
Analysis of Subgrid-Scale Models for Large
Eddy Simulation in Turbulent Channel Flow

A bachelor thesis in Applied Mathematics

Submitted by
R. A. Remmerswaal

July 18, 2013

Supervisor
Dr. ir. R.W.C.P. Verstappen

Second supervisor
Prof. dr. A. van der Schaft



Abstract

The problem with simulating turbulent channel flow lies with the computational expense of
the small scale effects. To avoid having to calculate such small scales, large eddy simulation is
used. Such that the subgrid-scale motions are modelled. Traditional subgrid-scale models do
not show perfect agreement with the log-law. This mismatch is analysed and furthermore an
adaptive model by Wu and Meyers is derived and applied. The performance of this adaptive
model is then compared to traditional models. Finally discretisation errors are discussed which
leave room for further improvement.
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1 Introduction

Turbulent flows can be seen all around us, the smoke from a cigarette, the flow over a golf ball
or the wind mixing warm and cold air are all examples of turbulent flows. What characterizes a
turbulent flow is that it is a chaotic flow. Even though there are deterministic equations which
describe turbulent flow, minor changes in initial conditions can lead to dramatic changes in the
evolution of the flow.

Figure 1.1: Cigarette smoke starts as a laminar flow, but quickly transi-
tions into turbulent flow.

First attempts to solve fluid flows were made in the 1930s. Obviously no computers were
available back then to solve the Navier-Stokes equations, hence the equations were simplified.
Often with the use of linearised potential equations or using conformal transformations on 2D
flows. However with the increase in computing power, so came the increase in the capability to
solving 3D flows. The first attempts to this were made in the late 1960s. Hence computational
fluid dynamics is a relatively young branch of mathematics.

An important parameter is the Reynolds number. The definition follows from dimension anal-
ysis, and is given by

Re ≡ UL

ν

Where U and L are the characteristic velocity- and length scale corresponding to the flow, ν is
the kinematic viscosity of the fluid. It represents the ratio of inertial forces to viscous forces.
Throughout this report, a Reynolds number of 22600 is considered.

The most obvious way to solve a 3D flow is to directly numerically simulate the flow using
the Navier-Stokes equations (DNS). However even for moderate Reynolds numbers (much lower
than those in engineering applications) the computational cost is way too high. This is due to the
wide range of scales involved in solving turbulent flows. It turns out that the ratio between the
largest and smallest scales is proportional to Re3/4 [5]. From this it follows that the number of

grid points in three dimensions is proportional to Re9/4. Hence for Reynolds numbers related to
real world examples, which are O(106 − 108), DNS is too expensive. Since DNS is not applicable
in real world situations, models are going to be introduced. However, DNS is not useless, it can be
used as a method of verifying the correctness of a model. Often models are tested at (relatively)
low Reynolds numbers, such that they can be compared to DNS results.

Another important concept is a so called eddy. Eddies are often recognised as vortices, they
are parts of the fluid which do not move along with the (mean) flow. The production of eddies
is typical for a turbulent flow. Eddies can be produced by shear stress, that is, stress caused by
passing along a solid boundary. Furthermore these (relatively) large eddies will eventually break
down into smaller eddies. Eventually these smaller eddies dissipate due to viscosity. Lewis F.
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Richardson, a mathematician and poet, summarised this so called energy cascade in the following
famous poem

Big whorls have little whorls
That feed on their velocity,

And little whorls have lesser whorls
And so on to viscosity.

An important test case for analysing the performance of models applied in the simulation of
flows is turbulent channel flow. Often fully developed channel flow is considered, since then the
flow is stationary. A more precise description of channel flow will be given in Section 2.

In this report tools of analysing channel flow will be introduced. As well as introducing the
mathematical concept of Large Eddy Simulation in Section 3. Furthermore several models will be
introduced that go along with LES. Some issues with traditional models will be discussed. Finally
in Section 5 a new model proposed by Wu and Meyers will be derived, modified and applied.

A three dimensional coordinate system is considered, with coordinate axes in the x, y and z
direction (sometimes referred to as x1, x2 and x3 respectively). Corresponding to those directions
are the velocity components u, v and w (u1, u2 and u3 respectively). The reader is assumed to have
basic knowledge regarding fluid dynamics. Hence the Navier-Stokes equations are given

∂ρ

∂t
+∇ · (ρu) = 0 (1.1)

∂u

∂t
+ (u · ∇) u = F− 1

ρ
(∇p) + ν∇2u

F is an external force

ρ is the density

ν is the kinematic viscosity

The first equation governs the conservation of mass, the second is often referred to as the
momentum equation. A notation often used in fluid dynamics, and in this report as well, is Einstein
notation. A brief description is given in Appendix A. Using this notation, the NS equations become

∂ρ

∂t
+

∂

∂xj
(ρuj) = 0

∂ui
∂t

+ uj
∂ui
∂xj

= Fi −
1

ρ

∂p

∂xi
+ ν

∂2ui
∂xj∂xj

Furthermore, when considering flow over a wall, boundary conditions are imposed. The no-
slip condition together with no-permuation leads to the velocity field being zero along any wall.
Throughout this report incompressible & stationary flows under no influence of an external force
are considered. This means the NS equations simplify to

∂uj
∂xj

= 0 (1.2)

uj
∂ui
∂xj

= −1

ρ

∂p

∂xi
+ ν

∂2ui
∂xj∂xj

(1.3)
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2 Turbulent channel flow

As mentioned before, the main focus of this report will lie on the modelling and simulation of
fully developed turbulent channel flow of a stationary and incompressible fluid. The goal of this
section is to characterise and analyse channel flow. Ultimately the so called law of the wall will
be derived, this gives a relation between the mean stream wise flow and the distance from the
wall. Since the relation is independent of the Reynolds number, this makes it a very useful tool
for analysing models and simulations.

b

h

z

xy

Figure 2.1: Channel flow

A channel flow is a flow through a rectangular duct as illustrated in figure 2.1. Both the length
L and the width b of this duct are much bigger than the height h = 2δ. Where δ is the half-height
of the duct. Such that

δ � L & δ � b

The axes x, y, z are often referred to as:

x: stream wise (or axial)

y: lateral (or wall-normal)

z: span wise

Fully developed channel flow refers to the flow far away from the entrance of the channel, i.e.
for large x.

2.1 Flow statistics

Some statistical tools are needed in order to further describe channel flow. The ensemble average
(mean) of a quantity is denoted by 〈·〉. The exact definition of 〈·〉 will be omitted here, however
it can be shown that for stationary flow the ensemble average can be replaced by an infinite time
averaging operation [10]. This is called the time ergodicity hypothesis.

