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Abstract

Traffic models can be used for several applications. For example when
adjusting the infrastructure or trying to solve the current known traffic
problems. There are different types of traffic models: microscopic, meso-
scopic and macroscopic models. In this thesis three microscopic models:
the follow-the-leader model, the optimal velocity model and the general-
ized force model, and two macroscopic traffic models: the LW-model and
Payne’s model are described. The difference between these models is ap-
pointed. In the end the influence of adding a PI-controller to the optimal
velocity model is discussed.
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1 Introduction

Traffic models can be used for several applications. For example they can be
used when adjusting the infrastructure or trying to solve the current known
traffic problems. Because traffic models are used for several applications much
attention is given to research on traffic models. The first traffic flow models
were developed in the fifties. [8] Additions are made after the development of
these traffic models and other models have been developed.

There are different types of traffic flow models and they can be classified in
various ways. For example they can be classified to the level of detail. Then
there are three types of models: microscopic, mesoscopic, and macroscopic traf-
fic models. Microscopic traffic models give attention to the details of traffic
flow. These models simulate single vehicle-driver units. [9] Macroscopic traffic
models assume a sufficiently large number of vehicles on a road such that each
stream of vehicles can be treated as flowing in a tube or a stream. Mesoscopic
traffic models look at vehicle groups. In this thesis we focus on microscopic and
macroscopic traffic models. [12]

In the first section three microscopic traffic models: the follow-the-leader model,
the optimal velocity model and the generalized force model are discussed. These
three models are compared with each other. Two macroscopic models: the LW-
model and Payne’s model are described in section 2. These models consist of
a continuity equation based on the conservation of vehicels and an equation
describing the velocity. The difference between these models is discussed. In
the last section we look specifically at the optimal velocity model described in
section 1 and the impact of adding a PI-controller to this model.
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2 Microscopic traffic models

Microscopic traffic models describe the details of traffic flow and the interaction
taking place within it. Microscopic traffic models simulate single vehicle-driver
units. The dynamic variables of the models represent microscopic properties
like the position and velocity of single vehicles. These models can be divided
into two categories: cell automata models, which are discrete in time and space,
and continuous models, which are continuous in time. The latter are required
for detailed studies of car-following behaviour and traffic instabilities. A few of
them will be discussed below.

The first microscopic traffic models were developed in the sixties. [7] The follow-
ing strategy is used to build such a dynamical model. The equation of motion of
each vehicle is based on the assumption that each driver responds to a stimulus
from other vehicles in some special way. These response is expressed in terms
of acceleration. The stimulus may be a function of the positions of vehicles and
their time derivatives, and so on. This function is decided by supposing that
drivers of vehicles obey postulated traffic regulations at all times in order to
avoid traffic accidents.

For the regulations there are two major types of theories. The first one is based
on the idea that each vehicle must maintain the legal safe distance of the preced-
ing vehicle. This legal safe distance depends on the velocity difference of these
two successive vehicles. These theories are called the follow-the-leader theories.
The second type is based on the idea that each vehicle has the legal velocity.
The legal velocity is equal to the desired velocity of the driver. If there is little
traffic this velocity is assumed to be the maximum allowed velocity. This veloc-
ity decreases when the traffic density increases. So the legal velocity depends
on the relative position between vehicles. [3]

Most of the earlier microscopic traffic models were based on the first idea. The
follow-the-leader model proposed by Gazis, Herman and Rothery for example.[5]
Before this model is discussed it is important that the following notation is men-
tioned.

In microscopic traffic models each vehicle is numbered. In this paper the i-th
vehicle follows the (i+ 1)-th vehicle. The position of the i-th vehicle is equal to
pi and the velocity of this vehicle is equal to vi. Besides the following variables
are important:

• ∆pij = pj − pi: the relative position between vehicle i and j. Vehicle j
is a neighboring vehicle influencing vehicle i. The relative position ∆p is
denoted as pi+1 − pi.

• v̇i: the acceleration of vehicle i.

• ∆vij = vj − vi: the relative velocity between vehicle i and j. Vehicle j is
a neighboring vehicle influencing vehicle i. The relative velocity ∆v is in
contrast to ∆p defined as vi − vi+1.
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2.1 The Follow-the-leader Model

The follow-the-leader model was proposed by Gazis, Herman and Rothery. [5]
In the follow-the-leader model it is assumed that the dynamics of vehicle i are
given by the equation of motion:

ṗi(t) = vi(t) (1)

and the acceleration equation:

v̇i(t+ T ) = κi[vi+1(t)− vi(t)]. (2)

In equation (2) the acceleration of vehicle i is slowed down by the adaptation
time T . Therefore the following vehicle is assumed to accelerate at time t+ T .
The parameter κi reflects the sensitivity of the driver of vehicle i. The following
functions can be assumed for this sensitivity:

1. constant: κi = ai.

