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Abstract

The Dark Ages of the Universe ended with the formation of the first structures. The formation
of these first structures was accompanied by the heating and the subsequent reionization of the
intergalactic medium. The Epoch of Reionization (EoR) is thought to hold the key to how and
when the first galaxies formed. A promising probe to study this epoch is the redshifted 21-cm
line of neutral hydrogen. In this thesis, we investigate the sensitivity of current and future low
frequency radio telescopes to measure the redshifted 21-cm power spectrum during the Epoch of
Reionization. In our comparison of current arrays we find for a bandwidth of 10 MHz, integration
time of 1000 hr at redshift z = 10 and scale size k = 0.1 Mpc−1, that LOFAR outperforms MWA
and PAPER by an order of magnitude in power spectrum sensitivity. This comes mostly from
LOFAR’s larger collecting area. MWA and PAPER compensate their lack of collecting area by
increasing their field of view (FoV) and making their arrays compact. This however shifts their
sensitivity to smaller k-values (i.e. larger scale modes), which are more relevant for cosmology
than reionization studies. We also find that the LOFAR-AARTFAAC extension can increase the
sensitivity of LOFAR by a factor ∼ 5 for k < 0.1 Mpc−1, below redshift z = 12. This comes
from the combination of the FoV of a single tile and the total collecting area of the LOFAR-
Superterp, which contains 288 antenna tiles in 12 stations. The LOFAR-Superstation in Nancy,
which will consist of 96 stations each containing 19 LBA dipoles, has half an order of magnitude
more sensitivity than even the LOFAR-AARTFAAC system in LBA mode, making it one of the
most promising instruments for very high redshift 21-cm EoR observations (z > 15) in the coming
decade until the SKA comes online. We finally calculate the sensitivity of different SKA lay-
outs, finding that compact arrays are the most sensitive, but that station size should be carefully
considered since this constrains the range of measurable scale variations. Concentrating a large
collecting area, e.g. 1 km2, in only few stations could even lead to less power spectrum sensitivity
than current arrays, due to the small field of view and increased sample variance. We also find
that increasing the number of antennas increases the sensitivity on all scales, as expected. But the
maximum number of antennas is constrained by computational power, hence we need to balance
collecting area and stations size within the limits of the correlator.
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Chapter 1
Introduction

Astronomers are no longer long bearded individuals who spend night after night looking through
a copper telescope1. Pen and paper have been replaced by the CCD and the arm and eye have
made way for auto guiders and tracking systems. Astronomy has changed over the centuries and
so did the eyes of the astronomers. Astronomy is no longer limited to the visual spectrum, by
going into space one can now detect high energy gamma rays, and by building enormous groups
of antennas on earth we can observe low-energy radio waves.
Radio waves are the lowest frequencies electromagnetic waves can have and can become important
when looking deep into the furthest ”corners” of our Universe. Looking at these corners, light
we receive is not the same as when it was emitted. Apart from propogation effects due to the
matter between us and the source, the whole spectrum of the object is redshifted down to lower
frequencies. This is due to the expansion of the Universe, and is named cosmological redshift.
When looking at the early phases of the Universe, we see light (e.g. the CMB of HI 21-cm emission)
which is redshifted towards the radio side of the electromagnetic spectrum. Radio observations
can therefore play an important role in cosmology, which studies the universe as a whole: its
origin, evolution and its ultimate fate. One of the evolutionary phases of the Universe predicted
by cosmologists is called the Epoch of Reionization (EoR). This epoch is caused by the formation
of the very first objects, and thus holds the key to how the structure we observe today is formed
[Barkana and Loeb, 2001]. While radio arrays such as the Low Frequency Array (LOFAR)2, the
Precision Array for Probing the Epoch of Reionization (PAPER) 3 and the Murchison Widefield
Array (MWA)4 aim to be the first to observe this phase through redshifted 21-cm emission, a
much more ambitious project called the Square Kilometer Array (SKA)5 is under development.
One of the key science projects of SKA will be the epoch of reionization, and thus the question
arises: what would be an optimal array configuration for this project? Studying the EoR can
be done by observations of the hyperfine 21 cm transition of neutral hydrogen, a more precise
formulation of the question behind this klein onderzoek is as follows: What is an optimal array
configuration of SKA for 21 cm observations of the Epoch of Reionization?
The outline of the report is as follows: the remaining of Chapter 1 will give a short introduction
on Reionization. Chapter 2 introduces some concepts from radio astronomy and the theory used
in this research. Chapter 3 describes additional concepts necessary to implement the theory into
a working code, which calculates the power spectrum sensitivity of different array configurations.
Chapter 4 presents and discusses results from this research. Chapter 5 contains a summary of this
report and a discussion for future work which can complement this research.

1The majority of astronomers no longer fits this discription, some might.
2www.lofar.org
3http://astro.berkeley.edu/ dbacker/eor/
4www.mwatelescope.org
5www.skatelescope.org
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1.1 A short biography of the Universe

If one had the remote control of the Universe and pressed rewind, we would see the universe con-
tract until it has shrunk into a point. This moment in time, when our whole universe compressed
into a hot dense state, is called the Big Bang. Now press play to see the baby Universe expand
into the version we see today.
Somewhere around ∼ 10−34 seconds after the Big Bang the expansion was exponential, a phase
called inflation. Inflation caused the volume of the universe to increase dramatically, with a factor
of ∼ 1026. The inflationary phase did not last very long, but even after this phase the universe
continued to expand, although slower. Due to this expansion the temperature of the Universe
decreased, giving rise to many processes which are studied by particle physicists today. Eventu-
ally these processes led to the formation of the particles which fill our Universe: bosons, leptons,
neutrinos and more. The Universe is now about 10−3 seconds old and still cooling.
After the first second, the Universe reached the temperature and density required to combine
protons and neutrons together to form form heavier atomic nuclei. This period of nuclear fusion
is called big bang nucleosynthesis. Elements such as Helium and a small fraction of heavier ele-
ments such as lithium were formed in this period. However it was not until long before expansion
cooled the Universe enough, to end nucleosynthesis and the Universe was left primarily filled with
hydrogen and helium. Because of the large photon energy density, nuclei and electrons were not
be able to form neutral atoms. High-energy photons would knock the electrons out of their bound
states into a soup nuclei and electron. The free electrons kept colliding with photons, scattering,
transferring energy from the electrons to the photons and back. This caused the Universe to be
nearly in perfect thermodynamic equilibrium creating the Blackbody spectrum which can be ob-
served today in every direction on the sky: the Cosmic Microwave Background (CMB). However
the energy of this spectrum was trapped between the electrons until the expansion rate of the
universe surpassed the scattering rate of the electrons. Some 350 000 years after the Big Bang the
Universe cooled such that electrons could recombine with nuclei to form atoms. The photons, no
longer hindered by electrons, could travel freely through the Universe while carrying information
of its state at the time of last scattering. [Ryden, 2002]
The universe became almost completely neutral and dark at this stage, but it was far from un-
interesting. Apart from the (sub)atomic physics that played its part during the first few seconds
of the Universe, a process dominated by gravity also played a role on the larger scales. After the
inflationary phase of the universe an imprint of the inflation process was left on the energy density
of the Universe. The quantum fluctuations in the energy field that caused the Universe to expand
by a factor of ∼ 1026, were enhanced and caused fluctuations in the mass density. This created
overdense and underdense regions. When the Universe became cold enough, these regions of over-
and under density grew by the accretion of matter under the influence of gravity. Until the density
in the overdense regions was high enough to form the first objects such as stars.

1.2 Epoch of reionization

During the EoR, hydrogen which was neutral during the Dark Ages, was ionized again. This all
started with the primordial fluctuations in density after the inflationary phase. Gravity causes
overdense regions of dark matter to collapse to form even more dense regions. When the gas
pressure lost its battle against gravity, due to cooling, this becomes a runaway process until the
gas is so dense, that nuclear fusion starts and a star is born. Possibly collapse proceeded even
further leading to the formation of a black hole, however this is still unclear. These first objects
would not simple relight the Universe but, if massive enough, which they probably were,would
emit ultraviolet photons. Photons in the UV and higher energies can ionize hydrogen atoms and
this is why this epoch is not called the re-enlightenment. The main change was in the state of the
gas, which changes from the neutral phase to the ionized phase.
The stars formed, were most likely clustered together in the first galaxies, which would emit the
combined ionizing photon flux to ionize the gas between those galaxies. However, it is still unclear

4



R. Barkana, A. Loeb / Physics Reports 349 (2001) 125–238 129

Fig. 1. Milestones in the evolution of the universe from simplicity to complexity. The “end of the dark ages”
bridges between the recombination epoch probed by microwave anisotropy experiments (z ∼ 103) and the horizon
of current observations (z ∼ 5–6).

scales. Previous research in cosmology has been dominated by studies of large-scale structure
(LSS); future studies are likely to focus on small-scale structure (SSS).
The !rst sources are a direct consequence of the growth of linear density "uctuations. As such,

they emerge from a well-de!ned set of initial conditions and the physics of their formation can
be followed precisely by computer simulation. The cosmic initial conditions for the formation
of the !rst generation of stars are much simpler than those responsible for star formation in
the Galactic interstellar medium at present. The cosmic conditions are fully speci!ed by the
primordial power spectrum of Gaussian density "uctuations, the mean density of dark matter,
the initial temperature and density of the cosmic gas, and the primordial composition according

Figure 1.1: History of the universe [Barkana and Loeb, 2001]

how many of these ionizing photons would actually escape to ionize the intergalactic medium.
Other (partial) explanations for the reionization process may be the formation of (mini)quasars.
Since black holes are very efficient in converting mass into energy, they could emit even more
ionizing photons. Also even more exotic theories have been developed such as the self-annihilation
of dark matter particles.[Barkana and Loeb, 2001]
What processes caused reionization ultimately determined the structures we see around us today.
The formation of the very first stars caused a change in the chemical composition of the Universe.
Metals6 were formed in these first stars, since the Big Bang Nucleosynthesis only gave us hydrogen,
helium and a small fraction of heavier elements. These stars would later on release their metals
when they ended as a supernova, after which it would be re-used in the formation of a new
generation of galaxies, stars, and eventually planets and bachelor students.
Now we have collected motivation to observe the EoR using the redshifted 21-cm line as our
probe. To summarize, the EoR holds the formation of the first stars. Their formation proceeded
in an environment very different from today, since it was metal poor. Also the first clusters of
stars lead to the formation of the first galaxies. And these in turn clustered into galaxy clusters
and super clusters. In other words, the structures we observe all around us were seeded in this
epoch, and the key to understanding the formation of structure must then also lie there. How
reionization proceeded and how neutral hydrogen was distributed can also tell us something about
the cosmology which dominates our universe today.

1.3 Observing the epoch of reionization

There are many scenarios which explain reionization and structure formation, so we need obser-
vations to lift the degeneracy between these scenarios. There have already been several indirect
observations of the EoR which put constraints on the models. One observation is called the Lyman-
α forest, an effect in the spectra of high redshift quasars. The Lyman-α forest is the collection of
all absorption lines due to the neutral hydrogen between the quasar and the observer. Photons
are continuously redshifted when they are hurdling towards us over cosmological distances. At
a certain redshift their wavelength has been stretched to 121.6 nm. If this redshifted photon
travels trough a cloud of neutral hydrogen, there is a high probability that it will be absorbed
in a so called Lyman-α transition. This effect is called the Gunn-Peterson effect. Depending on
the density of neutral hydrogen the absorption line will be deeper. Measuring the depth of the
Lyman-α absorption gives information on the amount of hydrogen at a certain redshift in the
direction of that specific quasar. The Lyman-α forest show that reionization took place before
z = 6.5, however the state of the intergalactic medium at higher redshifts is unclear since there is

6Astronomy 101: Metals indicate every element heavier than Helium.

5



no detection of a quasars beyond redshift z = 7.1. [Zaroubi, 2012b]
Other observations come from the polarization of the CMB, due to scattering by electrons, the
current temperature of the intergalactic medium and several other measurements. More details
can be found in Zaroubi [2012b].
These observations are however not direct, and as such can only constrain general features of
the EoR. If we want to measure the reionization process directly and in detail we need a probe
which observes the intergalactic medium itself. We need some characteristic to observe neutral
hydrogen. Observing neutral hydrogen in galaxies can be done by using the 21-cm transition of
atomic hydrogen. The transition is caused by the spin-transition of the electron from parallel to
anti-parallel. However when radiation reaches us, it will redshifted to longer wavelengths.

z =
λobsv − λemit

λobsv
=
νemit − νobsv

νobsv
(1.1)

Using the constraints given by Lyman-α forest, which shows reionization to take place beyond a
redshift ofz = 6, the 21-cm line has been redshifted to a wavelength of 1.5 m or 202 MHz. However
this part of the radio spectrum is affected by radio-transmitters, RFI and the ionosphere. On top
of that emission from the sky is dominated by synchrotron emission from electrons interacting
with the magnetic field of the galaxy. These factors pose a big challenge for EoR projects and
demand enormous sensitivity of radio arrays to measure this weak spin transition in a mix of
galactic emission, ionospheric and instrumental distortions and radio broadcasts. To really image
the hydrogen in the Universe we have to resort to an even more ambitious project such as the
SKA. However this does not make current arrays useless for EoR observations. Instead of mapping
the hydrogen distribution during the EoR, current arrays will employ the 21-cm power spectrum
to observe global processes during reionization. This will be discussed in chapter 2.

124 Final remarks

Figure 7.1: The various simulated Galactic and extragalactic contaminants of the redshifted
21 cm radiation from the EoR. The di�culty posed by these foregrounds stems from the fact that
their amplitude is about three orders-of-magnitude larger than the expected cosmological signal.

scribed in the thesis by P. Labropoulos, in prep.). Additional modules are: the ionosphere
(ref. thesis by P. Labropoulos, in prep.), the radio frequency interferences (ref. thesis by
A. O↵ringa, in prep.), the inversion (ref. thesis by P. Labropoulos, in prep.) and di↵erent
extraction schemes (Jelić et al., 2008; Harker et al., 2009a,b). A flow chart of all of these
modules is shown in Fig. 1.7.

In Ch. 2 & 3, we describe the foreground model that is used as a part of the LOFAR-
EoR testing pipeline. The model encompasses the Galactic di↵use synchrotron & free-
free emission, synchrotron emission from Galactic supernova remnants and extragalactic
emission from radio galaxies and clusters. Here we simulated foreground emission maps
pertaining, in their angular and frequency characteristics, to the LOFAR-EoR experiment
(see Fig. 7.1). Our model was the first to simulate all foreground components to such
great detail.