〈f〉 ≡ lim
T→∞

1

T

∫ t+T

t

fdt

This definition also gives rise to the decomposition of f into its mean and fluctuating part

f = 〈f〉+ f ′

From the definition it is obvious that taking the mean of a quantity commutes with differenti-
ation 〈

∂f(x)

∂xi

〉
=
∂ 〈f(x)〉
∂xi
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Also from the linearity of integration it follows that

〈αf + g〉 = α 〈f〉+ 〈g〉

Where α is a constant. Sometimes a quantity of a flow (for example f) is said to be statistically
independent of some variable (for example y). Statistical independence means that the mean of
that quantity is constant with respect to the variable. So if f is said to be statistically independent
of y. This means

∂ 〈f〉
∂y

= 0

2.2 Mean channel flow

Many flow statistics with regard to channel flow are indeed statistically independent. Hence it
makes sense to take the mean of the Navier-Stokes equations, since many terms will drop out. To
see which quantities are statistically independent consider first the stream wise direction. Since
the flow is fully developed, the velocity statistics do not vary with x. Hence

∂ 〈ui〉
∂x

= 0

Furthermore since b� δ, when considering flow away from the walls parallel to the x, y - plane,
all flow statistics may be considered independent of z. Also the flow is statistically symmetric
about the plane y = δ, this is to be expected but also experimentally confirmed [6]. An important
consequence of this is that

〈v〉 (y) = −〈v〉 (h− y) (2.1)

The mean flow equations for fully developed channel flow of a stationary incompressible fluid
follow from taking the mean 〈·〉 of Equations (1.1) & (1.3).

Mean continuity

First off the mean continuity equation yields

〈∇u〉 = ∇〈u〉 =
∂ 〈u〉
∂x

+
∂ 〈v〉
∂y

+
∂ 〈w〉
∂z

= 0

From the previous discussion about statistical independence it follows that ∂〈u〉
∂x = ∂〈w〉

∂z = 0.
And so the continuity equations simplifies to

∂ 〈v〉
∂y

= 0

Since at the boundary y = 0 (and y = 2δ) the velocity field is zero, this implies 〈v〉 is zero
everywhere

〈v〉 = 0

Lateral mean momentum

Next consider the lateral mean momentum equation〈
uj

∂v

∂xj

〉
= −1

ρ

〈
∂p

∂y

〉
+

〈
ν

∂2v

∂xj∂xj

〉
Which can be rewritten by using the continuity equation into

∂ 〈vuj〉
∂xj

= −1

ρ

∂ 〈p〉
∂y

+ ν
∂2 〈v〉
∂xj∂xj
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Since 〈v〉 = 0 and considering that the velocity field varies statistically only in the y direction,
this leads to

d 〈v′v′〉
dy

= −1

ρ

∂ 〈p〉
∂y

(2.2)

Integrating Equation (2.2) yields

〈v′v′〉+
〈p〉
ρ

= 〈v′v′〉y=0 +
〈p〉
ρ y=0

(2.3)

Note that vy=0 = v′y=0 = 0 and define the mean pressure at the wall y = 0

pw(x) = 〈p〉y=o

Note that pw depends only on x since we consider flow away from the wall parallel to the x, y-
plane, such that the flow statistics do not vary with z. Eventually Equation (2.3) becomes

〈v′v′〉+
〈p〉
ρ

=
pw(x)

ρ

An important and useful result from this is that

∂ 〈p〉
∂x

=
dpw(x)

dx
(2.4)

I.e. the mean stream wise pressure gradient varies only in the stream wise direction.

Stream wise mean momentum

Finally the stream wise mean momentum equation is considered. Taking the mean of the stream
wise momentum equation yields〈

uj
∂u

∂xj

〉
= −1

ρ

∂ 〈p〉
∂x

+ ν
∂2 〈u〉
∂xj∂xj

Using once again that the velocity field is statistically one-dimensional and Equation (2.4) gives

d 〈uv〉
dy

= −1

ρ

dpw(x)

dx
+ ν

d2 〈u〉
dy2

(2.5)

Moreover since 〈v〉 = 0, Equation (2.5) becomes

d 〈u′v′〉
dy

= −1

ρ

dpw(x)

dx
+ ν

d2 〈u〉
dy2

Or equivalently

d

dy

[
ρν
d 〈u〉
dy
− ρ 〈u′v′〉

]
=
dpw(x)

dx
(2.6)

The quantity between brackets is defined as the total shear stress τ(y)

τ(y) ≡ ρν d 〈u〉
dy
− ρ 〈u′v′〉

The stress is the sum of the viscous stress ρν d〈u〉dy and the Reynolds stress −ρ 〈u′v′〉. The viscous

stress is dominant closest to the wall. The Reynolds stress is zero at the boundary (due to the
boundary condition) and is dominant away from the wall. Later on specifically how far from the
wall which stress is or isn’t relevant will be discussed.

Let the wall shear stress be defined by
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τw ≡ τ(0) = ρν

(
d 〈u〉
dy

)
y=0

− ρ 〈u′v′〉y=0︸ ︷︷ ︸
=0 (Bdy. cond.)

= ρν

(
d 〈u〉
dy

)
y=0

From Equation (2.6) it follows that both dpw(x)
dx and dτ(y)

dy are constant (and equal). Hence

τ(y) is a linear function, from this it follows that one more point (y, τ(y)) is needed in order to
obtain an equation for τ(y) in terms of τw. Here the symmetry property of the flow is used, from
Equation (2.1) it follows that

τ(y) = τw

(
1− y

δ

)
Moreover from Equation (2.6) it follows that

dpw(x)

dx
=
dτ(y)

dy
= −τw

δ

The contributions of the viscous and Reynolds stress from DNS data are shown in figure 2.2.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

y/δ

τ
/τ

w

(a) Solid: Viscous stress. Dashed: Total
stress

0 0.2 0.4 0.6 0.8 10

0.2

0.4

0.6

0.8
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τ
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w

(b) Solid: Reynolds stress. Dashed: Total
stress

Figure 2.2: Contributions of the viscous shear stress, and the Reynolds
shear stress in turbulent channel flow: DNS data of Kim et al. [1].

2.3 Law of the wall

As mentioned before, the main goal of this section is to arrive at the law of the wall. This law will
be used later on to judge the performance of several models used to refine LES.

The most important thing to notice from the previous sections is that fully developed channel
flow is statistically one dimensional. Furthermore the only non-zero velocity statistic is 〈u〉 and it
varies only in the wall-normal direction. From Equation (2.6) it follows that the fully developed
flow is entirely determined by y, ν, ρ, dpwdx and of course the channel half-height δ.

