
University of Groningen

Bachelor of Science, Computing Science

Calculating the
8th Dedekind Number

by

Arjen Teijo Zijlstra

July 11, 2013

Supervisor

prof. dr. G.R. Renardel de Lavalette

2nd reader

dr. A. Meijster

Abstract

Dedekind Numbers (dn | n = 0, 1, 2, . . .) are a rapidly growing sequence of

integers: 2, 3, 6, 20, 168, 7 581, 7 828 354, 2 414 682 040 998, 56 130 437

228 687 557 907 788. dn counts the number of monotone subsets of a power

set on n elements. A subset is monotone when there are no elements in the

power set, that contain an element of the subset, and are not an element of

the subset themself. d8 is the biggest computed Dedekind number so far. It

was first computed in 1991 by Doug Wiedemann. This took him 200 hours

on a Cray-2.

In this thesis, Wiedemanns strategy is explained, implemented in C/C++

and parallelised using the Message Passing Interface. The goal is to gather

knowledge about the theory and to check the calculation. Another intention

in this thesis is to speedup the calculation as much as possible. The first

goal is accomplished and the result of dn is exactly the same as Wiedemanns

result. The shortest time to calculate d8 is about 30 minutes. Other results

are discussed in this thesis. Furthermore, some things are said about scaling

this calculation to d9.

i

ii

Acknowledgements

I would like to express my gratitude to my supervisor prof. dr. Gerard R.

Renardel de Lavalette, for giving me the chance to work on this project and

for all his effort and time, explaining the math and working on new ideas

with me.

Second, I would like to thank dr. Arnold Meijster, for all the useful

comments, remarks and advices on my work. I have learned a lot from you,

throughout this project and the rest of my degree.

Furthermore, I would like to thank all my fellow students and friends

that helped me in any way. Thank you, Marc, Jorrit, Safet, Tycho, Dirk,

Klaas, Tijmen, Johan, Paul, Matthew, Herbert, Robbert-Jan, Joost, Aloys.

Also, I would like to thank my family for giving me the chance to fully

concentrate on working on this thesis and studying as a whole. I know for

sure that I can always count on you and you will always be there to help

me.

Moreover, I would like to thank everyone that was present at the pre-

sentation, for being there, paying attention and giving me time. I hope you

liked it and that you understood what I worked on during my project.

Finally, I would like to thank everyone else from whom I have learned

and everyone that helped me to develop myself. I would not have been this

far without any of you.

Thank you all. My studying would not have been the same without you.

iii

iv

Table of Contents

Abstract i

Acknowledgements iii

1 Introduction 1

1.1 Definitions . 2

1.2 Examples . 4

2 Theory on Monotone Subsets 5

2.1 Algorithms . 5

2.1.1 Generating Q(n+ 1) from Q(n) 5

2.1.2 Generating Dn+1 from Dn 6

2.1.3 Computing dn+2 from Dn 7

2.1.4 Computing dn+2 from Dn and Rn 9

2.2 Representation . 10

2.2.1 Power set Q(n) . 11

2.2.2 Monotone Subsets . 11

3 Implementation 13

3.1 Representation . 13

3.1.1 Monotone Subsets . 13

v

vi Table of Contents

3.1.2 Dedekind Numbers . 14

3.2 Algorithms . 16

3.2.1 Generating Dn+1 from Dn 17

3.2.2 Computing dn+2 from Dn and Rn (in parallel) 17

3.2.3 Generating Rn . 19

3.3 Helper Functions . 20

3.3.1 Operator<= . 20

3.3.2 Concatenate . 20

3.3.3 Dual . 21

3.3.4 Eta . 21

3.3.5 Permutations . 22

3.3.6 Power Set . 22

3.3.7 Subset Permutation 23

3.3.8 Permutation . 24

3.3.9 Equivalence class . 24

3.3.10 Sorting bitsets . 24

4 Findings and Future Work 27

References 29

A Source Code A-1

A.1 Algorithms on Monotone Subsets A-1

A.2 128bits unsigned integer . A-9

A.2.1 Headers . A-9

A.2.2 Sources . A-10

A.3 Main . A-12

Chapter 1

Introduction

The Dedekind numbers (dn | n = 0, 1, 2, . . .) are a rapidly growing sequence

of integers, that count the number of monotone subsets of a power set on n

elements. Doug Wiedemann computed d8 in 1991. This is still the biggest

computed Dedekind number so far. Calculating this numer took Wiedemann

200 hours on a Cray-2.

In this thesis, Wiedemanns strategy is explained by analysing the article

in which Wiedemann published his findings, step by step. After that his

strategy is followed when implementing a program in C/C++ to find d8, and

this program is parallelised using the Message Passing Interface. The goal of

this, is to gather knowledge about the theory and the strategy Wiedemann

used. The value of d8 that Wiedemann computed is checked, and also looking

at possibilities to scale up to d9 is a goal of this thesis.

The currently computed values for the Dedekind numbers (dn) are given

in table 1.1.

1

2 1.1. Definitions

n dn

0 2 Dedekind (1897)

1 3 Dedekind (1897)

2 6 Dedekind (1897)

3 20 Dedekind (1897)

4 168 Dedekind (1897)

5 7581 Church (1940)

6 7828354 Ward (1946)

7 2414682040998 Church (1965)

8 56130437228687557907788 Wiedemann (1991)

Table 1.1: Known values of dn

The table shows that the time between finding one and the next Dedekind

number is about 10 to 20 years, which suggests that these years could be a

good time for finding d9.

1.1 Definitions

Before starting with the theory, some definitions need to be given. Most of

the definitions are used as Wiedemann (1991) did. This way, consistency is

preserved.

The power set of a set S, ℘(S), is defined as the set of all subsets of S,

including the empty set and the set S itself. We define

V (n) = {0, 1, . . . , n− 1} (1.1)

and

Q(n) = ℘(V (n)) (1.2)

#Q(n) = 2n (1.3)

Note that the size of Q(n) is 2n. Q(n) is used as a basis during this thesis.

S monotone in Q(n) ≡ S ⊆ Q(n)∧

∀t ∈ S,∀u ∈ Q(n)(t ⊆ u⇒ u ∈ S) (1.4)

Chapter 1. Introduction 3

So, a subset S of Q(n) is monotone in Q(n), if for every element u in Q(n),

if for any t in S, t ⊆ u then u ∈ S.

0201 12

1 2

∅

012

0

Figure 1.1: {01, 012}

For example, take n = 3 and take

S = {01, 012} ⊆ Q(3) as in figure 1.1.

Note that, for convenience, sets like {0, 1}
and {0, 1, 2} are written as 01 respectively

012. Now S ⊆ Q(3) and also S is mono-

tone in Q(3), since there are no elements

in Q(3) that are above any elements of S

but not in S. If, for example, 0 would

be added to S, i.e. S = {0, 01, 012},
S would not be monotone in Q(3), since

02 ∈ Q(n) and 0 ⊆ 02. So, like S =

{01, 012}, S = {0, 01, 02, 012} is monotone in

Q(3).

Let Dn be defined as

Dn = {S ⊆ Q(n) | S monotone in Q(n)} (1.5)

dn = #Dn (1.6)

So, Dn is the set of all monotone subsets of Q(n) and dn is the cardinality

of Dn. dn is the nth number in the sequence of Dedekind Numbers. Known

values of dn are given in table 1.1.

A set S ∈ Q(n) is called equivalent to a set T ∈ Q(n) if a permutation

ϕ of the set V (n), exists such that ϕ(S) = T , we write S ∼ T . Here ϕ(S)

means

ϕ(S) = {{ϕ(x) | x ∈ s} | s ∈ S} (1.7)

Let Rn contain the least representative of each equivalence class in Dn, with

respect to the lexicographical ordening.

For example, take n = 3, S = {0, 01, 02, 012} and T = {2, 02, 12, 012}.
Observe that, both S and T are monotone in Q(3). Also take (in one-line

notation) permutation ϕ = (2 1 0). Now ϕ(S) = {2, 02, 12, 012} = T .

4 1.2. Examples

1.2 Examples

To clarify these definitions, an example for n = 3 is given. For n = 3, Q(n)

is equal to

{∅, 0, 1, 01, 2, 02, 12, 012}

Now, the elements of D3 are given in table 1.2. Here ε means S = ∅ ∈ D3.

