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Abstract

This thesis looks at the theory behind different large eddy simulation models and aims for a basic
understanding in the topic. The aim of large eddy simulations is to model a turbulence flow by
preserving most of its properties, like the effects from smaller eddies on the larger eddies, but
without the full cost of a direct numerical simulation (DNS). The models discussed in this thesis
are the approximate deconvolution procedure (ADP), the scale residual method (SRM) and the
eddy viscosity method (EVM). In the research of this thesis a channel flow is simulated by the
Clark model and qr-model which are examples of the ADP and EVM models, respectively. These
results are tested versus the DNS data and the theoretical frame provided by the law of the wall.
Further there is also a custom made large eddy simulation model for this thesis, which results are
also included in the research. It turns out that the Clark model, qr-model and the custom model
all comply with the wall of the law and the DNS data.
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1: Introduction on large eddy simulations
The modeling of the flow of a fluid is an active field of research, with many applications. A group of
important models are the Navier-Stokes equations, which have been around since 1822. However,
there have still been found only a few algebraic solutions to some specific cases, but not yet a global
exact solution, which makes most models impossible to solve by hand. However, computers have
made it possible to compute these models by using numerical mathematical methods. This does
not mean that these methods are easily to use. Most of these methods are costly and take a lot of
time to compute, even for super computers. That is why applied mathematicians try to simplify
these problems, without losing much of the solution.
To decrease the costs of numerically solving the Navier-Stokes equations we use large eddy simula-
tions. The global idea of a large eddy simulation is that we try to evaluate the global flow of a fluid,
without modeling the smaller flows. This does not mean that we negate the effect of the smaller
flows, since these smaller flows may lead to big effects in the fluid.
In this paper we will test some large eddy simulation models and give a detailed description of some
of these models. This first chapter is dedicated to some principal aspects of fluid dynamics like the
Navier-Stokes equation and some basic mathematical aspects like filters and Fourier series. These
basic aspects will give a better understanding of the large eddy simulation models which we will
discuss in Chapter 2. The third chapter is dedicated to a flow in a channel which we use to test
some models.

1.1 Navier-Stokes equations

The Navier Stokes equations describe the motion of a fluid. As mentioned before, the equations
have been around since 1822, when Claude-Louis Navier first expanded the Euler equations by
introducing molecular forces. Twenty years later, these molecular forces were linked to viscous
forces by Adhémar Jean Claude Barréde Saint-Venant. Another two years later George Gabriel
Stokes expanded Saint-Venants model, which led to the current Navier-Stokes equation.
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1.1.1 Restrictions and assumptions

In this paper the following restrictions and assumptions are laid on the fluid which will be modeled.

- It is assumed that a flow can be modeled by a continuous model, which is plausible on macro-
scale but is doubtful on micro-scale. On micro-scale other effects may be involved like the
interaction between specific molecules, while these effects on macro-scale are irrelevant small.

- The fluid should be incompressible, which means that the density ρ is constant over time and
space.

- The fluid is of a constant temperature, since a difference in temperature may lead to a fluc-
tuation in the density or other terms.

- The Navier-Stokes equations does not apply to non Newtonian fluids. Examples of a non
Newtonian fluid is ketchup, which clearly flows different then water, which is a Newtonian
fluid. The Navier-Stokes equation only applies for Newtonian fluids and that is why we assume
that the fluid is Newtonian.

1.1.2 Derivation of the Navier-Stokes equation

In this section there will be a brief derivation of the Navier-Stokes equation. First we start with
the equation for the conservation of mass. Take a arbitrary volume V . There will not appear or
disappear any mass in V other than which flows through its boundary S. So the only difference of
the mass of V is determined by the flow in and out of the boundary. This will lead to,

d

dt

∫
V

ρ dx = −
∫
S

(ρu) · n dS. (1.1)

where n denotes the normal unit vector to S. The right-hand side can be written as a volume
with the help of the divergence theorem that states that the outward flux on a closed surface can
be expressed in the gradient on the whole domain. Applying this theorem to Equation (1.1) results
into, ∫

V

ρt +∇ · (ρu) dx = 0.

Since the flow was assumed to be continuous in the previous section it follows that,

ρt +∇ · (ρu) = 0

The next step follows from another restriction that was also stated in the previous section. Since
the flow is assumed to be incompressible it follows that the density ρ does not change over time and
space, so ρ(x, t) ≡ ρ0. Thus, the first term of the previous equation disappears, since the derivative
of a constant term is zero. The density cannot be zero and so it is possible to divide ρ out of the
equation. This will lead to the incompressibility condition,

∇ · u = 0. (1.2)

Next the Navier-Stokes equation will be derived from Newtons second law, the force on a particle
equals its mass times its acceleration. This is also called the momentum equation. The acceleration

3



of a particle is given by the derivative to time of u(x(t), t). The velocity of a particle on t+ ∆t is
given by u(x + ∆tu(x, t), t+ ∆t). This makes the acceleration a,

a = lim
∆t→0

u(x + ∆tu(x, t), t+ ∆t)− u(x, t)

∆t
= ut +

d∑
j=1

uj
∂ui
∂xj

= ut + u · ∇u,

with d the dimension (d = 3 in R3). Using Newtons Second law the momentum of the earlier
defined volume V is given by: ∫

V

ρ(ut + u · ∇u) dx

The momentum must be balanced with other forces, these are the external body forces (f) and
contact forces (t(s) ). Since the body forces are defined on the volume V and contact forces only
on the boundary S the force balance is given by,∫

V

ρ(ut + u · ∇u) dx =

∫
V

f dx +

∫
S

t(s) dS. (1.3)

Examples of external forces are gravity and electromagnetic forces. These forces can not be
defined anymore specific since they depend on the modeled situation. However, there can be said
something about the internal forces t. These are mostly determined by pressure and viscous forces
and they are defined on the surface S of V since they are contact forces. From an idea of Cauchy
it follows that t only depends on the normal vector n of the surface S in the following way:

t(n) = σ · n, σ = σ(x, t). (1.4)

Where σ is the stress tensor. This stress tensor is a d× d matrix which represents both the the
pressure forces and the viscous forces. In an incompressible fluid we have,

σ = −pI + µ(∇u + (∇u)T ) (1.5)

With µ the viscosity and 1
2 (∇u + (∇u)T ) the strain rate tensor S(u). From Equation (1.4) and

Equation (1.5) it follows that Equation (1.3) can be written as:∫
V

ρ(ut + u · ∇u) dx =

∫
V

f dx +

∫
S

n · σ dS =

∫
V

f−∇p + µ∆u dV

Since the volume V is arbitrary and the integrand is assumed to be continuous we arrive at,

ut + u · ∇u +
∇p

ρ
− µ

ρ
∆u =

1

ρ
f (1.6)

Equation (1.6) can be simplified by redefining p
ρ by p and f

ρ by f. The term µ
ρ is called the

kinematic viscosity ν. This lead with Equations (1.2) and (1.6) to the incompressible Navier-Stokes
equation:

ut + u · ∇u +∇p− ν∆u = f
∇ · u = 0

(1.7)
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1.1.3 Scaled Navier-Stokes equation

The Navier-Stokes Equation (1.7) can be scaled in such a way that all variables are dimensionless.
The dimensions of the variables are [u] = T−1L, [x] = L and [p] = T−2M . A logical choice for
scaling the space and time variables would be,

v̂ =
v

V0
, x̂ =

x

L0
(1.8)

Here L0 is the characteristic length of the largest wavelength in the flow and V0 is the initial
velocity. The dimension of the density is given by [ρ] = L−3M . It can be seen that the pressure,
the time, the density and the gradient can all be scaled with only L0 and V0 in the following way,

p̂ =
p

ρ0V 2
0

, t̂ =
tV0

L0
, ρ̂ =

ρ

ρ0
, ∇̂ = L0∇. (1.9)

By substituting Equation (1.8) and Equation (1.9) in the Navier Stokes equation without ex-
ternal forcing (f = 0) we get the scaled Navier-Stokes equation. After some rewriting the scaled
Navier-Stokes equation is given by,

ût̂ + û · ∇̂û = −∇̂p̂+
ν

L0V0
∆̂û.

