,,,,,

? university of faculty of matl.lematics
E groningen and natural sciences

Bachelor project

Non Functional Testing In An
Automated Assessment System

Expanding Justitia’s assessment capabilities

Aloys Akkerman

First supervisor: prof. dr. G.R. Renardel de Lavalette
Second supervisor: dr. A. Meijster

July 5, 2013

Abstract

Justitia is an automated assessment system which assesses submissions (source
code send it in by students) by running the submission with some input and
comparing the output to a reference file. However, this type of testing can only
test whether the answer is correct and not test whether the used algorithm meets
some requirements. We are looking for a judging system that could test the
implementation of search and sort algorithms by students.

In this thesis I will look at some automated assessment systems, none of them
having the required assessment capabilities we are looking for. Thus, I created a
new non functional judge. This judge is capable of assessing submissions to
programming exercises that focus on the implementation of algorithms rather than
the results.

CONTENTS

Contents

2 Requirements|

4.1 Automated assessment systems|

6 Implementation|

6.1 Communication between Judge and Submission| .
[6.1.1 Lib-C and buftering]

[6.1.2 Redefine print functions with compile-time macro’s|.

6.1.3 Creating an unbuffered version of LibC| .

6.1.4 Hijacking LibC with dynamic pre-loading]

|7 Integration with Justitial

I8 Conclusions|

9 Future work]

110 Acknowledgments|

11 Appendix]|

12
12
12
13
13
14
14

16
16
16

19
19
19
20
21
21
22
23
24
25

27

1. Introduction

Chapter 1

Introduction

At the University of Groningen the bachelor program Computing Science uses an
online assessment system called “Justitia” (after Lady Justice). This online as-
sessment system receives submissions from students who are trying to solve some
programming exercises. Until now Justitia was only able to compare the output of a
submission to the expected output. This kind of testing is called functional testing.
Functional testing is a type of black box testing, it does not care about the actual
implementation as long as a testcase produces the expected output. However, some
exercises are not testable with this system. Some algorithms might have more than
one correct answer. For other exercises we might want to check if some algorithm
has a good runtime complexity, since less efficient implementations might give the
correct answer but are unacceptably slow.

To illustrate this we could think of the “Higher, Lower” game (which is quite similar
to binary search). A, the judge, will provide B, the submission, with a range of
numbers e.g. 0 to 300. A tells B that he has chosen a number from that range and
instructs B to guess which number. The only feedback provided after each guess is
whether B should guess a higher or a lower number or that B has guessed it right.
The judge could now check whether the submission is making the expected new
guess each time. The teacher can decide how strict to judge the submission. He
may require a perfect implementation of binary search, or give some upper bound
for the amount of guesses (based on the minimum amount of guesses needed).

In this thesis I will describe an automated assessment concept which allows to as-
sess submissions beyond functional testing. It might, for example, be challenging to
create an exercise which could return multiple correct answers, but still be testable
by comparing the output to a reference output. Or to test whether the student
has implemented some algorithm correctly, or if the implementation meets the effi-
ciency requirements. This now becomes possible using the new assessment method
I describe in this thesis.

While doing research on this subject I found a good survey of automated assessment
tools by Kirsti M Ala-Mutka [I]. This survey gives a proper insight in a couple of
these systems. While reading more on the subject I found that there are some great

1. Introduction

tools available, but they do not cover our assessment concept. Therefore I created
an assessment tool which fits our requirements.

Justitia is already used in at least 3 courses of the Computing Science curriculum
to judge submissions. A few other non Computer Science courses use the tool as
well. The new functionality can be used in these courses to test the understanding
of certain algorithms, like binary search, by the students. Some new exercises can
be developed and hopefully with the new assessment capabilities other courses or
universities might start using the new Justitia system.

2. Requirements

Chapter 2

Requirements

The bachelor project discussed in this thesis was not an available project, so there
were no requirements provided beforehand. During the first meeting with my su-
pervisors we discussed what I would be creating, but immediately we discussed the
requirements as well. The first requirement is also the most important, and it was
directly mentioned by A. Meijster. The last requirements is implied, because my
judging system would be used in Justitia, thus it should be integrated.

1. For students who use Justitia, there should be no difference between running
their code from a shell command-line and running it by submitting their code in
Justitia. Since this tool will be used in the first year of the Computing Science
curriculum the students should not have to worry about system calls that
occur during judging. Therefore all communication between the assessment
tool and the submission must be using stdin and stdout.

2. Writing the logic for the judge must be easy for a teacher with a fair amount of
programming experience. A template will be available, so the teacher should
only have to write the judging logic and not the communication with the
submission.

3. Everything must be documented, the source code as well as how to use the
tool. The following aspects should be treated:

e How to write assessment logic and build a judge.
e How to run the tool locally for testing purposes.
o How to integrate the tool with Justitia.

4. The new judge should be integrated with Justitia.

3. About Justitia

Chapter 3

About Justitia

The documentation of Justitia describes itself as follows: “Justitia is a program that
automatically checks the answers to programming exercises.” [6] More generally, we
could say that Justitia is an automated assessment tool. Justitia was originally
designed by A. Meijster and T. van Laarhoven and implemented by T. van Laarhoven
for use in the course “Imperative Programming” at the computer science department
of the university of Groningen.

3.1 Workflow

Justitia has a simple workflow for students:

1.

The student writes a solution for a programming exercise. The solution is just
an ordinary program that receives its standard input from the keyboard while
its standard output is the screen.

. The student submits the solution by sending the source files to Justitia.

Justitia compiles the submission (and indicates what went wrong on compila-
tion failure).

. Justitia runs the compiled submission with some test input sets and compares

the output to a reference output.

. Justitia gives the user feedback whether the submission is accepted or not

(and if not, Justitia may provide additional hints). If the submission exceeds
a runtime limit it is stopped and the submission will be marked as not accepted.