Furthermore, the elements of R3 are given in the first row of table 1.3. The

∅, 0, 1, 01, 2, 02, 12, 012 0, 01, 02, 12, 012 01, 02, 012
0, 1, 01, 2, 02, 12, 012 2, 02, 12, 012 12, 012

1, 01, 2, 02, 12, 012 01, 02, 12, 012 02, 012
0, 01, 2, 02, 12, 012 1, 01, 12, 012 01, 012
0, 1, 01, 02, 12, 012 0, 01, 02, 012 012

01, 2, 02, 12, 012 02, 12, 012 ε
1, 01, 02, 12, 012 01, 12, 012

Table 1.2: Sets in D3

other rows are the equivalents of the element in the first row. This example

∅, 0, 1, 01, 2, 02, 12, 012
0, 1, 01, 2, 02, 12, 012
0, 1, 01, 02, 12, 012 0, 01, 2, 02, 12, 012 1, 01, 2, 02, 12, 012
0, 01, 02, 12, 012 1, 01, 02, 12, 012 01, 2, 02, 12, 012
01, 02, 12, 012
0, 01, 02, 012 1, 01, 12, 012 2, 02, 12, 012
01, 02, 012 01, 12, 012 02, 12, 012
01, 012 02, 012 12, 012
012
ε

Table 1.3: Equivalent sets in D3

is used in the other chapters of this thesis, to improve the understanding of

the theory.

Chapter 2

Theory on Monotone Subsets

In this chapter, the algorithm that Wiedemann (1991) used to compute d8 is

discussed, together with the algorithm to generate Dn, described by Fidytek

et al. (2001).

2.1 Algorithms

While describing the algorithms, we use an operation to add or delete an

element in all elements inside a set S. For this, define,

S ⊕ n = {t ∪ {n} | t ∈ S} (2.1)

S 	 n = {t | t ∪ {n} ∈ S} (2.2)

Observe that these operations preserve monoticity from Q(n) to Q(n+1)

and vice-versa.

2.1.1 Generating Q(n+ 1) from Q(n)

It is easy to see that when Q(n) is available, Q(n + 1) can be produced

by taking all elements of Q(n) and also add n to all elements. Also note,

Q(n) ⊆ Q(n+1) and #Q(n+1) = 2n+1 = 2·2n = 2·#Q(n). See algorithm 1.

5

6 2.1. Algorithms

Algorithm 1: Generate Q(n+ 1) from Q(n)

Input: Q(n), powerset on V (n)
Output: Q(n+ 1), powerset on V (n+ 1)
V ← Q(n);
foreach S ∈ Q(n) do

V ← V ∪ (S ⊕ n);

return V ;

2.1.2 Generating Dn+1 from Dn

Before starting with the algorithm Wiedemann used to calculate d8, first

the algorithm described to generate Dn+1 from Dn is shown. This is done

because when computing d8, D6 is used as a basis. This algorithm makes

also use of the way the power set Q(n) is built up.

First, observe that an element S in Dn+1 can be split in two parts,

S∩Q(n) and S \Q(n). The elements in S∩Q(n) are the elements in S that

do not contain n, while the elements in S \Q(n) are the elements of S that

do contain n.

S = (S ∩Q(n)) ∪ (S \Q(n)) (2.3)

(S ∩Q(n)) ∩ (S \Q(n)) = ∅ (2.4)

We observe that S ∩Q(n) is monotone in Q(n), and also (S \Q(n))	 n is

monotone in Q(n). As a consequence, the elements of Dn+1 can be obtained

by taking all possible combinations for S ∩ Q(n) and (S \ Q(n)) 	 n, and

combining them to one element. Furthermore, note that S ∩ Q(n) ⊆ (S \
Q(n)) 	 n, since otherwise S would not have been monotone in Q(n + 1).

This is the only constraint when picking two elements. Take two elements

from Dn, S and T . Both S and T are monotone in Q(n). If S ⊆ T , all

constraints are satisfied. So S ∪ (T ⊕ n) is monotone in Q(n+ 1), and thus

in Dn+1. For the complete algorithm, see algorithm 2.

For a formal proof, see Fidytek et al. (2001) or Yusun (2011).

Chapter 2. Theory on Monotone Subsets 7

Algorithm 2: Generate Dn+1 from Dn

Input: Dn, containing all monotone subsets in Q(n)
Output: Dn+1, containing all monotone subsets in Q(n+ 1).
V ← ∅;
foreach S ∈ Dn do

foreach T ∈ Dn do
if S ⊆ T then

V ← V ∪ (S ∪ (T ⊕ n));

return V ;

2.1.3 Computing dn+2 from Dn

To be able to count dn for n up to 8, the method described in Wiedemann

(1991) can be used. This method only computes the number of elements

and will not give the set itself. It will start from Dn, to compute dn+2.

Analogous to splitting up elements in two parts of Q(n + 1) for finding

Dn+1, to find dn+2, elements in Q(n+ 2) are split into four parts. For every

S ⊆ Q(n+ 2), these parts are defined as follows.

·00, ·01, ·10, ·11 : Dn+2 → Dn

S00 = Q(n) ∩ S (2.5)

S10 = Q(n) ∩ (S 	 n) (2.6)

S01 = Q(n) ∩ (S 	 (n+ 1))} (2.7)

S11 = Q(n) ∩ ((S 	 n)	 (n+ 1))} (2.8)

So these are the parts containing n and/or n+1, or neither of them. Since S

is monotone, S00 ⊆ S01, S00 ⊆ S10, S01 ⊆ S11, S10 ⊆ S11 and also S00, S01,

S10 and S11 are monotone. Furthermore, S can be obtained by re-adding

the omitted elements to each set inside Sij .

Now Dn+2 could be obtained, by taking all possibilities for S00, S01, S10

and S11, and constructing S as follows

S = S00 ∪ (S10 ⊕ n) ∪ (S01 ⊕ (n+ 1)) ∪ ((S11 ⊕ n)⊕ (n+ 1)) (2.9)

This will work, but since we are only interested in the cardinality of Dn+2

there is a more efficient way. To compute the value for dn+2, all possibilities

8 2.1. Algorithms

for S01 and S10 are walked through. Then for every combination of S01 and

S10, the number of possibilities for S00 and S11 are computed and multiplied.

This clearly will give all possibilities for S, for given S01 and S10. Thus, to

compute dn+2 we loop over Dn and perform this calculation for all possible

combinations of S01 and S10.

The next thing to discuss, is the way on how to compute the number of

possible choices for S00 and S11, given S01 and S10. To do this, some extra

operations are introduced.

First, let the dual of a set S ⊆ Q(n) be S∗ defined as

·∗ : ℘ (Q(n))→ ℘ (Q(n))

S∗ = {tc : t ∈ S}c

= {V (n)− t | t ∈ S}c

= Q(n)− {V (n)− t | t ∈ S} (2.10)

Where ·c is the complement of a set. Observe that for the dual S∗ of a set

S ⊆ Q(n), the following properties hold

S ∈ Dn ⇔ S∗ ∈ Dn (2.11)

(S ∪ T)∗ = S∗ ∩ T ∗ (2.12)

S ⊆ T ⇔ T ∗ ⊆ S∗ (2.13)

Also let the η-value of a set T be defined as

η : Dn → N

η(T) = #{S ∈ Dn | S ⊆ T}

= # (Dn ∩ {S | S ⊆ T})

= # (Dn ∩ ℘(T)) (2.14)

This η-value of a set T is the number of monotone subsets from Dn con-

tained in T . So this η-value, can directly be used to compute the number

of possibilities for S00 for a given S01 and S10. Computing η(S01 ∩ S10) will

give the number of possibilities for S00.

To compute the number of possibilities for S11, we use the properties of

the dual. The number we are looking for is the number of monotone subsets

Chapter 2. Theory on Monotone Subsets 9

from Dn containing in S01 ∪ S10.

#{S ∈ Dn | (S01 ∪ S10) ⊆ S}

= by (2.12)

#{S∗ ∈ Dn | S∗ ⊆ (S01 ∪ S10)∗}

= by (2.11) and (2.13)

#{S ∈ Dn | S ⊆ (S∗01 ∩ S∗10)}

= by (2.14)

η(S∗01 ∩ S∗10) (2.15)

An important thing to notice in order to understand this consequence is

that only the number of possibilities for S11 is relevant, and not the actual

possibilities itself.

Taking this together, this results in the following summation.

dn+2 =
∑

S01∈Dn

∑
S10∈Dn

η(S01 ∩ S10) · η(S∗01 ∩ S∗10) (2.16)

This is put together in algorithm 3.

Algorithm 3: Compute dn+2 from Dn

Input: Dn containing all monotone subsets in Q(n)
Output: dn+2, cardinality of Dn+2

result← 0;
foreach S ∈ Dn do

foreach T ∈ Dn do
result := result+ η(S ∩ T) · η(S∗ ∩ T ∗);

return result ;

2.1.4 Computing dn+2 from Dn and Rn

The algorithms described so far are not very efficient when computing dn.