All variables are now dimensionless and the only number involved in this equation is

Re =
L0V0

ν
,

which is called the Reynolds number. The Reynolds number of a flow shows some properties
of flow, since flows with similar Reynolds numbers tend to have similar properties. An interesting
example of the use of the Reynolds number is for testing prototypes of planes. Since the length
of the prototype is often much smaller than the real product, the velocity and viscosity can be
adjusted to make it still possible to do tests which will give similar results as the real plane would.
The Reynolds number can also predict if a model could have certain problems with simulations.

1.2 Fourier space

To illustrate properties of the Navier-Stokes equation it is useful to use the Fourier transform of
the Navier-Stokes equation. The Fourier transform of a function is expressed as the infinite sum of
harmonic components, which are expressed in time t and frequencies ω, or like in the case of Navier-
Stokes equation in wavenumber κ. The Fourier transform exist for every piecewise continuous and
absolutely integrable function and is given by,

f(t) =

∞∑
κ=1

f̂κe
iκt,

where f̂κ is called the Fourier transform and is given by,

f̂κ =
1

(2π)3

∫
Rd

f(t)e−iκx dx.

From now on we will write f̂(t) when we take the Fourier transform of the function f(t).
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1.2.1 The frequency spectrum of the NS-Equation

The Fourier transform of the Navier-Stokes equation exists since every flow is piecewise continuous
and absolutely integrable. This is true because it was already assumed that the fluid could be
modeled by a continuous model and the fluid is absolutely integrable since we assume that u will
be bounded. Here a derivation of the Fourier transform of the Navier-Stokes equation will be given,

ût + û · ∇u + ∇̂p− ν∆̂u = f̂κ

From the definition of the Fourier transform we know that the time derivative commutes with
integration, so ût = ût. Integration by parts shows that,

∇̂f(x) = 1
(2π)3

∫
Rd
∇f(x)e−iκx dx

= iκ 1
(2π)3

∫
Rd

f(x)e−iκx dx

= iκ̂f,

as long as the boundary terms vanishes, which happens for periodic boundary conditions e.g..

For the Laplacian the same follows, so ∆̂f = −κ2f̂. We now have,

ût + û · ∇u + iκp̂ + νκ2û = f̂

The remaining part is a lot more work and not very important for this paper. We will note

û · ∇u as P (u · ∇u). A full formulation in the spectral space of the Navier-Stokes equation can be
found in Large Eddy Simulation for Incompressible Flows from P. Sagaut. [3]

1.2.2 Convolution Product

An important property of the Fourier transpose arises in the convolution product. For two functions
f and g the convolution is given by,

(f ? g)(x) :=

∫
Rd
f(x− y)g(y) dy.

The convolution product has the following property,

(̂f ? g) = 1
(2π)3

∫
Rd

(∫
Rd
f(x− y)g(y) dy

)
e−iκx dx

= 1
(2π)3

∫
Rd

(∫
Rd
f(x− y)e−iκx dx

)
g(y) dy

= 1
(2π)3 f̂

∫
Rd
g(y)e−iκy dy

= f̂ ĝ

The third equality follows when we substitute x−y for another variable. We see that the Fourier
transform of the convolution is the same as the product of the individual Fourier transforms. This
property will be used for filters which will be discussed next.
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1.3 Filters

Filters are the key to large eddy simulation, so to understand large eddy simulations we first need
to understand filters.

1.3.1 Properties

Basically a filter suppresses high frequencies in the spectral space. We apply a filter G to a function
f with the convolution product as defined in Section 1.2.2. So if we want to filter f we get (G?f)(x)

in the physical space and Ĝf̂ in the spectral space. We will note (G ? f)(x) as G(f), to emphasize
that we filter the function f . There are a lot of different filters. The filters we are interested in
have the following properties:

- Conservation of constants.
We have that for any constant a it follows that G(a) = a. Note that from this property it

follows that

∫
Rd
G(x− y) ddy = 1

- Linearity.
For any two functions f and g we have G(f + g) = G(f) +G(g).

- Commutation with derivation.

If we take the derivative of f we get
dG(f)

ds
= G

(
df

ds

)
.

1.3.2 Commutator

We introduce a new notation for the third property, the commutator. The commutator is given by,[
f, g
]
(x) = f ◦ g(x)− g ◦ f(x) = f(g(x))− g(f(x))

So the third property noted in Section 1.3.1 can be written as,[
G?,

d

ds

]
= 0

1.3.3 Physical and Spectral space

The following filters are the mostly used ones. They are plotted in the physical and the spectral
space. Note that the filters are all plotted for ξ = 0, which could give plots in the spectral space
with negative wave numbers. Since negative wave numbers have no meaning they can be ignored.
They are still shown here since a different value for ξ shifts the figure.

1.3.3.1 Top hat filter

We start with the top hat filter, which is also called the box filter or the moving averaged. The
formula in the physical space is given by,
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G(x− ξ) =

{
1/∆̄ if |x− ξ| ≤ ∆̄/2
0 otherwise

and in the spectral space by,

Ĝ(κ) =
sin(κ∆/2)

κ∆/2

Here ∆̄ is the radius of the spatial filter. The next plots of the top hat filter are the physical
space and the spectral space, both with ∆̄ = 1.

(a) Physical space (b) Spectral space

Figure 1.1: The top hat filter

We see that the top hat filter is a positive filter, since G(x− ξ) ≥ 0 for every x. Futher we see
that G is local in the physical space, which means that G(x) is nonzero in a finite interval. It can
be seen that Ĝ(κ) is non local.

1.3.3.2 Gaussian filter

Another popular filter is the Gaussian filter, which is given in the physical space by,

G(x− ξ) =

(
γ

π∆̄2

)1/2

e
−γ|x−ξ|2

∆̄2

And in the spectral space by,

Ĝ(κ) = e
−∆̄2κ2

4γ

The interesting thing about this filter is that the function is a Gaussian function in both the

physical and spectral space. Gaussian functions are functions of the form f(x) = ae−
x−b
c

2

, where
a,b and c are all real constants. Properties of Gaussian functions are that they are symmetric and

positive and

∫ ∞
−∞

ae−
(
x−b
c

)2

dx = ac
√
π. So a Gaussian function is an Gaussian filter if ac = 1√

π
,

which indeed is the case for a = 1√
π∆̄

and c = ∆̄. The plots of the physical space and the spectral

space are given by,
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(a) Physical space (b) Spectral space

Figure 1.2: The Gaussian filter

We see in both figures the recognizable form of Gaussian functions. Just like the top hat filter is
the Gaussian filter positive in the physical space, but this time also in the spectral space. However,
the Gaussian function is not local, which requires a cut off for implementation in computations.

1.3.3.3 Sharp cutoff filter

The sharp cutoff filter is similar to the top hat filter, but this time we look at specific wavenumbers
in the spectral plane, instead of values of the physical plane.

G(x− ξ) =
sin(π/∆̄(x− ξ))
π/∆̄(x− ξ)

Ĝ(κ) =

{
1 if |κ| ≤ π/∆̄
0 otherwise

(a) Physical space (b) Spectral space

Figure 1.3: The sharp cutoff filter

We see that the plots of the sharp cutoff filter and the top hat filter are very similar, but with
the physical and spectral space reversed. Of these three filters the sharp cutoff filter is the only one
with the property Ĝ(Ĝ(Ĝ...))) = Ĝ, so it is idempotent in the spectral space. It is also the only of
these three which is local in the spectrum space.
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1.4 Filtered Navier Stokes equation

We will now combine filters with the Navier-Stokes equation. If we apply a filter G to a function f
we will remain with a filtered function f and the residue would be f̃ . So we have,

G(f) = f

f = f + f̃
(1.10)

With the previous stated properties in Section 1.3.1, a filter would have the following results on
the Navier-Stokes equation (Equation (1.7)),

G(ut) +G(u · ∇u) +G(∇p)−G(ν∆u) = G(f)

ut +G(u · ∇u) +∇p− ν∆u = f

The non linear term can not be filtered as simple as the other terms. So we will look more
closely at this term. First we rewrite the non linear term with the second line of Equation (1.10).

