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Abstract

To be able to recognize handwritten text, the text needs
to be segmented. Without any recognition, errors are
unavoidable during that segmentation, whereby images
with multiple words can appear. Because these images
do not contribute to create better word models, it is
desirable to split these images. In our study we looked
into undersegmented word images which are already
transcribed. With a number of basic constraints it was
possible to 'mine’ new word instances in case one of
the words in a multiple-word image did not have a
model yet. This was achieved by building a segmenta-
tion graph containing all possible combinations of con-
nected components that could lead to the pattern of the
undersegmented image. Then a graph search is used to
find the most likely sequence of wordzones in the un-
dersegmented image. The study focused on both the
development of this method as well as on creating a
heuristic for handling new words.

1 Introduction

The recognition of handwritten text is a task which
generally takes little effort for humans, regardless of
the number of writers or the style of the handwrit-
ing, but automatic handwriting recognition (HWR)
is up to this moment not close to this level. The dif-
ficulty of the task lies in the fact that the computer
needs to find and recognize highly deformable pat-
terns with no, or arguably very little, understand-
ing of the meaning of these patterns. The conse-
quence of this is that what seems to be obvious to
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humans may still be very challenging for comput-
ers.

Two methods are very common for the recog-
nition of handwritten text, these are the analytic
method and the holistic method (Srihar et al.,
2007). The former treats a word as smaller sub
units, such as characters, and is also known as the
sliding-window technique. The latter is based on
the general shapes of words and has more com-
mon with the way humans seem to be reading text,
according to psychological studies of human read-
ing (Madhvanath and Govindaraju, 2001; Serrano
et al., 2007). In general it is true that analytical
methods are more succesful for online HWR and
holistic methods for offline HWR.

Online HWR is the name for recognition of hand-
writing that takes place on-the-fly and therefore has
access to information about the temporal order of
the handwriting. Offline HWR typically refers to
the recognition of handwritten text in scanned doc-
uments and so has less information available than
the online variant (Plamondon and Srihari, 2000).
For the offline recognition of handwritten texts usu-
ally comes the need of preprocessing the handwrit-
ten documents, so that the relevant information is
retained and is segmented in such a way that the
recognition system should be able to recognize the
segmented text. However, if the segmentation is not
done correctly, this may cause problems later on in
the recognition phase.

To solve the problems of segmentation, a lot of
different segmentation methods for offline HWR
have been proposed (Papavassiliou et al., 2010;
Casey and Lecolinet, 1996), but so far no segmenta-
tion method has been found that can segment every
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Figure 1: Comparison between frequencies of
gaps within words and between words of a selec-
tion from the same dataset as used in our study.
From this graph it can be derived that a perfect
bottom-up segmentation is impossible (created
by Dimitri Vrehen in an earlier study).

text into the wanted sub units. One of the reasons
such a perfect method has not been found yet is
that recognition seems to be needed to correctly
segment a text, because the distances within words
can be larger than the distances between words, as
is shown in Figure 1. But the opposite is also true,
segmentation seems to be needed to be able to rec-
ognize at all. This is an example of a classic chicken-
and-egg problem. Recognition based segmentation
methods try to get around this problem, by im-
plementing some recognition in the segmentation
phase, but for a holistic approach this would be a
hard and very computationally intensive task (Lu
and Shridhar, 1996).

1.1 Problem definition

Suppose we have a collection of preprocessed im-
ages containing handwritten words, these images
are segmented and some segments are transcribed.
Then a learning mechanism is applied to transcribe
more of the word images based on the available
transcriptions and thereby creating better proto-
types of the words. This learning happens in a con-
tinuous process.

After the segmentation one would wish to only
have images containing single words, but in real-
ity two things can go wrong in the segmentation
process. The segments may be segmented too thor-
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Figure 2: Example of an undersegmented image,
with an unknown word (beeld) and a known
word (van), the goal is to datamine the word
’beeld’ by cutting it in between the two words
using the prototype model of the word ’van’.

ough, resulting in images with less than one word.
And some segments may be segmented a bit to
loose, with the result of images containing multiple
words (Louloudis et al., 2009). These respectively
over and under segmentated images are a problem,
because they can not be used to create better pro-
totypes of these words and therefore are not helpful
in the learning process.