For this, Wiedemann (1991) noticed that there are a lot of symmetries in Dn.

These symmetries are used when constructing Rn. Rn contains the least rep-

resentative of all equivalent classes in Dn, with respect to the lexicographical

ordening. Let αT (K) = T for any K ∈ Dn. So αT is a permutation that

10 2.2. Representation

permutes K to T . Then, define p(k) as follows,

p(K) = {αT | T ∈ K/∼∧

αT is lexicographically smallest s.t. αT (K) = T} (2.17)

Also, let permsn be the set of all permutations on V (n).

Now, start with equation (2.16).

dn+2 =
∑

S01∈Dn

∑
S10∈Dn

η(S01 ∩ S10) · η(S∗01 ∩ S∗10)

= (∗ Definition of Rn ∗)∑
K∈Rn

∑
S01∼K

∑
S10∈Dn

η(S01 ∩ S10) · η(S∗01 ∩ S∗10)

= (∗ Definition (2.17) ∗)∑
K∈Rn

∑
α∈p(K)

∑
S10∈Dn

η(α(K) ∩ S10) · η(α(K)∗ ∩ S∗10)

= (∗ ∀α ∈ permsn, Dn = {α(S) | S ∈ Dn} = α[Dn] ∗)∑
K∈Rn

∑
α∈p(K)

∑
S10∈Dn

η(α(K) ∩ α(S10)) · η(α(K)∗ ∩ α(S10)
∗)

= (∗ α(X) ∩ α(Y) = α(X ∩ Y) ∗)∑
K∈Rn

∑
α∈p(K)

∑
S10∈Dn

η(α(K ∩ S10)) · η(α(K∗ ∩ S10)∗)

= (∗η(T) = η(α(T)), γ(K) = #p(K) ∗)∑
K∈Rn

∑
S10∈Dn

γ(K) · η(K ∩ S10) · η(K∗ ∩ S∗10)

So now, instead of looping over Dn, the outer loop of algorithm 3 can be

replaced by a loop over Rn. This means the number of iterations is signifi-

cantly decreased. This is put together in algorithm 4.

2.2 Representation

Before starting on the implementation of the algorithms, an alternative way

of representing sets is described. This is useful, because otherwise sets will

Chapter 2. Theory on Monotone Subsets 11

Algorithm 4: Compute dn+2 from Dn and Rn

Input: Dn containing all monotone subsets in Q(n) and Rn
containing the least representative of each equivalence class
in Dn, with respect to the lexicographical ordening

Output: dn+2, cardinality of Dn+2

result← 0;
foreach K ∈ Rn do

foreach T ∈ Dn do
result := result+ γ(K) · η(K ∩ T) · η(K∗ ∩ T ∗)

return result ;

get complicated and large, which is not preferable. For example, when n = 6,

subsets of Q(n) can have sizes equal to 26 = 64. Since for calculating d8,

the monotone subsets of Q(6) are needed, this will result in big sets and will

take lots of memory.

2.2.1 Power set Q(n)

Since the sets in Q(n) contain elements of the set V (n) = {0, 1, . . . n − 1},
they can be described as an array of bits. The bit on position i indicates

whether or not a i is in the set. This way, the elements of Q(n) can be

represented very efficiently, since they have a constant size of n bits. Fur-

thermore, there is a natural order (e.g. the lexicographical order), which is

useful when representing the monotone subsets.

For example, take n = 3, so Q(n) = {012, 12, 02, 2, 01, 1, 0,∅}. Each

element can only contain 0, 1 and 2. So if we represent Q(n) using bit

arrays

Q(n) = {111, 011, 101, 001, 110, 010, 100, 000} (2.18)

Using this representation, it is really efficient to represent and also really

easy construct Q(n), since this is the same as constructing [0, 2n) in binary.

2.2.2 Monotone Subsets

Any subset S ⊆ Q(n) can be described as an array of bits of length 2n. Each

bit indicates whether an element x ∈ Q(n), is in S or not. For the monotone

12 2.2. Representation

subsets to be represented this way, Q(n) has to be sorted.

For example, take n = 3. Now take S = {01, 02, 012}. The binary

representation of S is shown in table 2.1. So in binary representation S =

10101000. Observe that Q(n) is sorted in lexicographical order.

Q(n) 012 12 02 2 01 1 0 ∅
S 1 0 1 0 1 0 0 0

Table 2.1: Binary representation of {01, 02, 012}

This representation for sets is used in the implementation of the program.

Chapter 3

Implementation

The program is implemented with the algorithms described in section 2.1 as

a basis. This way, it is made sure the theory is correct and the focus can be

on improving the code. Also the representation of sets described in section

2.2 is followed to store sets in an efficient way.

This project’s source is also available on github.com/arjenzijlstra.

3.1 Representation

For most of the data C++ containers provided by the Standard Template

Library are used. A container is an object that stores a collection of other

objects (its elements). This way accessors, iterators and generic algorithms

are provided by the STL. Accessors are used to access the stored informa-

tion. Iterators represent the begin and the end of the stored data and are

used to iterate over the elements. Generic algorithms can be used for all sorts

of operations. Two algorithms that are useful for us are copy and find,

to copy containers and to search for elements in containers respectively.

3.1.1 Monotone Subsets

At first, monotone subsets were represented as std::set<std::set<

size_t>>, i.e. sets of sets of numbers. This choice was made, because

no doubles are allowed in the sets. This resulted in one big set containing

13

https://github.com/arjenzijlstra/bachelor-project

14 3.1. Representation

all of these monotone subsets, taking a lot of memory. Also, the sets were

sorted every time an element was inserted or modified, which is also very

slow.

To solve the issue with the sorting of the elements on every insertion,

instead of std::set, std::vector can be used in many cases. This way,

the elements are not sorted. This does not give any problems, since most

of the algorithms used, do not require sorting of the elements, nor will it

result in double elements in the set. Though for some sets, still std::set

<size_t> is used, since sorting might be required to prevent doubles.

To decrease the memory usage of the sets, the alternative representa-

tion of monotone subsets can be used. Since these can be described as an

array of bits, std::bitsets are used. This choice is made, so they can

be manipulated by standard logic operators and they can be converted to

integers.

This results in a final representation of monotone subsets as std::

bitset<size> where size is equal to 2n. Now Dn is of the form std::

vector<std::bitset<size>>.

3.1.2 Dedekind Numbers

Since d8 is bigger than 264, it is not possible to store it in a standard datatype

provided by C++ . For this, an unsigned integer containing two 64-bits num-

bers is implemented. This is done by creating a class UInt128 containing

two uint_fast64_t’s. uint_fast64_t is chosen, since this is the fastest

datatype with at least 64-bits.

Also, since just the operator+ is needed to compute the number, only

that operator is implemented. This implementation is done by simply check-

ing whether a carry is needed or not. If so, increase the high-part by one.

Note, operator+ makes use of operator+=, which is implemented as

follows.

Listing 3.1: uint128/operatoraddassign1.cpp
1

2 #include "uint128.ih"
3

4 namespace Dedekind
5 {
6 UInt128 &UInt128::operator+=(UInt128 const &other)

Chapter 3. Implementation 15

7 {
8 if (d_lo > std::numeric_limits<unsigned long>::max() - other.d_lo)
9 {

10 ++d_hi;
11 }
12

13 d_lo += other.d_lo;
14 d_hi += other.d_hi;
15 return *this;
16 }
17 }

Lastly, an operator<< would come in handy to print the result. This

was first implemented by just multiplying the high-part by pow(2, 64)

and than add the low-part. This resulted in a small error, which was caused

by the precision of a double. The (incorrect) answer obtained using this

method is:

56 130 437 228 687 561 588 736

To solve this problem, the operator<< is implemented differently. First

an array of numbers is created, the all digits are computed by looping over

the bits, increase by one if a bit is set, multiply by 2 every next bit, and at

the same time keeping track of the carries that occur (see the code for more

details). This approach results in the right answers for big numbers (> 264,

thus also for d8).