Since the di↵use Galactic synchrotron emission is the dominant foreground component,
all its observed characteristics were included in the model: spatial and frequency variations
of brightness temperature and its spectral index, and also the brightness temperature
variations along the line-of-sight. Moreover, the Galactic emission has been derived from
physical quantities and the actual characteristics of our Galaxy (e.g. the cosmic ray and
thermal electron density, and the magnetic field). Thus, the model has the flexibility
to simulate any peculiar case of the Galactic emission including very complex polarized
structures produced by Faraday screens and depolarization. These aspects of the Galactic
emission model has been demonstrated in Ch. 3, and tested on observed data, in an
interesting albeit possibly unusual case, in Ch. 4.

In Ch. 5 we have used the LOFAR-EoR simulation pipeline to study statistically the
e↵ects of foregrounds on the extraction of the cosmological 21 cm signal from the simulated

Figure 1.2: Reionization signal hidden in the foregrounds. Courtesy to V. Jelic.
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Chapter 2
Radio Astronomy

To observe reionization of neutral hydrogen in the universe the 21-cm power spectrum is used,
instead of direct imaging of hydrogen itself. This chapter discuss a few basic concepts behind
radio interferometry and the 21-cm power spectrum itself. Using those basic concepts the errors
on the 21-cm power spectrum will be calculated. The results will be used to find an optimal array
configuration which reduces the errors for the desired EoR observations.

2.1 The Universe in brightness temperature

The emission of a photon at a wavelength of 21-cm is caused by a small transition in which the
orbiting electron changes its spin from parallel to anti-parallel as depicted in figure 2.1. The
amount of 21-cm radiation we receive from a patch of neutral hydrogen, depends on how many
atoms are in the parallel state n1 and how many in the anti-parallel state n0. More atoms in state
n1 will lead to more 21-cm emission when they decay to the ground state n0. The distribution of
energy levels is given by the Boltzmann distribution.

n1

n0
= 3 e−T21/Tspin (2.1)

Where T21 = 68 mK is related to the energy corresponding to the 21-cm transition via T21 =
E21/kB , kB is the Boltzmann constant. Tspin is the temperature corresponding to a certain ratio
of energy levels, and not specifically the temperature of the gas. This is because the n1 level
can also be populated in other ways than collisions, of which the rate is determined by the gas
(kinetic) temperature. The factor 3 comes in because of the degeneracy of the excited state n1.
The spin temperature Tspin, depends on several energy sources, the details can be found in [Field,
1958]. In short it depends on the temperature of the CMB photons TCMB , which can be absorbed.
The kinetic temperature of the gas Tk, which determines the collisional excitations. And on the
amount of Lyman-α photons, which we can assign a temperature Tα. Lyman-α excitations can
lead to a decay to the n1 state. Different ionizing sources will lead to different spin temperatures
because they lead to a different kinetic temperature Tk and Lyman-α temperature Tα, the CMB
temperature is globally the same. So the spin temperature is related to the physical processes
which drive reionization.
The photon energy detected by radio arrays is low enough that we can assume hν � kT , i.e. the
photon energy is much lower than the equilibrium temperature. Which means we can take the
Rayleigh-Jeans limit of the Planck function, resulting into

Iν =
2ν2

c2
kBT. (2.2)
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Figure 2.1: The 21-cm line transition. Courtesy to Pearson Prentice Hall.

As seen in equation (2.2) the brightness depends linearly on temperature, so we can relate our
brightness Iν directly to a temperature.. In the case of the 21-cm line we can relate it directly to
the spin temperature. From now on we will use Kelvin as our unit of choice to express brightness,
because this relates to physical processes behind the 21-cm emission.

2.2 Beginners guide to radio interferometry

A radio interferometer works quite differently than an optical telescope. An optical telescope is
just a big photon bucket, and works in the same way as our eye does. It counts the number of
photons from a given location and this is what we call the power. An interferometer is not just
one (radio)telescope, it consists of several and together they observe the sky as if they were one
radio telescope, with equivalent size. Interferometry refers to interference, which is the interaction
between waves. So in order to do an interferometric measurement the wavelike nature of light
should be captured. These signals can then be combined digitally to recreate the effect of a single
imaging telescope.

2.2.1 The visibility

The purpose of an antenna receiver in an interferometer is to collect two characteristics of the
incoming lightwave: amplitude and phase. When we assume the wave is sinusoidal1, we have all
the information we need to describe the incoming signal:

V (t) = E cos(ωt+ φ). (2.3)

We will now assume we have two antennas which form our interferometer and there is a point
source infinitely far away emitting a signal (figure 2.2). One of the antennas will receive a delayed
signal with respect to the other. If b is the vector from antenna 1 to antenna 2, and s is the vector
pointing in the direction of the source, the signal has to travel an extra distance b · s to reach
antenna 2. The vector b is our baseline vector, hereafter baseline.2 So the time delay is τ = b·s

c .
The different signals from the antennas are multiplied in a cross-correlator and averaged over an
appropriate time-interval. The resulting signal is given by:

1This example is a simplification of the actual EM wave, which is far more complex and better discribed by a
gaussian random field.

2 Baselines are measured in wavelengths, the distance separation between two antennas divided by the wavelength
of observation.
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Figure 2.2: Schematic overview of an interferometer.

RC = 〈V1 · V2〉
= 〈E2 cos(ωt) cos(ωt− ωτ)〉
= P cos(ωτ).

(2.4)

This resulting signal depends only on the received power P , the baseline orientation and the
source direction. Determining the location of sources on the sky does not depend on our pointing
accuracy, but on our clock which measures the time delay τ . Aside from the normal delay due to
antenna separation, we can also artificially shift one of the input signals with 90◦. This will result
in a sine as output instead of a cosine. If we then follow the same path through the correlator,
the resulting signal per baseline is:

RS = P sin(ωτ) (2.5)

We can extract two components of the source signal from the baseline, an even part (the cosine)
RC and an odd part (the sine) RS . This is the information our interferometer has given us about
our source, together they form the ”complex visibility” which is defined as [Perley, 2011]

V = RC + iRS . (2.6)

9



IMPRS Summer School 2010, Heidelberg

MWA layout and UV coverage

~ 125000 baselines, staggeringdata rate, image storage, real time calib.

 
  y

x   u

v

Figure 2.3: Hypothetical antenna lay-out (left) for MWA and corresponding baselines in the uv-
plane (right). The number of baselines is given by Nb = 1

2Na(Na − 1), so high amount antennas
leads to a very high amount of baselines. Every point in the uv-plane will collect data about our
source. [Zaroubi, 2012a]

2.2.2 UV-plane

Instead of just one antenna pair, astronomical interferometers are built out of several antennas,
N . Each one of these antennas can form a baseline with one of the other N − 1 and produce
a visibility. We need to define a so called uv-plane, which collects all of the baseline vectors
b = ûi + v̂j, present in the array3. Where we define the coordinates with respect to our source
in direction s. Every baseline will represent a point in this uv-plane, of which the size is defined
by the size of the antenna. Each of these points measures a visibility, so for an array consisting
out of several antennas we can define a visibility function: V(u,v). See figure 2.3 for an antenna
lay-out and its corresponding uv-plane.

2.2.3 Fourier relations

Now we know what complex information an interferometer gives us about the source, but this has
to be related to more natural real quantities. Normally we measure the brightness I(l,m, ν),where
l,m are some coordinates on the sky, and ν indicates the observing frequency. The translation
from visibility to brightness is given in the title of this subsection: Fourier transform. The intensity
and the visibility are Fourier conjugates, related via equation (2.7).

I(l,m, ν) =

∫∫
V (u, v, ν)e2πi(ul+vm)dldm (2.7)

In order to get as much information as possible about the brightness distribution, we need to
sample the visibility function as densely as we can. This is why radio-astronomers talk about
uv-coverage: gathering a lot of visibilities at different coordinates in the uv-plane. This can be
done in two ways:

• Using a large number of baselines, since every single baseline will be a point in the uv-plane.
The problem with this strategy is the difficulty with cross-correlating a large amount of data,
which takes a lot of computer power.

3If the baselines are extended such that we have to take into account the curvature of the earth, b = ûi+ v̂j+wk̂
since all the antennas do not lie on the same plane.
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• A computationally less expensive method is integration time. Since the earth rotates, the
direction vector of the source on the sky s will change. Our baseline vectors are defined with
respect to the direction of the source, in other words they also change. So by taking a long
integration time, the baselines will move in the uv-plane, covering tracks.

The combination of both, a sufficient number of antennas and integration time, will lead to a good
sampling of the uv-plane and thus a better measurement of the source brightness. [Perley, 2011]

2.3 The 21-cm Power Spectrum

Now we have a basic idea of how we can image the hydrogen in the Universe. This gives us the
possibility of truly mapping reionization in 3D (tomography), since we can Fourier Transform from
uv-coordinates to sky coordinates, 2 dimensions. But we can also measure the 21-cm line over
different frequencies. This gives us information on distance (or time), when using the appropriate
cosmological formulas to convert redshift to distance, the 3rd dimension. However one major
setback comes from the foregrounds. As said before the 21-cm signals from reionization travel
a vast distance before reaching the array and when it arrives it will be outmatched by signals
from extragalactic sources, galactic synchrotron radiation and distorted by the ionosphere. This
causes our signal-to-noise ratio to be rather low and therefore 3D-imaging of reionization will be
difficult. A second approach is a statistical detection which employs the power spectrum which
we will discuss now.

The radio array which we use to observe the EoR, has observed a small volume4 of the Uni-
verse at the redshift corresponding to the observing frequency. We can calculate the width of
the volume with simple trigonometry. This width is given by the Field of View (FoV) of each
station, in other words the angular size, multiplied with the distance x to the source of emission.
The depth of the volume corresponds to the bandwidth of the observation, since this can also
be translated to distance [McQuinn et al., 2006]. Since the density of hydrogen and the spin
temperature of neutral hydrogen will vary at different places in the volume, the brightness of the
21-cm signal I(x) will fluctuate as well. These fluctuations can be described by the 21-cm power
spectrum. The very short recipe for extraction of the 21-cm power spectrum out of a volume filled
with fluctuating 21-cm signals is as follows.

• Take a 3D-Fourier transform of the volume, this would expand all these fluctuations in terms
of waves with a wave vector k. From now on we will refer to these wave vectors as Fourier
modes.

• This has given us Ĩ(k), the magnitude of the brightness fluctuations as a function of wave
vector k. In other words how much the brightness variation there is at different scales. The
tilde indicates Fourier transformed brightness, which should remind us of the visibility: also
a Fourier transform of the brightness but only in 2D.

• Then we take the absolute square |Ĩ(k)|2.

• After which we take the average over shells at a radius ‖k‖

Resulting in the magnitude of the fluctuation in 21-cm brightness at a given scale length, which
gives us information about the fluctuations in density and ionization fraction at different scales.
Important to note: k = 2π/λ, small k correspond to large scales and large k correspond to small
scales.[Lidz et al., 2007] [Morales and Wyithe, 2010]
Because the 21-cm power spectrum is hidden in the Fourier representation of the sky, we do
not need to transform the visibility function back to brightness as a function of sky coordinates.
However the interferometer only performed a 2D-Fourier transform over the spatial coordinates.
So there is only one dimension that still needs to be transformed: frequency direction. The

4When looking at cosmological scales you may call this megaparsec sized volume small.
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P(k)

k

Figure 2.4: Very schematic overview of how the 21-cm power spectrum is extracted from a hypo-
thetical volume filled with ionized bubbles.

transform will take place over the range of the bandwidth, since this correspond to the size of our
observed volume. [Geil, 2011]

Ĩ(b, η) =

∫
V (b, ν)e−2πiνηdν (2.8)

The next step would be to relate our coordinates to k-space coordinates which correspond to
scale sizes within the volume, after which which we can start the averaging. However while a
Fourier transform of a hypothetical volume of the universe has a completely filled Fourier space
corresponding to that volume, the Fourier representation given by the interferometer does not. An
interferometer can only sample the Fourier transform of the observed volume partially. As shown
in figure 2.2, the number and location of baselines determines how the uv-plane was filled. By
using the rotation of the earth the baselines moved and we could fill the uv-plane even more. But
it would be impossible to fill the uv-plane completely, we cannot place antenas closer than their
diameter and we cannot place antennas infinitely far away. Because we cannot fill our uv-plane
completely it is impossible to fill our k-space completely, which is just a coordinate transformation
from u, v to kx, ky. This means the array has to be optimized in a way, that the interesting shells
of k are filled with enough baselines to get an accurate determination of the 21-cm power spectrum.

We were forced to employ the 21-cm power spectrum due a low signal-to-noise ratio created by
foregrounds. However in the process of extracting the power spectrum from from three-dimensional
information we lost detailed information, leaving only global information. This could be a problem
because different models may produce more or less the same 21-cm power spectrum. However the
benefits from the power spectrum comes from the following. Because the 21-cm power spectrum
is an average over a certain number of points within a shell at k, the error on that part of the
power spectrum is reduced by 1/

√
Nc, where Nc is the number of points measured in that shell.

2.4 Errors on the Powerspectum

To find an optimal array configuration we need to estimate the errors on the 21-cm power spectrum,
and its dependence on design parameters of the array. This section will discuss the main equations
on which the code is based. The derivation of the errors on the power spectrum will follow the
formalism described in [McQuinn et al., 2006].

12



2.4.1 System noise

From antenna theory we can deduce the root mean square (r.m.s.) noise per visibility per antenna
pair:

∆V N =
λ2Tsys

Aeff

√
∆νt0

(2.9)

Where Tsys is the system temperature, i.e. the antenna temperature and temperatures of fore-
grounds. Aeff is the effective area of a single antenna, which will be discussed in chapter 4. And
∆ν is the frequency resolution. This has to be transformed in the frequency direction to get into
the same Fourier representation as the 21-cm power spectrum. If we assume ∆ν � B, we can
replace the Fourier integral by a sum.

ĨN (b, η) =

B/∆ν∑
i=1

V N (b, ν)e2πiνiη∆ν (2.10)

To find the error on the power spectrum we follow more or less the same path of its extraction, by
taking the square and taking the average over the bandwidth. Which gives us the average error
on our power spectrum within the observed volume.

CNij (bi,bj) = 〈∆ĨN (bi, η)∆ĨN (bj , η)∗〉 (2.11)

We can rewrite this using equation 2.10.

CNij (bi,bj) =
〈[B/∆ν∑

n=1

V N (bi, νn)e2πiνnη)∆ν
][B/∆ν∑

m=1

V N (bj , νm)e2πiνmη)∆ν
]∗〉

=
〈[B/∆ν∑

n=1

V N (bi, νn)e2πiνnη)
][B/∆ν∑

m=1

V N (bj , νm)e2πiνmη)
]∗〉

(∆ν)2

=
〈
V N (bi, ν1)V N (bj , ν1)∗ + ....+ V N (bi, νx)V N (bj , νx)∗

+ C(bi,bj , νn, νm)
〉

(∆ν)2

(2.12)

Since the frequency resolution ∆ν is constant, we can take it out of the sum and the averaging.
Writing out the product of the sums gives the last line, where the complex exponential drops out
for the same frequencies νn, leaving only the noise products for baselines i and j. C(bi,bj , νn, νm)
are cross terms between different baselines i and j and different frequencies νn and νm, i.e. they
do contain complex exponentials.