G(u · ∇u) = G((u + ũ) · ∇(u + ũ))
= G(u · ∇u) +G(u · ∇ũ) +G(ũ · ∇u) +G(ũ · ∇ũ)

(1.11)

From Equation (1.11) we get the following terms,

- The cross-stress tensor C, which are the stresses between the main-grid and the sub-grid of
the filter.

C = G(u · ∇ũ) +G(ũ · ∇u)

- The Reynold sub-grid tensor R, which are all terms determined by only the sub-grid.

R = G(ũ · ∇ũ)

We suppose that since these terms fully exists from sub-grid components that these terms
will be filtered out completely.

- The Leonard tensor L, which are all terms determined by only the main-grid.

L = G(u · ∇u)

Modeling R, C and L is hard, that is why most models try to find smart ways around these. When
we discuss some large eddy simulation models we will talk about ways to model these term, but for
now the following definition of the filtered Navier-Stokes equation is sufficient.

ut + C + L+∇p− ν∆u = f (1.12)
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1.5 Energy equation in the spectrum

In this section the Navier-Stokes equation is taken in such a way that the pressures does not
contribute in the equation, this is further explained in Estimate for the energy cascade in three-
dimensional flows by Dr. C. Foias and O.P. Manley and Dr. R.M.S.Roas and Dr. R.Temam
and earlier works in that series. [2]. From this version of the Navier-Stokes equation is derived
the energy equation by taking the inner product with u(t), with the inner product defined by
(u,v) =

∫
V

u · v dx.

(ut · u) + (u · ∇u · u)− ν(∆u · u) = (u · f)

When we take a look at this equation in the frequency spectrum we see that,

1

2

d

dt
|uκ1,κ2

|2 + ν|∇uκ1,κ2
|2 = (fκ1,κ2

,uκ1,κ2
) + eκ1

− eκ2
, (1.13)

This is explained in Appendix A. Instead of looking at a specific time, we now look at the
average on the whole time domain. Therefor we introduce the following notation

〈φ〉 = lim
T→∞

1

T

∫ T

0

φ(u(t)) dt.

For the limit to exists we need φ(u) to be uniformly bounded. Without loss of generality we
can state that |uκ1,κ2

|, |uκ1,κ2
| and |∇uκ1,κ2

| are all uniformly bounded. Taking the time average
of Equation (1.13) results in,

〈1
2

d

dt
|uκ1,κ2

|2〉+ 〈ν|∇uκ1,κ2
|2〉 = 〈(fκ1,κ2

,uκ1,κ2
)〉+ 〈eκ1

〉 − 〈eκ2
〉 (1.14)

We note that the first term is zero because,

〈 12
d
dt |uκ1,κ2 |2〉 = limT→∞

1
T

∫ T

0

1

2

d

dt
|uκ1,κ2 |2 dt

= limT→∞
1

2T

[
|uκ1,κ2(T )|2 − |uκ1,κ2(0)|2

]
= 0.

(1.15)

So we are left with

〈ν|∇uκ1,κ2
|2〉 = 〈(fκ1,κ2

,uκ1,κ2
)〉+ 〈eκ1

〉 − 〈eκ2
〉

We now look at some specific wave numbers. We introduce κf as the maximum wavenumber
where the external forces has effect, so for κf < κ1 < κ2 we have (fκ1,κ2

,uκ1,κ2
) = 0. By using

these wave numbers and Equation (1.15) we can rewrite Equation (1.14) and state that:

ν〈|∇uκ1,κ2 |2〉 = 〈eκ1〉 − 〈eκ2〉 (1.16)

We suppose 〈e∞〉 = 0 and so we can state the following,

ν〈|∇uκ1,∞|2〉 ≤ 〈eκ1
〉 (1.17)

From Equation (1.17) we know that 〈eκ1〉 ≥ 0 for every κ > κf, since the left-hand side consists
of a positive scalar and a square of a real value, so Equation (1.17) is always positive. Since
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κ2 > κ1 > κκf it follows from Equation (1.16) that 〈eκ2〉 ≤ 〈eκ〉, so we know that 〈eκ〉 is positive
and monotonic decreasing for every κ ≥ κf . This can be seen in Figure 1.4.

Figure 1.4: Energy of the flow

1.5.1 Notation and specific wave numbers

Before we look any further at the energy equation we first introduce some notation, as in Turbulence
by U. Frisch. [6]

· The mean energy dissipation.
ε ≡ ν〈|∇u|2〉

· The average kinetic energy

E ≡ 1

2
〈|u|2〉

There is also one important wavenumber worth mentioning which is the Taylor wavenumber. The

Taylor wavenumber is defined by κτ =

(
〈‖∇u‖2〉
〈|u|2〉

) 1
2

.

1.5.2 Behavior

We will now try to determine some bounds and the behavior of the energy transport (〈eκ(u)〉) over
the wave numbers κ2 > κ1 > κκf , which will also explain more about Figure 1.4. But first the
following bound is assumed:

(〈eκ1
(u)〉 − 〈eκ2

(u)〉 = ν〈|∇uκ1,κ2
|2〉 ≤ νκ2

2〈|uκ1,κ2
|2〉 (1.18)
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The first part is Equation (1.16) and for the second part follows from the next steps.

|∇u|2 =

∫
Ω

(∇u,∇u)dx

Which can be rewritten as follows,∫
Ω

(∇u,∇u)dx = −
∫

Ω

(u,∆u)dx ≤ λ|u|

Where λ is the largest eigenvalue of the Laplacian, which was stated in Section 1.2.1 to be κ2.
Since uκ1,κ2 is only defined for κ in [κ1, κ2] it follows that,

|∇uκ1,κ2
| ≤ κ2

2|uκ1,κ2
|

This will also be true when we take the time average which explains the second equal sign in
Equation (1.18). We will now pick up Equation (1.18) again to make a further approximation for
the upper bound.

ν〈|∇uκ1,κ2 |2〉 ≤ νκ2
2〈|uκ1,κ2 |2〉 ≤ 2νκ2

2E ≤
(
κ2

κτ

)2

ε (1.19)

Where E is the average kinetic energy and ε is the average energy, both as defined in Turbulence
by U. Frisch . [6]. On the other hand we have from Equation (1.17),

〈eκ1
(u)〉 ≥ ν〈|∇uκ1,∞|2〉

= ν
(
〈|∇uκ0,κ1 |2〉 − 〈|∇uκ0,κ1 |2〉+ 〈|∇uκ1,∞|2〉

)
= ε− ν〈|∇uκ0,κ1

|2〉

=

(
1−

(
κ1

κτ

)2)
ε

Equation (1.19) is equivalent to,(
1−

(
κ1

κτ

)2)
ε ≤ 〈eκ1(u)〉 ⇐⇒ ε ≤

(
1−

(κ1

κτ

)2)−1

〈eκ1(u)〉 (1.20)

If we put Equation (1.18), Equation (1.19) and Equation (1.20) together it follows that,

0 ≤ (〈eκ1
(u)〉 − 〈eκ2

(u)〉) ≤
(
κ2

κτ

)2(
1−

(κ1

κτ

)2)−1

〈eκ1
(u)〉

or

0 ≤ 1− 〈eκ2(u)〉
〈eκ1

(u)〉
≤
(
κ2

κτ

)2(
1−

(κ1

κτ

)2)−1

=
κ2

2

κ2
τ − κ2

1

(1.21)

We suppose that κτ � κ2, so we get that the right-hand side will go to zero, which means that
〈eκ2(u)〉 and 〈eκ1(u)〉 are almost equal. In other words, we have stated that the energy over the
inertial wavenumber between κ1 and κ2 does not change much for κf ≤ κ1 < κ2 � κτ . This process
is called energy cascade. [2] We know from Equation (1.21) that the energy over the inertial is no
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longer dependent of ν and only depends on the wave numbers κ and the energy dissipation ε. The
dimensions of the wavenumber and average energy are,

[κ] = L−1

[ε] = L2T−3

We know that E = Cεaκb, with C an dimensionless constant, which experimental value lies around
1.5. From dimension analysis we get,

E = Cε
2
3κ−

5
3

Which is the function for the energy cascade for the inertial range and which explains the slope
in Figure 1.4.