Listing 3.2: uint128/operatorinsert.cpp
1

2 #include "uint128.ih"
3

4 // http://stackoverflow.com/questions/4361441/c-print-a-biginteger-in-base-10
5

6 namespace Dedekind
7 {
8 std::ostream &operator<<(std::ostream &out, UInt128 const &uint128)
9 {

10 size_t d[39] = {0}; // a 128 bit number has at most 39 digits
11

12 // starting at the highest, for each bit
13 for (int iter = 63; iter != -1; --iter)
14 {
15 // increase the lowest digit if this bit is set
16 if ((uint128.d_hi >> iter) & 1)
17 {
18 d[0]++;
19 }
20

21 // multiply by 2, since bits represent powers of 2
22 for (size_t idx = 0; idx < 39; ++idx)
23 {
24 d[idx] *= 2;
25 }
26

27 // handle carries/overflow

16 3.2. Algorithms

28 for (size_t idx = 0; idx < 38; ++idx)
29 {
30 d[idx + 1] += d[idx] / 10;
31 d[idx] %= 10;
32 }
33 }
34

35 for (int iter = 63; iter > -1; --iter)
36 {
37 // increase the lowest digit if this bit is set
38 if ((uint128.d_lo >> iter) & 1)
39 {
40 d[0]++;
41 }
42

43 // only multiply if more bits will follow
44 if (iter > 0)
45 {
46 for (size_t idx = 0; idx < 39; ++idx)
47 {
48 d[idx] *= 2;
49 }
50 }
51

52 // handle carries/overflow
53 for (size_t idx = 0; idx < 38; ++idx)
54 {
55 d[idx + 1] += d[idx] / 10;
56 d[idx] %= 10;
57 }
58 }
59

60 // find highest digit to be inserted in outputstream
61 int idx;
62 for (idx = 38; idx > 0; --idx)
63 {
64 if (d[idx] > 0)
65 {
66 break;
67 }
68 }
69

70 // insert from here
71 for (; idx > -1; --idx)
72 {
73 out << d[idx];
74 }
75

76 return out;
77 }
78 }

3.2 Algorithms

The algorithms described in section 2.1 are implemented in such a way that

it is not only fast, but also readable and easy to recognise.

Chapter 3. Implementation 17

3.2.1 Generating Dn+1 from Dn

In listing 3.3 the implementation for generating Dn+1 is given. Iterators

are used to loop over the set Dn. Also, the bitsets contained in the sets

returned by this function are twice the size of the bitsets received. To

use this function, the operator<= is needed, and also concatenate is

needed. Both are described in section 3.3.

Listing 3.3: Generate Dn

1 template <size_t size>
2 std::vector<std::bitset<(size << 1)>> generate(
3 std::vector<std::bitset<size>> const &dn)
4 {
5 std::vector<std::bitset<(size << 1)>> dn1;
6

7 for (auto iter = dn.begin(); iter != dn.end(); ++iter)
8 {
9 for (auto iter2 = dn.begin(); iter2 != dn.end(); ++iter2)

10 {
11 if (*iter <= *iter2)
12 {
13 dn1.push_back(Internal::concatenate(*iter, *iter2));
14 }
15 }
16 }
17

18 return dn1;
19 }

3.2.2 Computing dn+2 from Dn and Rn (in parallel)

In listing 3.4 the implementation for computing Dn+2 is given. Iterators are

used to loop over the set Dn, while for iterating over Rn the index operator

is used. This is because of the parallelisation using MPI, which is described

later. To implement this algorithm, dual and eta are needed, to return

the dual of a bitset respectively the η-value. Also BitSetLess is needed

to sort bitsets on integer value. All three are described in section 3.3.

Furthermore, some choices are made within the implementation of this

function.

First of all, preprocessing is done for all elements of Dn. This means

that the duals and η-values are calculated for each element. These values

are saved in maps. This is because a map has a very fast lookup, which is

relevant later in this algorithm1. Since the elements within each class in Rn

1A map is usually implemented as a red-black tree. See the Containers library on
cppreference.com

http://www.cppreference.com

18 3.2. Algorithms

all have the same η-value, these can all be calculated at once, and then be

added to the map, per element. The duals can be calculated and added to

a separate map at the same time.

When the preprocessing is complete, the implementation is continued as

in algorithm 4. The first element of each class in Rn is used as S. Now the

bitwise AND is equal to the intersection of two sets. Also the cardinality of

each set in Rn is equal to the gamma-value.

The function returns a UInt128, which is an unsigned integer imple-

mented containing 2 64bits numbers. This way there is enough space for d8.

For more details, see section 3.1.2.

The implementation is parallelised using MPI. The choice is made to

keep it simple, and to only parallelise the big nested for-loop. This is done

using quite a simple strategy: every process starts at the element at index

equal to their id and each iteration it increments the iterator by the total

number of processes. This way, Rn is divided in quite a balanced way.

Since there is not a really big difference in load balancing this way, no other

distributed memory strategies are tried, since the expectations are that it

will not achieve a significant higher speedup.

Listing 3.4: Compute dn
1 template <size_t size>
2 UInt128 compute(std::vector<std::bitset<size>> const &dn,
3 std::vector<std::vector<std::bitset<size>>> const &rn,
4 size_t rank = 0, size_t nprocs = 1)
5 {
6 std::map<std::bitset<size>, std::bitset<size>, BitSetLess> duals;
7 std::map<std::bitset<size>, size_t, BitSetLess> etas;
8

9 // Preprocess duals and eta’s of all elements
10 for (auto iter = rn.begin(); iter != rn.end(); ++iter)
11 {
12 auto elem = (*iter).begin();
13 size_t tmp = Internal::eta(*elem, dn);
14 for (; elem != (*iter).end(); ++elem)
15 {
16 etas[*elem] = tmp;
17 duals[*elem] = Internal::dual(*elem);
18 }
19 }
20 // Preprocessing complete
21

22

23 UInt128 result;
24 for (size_t idx = rank; idx < rn.size(); idx += nprocs)
25 {
26 auto iter(rn[idx].begin());
27 for (auto iter2 = dn.begin(); iter2 != dn.end(); ++iter2)
28 {
29 auto first = *iter & *iter2;
30 auto second = duals[*iter] & duals[*iter2];

Chapter 3. Implementation 19

31

32 result += rn[idx].size() * etas[first] * etas[second];
33 }
34 }
35

36 return result;
37 }

3.2.3 Generating Rn

Besides the helper functions used in listing 3.3 and listing 3.4, only a function

to generate Rn is needed. Since this involves mostly performing permuta-

tions, more helper functions are needed for this. First all permutations are

generated, using Internal::permutations.

After that, for each element in Dn, the whole equivalent class is gen-

erated, using alle permutations, and put in a vector. Then the vector is

added to Rn as a whole, since the equivalent elements can be used when

calculating the η-values. To make sure that no classes are added twice, a

set keeps record of all processed monotone subsets. At first, this was done

using a vector, to have a fast insertion. But since the lookup is far more

important, a set is faster in the end.

Also another problem occured because of some C++ problem. There are

two simple ways of finding an element in a set,

std::find(processed.begin(), processed.end(), *iter)

and,

processed.find(*iter)

will both do the job. Although they look very similar, there is one small dif-

ference that makes a huge difference. The one that makes use of std::find

provided by the algorithms library, simply checks every element to find

the one it is looking for. Now the one that uses the find member of the

set, uses the underlying structure2 to find the one it is looking for. This

way, checking for an element is a lot quicker.

Listing 3.5: Generate Rn
1 template <size_t Number, size_t Power>
2 std::vector<std::vector<std::bitset<Power>>> generateRn(
3 std::vector<std::bitset<Power>> const &dn)
4 {
5 auto permutations = Internal::permutations<Number, Power>();

2A set is usually implemented as a red-black tree. See the Containers library on
cppreference.com

http://www.cppreference.com

20 3.3. Helper Functions

6

7 std::vector<std::vector<std::bitset<Power>>> rn;
8 std::set<std::bitset<Power>, BitSetLess> processed;
9 for (auto iter = dn.begin(); iter != dn.end(); ++iter)

10 {
11 if (processed.find(*iter) == processed.end())
12 {
13 auto equivs = Internal::equivalences(*iter, permutations);
14

15 std::vector<std::bitset<Power>> permuted;
16 copy(equivs.begin(), equivs.end(), std::back_inserter(permuted));
17 for (auto perm = equivs.begin(); perm != equivs.end(); ++perm)
18 {
19 processed.insert(*perm);
20 }
21

22 rn.push_back(permuted);
23 }
24 }
25

26 return rn;
27 }

3.3 Helper Functions

To implement the algorithms from section 2.1, extra functionality is needed.

For this, an Internal namespace is used, containing this functionality.

3.3.1 Operator<=

The operator<= indicates whether the monotone subset on the left-hand

side is contained in the monotone subset on the right-hand side. This is

translated into bit arrays by checking if a bit is true in the set at the left

that is not true in the set on the right.

Listing 3.6: Operator<=
1 template <size_t size>
2 bool operator<=(std::bitset<size> lhs, std::bitset<size> const &rhs)
3 {
4 return (lhs.flip() | rhs).all();
5 }

3.3.2 Concatenate

Concatenating two bitsets is done by creating a new bitset with a size

twice as big as the input bitsets. Now both bitsets are translated to a

string and concatenated using the std::string, operator+. The result

of this is used as initialiser for the resulting bitset.