2. step function:

κi =

{
ai for ∆p ≤ ∆pcrit
bi for ∆p > ∆pcrit

3. reciprocal spacing: κi = ci/∆p.

Here ai, bi and ci are constants. In this thesis the parameter κi is assumed to
be a constant. [5] [7]

2.2 The Optimal Velocity Model

The optimal velocity model (OVM) is proposed by Bando et al. [7] This model
is based on the second idea previously mentioned: each vehicle has the legal ve-
locity, which depends on the relative position between vehicles. The acceleration
equation in this model becomes:

v̇i(t) = κi[Vi(∆pij)− vi(t)]. (3)

In equation (3) the term Vi(∆pij) is the legal velocity or optimal velocity of
vehicle number i and the parameter κi is again equal to the sensitivity of the
driver of vehicle i. As said the legal velocity depends on the relative position
between vehicles. The velocity must be reduced when the relative position
between vehicles decreases. The velocity has to be small enough to prevent
crashing into the preceding car. When the relative position between the vehicles
increases, the vehicle can move with a higher velocity although the vehicle does
not exceed the maximum velocity. So V must be a monotonically increasing
function with an upper bound. In the optimal velocity model Vi(∆pij) is given
by the following equation:

Vi(∆pij) = V 0
i + V 1

i

∑
j∈N(i)

tanh(pj − pi). (4)

The constants V 0
i are ”the preferred velocities” and the constants V 1

i represent
the sensitivities of the drivers. The neighboring vehicles influencing vehicle i
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are denoted by the set N(i).

Combining formula (3) and formula (4) gives the equation:

v̇i(t) = κi[−vi(t) + V 0
i + V 1

i

∑
j∈N(i)

tanh(∆pij)]. (5)

[3] [7]

2.3 Generalized Force Model

The generalized force model (GFM) is proposed by Helbing and Tilch. [7] They
developed this model motivated by the success of the so-called social force mod-
els in the description of behavorial changes. According to the social force concept
the amount and direction of a behavioral change, the acceleration, is given by
a sum of generalized forces. These forces reflect the different motivations which
a driver feels at the same time in response to his respective environment. The
success of this approach in describing traffic dynamics is based on the fact that
driver reactions to typical traffic situations are mostly the same. These reac-
tions are determined by the optimal behavorial strategy.

The driver behavior is mainly given by the motivation to reach a certain desired
velocity of the driver. The desired velocity of the driver of vehicle i is denoted
by v0

i and will be reflected by an acceleration force f0
i . The driver will also

keep a safe distance from other cars j. This will be described by the repulsive
interaction forces fi,j . The equation which describes this behavior is given by:

v̇i(t) = f0
i (vi) +

∑
j(6=i)

fi,j(∆pij , vi) + ξi(t). (6)

In this equation ξi is the fluctating force of vehicle i. The fluctating force may
be include individual variations of driver behavior. Here this force is set to zero.
The acceleration force is proportional to the difference between the desired and
actual velocity:

f0
i (vi) =

v0
i − vi
τi

. (7)

The time τi is equal to the acceleration time. Suppose that the most important
interaction concerns the vehicle in front. Therefore equation (6) becomes:

v̇i(t) =
v0
i − vi
τi

+ fi,i+1(∆p, vi). (8)

The only thing which have to be specified is the interaction force fi,i+1. If this
force is equal to:

fi,i+1 =
Vi(∆p)− v0

i

τi
(9)

and τi = 1/κi then the optimal velocity model (see 2.2) is obtained. The only
difference is that this optimal velocity model assumes that the acceleration of a
vehicle is only influenced by the vehicle in front. In the generalized force model
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this relation is extended by a term which should guarantee early enough and
sufficient braking in cases of large relative velocities ∆v. This deceleration term
is equal to:

∆v ·Θ(∆v)

τ ′i
e−[∆p−∆p(vi)]/R

′
i . (10)

Here the Heaviside function Θ(∆v) is defined as:

Θ(∆v) =

{
1 if ∆v ≥ 0
0 if ∆v < 0

. (11)

So the deceleration term (10) is only added if the velocity of the vehicle in front
is smaller. The parameter τ ′i in this term is the braking time. This time is
smaller than τi, because deceleration capabilities of vehicles are greater than
acceleration capabilities. The term:

e−[∆p−∆p(vi)]/R
′
i

is added because the deceleration term should be zero for large relative positions
∆p. If the relative position decreases the deceleration term should increase. The
variable ∆p(vi) is a certain safe distance depending on the velocity of vehicle i.
The constant R′i can be interpreted as a range of the braking interaction.