The purpose of this paper is to propose a method
that is able to datamine new words from under-
segmented word images. These images are already
transcribed with an underscore between the words,
but not all transcribed words have a prototype
model available. In the simplest case one has an
image with two words, of which both are tran-
scribed, for example ‘the_queen’. But only one of
these words already has a prototype model, let’s say
‘the’. The idea is to use this model of the word ‘the’
to extract the unknown word ‘queen’ from the un-
dersegmented image, by basically cutting the image
between the words. This has the positive side effect
that also more instances of known words will be-
come available, resulting in better performance. In
some way this word splitter is similar to a recogni-
tion based segmentation as is used in some charac-
ter segmentation methods (Daifallah et al., 2009).
The most important difference is that now the un-
dersegmented image is already transcribed, which
makes it a lot less computationally intensive than
such a method usually would be on the word level.

1.2 Segmentation graph

Both in speech and handwriting recognition, graphs
are widely used as an intuitive data structure to
recombine segments from a segmentation process.



In speech recognition these segments are parts of
the speech signal, whereas in HWR these segments
can be words, characters or parts of characters,
but in all cases the general concept of recombin-
ing segments using a graph is the same (Sternby
and Friberg, 2005; Ortmanns et al., 1997). These
graphs usually hold all possible combinations of the
segments and a search is done to find the best path
or the n-best paths through this graph. The method
proposed in this paper makes use of such a segmen-
tation graph.

Although graphs are used a lot for these kind
of tasks, it is not always straightforward how to
use them. One of the main questions when imple-
menting a graph structure is which combinations
of segments are allowed in the graph and which
are not. In the case of handwriting recognition one
obvious constraint is the direction of reading, for
western languages usually only connections from
left to right would be possible. But questions may
arise. For example one can argue about whether
it should be possible to jump backwards in the im-
age. This may seem strange, but such an alleviation
of constraint may improve the performance since
two consecutive words can overlap (Mahadevan and
Nagabushnam, 1995). Although less controversial,
a similar discussion can arise about the amount of
space that should be allowed between two consecu-
tive words. Both constraints are reflected by a pa-
rameter in the system and will be explored in this
study to be able to find the most optimal settings
for the envisaged word splitter.

Another main question is whether to use prob-
abilities or distances as scores in the graph and
how to propagate them. The most accepted way
of dealing with this problem is to use a multi-
plication of probabilities according to Bayes’ the-
orem (Malakoff, 1999). However there are argu-
ments against such a conjunctive rule. For example
a recognition algorithm may return a probability
close to zero because of a low likelihood hypothesis
in a chain of evidence. This may result in ignoring
the segment altogether, which is not desirable. An
addition of probabilities will likely score better in
such cases, because it is less restrictive on the col-
lection of evidence. As for distances, it is certainly
more intuitive to add values than to use multiplica-
tion. These hypotheses are tested, combining both
probabilities and distances with both the discussed
propagation methods.

Finally, because the goal of this study is to find
new words in a datamining process, it is also im-
portant how to handle the words of which no word
model is available yet. In this study a heuristic,
which maximizes the probabilities and minimizes
the distances of segments with a width close to the
expected width of a word, is developed and tested.

2 Methods

2.1 Data and preprocessing

The data is drawn from a collection of scanned
(300 dpi) historical handwritten documents from
the Dutch National Archive, all written by a sin-
gle writer. These documents are preprocessed and
segmented according to the methods described in
(Schomaker, 2008). All instances of the data that
are selected for this study are already transcribed
by humans and contain multiple words, most im-
ages contain only two words, but also cases of im-
ages containing three or four words do occur in this
selection. For a data example see Figure 2.

Then, before building the segmentation graph,
the undersegmented images are further cut into seg-
ments using connected components. The result of
this process are wordzone images, all of which con-
tain a single connected component. These images
are temporarily stored along with their original po-
sition in the image and the width and height of
the wordzone images self. Also all images consisting
of multiple connected components (up to a maxi-
mum of nine) are stored in the same way, making
sure there always is an image containing a single
full word, assuming the connected components al-
gorithm cut the original image at least somewhere
between the words and does not consist of more
than nine connected components.

2.2 The word splitter

The number of words which can be in the word-
zone images is limited to the number of words from
the label of the original image. Therefore it is now
possible to match the words from the labels with
all wordzone images using a recognizer. The rec-
ognizer that is used for this study is based on a
Kohonen self-organized map and returns a distance
measure. This distance has a value between 0 and



Figure 3: Basic example of a graph of an im-
age labeled ’van_het’ with only two connected
components, showing all nodes and all edges in
the graph. The correct path is indicated by the
dotted arrows.