3. About Justitia

3.2 Features

Justitia tests all submissions by inputting test sets and comparing the output with
a reference output, this is pure functional testing. Submissions can also be judged
without input data, but the output is still compared to a reference output.

One of the great aspects of Justitia is the distribution of its judges. These judges
run as daemons on the systems that are available for the practicals. Using this setup
assures us that the front-end of Justitia will keep running fast even though many
submissions might be made. This is especially useful during practical midterms,
because a substantial amount of submissions will be made in a small time frame and
we cannot afford any slowdowns.

Retreive "pending" submission ©

Set submission status

Judge submission

Judge daemon

Web server
Retreive "pending" submission

-«
e

Set submission status

Judge submission

Judge daemon

When a submission is done it is stored in the database, and the status is marked
“pending”. The front-end will not do anything more. A running daemon judge will
connect to the database and check for the oldest submission with the “pending”
status. The judge will run the submission (and mark the status “judging”), save the
resulting output and compare it to the reference output. If the submission’s output is
equal to the reference output the judge will mark the status “passed” and otherwise
“failed: wrong answer”. If the judging fails for another reason, e.g. a compile error
or runtime error, the status will be marked accordingly. If the submission did pass
but was send in after the deadline it will be marked “missed deadline”.

Justitia is by design not limited to a specific programming language (family). It
allows you to create compile and run scripts for any language. Currently Justitia
has built-in support for C, C++, Java, Python and Matlab (which runs in Octave
on Linux).

Justitia supports two storage methods, the file system and the database. You can
use both storage methods at the same time, this provides a backup and allows for a

10

3. About Justitia

more easy migration to another server. All submissions, both accepted and rejected,
are stored by Justitia so that a submission could be reviewed.

3.3 Current usage

Currently Justitia is used primarily for three courses: Imperative Programming,
Algorithms & Data Structures in C and Algorithmics. These courses let their stu-
dents submit solutions to programming problems. A part of the final grade for these
courses depend also on the results of the practicals, thus a reliable assessment tool
is necessary.

11

4. Related work

Chapter 4

Related work

A survey of automated assessment approaches [1] gives an insight in a few of these
systems and the advantages and disadvantages. Some of these assessment tools, e.g.
Try [5], were already implemented more than two decades ago. Others are more
recent such as CourseMarker [3], HoGG [4] and Online Judge [2].

4.1 Automated assessment systems

4.1.1 TRY

The TRY system is probably one of the oldest assessment tools. The system was
created by Kenneth A. Reek in 1988/1989. This system is not an online assessment
tool, since the internet did not yet exist the way we know it today. Instead of
submitting written programs online, the student submits the program by running a
provided tool called ‘try’. Using the Unix set-user-id (sudo suid) mechanism, the
TRY program can access the teacher’s files even though the student does not have
the required permissions.

The TRY system will run the submitted program by reading the input files (which
are not accessible for the students) and use them as input for the program. The
resulting output file is compared with the teacher’s reference output file. The student
will receive feedback whether the submission was accepted or if it failed some test
case. The system also keeps a record of submissions in a log file.

Even though this system is not an online system, the assessment method - comparing
output with reference output - in Justitia is the same. TRY is a very basic system
and lacks many features other systems nowadays might have, but it is surely a system
many other systems are based upon.

12

4. Related work

4.1.2 Online Judge

Online Judge is a basic online automated assessment system, which has been used
in various courses at the National University of Singapore. The main reason to
create this system was the amount of time it takes to check all submission for a
programming exercise by hand. With this online solution the teacher would only
have to check the maintainability of the code and not the correctness or efficiency,
while the students receive instantaneous feedback on the correctness and efficiency
of their submission.

Online Judge runs a student uploaded solution using some hidden input files. The
output is compared with the expect output and the student receives the feedback
“accepted”, “wrong answer” or “syntax error”. Syntax error means that the output
is correct but differs in spacing compared to the reference output. All submission
are subjected to a plagiarism check to discourage plagiarism. While checking the
submitted solution the system also monitors the runtime and memory usage. If
either one of them exceeds a given maximum for an exercise the submission will be
rejected as well.

The core of this system is quite similar to Justitia. Both systems compare the output
of the submission to a reference output and set some limits on the memory and time
usage. The main difference with this system is that Justitia is lacking an automated
plagiarism checker. A weak point in this system is that students could simply print
the input to stdout. Now the students could write a program that only has a few
print statements containing the expected output.

4.1.3 HoGG

HoGG (Homework Generation and Grading) is an automated assessment tool that
is developed by and used at Rutgers University. The HoGG system is a bit different
from the other described systems. It is only suitable for the Java programming
language and uses Java’s Reflection to find required methods and test them.

The students using HoGG must submit their solutions at different stages of comple-
tion. This makes it possible to give students a grade based on the partial completion
of the exercise. This allows students to still receive reasonable grades if their solution
produces correct results for most testcases, but not all.

The HoGG system is really different from the other discussed automated assessment
systems in the way submissions are judged. Justitia does not provide this manner of
judging, using Java Reflection, to judge submissions. However, the partial comple-
tion of an exercise is also possible in Justitia using multiple test cases. The teacher
could design the test cases, in Justitia, so that each test case will need additional
implementation. This allows students to test their new functionality incrementally.

13

4. Related work

4.1.4 CourseMarker

CourseMarker is the replacement of Ceilidh, an automated assessment system devel-
oped in the mid-80’s. Ceilidh was used at the university of Nottingham for over 13
years. Ceilidh did have its limitations, and to overcome some of them CourseMarker
was built. CourseMarker was implemented in 1998 and was already in use in that
same year. In 2000 CourseMarker was made available to other universities, resulting
in more than 20 universities using CourseMarker.

