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Abstract

This report deals with robust synchronization of undirected multi-agent networks with
uncertain agent dynamics. Given an undirected network with identical nominal dynamics
for each agent, we allow uncertainty in the form of coprime factor perturbations of the
transfer matrix of the agent dynamics. We assume that these perturbations are stable and
have H∞-norm that is bounded by some a priori given desired tolerance. In this report,
we derive state space equations for dynamic observer based protocols that achieve robust
synchronization for all such perturbations. We show that robust synchronization of the
network by the dynamic protocol is equivalent to robust stabilization of a single linear
system by all controllers from a related finite set of feedback controllers. Our protocols
are expressed in terms of real symmetric solutions to certain algebraic Riccati equations,
and contain weighting factors depending on the eigenvalues of the graph Laplacian. We
show that in this class of dynamic protocols, one can achieve a guaranteed tolerance that
is proportional to the square root of the quotient of the smallest and the largest eigenvalue
of the graph Laplacian.
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Chapter 1

Introduction

Recent years have shown an increased interest in networks of systems and distributed
control. Much research has been done on control of networked multi-agent systems us-
ing only locally available information. A multi-agent system is a dynamical system that
consists of multiple input-output systems that interact by interchanging information lo-
cally. The input-output systems are called the agents of the network. The possibility
of interconnection between the agents of the network is represented by a graph, called
the network graph. The vertices of the network graph represent the agents, while the
edges of the graph represent the interaction topology. The network graph can be either
undirected or directed, depending on the context. In this report, we assume that the
network graph is undirected. An important object in the theory of multi-agent systems is
the Laplacian matrix of the network graph. Important properties of networked systems
can be expressed in terms of the spectrum of the Laplacian, see [4], [12].

In the network, each agent exchanges information with its neighbors. For a given form
of this information, the overall dynamics of the network is determined by the dynamics
of the individual agents together with the interconnection with their neighbors. A form
of information exchange is called a protocol. It is desired that these protocols use only
locally available information. Such a protocol works as a feedback controller on the overall
network, while the feedback processor for each agent uses only information available from
its neighbors. In the theory of networked multi-agent systems, an important problem is
the design of protocols that yield a desired behavior of the network as a whole.

Different problem formulations from various areas of application involving intercon-
nected dynamical systems that exchange output information can be cast into the multi-
agent system framework. One such well-known problem formulation is the consensus
problem. This problem has been extensively studied in [7] and [8]. More recent work
considering this problem can be found in [5], [1]. In this set-up, the agents only exchange
information with their neighbors. The aim of this exchange of information is to reach
agreement on certain quantities that depend on the internal states of all agents. A com-
munication protocol that achieves this agreement is said to achieve consensus. Strongly
related to the consensus problem is the synchronization problem. In this problem, the
agents have identical dynamics and the goal is to establish conditions under which the
states of all agents converge to a single trajectory. If this is indeed the case, the network
is said to be synchronized.

The protocols used to obtain synchronization are only allowed to use relative state or
output information of the neighboring agents to achieve synchronization. If the state or
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relative state of each agent is available, a static protocol is sufficient to obtain synchro-
nization. However, sometimes the state or the relative state can not be obtained directly.
In this case, one can use an observer based protocol, which consists of a dynamic part that
acts as an observer for the state or relative state of each agent and a static part that feeds
back the estimated state or relative state to the agents. In this report, we will provide
necessary and sufficient conditions for the existence of such protocols. We will give state
space representations for observers that estimate either the state or the relative state of
the agents and will give protocols that use these observers to achieve synchronization.

Next, we will extend the results on synchronization using observer based protocols to
the problem of robust synchronization of linear multi-agent systems. In this situation,
the agents of the system share identical nominal dynamics. However, the dynamics of
each agent contains an uncertainty in the sense that the transfer matrix of each agent is
a coprime factor perturbed variation of the nominal transfer matrix. We assume that this
perturbation is stable and is bounded in H∞-norm by an a priori given tolerance. The
problem of robust synchronization is to find conditions under which there exist dynamic
protocols that synchronize the network under all such allowed perturbations of the agent
dynamics.

For networks in which the uncertainties are modeled by additive perturbation of the
agent dynamics, conditions for the existence of robustly synchronizing dynamic protocols
and methods to obtain such protocols were established in [10]. In this report, we will
extend these results to networks with coprime factor perturbed agent dynamics. We will
show that these protocols depend on the nominal agent dynamics as well as the smallest
and largest eigenvalue of the Laplacian of the network graph. For a given network and
nominal agent dynamics one wants to find a maximally permitted tolerance for which
there exist robustly synchronizing dynamic protocols. In this report, we will show that
for undirected graphs, using this class of dynamic observer based protocols, one can obtain
a guaranteed synchronization radius that is proportional to the square root of the quotient
of the smallest and largest eigenvalue of the graph Laplacian.

The outline of this report is as follows. In Section 2, we introduce the notation that
will be used throughout this report. We will also introduce some basic graph theory,
specifically on the graph Laplacian, that will be needed in the rest of this report. Finally,
we introduce a version of the bounded real lemma, that will be instrumental in the
proof of our main result on robust synchronization. In Section 3 we provide state space
representations for observers for the absolute and relative state of the agents. In Section 4
we will use these observers to construct a dynamic protocol that synchronizes the network
and establish conditions under which such protocols exist. Next, in Section 5 we explain
the theory behind coprime factor perturbation of transfer matrices. In Section 6, we will
formulate the problem of robust synchronization under coprime factor perturbation of
the nominal agent dynamics. We show that the problem is equivalent to simultaneous
robust stabilization of a single linear system by all controllers from a finite set of related
controllers. Then, in Section 7 we formulate our main result and give conditions under
which there exist dynamic protocols that robustly synchronize the network. We will
provide methods to compute such protocols and show how they depend on the nominal
agent dynamics and the smallest and largest eigenvalue of the graph Laplacian.
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Chapter 2

Preliminaries

In this report we consider multi-agent systems whose interconnection structures are
described by undirected unweighted graphs. An undirected graph consists of a pair
G = (V, E), where V = {1, 2, . . . , p} is the set of nodes or vertices, and where E ⊂ V ×V is
the set of edges. A pair (i, j) ∈ E , with i, j ∈ V and i 6= j, represents an edge from node i
to node j. For an undirected graph, if (i, j) ∈ E then also (j, i) ∈ E . An undirected graph
is said to be connected if for any pair of distinct nodes i, j ∈ V there exists a path from i
to j. For a given vertex i, the neighboring set Ni is defined by Ni := {j ∈ V | (i, j) ∈ E}.
The degree of a vertex i is denoted by deg(i) and is defined as deg(i) = card(Ni). The
Laplacian matrix L of a graph G with p nodes has size p× p and is defined by

Li,j =


deg(i) if i = j,

−1 if (i, j) ∈ E ,
0 otherwise.

The Laplacian of an undirected graph is symmetric and consequently has real eigenvalues.
For an undirected graph all eigenvalues of the Laplacian are non-negative. The graph is
connected if and only if zero is a simple eigenvalue, with a corresponding right eigenvector
the p-dimensional vector with all entries equal to one. We denote this vector by 1p. We
order the eigenvalues λi for i = 1, 2, . . . , p of the Laplacian of a connected graph as

0 = λ1 < λ2 ≤ . . . ≤ λp.

Also, since the Laplacian is symmetric, it can be diagonalized by an orthogonal transfor-
mation U that brings it to the following form:

UTLU =


0 0 . . . 0
0 λ2 . . . 0
...

...
. . .

...
0 0 . . . λp

 .

In this report, we denote the set of all proper and stable rational matrices by RH∞.
If G ∈ RH∞, then let ||G||∞ denote its H∞-norm, ||G||∞ = sup<(λ)≥0 ||G(λ)||. A square
matrix H ∈ Rn×n is called Hurwitz if all its eigenvalues have strictly negative real part.
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2.1 Notation

Let R denote the field of real numbers, Rn the n-dimensional Euclidean space and Rn×n
the space of n × n real matrices. Denote the field of complex numbers by C and let
<(ρ) denote the real part of the complex number ρ. Let Ip denote the identity matrix of
dimension p and I the identity matrix of appropriate dimension. The tensor or Kronecker
product of matrices A ∈ Rm×n and B ∈ Rp×q is defined as

A⊗B =

a11B . . . a1nB
...

. . .
...

am1 . . . amnB

 .

The Kronecker product satisfies the following properties:

(A⊗B)(C ⊗D) = (AC)⊗BD,
(A⊗B)T = AT ⊗BT ,

A⊗B +A⊗ C = A⊗ (B + C).

