5 = Table_b(Nant5,r-min5,r_c5 ,r-max5,power5, Areab,nub)
if nbaseb = ”impossible”:
print ”This array configuration is physiccaly not possible: overfill in antenna core”
logfile .append (” Overfill for Nant="+str (Nant5)+” ,r_min="+str (r-minb)+ \
7 r_c="+str(r-c5)4+” ,romax="+str (r-max5)+” ,slope="+str (power5))
logger = open(” logfile.txt”,”w”)
for failure in logfile:
logger . write("%s\n” % failure)
logger . close ()
return ”impossible”
else:
#loon . ping over frequency and k range
for i5 in range(len(nu5)):
#minimum observing frequency (Mhz)
nu-min5 = nu5[i5] — 0.5%xB5
#maximum observing frequency (Mhz)
nu-max5 = nub[i5] + 0.5%xB5
#minimum redshift
z-min5 = redshift (nu_-max5)
#maximum redshift

))
))
))

S
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z_max5 = redshift (nu_minb)
#Real space depth (Mpc)

y5 = D(z_min5 ,z_max5)
#calculate redshift
25 = redshift (nu5[i5])
#calculate distance to source (Mpc)
x5 = D(0.,z5)
#calculate corresponding wavelength (m)
15 = c*10.%%—6./nub[i5 ]
#Real space volume
V5 = x5**%2.xy5x15xx2./ Aeff(nub[i5], Areab)

for j5 in range(len(k5)):
#calculate modes of u
u5 = x5%k5[j5]*n.sin(theta)/(2.%n.pi)
#calculate number densities baselines

nb = N_b(nbaseb ,nub5,nub[i5],ub,r-max5, Areab)
#calculate observing times for mode k

t-k5 = tk(nu5[i5],15 ,n5, Areab,t05)

if tnoise_key = ”yes” or optimize_key=— "yes”:

#calculate Noise covariances
Cn5 = (15%%2.%B5xTsys(nub[i5])/ Aeff(nu5[i5],Areab))**2.x(10.%%6./(B5xt_k5))
#calculate Sample Variance
C_svb = P_21(k5[j5],nub[i5])*15%*2.«B5*x2./( Aeff(nu5[i5],Areab) \
xx5xx2.%y5 )*(2.%xn.pi*x2./k5[j5]*x*%3.)%x10.%x%6.
#Number of independent cells

N_c5 = Ncell(k5[j5],theta,y5,V5)
#Error in signal due to Noise
ErrP5 = (Aeff(nub5[i5],Areab)«x5*x2.xy5/(15+*%2.%(B5%10.%x%6.)*%x2.)) \
*((C_svb+C.nb)/n.sqrt (N_ch))
sErrP5 = (Aeff(nub[i5],Areab)«x5+*x2.%xy5 /(15 *x2.%(B5*x10.%%6.)*%*2.)) \
*((Cnb)/n.sqrt (N_cb))
vErrP5 = (Aeff(nub[i5],Areab)*«x5*%2.xy5/(15+*x2.%(B5x10.x%x6.)*x%x2.)) \

*((C_svb)/n.sqrt (N_ch))
#Averaging total noise over theta using composite trapezium for numerical integral
ab = ErrP5xx—2.

b5 = n.trapz(ab,theta)
#averaging system noise only

sab = sErrPboxx—2.

sb5 = n.trapz(sab,theta)

#averaging sample variance only
vab = VErrP5x*x—2.

vb5 = n.trapz(vab,theta)
#Spherically averaged total error
sigmab = 1./n.sqrt(b5)*10.%%6.
#spherically averaged system noise
ssigmab = 1./n.sqrt(sb5)*10.%%6.
#spherically averaged sample variance
vsigmab = 1./n.sqrt (vb5)*10.%%6.