1 or a non-match value and can be converted into a
measure that has similarities with probability, us-
ing e~?, where d is the distance measure returned
by the Kohonen SOM. If d = 0 then e~% = 1 and if
d — oo then e~% — 0, which is desirable. In the re-
mainder of this article, this measure is meant when
referring to pseudo-probability.

These scores are used when building the graph.
Each node in the graph represents a combination of
a wordzone image, a word that could be in that im-
age and the score returned by the recognizer. Then
all possible combinations of two word nodes in the
graph are considered and, if an edge between these
nodes is possible according to the specified rules,
this edge is added to the graph. This way a graph,
as in Figure 3 is built.

After the graph is created, all paths from the
start node to the end node are evaluated, using a
depth first search. It will calculate the cumulative
path quality by propagating (or sometimes called
aggregating) the scores in the wordnodes, this pro-
cess is referred to as ‘propagating scores’ in the re-
mainder of this article. Eventually the path with
the best score is returned. This path should consist
of the nodes containing the words from the input
label and the correct corresponding wordzone im-
ages. For words of which no word model is avail-
able a heuristic is used which estimates whether it
is plausible that a word is in a certain wordzone im-
age. This heuristic calculates the probability that

Formula to calculate the expected width of a
word for the heuristic for unknown words. W is
the width of the total image, N the total num-
ber of characters in this image, N,pqces the total
number of spaces in the image, Wp4.c the aver-
age width of a space and N p.rs the total number
of characters of the new word.

Wf(Ns aces*Ws ace)
b N £ * Nehars

Wexpected = (2.1)

a word with a certain amount of characters is in
a wordzone image with a certain width. It does so
by estimating the width of the word according to
Formula 2.1. The probability that a word with this
expected width is in a wordzone image can then be
calculated by comparing it with the actual width
of the wordzone image, assuming a discrete nor-
mal distribution. If the probability exceeds a cer-
tain threshold, the node in the graph gets assigned
a score of 1 when using pseudo-prbabilities and a
score of 0 when using distances and vice versa if
the threshold is not exceeded.

2.3 Experiments

The graph search will be in a free modus for all
experiments, except for the last one. This means
that, during the search, the depth of a path through
the graph will not be constrained to a minimum or
maximum and it is not checked whether the words
in the nodes are correct according to the label of
the image. This to avoid ceiling effects in the per-
formance evaluation. In these tests a path is consid-
ered correct if the output is equal to the input la-
bel. It must be noted that this is not always strictly
spoken true, because theoretically it is possible that
the correct output label will be given with the in-
correct corresponding wordzones, although this will
rarely occur. Even so, the free modus will always
result in an equal or worse performance compared
with the full modus, because with the described
constraints only paths which would result in an in-
correct answer will be removed.

The first goal is to find the best method to prop-
agate scores along the graph. These scores are dis-
tances or pseudo-probabilities and will be propa-
gated by multiplication or addition. All four com-
binations of methods and scores are considered, be-



cause the scores are expected to influence the way
of propagating. In case of the addition method, the
final scores are divided by the number of nodes in
the path to normalize the output scores between 0
and 1. For this experiment only instances of which
all words have a prototype model available will be
used. The method with the best recognition perfor-
mance will be used in further experiments.

One of these next experiments will be about the
possible connections in the graph. First, the max-
imum gap, which determines the maximum num-
ber of pixels from left to right between two con-
secutive segments, will be under study. Afterwards
a maxiumum overlap, which determines the max-
imum number of pixels two consecutive segments
may overlap, is tested. To avoid loops in the graph,
it is at all times ensured that the successive seg-
ment ends on a larger x-position than its predeces-
sor. And as for the propagation experiment, only
instances of which all words are known by the sys-
tem are used.