This report will use results on the existence of robustly stabilizing controllers from the
theory of H∞ control. The H∞ problem was first formulated in [14] and the first solutions
in a state space setting were provided in groundbreaking work in [2]. Perhaps the best
known lemma in the theory of H∞ control is the bounded real lemma. It provides methods
to determine the H∞-norm of a given system. The bounded real lemma can be used in
combination with the small gain theorem, which has been extensively studied in [13], to
show whether the interconnection of systems with a feedback loop is internally stable.
The bounded real lemma is as follows:

Lemma 2.1. Assume we have the following system with (C,A) detectable:

ẋ = Ax+Bu,

y = Cx+Du.

Let G(s) = C(sI−A)−1B+D denote the transfer matrix of the system. Let ρ > 0. Then
A is Hurwitz and the H∞-norm of G is strictly less then ρ if and only if ||D|| < ρ and
there exists a real symmetric solution P of the algebraic Riccati equation

ATP + PA+ CTC + (PB + CTD)(ρ2I −DTD)−1(BTP +DTC) = 0, (2.1)

such that the following matrix is Hurwitz:

A+B(ρ2I −DTD)−1(BTP +DTC).

For a proof of this lemma we refer to [9]. Now we present a version of the bounded real
lemma, adapted for our purposes.

Lemma 2.2. Consider the system ẋ = Ax + Bu, y = Cx + Du with transfer function
G(s) = C(sI − A)−1B + D. Assume DTD = I and that A is Hurwitz. Let ρ > 1. The
H∞-norm ||G||∞ of the operator from u to y satisfies ||G||∞ ≤ ρ if there exists a real
symmetric positive semi-definite solution P to the Riccati inequality

ATP + PA+ CTC +
1

ρ2 − 1
(PB + CTD)(BTP +DTC) ≤ 0. (2.2)
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Proof. Assume that P is a solution to (2.2). We have

d

dt
xTPx ≤ xT (ATP + PA)x+ uTBTPx+ xTPBu,

≤− 1

ρ2 − 1
xT (PB + CTD)(BTP +DTC)x

+ uTBTPx+ xTPBu− xTCTCx,

=− ||
√
ρ2 − 1u− 1√

ρ2 − 1
(BTP +DTC)x||2

+ ρ2||u||2 − ||y||2,
≤ ρ2||u||2 − ||y||2.

Here, the second inequality follows directly from (2.2). Now we take x(0) = 0, u ∈ L2(R+)
and integrate from 0 to∞, which yields 0 ≤ ρ2||u||22−||y||22. We obtain that ||y||22 ≤ ρ2||u||22
for all u ∈ L2(R+). This implies that the operator norm ||G||∞ satisfies ||G||∞ ≤ ρ.
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Chapter 3

Network observers

In this section, we provide an introduction to the relevant theory of observers for linear
systems. Later, we will use these observers in the synthesis of synchronizing protocols
for networked multi-agent systems. We provide state space equations for observers of the
internal state of each agent, which we call the absolute state, and of observers for the
relative state of each agent, which is the sum of differences in state of an agent with its
neighbors.

Consider the system Σ described by

ẋ = Ax+Bu,

y = Cx.
(3.1)

Here the state x takes its values in Rn, output y takes its values in Rr and input u has
values in Rm. The matrices A, B and C are of appropriate dimensions. We want to
approximate the state x by the output ξ of an observer, using the input u and the output
y of the system. The system that models the observer has the following form:

ẇ = Pw +Qu+Ry,

ξ = Sw.

Interconnecting this system with system (3.1), we obtain the following dynamics:

ẋ = Ax+Bu,

ẇ = Pw +Qu+RCx,

ξ = Sw.

(3.2)

Now we introduce the error e := ξ − x as the difference between the estimate ξ and the
actual state x. The error dynamics is as follows:

ė = SPw + SQu+ SRCx−Ax−Bu,
= (SP + SRCS −AS)w − (SRC −A)e+ (SQ−B)u.

(3.3)

Now, we provide the definition of an observer for a given system. Then we will estab-
lish necessary and sufficient conditions for the existence of such an observer. For more
information on this topic, we refer to [9].

Definition 3.1. A system Ω is called a state observer for Σ if for any pair of initial values
x0, w0 satisfying e(0) = 0, for arbitrary input function u, we have e(t) = 0 for all t > 0.
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Definition 3.2. An observer Ω is called stable if for each pair of initial values x0, w0 we
have e(t)→ 0 (t→∞).

Given initial conditions x(0) = w(0), Definition 3.1 requires that the error e(t) remains
zero for all t > 0, for every input u. Thus the error dynamics (3.3) should be independent
of u. This implies that SQ = B. The same requirement holds for the coefficient of w.
Hence SP = AS − SRCS. This leads to the following, simplified the expression for the
dynamics of e:

ė = (A− SRC)e.

Substitute this expression into (3.2) to obtain

ξ̇ = Sẇ

= SPw + SQu+ SRy

= (A− SRC)ξ +Bu+ SRy.

Denote G := SR. This leads to the following expression for the observer dynamics.

ξ̇ = (A−GC)ξ +Bu+Gy, (3.4)

Now, the error dynamics is given by

ė = (A−GC)e. (3.5)

From this it follows that e(t)→ 0 as t→∞ if and only if A−GC is Hurwitz. Consequently,
a necessary and sufficient condition for the existence of a stable observer for x is that there
exists aG such that A−GC is Hurwitz. This statement is captured in the following lemma.

Lemma 3.3. There exists a stable observer for the system

ẋ = Ax+Bu,

y = Cx,

if and only if (C,A) is detectable.

Next, we introduce network observers. A network observer is a system that observes the
aggregate state of all agents in a network. Let x = col(x1, x2, . . . , xp) denote the aggregate
state of the individual agents, and y = col(y1, y2, . . . , yp) and u = col(u1, u2, . . . , up) the
aggregate output and input, respectively. The dynamics of x and y is given by

ẋ = (I ⊗A)x + (I ⊗B)u,

y = (I ⊗ C)x.

A network observer for the aggregate absolute state x has the form

ẇ = Pw +Qu +Ry,

ξ = Sw,
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which has the same structure as an observer for standard LTI systems. We can now use
(3.4) to simplify the expressions for this observer to

ξ̇ = ((I ⊗A)− G̃(I ⊗ C))ξ + (I ⊗B)u + G̃y,

with G̃ ∈ Rpn×pr. Is is sufficient to consider matrices G̃ such that G̃ = I⊗G for G ∈ Rn×p.
We will show that the pair ((I ⊗C), (I ⊗A)) is detectable if and only if the pair (C,A) is
detectable. Theorem 3.38 from [9] states that the pair (C,A) is detectable if only every
eigenvalue λ of A such that

rank

(
A− λIn

C

)
< n,

lies in the open left half plane. Since (I ⊗A) and A have identical eigenvalues, it follows
that the pair ((I ⊗ C), (I ⊗ A)) is detectable if and only if every eigenvalue λ of A, such
that

rank

(
(I ⊗A)− λIpn

I ⊗ C

)
= rank

(
I ⊗

(
A− λIn

C

))
= p · rank

(
A− λIn

C

)
< pn,

also lies in the open left half plane. This holds if and only if (C,A) is detectable. So a
necessary and sufficient condition for the existence of a stable network observer is that
there exists a G such that A−GC is Hurwitz. In that case we can choose G̃ = I ⊗G. It
follows that (I ⊗ A) − G̃(I ⊗ C) = I ⊗ A − GC is Hurwitz. In the next chapters of this
report, we will restrict ourselves to observers of the form

ξ̇ = (I ⊗A−GC)ξ + (I ⊗B)u+ (I ⊗G)y.

Definition 3.4. A system Ω is called a network observer for the aggregate absolute state
x of a multi-agent system Σ with estimation error e := ξ − x if for any pair of initial
values x0, ξ0 satisfying e(0) = 0, for arbitrary input function u, we have e(t) = 0 for all
t > 0.

Now, let G be such that A−GC is Hurwitz. Let xi denote the state of the ith agent in
the network. Take ξi as an observer for the absolute state xi of agent i with dynamics
(3.4). As before, let x denote the aggregate state vector of the network en let ξ denote
the aggregate state of all observers. Then, the dynamics of ξ is given by

ξ̇ = (I ⊗A−GC)ξ + (I ⊗B)u + (I ⊗G)y.