CNij (bi,bj) =
B

∆ν
(∆V N )2(∆ν)2δij +

〈
C(bi,bj , νn, νm)

〉
(∆ν)2

= (∆V N )2B∆νδij

(2.13)

We reach the final line by noting that noise signals from different baselines are uncorrelated, the
mean of their product is zero. While for correlated signals the mean of the product equals the
r.m.s squared. The mean of the cross terms is also zero. Substituting our expression for the r.m.s.
noise per visibility in equation (2.13) gives us

CN (b) =
(λ2BTsys

Aeff

)2 1

Bt0
. (2.14)

The kronecker delta is dropped because we consider a single baseline. However we are talking
about an array consisting out of several antennas, all measuring a visibility for a certain b. This
visibility is only measured for a certain amount of time because our array is turning and its baseline
coordinates change. The baseline vector b is related to our fourier modes k⊥, so we can translate
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our noise per baseline, to a noise per Fourier mode as follows. Using the definition k⊥ = 2πb/x
and using the fact that visibility is measured for a time given by equation (2.15).

tk ≈
Aefft0
λ2

n[x‖k‖ sin(θ)/2π] (2.15)

Where λ is the wavelength corresponding to the observing frequency. The first term Aeff/λ
2

determines what area the antenna samples in the uv-plane. The number density of baselines
n(|b|) comes in, because we want to know how many baselines sample this value of k. Where
we have assumed the array is circular symmetric, which gives the circular symmetric baseline
distribution n(b). But since we are interested in the noise per Fourier mode, u has been rewritten
as a function of k. The angle θ is the angle between our line of sight (LOS), see figure and the
direction of the Fourier mode k, see figure 2.4. Our array can only measure projections of Fourier
modes which fit the covered area in the uv-plane. In other words modes smaller than the shortest
baseline and longer than the longest baseline cannot be measured. This boundary is defined by
the baseline distribution n(‖b‖), which will be discussed in chapter 3. Using equation (2.15) we
can rewrite the system noise per Fourier mode as

CN (k) =
(λ2BTsys

Aeff

)2 1

Btk
. (2.16)

θ

k

LOS

Figure 2.5: The angle between our line of sight (LOS) through our volume and Fourier modes k.
This volume is in an earlier stage of reionization than the one depicted in figure 2.3.

2.4.2 Sample Variance

This research has focussed primarily on reducing the system noise, since observations are cur-
rently in the noise dominated region. Therefore the sample variance will be discussed in a short
descriptive manner. The sample variance can be understood as follows. Since we are measuring
a finite volume of space, defined by the FoV, and bandwidth. We can only sample Fourier modes
a certain number of times, depending on how many can fit into the k-space volume. The large
modes (i.e. small k-values) corresponding to scales on the same order of the survey volume, will
be sampled only once or twice. While the smaller modes, corresponding to small scales, will be
sampled much more often. So sample variance is not an actual noise like the system noise, but
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rather an uncertainty set by the finite number of measurements (even if the S/N-ratio is high).
The sample variance is given by:

CSV (k) = P21(k)
λ2B2

Aeffx2y
(2.17)

Where x is the width of the volume and y is the depth of volume, corresponding to the bandwidth.

2.4.3 Total noise

We can sum the two error contributions, system noise and sample variance, to get the total error
per observed point in k-space. Because the power spectrum is an average over the number of
measured points at a certain scale k, we have to determine first what the number of point in that
shell is. As mentioned before this depends on the number of baselines, because they determine
the points which are sampled in the visibility function V(u,v). However the approach used in
the derivation of the error assumed we have actually sampled the complete surface between the
shortest and longest baseline. This is due to the assumption of a circular symmetric baseline
distribution. This assumes there is some density of baselines at every point in the uv-plane, so
every point within the baseline range is sampled. In other words the Nb(Nb − 1) baselines have
been smeared out over an area in the uv-plane.
Now we have to determine the number of points in some annulus with thickness ∆k at k. We can
only sample as much as fit inside the annulus, and this depends on the size of each point. This
size of each point is determined by size of the observed Fourier volume and equals (2π)3/V, where
V = x2yλ2/Aeff in real space.
The number of cells in a spherical annulus is given by equation

Nc(k, θ) = 2πk2 sin(θ)∆k∆θ
V

(2π)3
. (2.18)

The term 2πk2∆k determines the volume of the annulus, typical values for ∆k = 0.5k. But we
have to take into account that our observational volume is finite. The baseline distribution takes
care of modes whose projection does not fit the baseline ranges. However modes much larger
than the depth of our volume can have a projection on the uv-plane which fits inside the baseline
distribution. This is possible when the angle between LOS and the mode k is small enough. To
exclude these Fourier modes, the number of points Nc is set to zero when, the k no longer fits
inside the volume: 2π/kcos(θ) > y. The total error on the power spectrum becomes,

δP21(k, θ) =
1√
Nc

Aeffx
2y

λ2B2
[CSV (k, θ) + CN (k, θ)] (2.19)

Where the factor 1/
√
Nc is introduced because the error is reduced by the number of cells which

measured the power spectrum.

2.4.4 Angular Averaged Power Spectrum

Since the interest was in the fluctuations as a function of k-scale only, we still have to average the
error over angle θ. Which is done using

δP21(k) =

{∑
θ

[ 1

δP21(k, θ)

]2}− 1
2

(2.20)

Which results in our final estimation on the errors on the 21-cm power spectrum. Equation 2.20
will be used to determine the sensitivity of an array for power spectrum measurements, as a
function of its design.
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Chapter 3
The Code

This chapter outlines the implementation of theory into a code which calculates the sensitivity of
an array given initial parameters, after which this can be used to optimize the array for power
spectrum measurements. The code is written in the language Python1. The actual calculating
work such as interpolations, integrations and optimization is done by functions within the module
SciPy. Because Python is open source, the use of python makes it also possible for distribution
among interested within the astronomical community. I will not discuss the program in great
detail, for the program itself I refer to the appendix, but I will discuss several components of the
program and their relation to theory, and why several assumptions have been made.

3.1 General assumptions

For the system temperature Tsys we assume we can neglect the temperature of the antennas and
only consider the sky temperature, this can be easily modified by adding an antenna temperature
component if required. The sky is dominated by synchrotron emission from the galaxy, whose
brightness temperature is approximated by a power law as a function of frequency, given in equa-
tion (3.1)2. Although this varies along different lines of sight, being at its strongest near the
Galactic center and weaker out of the Galactic plane. [Jelic et al., 2008]

Tsky = 400
( ν

150 MHz

)−2.55

K (3.1)

For dipoles we cannot really talk about a physical area, when looking at figure 3.1 this becomes
clear. However, we can define an effective area which is determined by the sensitivity of a dipole.
The sensitivity of a dipole has some angular dependancy. This angular sensitivity pattern is called
a beam, the size of this beam and wavelength of observation define the so called effective area of
the dipole. For the effective area we assume the following function.

Aeff = Ap

( ν

120 MHz

)−2

m2 (3.2)

Where Ap is the physical area of the dipole, which is related to the dimensions of the antenna.
Equation (3.2) shows that the dipoles are less sensitive to higher frequencies.
We also assume a flat universe with Ωm = 0.3, ΩΛ = 0.7, Ωk = 0 and a Hubble constant of
H0 = 70 (km/s)/Mpc. These cosmological parameters are used to calculate the distances to the
source of emission x and the depth of the observed volume y. Which are calculated using equation
(3.3). [Hogg, 2007]

1http://www.python.org/
2This equations holds for frequencies below 200 MHz.
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Figure 3.1: LOFAR HBA Dipole, courtesy to R. van den Brink.

D =
c

H0

∫ zmax

zmin

(Ωm (1 + z)3 + Ωk (1 + z)2 + ΩΛ)−
1
2 dz (3.3)

3.2 Antenna distribution

The distributions of the antennas has great influence on the array sensitivity. Since the locations
of the antennas with respect to each other determine what baseline lengths are present and as such
what sensitivity the array has on different scales lengths. A small dense array will have antenna
stations close to each other, i.e. short baselines, and thus sensitivity on large scales. While a
large diffuse array will have long baselines and thus more sensitivity on small scales. A sensible
choice for a function which spans several scales is a power law. So we assume the following antenna
distribution, a core area which has a constant array density, and an outer area in which the density
follows a power law as a function of radius. The core area will provide us with sensitivity on large
scales, and the outer area will provide us with sensitivity on the smaller scales. This function
is of course continuous, while a true array will have a discrete distribution, but this is a good
approximation to first order when discussing arrays consisting of a large number of antennas. For
this distribution the antenna density is given by [Geil, 2011]:

n(r) =


nc 0 ≤ r ≤ rc

nc

(
rc
r

)p
rc < r < rmax

0 r > rmax

(3.4)

Where nc is a normalization constant such that the integral over the surface of the array results
in the total number of placed antennas N .

N =

∫∫
na(r) sin(φ)dφdr (3.5)

The crucial parameters for this power law antenna distribution are: the core radius rc,the outer
radius rmax and the slope p. The outer radius determines the maximum baseline length. The
slope will determine how fast the sensitivity decreases over k and how dense the core array will
be. A steeper slope will lead to more antennas in the core area. To prevent overfilling of the core
an upper limit has been placed where the total area of the antennas in the core ncAeff cannot
exceed the physical area of the core π r2

c .
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3.3 Baseline Distribution

For a given antenna distribution the corresponding baseline distribution is given by the convolution
integral[Geil, 2011]

nb(b, ν) = Cb(ν)

∫ rmax

0

2πr na(r)dr,

∫ 2π

0

na(r− λb)dφ (3.6)

Where Cb(ν) is a frequency dependent normalization constant such that the integral over the
baseline distribution equals the total number of baselines Na(Na − 1) =

∫
Nb(b, ν)db. By taking

the convolution integral, the result is again a continuous function. A secondary effect is the
creation of baselines below da/λ, where da is the antenna diameter. These short baselines are
physically impossible, since it is not possible to place two antennas closer than twice their antenna
radius. This already implies that while a larger antenna station has more collecting area, it makes
it impossible for the array to measure large scale fluctuations, because of the smaller FoV. In
order to correct for these artifacts, the code removes all baselines below the limiting length. After
which the distribution is renormalized to match the total number of baselines. The convolution
is calculated numerically, therefore it can also handle all types of antenna distributions as long
as they are circularly symmetric. Because the convolution is quite time consuming, the baseline
distribution is calculated once per realization. The results are further used by one-dimensional
interpolation in the b direction. An interpolation in the frequency direction is replaced by selecting
the nearest frequency.
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Figure 3.2: The antenna distribution (left) and the baseline distributions (right) for an MWA like
instrument. [Geil, 2011]

3.4 Theoretical Power Spectrum

For calculation of the cosmic variance and optimization of the array configuration a theoretical
power spectrum was provided by Prof. Dr. S. Zaroubi. The simulated power spectra are created
using the reionization code 21cmFast [Mesinger et al., 2010], which produces 21 cm brightness
boxes with dimensions of 400 Mpc. The power spectrum is extracted from these brightness tem-
perature boxes with the aid of a FastFourierTransform routine in IDL.
The power spectra were provided for redshifts z= 12,11,10,9.5,9 and 8.5, and sensitivity calcula-
tions for intermediate redshifts is done by interpolation. Except for frequencies outside this range
when the nearest frequency will be used. The range in scale lengths is −1.5 ≤ log k ≤ 0.8. The
minimum k is defined by the size of the box and the maximum k is defined by the resolution of
the simulation. Other power spectra can be used in the code by simply replacing the input file
containing the data. Figure 3.3 shows the power spectrum for several redshifts.
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Figure 3.3: 21-cm power spectrum produced by 21cmFast, 〈xH〉 indicates the mean fraction of
neutral hydrogen at the corresponding redshift z.
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Chapter 4
Results

After implementation into a code, which passed several test against literature [McQuinn et al.,
2006], an analytic case and against a similar code developed by the group of Garrelt Mellema, the
next step was to run calculations using parameters of current arrays. Over the years a number
have been published on several arrays, but due to de- and rescopes or other factors, several changes
have been made in the final array designs. To obtain a more updated state of affairs we first made a
comparison between the arrays: PAPER, MWA and LOFAR. We also looked at implementation of
two LOFAR-extensions for power spectrum measurements, LOFAR-AARTFAAC and the french
LOFAR-Superstation (LSS). Calculations were also made for several SKA lay-outs. As future
research we plan to use an optimization routine, to find the optimal SKA lay-out for power
spectrum measurements. The results of these calculations will be presented in this chapter.

4.1 Comparison between Current Arrays

There are several arrays trying to measure the 21-cm power spectrum of reionization. But all
arrays employ a different configuration strategy, hence each array will have a different k-regime at
which its sensitivity is optimal. For the comparison the sensitivity of MWA, PAPER and LOFAR
were calculated.

PAPER located in South Africa, is a radio array with a design focused on a high number of
antenna stations, i.e. baselines. PAPER is build out of 128 station, each with a collecting
area of 1.52π m2 . These stations are distributed uniformly in an area with a radius of 150
m, except in a central cavity with a radius of 10 m [Jacobs et al., 2011]. This creates a dense
array, with a high number of baselines inside a small area of the uv-plane. The large FoV of
each individual antenna gives PAPER instantaneous sensitivity to large scale fluctuations.

MWA located in Australia, follows a similar strategy as PAPER. MWA also has a large number
of stations, 112 to be precise, creating a large number of baselines. Each antenna station
has a physical collecting area of 14.5 m2, and are more spread out than the stations in the
PAPER configuration. MWA consists of a central region with a uniform distribution of
stations and a less dense outer region. This outer region has a power law distribution with
an index of 2 [Beardsley et al., 2012]. The increase in collecting area gives MWA a higher
sensitivity, within the ranges of the FoV. By placing stations in a more extended area, the
MWA contains somewhat longer baselines and thus sensitivity on smaller scales.

LOFAR located in Europe (we only consider the core area) is built out of 48 stations, which is less
than half of the stations of PAPER and MWA station. This is however compensated by the
size of each station. Each station has a collecting area of 162πm2, which is much larger than
the station size of PAPER and MWA. LOFAR is also a more diffuse array then the before
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mentioned arrays with its stations distributed uniformly in a central region and a power law,
also with index 2, decreasing outer region. The central region, a.k.a. the ”Superterp”, has
a radius of 150 m and the outer region stretches out until 1500 m. The array parameters
can be found in table 4.1. The antenna lay-out and the corresponding baseline distribution
of these arrays is displayed in figure 4.1.

Figure 4.1: The antenna distribution (left) and the baseline distributions (right) at 150 MHz for
LOFAR: red dotted line, PAPER: green dashed line and MWA: blue solid line.