The next experiment concerns a heuristic for un-
known words (UWH), this experiment will evaluate
two variables. The first one is a deviation which is
estimated by using a percentage of the expected
width. This estimation is used instead of a calcula-
tion of the standard deviation, because to calculate
the standard deviation, the widths of the individual
words need to be known, which is exactly what we
are looking for in this study. The second variable is
a threshold, if this threshold is exceeded, the word-
zone image will be accepted as possibly containing
the unknown word and gets assigned a score as ex-
plained in section 2.2. For this experiment exactly
one word model will be ignored from each example
randomly, thereby mimicking the behaviour as if
one of the words is unknown. The results are com-
pared with a control experiment in which instead
of the UWH, random scores between 0 and 1 are
assigned to nodes with unknown words.

Finally an experiment will be performed to mea-
sure the exact performance of the system for
datamining new words. For this last experiment
more constraints are added during the search, us-
ing the number of words to determine the minimum
and maximum depth of a correct path through the
graph and checking for each node whether the word
in the node is the same as in the word in the label
at the corresponding depth in the graph. This way
the search space can be limited considerably. The

method can be seen as a graph pruning during the
search, cutting all of the paths which do not satisfy
the constraints. For this experiment, exactly one
word model will again be ignored randomly from
each instance and a path is only considered cor-
rect if it does not just return the correct output la-
bel, but also the correct corresponding wordzones,
to check this the output wordzones are checked by
hand.

3 Results

3.1 Propagation of evidence

Each of the four methods of propagating scores
along the graph was tested on the same dataset
with 861 instances, the results are shown in Table
1. The values of the maximum gap and maximum
overlap were both chosen (based on a pilot experi-
ment) at 40 pixels. Addition of pseudo-probabilities
had the highest recognition performance (71.1%)
and therefore this method is used in the experi-
ments of Sections 3.2, 3.3 and 3.4. A y°-test was
done on the frequency counts of correct and in-
correct classifications and shows a strong effect of
the propagation method on the classification per-
formance (p < 1079), but shows no significant effect
(p > 0.25) of the unit of similarity on the classifi-
cation performance.

Table 1: Percentages of correctly classified in-
stances and their 95% confidence intervals for
the 4 propagation methods (N=861).

propagation unit
pseudo- distances
probabilities
multiplication 56.4 % 60.3 %
(53.1%—59.7%)  (57.0%—63.6%)
addition 711 % 70.9 %

(68.1%—74.1%)  (67.9%—74.0%)

3.2 Maximum gap and overlap

The maximum number of pixels between two con-
secutive segments was tested by evaluating it on
a test set with 93 instances, using an addition of
probabilities to propagate scores along the graph.



Effect of the maximum gap on the classification performance
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Figure 4: Performance of the word splitter for a
different maximum gap between two consecutive
words.

Figure 4 shows the results of this experiment for
different values of the maximum gap, and indicates
an optimal value for the parameter.

The maximum number of pixels two consecutive
segments may overlap was tested in a similar way
on the same dataset. Figure 5 shows the results of
this experiment and indicates that a value larger
than zero can improve the performance.

3.3 UWH

Table 2: Performance of the word splitter when
one word model is ignored in each instance,
varying the parameters of the UWH.

threshold

dev

10=° 10=* 107%®  0.01 0.05
0.01 21.5% 23.7% 22.6% 21.5% 24.7%
0.03 204% 28.0% 37.6% 46.2% 39.8%
0.05 11.8% 39.8% 52.7% 41.9% 39.3%
0.1 5.4% 34.4% 40.9% 34.4% 19.4%
0.2 7.5% 25.8% 10.8% 7.5% 7.5%

The heuristic to classify unknown words was
tested on a test set with 93 instances, for each in-
stance one of the word models was ignored at ran-
dom. The tested parameters were a deviation as
rate of the expected width of a word and a thresh-
old which influences the strictness of the heuristic.
The highest measured classification performance

Effect of the maximum overlap on the classification performance
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Figure 5: Performance of the word splitter for
a different maximum overlap of two consecutive
segments.

was 52.7% (95% confidence interval £10.15). This
was reached by a deviation of 0.05 (5 percent of
the expected width) and a threshold of 1073 as is
shown in Table 2. When instead of the UWH a ran-
dom number (between 0 and 1) was generated and
assigned to the node with the unknown word, the
classification performance on the same test set was
12.9% (95% confidence interval +6.81).

3.4 Datamining new words

For the last experiment a test set of 500 instances
was used and more constraints were added to the
search comparing to the previous experiments as
described in the Methods section. One word model
was again ignored from each instance randomly and
scores were propagated through the graph by ad-
dition of pseudo-probabilities. The maximum gap
and maximum overlap were both set at 40 pixels
and the UWH was used with a deviation of 0.05
and a threshold of 0.01.