We will show that ξ is a stable observer for the overall network. Denote the aggregate
error by e := ξ − x. The error dynamics is given by

ė = ξ̇ − ẋ

= (I ⊗A−GC)ξ + (I ⊗B)u + (I ⊗GC)x− (I ⊗A)x− (I ⊗B)u

= (I ⊗A−GC)(ξ − x)

= (I ⊗A−GC)e.

We see that e(t) → 0 as t → ∞ if (A − GC) is Hurwitz. A necessary and sufficient
condition is detectability of (C,A). These observations are captured in the following
theorem.
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Theorem 3.5. There exists a network observer Ω for the aggregate state x of a multi-
agent system Σ if and only if (C,A) is detectable.

3.1 Relative state observers

In the previous section, we provided state space equations for observers for the absolute
state xi. We assumed that the absolute output yi of each agent could be measured.
Sometimes this is not the case. Take for instance a group of satellites flying in formation
in deep space. Measuring their absolute position with respect to an origin far away could
be inaccurate or impossible. Now, they could try to determine their position relative to
their neighbors. Denote this relative state by

φi :=
∑
j∈N

xi − xj . (3.6)

When this relative state is not directly available for measurement we can try to construct
an observer for it using the relative output. The relative output of the ith agent is given
by

ζi :=
∑
j∈Ni

yi − yj = C
∑
j∈Ni

xi − xj = Cφi.

The dynamics of the relative state φi of agent i is given by

φ̇i =
∑
j∈Ni

ẋi − ẋj

= A
∑
j∈Ni

xi − xj +B
∑
j∈Ni

ui − uj

= Aφi +Bvi,

where vi :=
∑

j∈Ni
ui−uj denotes the relative input of the ith agent. Next, we construct

an observer for the relative state φi:

ẇi = (A−GC)wi +Bvi +Gζi. (3.7)

If (C,A) is detectable, there exists a G such that A−GC is Hurwitz and the individual
error for agent i defined as ei = wi−φi has the dynamics (3.5). Let φ := col(φ1, φ2, . . . , φp)
and w := col(w1, w2, . . . , wp) denote the aggregate relative state of the agents and the
aggregate state of the observers, respectively. Denote the aggregate relative output and
relative input by ζ := col(ζ1, ζ2, . . . , ζp) and v := col(v1, v2, . . . , vp). The dynamics of the
network observer w is given by

ẇ = (I ⊗A−GC)w + (I ⊗B)v + (I ⊗G)ζ.

Now the error e := w − φ has the following dynamics:

ė = (I ⊗A−GC)e.

Consequently, e(t)→ 0 as t→∞. We see that w is a stable observer for φ and detectabil-
ity of (C,A) is a sufficient and necessary condition for the existence of such a network
observer. Note that not all states φ ∈ Rpn are feasible, since φ satisfies φ = (L ⊗ In)x.
However, this poses no problem as e(t)→ 0 for all initial conditions φ0,w0.
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Chapter 4

Synchronization

As before, we consider multi-agent system with p agents and we assume that the under-
lying network graph G is undirected and connected. The dynamics of agent i is given
by

ẋi = Axi +Bui,

yi = Cxi
(4.1)

for i = 1, 2, . . . , p. We see that the dynamics of each agent is given by one and the same
linear system. We call this the nominal system. As before, we assume that the pair (A,B)
is stabilizable and the pair (C,A) is detectable. The problem of synchronization is to find
a protocol that makes the network synchronized. In this section, we will use protocols
based on observers for the relative states of the agents. These observers provide us with
estimates of the relative states

∑
j∈Ni

(xi − xj). From Section 3.1, we obtain dynamics
(3.7) for an estimate wi of the relative state of the ith agent. We interconnect this estimate
with the agent using the static feedback ui = Fwi. Substituting vi =

∑
j∈Ni

ui − uj and
ζi =

∑
j∈Ni

yi − yj in (3.7) results in the protocol

ẇi = Awi +BF
∑
j∈Ni

(wi − wj) +G(
∑
j∈Ni

(yi − yj)− Cwi), ui = Fwi. (4.2)

Interconnecting the agents with this protocol yields the closed loop system. The dy-
namics of this system, the overall network dynamics, can be easily represented by tak-
ing x = col(x1, x2, . . . , xp) and w = col(w1, w2, . . . , wp) as the aggregate state vectors,
y = col(y1, y2, . . . , yp) and u = col(u1, u2, . . . , up) as the aggregate output and input
vectors respectively. We obtain

ẋ = (I ⊗A)x + (I ⊗B)u, y = (I ⊗ C)x (4.3)

and

ẇ = (I ⊗ (A−GC) + (L⊗BF ))w + (L⊗G)y, u = (I ⊗ F )w. (4.4)

Then the network dynamics is given by(
ẋ
ẇ

)
=

(
I ⊗A I ⊗BF
L⊗GC I ⊗ (A−GC) + (L⊗BF )

)(
x
w

)
. (4.5)
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Definition 4.1. We say that the protocol synchronizes the network if for all i, j =
1, 2, . . . , p

xi(t)− xj(t)→ 0, wi(t)− wj(t)→ 0

as t→∞.

Now let U be an orthogonal p× p matrix that diagonalizes L. We define

Λ := UTLU =


0 0 . . . 0
0 λ2 . . . 0
...

...
. . .

...
0 0 . . . λp

 .

Applying the state transformation(
x̃
w̃

)
=

(
UT ⊗ I 0

0 UT ⊗ I

)(
x
w

)
, (4.6)

we obtain as new equation for the network dynamics(
˙̃x
˙̃w

)
=

(
I ⊗A I ⊗BF

Λ⊗GC I ⊗ (A−GC) + (Λ⊗BF )

)(
x̃
w̃

)
. (4.7)

It is well known that synchronization of the network is equivalent with the stability of
p− 1 systems, see [5], [10]:

Lemma 4.2. The network is synchronized if and only if for p = 2, 3, . . . , p the systems(
˙̃xi
˙̃wi

)
=

(
A BF

λiGC A−GC + λiBF

)(
x̃i
w̃i

)
(4.8)

are stable.

Proof. Define a (p− 1)× p matrix H by

H :=


1 −1 0 0 · · · 0
0 1 −1 0 · · · 0
...

. . .
. . .

. . .
. . .

...
0 · · · 0 1 −1 0
0 · · · · · · 0 1 −1

 . (4.9)

Now ker(H) = im(1p), where 1p = (1, 1, . . . , 1)T in Rp. As before, let U be an orthogonal
matrix such that UTLU = diag(0, λ2, . . . , λp). Now the first column of U is equal to
u1 = 1√

p1p, the normalized vector of ones. Let U2 be such that U = (u1 U2). Now we

have HU = (0 HU2), where HU2 has full column rank. It is clear that xi(t)− xj(t)→ 0
for all i, j if and only of (H ⊗ I)x(t)→ 0 and wi(t)− wj(t)→ 0 for all i, j if and only if
(H ⊗ I)w(t)→ 0. Since x = (U ⊗ I)x̃ we obtain that xi(t)− xj(t)→ 0 for all i, j if and
only if ((0 HU2) ⊗ I)x̃(t) → 0, or equivalently, x̃i(t) → 0 for i = 2, 3, . . . , p. The same
holds for wi, with wi(t)−wj(t)→ 0 for all i, j if and only if w̃i(t)→ 0 for i = 2, 3, . . . p.
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By applying the state transformation(
x̄i
w̄i

)
=

(
I 0
0 1

λi
I

)(
x̃i
w̃i

)
we obtain that the network is synchronized if and only if for i = 2, 3, . . . , p the systems(

˙̄xi
˙̄wi

)
=

(
A λiBF
GC A−GC + λiBF

)(
x̄i
w̄i

)
(4.10)

are stable. We can interpret this closed loop system as the feedback interconnection of
the system

˙̄xi = Ax̄i +Būi, ȳi = Cx̄i. (4.11)

with the controller

˙̄wi = Aw̄i +Būi + (Gȳi − Cw̄i), ūi = λiFw̄i. (4.12)

The set of eigenvalues of the system matrix in (4.10) is the union of the sets of eigenvalues
of A−GC and A+ λiBF . Now the following holds

Lemma 4.3. The dynamic protocol (4.2) synchronizes the network if and only if the
system

ẋ = Ax+Bu, y = Cx, (4.13)

is stabilized by all p− 1 controllers

ẇ = Aw +Bu+G(y − Cw), u = λiFw, i = 2, 3, . . . , p. (4.14)

This holds if and only if A−GC and A+ λiBF (i = 2, 3, . . . , p) are Hurwitz.