2: Different large eddy simulation models
Subject of this chapter are different large eddy simulation models. Some of these models will return
in the research part in Chapter 3.

2.1 Approximate Deconvolution Procedure

The first large eddy simulation discussed here is the approximate deconvolution procedure. The
theory was made by professor S. Stolz and professor N.A. Nikolaus and the idea is that an inverse
of a filter is used to approximate the effects on the sub-grid. In this section there first will be an
explanation of the theory of the approximate deconvolution procedure and later as an example the
Clark model will be discussed.

2.1.1 The theory

First we introduce a shorter notation for the Navier-Stokes Equation (1.7) without external force
terms f.

u · ∇u +∇p− ν∆u = NS(u)
ut +NS(u) = 0

The filtered Navier-Stokes Equation (1.11) will become,

G(ut) +G(NS(u)) = 0
⇐⇒

G(u)t +G(NS(u)) = NS(G(u))−NS(G(u))
⇐⇒

G(u)t +NS(G(u)) = NS(G(u))−G(NS)(u))
= −[NS, G](u)

(2.1)

where [. . . ] is the commutator as defined in Section 1.3.2. The left-hand side is expressed in
G(u), or in other words in terms on the main-grid, while the right-hand side still has components on
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sub-grid. Since large eddy simulation models only does computations on the main-grid this could
lead to problems. The approximate deconvolution procedure solves this problem by making the
following approximation,

u ≈ uapp ≡ G−1(G(u))

This would give a perfect result if the inverse would actual exist. However, the inverse of a filter
can not exist since filtering is not a bijective operation. If the two functions f and g with f = f̂+ f̃ ,
g = f̂ + 2f̃ and f 6= g, then G(g) = f̂ = G(f). So G is not injective. It is still possible to make a
kind of approximation to the inverse (G−1

l ). So we can rewrite Equation (2.1) as,

G(u)t +NS(G(u)) = −[NS, G](G−1
l G(u)) (2.2)

By subtracting Equation (2.2) from (2.1) it is possible to get an approximation for the sub-grid
term,

[NS, G](u) ≈ [NS, G](G−1
l G(u))

which is fully expressed in terms of the main-grid. We can now go back to the first line of
Equation (2.1) and model the filtered Navier-Stokes equation by the approximate deconvolution
procedure as,

G(ut) +G(NS(G−1
l (G(u)))) = 0

where the efficiency is determined by the quality of the estimation of G−1.

2.1.2 The Clark model

The Clark model is an example of an approximate deconvolution method which uses a Taylor
expansion of the Gaussian filter from Section 1.3.3.2. A function f was filtered in Equation (1.10).
In a same way it is possible to filter the Taylor expansion of f . The Taylor expansion of f and its
filtered version are given by,

f(y) = f(x) + (y − x)∂f(x)
∂x + 1

2 (y − x)2 ∂
2f(x)
∂x2 + . . .

G(f) = f(x) + 1
2
∂2f(x)
∂x2

∫
z2G(z) dz + . . .+ 1

n!
∂nf(x)
∂xn

∫
znG(z) dz + . . .

= f(x) +
∑∞
l=1

αl
l!
∂lf(x)
∂xl

(2.3)

The filtered version of f follows from conservation property of constance of the filter G. The
variable αl is given by,

αl =

∫
zlG(z) dz

In Equation (2.3) f is the unfiltered function and G(f) the filtered. The residue or terms on
the sub-grid could be found from this equation. The Gaussian filter is not local so it is not possible
to use a full implementation of the filter in the computation. That is why some terms has to be
approximated. This leads to the following equation, derived from Equation (2.3),

G(f) =

(
Id+

∞∑
l=1

Cl∆̄
2l ∂

2l

∂x2l

)
f
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The Cl will be discussed later on. There could be found an kind of approximation for the inverse
(as discussed in the previous section) of the right-hand side.

f =

(
Id+

∞∑
l=1

C ′l∆̄
2l ∂

2l

∂x2l

)
G(f)

which shows that the flow u could be expressed by using ū, so it can be used for large eddy
simulations. The problem with the Clark model is its instability, especially for small values of ν.
We will later look back at the Clark model.

2.2 Scale Residual Method

The scale residual method from professor J. Maurer and professor M. Fey is a two-grid level pro-
cedure. It computes the solution of the large eddy simulation and finds each step a suitable model
for the sub-grid term. This model is found by minimizing the following residual,

E = [NS, G](u)−m(G(u)) (2.4)

where m(G(u)) is the model for the sub-grid and E is the residual. The residual is minimized
by a suitable m, so by finding a suitable model for the sub-grid terms. With this m it is possible
to compute a next step in the large eddy simulation. The filter G needs some extra properties to
be used for a scale residual method.

- G is a projection. This means that G is idempotent, so G(x) = G(G(x)) = G(G(G(x))) =
. . . . The spectral cut-off filter is the only filter discussed in Section 1.3.3 which was also a
projection.

- G has to commute with the Navier-Stokes equation, which means,

NS(G(u)) = NS(G(G(u))) = G(NS(G(x)))

The first equality follows from the first property and the second shows that the G commutes.

With these properties Equation (2.4) can be rewritten as,

E = G(NS(u))−G(NS(G(u)))−m(G(u))
= G(NS ◦ Id−NS(G))(u)−m(G(u))

(2.5)

This follows from the definition of the commutator and because NS(G(u)) = NS(G(G(u))) =
G(NS(G(u))). The next step is to introduce a set of filters Gk with k ∈ [0, N ] and each of these
filters has a spectral radius ∆̄k such that 0 = ∆̄N < ¯∆N − 1 · · · < ∆̄0, so the filter radius increases
as k decreases and ∆N ≡ Id. So for k = N it follows that the filter does nothing and for very small
k that only the largest eddies remains. We use these filters one by one and after each applied filter
follows a residual Ek, which we can derive from Equation (2.5) as,

Ek = Gk(NS ◦GN −NSGk)(u)−m(Gk(u))

= Gk
(∑k−1

i=0 (NS(Gi)−NS(Gj+1))(u)
)
−m(Gk(u))

(2.6)

To make a model for the sub-grid term m the following two assumptions are needed. First of
all we assume that the interaction between to filters is local, which means that the interaction on
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Gi from another filter Gj gets smaller as j gets further from i. The second assumption is that the
difference between two following filters gets smaller as we let i increase, so

(NS(Gi+1)−NS(Gi))(u) = α(NS(Gi)−NS(Gj−1))(u)

With the constant α < 1. From these assumptions and Equation (2.6) it follows that,

m(Gk(u)) = Gk(

k∑
i=1

αj)(NS(Gk)−NS(Gk+1))(u) (2.7)

With this model for the sub-grid term it is possible to make a better computation for the large
eddy simulation. This leads to the following algorithm,

- A short computation is done on two different grids, one on a fine-grid and one on a coarse-grid.

- From the computation on the fine-grid follows from Equation (2.7) a model m for the sub-grid
term.

- The model m is added to the source equation.