CourseMarker is a very broad system which can do more than only assessing pro-
gramming exercises. It provides also options to have multiple choice questionnaires
and submit essays. These different capabilities are provided by a broad range of
tools that have been developed for Ceilidh (of which most are ported to Course-
Marker). Even though CourseMarker may be very extendable, the correctness of a
program is checked in the same manner as TRY, Online Judge and Justitia do. How-
ever, CourseMarker could also check the syntax of the submission, do a complexity
analysis, analyse the program structure and check for specified program features.

Justitia and CourseMarker might not look similar, because CourseMarker is a very
broad system. However, in the aspect of checking the correctness of a program both
CourseMarker and Justitia run the submission with a predefined data-set and vali-
date. CourseMarker provides however much more analytical options. CourseMarker
is written in Java, therefore the system can not be altered while running. Justitia
may be altered on the fly, which improves the flexibility for the maintainers.

4.2 Non functional testing

As seen in TRY, Online Judge and CourseMarker, non functional testing in auto-
mated assessment is not yet mainstream. Even though CourseMarker will dynam-
ically analyse the submission, the acceptance of the submission is still primarily
based on its correctness.

Automated assessment approaches for program efficiency are often based on the
running time of the program, this is also available in Online Judge. Even though the
CPU time is used, this is still not a good method. Consider a program containing an
algorithm that should meet certain efficiency requirements. Although the algorithm
might meet the efficiency requirements, the used CPU time could still be too high
due to inefficient other parts of the program. However, those parts do not need
to comply with the efficiency requirement of the algorithm. Besides, it is difficult
to measure performance due to caching effects, current system load, network and
I/O-bottleneck and other limiting factors.

To be able to test, for example, the efficiency of a sorting algorithm we need a solution
which will monitor the number of steps that are taken rather than the execution
time. In such a solution we could check if an algorithm has the correct runtime
complexity and predict the scalability (by calculating the order of growth). This

14

4. Related work

will allow us to check if students did understand the working and implementation
of certain algorithms.

In this thesis I develop a system which allows the assignment judge to communicate
with the submission, allowing for a very broad range of possible use cases. For
example students might implement a simple game like tic-tac-toe. These submissions
could play against their judge and will only be accepted if they beat the judge,
requiring a certain degree of intelligence in the submissions.

15

5. Design

Chapter 5

Design

5.1 Student workflow

The workflow for the student is identical to the existing workflow for students who
use Justitia (see section 3.1). Typically the workflow starts with the student receiv-
ing the assignment. A program has to be written which solves a certain problem
and output its results following a given protocol.

The student will probably think about the assignment and write a solution for the
problem (which may or may not be correct). When the student thinks his program
meets the requirements he can submit the source code in Justitia. Justitia will judge
the submission and provide feedback.

The submission can either be accepted or rejected. If the submission is accepted
the student has completed the assignment. If the submission is rejected the student
will receive some adequate feedback from Justitia (depending on what the teacher
made available). The submission might not compile, crash at runtime or it might
not meet some requirement(s) from the assignment. With the given feedback the
student can improve or revise his code and submit again until he submits a program
that meets all requirements of the assignment.

5.2 Teacher workflow

When a teacher creates a programming assignment using a non-functional test judge,
a certain workflow should be followed.

We assume the teacher has already written the assignment specification including a
protocol for the output (which should be testable). The teacher now should write
a simple C program that will provide the submission with input and validate the
output of the submission. The provided assignment.c and assignment.h files can
be used to create an assignment.

16

5. Design

#ifndef _HEADER_ASSIGNMENT_
#define _HEADER_ASSIGNMENT_

#include "judge.h"

/ **
* Define the maximum runtime in (real life) seconds.
*/

#define DEFAULT_MAXIMUM_RUNTIME 3

/*x*

* This function will be called by the judge to start
* judging the submission.

*

* Q@return AssignmentReturnStatus

*/

AssignmentReturnStatus judgeAssignment ();

#endif

assignment.c

© 0~ O UL W N

— = = e
=W N = O

15
16

17
18
19

#include <unistd.h>
#include <stdio.h>
#include <stdlib.h>
#include " judge.h"
#include "assignment.h"

/ **
* This function will be called by the judge to start
* judging the submission.
*
* @return AssignmentReturnStatus
*/
AssignmentReturnStatus judgeAssignment ()
{
allowSubmissionToExit () ;
printAndLog("No implementation yet, accept all <
submissions\n") ;

return ARS_Success;

When writing the exercise the teacher can read the output from the submission
from stdin (using the default Lib-C methods e.g. scanf, getchar). Providing
the submission with feedback/input data is done by writing to stdout (which is
similiar to using a pipe in a shell). However, it is recommend to use the defined
macros logToFile and printLog, which take the same arguments as printf. The
logToFile macro will write to an output file (which will become visible in Justitia
after judging). The printLog macro inherits the same functionality but writes the
output also to the submission, which is useful to log the input data.

There is only one requirement for the assignment implementation: The assignment
must indicate when it is expecting the submission to stop or die. This can be done

17

5. Design

by calling allowSubmissionToExit (). If this method is not called all submissions
will fail when they stop or die, because they stopped or died unexpectedly.

When the teacher is done with implementing the assignment.c and assignment.h
files, they should be tested locally. The template comes with the non functional
judge source code and the Lib-C hijack source. Both the judge and the Lib-C hijack
library should be compiled, Makefiles are provided. During the compilation the
assignment implementation becomes a part of the judge. The usage of the judge is
a following:

Usage of the judge executable

$./judge.out
Usage:
./judge.out submission_executable output_file

However, to be able to let the judge communicate with the submission without
buffering problems the hijack Lib-C library needs to be preloaded. This results in
the final commmand to execute the judge locally for testing purposes (on Linux):

Judging a submission locally (Linux)

$ LD_PRELOAD=hijack-1ib/lib_overrides.so ./judge.out submission.out <
transscript.txt

[Output to stderr (e.g. debug information from the judge)]

JUDGE: Exit status O

All the logToFile calls in the assignment will write their output to the transs-
cript.txt file.