In this section, we have obtained results that show the dynamic protocol (4.2) synchronizes
the network if and only if the gain F and G are chosen in such a way that the system
(4.13) is stabilized by all p − 1 controllers (4.14). Such F and G exist if and only if
(A,B) is stabilizable and (C,A) is detectable. It is obvious that detectability of (C,A) is
a necessary conditions. In [5] and [1], it has been shown that stabilizability of (A,B) is
necessary and sufficient for the existence of a single F such that A+λiBF (i = 2, 3, . . . , p)
is Hurwitz. In the next chapter, we will show that also the robust synchronization problem
can be reformulated as a robust stabilization problem using, for a given plant, a set of
p− 1 controllers.
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4.1 Synchronization by state feedback protocol

In the remaining chapters of this report we focus on dynamic protocols using network
observers for the relative states of the agents. However, it is worth investigating other
forms of protocols, such as static state feedback protocols and observer based protocols
using network observers for the absolute state. It has been shown in [5] that under the
assumption that the state or relative state of each agent is directly available for measure-
ment, a static protocol which feeds back the relative state to each agent is sufficient for
synchronization. We will proof this statement in the current section.

Again, consider the network with agent dynamics

ẋi = Axi +Bui (i = 1, 2, . . . , p) (4.15)

We assume that the state xi of each agent is directly available for use in a protocol. We
will show that the following protocol will synchronize the network for a suitable matrix
F :

ui = F
∑
j∈Ni

xi − xj . (4.16)

Interconnecting with protocol (4.16) yields the following dynamics for agent i:

ẋi = Axi +BF
∑
j∈Ni

xi − xj = Axi +BF

p∑
j=1

Lijxj . (4.17)

As before, let x denote the aggregate agent state vector and u the aggregate input vector.
The dynamics of the overall network is given by

ẋ = (I ⊗A) + (I ⊗B)u,

= (I ⊗A) + (I ⊗B)(L⊗ F )x,

= (I ⊗A+ L⊗BF )x.

Choose H as in (4.9). Recall that the network is synchronized if and only if (H⊗In)x→ 0
as t → ∞. Again, let U be an orthogonal matrix such that UTLU = Λ is diagonal and
U = ( 1√

p1p U2) for a certain U2. Recall that HU2 has full column rank. Apply the state

transformation x̃ = (UT ⊗ I)x to obtain the following dynamics for x̃:

˙̃x = (I ⊗A+ Λ⊗BF )x̃.

From the first part of this chapter we have that the network is synchronized if and only
if (H ⊗ I)x→ 0 as t→∞, equivalently ((0 HU2)⊗ I)x̃→ 0 as t→∞. We obtain that
the network is synchronized if and only if for i = 2, 3, . . . , p the systems

˙̃xi = (A+ λiBF )x̃i (4.18)

are stable. We make the following observation:

Lemma 4.4. Consider the network with agent dynamics as in (4.15). Assume the net-
work graph is undirected en connected. Then the protocol (4.16) synchronizes the network
if and only if for i = 2, 3, . . . , p each matrix

A+ λiBF (4.19)

is Hurwitz.
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The next question is whether we can find a matrix F that satisfies these requirements. We
will now show how to find such matrix F . First choose C such that (C,A) is detectable.
Now consider the agent dynamics (4.15) and temporarily denote yi = Cxi. Since (A,B)
is stabilizable and (C,A) is detectable, there exists a stabilizing symmetric positive semi-
definite solution P to the algebraic Riccati equation associated with (A,B,C):

ATP + PA− PBBTP + CTC = 0, (4.20)

such that A−BBTP is Hurwitz. Choose F = −αBTP , where α is such that 1−2αλi < 0,
equivalently 1

2λi
< α for i = 2, 3, . . . , p. Since λ2 ≤ λi for all i, we can simply choose

α > 1
2λ2

. Now it holds that

(A− αλiBBTP )TP + P (A− αλiBBTP ) = ATP + PA− 2αλiPBB
TP

= −CTC + (1− 2αλi)PBB
TP.

The last equality follows directly from (4.20). Let ρ be an eigenvalue of A − αλiBBTP
with corresponding right eigenvector v. We obtain that 2<(ρ)v∗Pv = −||Cv|| + (1 −
2αλi)||BTPv||. First, consider the case that v∗Pv = 0. Since α was chosen such that
1 − 2αλi < 0 we must have that ||BTPv|| = 0. However, from this it follows that
(A − BBTP )v = ρv. Since A − BBTP is Hurwitz, we have <(ρ) < 0. In the case that
v∗Pv > 0 we directly obtain <(ρ) ≤ 0. Now suppose <(ρ) = 0, it follows that Cv = 0
and BTPv = 0. We obtain that Av = ρv while Cv = 0, so (C,A) has an unstable
and unobservable eigenvalue. This contradicts our assumption that (C,A) is detectable.
Hence <(ρ) < 0 and A− αλiBBTP is Hurwitz.

Thus, choosing F as above makes the matrices (4.19) Hurwitz. We apply Lemma 4.4
and obtain that the network is synchronized by the protocol (4.16).

4.2 Synchronization by absolute state observer based pro-
tocols

We have already provided conditions under which there exists a synchronizing protocol
using relative state observers for the network. In this section we will proof that the
same conditions hold for the existence of protocols using absolute state observers. From
Chapter 3 we have the following dynamics for an absolute state observer for agent i:

ξi = (A−GC)ξi +Bui −GCxi,

where G is such that A−GC is Hurwitz. Denote the aggregate state of the observers by
ξ = col(ξ1, ξ2, . . . , ξp). Applying the feedback ui = F

∑
j∈Ni

ξi−ξj results in the following
dynamics for the aggregate state

ẋ = (I ⊗A)x + (L⊗BF )ξ.

We obtain that the dynamics of the aggregate observer state is given by

ξ̇ = (I ⊗ (A−GC) + L⊗BF )ξ + (I ⊗ C)x.

Hence, the dynamics of the overall network is given by(
ẋ

ξ̇

)
=

(
I ⊗A L⊗BF
I ⊗GC I ⊗ (A−GC) + (L⊗BF )

)(
ẋ

ξ̇

)
. (4.21)
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This dynamics shows strong similarities with the network dynamics (4.7) in the case of
the relative state observer based protocol, with only different antidiagonal terms. Take
U as before and apply state transformation(

x̃

ξ̃

)
=

(
UT ⊗ I 0

0 UT ⊗ I

)(
x
ξ

)
(4.22)

This leads to the following expression for the network dynamics

d

dt

(
x̃

ξ̃

)(
I ⊗A Λ⊗BF
I ⊗GC I ⊗ (A−GC) + Λ⊗BF

)(
x̃

ξ̃

)
. (4.23)

Next, we will provide a lemma which is analogous with Lemma 4.2. The lemma states that
synchronization of the network is equivalent with simultaneous stabilization by p− 1 re-
lated controllers. The validity of the lemma follows directly from the proof of Lemma 4.2.

Lemma 4.5. The network is synchronized if and only if the systems

d

dt

(
x̃i
ξ̃i

)
=

(
A λiBF
GC A−GC + λiBF

)(
x̃i
ξ̃i

)
(4.24)

are stable for i = 2, 3, . . . , p.

The systems (4.24) are exactly the same as systems (4.10). Thus, we can directly apply
Lemma 4.3 to obtain that the protocol

ξ̇i = (A−GC)ξi +BF
∑
j∈Ni

(ξi − ξj) +G(yi − Cξi), ui = F
∑
j∈Ni

(ξi − ξj)

synchronizes the network if and only if A − GC and A + λiBF (i = 2, 3, . . . , p) are
Hurwitz. These conditions are identical to the ones under which there exists a relative
state observer based protocol that synchronizes the network.
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Chapter 5

Coprime factor perturbations

Next to additive and multiplicative perturbations, coprime factor perturbations are among
the best known models that represent uncertainty in the dynamics of linear systems.
While it is obvious for both additive and multiplicative perturbations that they result in a
linear disturbance, on first sight coprime factor perturbations seem highly nonlinear. This
is caused by the way in which the disturbances appear in the transfer matrix of the nominal
system. However, in this section we will show how a coprime factor perturbed nominal
system can be interpreted as a feedback loop around some linear system associated with
the nominal one, see [9]. This makes it easier to reason about the dynamics of the
perturbed system and will allow us to consider controllers for linear networks in our next
section. Examples of the use of coprime factorizations in control can be found in [11].
Coprime factor perturbations have been investigated in [3]. In the behavioral approach
to control theory, the coprime factors is used as a kernel representation, see [6], [13].

Suppose we have the linear system

ẋ = Ax+Bu,

y = Cx.