This algorithm leads to the following iterative equation,

un+1
k = (NS2

k,∆t + ω(NS2
k,∆t −NS1

k+1,2∆t))u
n+1
k

as can be seen in Large Eddy Simulation for Incompressible Flows by P. Sagaut. [3] With un+1
k

the n + 1th solution on the fine-grid with kth level of filtering. The 1 and 2 in NS1 and NS2 do
not refer to power but to the applications. The parameter ω follows from the α in Equation (2.7).

2.3 Eddy viscosity models

In this section are eddy viscosity models discussed. These models are harder to understand then
previous discussed models and that is why we spend more time on these models then on the others.
But first we introduce another notation for the Navier-Stokes equation

2.3.1 Closure models

The problem with the filtered Navier-Stokes equation was that it contained terms on the main-grid
and the sub-grid. Models which solve these problems are called closure models. A common notation
for the Navier-Stokes equation with closure models is the following,

vt + (v · ∇v) +∇p− 2ν∇ · S(v) = −∇ · τ(v) (2.8)

The letter v is used for these models instead of the filtered velocity u to emphasize that these
models differ from the original filtered Navier-Stokes equation. Some more changes can be seen
when Equation (2.8) is compared to Equation (1.12). The variable S is the symmetric part of the
velocity gradient or also called the strain rate tensor. The divergence of this S is similar to the
∆ū term from the filtered Navier-Stokes equation. The whole idea of closure models is to find a
suitable choice for τ to model the sub-grid eddies.
An example of a closure model is the Smagorinksy, where τ is given by,

17



τ(v)− 1

3
tr(τ)I = −2νtS(v) with νt = C2

S∆̄
√

2tr(S2(v)) (2.9)

The Smagorinksy model is also an eddy viscosity model, which will be explained later on.
Here CS is a scalar for which different researches had led to different values. The values range

from 0.10 to 0.1. [5]. It is also possible to make CS a dynamical value CS(v), so νt completely
depends on v.
The Clark model discussed in Section 2.1.2 is also a closure model and has the following form,

τ(v) = Cδ∇vT∇v

2.3.2 Scale separation condition

The elements in the eddy viscosity model may not produce elements on the main-grid which could
be influenced by elements on the sub-grid. The following theorems are needed to make sure of this,
the Poincaré‘s inequality and the Gronwall lemma.

- Poincaré‘s inequality
The Poincaé‘s inequality states that there exists a Cδ depending only on the region Ωδ such
that,

‖u− ū‖ ≤ Cδ‖∇u‖

where ū is the average value over Ωδ, given by

ū =
1

|Ω|

∫
Ω

u(x) dx

which is also the top hat or boxed filtered version of u. In Ωδ the δ in the subscript stands
for the diameter of the area Ω. It has been shown that the poincaré constant (Cδ) is equal to
(δ/π)2, for any convex domain.

- Gronwall lemma
The Gronwall lemma states that if we have for an positive time interval the following bound
for the derivative of u,

du(t)

dt
≤ β(t)u(t)

then u self is bounded by,

u(t) ≤ u(a)exp
( ∫ t

a

β(s) ds
)

With these two theorems it can be shown that the residual field of v from Equation (2.8) will
be small in a eddy viscosity model. When we looked at filters we had something similar, we had
v = v̄ + ṽ where v̄ was the term with the eddies bigger then δ and ṽ the term with eddies smaller
then δ. We can look at the Navier-Stokes equation on the sub-scale in a similar way as we did with
the filtered Navier-Stokes equation,
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d

dt
ṽ = ν∆ṽ + t(v̄, ṽ)−∇τ ′(v)

where t is a non linear term which we will not further specify. From this we can derive the
energy equation from the sub-scale on Ωδ. This is done in the same way as in Section 1.5, by first
taking an inner product with v′ and then take the space average over Ωδ, where Ωδ is an area with
diameter δ.

d
dt

∫
Ωδ

1
2‖ṽ‖

2 dx =
∫

Ωδ
(ν(∆ṽ · ṽ) + T (v̄, ṽ)− (∇τ ′(v) · ṽ)) dx

=
∫

Ωδ
(ν‖∇ṽ‖+ T (v̄, ṽ) + (τ ′(v) · ∇ṽ)) dx

(2.10)

The second term in Equation (2.10) on the right-hand side is the energy transfer from v̄ to ṽ
and the third term is the eddy dissipation. By taking the model for ∇τ in such a way that the
energy transfer got canceled out, so we get the following equation for the energy transfer,

d

dt

∫
Ωδ

1

2
‖ṽ‖2 dx = −ν

∫
Ωδ

‖∇ṽ‖2 dx (2.11)

It can be seen that Equation (2.11) does not depend on v̄ so it is independent of forces from scales
greater than δ. By using Poincaré inequality on Equation (2.11) it follows that −ν

∫
Ωδ
‖∇ṽ‖2 dx ≤

− ν
Cδ

∫
Ωδ
‖ṽ‖2 dx. Using this with the Gronwall Lemma we get,∫

Ωδ

‖ṽ‖2 dx ≤ exp(−2νt/Cδ)

∫
Ωδ

‖v′0‖2 dx

where v′0 = ṽ(x, 0), which is the velocity of the small eddies at the initial time. This follows
from the Gronwall lemma with β = −2νt/Cδ). We can also apply the Poincaré inequality and the
Gronwall lemma to d

dt

∫
Ωδ

1
2‖∇v‖2 dx = −ν

∫
Ωδ
‖∆v‖2 dx. This will result into the following,

d

dt

∫
Ωδ

1

2
‖ṽ‖2 dx ≤ Cδ

∫
Ωδ

‖∇v‖2 dx ≤ Cδexp(−2νt/Cδ)

∫
Ωδ

1

2
‖∇v0‖2 dx (2.12)

So the residual field ṽ is bounded by the initial gradient of the velocity and will be of insignificant
size if we assume that energy from the larger scales and the eddy dissipation cancel each other out.
This is equivalent to saying that,

0 =
∫

Ωδ
(−∇((v · ∇)∇) : ∇v− τ : ∇∆v) dx

⇐⇒∫
Ωδ
τ : S(∆v) dx = −

∫
Ωδ
∇vT∇v : S(v) dx

(2.13)

We can not simply take the usual inner product since that is defined for vectors, while the
equations here are expressed as matrices. The inner product is then defined by the Frobenius
product, which is noted by ” : ”. The Frobenius norm is an operator from R3×3 to R and is defined
by A : B = tr(ABT ). We can write the gradient of the velocity (∇v) as the sum of its symmetric
part S(v) and its skew-symmetric part A(v) given by A(v) = 1

2 (∇v−∇vT ). Equation (2.12) will
then become, ∫

Ωδ
τ : S(∆v) dx = −

∫
Ωδ

(S(v) +A(v))(S(v) +A(v))T : S(v) dx

= −
∫

Ωδ
(S(v) +A(v))(S(v)−A(v)) : S(v) dx

=
∫

Ωδ
(A2(v)− S2(v))T : S(v) dx

(2.14)
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Equation (2.14) is known as the scale separation condition, since it is the necessary condition
to have a balanced dynamic between the smaller and larger eddies.

2.3.3 Scale separation condition and the vorticity equation

We will now try to express the right-hand side of Equation (2.13) in only the strain rate tensor
(S(v)). This is done by the enstrophy of the vorticity equation. The vorticity ω of v is given by
ω = ∇×v. To get to the enstrophy of vorticity equation we start with Equation (2.8) and take the
curl (∇× .) on both sides.