Chapter 3. Implementation 21

Listing 3.7: Concatenate
1 template <size_t size>
2 std::bitset<(size << 1)> concatenate(std::bitset<size> const &lhs,
3 std::bitset<size> const &rhs)
4 {
5 std::string lhs_str = lhs.to_string();
6 std::string rhs_str = rhs.to_string();
7

8 return std::bitset<(size << 1)>(lhs_str + rhs_str);
9 }

3.3.3 Dual

The dual operation is defined in section 2.1 equation 2.10. It is defined as

S∗ = {tc : t ∈ S}c, which is exactly the same as writing the bitset in

reverse, and also flipping all bits. For that, reverse is implemented and

used to implement dual.

Listing 3.8: Dual
1 template <size_t size>
2 std::bitset<size> reverse(std::bitset<size> const &bset)
3 {
4 std::bitset<size> reverse;
5 for (size_t iter = 0; iter != size; ++iter)
6 {
7 reverse[iter] = bset[size - iter - 1];
8 }
9 return reverse;

10 }
11

12 template <size_t size>
13 std::bitset<size> dual(std::bitset<size> const &bset)
14 {
15 return reverse(bset).flip();
16 }

3.3.4 Eta

The η-value of some monotone subset T is defined in 2.1 equation 2.14 as the

number of members of Dn contained in T . This is calculated by looping over

the elements of Dn, and counting the number of elements that are contained

in T .

Listing 3.9: Eta
1 template <size_t size>
2 size_t eta(std::bitset<size> const &bset,
3 std::vector<std::bitset<size>> const &dn)
4 {
5 size_t result = 0;
6 for (size_t idx = 0; idx < dn.size(); ++idx)
7 {

22 3.3. Helper Functions

8 if (dn[idx] <= bset)
9 {

10 ++result;
11 }
12 }
13 return result;
14 }

3.3.5 Permutations

Permutations can be calculated using std::next_permutation. Every

iteration, it will permute the elements in permutation in a structured

way. Using this on an array containing n elements, this results in a vector,

containing all permutations on n elements. Also the power set Q(n) is

generated, because this is needed to generate the permutations on subsets

of Q(n), which is done by subsetPermutation. subsetPermutation

is also implemented in the namespace Internal.

Listing 3.10: Permutations on n elements
1 template <size_t Number, size_t Power>
2 std::vector<std::array<size_t, Power>> permutations()
3 {
4 std::vector<std::bitset<Number>> powerset =
5 Internal::PowerSet<Number>::powerSetBin();
6

7 std::array<size_t, Number> permutation;
8 for (size_t idx = 0; idx != Number; ++idx)
9 {

10 permutation[idx] = idx;
11 }
12

13 std::vector<std::array<size_t, Power>> result;
14 do
15 {
16 result.push_back(
17 Internal::subsetPermutation<Number, Power>(permutation, powerset));
18 }
19 while (std::next_permutation(permutation.begin(), permutation.end()));
20

21 return result;
22 }

3.3.6 Power Set

To generate the power set Q(n), the algorithm described in section 2.1 is

used. This is done, using template-meta programming in C++ . This way,

parts are already known compile-time. So it does not slow down the com-

putation. Q(n) is represented using bitsets, just like subsets of Q(n) are

represented.

Chapter 3. Implementation 23

Listing 3.11: Power Set Q(n)
1 template <size_t size>
2 struct PowerSet
3 {
4 static std::vector<std::bitset<size>> powerSetBin();
5 };
6

7 template <size_t size>
8 std::vector<std::bitset<size>> PowerSet<size>::powerSetBin()
9 {

10 auto current = PowerSet<size - 1>::powerSetBin();
11

12 std::vector<std::bitset<size>> result;
13 for (auto iter = current.begin(); iter != current.end(); ++iter)
14 {
15 std::bitset<size> tmp((*iter).to_ulong() + (1 << (size - 1)));
16 result.push_back(tmp);
17 }
18

19 for (auto iter = current.begin(); iter != current.end(); ++iter)
20 {
21 std::bitset<size> tmp((*iter).to_ulong());
22 result.push_back(tmp);
23 }
24

25 return result;
26 }
27

28

29 template <>
30 struct PowerSet<0>
31 {
32 static std::vector<std::bitset<0>> powerSetBin();
33 };
34

35 std::vector<std::bitset<0>> PowerSet<0>::powerSetBin()
36 {
37 return std::vector<std::bitset<0>>({ std::bitset<0>() });
38 }

3.3.7 Subset Permutation

To generate the permutation on a subset of Q(n), from a permutation on the

elements within the sets in Q(n), the permutation is applied to the numbers

in every set in Q(n). Then for every set S, the index of the obtained element

is set as destination for set S. This way, a permutation on Q(n) is generated

from a permutation on V (n).

Listing 3.12: Subset Permutation
1 template <size_t Number, size_t Power>
2 std::array<size_t, Power> subsetPermutation(
3 std::array<size_t, Number> const &permutation,
4 std::vector<std::bitset<Number>> const &pset)
5 {
6 std::array<size_t, Power> result;
7 size_t idx = 0;
8 for (auto iter = pset.begin(); iter != pset.end(); ++iter)
9 {

10 std::bitset<Number> tmp = permute(permutation, *iter);

24 3.3. Helper Functions

11 result[idx++] = find(pset.begin(), pset.end(), tmp) - pset.begin();
12 }
13 return result;
14 }

3.3.8 Permutation

When permuting a set, the bits of the bitset are swapped, according to

the permutation. This is equal for Q(n) and S ⊆ Q(n), since both are

represented as arrays of bits.

Listing 3.13: Perform Permutation
1 template <size_t size>
2 std::bitset<size> permute(std::array<size_t, size> const &permutation,
3 std::bitset<size> const &elem)
4 {
5 std::bitset<size> result;
6 for (size_t idx = 0; idx != result.size(); ++idx)
7 {
8 result[idx] = elem[permutation[idx]];
9 }

10 return result;
11 }

3.3.9 Equivalence class

To generate all equivalences of a certain element, all permutations should

be performed on the element. In this case, a set is needed as a container,

since no double elements are allowed.

Listing 3.14: Equivalences of S
1 template <size_t size>
2 std::set<std::bitset<size>, BitSetLess> equivalences(
3 std::bitset<size> const &bset,
4 std::vector<std::array<size_t, size>> const &perms)
5 {
6 std::set<std::bitset<size>, BitSetLess> result;
7 for (auto iter = perms.begin(); iter!= perms.end(); ++iter)
8 {
9 std::bitset<size> temp = permute(*iter, bset);

10 result.insert(temp);
11 }
12 return result;
13 }

3.3.10 Sorting bitsets

Bitsets are sorted on integer value from high to low. This way, the sets will

always output the sets containing most elements first. This way, they will

Chapter 3. Implementation 25

be printed from high to low, which follows the structure of the lattices.

Listing 3.15: Bitset Compare
1 class BitSetLess
2 {
3 public:
4 template<size_t size>
5 bool operator()(std::bitset<size> const &lhs,
6 std::bitset<size> const &rhs) const
7 {
8 return lhs.to_ulong() > rhs.to_ulong();
9 }

10 };

26 3.3. Helper Functions

Chapter 4

Findings and Future Work

This thesis, followed the strategy Wiedemann (1991) used in 1991 to com-

pute d8. In 1991, this took 200 hours to compute on a Cray-2. Today,

taking the same approach, on 144 cores of the millipede cluster of te Uni-

versity of Groningen, it took less than 30 minutes (1737.56 seconds to be

exact). On 12 cores it took about 12338.2 seconds (≈ 3, 5 hours). Which

gives a speedup of about 7.1

Using this same approach to compute d9, is not possible yet. There are

some factors to take into account when taking this conclusion. First of all,

D7 is needed for this. The storage needed for any element in D7 is equal to

128 bits. Since d7 = 2414682040998, this will take at least 2414682040998 ·
128 bits ≈ 38, 63 TB of storage. This amount of fast memory is not available

yet. Furthermore, the time needed to computed d9 would be really long. The

time needed to compute d6 is about 0.001 seconds, for d7, this is about 0.1

seconds and for d8, it takes about 3 hours (all on 12 cores), which is over 10

000 seconds. So, if the time to compute d9, would increase as much from d8

as it increased from d7 to d8 (which is not realistic at all, even better than a

best-case scenario), this would take about 1 000 000 000 seconds on 12 cores.

Imagine that around 1000 cores are available, it would still take around 10

000 000 seconds, which is equal to 115 days. Since this is estimated very

optimistic, it can be concluded that computing d9, using this approach is

not possible yet.