All wordzone images were checked by hand to see
whether the word that was written on the image
was what the word splitter said that was written
on it. 436 out of the 500 instances were splitted
correctly, which is a classification performance of
87.2% (95% confidence interval +2.9). From the 64
that were not splitted correctly, 44 times it was
caused by a connected component consisting of
multiple words, so an oversegmentation would be
required at those points, 11 times it was caused by
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Figure 6: ROC curves of both multiplication and
addition of pseudo-probabilities. The area under
the curve of the multiplication method is 0.91
and of the addition method 0.59.

an error of the UWH and 9 times there was another
cause, for example inaccurate word models.

3.5 Additional analysis

Additional analysis on the results in section 3.1
show there is a noticeable difference between the
ROC-curves of the different propagation methods.
These ROC-curves are shown in the graph of Figure
6. The area under the curve (AUC) of the multi-
plication method is 0.91 and the AUC of the ad-
dition method is 0.59. The latter is comparable to
the AUC scores of both multiplication of distances
(0.62) and addition of distances (0.65) which are
not shown in the graph.

4 Discussion

4.1 Propagation of evidence

The experiments regarding different propagation
methods show, contrary to expectations, that there
is no significant difference between the use of

pseudo-probabilities or distances. This is remark-
able because of the fundamental differences be-
tween distance and probability measures. But can
possibly be explained by the fact that the pseudo-
probability measure that is used here is not a
proper probability measure, but a measure derived
from the distance measure. The small performance
differences between both methods can possibly be
explained by the fact that both measures are so
closely related.

However, the results do show a significant differ-
ence between the multiplication method and addi-
tion method. If scores are added, higher recognition
rates are measured than when scores are multiplied.
This corresponds with our hypothesis that noise
in one of the segments has a larger influence on
the classification when multiplication is used than
when addition is used. And argues against a con-
junctive rule such as provided by Bayesian theory.

However a remark has to be made regarding
these results, because additional analysis of the
results show that the area under the ROC-curve
(AUC) of the multiplication of pseudo-probability
method is much larger than the AUC’s of the other
methods. A large AUC means a high true positive
rate and a low false positive rate. The true positive
rate in the ROC-curve is equal to the surface un-
der the normal distribution of the scores of correct
classifications up to a certain threshold. The corre-
sponding false positive rate is equal to the surface
under the normal distribution of the scores of in-
correct classifications up to the same threshold (as-
suming that correct classifications have lower scores
than incorrect classifications, otherwise the surfaces
up from a threshold need to be calculated). There-
fore the true positives are a rate of the total amount
of correct classifications and the false positives are a
rate of the total amount of incorrect classifications.
In the situation of section 3.1 all classifications are
accepted and therefore these methods have a true
positive rate of 1 and also a false positive rate of 1.
The multiplication of pseudo-probabilities method
has a relatively high true positive rate and a rel-
atively low false positive rate for the most opti-
mal threshold. This means that the normal distri-
butions of scores of correct and incorrect classifi-
cations show little overlap and that it is easier to
distinguish between correct and incorrect classifi-
cations when using this method than when using
the other methods. Therefore a threshold, above or



under which classifications are rejected, would im-
prove the classification performance of the multipli-
cation of pseudo-probabilities method more than it
would improve the other methods. How large this
improvement will be is still to be studied.

4.2 Maximum gap and overlap

The parameter sweeps over the parameters which
control the maximum allowed gap between words
and the maximum allowed overlap of words show
that both parameters have an influence on the clas-
sification. The maximum gap parameter is an im-
portant parameter in the system, because the per-
formance varies significantly over different values of
the parameter. But the parameter is not sensitive
as the highest recognition rates are stable between
values of 30 to 50 pixels. At higher values of the
parameter the performance gradually drops, which
does not mean that gaps wider than 50 pixels be-
tween two consecutive words do not occur. But al-
lowing connections between two words which had
more than 50 pixels space between them lead more
often to an incorrect classification than to a correct
classification.