When the judge runs successfully, a new exercise can be created in Justitia (see
the documentation of Justitia) by creating a new exercise folder in a course. The
assignment files should be stored in a sub folder ‘assignment’ in the exercise folder
and the following rules should be added to the exercise’s info file:

Exercise info file flags

runner: run_judge
checker: non-functional -checker
compiler files: assignment/assignment.c assignment/assignment.h

There is no need to compile files or do any additional setup. The assignment can
now be used by students.

Note: The teacher may decide to use a time limit which can be set in the assignment
header. This limit should be lower than the default Justitia limit. The default
Justitia limit can be overwritten by adding a flag in the exercise info file. The
default time limit of the judge can be changed by editing the judge source code in
the Justitia bin folder, there is no need to compile afterwards (because each judge
will be build on the fly).

6. Implementation

Chapter 6

Implementation

The source code of all produced work is placed in the appendix of this thesis. A
guide to integrate the non functional judge in Justitia and all needed scripts are
included in the appendix as well.

6.1 Communication between Judge and Submission

A fair amount of time in the design of the judge was spent on how to perform I/0O
operations between two processes. To establish a connection between two processes
that communicate through standard I/O (e.g. printf, scanf), creating pipes is an
obvious choice. However, pipes might not behave the way you would expect due to
the build-in buffering rules of Lib-C. Lib-C is the library which provides most of the
functions that would be considered system calls e.g. read or write, but also wrapper
functions like printf and scanf which will internally invoke read and write.

An other solution, which is often suggested when you want to unbuffer your pipes
are pseudo terminals. Because Lib-C will be fooled to believe that the program is
running in a terminal it will change the default buffering settings to line buffering
(in general). Even though pseudo terminals are a usable solution I decided to stick
with pipes, because by the time I discovered pseudo terminals I had already found
a solution to make sure there was no buffering from Lib-C (while pseudo-terminals
cannot guarantee at least line buffering, even though this is almost always the case).

6.1.1 Lib-C and buffering

The Lib-C library, responsible for the functions in stdio.h, uses its own buffering
to decrease the load on the file-system and kernel. If a program is run in a terminal,
Lib-C detects that and uses line buffering. That means that every newline charac-
ter (marking the end of a line) will trigger Lib-C to actually write the line to the
destination.

19

6. Implementation

kernel
pipe buffer
(4096)
libe write() read() libc
puts() 2 @ é getline()
printf() stdout buffer stdin buffer scanfi)
fiwrite() (4096) (4096) fread()
4 A
commandl command2

Source: |http: //wuww. pizelbeat. org/programming/ stdio_buffering

However, when the program uses pipes Lib-C detects that as well. In the case that
you are not writing to a terminal Lib-C uses by default a buffer of 4096 bytes. Thus
programs that require a lot of interaction and do not write enough data to flush the
buffer will behave unexpectedly when using pipes.

Think of an implementation of a simple game like higher - lower (which is explained
in the Introduction). The program requires some input and responses accordingly.
However, the response is buffered in Lib-C causing the user to wait for a response
while the program waits for new input from the user. The user now does not
know what input to send because no useful feedback is received. This is exactly
our problem, imagine that the user is our judge. How can we judge a submission
without getting proper feedback before sending our new input data?

To disable these buffers is not a problem when you have the control over the source
code of the program. Disabling the buffering for stdout could be done with the
simple command setbuf (stdout, NULL) (as long as you put this command before
any writing to stdout. However, we cannot guarantee a safe way to insert that
function call into the source code of a submission. Therefore we need a solution that
solves this problem without the need to modify the source code (directly).

6.1.2 Redefine print functions with compile-time macro’s

The first thing I tried was redefining the functions that write implicitly to stdout
by telling the compiler from the command line to define some macros (see the code
below). These defines will replace a call to one of the function by a call to that same
function with fflush(stdout) appended.

This works if you match the commands exactly with the defined macros. However,
it is not a reliable method to use, because it will not work if, for example, printf
gets called with a white space before the arguments. Adding more redefines is not
an option, since you could call printf using an unlimited amount of combinations
by partially defining printf (e.g. split printf in to prin and tf).

20

http://www.pixelbeat.org/programming/stdio_buffering

6. Implementation

Redefines in a Makefile

REDEFINES= ’-Dprintf (...)=printf (__VA_ARGS__); fflush(stdout)’\
’-Dputs(x)=puts(x); fflush(stdout)’ \
’-Dputchar (x)=putchar(x); fflush(stdout)’ \

6.1.3 Creating an unbuffered version of LibC

Since injecting setbuf (stdout, NULL) nor redefining I/O functions is a reliable way
to disable buffering I looked at creating my own, unbuffered, Lib-C. This is a reliable
option, because whatever the student writes in his source code, the unbuffered Lib-C
will be called.

Even though it is simple enough to disable the buffering in the Lib-C source, this
does not mean that using this unbuffered version of Lib-C is simple. Since linking
to this unbuffered version of Lib-C proved to be quiet hard and labour intensive
(since you must recompile Lib-C for all different systems). Another concern might
be to determine which version of Lib-C we must use, it is much more safe to use
the version that is provided by the operating system. I did some more research
until somebody (an anonymous person on the web) pointed me in the direction of
dynamic pre-loading a library.