#correcting to get mk"2 dimension
#total noise
plotvalue5 = sigmab5#(k5[j5]*%3./(2.xn.pi**2.))
#system noise
splotvalueb = ssigmabx*(k5[j5]**3./(2.%n.pi*=*2.))
#sample variance
vplotvalueb = vsigmab5*(k5[j5|**3./(2.%n.pix*x2.))
#Creating 2 dimensional mathematica array
#k—entry for mathematica array
tNoise5 [count5 ,0] = k5[j5]
#frequency entry for mathematica array

tNoise5 [count5 ,1] = nub[i5]
#result entry for mathematica array
tNoise5 [count5 ,2] = plotvalueb
#system noise tabulation
sNoise5 [count5 ,0] = k5[j5]
sNoise5 [count5 ,1] = nub[i5]
sNoise5 [count5 ,2] = splotvalueb

#sample variance tabulation
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vNoise5 [count5 ,0] = k5[j5]
vNoiseb [count5 ,1] = nub[i5]

vNoiseb5 [countb ,2] = vplotvalueb
countd +=1

#creating a 2 dimensional python array
PNoiseb [i5,]j5] = plotvalueb

if snoise_key = "yes”:

savenoise_key = "no”
savesys_key = "yes”
savesv_key = "no”

#calculate Noise covariances
Cn5 = (15%%2.%B5xTsys(nub[i5])/ Aeff(nu5[i5],Areab))**2.x(10.%%6./(B5xt_k5))
#Number of independent cells

N_c5 = Ncell(k5[j5],theta,y5,V5)
#Error in signal due to Noise
sErrP5 = (Aeff(nub[ib5],Areab)*x5+*2.xy5 /(15 %%2.x(B5*10.%x%6.)*x2.)) \

*((Cnb)/n.sqrt (N_ch))
#averaging system noise only
sab = sErrP5xx—2.
sb5 = n.trapz(sab,theta)
#spherically averaged system noise
ssigmab 1./n.sqrt (sb5)*10.%%6.
#correcting to get mk"2 dimension
splotvalueb = ssigmab*(k5[j5]*%3./(2.xn.pi*x2.))
#Creating 2 dimensional mathematica array
#system noise tabulation

sNoise5 [countb ,0] = k5[j5]
sNoise5 [count5 ,1] = nub[i5]
sNoise5 [count5 ,2] = splotvalueb
countd +=1
if vnoise_key = 7yes”:
savenoise_key = "no”
savesys_key = "no”
savesv_key = "yes”
#calculate Sample Variance
C_svb = P_21(k5[j5],nub[i5])* 15 xx2.«B5*%2./( Aeff(nub[i5], Areab) \

xx5kx2.%y5)x(2.%xn.pi*x2./k5[j5]*x*%3.)x10.%%6.
#Number of independent cells
N_.c5 = Ncell(k5[j5],theta,y5,V5)
vErrP5 = (Aeff(nu5[i5],Areab)s«x5*%2.xy5/(15%*%2.%(B5%10.x%6.)*x2.)) \
*((C.svb)/n.sqrt (N_ch))
#averaging sample variance only
vab = VErrP5*x—2.
vb5 = n.trapz(vab,theta)
#spherically averaged sample variance
vsigmab = 1./n.sqrt(vb5)*10.%%6.
#correcting to get mk"2 dimension
#sample variance
vplotvaluebs = vsigmab#(k5[j5]|*%3./(2.%n.pi*xx2.))
#Creating 2 dimensional mathematica array
#sample variance tabulation

vNoiseb [count5 ,0] = k5[j5]
vNoiseb5 [count5 ,1] = nub5[i5]
vNoiseb [count5 ,2] = vplotvalueb
countd +=1

#Create header containing used parameters

hn = ”Nant="+str (Nant5)

hm = ”\nr.min="+4str (r-min5)

hrc = "\nr_c="+str(r_cH)

hrx = ”\nr-max="+str (r-max5)

hp = ”\nslope="+str (power5)

ha = ?\nA_p="+str (Areab)

hb = "\nB="+str (B5)

ht = 7\nt0="+str (t05)

hT — ”n

for ih in range(len(nu)):
hT += "\nTsys("+str (nu[ih])+”)="+str (Tsys(nu[ih]))
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header5 = hnthmthrc+hrx+hpt+hat+hb+ht+hT