The deceleration term (10) has to be substracted from equation (9) which ex-
press the acceleration. This yields the following interaction force:

fi,i+1 =
Vi(∆p)− v0

i

τi
− ∆v ·Θ(∆v)

τ ′i
e−[∆p−∆p(vi)]/R

′
i . (12)

The number of parameters in this model can be reduced if the function Vi(∆p)
is replaced by:

Vi(∆p, vi) = V 0
i {1− e−[∆p−∆p(vi)]/Ri}. (13)

The model consisting of equations (8), (12) and (13) is called the generalized
force model. Combining these equations gives:

v̇i(t) = κi[−vi(t) + V 0
i − V 1

i e
−[∆p−∆p(vi)]/Ri ]− κ′i[∆v ·Θ(∆v)e−[∆p−∆p(vi)]/R

′
i ].

(14)
[7]

2.4 Comparison microscopic traffic models

The three microscopic traffic models described in the sections before are all
based on the assumption that each driver responds to a stimulus from other
vehicles in terms of acceleration. How the drivers are stimulated is different
in these microscopic models. The follow-the-leader model and the generalized
force model assume that the acceleration of one vehicle is only influenced by the
vehicle in front. The optimal velocity model assumes that the driver also re-
sponds to other neigboring vehicles. The follow-the-leader model assumes that
this acceleration depends on the relative velocity between the so-called follower
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and leader vehicle. The acceleration of vehicle i in the optimal velocity model
and the generalized force model is determined by the difference between the own
velocity and a legal velocity which depends on the relative position between ve-
hicles.

The optimal velocity model and the generalized force model are almost the
same. One difference between these models is the assumption that in the gener-
alized force model a vehicle is only influenced by the vehicle in front. An other
difference between these models is a deceleration term added in the generalized
force model. This term guarantees early enough and sufficient braking in case
of large velocities to avoid accidents. This braking term takes into account that
vehicles prefer to keep a certain safe distance. This safe distance depends on
the velocity of the vehicle.

The follow-the-leader model and the optimal velocity model can be expressed as
port-Hamiltonian system. The follow-the-leader model written as port-Hamiltonian
system is:

ṗ = RBT
∂H

∂p
(15)

where B is the incidence matrix (see Appendix A), R is a diagonal matrix with
elements κi on the diagonal and the Hamiltonian H is equal to:

H(p) =
∑
i

p2

2mi
. (16)

Here it’s neglected that the acceleration is slowed down by an adaptation time
T . The optimal velocity model can be expressed as port-Hamiltonian system in
the following way:

d

dt

[
p
η

]
=

[
−I B
−BT O

][∂H
∂p
∂H
∂η

]
. (17)

Here the Hamiltonian is equal to:

H(p, η) =
∑
i

p2

2mi
+
∑
k

Pk(ηk) (18)

where i is the number of vehicles and k is the number of relative positions
between vehicles. The relative position between vehicles, ∆pij , is now denoted
by ηk to avoid confusion with the impuls p. The function Pk(ηk) is equal to:

Pk(ηk) = miV
1

i ln cosh(ηk). (19)

[4] [11]
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3 Macroscopic traffic models

Macroscopic traffic modeling assumes a sufficiently large number of vehicles on
a road such that each stream of vehicles can be treated as flowing in a tube or
a stream. There are three variables important in macroscopic traffic modeling.
These variables are:

• the rate of flow, q(x, t): the number of vehicles passing a fixed point x per
unit time.

• the speed of traffic flow, v(x, t): the distance covered per unit time.

• the traffic density, ρ(x, t): the number of vehicles in a traffic line of given
length.

These traffic variables are connected in the following way:

q(x, t) = ρ(x, t)v(x, t). (20)

There is also an other relation between these variables. This relation is based
on the conservation of vehicles [12]:

∂ρ

∂t
+
∂(ρv)

∂x
= 0. (21)

Equation (20) and equation (21) constitute a model with two independent equa-
tions and three unknown variables. To get a complete description of traffic flow
a third independent equation is needed. Macroscopic traffic models use different
equations for the velocity to complete the description of traffic flow. Below the
LW-Model and Payne’s model are discussed.