The transfer matrix of this system is given by G(s) = C(sI − A)−1B. A left-coprime
factorization of G over the ring of proper stable rational functions is given by G = M−1N ,
with M and N proper and stable and left-coprime, i.e. there exist proper stable matrices
X and Y such that NX + MY = I. Such a coprime factorization is called normalized
if NN∗ + MM∗ = I, where N∗(s) = NT (−s). In the rest of this section, we make the
assumption that the system is stabilizable and detectable.

Lemma 5.1. Let Q be the real symmetric solution to the Riccati equation

AQ+QAT −QCTCQ+BBT = 0,

such that A − QCTC is Hurwitz. Then G(s) = M−1(s)N(s) is a normalized coprime
factorization, where N and M are the transfer matrices of the systems ΣN and ΣM

respectively, which are given by

ΣN = (A−QCTC,B,C, 0),

ΣM = (A−QCTC,−QCT , C, I).

17



This leads to the following expressions for N and M :

N(s) = C(sI −A+QCTC)−1B,

M(s) = −C(sI −A+QCTC)−1QCT + I,
(5.1)

Now the idea is to perturb the transfer matrix G by perturbing M and N with the
proper stable matrices ∆M and ∆N , respectively. Let G∆ denote the transfer matrix
resulting from this perturbation:

G∆ := (M + ∆M )−1(N + ∆N ).

We will show that we can represent G∆ as the feedback interconnection around an auxil-
iary plant. We define this plant as follows:

ẋ = Ax+Bu+QCTd,

y = Cx+ d,

z =

(
C
0

)
x+

(
0
I

)
u+

(
I
0

)
d =

(
y
u

)
.

(5.2)

Around this system, we will use the following feedback

d =
(
−∆M ∆N

)
z. (5.3)

Lemma 5.2. The transfer matrix from u to y obtained by interconnecting (5.2) with (5.3)
is equal to G∆ = (M + ∆M )−1(N + ∆N ).

Proof. We simply rewrite and substitute the equations of (5.2) and (5.3) to obtain different
equations that represent the same interconnection:

ẋ = (A−QCTC)x+Bu+QCT y,

d = y − Cx,

z =

(
y
u

)
,

d = −∆My + ∆Nu.

(5.4)

Now we apply the Laplace transformation to these equations. Let x̂, û, ŷ, d̂ and ẑ denote
the Laplace transforms of x, u, y, d and z, respectively. We obtain

x̂ = (sI −A+QCTC)−1Bû+QCT (sI −A+QCTC)−1ŷ,

d̂ = ŷ − Cx̂,

ẑ =

(
ŷ
û

)
,

d̂ = −∆M (s)ŷ + ∆N (s)û.

Substituting the equation for x̂ in d̂ and combining these with (5.1) yields

d̂ = −C(sI −A+QCTC)−1Bû+ [−C(sI −A+QCTC)−1QCT + I]ŷ,

= −N(s)û+M(s)ŷ.
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And finally we combine these last two expressions of d̂ to obtain

d̂ = M(s)ŷ −N(s)û = −∆M (s)ŷ + ∆N (s)û,

[M(s) + ∆M (s)]ŷ = [N(s) + ∆N (s)]û.

So the transfer matrix from u to y is given by ŷ = G∆(s)û, as was claimed.

In this chapter, we have obtained that a coprime factor perturbed system can be rep-
resented by an interconnection of a plant (5.2) with the feedback (5.3). This leads us
to the conclusion that perturbing a transfer matrix by a coprime factor perturbations
again results in a linear system, see [11], [3], [9]. In the next chapter, we will use these
results, combined with those from the previous chapters to show how one can construct
dynamic observer based protocols that robustly synchronize networks with coprime factor
perturbed agents.
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Chapter 6

Robust synchronization

As noted before, for the given network, we assume that (A,B) is stabilizable and (C,A)
is detectable. Again the unperturbed agent dynamics is given by

ẋi = Axi +Bui, yi = Cxi, i = 1, 2, . . . , p.

The agents have identical transfer matrices given by G(s) = C(sI − A)−1B. From the
previous section, we obtain that there exists a normalized coprime factorization of G =
M−1N . For each agent, we consider perturbations of the transfer matrix G of the form

G(−∆M ∆N ) = (M + ∆M )−1(N + ∆N ), (6.1)

where ∆M ,∆N ∈ RH∞ are proper and stable real rational transfer matrices. In this
chapter we allow all such perturbations with ||(−∆M ∆N )||∞ < γ, where γ > 0 is a given
uncertainty radius. Under these conditions, the agent dynamics remain identical, but are
not known exactly. From Lemma 5.2 we obtain that the perturbed dynamics of agent i
can be represented by the interconnection of the plant

ẋi = Axi +Bui +QCTdi,

yi = Cxi + di,

zi =

(
C
0

)
xi +

(
0
I

)
ui +

(
I
0

)
di.

with the feedback

di =
(
−∆M ∆N

)
zi.

Definition 6.1. Given a desired tolerance γ > 0, we say that the protocol robustly
synchronizes the network if for all ∆M ,∆N ∈ RH∞ with ||

(
−∆M ∆N

)
||∞ < γ we have

that for all i, j = 1, 2, . . . , p

xi(t)− xj(t)→ 0, wi(t)− wj(t)→ 0

as t→∞. The tolerance γ is called the synchronization radius of the network.

In the rest of this section, we will sometimes denote ∆ :=
(
−∆M ∆N

)
and simply

write di = ∆zi.
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For dealing with robust synchronization of the network, we will consider a modified
version of protocol (4.2). We include a weighting factor on the Laplacian L of the network
graph. This protocol is of the form

ẇi = Awi +BF
∑
j∈Ni

1

N
(wi − wj) +G(

∑
j∈Ni

1

N
(yi − yj)− Cwi),

ui = Fwi.

(6.2)

Next to the gain matrices F and G, we need to determine the value of the positive real
number N . Now, we will derive conditions under which, for a given synchronization radius
γ > 0, there exists a robustly synchronizing protocol. In this report, we are concerned
with synchronization of the nominal state components. The state components of the
system that represents the perturbation are not under consideration.

Interconnecting the agents with this protocol yields a closed loop system. The dy-
namics of this system, the overall network dynamics, can be easily represented by tak-
ing x = col(x1, x2, . . . , xp) and w = col(w1, w2, . . . , wp) as the aggregate state vectors,
y = col(y1, y2, . . . , yp) and u = col(u1, u2, . . . , up) as the aggregate output and input vec-
tors. The aggregate output and input vectors of the systems describing the perturbations
are given by d = col(d1, d2, . . . , dp) and z = col(z1, z2, . . . , zp) respectively. We obtain

ẋ = (I ⊗A)x + (I ⊗B)u + (I ⊗QCT )d

ẏ = (I ⊗ C)x + (I ⊗ I)d

and

z = (I ⊗
(
C
0

)
)x + (I ⊗

(
0
I

)
)u + (I ⊗

(
I
0

)
)d.

The closed loop dynamics is given by(
ẋ
ẇ

)
=

(
I ⊗A I ⊗BF

1
NL⊗GC I ⊗ (A−GC) + ( 1

NL⊗BF )

)(
x
w

)
+

(
I ⊗QCT
1
NL⊗G

)
d,

z =

(
I ⊗

(
C
0

)
I ⊗

(
0
F

))(
x
w

)
+

(
I ⊗

(
I
0

))
d.

and

d =


∆ 0 . . . 0
0 ∆ . . . 0
...

...
. . .

...
0 0 . . . ∆

 z

We apply the state transformation(
x̃
w̃

)
:=

(
UT ⊗ I 0

0 UT ⊗ I

)(
x
w

)
, z̃ = (UT ⊗ I)z, and d̃ = (UT ⊗ I)d
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to obtain(
˙̃x
˙̃w

)
=

(
I ⊗A I ⊗BF

1
NΛ⊗GC I ⊗ (A−GC) + ( 1

NΛ⊗BF )

)(
x̃
w̃

)
+

(
I ⊗QCT
1
NΛ⊗G

)
d̃, (6.3)

z̃ =

(
I ⊗

(
C
0

)
I ⊗

(
0
F

))(
x̃
w̃

)
+

(
I ⊗

(
I
0

))
d̃, (6.4)

d̃ = (UT ⊗ I)


∆ 0 . . . 0
0 ∆ . . . 0
...

...
. . .