∇× vt +∇× (v · ∇v) +∇×∇p̂−∇× 2ν∇ · S(v) = −∇×∇ · τ(v)

Since the space operator ∇× and the time operator d
dt do not effect each other we can rewrite

the first term to ωt. We can rewrite the second term as ∇ × (v · ∇v) = ω · v = ω · S(v). To get
the enstrophy equation we take the inner product with ω and take the space average over Ωδ. It is
assumed that p has periodic boundary conditions over Ωδ so it vanishes. This will result in,

∫
Ωδ

ω · ωt dx =

∫
Ωδ

2νω · ∇ ×∇S(v)− ω · S(v)ω − ω · ∇ ×∇ : τ(v) dx

⇐⇒
d

dt

∫
Ωδ

1

2
‖ω‖2 dx =

∫
Ωδ

−ν‖∇ω‖2 − ω · S(v)ω + τ(v) : ∇(∇× ω) dx

(2.15)

Getting the derivation out of the integral on the left-hand side follows from a similar process as
in Section 1.5. Since it was assumed that there were no boundary terms it can be stated that the
curl is self adjoint, so (∇× v,u) = (v,∇× u). From this it follows that,

(ω · ∇ ×∇ : τ(v)) = (∇× ω · ∇ : τ(v)) = −(∇(∇× ω) : τ(v))

The equality in Equation (2.15) for the first term in the right-hand side follows from the self-
adjointness of the curl operator and noting that the 2 vanishes in the 1

2 from S(v). Now that we
have the vorticity Equation (2.15), we can note some properties which will be needed. In Equation
(2.15), ω · S(v)ω stands for the vortex stretching which could produce vortices’s of scales less than
δ and the term with the τ is the eddy dissipation. We want, similar to the energy equation, that
these two terms cancel each other out, so we have,∫

Ωδ

ω · S(v)ω dx =

∫
Ωδ

τ(v) : ∇(∇× ω) dx

From the identity ∇× ω = ∇(∇ · v)−∆v and ∇ · v = 0 it follows that τ(v) : ∇(∇× ω) = −τ :
S(∆v). With this and Equation (2.14) we see that,∫

Ωδ

ω · S(v)ω dx =

∫
Ωδ

(A2(v)− S2(v)) : S(v) dx

By using a consequence of the identity ω ⊗ ω = 4A2(v) + ‖ω‖2I as can be read in On a
consistent, scale-truncation model for large eddy simulation by R. Verstappen [4], it follows that∫

Ωδ
A2(v) : S(v) dx = − 1

3

∫
Ωδ
S2(v) : S(v) dx. This will lead to,
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∫
Ωδ

τ(v) : S(∆v) dx =

∫
Ωδ

(A2(v)− S2(v)) : S(v) dx

= −4

3

∫
Ωδ

tr(S3(v)) dx

= 4

∫
Ωδ

r(v) dx

(2.16)

Here r(v) is know as the third invariant from the strain rate tensor.

2.3.4 Eddy viscosity models

We will now look once again at the Smagorinsky model (Equation (2.9)). The scale separation
condition (Equation (2.14)) expanded with the vorticity equation led to Equation (2.16). For the
Smagorinksy model this condition means,

4

∫
Ωδ

r(v) dx =

∫
Ωδ

τ(v) : S(∆v) dx = 2νt

∫
Ωδ

S(v) : S(−∆v) dx (2.17)

The operator −∆ is symmetric and positive definite on Ωδ. The smallest eigenvalue of −∆ is
also the inverse of the Poincaré, so 1/Cδ. This will lead to,∫

Ωδ

S(v) : S(−∆v) dx ≥ 1

Cδ

∫
Ωδ

S(v) : S(v) dx =
2

Cδ

∫
Ωδ

q(v) dx (2.18)

with q the second invariant of the strain rate tensor. Combining Equations (2.17) and (2.18)
will result in the following lowerbound of the eddy viscosity,

νt ≥ Cδ
r(v)

q(v)
(2.19)

where the bar means the space average over Ωδ. This will give τ(v) ≤ −2Cδ
r(v)

q(v)
S(v) as model.

If we would project this on the tensor −S(v) we will get,∫
Ωδ

−2Cδ
r(v)

q(v)
S(v) : −S(v) dx = 2Cδ

r(v)

q(v)

∫
Ωδ

S(v) : S(v)dx = 4Cδr(v)

Here we see the Clark model in the right-hand side. So the projection of the Clark model on the
tensor −S(v) is equal to the lowerbound of the eddy viscosity models. This can be seen in the next
figure.

21



Figure 2.1: The Clark model and the eddy viscosity models

In Figure 2.1 is a schematic representation of the Clark model and the eddy viscosity models.
The Clark model is exact up to an order of O, so it lies in the circle with radius O. On the horizontal
axis is the tensor −S(v) with all the eddy viscosity models, with in the shaded area all the models
which satisfy the scale separation condition. It can be seen that this area starts at the lower bound
of these models and that the projection of the Clark model coincides with this bound.

2.3.5 The qr-model

The eddy viscosity models as presented in the previous section still has some issues. The aim of
the scale residual method and approximate deconvolution procedure was to get rid of the terms at
the sub-grid so they do not have to be computed. The eddy viscosity models are still expressed in
v which still has term which are to expensive to compute. That is why we now will try to write
the model in terms of q(v̄) and r(v) instead of q(v) and r(v). We use the following identities

r ∝ Re3/2 and q ∝ Re1. Since r(v)/q(v) ∝ Re0 we get that r(v)/q(v)
3/2
≈ r(v)/q(v)

3/2
. By

using this approximation one of the undesired terms can disappear from the lower bound stated in
Equation (2.19). Canceling r(v) results in,

νt ≈ Cδ
|r(v̄)|
q(v̄)3/2

q(v)
1/2

To get rid of q(v) we have to write it out and use Poincaré and the term on the sub-scale
ṽ = 1

2Cδ∆v̄.

q(v) = 1
4‖∇v‖2 = 1

4‖∇(v̄− 1
2Cδ∆v̄)‖2 ≤ 1

4 (1 + 1
2Cδ/Cδ)

2‖∇v̄‖2
=

(
3
2

)2
q(v̄) =

(
3
2

)2
q(v̄)

Which will give the eddy viscosity model in the lowest order,

νt(v) =
3

2

r(v)

q(v)

This is known as a eddy viscosity qr-model.
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2.4 S squared model

In this section we look at a custom model for this thesis. It is a closure model which has similarities
with the previous discussed eddy viscosity model. We saw that the eddy viscosity model was derived
from Equation (2.13). From this same equation we derive another model and will see that the new
model and the eddy viscosity model form a basis for other models.

2.4.1 The derivation

We recall that Equation (2.13) and τ(v) = −2νtS(v) led to the eddy viscosity models. So the eddy
viscosity models are all located on the strain rate tensor axis S(v). Another possible choice for τ
would be τ = νS2S2(v). A suitable νS2 would result in a projection of the solution on the square of
the strain rate. This νS2 can be found by starting from Equation (2.13) and use the closure model
with the square of the strain rate. This results in,

4
∫

Ωδ
r(v) dx =

∫
Ωδ
τ : S(∆v) dx

=
∫

Ωδ
νS2S2(v) : S(∆v) dx

(2.20)

Similar to how Equation (2.17) led to the eddy viscosity models, it can be seen that Equation
(2.20) leads to the following definition for νS2 ,

νS2 =
4
∫

Ωδ
r(v) dx∫

Ωδ
S2(v) : S(∆v) dx

(2.21)

So τ = νS2S2(v) and Equation (2.21) form another large eddy simulation closure model. An
example of a squared strain rate tensor model will be tested in the research section of this thesis.