While computing d9 using Wiedemann’s approach is not achievable,

Fidytek et al. (2001) describe a way of computing dn+4 from Dn. Since

27

28

d5 is much smaller than d7, it might be worthwhile looking at this approach

to try to compute d9. Also Bakoev (2012) use a similar approach with ma-

trices. He is even optimistic about computing d9 in a reasonable amount of

time, given that an efficient solution is found for counting the elements of

one of the cases described.

Furthermore, for improving the approach taken in this thesis, a lot of

built-in C++ functionality, could be implemented in plain C using less tem-

plates, to make the program more cross-platform and flexible. Also, this

could make it a little more efficient, since the functionality can be made

more specific. This could result in a little bit faster program, and might

help to find higher values of dn.

Finally, some other parallelisation strategies could be tried. At the mo-

ment, Rn is statically divided into separate blocks, since the focus was more

on improving the algorithm itself. Using this strategy, the difference be-

tween the first and the last finished process was between 1 and 5 %. Using a

strategy which uses a dynamic division of the blocks. The difference would

probably be less than when using a static division, but since more com-

munication is needed, this could give a lot overhead, which could result in

an overal slower program. Also, some more parts of the program could be

parallelised. At the moment, just the nested for-loop, that costs the most

time is parallelised. For example, parts as generating D6 and R6 are com-

puted sequential, since these parts are negligable to computing d8. Also the

preprocessing is done sequential, to minimise communication.

References

Bakoev, V. (2012). One more way for counting monotone boolean functions.

In Proc. of the XIII Intern. Workshop on Algebraic and Combinatorial

Coding Theory (ACCT), pages 15–21.

Berman, J. and Köhler, P. (1976). Cardinalities of finite distributive lattices.

Mitt. Math. Sem. Giessen, 121:103–124.

Church, R. (1940). Numerical analysis of certain free distributive structures.

Duke Math. J, 6(3):732–734.

Church, R. (1965). Enumeration by rank of the elements of the free dis-

tributive lattice with seven generators. Notices Amer. Math. Soc, 12:724.

Dedekind, R. (1897). Ueber Zerlegungen von Zahlen durch ihre grössten

gemeinsamen Theiler. F. Vieweg & Sohn.

Fidytek, R., Mostowski, A. W., Somla, R., and Szepietowski, A. (2001).

Algorithms counting monotone boolean functions. Information Processing

Letters, 79:203–209.

Stephen, T. and Yusun, T. (2012). Counting inequivalent monotone boolean

functions. arXiv preprint arXiv:1209.4623.

Ward, M. (1946). Note on the order of free distributive lattices. Bull. Amer.

Math. Soc, 52(5):423.

Wiedemann, D. (1991). A computation of the eighth dedekind number.

Order, 8:5–6.

Yusun, T. J. (2011). Dedekind numbers and related sequences. Master’s

thesis, Simon Fraser University.

29

30 References

Appendix A

Source Code

This source is also available on github.com/arjenzijlstra.

A.1 Algorithms on Monotone Subsets

Listing A.1: dedekind/dedekind.h
1

2 #ifndef DEDEKIND_H_
3 #define DEDEKIND_H_
4

5 #include <algorithm>
6 #include <bitset>
7 #include <iostream>
8 #include <map>
9 #include <set>

10 #include <vector>
11

12 #include "../uint128/uint128.h"
13

14 #include "bitsetless.h"
15 #include "bitsetoperleq.h"
16 #include "operwiedemann.h"
17 #include "permutations.h"
18 #include "powerof2.h"
19 #include "powersetbin.h"
20 #include "vectoroperinsert.h"
21

22 namespace Dedekind
23 {
24 enum
25 {
26 BIGINTTAG
27 };
28

29 template <size_t Number, size_t Power>
30 std::vector<std::vector<std::bitset<Power>>> generateRn(
31 std::vector<std::bitset<Power>> const &dn)
32 {
33 auto permutations = Internal::permutations<Number, Power>();
34

A-1

https://github.com/arjenzijlstra/bachelor-project

A-2 A.1. Algorithms on Monotone Subsets

35 std::vector<std::vector<std::bitset<Power>>> rn;
36 std::set<std::bitset<Power>, BitSetLess> processed;
37 for (auto iter = dn.begin(); iter != dn.end(); ++iter)
38 {
39 if (processed.find(*iter) == processed.end())
40 {
41 auto equivs = Internal::equivalences(*iter, permutations);
42

43 std::vector<std::bitset<Power>> permuted;
44 copy(equivs.begin(), equivs.end(), std::back_inserter(permuted));
45 for (auto perm = equivs.begin(); perm != equivs.end(); ++perm)
46 {
47 processed.insert(*perm);
48 }
49

50 rn.push_back(permuted);
51 }
52 }
53

54 return rn;
55 }
56

57 template <size_t size>
58 UInt128 compute(std::vector<std::bitset<size>> const &dn,
59 std::vector<std::vector<std::bitset<size>>> const &rn,
60 size_t rank = 0, size_t nprocs = 1)
61 {
62 std::map<std::bitset<size>, std::bitset<size>, BitSetLess> duals;
63 std::map<std::bitset<size>, size_t, BitSetLess> etas;
64

65 // Preprocess duals and eta’s of all elements
66 for (auto iter = rn.begin(); iter != rn.end(); ++iter)
67 {
68 auto elem = (*iter).begin();
69 size_t tmp = Internal::eta(*elem, dn);
70 for (; elem != (*iter).end(); ++elem)
71 {
72 etas[*elem] = tmp;
73 duals[*elem] = Internal::dual(*elem);
74 }
75 }
76 // Preprocessing complete
77

78

79 UInt128 result;
80 for (size_t idx = rank; idx < rn.size(); idx += nprocs)
81 {
82 auto iter(rn[idx].begin());
83 for (auto iter2 = dn.begin(); iter2 != dn.end(); ++iter2)
84 {
85 auto first = *iter & *iter2;
86 auto second = duals[*iter] & duals[*iter2];
87

88 result += rn[idx].size() * etas[first] * etas[second];
89 }
90 }
91

92 return result;
93 }
94

95 template <size_t size>
96 std::vector<std::bitset<(size << 1)>> generate(
97 std::vector<std::bitset<size>> const &dn)
98 {
99 std::vector<std::bitset<(size << 1)>> dn1;

100

101 for (auto iter = dn.begin(); iter != dn.end(); ++iter)
102 {
103 for (auto iter2 = dn.begin(); iter2 != dn.end(); ++iter2)

Appendix A. Source Code A-3

104 {
105 if (*iter <= *iter2)
106 {
107 dn1.push_back(Internal::concatenate(*iter, *iter2));
108 }
109 }
110 }
111

112 return dn1;
113 }
114

115 namespace Internal
116 {
117 template <size_t Number>
118 struct MonotoneSubsets
119 {
120 static std::vector<std::bitset<PowerOf2<Number>::value>> result;
121 };
122

123 template <size_t Number>
124 std::vector<std::bitset<PowerOf2<Number>::value>>
125 MonotoneSubsets<Number>::result(generate(
126 MonotoneSubsets<(Number - 1)>::result));
127

128 template <>
129 struct MonotoneSubsets<0>
130 {
131 static std::vector<std::bitset<1>> result;
132 };
133

134 std::vector<std::bitset<1>> MonotoneSubsets<0>::result({std::bitset<1>(0),
135 std::bitset<1>(1)});
136 }
137

138 template <size_t Number>
139 UInt128 monotoneSubsets(size_t rank = 0, size_t size = 1)
140 {
141 auto dn = Internal::MonotoneSubsets<Number - 2>::result;
142

143 std::cerr << "Rank " << rank << " is done generating D"
144 << Number - 2 << ": " << dn.size() << ’\n’;
145

146 auto rn = generateRn<Number - 2>(dn);
147

148 std::cerr << "Rank " << rank << " is done generating R"
149 << Number - 2 << ": " << rn.size() << ’\n’;
150

151 UInt128 result = compute(dn, rn, rank, size);
152

153 return result;
154 }
155 }
156

157

158 #endif // end of guard DEDEKIND_H_

Listing A.2: dedekind/dedekind.h
1

2 #ifndef BITSETLESS_H_
3 #define BITSETLESS_H_
4

5 #include <bitset>
6 #include <cstddef>
7

8

9 namespace Dedekind
10 {
11

A-4 A.1. Algorithms on Monotone Subsets

12

13 class BitSetLess
14 {
15 public:
16 template<size_t size>
17 bool operator()(std::bitset<size> const &lhs,
18 std::bitset<size> const &rhs) const
19 {
20 return lhs.to_ulong() > rhs.to_ulong();
21 }
22 };
23