Array Ap (m2) Nant p rc (m) rmax (m)

PAPER 7.1 128 0 150 -
MWA 14.5 112 2 25 750
LOFAR 804 48 2 150 1500

Table 4.1: Array parameters

Using the parameters for the arrays given in table 4.1 and a binning size of ∆k = 0.5k, we calcu-
lated the power spectrum sensitivity at redshift z = 8, 10 and 12, for an observation time of 1000
hours and a bandwidth of 10 MHz. The results are shown in figure 4.2 and tabulated in table
4.2. The sample variance and system noise are tabulated separately because sample variance is
dependent on the power spectrum model, while the system noise is universal.

From figure 4.2 we can conclude the following:

• LOFAR is the most sensitive array and PAPER is the least sensitive array at the relevant
scales for the 21-cm power spectrum.

• MWA and PAPER are unlikely to measure the 21-cm power spectrum, while LOFAR can
measure it partially until a redshift of z = 10.

Looking at figure 4.1, we see MWA and PAPER outmatch LOFAR in antenna and baseline density
by orders of magnitude. We also note that PAPER and MWA contain much shorter baselines
than LOFAR. This is due to LOFAR’s station size, which limits the minimum baseline to bmin =
da/λ where da is the antenna diameter. Despite these orders of magnitude difference in baseline
densities, LOFAR still has at least half a magnitude more sensitivity, see figure 4.2. This seems to
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indicate that sensitivity lies in station size, since this is where LOFAR exceeds the other arrays.
The other arrays have much more shorter baselines and larger FoV’s, making them more interesting
for cosmological studies rather than EoR observations. Since the more detectable part of the 21-
cm power spectrum is around k ∼ 0.2 Mpc−1.
So it seems sensitivity is easily gained by increasing the collecting area of a station, rather than
increase of the amount of stations. MWA and PAPER are most likely not able to measure the
21-cm power spectrum, while LOFAR can until a redshift of about z=10.

z = 8 z = 10 z = 12

Array δPSV
21 δPN

21 δPSV
21 δPN

21 δPSV
21 δPN

21

[10−3 mk2] [mk2] [10−3 mk2] [mk2] [10−3 mk2] [mk2]

PAPER 3.45 46.0 19.0 194 4.86 1.10 · 103

MWA 4.94 38.1 27.2 176 6.97 1.08 · 103

LOFAR 36.8 1.25 202 4.88 51.8 26.2

Table 4.2: Noise Calculation results at k = 0.2 Mpc−1,δPSV21 is the sample variance component
of the noise and δPN21 is the system noise component. Power spectrum values at k = 0.2 are
k3P21/2π

2 = 4.84, 29.8, 8.58 mk2, at respectively redshift z=8,10,12.

Figure 4.2: Comparison between MWA (blue dotted), PAPER (red dotted) and LOFAR (green
dotted). The black solid line represents the power spectrum generated by 21-cmFAST.
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4.2 The LOFAR-AARTFAAC and -Superstation Extensions

In the previous section we showed that all current arrays have marginal sensitivity to measure the
21-cm power spectrum. LOFAR has some sensitivity until a redshift of about z = 10, after which
the 21-cm signal becomes too noisy. Even though construction of the LOFAR core has finished,
the project is still evolving and undergoing exciting developments. We will consider two of these
developments to investigate whether they can be used for 21-cm power spectrum measurements.

AARTFAAC stands for ASTRON Radio Transients Facility and Analysis Centre1 and is an
extension for the LOFAR-superterp. In standard operating mode a group of 48 HBA anten-
nas or 48 LBA antennas operate as one antenna station. The superterp in Exloo contains
6 HBA-stations and 6 LBA-stations. The signals from each station are normally cross-
correlated with another station producing the visibilities. The AARTFAAC system however
cross-correlates the signals from all the individual antennas. The 288 LBA-stations or 288
HBA stations in the superterp can thus create a very dense array since the superterp has
a radius of 150 m. [Prasad and Wijnholds, 2012]. The FoV increases because the station
size has been reduced to the area of a single LBA or HBA receiver. This creates sensitivity
on large scales. AARTFAAC was initially designed for large sky surveys in the search for
transient sources, which requires the large FoV. The smaller station size might decrease the
sensitivity. However compensation might come from the large baselines density, since the
”station” number has increased by a factor of 24 thus a factor of ∼ 2304 increase in number
of baselines.

Superstation the LOFAR-Superstation is a project in Nancy. The superstation is planned to
consist of a group of 96 LBA stations placed in an area with a radius of 175 m, which
is comparable to that of the superterp. Although the number of individual elements is
much lower than the 288 antennas of the LOFAR-AARTFAAC system, the collecting area
of these antennas is much larger than the collecting area of a single antenna in the superterp,
300 m2 to be precise. The LOFAR-Superstation favors collecting area , while the LOFAR-
AARTFAAC system favors a large number of baselines and wider FoV. However, the results
from the previous section imply that collecting area is favored over number of baselines.

Figure 4.3: The antenna distribution (left) and the baseline distributions (right) at 150 MHz for
LOFAR: red solid line, AARTFAAC: blue dashed line, Superstation: green dotted line.

1http://www.aartfaac.org/
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Array Nant Ap [m2] rc [m] p
Superstation 96 300 175 0
AARTFAAC 288 25 150 0

Table 4.3: Parameters for the AARTFAAC-system and Superstation project

4.2.1 Reionization

Using the parameters listed in table 4.3 and the parameters for LOFAR in table 4.1 we compared
LOFAR and LOFAR-AARTFAAC in their capability of detecting the 21-cm power spectrum, at
redshifts z=8,10 and 12 (LSS does not have HBA receivers). The results of this calculation are
shown in figure 4.4 and detailed noise component values can be found in table 4.4. Looking at the
results we can draw the following conclusions:

• LOFAR-AARTFAAC has a higher sensitivity than LOFAR on scales k < 0.1 Mpc−1

• LOFAR itself has a higher sensitivity than AARTFAAC beyond k > 0.1 Mpc−1.

Figure 4.4: Comparison between LOFAR (red solid) and LOFAR-AARTFAAC (blue dashed). The
black solid line represents the power spectrum generated by 21-cmFAST.
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z = 8 z = 10 z = 12

Array δPSV
21 δPN

21 δPSV
21 δPN

21 δPSV
21 δPN

21

[10−3 mk2] [mk2] [10−3 mk2] [mk2] [10−3 mk2] [mk2]

LOFAR 36.8 1.25 202 4.88 51.8 26.2
AARTFAAC 6.48 1.37 35.6 5.74 9.15 32.1

Table 4.4: Noise Calculation results at k = 0.2 Mpc−1,δPSV21 is the sample variance component
of the noise and δPN21 is the system noise component. Power spectrum values at k = 0.2 are
k3P21/2π

2 = 4.84, 29.8, 8.58 mk2, at respectively redshift z=8,10,12.

We can explain LOFAR’s sensitivity on smaller scales (large k) with its larger baselines, LOFAR’s
antenna distribution stretches out until rmax = 1500m. AARTFAAC’s sensitivity on larger scales
can be explained with the large FoV of each station. When we look at the numbers in table 4.4,
we see:

• LOFAR has the lowest level of system noise, although it does not differ much from AART-
FAAC.

• The AARTFAAC system has the lowest level of sample variance.

How strongly a noise component contributes is more or less determined by the effective area Aeff

of each station within the array. Increasing the area lowers the system noise, see equation (2.2).
However it also decreases the FoV, i.e. the size of the observed volume, therefore the sample
variance increases because we are less able to measure all modes accurately. While it might seem
tempting to maximize the effective area to decrease the system noise, this in turn increases the
sample variance. This sample variance does not depend on integration time, so it is impossible
to diminish this uncertainty by integrating longer. The choice of a certain station size, creates a
lower limit for the measurable modes of k.

The results show that LOFAR and its extension AARTFAAC have promising sensitivity to measure
the 21-cm power spectrum. The LOFAR-AARTFAAC system has increased sensitivity on scales
below k < 0.2 Mpc−1, using the AARTFAAC system with the ”standard” LOFAR system would
be an interesting application of the LOFAR-system in Holland.

4.2.2 Cosmic Dawn

In Visbal et al. [2012] a power spectrum at redshift z = 20 was presented which took into account
the velocity difference between collapsing dark matter and baryons, this velocity difference would
boost the power spectrum. This gives an interesting opportunity for the LOFAR-LBA system to
potentially measure the power spectrum at much earlier times. The LOFAR-LBA system operates
in the range of 10-70 MHz, the range required for measurements out to redshift z = 20.
To estimate which of the extensions would be more suitable for power spectrum measurements at
z = 20 we compared LOFAR, AARTFAAC and the Superstation with an observation time of 1000
hours and a bandwidth of 10 MHz. The power spectrum at this redshift was created by taking
a simple piecewise linear interpolation of the power spectrum displayed in Visbal et al. [2012].
The collecting area of an LBA antenna is given by λ2/3. this is valid when the wavelength of
observation is smaller than the distance separating each antenna. So Ap = 25/3 around 60 MHz.
The other parameters remain the same. The results of the comparison are displayed in figure 4.1
and tabulated in table 4.4.

The results in table 4.4 show that the AARTFAAC system is less limited by sample variance
than the Superstation, which is due to the large FoV. This would enable LOFAR-AARTFAAC
to measure the smallest k-modes, which is more interesting for Cosmology rather than for EoR-
studies. The Superstation has more overall sensitivity, due to its large collecting area. This shows
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that the total collecting area has more importance than the collecting area per station. Which
means there is some optimal balance between station number and collecting area per station.
The detection capabilities of the LOFAR-Superstation are very promising, since this exceed both
LOFAR and the AARTFAAC system at these high redshifts. So given the power spectrum in
Visbal et al. [2012] it might even be possible to detect the 21-cm power spectrum out to a redshift
of z = 20 with the LOFAR-superstation in Nancy. This makes the Superstation the most promising
instrument for Cosmic Dawn observations during the next decade, since this is the timescale over
which the SKA should be build.

k = 0.03 k = 0.10 z = 0.20

Array δPSV
21 δPN

21 δPSV
21 δPN

21 δPSV
21 δPN

21

LOFAR 2.29 167 1.17 2.09 · 102 0.563 12.4 · 103

AARTFAAC 0.404 102 0.212 2.29 · 102 0.061 4.16 · 104

Superstation 2.42 4.99 1.27 106 0.367 1.08 · 103

Table 4.5: Noise calculation results for the LOFAR-AARTFAAC and -Superstation extensions.
All results are in mk2. The used 21-cm power spectrum values are k3 P21/2π

2 = 75, 284, 410 mk2,
at respectively k = 0.03, 0.10, 0.20 Mpc−1.

Figure 4.5: Comparison between LOFAR, LOFAR-AARTFAAC and the -Superstation exten-
sions.The red solid line is the sensitivity of LOFAR’s LBA system, the blue dashed line is the
sensitivity of the superterp-LBA’s using AARTFAAC, the green dotted line is the sensitivity of
the superstation. The black solid line represents the crude reproduction of the predicted power
spectrum

4.2.3 Scaling relation

To get a better understanding and quantification of the influence of design parameters on the
sensitivity, we adopt a scaling relation2 from Mellema et al. [2012], which is based on the derivation

2This equation is not valid for SKA, because SKA has high enough sensitvity that sample variance has to be
included as well.
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Figure 4.6: A comparison between the analytical scaling relation and a numerical calculation.
The numerical results are plotted in blue, the analytical result is plotted in green. The LOFAR
parameters as listed in table 4.1 were used in this calculation.

of McQuinn et al. [2006].

δPN21 =
( 2

π

)
k

3
2 [x2y · ΩFoV]

1
2

( Tsys√
Btint

)2(AcoreAeff

A2
coll

)
(4.1)

The scaling relation assumes the number density of baselines in the uv-plane is constant. This
does not hold completely for real arrays, see figures 4.1 and 4.3. But the equation is valid in
the central region of the uv-plane, since changes in the density of baselines are small here. A
comparison between the scaling relation and a numerical calculation for LOFAR is depicted in
figure 4.6. The numerical results diverge at larger k, since at larger k the density of baselines
converges to zero, leading to an infinite noise. And at lower k the noise becomes dominated by
sample variance, which is not taken into account for in the scaling relation. If we note that the
FoV ΩFoV = λ2Aeff , we can rewrite this equation into one which only contains design parameters.
For the details, read Mellema et al. [2012].

δPN21 ∝
Acore

N2
antA

3/2
eff

(4.2)

The new parameter Acore is the area of the core area of the array, i.e. Acore = πr2
c . Equation 4.2

tells us that an increase of Nant has the strongest effect on the sensitivity, after which the effective
area per antenna Aeff has the strongest effect. Reduction of the core area, compactifying the array,
also increases the sensitivity of the array. The results indicated that collecting area influences the
sensitivity most dominantly, but this is merely due to the fact the effective area is more easily
increased. The ratio between LOFAR and PAPER for the effective area was about 100, while the
ratio for the number of antenna was about 2

5 . And for the AARTFAAC-Superstation comparison,
the ratio between the collecting area per antenna is about 36, while AARTFAAC has only a factor
of 3 more antennas.
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So we can adopt equation 4.2, which tells us how the sensitivity of an array scales in the noise
dominated region within an order of a magnitude accuracy. One form of this scaling relation
shows that the sensitivity it not determined by only the effective antenna area, but by the ratio
of the effective area and the core area. The number of antennas has the strongest influence on the
the sensitivity, after which the effective area and the core area follow. However since it easier to
increase the effective area of a station, than increasing the amount of stations, the sensitivity of
an array can be increased dramatically by increasing the station size and compactifying the array.

4.3 SKA configurations

So far our analysis of current arrays. Our next goal is to find an optimal SKA lay-out, which fits
the requirements for EoR science requirements. The already constructed arrays showed us that
there is considerable amount of sensitivity to gain in the size of a station.We will now look at
the influence of different design parameters on the sensitivity. Our next calculation consisted of
varying the following parameters: the number of antennas Nant, the total collecting area Nant ·Ap,
the slope of the antenna distribution and the outer radius of the array. This was done at a fixed
redshift of z=10 or 130 MHz, an observation time t0 of 1000 hours and core radius rc of 1 km.
The results are shown in figure 4.3.

Figure 4.7: The results for different SKA lay-outs at redshift z = 10, note the red and blue dashed
lines. The blue dashed line: p = 1, rmax = 2 km, the green dashed line: p = 1, rmax = 5 km, the
red dashed line: p = 2, rmax = 2 km and the magenta dashed line: p = 2, rmax = 5 km. The solid
blue line represents the 21-cm power spectrum.