3.1 LW-Model

The most straightforward approach is to assume that the expected velocity v
can be described as a function of the traffic density:

v(x, t) = Ve(ρ(x, t)). (22)

The first macroscopic model uses this relation given in equation (22). This
model was proposed by Lighthill and Whitham in 1955. [8] The model is called
the LW-model named after its authors. The model consists of equation (20)
and equation (21) and of the non-linear first-order partial differential equation
resulting from (22):

∂ρ

∂t
+
∂ρ

∂x

(
Ve + ρ

dVe
dρ

)
= 0. (23)

This model does not describe the nonequilibrium situations such as emergent
traffic jams and stop-and-go traffic adequate because it is assumed that each
time instant the mean flow speed v(x, t) is equal to the equilibrium value Ve(ρ)
for the given vehicle density. Therefore instead of equation (22), a differential
equation modeling the mean speed dynamics was suggested for describing the
non-equilibrium situations. This is done by Payne. [8]
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3.2 Payne’s Model

Payne proposed the first continuum traffic model by a coupled system of two
partial differential equations in 1971. [8] That means: equation (20) and (21) are
in this model extended by a partial differential equation describing the dynamics
of the velocity v. Payne’s model is derived from a simple car-following rule:

v(x(t+ T ), t+ T ) = Ve(ρ(x+ ∆p), t). (24)

where x(t) is the position of the vehicle at time t, v(t) is its velocity and Ve is
the equilibrium velocity as a function of the density ρ at x+ ∆p. Furthermore
T is the reaction time and ∆p is the relative position between the follower and
leader vehicle. Equation (24) shows that drivers of vehicles adapt their veloc-
ity to the equilibrium velocity which depends on the density. The equilibrium
velocity represents a trade-off between the desired velocity of a driver and a
reduction in the velocity due to worsening traffic conditions.

To derive the partial differential equation of Payne’s model, the Taylor’s expan-
sion rule have to be applied to the left- and rightside of equation (24). The
reaction time T is relatively small so the higher order terms can be neglected.
This yields:

v(x(t+ T ), t+ T ) ≈ v(x, t) + T · v(x, t)
∂v

∂x
+ T

∂v

∂t
(25)

and

Ve(ρ(x+ ∆p), t) ≈ Ve(ρ(x, t)) + ∆p · ∂ρ
∂x

d

dρ
Ve(ρ(x, t)). (26)

The traffic density ρ is equal to 1/∆p. Now substitute equation (25) and (26)
in the car-following rule (24) gives:

∂v

∂t
+ v

∂v

∂x
=

1

T
(Ve(ρ)− v)︸ ︷︷ ︸

relaxation term

− c2(ρ)

ρ

∂ρ

∂x︸ ︷︷ ︸
anticipation term

(27)

where c2(ρ) is the anticipation function associated with the density and is equal
to:

c2(ρ) = − 1

T

dVe
dρ

. (28)

So this model relies on the microscopic description of movements of individual
cars according to the follow-the-leader model.

Equation (27) is the general form of the dynamic velocity equation of most
macroscopic models. The term v ∂v∂x is called the convection term and describes
the variation of the mean velocity due to inflowing and outflowing vehicles.
The anticipation term describes the drivers’ response to the situation ahead of
them. The relaxation term describes the tendency of traffic flow to relax to an
equilibrium velocity. [8]
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4 The Optimal Velocity Model and PI-control

The optimal velocity model (see 2.2) is given by the equation:

v̇i(t) = κi[Vi(∆pij)− vi(t)]. (29)

The term Vi(∆pij) is the optimal velocity of vehicle i. This optimal velocity
depends on the relative position of neighboring vehicles in the following way:

Vi(∆pij) = V 0
i + V 1

i

∑
j∈N(i)

tanh(pj − pi). (30)

The optimal velocity model can also be written as:
v̇1

...

...
v̇i

 =


−κ1 0 · · · 0

0 −κ2
. . .

...
...

. . .
. . . 0

0 · · · 0 −κi



v1 − V1(∆pij)

...

...
vi − Vi(∆pij)

 . (31)

The driver of vehicle i want to reach the optimal velocity Vi(∆pij). But if κi is
very large this will never happen. The velocity of vehicle i is in that case never
equal to the optimal velocity Vi(∆pij). PI-control is used to be sure that the
velocity will always go to the optimal velocity. An integral term is added to
equation (29). This gives the following equation:

v̇i(t) = −κi[vi(t)− Vi(∆p)]− ki
∫ t

0

(vi − Vi(∆pij))dt (32)

where κi is the proportional gain and ki is the integral gain. The velocity vi
creeps slowly toward the optimal velocity Vi(∆pij) for small values of ki and goes
faster for larger integral gains, but the system also becomes more oscillatory.
Equation (32) can be written as the system:

żi = vi − Vi(∆pij)

v̇i = −κi[vi − Vi(∆pij)]− kizi.
(33)

This system can also be written as:[
v̇i
żi

]
=

[
−K̃ −K
I O

] [
vi − Vi(∆pij)

zi

]
(34)

where K̃ is a diagonal matrix with elements κi on the diagonal, K is a diagonal
matrix with elements ki on the diagonal, I is the identity matrix and O is the
null matrix.