24 template <size_t size>
25 bool bitsetLess(std::bitset<size> const &lhs, std::bitset<size> const &rhs)
26 {
27 return lhs.to_ulong() > rhs.to_ulong();
28 }
29

30 } // namespace Dedekind
31

32

33 #endif

Listing A.3: dedekind/dedekind.h
1

2 #ifndef BITSETOPERLEQ_H_
3 #define BITSETOPERLEQ_H_
4

5 #include <bitset>
6 #include <cstddef>
7

8

9 namespace Dedekind
10 {
11

12

13 template <size_t size>
14 bool operator<=(std::bitset<size> lhs, std::bitset<size> const &rhs)
15 {
16 return (lhs.flip() | rhs).all();
17 }
18

19

20 } // namespace Dedekind
21

22

23 #endif

Listing A.4: dedekind/dedekind.h
1

2 #ifndef OPERWIEDEMANN_H_
3 #define OPERWIEDEMANN_H_
4

5 #include <bitset>
6 #include <vector>
7 #include <string>
8

9 #include "bitsetoperleq.h"
10

11

12 namespace Dedekind
13 {
14

15 namespace Internal
16 {

Appendix A. Source Code A-5

17

18

19 template <size_t size>
20 std::bitset<size> reverse(std::bitset<size> const &bset)
21 {
22 std::bitset<size> reverse;
23 for (size_t iter = 0; iter != size; ++iter)
24 {
25 reverse[iter] = bset[size - iter - 1];
26 }
27 return reverse;
28 }
29

30 template <size_t size>
31 std::bitset<size> dual(std::bitset<size> const &bset)
32 {
33 return reverse(bset).flip();
34 }
35

36 template <size_t size>
37 size_t eta(std::bitset<size> const &bset,
38 std::vector<std::bitset<size>> const &dn)
39 {
40 size_t result = 0;
41 for (size_t idx = 0; idx < dn.size(); ++idx)
42 {
43 if (dn[idx] <= bset)
44 {
45 ++result;
46 }
47 }
48 return result;
49 }
50

51 template <size_t size>
52 std::bitset<(size << 1)> concatenate(std::bitset<size> const &lhs,
53 std::bitset<size> const &rhs)
54 {
55 std::string lhs_str = lhs.to_string();
56 std::string rhs_str = rhs.to_string();
57

58 return std::bitset<(size << 1)>(lhs_str + rhs_str);
59 }
60

61

62 } // namespace Internal
63

64 } // namespace Dedekind
65

66

67 #endif

Listing A.5: dedekind/dedekind.h
1

2 #ifndef PERMUTATIONS_H_
3 #define PERMUTATIONS_H_
4

5 #include <algorithm>
6 #include <array>
7 #include <bitset>
8 #include <set>
9 #include <vector>

10

11 #include "powersetbin.h"
12

13

14 namespace Dedekind
15 {

A-6 A.1. Algorithms on Monotone Subsets

16

17 namespace Internal
18 {
19

20

21 template <size_t size>
22 std::bitset<size> permute(std::array<size_t, size> const &permutation,
23 std::bitset<size> const &elem)
24 {
25 std::bitset<size> result;
26 for (size_t idx = 0; idx != result.size(); ++idx)
27 {
28 result[idx] = elem[permutation[idx]];
29 }
30 return result;
31 }
32

33 template <size_t Number, size_t Power>
34 std::array<size_t, Power> subsetPermutation(
35 std::array<size_t, Number> const &permutation,
36 std::vector<std::bitset<Number>> const &pset)
37 {
38 std::array<size_t, Power> result;
39 size_t idx = 0;
40 for (auto iter = pset.begin(); iter != pset.end(); ++iter)
41 {
42 std::bitset<Number> tmp = permute(permutation, *iter);
43 result[idx++] = find(pset.begin(), pset.end(), tmp) - pset.begin();
44 }
45 return result;
46 }
47

48 template <size_t Number, size_t Power>
49 std::vector<std::array<size_t, Power>> permutations()
50 {
51 std::vector<std::bitset<Number>> powerset =
52 Internal::PowerSet<Number>::powerSetBin();
53

54 std::array<size_t, Number> permutation;
55 for (size_t idx = 0; idx != Number; ++idx)
56 {
57 permutation[idx] = idx;
58 }
59

60 std::vector<std::array<size_t, Power>> result;
61 do
62 {
63 result.push_back(subsetPermutation<Number, Power>(permutation, powerset));
64 }
65 while (std::next_permutation(permutation.begin(), permutation.end()));
66

67 return result;
68 }
69

70 template <size_t size>
71 std::set<std::bitset<size>, BitSetLess> equivalences(
72 std::bitset<size> const &bset,
73 std::vector<std::array<size_t, size>> const &perms)
74 {
75 std::set<std::bitset<size>, BitSetLess> result;
76 for (auto iter = perms.begin(); iter!= perms.end(); ++iter)
77 {
78 std::bitset<size> temp = permute(*iter, bset);
79 result.insert(temp);
80 }
81 return result;
82 }
83

84

Appendix A. Source Code A-7

85 } // namespace Internal
86

87 } // namespace Dedekind
88

89

90 #endif

Listing A.6: dedekind/dedekind.h
1

2 #ifndef POWEROF2_H_
3 #define POWEROF2_H_
4

5 #include <cstddef>
6

7 namespace Dedekind
8 {
9

10 namespace Internal
11 {
12

13

14 template<size_t Number>
15 struct PowerOf2
16 {
17 static size_t const value;
18 };
19

20 template<size_t Number>
21 size_t const PowerOf2<Number>::value((PowerOf2<Number - 1>::value << 1));
22

23

24 template<>
25 struct PowerOf2<0>
26 {
27 static size_t const value;
28 };
29

30 size_t const PowerOf2<0>::value(1);
31

32

33

34 template<size_t Number>
35 struct LogOf2
36 {
37 static size_t const value;
38 };
39

40 template<size_t Number>
41 size_t const LogOf2<Number>::value(LogOf2<(Number >> 1)>::value + 1);
42

43

44 template<>
45 struct LogOf2<1>
46 {
47 static size_t const value;
48 };
49

50 size_t const LogOf2<1>::value(0);
51

52

53 } // namespace Internal
54

55 } // namespace Dedekind
56

57

58 #endif

A-8 A.1. Algorithms on Monotone Subsets

Listing A.7: dedekind/dedekind.h

1

2 #ifndef POWERSETBIN_H_
3 #define POWERSETBIN_H_
4

5 #include <vector>
6 #include <bitset>
7

8 namespace Dedekind
9 {

10

11 namespace Internal
12 {
13

14

15 template <size_t size>
16 struct PowerSet
17 {
18 static std::vector<std::bitset<size>> powerSetBin();
19 };
20

21 template <size_t size>
22 std::vector<std::bitset<size>> PowerSet<size>::powerSetBin()
23 {
24 auto current = PowerSet<size - 1>::powerSetBin();
25

26 std::vector<std::bitset<size>> result;
27 for (auto iter = current.begin(); iter != current.end(); ++iter)
28 {
29 std::bitset<size> tmp((*iter).to_ulong() + (1 << (size - 1)));
30 result.push_back(tmp);
31 }
32

33 for (auto iter = current.begin(); iter != current.end(); ++iter)
34 {
35 std::bitset<size> tmp((*iter).to_ulong());
36 result.push_back(tmp);
37 }
38

39 return result;
40 }
41

42

43 template <>
44 struct PowerSet<0>
45 {
46 static std::vector<std::bitset<0>> powerSetBin();
47 };
48

49 std::vector<std::bitset<0>> PowerSet<0>::powerSetBin()
50 {
51 return std::vector<std::bitset<0>>({ std::bitset<0>() });
52 }
53

54

55 } // namespace Internal
56

57 } // namespace Dedekind
58

59

60 #endif

Appendix A. Source Code A-9

A.2 128bits unsigned integer

A.2.1 Headers

Listing A.8: uint128/uint128.h
1

2 #ifndef DEDEKIND_UINT_
3 #define DEDEKIND_UINT_
4

5 #include <cstdint>
6 #include <iosfwd>
7

8 namespace Dedekind
9 {

10 class UInt128
11 {
12 uint_fast64_t d_hi;
13 uint_fast64_t d_lo;
14

15 public:
16 friend std::ostream &operator<<(std::ostream &out,
17 UInt128 const &uint128);
18

19 UInt128(UInt128 const &other) = default;
20 UInt128(uint_fast64_t lo = 0, uint_fast64_t hi = 0);
21

22 UInt128 &operator+=(uint_fast64_t other);
23 UInt128 &operator+=(UInt128 const &other);
24

25 uint_fast64_t hi() const;
26 uint_fast64_t lo() const;
27 };
28

29

30 inline UInt128 operator+(UInt128 const &lhs, UInt128 const &rhs)
31 {
32 UInt128 tmp(lhs);
33 return tmp += rhs;
34 }
35