if savenoise_key =— 7yes”:
savelt = ’_tnoise.txt’
save2t = array_-name+savelt

#save noise results for plotting in mathematica
n.savetxt (save2t, tNoiseb)
fid = open( array_-name+’_param.txt” , ‘w’ )
fid . write( header5+4’\n’ )
fid.close ()
if savesys_key = "yes”:
savels = ’_system.txt’
save2s = array_-name-+savels
n.savetxt (save2s, sNoiseb)
fid = open( array_-name+”_param.txt” , ‘w’ )
fid . write ( header5+’\n’ )
fid . close ()
if savesv_key = 7"yes”:
savelv = ’_svar.txt’
save2v = array_-name-+savelv
n.savetxt (save2v, vNoiseb)
fid = open( array_-name+”_param.txt” , ‘w’ )
fid . write( header5+’\n’ )
fid . close ()
#return Python array containing total noise
return PNoiseb

#Average observing time mode k

def tk(nu2,12,n2,Area2,t02):
tk2 = t02%3600.% Aeff(nu2, Area2)/12 *%2.%n2
return tk2

def Ncell (k4,thetad ,y4,V4):
ad = 2.xn.pi/(kd*n.cos(thetad))
#identifying whether input is array—like or a float
if type(theta4) != type(n.zeros(1)):
#when mode fits in survey volume
if ad <= y4:
Ncell4 = 2.%n.pi*kd*+2.xn.sin (thetad)xdeltak+«k4d*xV4/(2.xn.pi)**3.
#when mode does not fit in survey volume
else:
Ncelld = 0.
else:
#for array entry
Ncell4 = n.zeros(len(theta4d))
for i4 in range(len(theta4)):
#when mode fits in survey volume
if a4[id] <= y4:

Ncell4[i4] = 2.%n.pixk4x*2.%n.sin(thetad[i4])* deltak*k4*V4/(2.xn.pi)**3.
#when mode does not fit in survey volume
else:
Ncell4[i4] = 0.

return Ncelld

def SNR(Nant6,r-min6,r_c6 ,r-max6,power6,Area6 ,B6,t06 ,k6,nub):
#create empty mathematica array for S/N results

SNR6 = n.zeros ((len(nu6)*len(k6),3))
#create empty python array for S/N results

ratio6 = n.zeros((len(nu6),len(k6)))
#calculate the Noise 4+ Sample Noise
noise6 = Error (Nant6,r_min6 ,r_c6 ,r_-max6,power6 ,Area6,B6,t06 ,k6,nu6)

#arbitrary counter for creating mathematica array
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count6 = 0
#calculating signal/noise for freq. and k
for i6 in range(len(nu6)):
for j6 in range(len(k6)):
#k—entry for mathematica array

SNR6[count6 ,0] = n.logl0(k6[j6])
#frequency entry for mathematica array
SNR6[count6 ,1] = nu6[i6 ]
#calculate signal/noise
snr6 = P_21(k6[j6],nu6[i6])/ noise6 [i6 ,j6]
#logl0(signal/noise) entry for mathematica array for plotting
SNR6[count6 ,2] = n.loglO(snr6)
#signal /noise entry for python array for further calculution
ratio6 [i6 ,j6] = snr6

count6 4= 1
#Create header containing used parameters

hn = ”Nant="+str (Nant6)

hm = ”"\nr-min="+str (r-min6)
hrc = "\nr_c="+str(r_c6)

hrx = ”\nr-max="+str (r-max6)
hp = ”\nslope="+str (power6)
ha = ”"\nA_p="+str (Areab)

hb = "\nB="+str (B6)

ht = "\nt0="+str (t06)

hT — 99

for ih in range(len(nu)):
hT 4= 7"\nTsys("+str (nu[ih])+”)="+str (Tsys(nu[ih]))
header6 = hnthmthrc+hrx+hp+hathb+ht+hT

if savesnr_key = "yes”:
savel = ’_snr.txt’
save2 array_name+savel

#export mathematica array
n.savetxt(save2,ratio6)
fid = open( array_-name+”_param.txt” w’)
fid . write ( header6+’\n’ )
fid . close ()
#return python array
return ratio6

def TSNR(nu7,k7):

#create empty array for every k and frequency
target = n.zeros ((len(nu7),len(k7)))