6.1.4 Hijacking LibC with dynamic pre-loading

When a program is executed in Linux, all dynamic libraries on which the program
depends are loaded into memory first. When a program calls a function, the function
is resolved and invoked. Since the order of loading libraries affects the resolving of
functions on a first-come first-serve basis, we could hijack some Lib-C functions by
loading our library first. By default LibC is loaded first, so we set the environment
variable LD_PRELOAD=hijackIOmethods.so. The operating system will now load
our library first into the program, thus we can write our own I/O functions. Our
functions can still call the Lib-C I/O functions and we can invoke a flush after every
call. We do not need to worry about the version of Lib-C since we use the one
provided by the system, we only wrap some code around the actual call.

An additional advantage is that, since we can override or wrap all functions from
Lib-C, we can also disable a lot of functionality that should not be used by the
students (e.g. the fork and system functions). This enabled us to write a kind of
sandbox specifically tailored to our needs.

21

7. Integration with Justitia

Chapter 7

Integration with Justitia

As stated in the requirements (requirement 4), the non functional judge should be
integrated into Justitia. A teacher should be able to create an exercise which will
use the non functional judge and the student should not be bothered by this in any
way.

Since the non functional judge requires a buffer free communication with the sub-
mission, the Lib-C Hijack library is integrated in Justitia. To be able to use the
non functional judge a new runner script was created. This script will run the judge
with the assignment and judge the submission. Due to the design of Justitia we
also need an additional checker script which will determine whether the submission
should be accepted or rejected. The original checker scripts compare the output
of the submission with a reference output. The new checker reads the output file
of the judge and checks if the judge stopped with an “accept” status (status code
0). Note that there is not a different compile script for the submissions, since the
submissions do not need to be modified. Dynamic pre-loading works fine with the
existing compile scripts (assuming you do not use static linking). For information
about how to use the non functional judge see section 5.2 (Teacher Workflow).

Even though the non functional judge can be used in Justitia, the integration is far
from ideal. Justitia is designed based on the idea of a functional judge (comparing
output to a reference output). This translates unfortunately into code that does
not allow for new systems to easily integrate. This means that the usage of our non
functional judge may not be very hard, but implementation is lacking flexibility and
is not elegant. However, the integration of our system did not need to modify any
existing files, thus it is easy and save to integrate in a live Justitia system.

22

8. Conclusions

Chapter 8

Conclusions

The goal of this project was to create a non functional judge that could assess
submissions to programming exercises that could not be assessed using the exist-
ing judging functionality in Justitia. In this thesis I looked at other automated
assessment systems, none of them has the functionality we require.

The non functional judge I described in this thesis meets all requirements. Program-
ming exercises that could not be assessed using the existing functionality, such as
search or sorting algorithms, can now be assessed by the non functional judge.

In the requirements it is stated that a teacher with a fair amount of programming
experience should be able to use this new judge. For students there should be
no difference between running their code from a shell command-line and running
it by submitting their code in Justitia. Both of these requirements are met. I
spent an afternoon with dr. A. Meijster to try to write a judge for a programming
exercise with involves a sorting algorithm. We successfully created a judge for this
programming exercise and when this judge is integrated in Justitia the students can
just submit their code, which runs fine in the shell command-line.

The most important design problem was the buffering that is handled by Lib-C.
Using the hijack method I have described in this thesis we have a reliable way to
get rid of the buffering issues when judging a submission. However, to unbuffer all
I/O functionality in Lib-C that writes to stdout the hijack library might need to
be expanded a bit.

I am satisfied with the created work and I have learned a lot about dynamic loading
of libraries and systems calls. I have also learned a lot about automated assessment
systems in general and what we could improve in Justitia in the future.

23

9. Future work

Chapter 9

Future work

Plagiarism checker

As mentioned in the chapter Related Work, Justitia does not have a plagiarism
checker like Online Judge. A plagiarism checker would be a nice extension for
courses where a single exercise is graded by multiple correctors. It is really hard to
spot plagiarism for those exercises. Besides, a plagiarism checker should be used for
all assignments, to really discourage students to take the risk of cheating.

Sandboxing submissions

The hijack Lib-C library is capable of much more than just disabling output buffer-
ing. All functions in Lib-C which should not be used or accessible could be hijacked
and mark a submission failed if such a functions is used. Disabling functions like
fork() and system() could prevent fork-bombs or executing system commands.
Thus, Justitia could become a much safer automated assessment system.

Rewrite the Justitia backend to make it extendable

As described in the chapters Integration with Justitia and Conclusions, Justitia is
not really extendable. A rewrite of the back-end to a modern framework could help
to make Justitia extendable, which will increase the usage possibilities. New judging
methods could be created an installed more easily, allowing Justitia to become a more
powerful assessment system.

24

10. Acknowledgments

Chapter 10

Acknowledgments

I would like to thank dr. G.R. Renardel de Lavalette for his support during my
bachelor project. The regular meeting and sometimes hard deadlines helped me to
keep on track with the project. The feedback on each draft of my thesis encouraged
me to enhance the thesis and keep going.

I would also like to thank dr. A. Meijster for his assistance in my bachelor project.
The afternoon we spent on testing the teacher template was really useful, it really
made clear to me that the non functional judge can be used in the intended way.
The extensive feedback on the last draft version of my thesis really helped me to
improve this thesis.

25

BIBLIOGRAPHY

Bibliography

[1] Kirsti M Ala-Mutka. A survey of automated assessment approaches for program-
ming assignments. Computer Science Education, 15(2):83-102, 2005.

[2] Brenda Cheang, Andy Kurnia, Andrew Lim, and Wee-Chong Oon. On auto-
mated grading of programming assignments in an academic institution. Com-
puters & Education, 41(2):121-131, 2003.

[3] Colin Higgins, Tarek Hegazy, Pavlos Symeonidis, and Athanasios Tsintsifas. The
coursemarker CBA system: Improvements over Ceilidh. Fducation and Infor-
mation Technologies, 8(3):287-304, 2003.