Viscous scales

In the near-wall region small length scales are significant, hence viscous scales are introduced. The
friction velocity is given by

uτ ≡
√
τw
ρ

And the viscous length scale

δν ≡ ν
√

ρ

τw
=

ν

uτ

7



Furthermore the friction Reynolds number is

Reτ ≡
uτδ

ν
=

δ

δν

Alternatively to measuring the distance from the wall in y
δ , it can be measured in the viscous

length scale δν

y+ ≡ y

δν
=
yuτ
ν

The normalised mean velocity is given by

u+ ≡ 〈u〉
uτ

The definition of y+ gives rise to several layers within the near wall region:

Wall-normal distance Layer name Viscous stress Reynolds stress
y+ < 5 Viscous sublayer Yes Negligible
y+ < 50 Viscous wall region Yes Yes
y+ > 50 Outer layer Negligible Yes

Table 1: Several near wall regions

Note that this separation of the channel flow into separate layers can be motivated by DNS
data presented in figure 2.3.

0 10 20 30 40 50 60 70
0

0.2

0.4

0.6

0.8

1

y+

Reynolds stress

Viscous stress

Figure 2.3: Contribution of Reynolds and viscous stress. DNS data of
Kim et al. [1].

Furthermore based on the wall-normal distance relative to the channel half-height y
δ , also an

inner layer may be recognized. This was initially proposed by Prandtl: he stated that (at a high
Reynolds number) whenever y

δ < 0.1, the mean velocity would depend only on the viscous scales.
Hence being independent of δ and the centreline velocity (the mean velocity along y = δ).

Finally the last length scale which will be introduced is a length scale for the wall roughness.
Imagine for example a duct with grains of sand stuck to the wall, here the length scale would be
the average distance between the grains of sand, hence causing small protrusions in the wall. This
length scale is denoted by y0. Obviously whenever y0 � δν this length scale will have no effect on
the flow. Whenever this holds, the wall is considered smooth. However in some applications the
roughness length scale is much larger than the viscous length scale. Here the flow is expected to
indeed depend on y0. Note that in between these two extreme cases, there is the situation where
y0 ≈ δν . This is called a transitionally rough wall. Only smooth walls are considered in this report.
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Derivation of the law of the wall

Consider a smooth wall, hence no dependence on y0. From the viscous scales it follows that the
dependence of the flow on dpw

dx can also be expressed as a dependence on uτ , since

uτ ≡
√
τw
ρ

=

√
− δ
ρ

dpw
dx

Also the dependence on ν can be replaced by a dependence on δν . From this it follows that the
mean stream wise velocity gradient is a function of y, δν , δ and uτ (the dependence on ρ is omitted
since the velocity gradient is implicitly dependent on it via uτ ).

Dimension analysis yields the choice of three dimensionless groups: y
δ , y

δν
and δν

δ . This leads
to the following

d 〈u〉
dy

=
uτ
y

Φ

(
y

δν
,
y

δ

)
(2.7)

Furthermore only the inner-layer is considered, i.e. y
δ < 0.1, so from Prandtls proposal the

dependence on δ vanishes. Hence a new function is introduced

Φ1

(
y

δν

)
≡ lim

y
δ→0

Φ

(
y

δν
,
y

δ

)
(2.8)

It follows from Equation (2.7) & (2.8) that

d 〈u〉
dy

=
uτ
y

Φ1

(
y

δν

)
(2.9)

Integrating Equation (2.9) yields the law of the wall for smooth walls

u+ =

∫ y+

0

1

y′
Φ1 (y′) dy′ ≡ fw(y+) (2.10)

Viscous sublayer

First the viscous sublayer is considered, hence y+ < 5. The law of the wall then simplifies to (up
to third order approximation, see Appendix C)

u+ = fw(y+) = y+

Which is confirmed by using DNS data , it shows good agreement for y+ < 5. As can be seen
in Figure 2.4

Log-law region

Finally the so called log-law region is considered. This region is on the ’outside’ of the inner layer.
Usually the log-law region is taken to be y+ > 30 and y

δ < 0.3. However it is still assumed that
Prandtls hypothesis holds, i.e. no dependence on the large scales.

First consider having a smooth wall, then since y+ > 30, it may be assumed that also the
viscous effects are negligible. Hence also the dependence of Φ1 on δν vanishes. So Φ1 is constant

Φ1 =
1

κ
(2.11)

Where κ is the von Kármán constant. Equation (2.10) now yields

u+ =

∫ y+

0

1

y′
Φ1 (y′) dy′ =

∫ y+

0

1

κy′
dy′ =

1

κ
ln y+ +B (2.12)

The constants κ and B are generally within 5% of [6]
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κ = 0.41, B = 5.2

Equation (2.12) is called the log-law, it is a relationship between the normalised stream wise
mean velocity and the distance from the wall. It is used to judge the performance of wall-models
(this will be discussed in section 4.1). Figure 2.4 shows how well the log-law matches DNS data.

100 101 102 103
0

5

10

15

20

25

y+

u
+

Figure 2.4: Dashed: theoretical law of the wall. Solid: DNS data of Kim
et al.

3 Large eddy simulation

As mentioned before DNS has a very high computational cost, which makes it inapplicable in
actual engineering situations (Number of grid points is proportional to Re9/4 [5]). Most of this
computation time however is spend in calculating the small scale motions of the fluid. To prevent
having to fully resolve these small scale motions, LES was introduced. LES stands for Large Eddy
Simulation, i.e. the large scale motions of the fluid are resolved, while the small scale motions are
modelled. LES is based on separating the velocity field and pressure into large and small scale
quantities. This is referred to as filtering. The filtered velocity field consists only of the large scales
of motion.

The filtering operation is defined by a filter kernel, this kernel defines in which way the velocity
field and pressure are filtered. And hence determines the size of the largest eddies which are still
simulated.

3.1 Filters

Intuitively a filter can be seen as an operation on a function which removes ’noise’. In the case of
fluid dynamics this noise are the small scale eddies which considered to be too expensive to compute.
The velocity field obviously depends on three spatial dimensions, however in this introduction to
filters, only one spatial dimension will be considered. In this way, the filtering operation can easily
be represented in terms of its frequency damping effect.

Consider a function f = f(x), which will be filtered. The filtered function will be denoted by
f̄ . The definition is as follows
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f̄(x) ≡ (f ∗G) =

∫ ∞
−∞

∫ ∞
−∞

G(r, x)f(x− r)dr (3.1)

Hence f̄ is the convolution of f with the filter kernel G. G is such that the integral over the
entire domain of G is 1. Moreover, the filtering operation allows f to be written as the sum of the
large-scale part f̄ and the small-scale part f∗

f = f∗ + f̄

Note that often f ′ is used to denote the small scale part, however this notation is used already
as the fluctuating part of f after ensemble averaging. As in Section 2.1.