#define target S/N for every k and freq. as 2
target 4= 3.
return target

#Function to be minimalized: the difference between SNR and TSNR
def Chi(Nant8,r-min8 ,r_c8 ,r-max8,power8,Area8 ,B8,t08 ,k8,nu8):
#calculate S/N according to free parameters per freq. and k
#snr8 = SNR(Nant8,r-min8,r_c8 ,r-max8,power8, Area8,B8,t08 ,k8,nu8)
p8-21 = P_21(k8,lowernu)
pl2_21= P_21(k8,uppernu)
dp = abs(p8-21—-pl2.21)
error8= Error (Nant8,r_min8,r_c8 ,r_max8, power8, Area8 ,B8,t08 ,k8,nul)
snr8 = n.zeros ((len(nu8),len(k8)))
for i8 in range(len(nu)):
snr8[i8 ,:] = dp/error8([i8 ,:]
#create target values
tsnr8 = TSNR(nu8,k8)
#calculate differences squared

a8 = (snr8—tsnr8)**2.
#create an empty array for chi per frequency
#b5 = n.zeros(len(nu))
#b5[i7] = n.trapz(ab[i7,:] ,k)

#if not interested in a particular frequency or k—range
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chi8 = n.sum(a8)
return chi8

#communication function between optimalisation routine and Chi
def Communicate (x):
#create an empty array with length of number of parameters
p0 = n.zeros(len(flag))
#arbitrary counter
count9 = 0
shoutput = []
#distributing variables according to input of Chi
for i9 in range(len(flag)):
#if parameter is to be optimized

if flag[i9] == 1:
#select parameter from optimalisation input
p0[i9] = x[count9]

shoutput .append (names[i9]+7: ”"+str (x[count9]))
count9 +=1
#if parameter is fixed select initial input

else:
p0[i9] = param|[i9]

#print shoutput
print ”
print ”Nant ="+str (p0[0])
print "rmin ="4str (p0[1])
print "rc  ="+str (p0[2])
print ”"rmax ="+str (p0[3])
print ”slope ="+str(p0[4])
print ”Area ="+str(p0[5])

print "B ="+str (p0[6])

print 7t ="+4str(p0[7])

result9 = Chi(p0[0],p0[1],p0[2],p0[3],p0[4],p0[5],p0[6],p0[7], k,nu)
now9 = time. clock ()

print ”Time elapsed since execution ”+4str (now9—start)+” seconds”
return result9

#Optimalisation routine
def Optimal(opti,bound):

optimum = fminb (Communicate, opti ,approx_grad=1,bounds=(bound))
countl0 = 0
outputl0 =
for i10 in range(len(flag)):
if flag[il0] = 1:

keysl0 = str (names[i10])+": "+str (optimum [0][countl0])
outputl0.append(keysl0)
print keyslO
countl0 4= 1
print optimum [2]
resultsl0 = open(array_name+” _optfile.txt”,”w”)
for keyl0 in output
results10.write(”%s\n” % keyl0)
results10.write(”%s\n” % ”value at minimum: ”+str (optimum [2]))
results10.close ()

#Calculation range

#specifying a range for k

k = n.logspace(lowerk ,upperk,dk)

#define a range for theta for averaging over cylindrical averaging
theta = n.linspace (0.,n.pi,20)

#Steps for communicating with optimalisation routine
#list containing names for a nice output
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names = [”Number of antennae”,”Minimum Radius”,” Core radius”,” Outer radius”,
”Slope of antenna distribution”, ”"Effective antenna area”,
”Bandwidth” ,” Integration time”]

#Combining all values for flags, bounds in a vector

flag = n.array ([ Nantflag ,r_minflag ,r_cflag ,r_maxflag ,powerflag , Areaflag ,0,t0flag])

Minimum = n.array ([Nantmin,r-minmin,r_cmin ,r_-maxmin,powermin , Areamin,0,t0Omin])

Maximum = n.array ([Nantmax,r.minmax ,r_cmax ,r-maxmax ,powermax , Areamax,0 ,tOmax])