...
0 0 . . . ∆

 (U ⊗ I)z̃ = (I ⊗∆)z̃. (6.5)

Analogously as Theorem 4.2 from [10], we have the following theorem:

Theorem 6.2. Let γ > 0. The following statements are equivalent:

1. The dynamic protocol (6.2) synchronizes the network with perturbed agents

ẋi = Axi +Bui +QCTdi,

yi = Cxi + di,

zi =

(
C
0

)
xi +

(
0
I

)
ui +

(
I
0

)
di,

di = (−∆M ∆N )zi,

(6.6)

for all (−∆M ∆N ) ∈ RH∞ with ||(−∆M ∆N )||∞ < γ.

2. The perturbed system

ẋ = Ax+Bu+QCTd,

y = Cx+ d,

z =

(
C
0

)
x+

(
0
I

)
u+

(
I
0

)
d,

d = (−∆M ∆N )z,

(6.7)

is internally stabilized for all (−∆M ∆N ) ∈ RH∞ with ||(−∆M ∆N )||∞ < γ by all
p− 1 controllers

ẇ = Aw +Bu+G(y − Cw),

u =
1

N
λiFw,

(6.8)

where i = 2, . . . , p and λi is the ith eigenvalue of the Laplacian L.

Proof. In this proof, we again use the shorthand notation ∆ for (−∆M ∆N ).
(only if) We want to show that the interconnection with controller (6.8) stabilizes

the plant (6.7) if the dynamic protocol (6.2) robustly synchronizes the network. Suppose
the network is synchronized by (6.2) for all perturbations ∆ with ||∆||∞ < γ. Take an

22



arbitrary ∆ ∈ RH∞ with ||∆||∞ < γ. We perturb each agent in the network (6.6) with
∆. Interconnecting (6.7) and (6.8) yields(

ẋ
ẇ

)
=

(
A 1

N λiBF
GC A−GC + 1

N λiBF

)(
x
w

)
+

(
QCT

G

)
d,

z =

(
C 0
0 1

N λiF

)(
x
w

)
+

(
I
0

)
d,

d = ∆z.

(6.9)

We obtain that d̃ = (UT ⊗ I)(I ⊗ ∆)(U ⊗ I)z̃ = (I ⊗ ∆)z̃ in (6.5). Since the network
is robustly synchronized by the protocol, we have that x̃i → 0, w̃i → 0 as t → ∞ for
i = 2, . . . , p in (6.3). This implies that for i = 2, . . . , p the following systems are internally
stable:(

˙̃xi
˙̃wi

)
=

(
A BF

1
N λiGC A−GL+ 1

N λiBF

)(
x̃i
w̃i

)
+

(
QCT
1
N λiG

)
d̃i,

z̃i =

(
C 0
0 F

)(
x̃i
w̃i

)
+

(
I
0

)
d̃i,

d̃i = ∆z̃i.

By the transformation w̃i = 1
N λiw̄i, we see that this system is equivalent with (6.9).

Therefore, the systems are stable.
(if) Now assume the p − 1 controllers (6.8) stabilize system (6.7) for all ∆ ∈ RH∞

with ||∆||∞ < γ. Using the small gain theorem, we obtain that for i = 2, 3, . . . , p the
closed loop systems (6.9) are internally stable and the transfer matrices Gi from d to z
satisfy ||Gi||∞ ≤ 1

γ . We show that the protocol (6.2) synchronizes the perturbed network
for all perturbations ∆ with ||∆||∞ < γ. We have to show that for i = 2, 3, . . . , p we have
x̃i(t) → 0 and w̃i(t) → 0 as t → ∞, where x̃i and w̃i satisfy (6.3), (6.4), and (6.5). Note
that

(UT ⊗ I)


∆ 0 . . . 0
0 ∆ . . . 0
...

...
. . .

...
0 0 . . . ∆

 (U ⊗ I) = (I ⊗∆).

We immediately obtain that the H∞-norm of the left hand side is less than γ. We
will now give equations for the dynamics of x̃2, x̃3, . . . , x̃p and w̃2, w̃3, . . . w̃p. We de-
note x̄ = col(x̃2, x̃3, . . . , x̃p), w̄ = col(w̃2, w̃3, . . . , w̃p), z̄ = col(z̃2, z̃3, . . . , z̃p), and d̄ =
col(d̃2, d̃3, . . . , d̃p). From (6.3) we obtain(

˙̄x
˙̄w

)
=

(
Ip−1 ⊗A Ip−1 ⊗BF

1
NΛ1 ⊗GC Ip−1 ⊗ (A−GC) + ( 1

NΛ1 ⊗BF )

)(
x̄
w̄

)
+

(
Ip−1 ⊗QCT

1
NΛ1 ⊗G

)
d̄,

z̄ = (Ip−1 ⊗
(
C
0

)
Ip−1

(
0
F

)
)

(
x̄
w̄

)
+ (Ip−1 ⊗

(
I
0

)
)d,

d̄ = (Ip−1 ⊗∆)z̄.

Here Λ1 := diag(λ2, λ3, . . . , λp). The transfer matrix of this system from d̄ to z̄ is equal
to G := diag(G2, G3, . . . , Gp). We obtain that ||G||∞ ≤ 1

γ . By applying the small gain
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theorem, it follows that the system is internally stable and x̄(t) → 0 and w̄(t) → 0 as
t→∞. Hence, the theorem is proved.

To obtain a protocol that robustly synchronizes the network for a desired synchroniza-
tion radius γ > 0, it suffices to find the positive real number N and gains F and G such
that the single linear system (6.7) is robustly internally stabilized by all p− 1 controller
(6.8) with stability radius γ. By applying the small gain theorem for this, it is required
that all of the controllers (6.8) solve the H∞-control problem for the system (6.7) such
that the closed loop system is internally stable and the transfer matrix Gi from d to z
satisfies ||Gi|| ≤ 1

γ . In the next chapter, we will give a method to synthesize suitable N ,
F and G.
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Chapter 7

Robustly synchronizing protocols

In this section we will establish sufficient conditions for the existence of protocols that
robustly synchronize the network for a desired synchronization radius γ > 0. Furthermore,
we will present an algorithm to compute such protocols. From Theorem 6.2 it follows
that protocol (6.2) robustly synchronizes the network if the perturbed agent dynamics is
robustly internally stabilized by all p− 1 controllers given by (6.8). As before, we assume
that the pair (A,B) is stabilizable and that the pair (C,A) is detectable.

We consider the following Riccati equations, associated with (A,B,C):

ATP + PA− PBBTP + CTC = 0, (7.1)

and

AQ+QAT −QCTCQ+BBT = 0. (7.2)

It is well-known that there exist unique real symmetric positive semi-definite solutions
P and Q to these equations such that A − BBTP and A − QCTC are Hurwitz. These
solutions are called the stabilizing solutions.

Recall that the second smallest and the largest eigenvalue of the Laplacian L are
denoted by λ2 and λp, respectively. Furthermore, under the condition of connectedness, we
have λ2 > 0. In this section, we will state a theorem that yields a robustly synchronizing
protocol for the network with perturbed agents. The synchronization radius that can be
attained depends on the eigenvalues of L and the spectral radius λmax(PQ) of the product
of the stabilizing solutions to (7.1) and (7.2).

Before doing this, we will prove a lemma that will be instrumental in the proof of our
main theorem:

Lemma 7.1. Let ρ > 0 be such that ρ2 < 1
1+λmax(PQ) . Then ( 1

ρ2
−1)I−PQ is nonsingular.

Temporarily denote

P̃ = ((
1

ρ2
− 1)I − PQ)−1P. (7.3)

Then P̃ is a real symmetric positive semi-definite solution of the algebraic Riccati equation

AT P̃ + P̃A+ ρ2CTC − 1

ρ2
P̃BBT P̃ +

1

1− ρ2
(P̃Q+ ρ2I)CTC(QP̃ + ρ2I) = 0. (7.4)
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Proof. First, if ρ2 < 1
1+λmax(PQ) , then 1

ρ2
> 1 +λmax(PQ) = λmax(I +PQ), so the matrix

(
1

ρ2
− 1)I − PQ =

1

ρ2
I − (I + PQ)

is nonsingular and P̃ exists. Furthermore, we have that P̃ = P̃ T ≥ 0. Now we show
that P̃ is a solution of the algebraic Riccati equation (7.4). Substitute (7.3) in (7.4) and
pre-multiply the result with W := ( 1

ρ2
− 1)I − PQ and post-multiply with W T to obtain

((
1

ρ2
− 1)I − PQ)ATP + PA((

1

ρ2
− 1)I −QP )− 1

ρ2
PBBTP

+ ρ2((
1

ρ2
− 1)I − PQ)CTC((

1

ρ2
− 1)I −QP )

+
1

1− ρ2
((1− ρ2)[PQ+ I]))CTC((1− ρ2)[QP + I]))