Properties

Some important properties of the filtering operation will be given here. Most of them follow directly
from the definition.

1. Linearity
f + g = f̄ + ḡ

2. Scalar multiplication
αf = αf̄

3. Differentiation commutes. This holds only for homogeneous filters

∂f

∂xi
=

∂f̄

∂xi

and
∂f

∂t
=
∂f̄

∂t

4. Filtering may be interpreted as a projection. Hence the following holds

¯̄f = f̄

But also

f∗ = 0

Proof of the third property can be found in Appendix B.

Common filters

In LES there are three filters which are most commonly used. To give more intuition into the effect
of applying such a filter, their Fourier transforms are considered as well. Important to note is the
following theorem

Theorem 1.
F(f̄) = F{f ∗G} = F{f} · F{G}

The use of this theorem allows the analysis of each of the filter kernels. It shows that the
amplitude is damped by the Fourier transform of the corresponding kernel. The most commonly
used filters are the following, they are all homogeneous filters, hence G(r, x) = G(r).

Top-hat filter The top-hat filter, or sometimes called the box filter, simply gives the average value
over the interval (r −∆/2, r + ∆/2). The kernel is given by
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G(r) =

{
1
∆ if |r| < ∆

2 ,
0 otherwise

Note that this, and all the other kernels considered here, is a homogeneous kernel (G(r, x) =
G(r)). The Fourier transform of the top-hat kernel is given by

Ĝ(ω) =
sin
(
ω∆
2

)
ω∆
2

−60 −40 −20 0 20 40 60

0

0.1

0.2

ω

Ĝ
(ω

)

Figure 3.1: Fourier transform of the top-hat filter for ∆ = 1

This shows that the top-hat filter smoothly damps high frequencies. For spatially filtering a
velocity field this corresponds to damping the small scale motions.

Gaussian filter The kernel of the Gaussian filter is given by

G(r) =

√
6

π∆2
exp

(
−6r2

∆2

)
It’s Fourier transform is also a Gaussian curve, and it is given by

Ĝ(ω) = exp

(
−ω

2∆2

24

)
It’s amplitude spectrum looks like
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Figure 3.2: Fourier transform of the Gaussian filter for ∆ = 1

Sharp spectral filter Finally the sharp spectral filter is considered. This filter simply cuts off the
amplitude spectrum at a desired frequency. The kernel is given by

G(r) =
sin
(
πr
∆

)
πr

It’s Fourier transform is given by

Ĝ(ω) = rect 2π
∆

(ω) =

 1 |ω| < π
∆ ,

0 |ω| > π
∆ ,

1
2 |ω| = π

∆

Which looks like

−30 −20 −10 0 10 20 30

0

0.2

0.4

0.6

0.8

1

ω

Ĝ
(ω

)

Figure 3.3: Fourier transform of the sharp spectral filter for ∆ = 1

The application of such filters on the NS equations (in 3D) is a simple extension of the filters
mentioned above. For example the top-hat filter in three spatial dimensions is defined as

G(r) =

{
1

∆1∆2∆3
if |ri| < ∆i

2 (i = 1, 2, 3),

0 otherwise
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3.2 Filtering the Navier-Stokes equations

Now that filters are introduced this concept may be applied to the NS equations, such that the NS
equations in terms of the filtered velocity field and pressure are obtained. Recall the NS Equations
(1.2) & (1.3). Simply filtering the equations yields (considering no external forces)

∂uj
∂xj

= 0 (3.2)

uj
∂ui
∂xj

= −1

ρ

∂p

∂xi
+ ν

∂2ui
∂xj∂xj

(3.3)

A homogeneous filter will be considered such that filtering commutes with taking any spatial
or time-derivative, hence the continuity Equation (3.2) simplifies to

∂ūj
∂xj

= 0

I.e. the filtered velocity agrees to the continuity equation. As for the momentum equation, using
the continuity equation, equation (3.3) can be written as

∂uiuj
∂xj

= −1

ρ

∂p

∂xi
+ ν

∂2ūi
∂x2

j

(3.4)

Unfortunately ū does not satisfy the second NS equation due to the presence of the non-linear
term uiuj . Directly solving (3.4) would require the full velocity field u to be resolved, which defeats
the purpose of LES. In order to get closer to the form of the momentum equation the residual-stress
tensor is introduced

τRij ≡ uiuj − ūiūj
Moreover it is beneficial to make the residual-stress tensor trace-less by subtracting the so called

isotropic residual stress from the residual-stress tensor

τ rij ≡ τRij −
1

3
τRkkδij

Where δij is the Kronecker delta. τ rij is called the anisotropic-stress tensor. This gives

∂ūiūj
∂xj

= −1

ρ

∂p

∂xi
−
∂τ rij
∂xj
− 1

3

∂τkkδij
∂xj

+ ν
∂2ūi
∂x2

j

(3.5)

Where − 1
3
∂τkkδij
∂xj

was added to compensate for introducing the anisotropic-stress tensor. This

term simplifies to
1

3

∂τkkδij
∂xj

=
1

3

∂τkk
∂xi

This term is usually included in the modified filtered pressure

p̄ ≡ p+
1

3
ρτkk

Such that (3.5) becomes

∂ūiūj
∂xj

= −1

ρ

∂p̄

∂xi
−
∂τ rij
∂xj

+ ν
∂2ūi
∂x2

j

Finally the filtered rate-of-strain tensor is introduced as being the symmetric part of ∂ūi
∂xj

S̄ij ≡
1

2

(
∂ūi
∂xj

+
∂ūj
∂xi

)

14



Which leads to the filtered Navier-Stokes equations

∂ūj
∂xj

= 0 (3.6)

∂ūiūj
∂xj

= −1

ρ

∂p̄

∂xi
+

∂

∂xj

(
2νS̄ij − τ rij

)
(3.7)

Simply counting the number of equations and variables included in Equations (3.6) & (3.7)
shows that the equations are not closed. Several approaches to solving this problem will be intro-
duced in the following sections.

3.3 Eddy-viscosity model

From Equations (3.6) & (3.7) it is clear that a model for the only remaining unfiltered quantity
is needed: the anisotropic stress tensor τ rij . Modelling this quantity will close the equations, such
that they can be solved (numerically).

Such a model is referred to as a subgrid-scale model (or SGS model) since often the filter width
∆ is chosen equal to the grid size. Hence the sub-grid scale effects are modelled. The most common
model was introduced by Smagorinsky in 1963 and is hence called the Smagorinsky model. Many
other (more advanced) models are based on this rather simple model by Smagorinsky.