[4] Derek S Morris. Automatic grading of student’s programming assignments: an
interactive process and suite of programs. In Frontiers in Education, 2003. FIE
2003 33rd Annual, volume 3, pages S3F-1. IEEE, 2003.

[5] Kenneth A Reek. The try system -or- how to avoid testing student programs.
In ACM SIGCSE Bulletin, volume 21, pages 112-116. ACM, 1989.

[6] A. Meijster T. van Laarhoven. Justitia documentation, 2009.

26

11. Appendix

Chapter 11

Appendix

Teacher template

Workflow

1. Implement the assignment checker in assigment.c.

2. Build the judge by running make.

3. Build the Lib-C hijack library (by running make in ./hijack-libc).

4. Run the judge with the Lib-C hijack library preloaded.
Judge.out usage

Usage:
./judge.out submission_executable output_file

Judge a submission

On Linux:
LD_PRELOAD=hijack-1ib/1ib_overrides.so ./judge.out submission.out transscript.txt
On OSX:

DYLD_FORCE_FLAT_NAMESPACE=1 DYLD_INSERT_LIBRARIES=hijack-1lib/lib_overrides.dylib
./judge.out insert-path-to-submission-executable.out transscript.txt

27

11. Appendix

Publish exercise in Justitia

To add the exercise to Justitia create a new blank exercise in Justitia (as usual).
Then follow these steps:

1. Copy assignment.c and assignment.h into an assignment subfolder in the
exercise directory.

2. Add at least the following lines to the exercise’s info file:

time limit: 20 // should be higher than the timelimit set in assignment.h
runner: run_judge

checker: non-functional-checker

compiler files: assignment/assignment.c assignment/assignment.h

language: ¢

The exercise should now be available in Justitia.

1 #ifndef _HEADER_ASSIGNMENT_

2 #define _HEADER_ASSIGNMENT_

3

4 #include "judge.h"

5

6 / **

7 * Define the maximum runtime in (real 1life) seconds.
8 */

9 #define DEFAULT_MAXIMUM_RUNTIME 3

10

11 /%%

12 * This function will be called by the judge to start
13 * judging the submission.

14 *

15 * Q@return AssignmentReturnStatus

16 */

17 AssignmentReturnStatus judgeAssignment ();

18

19 #endif

assignment.c

1 #include <unistd.h>

2 #include <stdio.h>

3 #include <stdlib.h>

4 #include "judge.h"

5 #include "assignment.h"

6

7 VEL

8 * This function will be called by the judge to start
9 * judging the submission.

10 *

11 * Q@return AssignmentReturnStatus

12 */

13 AssignmentReturnStatus judgeAssignment ()

14 {

15 allowSubmissionToExit ();

16 printAndLog("No implementation yet, accept all submissions\n");
17

18 return ARS_Success;

19 }

28

11. Appendix

OO Uk WN —

#ifndef _NON_FUNCTIONAL_JUDGE_HEADER_
#define _NON_FUNCTIONAL_JUDGE_HEADER_

#include <stdio.h>

/* Error statuses */

#define SUBMISSION_SUCCEEDS O

#define ERROR_SUBMISSON_FAILED 10

#define ERROR_SUBMISSON_NOT_EXECUTED 20
#define ERROR_SUBMISSON_EXCEEDED_TIME_LIMIT 30
#define ERROR_SETUP_EVIRONMENT_FAILED 40
#define ERROR_SUBMISSION_DIED_UNEXPECTEDLY 50

/* Setup writing to logs and output */

#define LOG_FILE _outputFile

#define logToFile(...) { fprintf (LOG_FILE, __VA_ARGS__); }

#define printAndLog(...) { printf(__VA_ARGS__); fprintf (LOG_FILE, <«
__VA_ARGS__); 1}

FILE* LOG_FILE;

enum
{
ARS_Success,
ARS_Failed,
ARS_Error

} typedef AssignmentReturnStatus;

/**

* Call this method before the submission is expected to quit / exit / ¢
die. This

* will cause the judge allow the submission to die without failing.

*/

void allowSubmissionToExit ();

#endif

QOO0 Ui W —

#include <stdlib.h>
#include <stdio.h>
#include <unistd.h>
#include <signal.h>
#include <sys/wait.h>
#include <libgen.h>
#include <errno.h>
#include "judge.h"
#include "assignment.h"

/ **
* Define maximum running time (real life seconds).
* Override this in the assignment header
*/

#ifndef DEFAULT_MAXIMUM_RUNTIME

#define DEFAULT_MAXIMUM_RUNTIME 10

#endif

VTS

¥ Indicates whether the submission should be alive at this moment.

* Before expecting the submission to die, set this variable in the <
assignment

* to O.

*/

int submissionShouldBeAlive;

/ **

29

11. Appendix

* Indicates whether the submission did quit. We use this flag to <
prevent the judge

* from exiting with failure if the submission did quit on time, but <
the judge itself

* takes more time to process.

*/

int submissionDidQuit = 0;

/ %
* Store the process ID of the running submission
* to be able to kill it when pressing CTRL+C or
* when it exceeds the time limit.
*/

pid_t submissionPID;

static void exitWithStatus (int status)

{
fprintf (stderr, "JUDGE: Exit status %d\n", status);
exit (status);

}

/ *x*

* Listens for dying submissions (child process).
*

* @param signal

*/
static void signalCHLDHandler (int signal)
{
if (submissionShouldBeAlive)
{
fprintf (stderr, "JUDGE: Submission died unexpectedly!\n");
waitpid (submissionPID, NULL, 0);
exitWithStatus (ERROR_SUBMISSION_DIED_UNEXPECTEDLY) ;
¥
waitpid(submissionPID, NULL, O0);
submissionDidQuit = 1;
}
/ *%x