From figure 4.7 we can conclude the following:

• Compact arrays, i.e. in this case rmax = 2 km, are the most sensitive configurations
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Array Ap (m2) Nant p rc (m) rmax (m)

SKA 0.33, 1.0, 3.0 · 106/Nant 50, 150, 450 1, 2 1000 2000, 5000

Table 4.6: SKA parameters

• Arrays with a dense core, p = 2, are the more sensitive than configuration with p = 1.

• Increasing the total collecting area, at fixed antenna number, increases the sensitivity on a
decreasing range of measurable k-scales.

• Sample variance limits all configurations, with different slopes p and outer radius rmax at
fixed Aeff and Nant, to the same scale.

• Increasing the number of antennae increases the sensitivity on all scales.

So overall the most densest configurations lead to the highest sensitivity, as predicted by scaling
relation (2.2). Decreasing rmax and increasing the slope p increase the antenna density in the core
area. Increasing the slope, adds antennae to the core of the array while taking antennae from the
outer regions, both are a way of making the array more compact. A more shallow slope ensures
there is a certain number of long baselines present in the array, but the results indicate that the
presence of long baselines do not affect the sensitivity on smaller scales (large k). Figure 4.7 shows
that increasing the area of a station for a fixed collecting area increases the overall sensitivity, at
the cost of making it impossible to measure large scale variations in the 21-cm signal. These large
scale variations do not fit in the small FoV of large stations. So in order to observe the small
k-scales we must limit the station size. Although increasing the antenna number Nant increases
the sensitivity on all scales, the main problem with increased antenna number is correlation cost.
Increasing the antennas increases the data output and this requires more computing power and
data storage, which is an issue of technological feasibility.

So we find an ideal SKA-lay out for power spectrum measurements would follow these guidelines.
It should be compact; a dense core has more sensitivity than a diffuse core. This can be achieved
by increasing the slope or a decrease in core radius. Constrain station size since this limits sample
variance, since system noise can be compensated for with integration time, while sample variance
does not depend on the observation itself. Most favorable would be the increase of the number of
stations, but this will be limited by the available computational power.
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Chapter 5
Conclusion

5.1 Summary

The main goals of this research were to properly compare current arrays EoR arrays and to find
an optimal configuration of the Square Kilometer Array (SKA) for observations of the 21-cm
power spectrum of Reionization. To find this optimal configuration we looked at the sensitiv-
ity of a few precursors and pathfinders in the HBA regime; LOFAR, LOFAR-AARTFAAC, the
LOFAR-Superstation, MWA and PAPER. These sensitivities were calculated using a numerical
adaptation of the equations derived in McQuinn et al. [2006] complemented by a 21-cm power
spectrum generated with the reionization code 21cmFast. We also compared the sensitivity of the
LOFAR-AARTFAAC and LOFAR-Superstation extensions at the LBA regime. We compared our
numerical results with an analytical scaling relation to quantify the influence of design parameters
on the sensitivity. Finally we calculated the sensitivities of different SKA lay-outs, which we used
to discuss an optimal SKA lay-out The results of these calculations are summarized here. This
chapter will also discuss some future work which can be performed to complement this research.

• LOFAR is currently the array which is most sensitive to the 21-cm power spectrum. PAPER
and MWA have sensitivity on larger scales, which are less relevant for Reionization. However
this sensitivity is relevant for cosmological studies.

• LOFAR and the LOFAR-AARTFAAC system have promising sensitivity to measure the
21-cm power spectrum out to redshift z = 10, with single beam observations.

• The LOFAR-Superstation is the most promising instrument we have for the next decade to
measure the 21-cm power spectrum out to redshift z = 20.

• The sensitivity of an array can be described with a scaling relation: δPN21 ∝ Acore/(N
2
antA

3/2
eff ).

However this equation is only valid within the central region of the uv-plane and when the
S/N < 1. When S/N∼1 the sample variance has to be included or a numerical calculation
has to be made.

• An SKA lay-out would ideally follow the following guidelines. Compactify the array, adding
more longer baselines does not enhance power spectrum sensitivity significantly. Constrain
station size, since larger stations have small FoV’s which increases the sample variance,
which can not be diminished by increasing the observation time. A large number of antennae
increases the sensitivity, as expected, however the number of antennas will be constrained
by the available computing power.

The result of this research is a code which calculates baseline density of a radio array given several
input parameters. This baseline density is used to calculate the sensitivity to the 21-cm power
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spectrum. The code can handle various array configuration, only to be constrained by circular
symmetry. The free parameters are: station area Ap, antenna number Nant, slope of antenna
distribution p, core radius rc, outer radius rmax and an additional parameter inner radius rmin.
Which allows for ring like arrays such as PAPER. However there was not enough time to exactly
calculate which values these parameters should take for the SKA to fit the requirements of the
EoR key science project.

5.2 Future Work

To fulfill the ultimate goal of this research an optimization routine, see appendix A, should be
implemented in the code to actually calculate parameter values which fit the requirements of the
EoR key science project of SKA. Not only should such a code optimize for a sensitivity such to
measure the difference in the power spectrum at different redshifts, it should also take into account
economical effects such as increasing the amount of antennas. In other words apart from science
demands it should take into account technical feasibility.

The code itself could also become more user friendly, by building a general users interface around
the existing functions. However creating user friendly program also limits the codes flexibility,
since all possible demands of the user have be taken in account for. A user unfriendly code, the
calculating part of the code itself, has more flexibility if the users knows how to use it. However
for basic calculations given initial parameters, the user friendly version should suffice.

The code could also be extended to calculate the imaging capabilities of radio arrays. For this
only the system noise should be considered.
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Chapter 6
Nederlandse Samenvatting

Radio golven bieden niet alleen de mogelijkheid om naar het nabije waterstof gas te kijken in
onze eigen melkweg, maar ook om naar het waterstofgas in het vroege heelal. Het waarnemen
van het waterstofgas in het vroege heelal biedt namelijk de mogelijk om de vorming van de eerste
structuren, sterren en sterrenstelsels, waar te nemen. Deze periode wordt ”the Epoch of Reioniz-
ation” (EoR) genoemd. En over het ontstaan van de structuren tijdens deze periode is nog veel
onduidelijk. Observaties van het vroege heelal zouden echter duidelijkheid kunnen bieden aan wat
er zich heeft afgespeeld. LOFAR en andere radiotelescopen zoals PAPER en MWA zijn in staat
om deze radiogolven uit het vroege heelal waar te nemen om zo het waterstofgas waar te nemen.
Het probleem op dit moment is echter dat deze radiotelescopen niet gevoelig genoeg zijn om gede-
tailleerde afbeeldingen van het vroege heelal te maken. De 21-cm straling die wordt uitgezonden
door het waterstofgas zit namelijk verscholen in een overweldigende hoeveelheid radiostraling van
de Melkweg zelf. Dus in plaats van het direct observeren van het waterstofgas is er een andere
strategie ontworpen om toch uitspraken te kunnen doen over het vroege heelal. De huidige strategie
is om te kijken naar verschillen in de hoeveelheid 21-cm emissie, op verschillende schaal groottes.
Varieert de hoeveelheid neutraal waterstof op kleine afstanden of op grote afstanden? Maar ook
met deze observatiestrategie zal het een uitdaging voor de huidige en toekomstige telescopen om
het vroege heelal waar te nemen.
Een toekomstig telescoop project is de Square Kilometre Array (SKA) die onder andere ook op
zoek zal gaan naar het waterstofgas in het vroege heelal. In dit onderzoek zal worden gezocht naar
de richtlijnen waaraan het ontwerp van de SKA zal moeten voldoen om het waterstof te kunnen
meten. De gevoeligheid van huidige telescopen zal ook worden vergeleken om uit te vinden welke
al dusdanig gevoelig zijn om het waterstofgas te observeren.
Uit dit onderzoek blijkt dat de radiotelescopen MWA en PAPER niet gevoelig genoeg zijn om uit-
spraken te kunnen over de vorming van de eerste structuren tijdens de EoR. LOFAR heeft enige
gevoeligheid tot een zeker moment terug (roodverschuiving z = 10) in het heelal. Ontwikkelingen
aan LOFAR; het LOFAR-AARTFAAC systeem en het LOFAR-Superstation bieden interessante
mogelijkheden om deze structuren nu al te meten. Het Nederlandse gedeelte van LOFAR zou in
combinatie met het AARTFAAC-systeem verschillen in 21-cm emissie kunnen meten. Maar het
LOFAR-superstation zal de komende tien jaar waarschijnlijk het meest gevoelige instrument zijn
dat we hebben om het vroege heelal te kunnen observeren. Het bouwen van de SKA zal namelijk
tenminste 10 jaar in beslag nemen.
Richtlijnen voor een SKA-ontwerp zijn als volgt: compact, een dusdanig groot aantal radio-
antennes, waarvan de oppervlakte niet te groot mag zijn. Een te groot aantal stations zal echter te
veel computerkracht vergen om de data te kunnen verwerken. Er moet dus nog naar een optimale
balans tussen het antenne oppervlak en het aantal stations gezocht worden.
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Appendix A
Optimization Scheme

This appendix will describe an attempt to calculate detailed design parameters for an optimal
SKA lay-out which fits the EoR science requirements. However, there was not enough time to
successfully implement the optimization.
The optimization routine was chosen from the available functions in the SciPy libraries. The
fmin l bfgs b method was chosen for its speed, since the calculation of the errors on the power spec-
trum are already quite time consuming. The routine makes use of the limited-memory Broyden-
Fletcher-Goldfarb-Shanno (BFGS) method,which tries to calculate the hessian of the function
which is to be optimized. This gives the algorithm information about the shape of the function,
i.e. the extrema which we are after. The fmin l bfgs b also allows for the input of bounds, which
reduces the chance on runaway maximization of parameters such as the amount of antennas or
their physical area.
For the optimization a target function is required, which contains the demands for the EoR project.
The target function of choice is a 3-sigma certainty between the power spectrum at redshift z=8
and z=12. The difference between those power spectra must be three times as large as the error
on the power spectrum. Possible issues could arise because the 3-sigma certainty is demanded on
all scales, within the range of the given power spectrum. Which could to a decrease in S/N at
certain scales to gain minimal sensitivity at other scales. Overall the configuration will resemble
the target function the most, but in practice this configuration is less useful than a configuration
which does have a peak sensitivity at a certain k. Or on the other hand the function will maximize
sensitivity on smaller k which are easier measurable because most baselines are present at these
scales.
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Appendix B
Parameter File

#!/ usr / bin /env python
”””
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗User Information ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
This f i l e conta ins the c o n t r o l l i n g parameter f o r pyRadio . py ,
The parameters con t ro l which mode has been chosen :

Ca l cu la t i on o f Errors on the 21 cm Power spectrum
− Ca lcu la t e Total no ise = Sample Variance + System Noise
− Ca lcu la t e only system noise
− Ca lcu la t e only sample var iance

Ca l cu la t i on o f S/N using t o t a l no ise

Comparison between d i f f e r e n t array con f i gu ra t i on s by c a l c u l a t i n g s e v e r a l arrays in one run

Optimizat ion o f a s i n g l e array con f i gu ra t i on .

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ Ca lcu la t i on Mode∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
Set op t imi ze key to ”no ”.
Then choose whether you want to c a l c u l a t e the er ror s and s i gna l−to−noise .
I f on ly s i gna l−to−noise : s e t snr key to ” yes ” and e r ro rno i s e k ey to ”no ”.
I f BOTH S/N and noise : s e t snr key to ” yes ” and saveno i s e key to ” yes ”
I f only e r ror s on the power spectrum , s e t snr key to ”no ”:

− f o r t o t a l no ise : s e t t no i s e k e y to yes and s e t saveno i s e key to
yes

− i f a l s o separa te components necessary s e t save sy s key and/or
save sv key to ” yes ”

− f o r system noise ONLY se t eve ry th ing to ”no” excep t
sno i s e k ey and save sy s key

− f o r sample var iance ONLY se t e ve ry th ing to ”no” excep t
vno i s e key and save sv key

”””

f i l e n a m e s = [ ”SKA. param” ]
#enter the f i l enames between ”” and separated by commas .
#Everything be f o r e . param w i l l be used to name output f i l e s .
#By l e a v i n g [ ” ” ] , the code w i l l l ook f o r a l l . param f i l e s in parent d i r e c t o r y

#Ca lcu la t i on type
opt imize key = ” yes ”
snr key = ”no”
t n o i s e k e y = ”no”
s n o i s e k e y = ”no”
vno i s e key = ”no”

#opt imi ze key : op t imi za t i on ”yes ” or c a l c u l a t i o n ”no”
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#snr key : c a l c u l a t e s i g n a l to noise p r o f i l e and er ror s on P 21
#tno i s e k e y : c a l c u l a t e the t o t a l no ise on power
# spectrum ( Limited between power spectrum range )
#Note : Can save components and t o t a l no ise s e pa ra t e l y
#sno i s e k ey : ONLY ca l c u l a t e system noise , can
# take any range in k and frequency

#vno i s e key : ONLY ca l c u l a t e sample variance ,
# l im i t e d by power spectrum range

#Output and sav ing f o r f u r t h e r use
savesnr key = ”no”
saveno i s e key = ”no”
savesys key = ”no”
savesv key = ”no”

#savesnr key : save s i g n a l to noise p r o f i l e to . . . snr . t x t
#saveno i s e key : save t o t a l no ise to . . . t n o i s e . t x t
#save sy s key : save system noise component s e pa ra t e l y to . . . system . t x t
#save sv key : save sample var iance s e pa ra t e l y to . . . s va r . t x t

#Binning s i z e f o r s p h e r i c a l averag ing
de l tak = 0 .5

#Calcu la t i on ranges
#Upper and lower l im i t f o r frequency , c a l c u l a t i o n w i l l be done fo r i n t e r v a l s separated by
#the bandwidth . Unit : MHz
#Power spectrum in PowerSpecData2 . t x t l im i t s are 120 < nu <150 MHz
lowernu = 120 .
uppernu = 150 .

#Upper and lower l im i t f o r k , in log10 [ h Mpcˆ−1]
#Power spectrum in PowerSpecData2 . t x t l im i t s are −1.5 < l o g [ k ] < 0.8
lowerk = −1.5
upperk = 0 .8

#Choose which parameters shou ld be opt imized
#f l a g s f r e e = 1 f i x e d =0
Nantf lag = 0
r m i n f l a g = 0 .
r c f l a g = 0
r maxf lag = 1
power f lag = 1
Area f l ag = 1
t 0 f l a g = 0

#bounds f o r every parameter , i f no upper− lowerbound enter None
#lowerbound
Nantmin = 20 .
r minmin = 0 .
r cmin = 5 .
r maxmin = 1500
powermin = 0
Areamin = 20
t0min = 700 .