2.4.2 Basis for higher order models

A natural question which arises from the the eddy viscosity model and the S squared model is if it
is possible to make a model based of S3(v) or of an even higher order. The answer to this question
follows from the invariants of the strain rate tensor. The three invariants for the three times three
symmetric matrix A are,

IA = tr(A) IIA =
1

2
(((tr(A))2 − tr(A2)) IIIA = det(A)

And from the Cayley-Hamilton theorem it follows that,

A3 − IAA2 + IIAA− IIIAI = 0 (2.22)

with I the identity matrix. Since the strain rate matrix S is also a symmetric matrix it follows
that the previous equations also hold for S. The first invariant of S (IS) is the trace, which is the
same as 2∇ · v, which we recall from Equation (1.2) to be zero. From the first invariant it follows
that the second invariant (IIS) is simplified to −1

2 tr(S
2), which was discussed in Equation (2.18)

and was called q(v). And the third strain rate tensor was already defined in Equation (2.16). So
Equation (2.22) for S becomes,

S3 − qS + rI = 0
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From this equation it follows that every closure model with a power of the strain rate tensor
higher then three, can be written as the sum of a terms of the strain rate tensor, it first square and
I. As an example it can be seen that S5 = S2(S3) = S2(qS−rI) = qS3−rS2 = q(qS−rI)−rS2 =
q2S − rS2 − qrI. This is just an example and any other closure model with a power of S can be
expressed in I,S and S2.

3: Research on different large eddy
simulation models

In this research we will look at some large eddy simulations of a turbulent flow through a channel.
The following figure shows the mean velocity profile of a simulation through a channel,

Figure 3.1: A velocity profile in a channel flow

We try to model this problem with three different large eddy simulation models and compare
their results. Two of the three models which will be used were discussed in Chapter 2.

Clark model: The approximate deconvolution method which was discussed in Section 2.1.2.

Qr-model: The eddy viscosity model which was discussed in Section 2.3.5.

Squared S model model: We have seen that Eddy viscosity models were described on
the strain rate tensor. This model is a projection just like the eddy viscosity model, but its
projection is not on the S(v) axis, but on the S2(v) axis.

In the next figure we see a schematic representation of all three models.
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Figure 3.2: A representation of the Clark model, the qr-model and the S squared model

The data from these models is compared to a direct numerical solution (DNS) of the Navier-
Stokes equation of this problem. The DNS data is from the computation by R.D. Moser, J. Kim
and N.N. Mansour.

3.1 Law of the wall

The DNS data from R.D. Moser, J. Kim and N.N. Mansour gives a numerical approach for the
mean velocity at some point in the fluid. To test if this data makes any sense we need some more
theory. This way we not only know if the LES data fits the DNS data, but also if it is maybe even
better at some points. That is why we need two more theorems to compare the DNS and the LES
data with. The first theorem states that the flow is laminar near the boundaries, which means that
there will not be any turbulence in this region and u is only determined by y. The relation is the
following.

u+ = y+ with y+ =
yuτ
ν

u+ =
u

uτ

It can be seen that the variables are scaled to make them dimensionless, but not in the same
way as in Section 1.1.3. The only new variable is uτ , which is the friction velocity. The region near
the wall where the flow is near laminar is called the viscous sublayer. The second theorem is the
Law of the wall, stated in 1930 by Th. van Kármán. [7]. The law states that in a turbulent flow the
average velocity is proportional to the logarithm of the distance to the boundary. Since it involves
the logarithm of the distance to the wall, this theorem is also called the Log Law. This theorem
only applies for a small partition of the flow, which is called the log-law region. In this region we
can define u+ with,

u+ =
1

0.41
ln y+ + C+
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These two theorems lead to the following figure,
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Figure 3.3: The law of the wall

We suspect that in the data will fit to the red line in the first part of the plot, which is the
viscous sublayer, and will match the blue line in the log-law region.

3.2 The Program

In this section there will be a description of some aspects of the program used for this research. The
code is written in Fortran, which is imperative programming language used for numerical computa-
tions. It is commonly used in computational fluid dynamics and other areas like numerical weather
prediction. The main program is called LES and it calculates the flow on a three dimensional grid.
The program originally only used the qr-model, but with some adjustments it was possible to also
use the Clark model instead. The S squared model required some more adjusments, but was also
possible to program.

3.2.1 Parameters

Our computations are done on a grid with 64 grid points in each direction on a three dimensional
domain. Other parameters which can be altered in LES are the direction and the mass of the flow,
the order of the spatial discretization, the amount and length of the time steps and the tolerance
of the Poisson solver. In this research we will only adjust the amount of time steps and we have
set the Reynolds number to 590. In this way the circumstances are similar as those of the program
used for DNS data.
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3.2.2 Discretization

In this section the discretization for the strain rate matrix is explained. Other elements are dis-
cretized in the same way. The matrix of the strain rate tensor is given by the symmetric part
of the gradient of the velocity. So for the three dimensional velocity vector the three times three
dimensional strain rate matrix becomes,

S(u) =
1

2
(∇u +∇uT ) =

1

2

 2∂u∂x
∂u
∂y + ∂v

∂x
∂u
∂z + ∂w

∂x
∂v
∂x + ∂u

∂y 2∂v∂y
∂v
∂z + ∂w

∂y
∂w
∂x + ∂u

∂z
∂w
∂y + ∂v

∂z 2∂w∂z


Since the program can not compute the gradient exactly it is necessary to make the following

approximation,

∂u(x− 1
2∆x, y, z)

∂x
≈ u(x, y, z)− u(x−∆x, y, z)

∆x
(3.1)

which is called a central approximation of the derivative in u(x, y, z). This can be implemented
in a program by making a grid. Figure 3.4 explains how to compute the derivatives in matrix S
but only in the two dimensional case, but the approach for the three dimensional model is similar.
The grid exists from horizontal en vertical lines given by x = xi and respectively y = yj . This
model permits an non uniform grid, so the distance between each xi’s and between each yj ’s does
not have to be equal.

Figure 3.4: The grid

Here the cell-centered points P are the points of the strain rate tensor which are computed. The
velocity u is in the direction of the x-axis and y in the direction of the y-axis. the dx(i) stands for
the distance between the lines xi and xi−1 and dxs(i) for the distance between the points Pi,j and
Pi+1,j . The derivatives ∂u

∂x , ∂v∂y and in case of our three dimensional model also, ∂w∂z can all be done
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with the earlier discussed backward approximation given in Equation (3.1), since these derivations
are in the directions of their velocity’s. These derivatives are the components S(1, 1), S(2, 2) and
S(3, 3) in the strain rate matrix. For the other components we need a different approach. We will
work out one term and the rest can be seen in a similar way. We look at S(1, 2) at the point Pi,j .
Here we see the derivative ∂v

∂x which is expressed in the velocity v and the derivative is taken in the
direction of x, so they are in different directions. To get this right we first take the average of vi+1,j

and vi+1,j−1, which should lay in point Pi+1,j and the average of vi−1,j and vi−1,j−1, which should
lay in point Pi−1,j (these last three points can not be seen in Figure 3.4). The points Pi−1,j , Pi,j
and Pi+1,j are all on the line yj , so the derivative in Pi,j is given by,

∂v
∂x ≈

vi+1,j+vi+1,j−1

2 − vi−1,j+vi−1,j−1

2

dxs(i) + dxs(i− 1)

=
vi+1,j + vi+1,j−1 − vi−1,j − vi−1,j−1

2(dxs(i) + dxs(i− 1))

To complete the rest of S(1, 2) it is also needed to compute ∂u
∂y , which can be derived in a similar

way. Note also that the strain rate tensor is symmetric, so S(1, 2) = S(2, 1). The elements S(1, 1)
and S(1, 2) have the following form in Fortran,

s ( 1 , 1 ) = (u( i , j , k ) − u( i −1, j , k ) )/ dx ( i )

s ( 1 , 2 ) = ( v ( i +1, j , k ) + v ( i +1, j −1,k ) − v ( i −1, j , k )
& − v ( i −1, j −1,k ) ) / ( 4 . 0D0∗( dxs ( i )+dxs ( i −1)))
& + (u( i , j +1,k ) + u( i −1, j +1,k ) − u( i , j −1,k )
& − u( i −1, j −1,k ) ) / ( 4 . 0D0∗( dys ( j )+dys ( j −1)))

4: The results
In this section the following results are presented and discussed,

- The DNS data. These results were not computed for this thesis, but will still be discussed.

- The eddy viscosity model.

- The Clark model

- The S squared model.