The model is based on the so called Boussinesq hypothesis. Which states that the anisotropic
stress tensor is linearly dependent on the filtered rate-of-strain tensor. Such a model is called a
linear eddy-viscosity model.

τ rij = −2νrS̄ij (3.8)

The coefficient νr is the eddy viscosity of the residual motions. Substituting Equation (3.8) into
the filtered momentum equation (3.7) yields

∂ūiūj
∂xj

= −1

ρ

∂p̄

∂xi
+

∂

∂xj

(
2S̄ij [ν + νr]

)
Hence the model adds the effect of the small eddies as an addition to the molecular viscosity.

There are several approaches to modelling νr, however only a few will be mentioned here.

Smagorinsky

Smagorinsky was the first to propose such an eddy-viscosity model, it is called the Smagorinsky-
Lilly model

νr = l2s |S̄| = (Cs∆)
2 |S̄|

Where ls is the Smagorinsky length scale, Cs the Smagorinsky coefficient and S̄ is the charac-
teristic filtered rate-of-strain, which is defined as

|S̄| ≡
√

2S̄ijS̄ij

Prandtl

Another model, proposed by Prandtl, involves Prandtl’s mixing length ls = ky. Such that the
model becomes

νr = l2s |S̄| = (κy)
2 |S̄|

κ is the von Kármán constant.
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Mason & Thompson

Finally an algebraic model proposed by Mason & Thompson [2]

1

ls
=

1

Cs∆
+

1

κy

Such that for large y the Smagorinsky length scale reduces to the model proposed by Smagorinsky.
This model will be applied later on.

4 Performance of LES

4.1 The log-law

Now the question is: How well does LES perform compared to DNS? LES might be a more efficient
method, and more applicable. But if the results do not match those of DNS, the method is rather
useless.

Since especially small scale effects are more important near the wall, the inner-layer is consid-
ered. Moreover since the Reynolds stress is modelled, in particular the region where this stress is
dominant is most interesting. Hence the log-law region is considered, y+ > 30 & y

δ < 0.3. Recall
from Section 2.3 that in the log-region the following normalised mean velocity is expected

〈u〉
uτ

= u+ =
1

κ
ln y+ +B

It has already been mentioned that indeed this law holds very well for DNS calculations (see
figure 2.4). More interesting to see is whether or not the same holds for LES. It turns out that
when using traditional Smagorinsky type models the log-law holds only partially. When using the
traditional model by Mason & Thompson, the following is obtained:

100 101 102 103
0

5

10

15

20

25

y+

u
+

Figure 4.1: Velocity profile. Solid: DNS data of Kim et al. [1]. Dashed:
LES data using Mason & Thompson model.

For this model the buffer layer (in-between the viscous sublayer and the outer layer), is large
compared to results obtained by DNS. The velocity profile tends to a log profile only around
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y+ ≈ 70. Another useful way to analyse this observed log-layer mismatch, is to look at the
normalised mean velocity gradient. Which is defined by

φ(y) ≡ yκ

uτ

d 〈u〉
dy

Conveniently, in the log-law region the mean velocity gradient is equal to uτ
yκ (from Equation

(2.11)) such that

φ(y) = 1

Indeed when considering DNS the normalised mean velocity gradient is approximately one in
the log-law region, see Figure 4.2. Furthermore note that the normalised mean velocity gradient
from using LES shows a significant mismatch.

100 101 102 103
0

0.5
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y+

φ

Figure 4.2: Normalised mean velocity gradient. Solid: DNS data of Kim
et al. [1]. Dashed: LES using traditional model by Mason & Thompson.

4.2 Analysis of energy contributions

From the previous section it is known that traditional LES models do not behave according to
the log-law (hence the normalised mean velocity gradient is not approximately one in the log-law
region). So it is interesting to know which energy contributes most to φ(y), such that the source of
the problem can be derived. Before looking at LES however, the energy contributions concerning
DNS are considered.

DNS - energy contributions

Recall the mean stream wise momentum equation (2.6)

d

dy

[
ν
d 〈u〉
dy
− 〈u′v′〉

]
= −f (4.1)

Where

f = −1

ρ

dpw(x)

dx
= −1

ρ

dτ(y)

dy
=
τw
ρδ

(4.2)
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is the mean pressure gradient. Integration of Equation (4.1) from 0 to y yields

ν
d 〈u〉
dy
− 〈u′v′〉 − ν d 〈u〉

dy y=0

+ 〈u′v′〉y=0 = −f(y − 0)

Which, using the boundary condition, the definition of uτ and Equation (4.2) leads to

ν
d 〈u〉
dy
− 〈u′v′〉 = −fy + u2

τ = f(δ − y)

The usefulness of this relation will be apparent later on. Now consider the turbulent kinetic
energy equation (its derivation can be found in Appendix D.1)

0 = − d

dy
〈qv′〉︸ ︷︷ ︸

turb. convection

−〈u′v′〉 d 〈u〉
dy︸ ︷︷ ︸

production

−1

ρ

d

dy
〈v′p′〉︸ ︷︷ ︸

pressure trans.

+ν
d2k

dy2︸ ︷︷ ︸
viscous diff.

−ν
〈
∂u′i
∂xj

∂u′i
∂xj

〉
︸ ︷︷ ︸

pseudo-diss.

Where q ≡ u′
iu

′
i

2 and k ≡ 〈u
′
iu

′
i〉

2 . Furthermore the pseudo-dissipation term can be split in to a
turbulent dissipation and viscous diffusion term. The derivation is omitted here and can be found
in Appendix D.3.

When adding and subtracting the mean flow viscous dissipation ν
(
d〈u〉
dy

)2

, the turbulent kinetic

energy equation becomes

0 = P̃ − ε̃− T

Where P̃ is a modified production term, ε̃ is a dissipation term and T is a transport term.
They are defined as follows

P̃ = −〈u′v′〉 d 〈u〉
dy

+ ν

(
d 〈u〉
dy

)2

(4.3)

ε̃ = 2ν
〈
S′ijS

′
ij

〉
+ ν

(
d 〈u〉
dy

)2

T =
d

dy
〈qv′〉+

1

ρ

d

dy
〈v′p′〉 − ν d

2k

dy2
− ν d

2

dy2
〈v′v′〉

Equation (4.3) allows the mean velocity gradient to be written as

d 〈u〉
dy

=
P̃

−〈u′v′〉+ ν d〈u〉dy

=
P̃

u2
τ − fy

Such that the normalised mean velocity gradient becomes

φ(y) =
yκ

uτ (u2
τ − fy)

(ε̃+ T )

Hence it is the normalised sum of dissipation and transport terms which come from the turbulent
kinetic energy equation.