#upperbound
Nantmax = 120 .
r minmax = 0 .
r cmax = 1000 .
r maxmax = 10000 .
powermax = 5
Areamax = 10000
t0max = 1200 .
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#Cosmological parameters
#Hubble parameters
h = 0 .7
#mass dens i t y parameter
omega m = 0.3
#vacuum dens i t y parameter
omega l = 0 .7
#curvature dens i t y parameter
omega k = 1.−omega m − omega l

#Constants o f nature
#Speed o f l i g h t vacuum (m/s )
c = 2 .9979∗10 .∗∗8 .
#Hubble constant (km/s )/Mpc
H0 = 100.∗h
#frequency 21 cm at z=0 (Mhz)
nu21 = c /0.21∗10.∗∗ −6.
#Megaparsec (m)
Mpc = 3 .26∗365 .∗24 .∗3600 .∗ c
#Hubble Distance (Mpc)
Dh = c/H0∗10.∗∗ −3.

#The amount o f po in t s used fo r c a l c u l a t i o n
dbase = 100
drad = 100
dphi = 100
dk = 100
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Appendix C
pyRadio

#!/ usr / bin /env python
import numpy as n
from sc ipy . i n t e r p o l a t e import inte rp1d
from sc ipy . i n t e g r a t e import quad
from sc ipy . opt imize import f m i n l b f g s b as fminb
from matp lo t l i b import pyplot as p l t
from matp lo t l i b import rcParams
import os
import time
from parameters import ∗

#Star t Clock f o r time keeping
s t a r t = time . c l o ck ( )
#s e t t i n g Latex Math−t ex t f o r lay−out
rcParams [ ’ mathtext . de fau l t ’ ]= ’ r egu la r ’

#ignore zero d i v i s i o n warnings
n . s e t e r r ( d i v id e =’ ignore ’ )

#Create an array f o r l og f i l e
l o g f i l e = [ ]

#systeem temperatuur d e f i n i e r e n
de f Tsys (nu ) :

Tsys = 400 .∗ ( nu /(150 . ) )∗∗ −2 .55
re turn Tsys

#E f f e c t i v e t e l e s c o p e area
de f Aef f (nu , Area1 ) :

Aef f1 = Area1 ∗(nu /(120 . ) )∗∗ −2 .
r e turn Aef f1

#Redsh i f t
de f r e d s h i f t (nu ) :
#Redsh i f t formula

z = nu21/nu −1.
r e turn z

#i n v e r s e r e d s h i f t
de f f requency ( z ) :

f = nu21 /(1.+ z )
re turn f

40



#Comoving Dis tances
de f D( z min , z max ) :
#func t i on f o r i n t e g r a t i o n

E = lambda z : ( omega m∗(1.+ z )∗∗3 . + omega k ∗(1.+ z )∗∗2 . + omega l )∗∗−0.5
#i n t e g r a t i n g the func t i on

A = quad (E, z min , z max )
#S e l e c t i n g integrand from output and mult ip ly with hubble d i s t anc e

D = Dh∗A[ 0 ]
re turn D

#Normal i sat ion f o r Antenna d i s t r i b u t i o n
de f Normal ( Nant0 , D a0 , r c0 , r max0 , power0 ) :
#s e l e c t the r i g h t norma l i s a t i on
#when the s l ope has power=2

i f power0 == 2 . :
in tb = −D a0 ∗∗2 .∗n . p i + r c 0 ∗∗2 .∗n . p i + 2 .∗ r c 0 ∗∗2 .∗n . p i ∗n . l og ( r max0/ r c 0 )
N = Nant0/ intb

#check whether t h i s c o n f i g u r a t i o n i s p h y s i c a l l y p o s s i b l e : antenna f i l l i n g
i f N∗D a0 ∗∗2 .∗n . p i ∗( r c 0 ∗∗2.−D a0 ∗∗2.) >1.1∗n . p i ∗ r c 0 ∗ ∗ 2 . :

r e turn ” impos s ib l e ”
e l s e :

r e turn N
e l s e :

#f o r any other power
#I n t e g r a l over the antenna power law

intb = −(( r max0∗∗−power0 ∗ ( 2 .∗ r c 0 ∗∗power0∗ r max0 ∗∗2 . − 2 .∗D a0 ∗∗2 .∗ r max0∗∗power0 \
+ D a0 ∗∗2 .∗ r max0∗∗power0∗power0 − r c 0 ∗∗2 .∗ r max0∗∗power0∗power0 )∗n . p i ) \
/(−2.+ power0 ) )

#corre spond ing norma l i s a t i on f a c t o r
N = Nant0/ intb

#check whether t h i s c o n f i g u r a t i o n i s p h y s i c a l l y p o s s i b l e : antenna f i l l i n g
i f N∗D a0 ∗∗2 .∗n . p i ∗( r c 0 ∗∗2.−D a0 ∗∗2.) >1.1∗n . p i ∗ r c 0 ∗ ∗ 2 . :

r e turn ” impos s ib l e ”
e l s e :

r e turn N

#Antenna D i s t r i b u t i o n
de f N a ( r1 , Nant1 , D a1 , r c1 , r max1 , power1 ) :
#s p e c i f y a range f o r i n t e g r a t i o n over r
#c r e a t i n g n . pian empty array f o r number d e n s i t i e s

antenna1 = n . z e ro s ( l en ( r1 ) )
#s e l e c t i n g c o r r e c t norma l i s a t i on

Norm1 = Normal ( Nant1 , D a1 , r c1 , r max1 , power1 )
#loon . ping over the element o f input

f o r i 1 in range ( l en ( r1 ) ) :
i f D a1<= r1 [ i 1 ] <=r c 1 :

antenna1 [ i 1 ] = Norm1
e l i f r c1< r1 [ i 1 ] <r max1 :

antenna1 [ i 1 ] = Norm1∗( r c 1 / r1 [ i 1 ] )∗∗ power1
e l s e :

antenna1 [ i 1 ] = 0 .
re turn antenna1

#Function which t a b u l a t e s convo lut ion r e s u l t s
de f Table b ( Nant2 , r min2 , r c2 , r max2 , power2 , Area2 , nu2 ) :
#s p e c i f y a range f o r i n t e g r a t i o n over r

r2 = n . l i n s p a c e ( r min2 , r max2 , dbase )
#r2 = n . l og space (−2.∗ abs (n . log10 ( r min2 ) ) , 2∗n . log10 ( r max2 ) , dbase )
#s p e c i f y a range f o r b a s e l i n e U
bas2 = n . l og space (−2.∗ abs (n . log10 (n . s q r t ( Area2 ) ) ) , 2∗n . log10 ( r max2 ) , dbase )

#s p e c i f y a range f o r antenna convo lut ion over phi
phi2 = n . l i n s p a c e ( 0 . , 2 . ∗ n . pi , dphi )

#Create empty array f o r unnormalised r e s u l t s
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b a s e l i n e 2 = n . z e r o s ( ( l en ( nu2 ) , dbase ) )
#Create empty array f o r norma l i s a t i on va lue s

normal i s2 = n . z e r o s ( l en ( nu2 ) )
#check wheter c o n f i g u r a t i o n i s p h y s i c a l l y p o s s i b l e

check = Normal ( Nant2 , r min2 , r c2 , r max2 , power2 )
i f check == ” impos s ib l e ” :

r e turn ” impos s ib l e ”
e l s e :

f o r i 2 in range ( l en ( nu2 ) ) :
#c a l c u l a t e wavelength cor re spond ing to nu

l 2 = c/nu2 [ i 2 ]∗10.∗∗ −6.
#c a l c u l a t e maximum number o f b a s e l i n e s

Nbase2 = 0 . 5∗ ( Nant2 ∗∗2 . − Nant2 )
#c r e a t e array f o r unnormal ised b a s e l i n e dens i ty

unnorm2 = n . z e ro s ( dbase )
f o r j 2 in range ( dbase ) :

#c r e a t e array f o r i n t e g r a t i o n over phi
n ur2 = n . z e r o s ( l en ( r2 ) )
f o r o2 in range ( l en ( r2 ) ) :

#c a l c u l a t e | r−lambda∗U | f o r a c e r t a i n r and U f o r 0< phi<2Pi
a2 = n . s q r t ( r2 [ o2 ]∗∗2 . −2 .∗ l 2 ∗bas2 [ j 2 ]∗ r2 [ o2 ]∗n . cos ( phi2 ) \

+l 2 ∗∗2 .∗ bas2 [ j 2 ] ∗ ∗ 2 . )
#c a l c u l a t e cor re spond ing number o f antennae

b2 = N a ( a2 , Nant2 , r min2 , r c2 , r max2 , power2 )
#i n t e g r a t e over phi

n ur2 [ o2 ] = n . t rapz ( b2 , phi2 )
#Ca l cu l a t ing integrand f o r 0 < r < r max

c2 = 2 .∗n . p i ∗ r2 ∗N a ( r2 , Nant2 , r min2 , r c2 , r max2 , power2 )∗ n ur2
#i n t e g r a t i n g from 0 to r max
#save Number o f b a s e l i n e f o r c e r t a i n U in Table
#save number o f b a s e l i n e s f o r proper norma l i s a t i on

b a s e l i n e 2 [ i2 , j 2 ] = n . t rapz ( c2 , r2 )
#Removing a l l va lue s below the impos s ib l e b a s e l i n e d i s t r i b u t i o n
#d e f i n e the minimum b a s e l i n e

minbas2 = n . s q r t ( Area2 )/ l 2
#s e l e c t a l l i n d i c e s o f b a s e l i n e s below t h i s va lue

indmin2 = n . where ( bas2 < minbas2 )
#s e t dens i ty va lue s to zero

b a s e l i n e 2 [ i2 , indmin2 [ 0 ] ] = 0 .
#c a l c u l a t e integrand f o r i n t e g r a t i o n over u

e2 = 2 .∗n . p i ∗bas2∗ b a s e l i n e 2 [ i2 , : ]
#i n t e g r a t i n g over u

f2 = n . t rapz ( e2 , bas2 )
#c a l c u l a t e f requency dependent norma l i s a t i on

normal i s2 = Nbase2/ f2
b a s e l i n e 2 [ i2 , : ] = normal i s2 ∗ b a s e l i n e 2 [ i2 , : ]

r e turn b a s e l i n e 2

#Creat ing c a l l a b l e f u n c t i o n s which i n t e r p o l a t e s row o f Nbase f o r c o r r e c t f requency
de f N b ( nbase3 , nu3 , nuval3 , u3 , r max3 , Area3 ) :
#Spec i f y same range as in c a l c u l a t i o n the b a s e l i n e d i s t r i b u t i o n

bas3 = n . l og space (−2.∗ abs (n . log10 (n . s q r t ( Area3 ) ) ) , 2∗n . log10 ( r max3 ) , dbase )
#c a l c u l a t e d i f f e r e n c e o f input f r e q . with f requency range

d i f f 3 = abs ( nu3−nuval3 )
#f i n d i n g index at which d i f f e r e n c e i s minimum

ind3 = n . where ( d i f f 3 == min ( d i f f 3 ) )
#c a l c u l a t e wavelength cor re spond ing to f requency .

l 3 = c ∗10.∗∗ −6./ nuval3
#us ing index to i n t e r p o l a t e the d e s i r e d row o f nbase

base3 = inte rp1d ( bas3 , nbase3 [ ind3 [ 0 ] [ 0 ] , : ] )
#c r e a t i n g an empty array f o r output

l i n e 3 = n . z e r o s ( l en ( u3 ) )
#I n t e r p o l a t i o n can only handle u−va lue s in range , so need to check whether
#the u−va lue s match range

f o r i 3 in range ( l en ( u3 ) ) :
#check ing whether r equ i r ed u1 i s with in i n t e r p o l a t i o n range

i f −2.∗abs (n . log10 (n . s q r t ( Area3 )))< n . log10 ( u3 [ i 3 ] ) \
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and n . log10 ( u3 [ i 3 ] ) < 2 .∗n . log10 ( r max3 ) :
#sav ing r e s u l t f o r output

l i n e 3 [ i 3 ] = base3 ( u3 [ i 3 ] )
#i f b a s e l i n e i sn ’ t with in range

e l s e :
l i n e 3 [ i 3 ] = 0 .

#return r e s u l t f o r f u r t h e r c a l c u l a t i o n
re turn l i n e 3

#Powerspectrum of 21−cm s i g n a l as a func t i on o f f r e q . and k
de f P 21 (k , nu ) :
#import the power spectrum

data = n . l oadtx t (” PowerSpecData2 . txt ”)
#Extract r e d s h i f t va lue s from f i r s t row

zrange = data [ 0 , 1 : data . shape [ 1 ] ]
krange = data [ 1 : data . shape [ 0 ] , 0 ]

#c a l c u l a t e r e d s h i f t va lue cor respond ing to input f r e q .
znu = r e d s h i f t (nu )
i n t f r e q = n . z e r o s ( l en ( krange ) )
i f zrange [ 0 ] > znu or znu > zrange [ l en ( zrange )−1] :

znu = zrange [ n . where ( zrange−znu==min ( abs ( zrange−znu ) ) ) [ 0 ] [ 0 ] ]
p r i n t ”Warning f requency does not f i t power spectrum range ”
p r in t ” Redsh i f t z=”+s t r ( znu)+” w i l l be used . ”

#Create an i n t e r p o l a t i o n o f the power spectrum f o r a c e r t a i n new frequency
f o r i 21 in range ( l en ( krange ) ) :

i n t f r e q [ i 21 ] = inte rp1d ( zrange , data [ i 21 +1 ,1: data . shape [ 1 ] ] ) ( znu )
#I n t e r p o l a t e t h i s power spectrum over k−range , f o r d e s i r e d va lue s

p 21 = inte rp1d ( krange , i n t f r e q )
re turn p 21 ( k )

#Detector + Sample no i s e on the angular averaged power spectrum McQuinn [ 2 0 0 6 ]
de f Error ( Nant5 , r min5 , r c5 , r max5 , power5 , Area5 , B5 , t05 , k5 , nu5 ) :
#Ca lcu la te the s p h e r i c a l l y averaged e r r o r at a g iven f requency and mode k
#Create empty mathematica array f o r Noise va lue s

g l o b a l s aveno i s e key
g l o b a l save sys key
g l o b a l savesv key
tNoise5 = n . z e r o s ( ( l en ( k5 )∗ l en ( nu5 ) , 3 ) )
sNoise5 = n . z e r o s ( ( l en ( k5 )∗ l en ( nu5 ) , 3 ) )
vNoise5 = n . z e r o s ( ( l en ( k5 )∗ l en ( nu5 ) , 3 ) )

#c r e a t e empty python array f o r no i s e va lue s
PNoise5 = n . z e r o s ( ( l en ( nu5 ) , l en ( k5 ) ) )