Of all the models it will discussed how they fit the theoretical frame from the law of the wall and
how well they do in comparison to the others.
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4.1 Direct Numerical Solution

We look at the law of the wall and the dataset from the DNS.
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Figure 4.1: The direct numerical simulation

We see that the data DNS data fits the theory well in the domain between 100 and 10
1
2 , which

we recall as the viscous sublayer which was discussed in Section 3.1. Later on in the domain between
10

1
2 and 103 we see that the data fits the log law curve. This is in the log-law region and it can

indeed be seen that the data meets the theory of the log-law. The domain between the viscous
sublayer and the log-law region is the buffer layer.
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4.2 Eddy Viscosity Model
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Figure 4.2: The eddy viscosity model

It can be seen that eddy viscosity model has the good shape, but still has some problems in the
low-law region. The DNS data is very close on the theory in the log-law region, where the eddy
viscosity model still lays some distance below it.
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4.3 Clark Model
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Figure 4.3: The Clark model

It can be seen that the Clark model fits the theorem in the viscous sublayer, but fails in the log-law
region. So the Clark model gives a proper representation of the flow near the wall, maybe even
better than the eddy viscosity model, but fails in the region from the wall in comparison with the
eddy viscosity model.
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4.4 S squared model
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Figure 4.4: The S squared model

Theoretical we saw that S squared model is very similar to the eddy viscosity models and it turns
out that their results are very similar. The data of the squared S model fits the theoretical frame
of the wall of the law very good in the distance near the wall and just like the eddy viscosity model
not perfect in the log-law region. The S squared model seems to fit slightly less than the eddy
viscosity model in the beginning of the log-law region, but surpasses it near the end, where it even
seems better than the DNS data.
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5: Conclusion
In Figure 5.1 we see all the tested models versus the law of the wall and the DNS data.
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Figure 5.1: All the tested models compared to the wall-law and DNS data

We see that from all the computations it turns out that the Clark model was the least proper
model for this computation. It did however still had the right shape so the model was not wrong.
Since the Clark model is an ADP it follows that the model could be improved by producing a better
approximated inverse for the convolution filter. However, this also means that the method will take
longer to compute and if the method becomes too intense it should be better to go with a direct
numerical approach.
The eddy viscosity model and the S squared model were both better than the Clark model and
both made a decent computation of the wall of the law. It could be that a combination of these
two models will result in an even better model, since it was discussed in Section 2.4 that these two
model give a opportunity for other closure models expressed in the strain rate tensor S. Finding
an optimal model from the eddy viscosity model and the S squared model is a further subject of
research, as is finding the optimal closure model.
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Appendix A: Derivation of the
scale-by-scale budget
equation

We start with the Navier Stokes equation in the frequency domain and take the inner product
defined by

(f,uκ1,κ2) =

∫
V

f · uκ1,κ2 dx

Taking this inner product with the Navier Stokes equation in the frequency domain as in Section
1.2.1 results in.

(
duκ1,κ2

dt
,uκ1,κ2

) + (P (u · ∇u),uκ1,κ2
)− ν(∆uκ1,κ2

,uκ1,κ2
) = (fκ1,κ2

,uκ1,κ2
) (A.1)

We want to show that Equation (A.1) equals the scale-by-scale budget equation, given by

1

2

d

dt
|uκ1,κ2

|2 + ν|∇uκ1,κ2
|2 = (fκ1,κ2

,uκ1,κ2
) + eκ1

(u)− eκ2
(u)

We see that the term with the force fκ1,κ2 did not change much. Since this term represents the
force injected by external forces we call this term the total energy injection, similar as in Turbulence
from U. Frisch. [6]. We will now derive the other components term by term.
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A.1 Total energy

We start with the first term and we have to prove that

(
duκ1,κ2

dt
· uκ1,κ2

) =
1

2

d

dt
|uκ1,κ2

|2

d
dt |uκ1,κ2 |2 = d

dt (uκ1,κ2 ,uκ1,κ2)

= (
duκ1,κ2

dt ,uκ1,κ2
) + (uκ1,κ2

,
duκ1,κ2

dt )

= 2(
duκ1,κ2

dt ,uκ1,κ2)

Dividing both sides by 2 indeed gives us Equation (A.1). This term is called the total energy. [6]

A.2 Total enstrophy

Next, we proof that,

−ν(∆uκ1,κ2 ,uκ1,κ2) = ν|∇uκ1,κ2 |2

This follows from a property of the Laplacian. The adjoint of the gradient is (∇f, g) = −(f,∇g).
Since the Laplacian is given by ∆f = ∇2f , it follows that (∆f, g) = (∇2f, g) = −(∇f,∇g). So it
follows that,

−(∆uκ1,κ2 ,uκ1,κ2) = −
∫
V

∆uκ1,κ2 · uκ1,κ2 dx

=

∫
V

∇uκ1,κ2
· ∇uκ1,κ2

dx

= (∇uκ1,κ2
,∇uκ1,κ2

)
= |∇uκ1,κ2

|2

This term is called the total enstrophy. [6]

A.3 Energy flux

All what is left to to is to define eκ1
(u)−eκ2

(u). We first note that u = u0,κ1
+uκ1,κ2

+uκ2,∞, since
every piecewise bounded function can be expressed in frequencies, or in our case in wave numbers.

(P (u · ∇u),uκ1,κ2) = ((u0,κ1 + uκ1,κ2 + uκ2,∞) · ∇(u0,κ1 + uκ1,κ2 + uκ2,∞),uκ1,κ2) (A.2)
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By using (∇f, g) = −(f,∇g) a multiple times this can be simplified in the following way,

(u0,κ1 + uκ1,κ2 + uκ2,∞) · ∇u = u0,κ1 · ∇u + uκ1,κ2 · ∇u + u0,κ1 · ∇u
= u0,κ1

· ∇u0,κ1
+ u0,κ1

· ∇uκ1,κ2

+ u0,κ1
· ∇uκ2,∞ + uκ1,κ2

· ∇u0,κ1

+ uκ1,κ2
· ∇uκ1,κ2

+ uκ1,κ2
· ∇uκ2,∞

+ uκ2,∞ · ∇u0,κ1 + uκ2,∞ · ∇uκ1,κ2

+ uκ2,∞ · ∇uκ2,∞
= u0,κ1

· ∇u0,κ1
+ u0,κ1

· ∇uκ1,κ2

+ u0,κ1
· ∇uκ2,∞ − u0,κ1

· ∇uκ1,κ2

+ uκ1,κ2
· ∇uκ1,κ2

+ uκ1,κ2
· ∇uκ2,∞

− u0,κ1 · ∇uκ2,∞ − uκ1,κ2 · ∇uκ2,∞
+ uκ2,∞ · ∇uκ2,∞
= u0,κ1

· ∇u0,κ1
+ uκ1,κ2

· ∇uκ1,κ2

+ uκ2,∞ · ∇uκ2,∞

From (∇f, g) = −(f,∇g) it also follows that (∇f, f) = −(f,∇f) = 0. So we have,

u0,κ1 · ∇u0,κ1 + uκ1,κ2 · ∇uκ1,κ2 + uκ2,∞ · ∇uκ2,∞ = u0,κ1 · ∇u0,κ1 + uκ2,∞ · ∇uκ2,∞

So Equation (A.2) results in,

(P (u · ∇u),uκ1,κ2
) = (u0,κ1

· ∇u0,κ1
+ uκ2,∞ · ∇uκ2,∞,uκ1,κ2

)
= (u0,κ1

· ∇u0,κ1,∞,uκ1,κ2
) + (uκ2,∞ · ∇uκ2,∞,uκ1,κ2

)
= eκ1(u)− eκ2(u)

(A.3)

Where eκ1
(u) equals the first inner product of Equation (A.3) and eκ2

(u) the second. What is
interesting about these two terms is that they do not depend on the internal wavelengths, but only
on the boundaries. They represent the energy transport between the wave numbers κ1 and κ2.
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