Also it appears that the parameter controlling
the maximum overlap of two consecutive words is
less important than the parameter controlling the
maximum gap, but it is still true that allowing over-
lap of words can improve the performance. However
it can not be stated that it always will, as the differ-
ences are not significant. Figure 7 shows an exam-
ple containing the overlapping words ‘de Tweede’,
which will only be classified correctly if overlap of
two consecutive segments is allowed. When not al-
lowing overlap when classifying this example, the
result will at best be that either the right part of
the ‘e’ from the word ‘de’ will be ignored or that
the left part of the ‘T’ of the word ‘Tweede’ will be
ignored. This example shows that allowing overlap
can lead to an increase of the correct classifications
and advocates to allow overlap.

4.3 UWH

The heuristic that is used in our study to clas-
sify unknown words uses a very simple strategy to
classify unknown words based on the widths of im-
age segments. Yet the performance gains from this
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Figure 7: Example with the words ‘de’ and
‘T'weede’. This image will only be classified cor-
rectly by the system if overlap of two consecu-
tive words is allowed.

heuristic is already eminent compared to when ran-
dom scores are assigned to unknown words. This
shows that even a simple heuristic can improve the
system significantly. The UWH does however also
introduce two extra parameters into the system and
does not yet take into account that not all charac-
ters are evenly wide. Therefore a more advanced
method may improve the system even more.

Such an advanced method could for example cal-
culate the average widths of individual characters
based on gathered information about words and
their widths. If there is enough data available it
is possible to calculate the average widths of all
characters. If for example the average width of the
words ‘abc’ and ‘abed’ is known, it is possible to de-
termine the average width of the letter ‘d’. That in-
formation can in turn be used to get more informa-
tion from the remaining data. If such methods are
applied in a smart way, one can make an accurate
approximation of the average widths of individual
characters. That information can then contribute
to a better heuristic for unknown words.

4.4 Datamining new words

The experiment regarding the classification of un-
known words shows that it is possible to find words
in undersegmented images using the developed sys-
tem. All correct classifications did not only out-
put the correct expected words but also the correct
unknown corresponding word images. That result
is relevant because it concerns words that are not
yet known by the system and enables the system
to learn these words. The described word splitter
has similarities with recognition based segmenta-
tion methods in which it is not necessary that all
words are recognized by the system to achieve a cor-



Figure 8: Example with the words ‘Ned’ and ‘In-
die’ consisting of a single connected component.

rect segmentation. However on the word level this
was usually considered computationally too heavy.
By making use of the transcription of the words
and applying an appropriate heuristic, our study
has shown that it is very well possible to apply the
same principles on the word level to learn unknown
words.

Of the errors in this experiment most were caused
by a connected component consisting of multiple
words. To be able to classify these images correctly
it would be necessary to split words on other cri-
teria than just the connected components. In other
words the images need to be oversegmented to
avoid these errors. Figure 8 shows an example of
such an image.

Other errors by the system were caused by the
UWH that sometimes assigned a high recognition
score to a segment which did not contain the (en-
tire) correct word while at the same time it did
assign a low recognition score to the correct seg-
ment. Figure 9 shows an example of such an error.
In that example the UWH expects the word ‘eervol’
to have a smaller width than the actual width of the
word, which in this case causes an error because the
leading ‘e’ of the word ‘eervol’ is smaller than the
maximum gap that is allowed by the maximum gap
parameter. Possibly would the suggestion in section
4.3 to improve the heuristic lead to a decrease of
this type of errors.

The remaining errors had an undefined cause,
this includes errors following from the word mod-
els and the Kohonen SOM recognizer, such as errors
caused by inaccurate word models. The exact cause
of these errors is hard to trace back, because the
recognizer that is used is a neural network based
classifier.

dewwe?

Figure 9: Example with the words ‘eervol’ and
‘ontslag’. If the model of the word ‘eervol’ is un-
known in this example, the UWH recognizes the
word ‘eervol’ as indicated by the dotted lines,
which is incorrect in this example.

4.5 Conclusion

Our study shows that it is possible to find new
words from undersegmented images in a datamin-
ing experiment. These results can help to improve
recognition rates of handwriting recognition sys-
tems, because it makes it possible to gather more
examples of known words as well as to learn new
words from existing data. The described method
avoids the problems following from undersegmenta-
tion under the limitation that the text image is al-
ready transcribed. With this method it is also pos-
sible, although not yet practically tested, to split
longer sequences of words. Furthermore is it theo-
retically possible to apply the principles of the sys-
tem on character level as well.
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