#a r b i t r a r y counter f o r sav ing va lue s
count5 = 0

#use b a s e l i n e t ab l e func t i on to c a l c u l u a t e b a s e l i n e s
nbase5 = Table b ( Nant5 , r min5 , r c5 , r max5 , power5 , Area5 , nu5 )
i f nbase5 == ” impos s ib l e ” :

p r i n t ” This array c o n f i g u r a t i o n i s phys i c ca l y not p o s s i b l e : o v e r f i l l in antenna core ”
l o g f i l e . append (” O v e r f i l l f o r Nant=”+s t r ( Nant5)+” , r min=”+s t r ( r min5)+ \

” , r c=”+s t r ( r c 5 )+” , r max=”+s t r ( r max5)+” , s l ope=”+s t r ( power5 ) )
l o g g e r = open (” l o g f i l e . txt ” ,”w”)
f o r f a i l u r e in l o g f i l e :

l o g g e r . wr i t e (”%s \n” % f a i l u r e )
l o g g e r . c l o s e ( )
re turn ” impos s ib l e ”

e l s e :
#loon . ping over f requency and k range

f o r i 5 in range ( l en ( nu5 ) ) :
#minimum observ ing f requency (Mhz)

nu min5 = nu5 [ i 5 ] − 0 .5∗B5
#maximum observ ing f requency (Mhz)

nu max5 = nu5 [ i 5 ] + 0 .5∗B5
#minimum r e d s h i f t

z min5 = r e d s h i f t ( nu max5 )
#maximum r e d s h i f t
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z max5 = r e d s h i f t ( nu min5 )
#Real space depth (Mpc)

y5 = D( z min5 , z max5 )
#c a l c u l a t e r e d s h i f t

z5 = r e d s h i f t ( nu5 [ i 5 ] )
#c a l c u l a t e d i s t ance to source (Mpc)

x5 = D( 0 . , z5 )
#c a l c u l a t e cor re spond ing wavelength (m)

l 5 = c ∗10.∗∗ −6./ nu5 [ i 5 ]
#Real space volume

V5 = x5 ∗∗2 .∗ y5∗ l 5 ∗∗2 ./ Aef f ( nu5 [ i 5 ] , Area5 )
f o r j 5 in range ( l en ( k5 ) ) :

#c a l c u l a t e modes o f u
u5 = x5∗k5 [ j 5 ]∗n . s i n ( theta ) / ( 2 .∗ n . p i )

#c a l c u l a t e number d e n s i t i e s b a s e l i n e s
n5 = N b ( nbase5 , nu5 , nu5 [ i 5 ] , u5 , r max5 , Area5 )

#c a l c u l a t e observ ing t imes f o r mode k
t k5 = tk ( nu5 [ i 5 ] , l5 , n5 , Area5 , t05 )
i f t n o i s e k e y == ” yes ” or opt imize key== ” yes ” :

#c a l c u l a t e Noise cova r i ance s
C n5 = ( l 5 ∗∗2 .∗B5∗Tsys ( nu5 [ i 5 ] ) / Aef f ( nu5 [ i 5 ] , Area5 ) ) ∗ ∗ 2 . ∗ ( 1 0 . ∗ ∗ 6 . / ( B5∗ t k5 ) )

#c a l c u l a t e Sample Variance
C sv5 = P 21 ( k5 [ j 5 ] , nu5 [ i 5 ] ) ∗ l 5 ∗∗2 .∗B5∗∗2 ./ ( Aef f ( nu5 [ i 5 ] , Area5 ) \

∗x5 ∗∗2 .∗ y5 )∗ ( 2 .∗ n . p i ∗∗2 ./ k5 [ j 5 ] ∗ ∗ 3 . ) ∗ 1 0 . ∗ ∗ 6 .
#Number o f independent c e l l s

N c5 = Nce l l ( k5 [ j 5 ] , theta , y5 , V5)
#Error in s i g n a l due to Noise

ErrP5 = ( Aef f ( nu5 [ i 5 ] , Area5 )∗ x5 ∗∗2 .∗ y5 /( l 5 ∗∗2 .∗ (B5 ∗ 1 0 . ∗ ∗ 6 . ) ∗ ∗ 2 . ) ) \
∗ ( ( C sv5+C n5 )/n . s q r t ( N c5 ) )

sErrP5 = ( Aef f ( nu5 [ i 5 ] , Area5 )∗ x5 ∗∗2 .∗ y5 /( l 5 ∗∗2 .∗ (B5 ∗ 1 0 . ∗ ∗ 6 . ) ∗ ∗ 2 . ) ) \
∗ ( ( C n5 )/n . s q r t ( N c5 ) )

vErrP5 = ( Aef f ( nu5 [ i 5 ] , Area5 )∗ x5 ∗∗2 .∗ y5 /( l 5 ∗∗2 .∗ (B5 ∗ 1 0 . ∗ ∗ 6 . ) ∗ ∗ 2 . ) ) \
∗ ( ( C sv5 )/n . s q r t ( N c5 ) )

#Averaging t o t a l no i s e over theta us ing composite trapezium f o r numerica l i n t e g r a l
a5 = ErrP5∗∗−2.
b5 = n . t rapz ( a5 , theta )

#averag ing system no i s e only
sa5 = sErrP5∗∗−2.
sb5 = n . t rapz ( sa5 , theta )

#averag ing sample var i ance only
va5 = vErrP5∗∗−2.
vb5 = n . trapz ( va5 , theta )

#S p h e r i c a l l y averaged t o t a l e r r o r
sigma5 = 1 ./ n . s q r t ( b5 )∗1 0 .∗∗6 .

#s p h e r i c a l l y averaged system no i s e
ssigma5 = 1 ./ n . s q r t ( sb5 )∗1 0 .∗∗6 .

#s p h e r i c a l l y averaged sample var i ance
vsigma5 = 1 ./ n . s q r t ( vb5 )∗1 0 .∗∗6 .

#c o r r e c t i n g to get mkˆ2 dimension
#t o t a l no i s e

p l o tva lue5 = sigma5 ∗( k5 [ j 5 ] ∗ ∗ 3 . / ( 2 . ∗ n . p i ∗∗2 . ) )
#system no i s e

s p l o t v a l u e 5 = ssigma5 ∗( k5 [ j 5 ] ∗ ∗ 3 . / ( 2 . ∗ n . p i ∗∗2 . ) )
#sample var iance

vp lo tva lue5 = vsigma5 ∗( k5 [ j 5 ] ∗ ∗ 3 . / ( 2 . ∗ n . p i ∗∗2 . ) )
#Creat ing 2 dimens iona l mathematica array
#k−entry f o r mathematica array

tNoise5 [ count5 , 0 ] = k5 [ j 5 ]
#frequency entry f o r mathematica array

tNoise5 [ count5 , 1 ] = nu5 [ i 5 ]
#r e s u l t entry f o r mathematica array

tNoise5 [ count5 , 2 ] = p lo tva lue5
#system no i s e t abu l a t i on

sNoise5 [ count5 , 0 ] = k5 [ j 5 ]
sNoise5 [ count5 , 1 ] = nu5 [ i 5 ]
sNoise5 [ count5 , 2 ] = s p l o t v a l u e 5

#sample var iance tabu l a t i on
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vNoise5 [ count5 , 0 ] = k5 [ j 5 ]
vNoise5 [ count5 , 1 ] = nu5 [ i 5 ]
vNoise5 [ count5 , 2 ] = vp lo tva lue5
count5 +=1

#c r e a t i n g a 2 dimens iona l python array
PNoise5 [ i5 , j 5 ] = p lo tva lue5

i f s n o i s e k e y == ” yes ” :
s aveno i s e key = ”no”
savesys key = ” yes ”
savesv key = ”no”

#c a l c u l a t e Noise cova r i ance s
C n5 = ( l 5 ∗∗2 .∗B5∗Tsys ( nu5 [ i 5 ] ) / Aef f ( nu5 [ i 5 ] , Area5 ) ) ∗ ∗ 2 . ∗ ( 1 0 . ∗ ∗ 6 . / ( B5∗ t k5 ) )

#Number o f independent c e l l s
N c5 = Nce l l ( k5 [ j 5 ] , theta , y5 , V5)

#Error in s i g n a l due to Noise
sErrP5 = ( Aef f ( nu5 [ i 5 ] , Area5 )∗ x5 ∗∗2 .∗ y5 /( l 5 ∗∗2 .∗ (B5 ∗ 1 0 . ∗ ∗ 6 . ) ∗ ∗ 2 . ) ) \

∗ ( ( C n5 )/n . s q r t ( N c5 ) )
#averag ing system no i s e only

sa5 = sErrP5∗∗−2.
sb5 = n . t rapz ( sa5 , theta )

#s p h e r i c a l l y averaged system no i s e
ssigma5 = 1 ./ n . s q r t ( sb5 )∗1 0 .∗∗6 .

#c o r r e c t i n g to get mkˆ2 dimension
s p l o t v a l u e 5 = ssigma5 ∗( k5 [ j 5 ] ∗ ∗ 3 . / ( 2 . ∗ n . p i ∗∗2 . ) )

#Creat ing 2 dimens iona l mathematica array
#system no i s e t abu l a t i on

sNoise5 [ count5 , 0 ] = k5 [ j 5 ]
sNoise5 [ count5 , 1 ] = nu5 [ i 5 ]
sNoise5 [ count5 , 2 ] = s p l o t v a l u e 5
count5 +=1

i f vno i s e key == ” yes ” :
s aveno i s e key = ”no”
savesys key = ”no”
savesv key = ” yes ”

#c a l c u l a t e Sample Variance
C sv5 = P 21 ( k5 [ j 5 ] , nu5 [ i 5 ] ) ∗ l 5 ∗∗2 .∗B5∗∗2 ./ ( Aef f ( nu5 [ i 5 ] , Area5 ) \

∗x5 ∗∗2 .∗ y5 )∗ ( 2 .∗ n . p i ∗∗2 ./ k5 [ j 5 ] ∗ ∗ 3 . ) ∗ 1 0 . ∗ ∗ 6 .
#Number o f independent c e l l s

N c5 = Nce l l ( k5 [ j 5 ] , theta , y5 , V5)
vErrP5 = ( Aef f ( nu5 [ i 5 ] , Area5 )∗ x5 ∗∗2 .∗ y5 /( l 5 ∗∗2 .∗ (B5 ∗ 1 0 . ∗ ∗ 6 . ) ∗ ∗ 2 . ) ) \

∗ ( ( C sv5 )/n . s q r t ( N c5 ) )
#averag ing sample var i ance only

va5 = vErrP5∗∗−2.
vb5 = n . trapz ( va5 , theta )

#s p h e r i c a l l y averaged sample var i ance
vsigma5 = 1 ./ n . s q r t ( vb5 )∗1 0 .∗∗6 .

#c o r r e c t i n g to get mkˆ2 dimension
#sample var iance

vp lo tva lue5 = vsigma5 ∗( k5 [ j 5 ] ∗ ∗ 3 . / ( 2 . ∗ n . p i ∗∗2 . ) )
#Creat ing 2 dimens iona l mathematica array

#sample var iance tabu l a t i on
vNoise5 [ count5 , 0 ] = k5 [ j 5 ]
vNoise5 [ count5 , 1 ] = nu5 [ i 5 ]
vNoise5 [ count5 , 2 ] = vp lo tva lue5
count5 +=1

#Create header conta in ing used parameters
hn = ”Nant=”+s t r ( Nant5 )
hm = ”\nr min=”+s t r ( r min5 )
hrc = ”\ nr c=”+s t r ( r c 5 )
hrx = ”\nr max=”+s t r ( r max5 )
hp = ”\ ns lope=”+s t r ( power5 )
ha = ”\nA p=”+s t r ( Area5 )
hb = ”\nB=”+s t r (B5)
ht = ”\nt0=”+s t r ( t05 )
hT = ””
f o r ih in range ( l en (nu ) ) :

hT += ”\nTsys(”+ s t r (nu [ ih ])+”)=”+ s t r ( Tsys (nu [ ih ] ) )
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header5 = hn+hm+hrc+hrx+hp+ha+hb+ht+hT
i f s aveno i s e key == ” yes ” :

save1t = ’ t n o i s e . txt ’
save2t = array name+save1t

#save no i s e r e s u l t s f o r p l o t t i n g in mathematica
n . savetxt ( save2t , tNoise5 )
f i d = open ( array name+” param . txt ” , ’w’ )
f i d . wr i t e ( header5 +’\n ’ )
f i d . c l o s e ( )

i f s ave sys key == ” yes ” :
save1s = ’ system . txt ’
save2s = array name+save1s
n . savetxt ( save2s , sNoise5 )
f i d = open ( array name+” param . txt ” , ’w’ )
f i d . wr i t e ( header5 +’\n ’ )
f i d . c l o s e ( )

i f savesv key == ” yes ” :
save1v = ’ sva r . txt ’
save2v = array name+save1v
n . savetxt ( save2v , vNoise5 )
f i d = open ( array name+” param . txt ” , ’w’ )
f i d . wr i t e ( header5 +’\n ’ )
f i d . c l o s e ( )

#return Python array conta in ing t o t a l no i s e
re turn PNoise5

#Average observ ing time mode k
de f tk ( nu2 , l2 , n2 , Area2 , t02 ) :

tk2 = t02 ∗3600.∗ Aef f ( nu2 , Area2 )/ l 2 ∗∗2 .∗ n2
return tk2

de f Nce l l ( k4 , theta4 , y4 , V4 ) :
a4 = 2 .∗n . p i /( k4∗n . cos ( theta4 ) )

#i d e n t i f y i n g whether input i s array− l i k e or a f l o a t
i f type ( theta4 ) != type (n . z e r o s ( 1 ) ) :

#when mode f i t s in survey volume
i f a4 <= y4 :

Nce l l 4 = 2 .∗n . p i ∗k4 ∗∗2 .∗n . s i n ( theta4 )∗ de l tak ∗k4∗V4/( 2 .∗n . p i )∗∗3 .
#when mode does not f i t in survey volume

e l s e :
Nce l l 4 = 0 .

e l s e :
#f o r array entry

Nce l l 4 = n . z e r o s ( l en ( theta4 ) )
f o r i 4 in range ( l en ( theta4 ) ) :

#when mode f i t s in survey volume
i f a4 [ i 4 ] <= y4 :

Nce l l 4 [ i 4 ] = 2 .∗n . p i ∗k4 ∗∗2 .∗n . s i n ( theta4 [ i 4 ] ) ∗ de l tak ∗k4∗V4/( 2 .∗n . p i )∗∗3 .
#when mode does not f i t in survey volume

e l s e :
Nce l l 4 [ i 4 ] = 0 .

re turn Nce l l 4

de f SNR( Nant6 , r min6 , r c6 , r max6 , power6 , Area6 , B6 , t06 , k6 , nu6 ) :
#c r e a t e empty mathematica array f o r S/N r e s u l t s