LES - energy contributions

A similar analysis can be made with the use of the LES turbulent kinetic energy equation. The
mean stream wise momentum equation for the filtered velocity field follows from taking the mean
of Equation (3.7). Also the flow is considered to be stationary . Hence the stream wise momentum
equation becomes (using the statistical one-dimensionality of the channel flow)

d 〈ūv̄〉
dy

= −1

ρ

d 〈p̄〉
dx

+ ν
d2 〈ū〉
dy2

− d 〈τ r12〉
dy
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Since 〈v̄〉 = 0 this simplifies to

d

dy

[
−〈ū′v̄′〉+ ν

d 〈ū〉
dy
− 〈τ r12〉

]
= −f (4.4)

Where f = − 1
ρ
d〈p̄〉
dx . Such that upon integration, Equation (4.4) becomes

−〈ū′v̄′〉+ ν
d 〈ū〉
dy
− 〈τ r12〉 =

τw
ρ
− fy = u2

τ − fy = f(δ − y)

Note that the wall shear stress is now defined as τw =
[
−ρ 〈ū′v̄′〉+ ρν d〈ū〉dy − ρ 〈τ

r
12〉
]
y=0

. Equiv-

alently to the previous analysis, the turbulent kinetic energy equation is considered. The derivation
for this equation for LES can be found in Appendix D.2.

0 = − d

dy
〈q̄v̄′〉 − 〈ū′v̄′〉 d 〈ū〉

dy
− 1

ρ

d

dy
〈v̄′p̄′〉 − d

dy

〈
ū′iτ

r′

i2

〉
+

〈
∂ū′i
∂xj

τ r
′

ij

〉
+ ν

〈
ū′i

∂2ū′i
∂xj∂xj

〉
Where q̄ ≡ ū′

iū
′
i

2 . Next the mean flow SGS dissipation 〈τ r12〉
d〈ū〉
dy and the mean flow viscous

dissipation ν
(
d〈ū〉
dy

)2

are added and subtracted, furthermore the terms are reorganised to obtain

0 = P̃LES − ε̃LES − TSGS − TRES

The third term is the SGS transport term, and the last term represents the resolved turbulent
transport. The terms are given by

P̃LES = −〈ū′v̄′〉 d 〈ū〉
dy
− 〈τ r12〉

d 〈ū〉
dy

+ ν

(
d 〈ū〉
dy

)2

ε̃LES = −
〈
∂ū′i
∂xj

τ r
′

ij

〉
− 〈τ r12〉

d 〈ū〉
dy

+ ν

(
d 〈ū〉
dy

)2

TSGS =
d

dy

〈
ū′iτ

r′

i2

〉
TRES =

d

dy
〈q̄v̄′〉+

1

ρ

d

dy
〈v̄′p̄′〉 − ν

〈
ū′i

∂2ū′i
∂xj∂xj

〉
Again this allows the velocity gradient φ̄(y) to be written in terms of the dissipation and transport.

φ̄(y) ≡ yκ

uτ

d 〈ū〉
dy

=
yκ

uτ

P̃LES

u2
τ − fy

=
yκ

uτ (u2
τ − fy)

(ε̃LES + TSGS + TRES) (4.5)

From the simulation done with the Mason & Thompson wall model the energy contributions
are shown in Figure 4.3.
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Figure 4.3: Energy contributions for Mason & Thompson wall model.
Solid: φ(y). Dash-dotted: Normalised mean flow SGS dissipation.
Dashed: Normalised total subgrid contribution.

Note that inside the inner layer φ is determined mostly by subgrid scale contributions. Hence
promising that control over the SGS transport term (via the SGS model) influences the normalised
mean velocity gradient sufficiently such that the mismatch observed in applying a traditional model
can be minimised.

5 A self-adaptive SGS-model

From the analysis of the previous section it is apparent that the transport term involving subgrid-
scale motions contributes the most to the normalised mean velocity gradient. In this section a
model proposed by Wu & Meyers [11] is derived and discussed. Furthermore it is applied and its
performance is compared to that of a traditional model. Note that this model is slightly different
from that proposed by Wu & Meyers, since here the flow is not considered to be at Re → ∞.
Hence contrary to their analysis the viscous transport term is not neglected.

5.1 Derivation

Considering a Smagorinsky type model of the form

τ rij = −2l2s |S̄|S̄ij

Applying this model to Equation (4.5) yields a relationship between l2s and the normalised mean
velocity gradient. First introduce an auxiliary tensor

Ψij ≡ −2|S̄|S̄ij

Such that τ rij = l2sΨij . Using this, Equation (4.5) becomes
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φ̄(y) =
yκ

uτ (u2
τ − fy)

[〈
∂l2sΨ

′
ij

∂xj
ū′i

〉
−
〈
l2sΨ12

〉 d 〈ū〉
dy

+ ν

(
d 〈ū〉
dy

)2

+ TRES

]

=
yκ

uτ (u2
τ − fy)

[〈
Ψ ′ij

∂l2s
∂xj

ū′i

〉
+

〈
l2s
∂Ψ ′ij
∂xj

ū′i

〉
−
〈
l2sΨ12

〉 d 〈ū〉
dy

+ ν

(
d 〈ū〉
dy

)2

+ TRES

]

Subsequently a new length scale l̂2s is introduced such that

φ̄(y) =
yκ

uτ (u2
τ − fy)

[
l̂2s

(〈
∂Ψ ′ij
∂xj

ū′i

〉
− 〈Ψ12〉

d 〈ū〉
dy

)
+
dl̂2s
dy
〈Ψ ′i2ū′i〉+ ν

(
d 〈ū〉
dy

)2

+ TRES

]

Re-organising the terms gives an ordinary differential equation

A(y)
dl̂2s
dy

+B(y)l̂2s + C(y) = 0

Where

A(y) = 〈Ψ ′i2ū′i〉 , B(y) =

〈
∂Ψ ′ij
∂xj

ū′i

〉
−〈Ψ12〉

d 〈ū〉
dy

and C(y) = TRES+ν

(
d 〈ū〉
dy

)2

− uτ (u2
τ − fy)φ̄(y)

yκ

Given a boundary condition this ODE yields an exact solution, however this solution is rather
complex. Also a numerical approximation would be computationally expensive. Hence a dimen-
sional analysis is done to see whether the term involving A(y) may be neglected. Consider for

convenience y ≈ 0.2δ. Such that the following approximation can be made for l̂s

l̂s = Cs∆ ≈ 0.2∆

I.e. corresponding to the conventional Smagorinsky-Lilly model. From this it follows that

dl̂2s
dy
〈Ψ ′i2ū′i〉 ∼

l̂2s
0.2δ

〈Ψ ′i2ū′i〉 ∼ l̂s∆
〈
ū′i
Ψ ′i2
δ

〉
Furthermore

Ψ ′
i2

∆ ∼
∂Ψ ′

ij

∂xj
, such that

dl̂2s
dy
〈Ψ ′i2ū′i〉 ∼ l̂s∆

〈
ū′i
Ψ ′i2
δ

〉
� l̂s∆

〈
ū′i
Ψ ′i2
∆

〉
∼ l̂2s

〈
ū′i
∂Ψ ′ij
∂xj

〉
Hence the term involving A(y) may be omitted for y ≈ 0.2δ. Whether this also holds in the

log-region will be confirmed later on with results from applying model. For now it is assumed
the term involving A(y) may be neglected. Subsequently taking φ̄(y) = 1, and hence forcing the

log-law to hold, an expression for l̂2s can be derived

l̂2s = −C(y)