* Handle SIGINT signals
*

* @param signal

*/
static void signalINTHandler (int signal)
{
fprintf (stderr, "JUDGE: Killing submission!\n");
kill (submissionPID, SIGKILL);
waitpid (submissionPID, NULL, 0);
fflush (LOG_FILE);
exitWithStatus (EXIT_FAILURE);
}
/*x%x
* Listens for alarm signal. If the signal is received, the
* submission process will be killed and the judge will exit
* (with error ERROR_SUBMISSON_EXCEEDED_TIME_LIMIT).
*

* @param signal
*/
static void signalALRMHandler (int signal)
{
/* 0Only kill the submission and exit with error if the submission <
is alive. x/
if (! submissionDidQuit)
{
fprintf (stderr, "JUDGE: Submission exceeded time frame of %d
seconds!\n", DEFAULT_MAXIMUM_RUNTIME) ;

30

11. Appendix

91 submissionShouldBeAlive = 0; /* prevent double warning */

92 kill (submissionPID, SIGKILL);

93 waitpid (submissionPID, NULL, 0);

94 fprintf (stderr, "JUDGE: stop with error code?!\n");

95 fflush (LOG_FILE);

96 exitWithStatus (ERROR_SUBMISSON_EXCEEDED_TIME_LIMIT);

97 }

98 }

99

100 /*%

101 * Call this method before the submission is expected to quit / exit / <«

die. This

102 * will cause the judge allow the submission to die without failing.

103 */

104 void allowSubmissionToExit ()

105 {

106 submissionShouldBeAlive = 0;

107 }

108

109 /**

110 * Setup the enviroment for the judging of the

111 * submission. Setup pipes and redirect stdin/stdout

112 * and stderr (only on submission). Fork this process

113 * and start the client.

114 *

115 * Q@return int

116 */

117 static int setupEnvironment (char* submission)

118 {

119 /* Create pipes */

120 int pipeJudgeToClient [2];

121 int pipeClientToJudge [2];

122 if (pipe(pipeJudgeToClient) || pipe(pipeClientToJudge))

123 {

124 fprintf (stderr, "JUDGE: Creating pipes resulted in errno: <«
%d\n", errno);

125 return O0;

126 ¥

127

128 /* Indicate that the submission should be alive */

129 submissionShouldBeAlive = 1;

130 if ((submissionPID = fork()) == -1)

131 {

132 submissionShouldBeAlive = -1;

133 fprintf (stderr, "JUDGE: Forking to run submission resulted in <
errno: %d\n", errno);

134 return O;

135 }

136

137 if (submissionPID == 0)

138 {

139 /* send stdout (client) to the pipe (judge) */

140 dup2 (pipeClientToJudge [1], STDOUT_FILENO);

141 close(pipeClientToJudge [0]) ;

142 close(pipeClientToJudge [1]);

143

144 /* send pipe (judge) to the stdin (client) */

145 dup2 (pipeJudgeToClient [0], STDIN_FILENO);

146 close(pipeJudgeToClient [0]);

147 close(pipeJudgeToClient [1]);

148

149 /* Run submission */

150 execlp (submission, basename (submission), NULL);

151 fprintf (stderr, "SUBMISSON: Submission could not be started!\n");

152 exit (ERROR_SUBMISSON_NOT_EXECUTED);

153 }

154

155 /* Register signal handler only on judge */

31

11. Appendix

156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208

209
210
211
212

213
214
215
216
217
218
219
220
221

signal (SIGCHLD, signalCHLDHandler);
signal (SIGALRM, signalALRMHandler);
signal (SIGINT, signalINTHandler);

/* send stdout (judge) to the pipe (client) x*/
dup2 (pipeJudgeToClient [1], STDOUT_FILENOQ);
close(pipeJudgeToClient [0]);
close(pipeJudgeToClient [1]);

/* send pipe (client) to the stdin (judge) x*/
dup2(pipeClientToJudge [0] , STDIN_FILENO) ;
close(pipeClientToJudge [0]);
close(pipeClientToJudge [1]);

return 1;

}

[*x
* Runs the assignment judger and converts the return
* status to an EXIT status for the judge to describe
* the result.
*

* Q@return int
*/
static int judgeSubmission(char* outputFile)
{
/* Open the log file for writing */
LOG_FILE = fopen(outputFile, "w");

alarm (DEFAULT_MAXIMUM_RUNTIME) ;
int status = judgeAssignment ();

switch (status)
{
case ARS_Success:
status = SUBMISSION_SUCCEEDS;
break;
case ARS_Failed:
status = ERROR_SUBMISSON_FAILED;
break;
default:
status = ERROR_SUBMISSON_FAILED;
}

fclose (LOG_FILE);
return status;

}

int main(int argc, charx argvl[])
{
if (argec != 3)
{
printf ("Usage:\n’%s submission_executable output_file\n",
argv [0]);
exit (EXIT_FAILURE);
}

/* Disable buffering, no necessary when using our hijack library, <
but it does not hurt */

setbuf (stdout, NULL);

int returnStatus = SUBMISSION_SUCCEEDS;

if (setupEnvironment (argv[1]))
{
returnStatus = judgeSubmission(argv[2]);
¥
else

{

32

11. Appendix

222
223
224
225
226
227
228
229
230
231

returnStatus = ERROR_SETUP_EVIRONMENT_FAILED;
}

/* Do not exit before the submission is dead */
waitpid (submissionPID, NULL, 0);

/* Exit with a status message, so the checker can verify success */
exitWithStatus (returnStatus);
return O0;

Makefile (Judge)

OO0 ULk WN -

Set the desired compiler
CC=gcc

Set the desired flags used by the compiler
during the compilation of each source file

CFLAGS=-Wall -g

Set the desired output name
EXECUTABLE=judge.out

Set all sources files using .o as extension
0BJS=judge.o assignment.o

all: $(EXECUTABLE)