SNR6 = n . z e r o s ( ( l en ( nu6 )∗ l en ( k6 ) , 3 ) )
#c r e a t e empty python array f o r S/N r e s u l t s

r a t i o 6 = n . z e r o s ( ( l en ( nu6 ) , l en ( k6 ) ) )
#c a l c u l a t e the Noise + Sample Noise

no i s e6 = Error ( Nant6 , r min6 , r c6 , r max6 , power6 , Area6 , B6 , t06 , k6 , nu6 )
#a r b i t r a r y counter f o r c r e a t i n g mathematica array
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count6 = 0
#c a l c u l a t i n g s i g n a l / no i s e f o r f r e q . and k

f o r i 6 in range ( l en ( nu6 ) ) :
f o r j 6 in range ( l en ( k6 ) ) :

#k−entry f o r mathematica array
SNR6 [ count6 , 0 ] = n . log10 ( k6 [ j 6 ] )

#frequency entry f o r mathematica array
SNR6 [ count6 , 1 ] = nu6 [ i 6 ]

#c a l c u l a t e s i g n a l / no i s e
snr6 = P 21 ( k6 [ j 6 ] , nu6 [ i 6 ] ) / no i s e6 [ i6 , j 6 ]

#log10 ( s i g n a l / no i s e ) entry f o r mathematica array f o r p l o t t i n g
SNR6 [ count6 , 2 ] = n . log10 ( snr6 )

#s i g n a l / no i s e entry f o r python array f o r f u r t h e r c a l c u l u t i o n
r a t i o 6 [ i6 , j 6 ] = snr6
count6 += 1

#Create header conta in ing used parameters
hn = ”Nant=”+s t r ( Nant6 )
hm = ”\nr min=”+s t r ( r min6 )
hrc = ”\ nr c=”+s t r ( r c 6 )
hrx = ”\nr max=”+s t r ( r max6 )
hp = ”\ ns lope=”+s t r ( power6 )
ha = ”\nA p=”+s t r ( Area6 )
hb = ”\nB=”+s t r (B6)
ht = ”\nt0=”+s t r ( t06 )
hT = ””
f o r ih in range ( l en (nu ) ) :

hT += ”\nTsys(”+ s t r (nu [ ih ])+”)=”+ s t r ( Tsys (nu [ ih ] ) )
header6 = hn+hm+hrc+hrx+hp+ha+hb+ht+hT
i f savesnr key == ” yes ” :

save1 = ’ s n r . txt ’
save2 = array name+save1

#export mathematica array
n . save txt ( save2 , r a t i o 6 )
f i d = open ( array name+” param . txt ” , ’w’ )
f i d . wr i t e ( header6 +’\n ’ )
f i d . c l o s e ( )

#return python array
re turn r a t i o 6

de f TSNR( nu7 , k7 ) :
#c r e a t e empty array f o r every k and frequency

t a r g e t = n . z e r o s ( ( l en ( nu7 ) , l en ( k7 ) ) )
#d e f i n e t a r g e t S/N f o r every k and f r e q . as 2

t a r g e t += 3 .
re turn t a r g e t

#Function to be minimal ized : the d i f f e r e n c e between SNR and TSNR
def Chi ( Nant8 , r min8 , r c8 , r max8 , power8 , Area8 , B8 , t08 , k8 , nu8 ) :
#c a l c u l a t e S/N accord ing to f r e e parameters per f r e q . and k

#snr8 = SNR( Nant8 , r min8 , r c8 , r max8 , power8 , Area8 , B8 , t08 , k8 , nu8 )
p8 21 = P 21 ( k8 , lowernu )
p12 21= P 21 ( k8 , uppernu )
dp = abs ( p8 21−p12 21 )
e r r o r 8= Error ( Nant8 , r min8 , r c8 , r max8 , power8 , Area8 , B8 , t08 , k8 , nu8 )
snr8 = n . z e r o s ( ( l en ( nu8 ) , l en ( k8 ) ) )
f o r i 8 in range ( l en (nu ) ) :

snr8 [ i8 , : ] = dp/ e r r o r 8 [ i8 , : ]
#c r e a t e t a r g e t va lue s

t snr8 = TSNR( nu8 , k8 )
#c a l c u l a t e d i f f e r e n c e s squared

a8 = ( snr8−t snr8 )∗∗2 .
#c r e a t e an empty array f o r ch i per f requency

#b5 = n . z e ro s ( l en (nu ) )
#b5 [ i 7 ] = n . t rapz ( a5 [ i7 , : ] , k )

#i f not i n t e r e s t e d in a p a r t i c u l a r f requency or k−range
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ch i8 = n . sum( a8 )
re turn ch i8

#communication func t i on between o p t i m a l i s a t i o n rou t in e and Chi
de f Communicate ( x ) :
#c r e a t e an empty array with l ength o f number o f parameters

p0 = n . z e r o s ( l en ( f l a g ) )
#a r b i t r a r y counter

count9 = 0
shoutput = [ ]

#d i s t r i b u t i n g v a r i a b l e s accord ing to input o f Chi
f o r i 9 in range ( l en ( f l a g ) ) :

#i f parameter i s to be opt imized
i f f l a g [ i 9 ] == 1 :

#s e l e c t parameter from o p t i m a l i s a t i o n input
p0 [ i 9 ] = x [ count9 ]
shoutput . append ( names [ i 9 ]+”: ”+s t r ( x [ count9 ] ) )
count9 += 1

#i f parameter i s f i x e d s e l e c t i n i t i a l input
e l s e :

p0 [ i 9 ] = param [ i 9 ]
#pr i n t shoutput
p r i n t ””
p r i n t ”Nant =”+s t r ( p0 [ 0 ] )
p r i n t ”rmin =”+s t r ( p0 [ 1 ] )
p r i n t ” rc =”+s t r ( p0 [ 2 ] )
p r i n t ”rmax =”+s t r ( p0 [ 3 ] )
p r i n t ” s l ope =”+s t r ( p0 [ 4 ] )
p r i n t ”Area =”+s t r ( p0 [ 5 ] )
p r i n t ”B =”+s t r ( p0 [ 6 ] )
p r i n t ” t =”+s t r ( p0 [ 7 ] )
r e s u l t 9 = Chi ( p0 [ 0 ] , p0 [ 1 ] , p0 [ 2 ] , p0 [ 3 ] , p0 [ 4 ] , p0 [ 5 ] , p0 [ 6 ] , p0 [ 7 ] , k , nu )
now9 = time . c l o ck ( )
p r i n t ”Time e lapsed s i n c e execut ion ”+s t r (now9−s t a r t )+” seconds ”
re turn r e s u l t 9

#Opt ima l i sa t i on rou t ine
de f Optimal ( opt i , bound ) :

optimum = fminb ( Communicate , opt i , approx grad =1,bounds=(bound ) )
count10 = 0
output10 = [ ]
f o r i 10 in range ( l en ( f l a g ) ) :

i f f l a g [ i 10 ] == 1 :
keys10 = s t r ( names [ i 10 ] )+” : ”+s t r ( optimum [ 0 ] [ count10 ] )
output10 . append ( keys10 )
p r i n t keys10
count10 += 1

pr in t optimum [ 2 ]
r e s u l t s 1 0 = open ( array name+” o p t f i l e . txt ” ,”w”)
f o r key10 in output :

r e s u l t s 1 0 . wr i t e (”%s \n” % key10 )
r e s u l t s 1 0 . wr i t e (”%s \n” % ” value at minimum : ”+s t r ( optimum [ 2 ] ) )
r e s u l t s 1 0 . c l o s e ( )

#Ca l cu l a t i on range
#s p e c i f y i n g a range f o r k
k = n . l og space ( lowerk , upperk , dk )
#d e f i n e a range f o r theta f o r averag ing over c y l i n d r i c a l averag ing
theta = n . l i n s p a c e ( 0 . , n . pi , 2 0 )

#Steps f o r communicating with o p t i m a l i s a t i o n rou t in e
#l i s t conta in ing names f o r a n i c e output
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names = [ ” Number o f antennae ” ,”Minimum Radius ” ,” Core rad iu s ” ,” Outer rad iu s ” ,
” Slope o f antenna d i s t r i b u t i o n ” , ” E f f e c t i v e antenna area ” ,
”Bandwidth ” ,” I n t e g r a t i o n time ” ]

#Combining a l l va lue s f o r f l a g s , bounds in a vec to r
f l a g = n . array ( [ Nantf lag , r min f l ag , r c f l a g , r maxf lag , powerf lag , Areaf lag , 0 , t 0 f l a g ] )
Minimum = n . array ( [ Nantmin , r minmin , r cmin , r maxmin , powermin , Areamin , 0 , t0min ] )
Maximum = n . array ( [ Nantmax , r minmax , r cmax , r maxmax , powermax , Areamax , 0 , t0max ] )

##############################USER−i n t e r a c t i o n part##############################
#Uses in fo rmat ion in parameters . py and param f i l e s to determine course o f a c t i on#
#################################################################################

i f f i l e n a m e s == [ ” ” ] :
i f opt imize key == ” yes ” :

p r i n t ”pyRadio cannot opt imize f o r s e v e r a l array inputs , p l e a s e s e t ” +
” opt imize key to no”

p r in t ” Continuing no i s e or S/N c a l c u l a t i o n s f o r a l l . param f i l e s . ”
dir names = os . l i s t d i r ( ’ . ’ )
t r a c k e r = 0
f o r f i l e in dir names :

i f f i l e . endswith ( ” . param ” ) :
t r a c k e r +=1
array name = os . path . s p l i t e x t ( f i l e ) [ 0 ]
param = n . l oadtx t ( f i l e )
i f snr key == ” yes ” :

t n o i s e k e y = ” yes ”
savesnr key = ” yes ”
p r i n t ” Ca l cu l a t ing S igna l / Noise and Noise f o r ”+ f i l e
#s p e c i f y i n g a range f o r c e n t r a l obse rv ing f r e q .
nu = n . l i n s p a c e ( lowernu , uppernu , ( uppernu−lowernu )/ param [6 ]+1)
snr = SNR( param [ 0 ] , param [ 1 ] , param [ 2 ] , param [ 3 ] , param [ 4 ] , param [ 5 ] , param [ 6 ]
, param [ 7 ] , k , nu )

e l i f t n o i s e k e y == ” yes ” or s n o i s e k e y == ” yes ” or vno i s e key == ” yes ” :
p r i n t ” Ca l cu l a t ing Noise f o r ”+ f i l e
#s p e c i f y i n g a range f o r c e n t r a l obse rv ing f r e q .
nu = n . l i n s p a c e ( lowernu , uppernu , ( uppernu−lowernu )/ param [6 ]+1)
e r r o r = Error ( param [ 0 ] , param [ 1 ] , param [ 2 ] , param [ 3 ] , param [ 4 ] , param [ 5 ]
, param [ 6 ]
, param [ 7 ] , k , nu )

e l s e :
p r i n t ”No Ca l cu l a t i on keys were s e t to yes , what are you expect ing from me?”
pr in t ” Please s e t a c a l c u l a t i o n key to yes , then I ’ l l do some work f o r you”

now1 = time . c l o ck ( )
p r i n t ” Elapsed time s i n c e execut ion ”+s t r (now1−s t a r t )+” seconds ”

i f t r a c k e r == 0 :
p r i n t ”No . param f i l e s were found , i f you want c a l c u l a t i o n s p l e a s e ” ,
” ente r you array parameters in a . param f i l e ”

e l s e :
i f l en ( f i l e n a m e s ) != 1 and opt imize key == ” yes ” :

p r i n t ”pyRadio cannot opt imize f o r mu l t ip l e array inputs ”
p r i n t ” Please some f i l e s in the f i l e n a m e s l i s t ”
p r i n t ”Thank You , Goodbye”

e l i f l en ( f i l e n a m e s ) == 1 and opt imize key == ” yes ” :
p r i n t ” S ta r t i ng opt imiza t i on with i n i t i a l parameters g iven in ” + f i l e n a m e s [ 0 ]
array name = os . path . s p l i t e x t ( f i l e n a m e s [ 0 ] ) [ 0 ]
param = n . l oadtx t ( f i l e n a m e s [ 0 ] )
nu = n . l i n s p a c e ( lowernu , uppernu , ( uppernu−lowernu )/ param [6 ]+1)

#c r e a t e l i s t with o p t i m a l i s a t i o n s t a r t i n g po in t s
op t i = [ ]

#c r e a t e l i s t with corre spond ing o p t i m a l i s a t i o n bounds
bound = [ ]
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f o r i 10 in range ( l en ( f l a g ) ) :
i f f l a g [ i 10 ] == 1 :

op t i . append ( param [ i 10 ] )
bound . append ( (Minimum [ i10 ] ,Maximum[ i10 ] ) )

s aveno i s e key = ”no”
savesys key = ”no”
savesv key = ”no”
Optimal ( opt i , bound )

e l s e :
t r a c k e r = 0
f o r f i l e in f i l e n a m e s :

i f ( f i l e . endswith ( ” . param ” ) ) :
t r a c k e r += 1
array name = os . path . s p l i t e x t ( f i l e ) [ 0 ]
param = n . l oadtx t ( f i l e )
i f snr key == ” yes ” :

t n o i s e k e y = ” yes ”
savesnr key = ” yes ”
p r i n t ” Ca l cu l a t ing S igna l / Noise and Noise f o r ”+ f i l e

#s p e c i f y i n g a range f o r c e n t r a l obse rv ing f r e q .
nu = n . l i n s p a c e ( lowernu , uppernu , ( uppernu−lowernu )/ param [6 ]+1)
snr = SNR( param [ 0 ] , param [ 1 ] , param [ 2 ] , param [ 3 ] , param [ 4 ] , param [ 5 ]
, param [ 6 ] , param [ 7 ] , k , nu )

e l i f t n o i s e k e y == ” yes ” or s n o i s e k e y == ” yes ” or vno i s e key == ” yes ” :
p r i n t ” Ca l cu l a t ing Noise f o r ”+ f i l e

#s p e c i f y i n g a range f o r c e n t r a l obse rv ing f r e q .
nu = n . l i n s p a c e ( lowernu , uppernu , ( uppernu−lowernu )/ param [6 ]+1)
e r r o r = Error ( param [ 0 ] , param [ 1 ] , param [ 2 ] , param [ 3 ] , param [ 4 ] , param [ 5 ]
, param [ 6 ] , param [ 7 ] , k , nu )

e l s e :
p r i n t ”No Ca l cu l a t i on keys were s e t to yes , what are you expect ing from me?”
pr in t ” Please s e t a c a l c u l a t i o n key to yes , then I ’ l l do some work f o r you”

now2 = time . c l o ck ( )
p r i n t ”Time e lapsed s i n c e execut ion ”+s t r (now2−s t a r t )+” seconds ”

i f t r a c k e r == 0 . :
p r i n t ”No . param f i l e s were found , i f you want c a l c u l a t i o n s ” ,
” p l e a s e ente r you array parameters in a . param f i l e ”

end = time . c l o ck ( )
p r i n t ” Total time e lapsed : ”+s t r ( end−s t a r t )+” seconds ”
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