B(y)
=

uτ (u2
τ−fy)
yκ − ν

(
d〈ū〉
dy

)2

− TRES〈
∂Ψ ′

ij

∂xj
ū′i

〉
− 〈Ψ12〉 d〈ū〉dy

Using asymptotic analysis it can be shown that a simplified version of this model is Prandtl’s
mixing length model (When considering Re→∞).

Considering a RANS-like simulation (i.e. letting ū′i → 0), the adaptive model reduces to
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l̂2s = −
uτ (u2

τ − fy)− νκy
(
d〈ū〉
dy

)2

yκ 〈Ψ12〉 d〈ū〉dy

It may be simplified by noting that

〈Ψ12〉 = Ψ12 = −2|S̄|S̄12 = −
(
d 〈ū〉
dy

)2

Such that

l̂2s =
uτ (u2

τ − fy)− νκy
(
d〈ū〉
dy

)2

yκ
(
d〈ū〉
dy

)3 = (κy)2

(
1− fy

u2
τ

− δν
κy

)

It turns out this relationship will provide a good test case for the model later on.

5.2 Applying the model

Now that the adaptive model is derived, it may be implemented into a three-dimensional incom-
pressible fluid solver. Note that the same code was used to run LES simulations with traditional
models used in a previous section. It is an extensive Fortran code which will be omitted here.
However in Appendix E the modifications to the closure models (the subroutine called CLOSUR) are
shown to the give the reader an idea of how this model was implemented. Before any discretisa-
tions can be done, the grid must be defined. A three dimensional grid is used with Nx, Ny, Nz grid
points in the x, y and z directions respectively. Quantities like the pressure and the rate-of-strain
tensor (or anything that is derived from those) are calculated in the grid points (cell centres). The
velocity field however is evaluated at the faces of each of the cells, and hence may be interpreted
as in- and outflow of a fluid into a cell. A two dimensional grid is shown in figure 5.1.

y = yJ

y = yJ−1

x = xIx = xI−1

uI,J

vI,J

uI−1,J

vI,J−1

dyJ

dxI

pI,J , l̂I,Js

dxsI

dysJ

Figure 5.1: The x and y dimensions of the grid.

The grid is non-uniform in the wall-normal direction, such that there are more points close
to the wall. The x, y and z directions are labelled I, J and K respectively. They are denoted in
superscript to avoid confusion with any tensorial indices. Hence uI,J,Ki = ui(x

I , yJ , zK). Note
that the mean quantities of the velocity field depend only on the wall-normal direction, hence the
superscripts I and K are omitted here. There are Ny wall normal grid points, hence the lower wall

is at y = y0 and the upper wall is at y = yNy . The closure model, defined by l̂2s , is calculated in
the cell centres.
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Discretisation

Recall that the adaptive model was given by

l̂2s =

uτ (u2
τ−fy)
yκ − ν

(
d〈ū〉
dy

)2

− TRES〈
∂Ψ ′

ij

∂xj
ū′i

〉
− 〈Ψ12〉 d〈ū〉dy

Hence each of the terms occurring in this expression will be discretised and evaluated in the
cell centres. Discretised quantities are denoted by δ

δxi
.

(I) First of all the friction velocity uτ is discretised:

u2
τ =

τw
ρ

= ν

(
δ 〈ū〉
δy

)
y=0

= ν
〈ū〉1
1
2dy

1

(II) Furthermore the mean pressure gradient is discretised

f I,J,K = −1

ρ

δ 〈p̄〉
δx

I,J,K

= −1

ρ

〈p̄〉I+1,J,K − 〈p̄〉I−1,J,K

dxsI + dxsI−1

(III) A rather cumbersome term is the following

〈
∂Ψ ′ij
∂xj

ū′i

〉J
For j = 1 it is discretised as

δΨ ′i1
δx

I,J,K

=
Ψ ′I+1,J,K
i1 − Ψ ′I−1,J,K

i1

dxsI + dxsI−1

And similarly for j = 2, 3. Note that ū′|I,J,Kc is the value in the cell centre, hence it is equal
to

ū′|I,J,Kc =
1

2

(
ū′I−1,J,K + ū′I,J,K

)
(IV) The second term in the denominator is

〈Ψ12〉
d 〈ū〉
dy

J

The auxiliary tensor may be computed in the cell centres by using the rate-of-strain tensor.
Subsequently it is averaged in the x and y directions as well as in time. The mean velocity
gradient is set to equal the law of the wall.

(V) The mean flow viscous dissipation is discretised similarly to how the mean flow SGS dissi-
pation is discretised.

(VI) Finally the resolved turbulent transport term will be discretised.

TRES =
d

dy
〈q̄v̄′〉+

1

ρ

d

dy
〈v̄′p̄′〉 − ν

〈
ū′i

∂2ū′i
∂xj∂xj

〉
This is how it was defined in Section 4.2, in continuous form this is equal to

TRES =

〈
ū′i
∂ū′iū

′
j

∂xj

〉
+

1

ρ

〈
ū′i
∂p̄′

∂xi

〉
− ν

〈
ū′i

∂2ū′i
∂xj∂xj

〉
(5.1)
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However these two formulations are not equal in discrete form. Since Equation (5.1) follows
directly from the derivation of the turbulent kinetic energy equation for LES, this form is
preferable.

The first term is discretised in the following way, consider (i, j) = (1, 2).

δū′v̄′

δy

I,J

=

[
(ū′I−1,J+1 + ū′I,J+1)(v̄′I,J + v̄′I,J+1)− (ū′I−1,J−1 + ū′I,J−1)(v̄′I,J−2 + v̄′I,J−1)

]
4(dysJ + dysJ−1)

All for z = zK . Furthermore the second term is discretised straightforwardly. Finally
consider the viscous transport term

ν

〈
ū′i

∂2ū′i
∂xj∂xj

〉
To show how the second order derivative is discretised, once again consider (i, j) = (1, 2).