=

(
1

ρ2
− 1)[ATP + PA]− P [QAT +AQ]P − 1

ρ2
PBBTP

+ ρ2[(
1

ρ4
− 2

1

ρ2
+ 1)CTC − (

1

ρ2
− 1)PQCTC − (

1

ρ2
− 1)CTCQP + PQCTCQP ]

+ (1− ρ2)(CTC + PQCTC + CTCQP + PQCTCQP )

=

(
1

ρ2
− 1)[ATP + PA]− P [QAT +AQ]P − 1

ρ2
PBBTP

+ (
1

ρ2
− 2 + ρ2)CTC − (1− ρ2)PQCTC − (1− ρ2)CTCQP + ρ2PQCTCQP

+ (1− ρ2)(CTC + PQCTC + CTCQP + PQCTCQP )

=

(
1

ρ2
− 1)[ATP + PA+ CTC]− P [QAT +AQ−QCTCQ]P − 1

ρ2
PBBTP

=

(
1

ρ2
− 1)[ATP + PA+ CTC]− P [QAT +AQ−QCTCQ]P

− 1

ρ2
PBBTP + PBBTP − PBBTP

=

(
1

ρ2
− 1)[ATP + PA− PBBTP + CTC]− P [QAT +AQ−QCTCQ+BBT ]P

= 0.

We conclude that P̃ in (7.3) is a solution to (7.4).

We now formulate our main result. This theorem provides a robustly synchronizing pro-
tocol for the network with perturbed agent dynamics for all perturbations with bounded
H∞-norm.

26



Theorem 7.2. Consider the network with p agents, where the perturbed dynamics of
agent i is given by

ẋi = Axi +Bui +QCTdi,

yi = Cxi + di,

zi =

(
C
0

)
xi +

(
0
I

)
ui +

(
I
0

)
di.

with di = (−∆M ∆N )zi. Choose N any real number such that

N > λp.

Let γ > 0 be such that

γ2 <
λ2

N

1

1 + λmax(PQ)
. (7.5)

Then ( λ2
Nγ2
− 1)I − PQ is nonsingular. Define

P̃ := ((
λ2

Nγ2
− 1)I − PQ)−1P, (7.6)

F := − 1

γ2
BT P̃ (7.7)

G := QCT . (7.8)

Then the dynamic protocol (6.2) with N , F and G as above robustly synchronizes the
network for all perturbations (−∆M ∆N ) ∈ RH∞ with ||(−∆M ∆N )||∞ < γ.

Proof. Again denote (−∆M ∆N ) by ∆. By Theorem 6.2, it suffices to prove that the
p− 1 controllers (6.8) with N , F and G chosen as above, internally stabilize the system

ẋ = Ax+Bu+QCTd,

y = Cx+ d,

z =

(
C
0

)
x+

(
0
I

)
u+

(
I
0

)
d,

while ||Gi||∞ ≤ 1
γ , where Gi is the transfer matrix from d to z (i = 2, 3, . . . , p) in the

closed loop system given by (6.9). To show that this is indeed the case, we apply the
following state transformation to the closed loop system (6.9):(

x̃
w̃

)
=

(
I 0
−I I

)(
x
w

)
.

This results in(
˙̃x
˙̃w

)
=

(
A+ µiBF −µiBF

0 A−GC

)(
x̃
w̃

)
+

(
QCT

QCT −G

)
d,

z =

(
C 0
µiF −µiF

)(
x̃
w̃

)
+

(
I
0

)
d,

(7.9)
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where µi := λi
N for i = 2, 3, . . . , p. To proceed, we will apply Lemma 2.2 to the system

(7.9). We will show that there exists a real symmetric positive semi-definite solution to
the Riccati inequality associated with the system. As before, denote

P̃ = ((
λ2

Nγ2
− 1)I − PQ)−1P, (7.10)

and apply Lemma 7.1 with ρ =
√
Nγ√
λ2

. We find that P̃ is a solution to the following ARE

AT P̃ + P̃A+
Nγ2

λ2
CTC − λ2

Nγ2
P̃BBT P̃

+
λ2
N

λ2
N − γ2

(P̃Q+
Nγ2

λ2
I)CTC(QP̃ +

Nγ2

λ2
I) = 0.

(7.11)

We now return to the closed loop system (7.9). For ease of notation, we label the system
matrices as

Ãi =

(
A+ µiBF −µiBF

0 A−GC

)
, B̃i =

(
QCT

QCT −G

)
,

C̃i =

(
C 0
µiF −µiF

)
, D̃ =

(
I
0

)
.

Take the controller and observer gains F and G as defined in (7.7) and (7.8) respectively.
Now we will apply Lemma 2.2 to show that ||Gi||∞ ≤ 1

γ , where Gi is the transfer function
from d to z (i = 2, 3, . . . , p). We will show that there exists a suitable choice of Zi ≥ 0
such that Zi is a solution to the algebraic Riccati inequality (2.2) with ρ = 1

γ :

ÃTi Zi + ZÃi + C̃Ti C̃i −
γ2

1− γ2
(ZiB̃i + C̃Ti D̃)(B̃T

i Zi + D̃T C̃i) ≤ 0. (7.12)

Lemma 2.2 requires that the matrices Ãi (i = 2, 3, . . . , p) are Hurwitz. The set of eigen-
values of Ãi is the union of those of A + µiBF and A − GC. We immediately see that
A−GC = A−QCTC is Hurwitz. Showing that A+µiBF is Hurwitz for i = 2, 3, . . . p can
be done in a similar way. Now for i = 2, 3, . . . , p, let Yi be the unique positive semi-definite
solution to the Lyapunov equation

Yi(A−QCTC) + (A−QCTC)TYi +
µ2
i

γ4
P̃BBT P̃ = 0.

Next, take

Zi :=

(
µi
γ2
P̃ 0

0 Yi

)
. (7.13)
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Compute the following terms in (7.12):

ZiÃi =

(
µi
γ2
P̃ 0

0 Yi

)(
A− µi

γ2
BBT P̃ µi

γ2
BBT P̃

0 A−QCTC

)
,

=

(
µi
γ2
P̃A− µ2i

γ4
P̃BBT P̃

µ2i
γ4
P̃BBT P̃

0 Yi(A−QCTC)

)
,

C̃Ti C̃i =

CTC +
µ2i
γ4
P̃BBT P̃ −µ2i

γ4
P̃BBT P̃

−µ2i
γ4
P̃BBT P̃

µ2i
γ4
P̃BBT P̃

 ,

ZiB̃i + C̃Ti D̃ =

(
( µi
γ2
P̃Q+ I)CT

0

)
.

Performing the addition in (7.12) we obtain a symmetric 2 × 2 block matrix. We will
show that this matrix is negative semi-definite. In our block matrix the upper right and
lower left corners are given by

µ2
i

γ4
P̃BBT P̃ − µ2

i

γ4
P̃BBT P̃ = 0

and the lower right corner is given by

Yi(A−QCTC) + (A−QCTC)TYi +
µ2
i

γ4
P̃BBT P̃ ,

which is equal to zero. Since the upper right and lower left corners are zero, the only
thing that remains to be shown is that the upper left corner of the matrix is negative
semi-definite. This upper left corner is given by

µi
γ2

[
P̃A+AT P̃ − µi

γ2
P̃BBT P̃ +

γ2

µi
CTC

]
+

γ2

1− γ2
(
µi
γ2
P̃Q+ I)CTC(Q

µi
γ2
P̃ + I)

=
µi
γ2

[
P̃A+AT P̃ − µi

γ2
P̃BBT P̃ +

γ2

µi
CTC

+
µi
γ2

γ2

1− γ2
(P̃Q+

γ2

µi
I)CTC(QP̃ +

γ2

µi
I)

]
.

(7.14)

We now show that for N , F and G as chosen above, this matrix is negative semi-definite.
For ease of notation, we denote

η :=
λ2

N
.
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Now (7.14) can be rewritten as

µi
γ2

[
P̃A+AT P̃ +

γ2

η
CTC + (

γ2

µi
− γ2

η
)CTC

− η

γ2
P̃BBT P̃ + (

η − µi
γ2

)P̃BBT P̃

+
η

η − γ2
(P̃Q+

γ2

µi
I)CTC(QP̃ +

γ2

µi
I)

+
µi

1− γ2
(P̃Q+

γ2

η
I)CTC(QP̃ +

γ2

η
I)

− η

η − γ2
(P̃Q+

γ2

η
I)CTC(QP̃ +

γ2

η
I)

]
Applying Lemma 7.1 with ρ = γ

√
N√
λ2

, it follows from (7.11) that this is equal to

µi
γ2

[
γ2(

1

µi
− 1

η
)CTC

+
1

γ2
(η − µi)P̃BBT P̃

+ (
µi

1− γ2

γ4

µ2
i

− η

η − γ2

γ4

η2
)CTC

+ (
µi

1− γ2

γ2

µi
− η

η − γ2

γ2

η
)(P̃QCTC + CTCQP̃ )

+(
µi

1− γ2
− η

η − γ2
)P̃QCTCQP̃

]
.