$ (EXECUTABLE) : $(0BJS)
$(cC) $(0BJS) -o $(EXECUTABLE)

clean:
rm -rf *o $(EXECUTABLE)

hijack-libc/lib_overrides.c

O 00O UL W -

#define _GNU_SOURCE

#include <stdio.h>
#include <unistd.h>
#include <dlfcn.h>
#include <stdarg.h>

/ **

* For caching the original methods

*/

static int (*original_putchar) (int) = NULL;

static int (*original_puts) (const char %) = NULL;

static int (*original_printf) (comnst char *, ...) = NULL;

int putchar (int ch)
{
if (loriginal_putchar)
{
original_putchar = dlsym(RTLD_NEXT, "putchar");
}

int result = original_putchar(ch);
fflush(stdout);

return result;
int puts(const char * string)
if (loriginal_puts)

{

33

11. Appendix

32 original_puts = dlsym(RTLD_NEXT, "puts");
33 }

34

35 int result = original_puts(string);

36 fflush(stdout);

37

38 return result;

39 }

40

41 int printf (const char * format, ...)

42 {

43 if (loriginal_printf)

44 {

45 original_printf = dlsym(RTLD_NEXT, "vprintf");
46 }

47

48 va_list args;

49 va_start (args, format);

50 int result = original_printf (format, args);
51 va_end (args);

52 fflush(stdout);

53

54 return result;

55 }

hijack-libc/Makefile (hijack library)

1 # Set the desired compiler

2 CC=gcc

3

4 # Set all sources files using .o as extension

) linux:

6 $(CC) -Wall -c -Werror -fpic -1dl *.c -o lib_overrides.o
7 gcc -shared -1dl -o lib_overrides.so lib_overrides.o
8

9 osx:

10 $(CC) -Wall -dynamiclib *.c -o lib_overrides.dylib
11 clean:

12 rm -rf *.0 *.dylib *.so

Ingration in Justitia

To integrate the non functional judge follow these steps:
1. Copy the /bin/non-function-judge folder to /backend/bin/.
2. Run Make in /backend/bin/non-function-judge
3. Copy the /bin/hijack-1ibc folder to /backend/bin/.
4. Copy the /checkers/non-functional-checker.sh file to /checkers/.
5. Copy the /compilers/c.sh file to /compilers/ (do not static link libraries).
6. Copy the /runners/run_judge.sh file to /runners/.

7. Make sure all permissions are set correctly, at least read and execute rights.
The user that that runs the Justitia judge deamons should own all these files.

34

11. Appendix

compilers/c.sh

1 #!/bin/sh

2

3 # C compile wrapper-script.

4 # Usage: <this-script> <input> <output> <errorfile>

)

6 SOURCE="¢1"

7 DEST="$2"

8 ERROR="$3"

9 FLAGS="84"

10

11 # -Wall: Report all warnings

12 # -02: Level 2 optimizations (default for speed)
13 # -static: Static link with all libraries

14 # -1lm: Link with math-library (has to be last argument!)
15 gcc -Wall -02 -o $DEST $SOURCE $FLAGS -1m 2>$ERROR

16 exit $7

runners/run_judge.sh

1 #!/bin/sh

2

3 # Run wrapper-script

4

) # Usage: $0 <program> <testin> <output> <error> <flags>
6 #

7 # <program> Executable of the program to be run.

8 # <testin> File contains the assignment source (c code)
9 # <output> File where to write solution output.

10 # <error> File where to write error messages.

11 # <flags> More flags

12

13 PROGRAM="$1"; shift

14 TESTIN="$1"; shift

15 OUTPUT="§1"; shift

16 ERROR="$1"; shift

17

18 # Set the location of the unbuffering library
19 UNBUFFER_LIB="/var/subdomains/justitia/backend/bin/hijack-1ibc/1lib_overrides.so";

21 # Set the location of the judge template sources
22 JUDGE_SOURCE="/var/subdomains/justitia/backend/bin/non-functional -judge";

24 # Get the directory of the submission
25 SUBMISSION_DIR=$(dirname $PROGRAM);

27 # Make the judge for this assignment

28 JUDGE_EXEC=$(tempfile);

29 gcc -I$JUDGE_SOURCE -I$SUBMISSION_DIR/assignment $JUDGE_SOURCE/*.c <«
$SUBMISSION_DIR/assignment/*.c -o $JUDGE_EXEC;

30 chmod 777 $JUDGE_EXEC;

32 # Run the actual judge

33 # echo "LD_PRELOAD=$UNBUFFER_LIB $JUDGE_EXEC $PROGRAM $OUTPUT 2>$ERROR";
34 | #

36 LD_PRELOAD=$UNBUFFER_LIB $JUDGE_EXEC $PROGRAM $0UTPUT 2>$ERROR

38 cat $ERROR >> $0UTPUT;
39 rm -rf $JUDGE_EXEC;

41 exit $7

checkers/non-functional-checker.sh

1 | #!/bin/sh

11. Appendix

Checker script

Usage: $0 <testout> <refout> <diff> <flags>

#

<testout> File containing submission output.
<refout> File containing reference output.
<diff> File where to write the diff.

<flags> Extra flags.

Check if the last line contains a "OK" status
tail -n 1 $1 | grep -q "JUDGE: Exit status 0";

exit $7

36

	Introduction
	Requirements
	About Justitia
	Workflow
	Features
	Current usage

	Related work
	Automated assessment systems
	TRY
	Online Judge
	HoGG
	CourseMarker

	Non functional testing

	Design
	Student workflow
	Teacher workflow

	Implementation
	Communication between Judge and Submission
	Lib-C and buffering
	Redefine print functions with compile-time macro's
	Creating an unbuffered version of LibC
	Hijacking LibC with dynamic pre-loading

	Integration with Justitia
	Conclusions
	Future work
	Acknowledgments
	Appendix