RN NIRRT IR NI IR INIRIe 3 M RN IR IR NI IR IR IR IR IN IR INTei
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#Uses information in parameters.py and param files to determine course of action#
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if file.names = [77]:
if optimize_key = ”yes”:
print ”pyRadio cannot optimize for several array inputs, please set” +
”optimize_key to no”
print ”Continuing noise or S/N calculations for all .param files.
dir_names = os.listdir (’.7)
tracker = 0
for file in dir_names:
if file.endswith (”.param”):
tracker 4+=1
array-name = os.path.splitext (file )[0]
param = n.loadtxt(file)

”

if snr_key = "yes”:
tnoise_key = "yes”
savesnr_key = "yes”

print ” Calculating Signal/Noise and Noise for "+file
#specifying a range for central observing freq.
nu = n.linspace (lowernu ,uppernu,(uppernu—lowernu)/param[6]+1)
snr = SNR(param [0] ,param[1] ,param 2] ,param [3] ,param [4] ,param [5] , param [6]
,param [7] ,k,nu)
elif tnoise_key =— ”yes” or snoise_key — ”yes” or vnoise_key — "yes”:
print ” Calculating Noise for ”+file
#specifying a range for central observing freq.

nu = n.linspace (lowernu ,uppernu,( uppernu—lowernu)/param[6]+1)
error = Error(param[0] ,param[1],param[2] ,param[3],param [4] , param [5]
,param [ 6]
,param [7] ,k,nu)

else:

print "No Calculation keys were set to yes, what are you expecting from me?”
print ”Please set a calculation key to yes, then I’11 do some work for you”

nowl = time.clock ()
print ”Elapsed time since execution ”+str (nowl—start)+” seconds”
if tracker = 0:

print ”No .param files were found, if you want calculations please”,
”enter you array parameters in a .param file”
else:
if len(file_names) != 1 and optimize_key = "yes”:
print ”pyRadio cannot optimize for multiple array inputs”
print ”Please some files in the file_.names list”
print ”Thank You, Goodbye”

elif len(file_names) = 1 and optimize_key == "yes”:
print ”Starting optimization with initial parameters given in 7 + file_names [0]
array_name = os.path.splitext (file_names [0])][0]
param = n.loadtxt (file_names [0])
nu = n.linspace (lowernu ,uppernu, (uppernu—lowernu)/param[6]+1)
#create list with optimalisation starting points
opti =[]
#create list with corresponding optimalisation bounds
bound =[]
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for i10 in range(len(flag)):
if flag[il0] = 1:
opti.append (param[il0])
bound . append ((Minimum [i10 ] ,Maximum[i10]))

savenoise_key = "no”
savesys_key = "no”
savesv_key = "no”
Optimal (opti , bound)

else:
tracker = 0

for file in file_names:
if (file.endswith (”.param”)):
tracker 4= 1
array-name = os.path.splitext (file )[0]
param = n.loadtxt(file)
if snr_key =— ”yes”:
tnoise_key = "yes”
savesnr_key = "yes”
print ” Calculating Signal/Noise and Noise for "+ file
#specifying a range for central observing freq.

nu = n.linspace (lowernu ,uppernu, (uppernu—lowernu)/param|[6]+1)
snr = SNR(param [0] ,param[1] ,param [2] ,param[3] ,param [4] , param [5]
,param [6] ,param [7] ,k,nu)
elif tnoise_key == ”yes” or snoise_key == ”"yes” or vnoise_key = "yes”:

print ” Calculating Noise for 7+file
#specifying a range for central observing freq.

nu = n.linspace (lowernu ,uppernu,(uppernu—lowernu)/param[6]+1)
error = Error(param[0] ,param[1],param [2],param[3],param [4] ,param[5]
,param [6] ,param [7] ,k,nu)

else:

print ”No Calculation keys were set to yes, what are you expecting from me?”
print ”Please set a calculation key to yes, then 1’11 do some work for you”

now2 = time. clock ()
print ”Time elapsed since execution ”+str (now2—start)+” seconds”
if tracker = 0.:
print ”No .param files were found, if you want calculations”,
?please enter you array parameters in a .param file”
end = time.clock ()

print ”Total time elapsed: "+str(end—start)+” seconds”
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