(7.15)

Define

αi :=
µi

1− γ2

γ4

µ2
i

− η

η − γ2

γ4

η2
− γ2(

1

η
− 1

µi
),

βi :=
µi

1− γ2

γ2

µi
− η

η − γ2

γ2

η
,

δi :=
µi

1− γ2
− η

η − γ2
.

Then the expression (7.15) can be rewritten as

µi
γ2

[
1

γ2
(η − µi)P̃BBT P̃

+
(
I P̃Q

)(αiCTC βiC
TC

βiC
TC δiC

TC

)(
I

QP̃

)] (7.16)

Note that since λ2 ≤ λi, we have that η ≤ µi for i = 2, 3, . . . , p. For the first term in
(7.16) we obtain η − µi ≤ 0 and consequently

1

γ2
(η − µi)P̃BBTP ≤ 0.
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Thus, to prove that the matrix in expression (7.15) is negative semi-definite, we only need
to consider the second term in (7.16). Note that(

αiC
TC βiC

TC
βiC

TC δiC
TC

)
=

(
αi βi
βi δi

)
⊗ CTC.

So to prove that the second term in (7.16) is negative semi-definite, it suffices to show
that (

αi βi
βi δi

)
≤ 0.

We will show this is indeed the case.
First, we show that for all i = 2, 3, . . . , p we have αi < 0 and δi < 0. Indeed, we have

δi < 0⇔ µi
1− γ2

<
η

η − γ2

⇔ µi(η − γ2) < η(1− γ2)

⇔ µiη − µiγ2 < η − ηγ2.

(7.17)

Since η ≤ µi we already have

−µiγ2 ≤ −ηγ2.

And finally, since N > λp, we also have µi < 1, which indeed proves δi < 0. Next,

αi =
µi

1− γ2

γ4

µ2
i

− η

η − γ2

γ4

η2
− γ2(

1

η
− 1

µi
),

≤ γ4

η2
(

µi
1− γ2

− η

η − γ2
)− γ2(

1

η
− 1

µi
),

< 0.

The first inequality uses that γ4

µ2i
≤ γ2

η2
(which follows from η ≤ µi), and the second, strict,

inequality follows again from µi < 1.
Having proved that αi < 0, δi < 0 for all i, we now have that(

αi βi
βi δi

)
≤ 0
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if and only if αiδi − β2
i ≥ 0. We will check that this indeed holds.

αiδi − β2
i = −γ2(

1

η
− 1

µi
)(

µi
1− γ2

− η

η − γ2
)− µi

1− γ2

η

η − γ2
γ4(

1

η
− 1

µi
)2,

= −γ2(
1

η
− 1

µi
)

[
µi

1− γ2
− η

η − γ2
+

µi
1− γ2

η

η − γ2
γ2(

1

η
− 1

µi
)

]
,

= −γ2(
1

η
− 1

µi
)

[
µi(η − γ2)− η(1− γ2) + µiηγ

2( 1
η −

1
µi

)

(1− γ2)(η − γ2)

]
,

= −γ2(
1

η
− 1

µi
)

1

(1− γ2)(η − γ2)

[
µi(η − γ2)− η(1− γ2) + µiγ

2 − ηγ2
]
,

= −γ2(
1

η
− 1

µi
)

1

(1− γ2)(η − γ2)

[
µiη − µiγ2 − η + ηγ2 + µiγ

2 − ηγ2
]
,

= −γ2(
1

η
− 1

µi
)

1

(1− γ2)(η − γ2)
η(µi − 1),

≥ 0,

since −γ2( 1
η −

1
µi

) ≤ 0, (1 − γ2)(η − γ2) > 0, and µi − 1 < 0. Thus, we conclude that
our choice for Zi in (7.13) is indeed a solution of (7.12), so by Lemma 2.2 we obtain that
for i = 2, 3, . . . , p the transfer matrix Gi of (7.9) satisfies ||Gi|| ≤ 1

γ . Finally, we apply
Theorem 6.2 and obtain that the dynamic protocol robustly synchronizes the network.

Remark 7.3. Thus, summing up the steps in the proof above, we now have a concep-
tual algorithm for constructing a robustly synchronizing protocol. Given a network with
coprime factor perturbed agents, we can compute a protocol that robustly synchronizes
the network as follows

1. Choose N such that N > λp,

2. Compute the stabilizing solution P to (7.1) and Q to (7.2),

3. Choose a value for the synchronization radius γ such that

γ2 <
λ2

N

1

1 + λmax(PQ)
,

4. Compute F and G as in (7.7) and (7.8), respectively.

Using these steps, we obtain a dynamic protocol that robustly synchronizes the network
and achieves the synchronization radius γ.

7.1 Guaranteed synchronization radius

We will now provide a guaranteed synchronization radius for the network. The guaranteed
synchronization radius is the supremum over all possible γ > 0, such that there exist a
dynamic protocol of the form (6.2) that synchronizes the network for all ∆ with ||∆||∞ <
γ. Under the above steps, after choosing N and computing P and Q, (7.5) gives an upper
bound for γ:

γ <

√
λ2

N

1√
1 + λmax(PQ)

. (7.18)
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To maximize our upper bound, we want to choose N as small as possible. However, N is
bounded from below by λp. So while we would like to choose N as λp, we can only choose
N arbitrarily close to λp. It turns out that this is not a problem. We will show this in
the following corollary.

Corollary 7.4. For every γ such that

γ <

√
λ2

λp

1√
1 + λmax(PQ)

, (7.19)

there exists a dynamic protocol that robustly synchronizes the network with synchronization
radius γ.

Proof. From (7.19) it follows that

λp <
λ2

γ2

1√
1 + λmax(PQ)

.

Now choose N such that

λp < N <
λ2

γ2

1√
1 + λmax(PQ)

.

Then N satisfies (7.18) so the protocol with this choice of N and with F and G as in
(7.7) and (7.8) achieves synchronization radius γ.
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Chapter 8

Conclusions

In this report, we dealt with the problem of robust synchronization of undirected multi-
agent networks with uncertain agent dynamics. We introduced network observers and
provided state space equations for network observers for the absolute and relative state
of the agents. We proved that a necessary and sufficient condition for the existence of
such observers is detectability of the agent dynamics. These observers where then used
in the construction of synchronizing and robustly synchronizing protocols.

Given an undirected network with identical nominal dynamics for each agent, we allow
uncertainty in the form of coprime factor perturbations of the transfer matrices of each
agent’s dynamics. We assume these perturbations are stable and have H∞-norm that is
bounded by some a priori desired tolerance. We provided a method to compute dynamic
observer based protocols that, for a given tolerance, robustly synchronize the network for
all admissible perturbations. We have shown that robust synchronization of the network
by the dynamic protocol is equivalent with robust stabilization of a single linear system
by all controllers from a related finite set of feedback controllers. The protocols which
we provide are expressed in terms of stabilizing, real symmetric positive semi-definite
solutions to certain algebraic Riccati equations, and contain weighting factors depending
on the eigenvalues of the graph Laplacian. In this class of dynamic protocols, we have
shown that one can achieve a guaranteed tolerance that is proportional to the square root
of the quotient of the smallest and the largest eigenvalue of the graph Laplacian.

This report solves the problem of robust synchronization of networked multi-agent
systems with coprime factor perturbed agent dynamics. However, the problem of hetero-
geneity remains to be solved. In this report we assume that all agent dynamics are per-
turbed by the same coprime factor perturbation, which results in uncertain but identical
dynamics for each agent in the network. Allowing different coprime factor perturbations
for each agent results in a heterogeneous network with varying agent dynamics. A solution
to this problem would provide a generalization of the results in this report. Another in-
teresting problem which we have not touched in our report would be the tracking problem
in the context of networked multi-agent systems with uncertain dynamics. The tracking
problem, better known as the servo problem, is to construct a controller such that a given
system follows an external reference signal. In the context of networks we want all agents
to follow the reference signal while only allowing local exchange of information. Finally,
an extension of the results obtained in this report to nonlinear perturbations also provides
opportunities for further research.
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