36 inline uint_fast64_t UInt128::hi() const
37 {
38 return d_hi;
39 }
40

41 inline uint_fast64_t UInt128::lo() const
42 {
43 return d_lo;
44 }
45 }
46

47 #endif

Listing A.9: uint128/uint128.ih
1

2 #include "uint128.h"
3

4 #include <limits>
5 #include <iostream>
6 #include <iomanip>
7 #include <cmath>
8

9 using namespace std;

A-10 A.2. 128bits unsigned integer

A.2.2 Sources

Listing A.10: uint128/uint128.cpp
1

2 #include "uint128.ih"
3

4 namespace Dedekind
5 {
6 UInt128::UInt128(uint_fast64_t lo, uint_fast64_t hi)
7 :
8 d_hi(hi),
9 d_lo(lo)

10 {
11 }
12 }

Listing A.11: uint128/operatorinsert.cpp
1

2 #include "uint128.ih"
3

4 // http://stackoverflow.com/questions/4361441/c-print-a-biginteger-in-base-10
5

6 namespace Dedekind
7 {
8 std::ostream &operator<<(std::ostream &out, UInt128 const &uint128)
9 {

10 size_t d[39] = {0}; // a 128 bit number has at most 39 digits
11

12 // starting at the highest, for each bit
13 for (int iter = 63; iter != -1; --iter)
14 {
15 // increase the lowest digit if this bit is set
16 if ((uint128.d_hi >> iter) & 1)
17 {
18 d[0]++;
19 }
20

21 // multiply by 2, since bits represent powers of 2
22 for (size_t idx = 0; idx < 39; ++idx)
23 {
24 d[idx] *= 2;
25 }
26

27 // handle carries/overflow
28 for (size_t idx = 0; idx < 38; ++idx)
29 {
30 d[idx + 1] += d[idx] / 10;
31 d[idx] %= 10;
32 }
33 }
34

35 for (int iter = 63; iter > -1; --iter)
36 {
37 // increase the lowest digit if this bit is set
38 if ((uint128.d_lo >> iter) & 1)
39 {
40 d[0]++;
41 }
42

43 // only multiply if more bits will follow
44 if (iter > 0)
45 {
46 for (size_t idx = 0; idx < 39; ++idx)
47 {
48 d[idx] *= 2;

Appendix A. Source Code A-11

49 }
50 }
51

52 // handle carries/overflow
53 for (size_t idx = 0; idx < 38; ++idx)
54 {
55 d[idx + 1] += d[idx] / 10;
56 d[idx] %= 10;
57 }
58 }
59

60 // find highest digit to be inserted in outputstream
61 int idx;
62 for (idx = 38; idx > 0; --idx)
63 {
64 if (d[idx] > 0)
65 {
66 break;
67 }
68 }
69

70 // insert from here
71 for (; idx > -1; --idx)
72 {
73 out << d[idx];
74 }
75

76 return out;
77 }
78 }

Listing A.12: uint128/operatoraddassign1.cpp
1

2 #include "uint128.ih"
3

4 namespace Dedekind
5 {
6 UInt128 &UInt128::operator+=(UInt128 const &other)
7 {
8 if (d_lo > std::numeric_limits<unsigned long>::max() - other.d_lo)
9 {

10 ++d_hi;
11 }
12

13 d_lo += other.d_lo;
14 d_hi += other.d_hi;
15 return *this;
16 }
17 }

Listing A.13: uint128/operatoraddassign2.cpp
1

2 #include "uint128.ih"
3

4 namespace Dedekind
5 {
6 UInt128 &UInt128::operator+=(uint_fast64_t other)
7 {
8 if (d_lo > std::numeric_limits<unsigned long>::max() - other)
9 {

10 ++d_hi;
11 }
12

13 d_lo += other;
14 return *this;

A-12 A.3. Main

15 }
16 }

A.3 Main

Listing A.14: main.ih
1

2 #include <iostream>
3 #include <sstream>
4 #include <mpi.h>
5 #include <sys/time.h>
6

7 #include "dedekind/dedekind.h"
8 #include "uint128/uint128.h"
9

10 using namespace std;
11

12

13 struct timeval tim2;
14

15

16 typedef Dedekind::UInt128 (*fptr)(size_t, size_t);
17

18 template <size_t a = 8>
19 fptr findFunction(size_t b)
20 {
21 if (a == b)
22 {
23 return Dedekind::monotoneSubsets<a>;
24 }
25 else
26 {
27 return findFunction<a - 1>(b);
28 }
29 }
30

31 template <>
32 fptr findFunction<6>(size_t b)
33 {
34 return Dedekind::monotoneSubsets<6>;
35 }

Listing A.15: main.cpp
1

2 #include "main.ih"
3

4 int main(int argc, char **argv)
5 {
6 gettimeofday(&tim2, NULL);
7

8 MPI::Init(argc, argv);
9 MPI::COMM_WORLD.Set_errhandler(MPI::ERRORS_THROW_EXCEPTIONS);

10

11 size_t rank = 0;
12 size_t size = 1;
13 try
14 {
15 rank = MPI::COMM_WORLD.Get_rank();
16 size = MPI::COMM_WORLD.Get_size();
17 }
18 catch (MPI::Exception const &exception)

Appendix A. Source Code A-13

19 {
20 cerr << "MPI error: " << exception.Get_error_code() << " - "
21 << exception.Get_error_string() << endl;
22 }
23

24 if (argc == 3 && string(argv[1]) == "-d")
25 {
26 size_t n = 2;
27 stringstream ss(argv[2]);
28 ss >> n;
29

30 double start = MPI::Wtime();
31

32 // findFunction makes it very slow, this can be solved by replacing it
33 // with the following, replacing N for the Dedekind number to compute.
34 // Dedekind::UInt128 result = Dedekind::monotoneSubsets<N>(rank, size);
35 Dedekind::UInt128 result = findFunction(n)(rank, size);
36

37 double end = MPI::Wtime();
38 cerr << "Rank " << rank << " done! Result: " << result << " in "
39 << end - start << "s\n";
40

41 // reduce over all processes
42 if (rank == 0)
43 {
44 size_t toReceive = size;
45 while (--toReceive)
46 {
47 // send the high and the low part of the result
48 uint_fast64_t lohi[2];
49

50 MPI::Status status;
51 MPI::COMM_WORLD.Recv(lohi, 2, MPI::UNSIGNED_LONG,
52 MPI::ANY_SOURCE, Dedekind::BIGINTTAG, status);
53

54 Dedekind::UInt128 tmp(lohi[0], lohi[1]);
55 result += tmp;
56 }
57

58 double final = MPI::Wtime();
59 cout << "d" << n << " = " << result
60 << " (in " << final - start << "s)\n";
61 }
62 else
63 {
64 // send the high and the low part of the result
65 uint_fast64_t lohi[2];
66 lohi[0] = result.lo();
67 lohi[1] = result.hi();
68 MPI::COMM_WORLD.Send(&lohi, 2, MPI::UNSIGNED_LONG, 0,
69 Dedekind::BIGINTTAG);
70

71

72 double final = MPI::Wtime();
73 cerr << "Rank " << rank << " exiting! Total: "
74 << final - start << "s\n";
75 }
76 }
77 else
78 {
79 cout << "Usage: mpirun -np N ./project -d X \n"
80 << "Where X in [2..n) is the Dedekind Number to calculate.\n"
81 << "And N is the number of processes you would like to use.\n\n"
82 << "Note: The program will also work when running normally "
83 << "(without using mpirun).\n"
84 << "In that case the program will just run on 1 core.\n";
85 }
86 MPI::Finalize();
87 }

	Abstract
	Acknowledgements
	Introduction
	Definitions
	Examples

	Theory on Monotone Subsets
	Algorithms
	Generating Qn1 from Qn
	Generating Dn1 from Dn
	Computing dn2 from Dn
	Computing dn2 from Dn and Rn

	Representation
	Power set Qn
	Monotone Subsets

	Implementation
	Representation
	Monotone Subsets
	Dedekind Numbers

	Algorithms
	Generating Dn1 from Dn
	Computing dn2 from Dn and Rn (in parallel)
	Generating Rn

	Helper Functions
	Operator<=
	Concatenate
	Dual
	Eta
	Permutations
	Power Set
	Subset Permutation
	Permutation
	Equivalence class
	Sorting bitsets

	Findings and Future Work
	References
	Source Code
	Algorithms on Monotone Subsets
	128bits unsigned integer
	Headers
	Sources

	Main