What happens if a disturbance such as rainfall or wind is add to the system?
To investigate this, apply a disturbance di to the system given in equation (33):

żi = vi − Vi(∆pij)

v̇i = −κi[vi − Vi(∆pij)]− kizi + di.
(35)
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After a while this system goes to an equilibrium value: vi = Vi(∆pij) and
−kizi + di = 0. If the variable z̃i = zi − z̄i is introduced, system (35) can be
written as: [

ẋi
˙̃z

]
=

[
−K̃ −K
I O

] [
vi − Vi(∆pij)

z̃i

]
. (36)

Now the velocity vi goes to the optimal velocity Vi(∆pij) and z̃i(t) goes to
zero, i.e. zi(t) goes to z̄i(t). So adding a PI-controller attenuates disturbances
effictively. This means if a disturbance such as rainfall or wind is add to the op-
timal velocity model, the velocity of vehicle i becomes still equal to the optimal
velocity Vi(∆pij). [2]
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5 Conclusion

Traffic flow models can be used for several applications. For example when
adjusting the infrastucture and trying to solve the current known traffic prob-
lems. There are different types of traffic models: microscopic, mesoscopic and
macroscopic models. In this thesis three microscopic models were discussed: the
follow-the-leader model, the optimal velocity model and the generalized force
model. These models are based on the assumption that each driver responds to
a stimulus from other vehicles in terms of acceleration. The follow-the-leader
model and the generalized force model assume that this acceleration is only
influenced by the vehicle in front. The optimal velocity model assumes that
the driver also responds to other neighboring vehicles. The acceleration in the
follow-the-leader model only depends on the relative velocity between the fol-
lower and leader vehicle. The optimal velocity model and the generalized force
model assume that the acceleration is determined by the difference between the
own velocity and a desired velocity of the driver depending on the relative posi-
tion between vehicles. The largest difference between the optimal velocity model
and the generalized force model is a deceleration term added in the generalized
force model. The follow-the leader model and the optimal velocity model can
be expressed as port-Hamiltonian system.

There were also two macroscopic traffic models described: the LW-model and
Payne’s model. Macroscopic models assume a sufficiently large number of ve-
hicles on a road such that each stream of vehicles can be treated as flowing
in a tube or stream. The macroscopic models discussed in this thesis consist
of a continuity equation based on the conservation of vehicles and an equation
describing the velocity. The difference between this models is the equation for
the velocity. In the LW-model it is assumed that the velocity is equal to a cer-
tain equilibrium value depending on the vehicle’s density. Payne’s model uses a
partial differential equation describing the dynamics of the velocity.

In the last section the impact of adding a PI-controller to the optimal velocity
model described before was discussed. Adding a PI-controller to this system
ensures that the velocity of vehicle i always becomes equal to the optimal ve-
locity. Even if a disturbance such as wind or rainfall influence the system this
is the case.
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6 Appendix A: The incidence matrix

An incidence matrix is a matrix that shows the relationship between two classes
of objects. In graph theory it shows the relationship between the edges (E) and
the vertices (V) of a graph (G). The incidence matrix is an m× n matrix with
elements aij . Here m is the number of vertices and n is the number of edges.
Element aij is 0 if vertex i and edge j are not connected. Element aij is −1 if
vertex i is a starting point of edge j and element aij is equal to 1 if vertex i is
the endpoint of edge j.

To explain this a little bit more the following example is given. We look to the
graph given in figure (1).

Figure 1: Graph with 4 vertices and 5 edges.

The graph given in figure (1) consist of 4 vertices and 5 edges. So the incidence
matrix is a 4 × 5 matrix. Now we have to specify the elements of this matrix.
First look to edge a. This edge starts in vertex 1 and ends in vertex 2. So
element a11 is equal to −1 and a12 is equal to 1. Then we look to edge b. This
edge starts in vertex 1 and ends in vertex 3. This means that element a21 is
equal to −1 and element a23 is 1. This can be continued until we end up with
the following matrix:

B =


−1 −1 0 0 0
1 0 1 −1 0
0 1 −1 0 −1
0 0 0 1 1

 . (37)
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