δ2ū′

δy2
=

1

2dyJ

[
(ū′I−1,J+1 + ū′I,J+1)− (ū′I−1,J + ū′I,J)

dysJ
− (ū′I−1,J + ū′I,J)− (ū′I−1,J−1 + ū′I,J−1)

dysJ−1

]
The superscript for the span wise direction is omitted. Everything is evaluated at z = zK .

Note that the ensemble average 〈.〉 in discrete form is replaced by a combination of both time
and spatial averaging. Where the spatial average is taken in the x and z directions, i.e. the
directions in which the flow is statistically invariant.

Normalised mean velocity gradient

Even though φ̄(y) was forced to equal one to agree to the log-law, it turns out that near the wall,
this will cause discretisation errors near the wall [11]. To analyse this, the discretisation of the
normalised mean velocity gradient is considered.

yκ

uτ

δ 〈ū〉
δy

Consider any discretisation scheme, the discretised mean velocity gradient may be written as

δ 〈ū〉
δy

=
d 〈ū〉
dy

+ c1∆y
d2 〈ū〉
dy2

+ c2∆2
y

d3 〈ū〉
dy3

+ . . . (5.2)

Hence when using a central finite difference scheme, c1 = 0 and c2 = 1
6 . However any discreti-

sation scheme may be considered here. Using the law of the wall (2.12), the following holds

dn 〈ū〉
dyn

= (−1)n−1uτ
κ

(n− 1)!

yn

So Equation (5.2) becomes

δ 〈ū〉
δy

=
d 〈ū〉
dy
− c1∆y

uτ
κ

1

y2
+ c2∆2

y

uτ
κ

2

y3
+ . . .

For convenience a new wall distance is defined: d ≡ y
∆y

, such that the discretised mean shear

can be written as

δ 〈ū〉
δy

=
d 〈ū〉
dy

+
uτ
κ

∞∑
k=1

(−1)k
ckk!∆k

y

yk+1
=
d 〈ū〉
dy

+
uτ

∆yκ

∞∑
k=1

(−1)k
ckk!

dk+1
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Hence the relative error is given by

δ〈ū〉
δy −

d〈ū〉
dy

d〈ū〉
dy

=

∞∑
k=1

(−1)k(−1)k
ckk!

dk

From this it follows that the relative error becomes large for d < 1. To avoid this, a logarith-
mic mean velocity profile is presumed. Hence 〈ū〉 = uτ

κ ln y+ + B. This leads to the following
approximation

δ 〈ū〉
δy

J

=
uτ
κ

ln yJ − ln yJ−1

dyJ

Hence instead of using φ̄(y) = 1, the following approximation is used

φ̄(y) =
yκ

uτ

δ 〈ū〉
δy

J

= y
ln yJ − ln yJ−1

dyJ

However this would still force a log-profile even close to the wall, which is not as desired. Hence
on the first 2 grid points (y+ < 5), the law of the wall for the viscous sublayer is enforced:

u+ = y+

This relates to the normalised mean velocity gradient in the following way

φ̄(y) =
yκ

uτ

d 〈ū〉
dy

=
yκuτ
ν

Blending

When using the adaptive model with the previously discussed normalised mean velocity gradient,
it still only holds in the inner layer. Hence at some distance from the wall a standard model must
be used. From the theory it follows that the inner layer ends at y = 0.1δ, hence this point is used
to start blending from the adaptive to the traditional model around y = 0.1δ. Blending is done on
5 points, using the cosine as a blending function.
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Figure 5.2: Blending function

I.e. both the Smagorinsky length scale corresponding to the traditional model and the dynamic
model are calculated and subsequently averaged using the blending function.
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5.3 Results

The adaptive model was applied using the 14-th grid point as a blending position. This point
corresponds to y/δ ≈ 0.11, hence lying inside the theoretical inner layer. The simulation was
ran using a Reynolds number of 22600. The velocity profile obtained from this simulation is the
following:

100 101 102 103
0

5

10

15

20

25

y+

u
+

rS rS
rS rS

rS

ld

ld

Figure 5.3: Velocity profile using the dynamic model where blending
was done at j = 14 (dashed). (♦) denotes grid points where φ is forced
to agree with the law of the wall inside the viscous layer. (�) are grid
points where blending is applied. Solid: DNS data of Kim et al. [1].

More interesting however is the resulting normalised mean velocity gradient
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Figure 5.4: Normalised mean velocity gradient, using the dynamic model
where blending was done at j = 14 (dashed). (♦) denotes grid points
where φ is forced to agree with the law of the wall inside the viscous
layer. (�) are grid points where blending is applied. Solid: DNS data of
Kim et al. [1].

This shows first of all that forcing the normalised mean velocity gradient in the viscous sublayer
works fine, except that another point might be added (third grid point). Furthermore it seems
that the normalised mean velocity gradient tends to 1 a bit too far into the channel, hence the
blending position should be shifted slightly to the left.

However before these modifications are applied, the model is tested in a different setup as well.
First of all recall that in the derivation of this model (Section 5.1) it was mentioned that in a
RANS like simulation (letting ū′i = 0) the length scale should simplify to

l̂2s = (κy)2

(
1− fy

u2
τ

− δν
κy

)
(5.3)

Hence when forcing to velocity field to exactly agree to the log-law (throughout the entire half-
height of the channel) and letting all the fluctuating velocity quantities equal zero, this is what the
dynamic model should give as a length scale. So the Fortran code was modified slightly to read
a perfect logarithmic velocity profile (with uτ = 1) and the corresponding length scale calculated
by the model was compared to that mentioned in Equation (5.3). The relative error of the length
scale returned by the model is shown in Figure 5.5.
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Figure 5.5: The relative error of the length scale returned by the model.

Note that when the friction velocity is forced to equal 1, instead of linearly approximating it,
the length scale matches perfectly. Hence the discretisation of uτ could be improved. However
since the relative error is small, this is left for future endeavours.

Next the improvements mentioned above are implemented into the dynamic model. The sim-
ulation is run again, the results are as follows. Grey colour denotes results of the first attempt.
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Figure 5.6: Velocity profile using the dynamic model where blending
was done at j = 13 (dashed). (♦) denotes grid points where φ is forced
to agree with the law of the wall inside the viscous layer. (�) are grid
points where blending is applied. Solid: DNS data of Kim et al. [1].
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And the resulting normalised mean velocity gradient
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Figure 5.7: Normalised mean velocity gradient, using the dynamic model
where blending was done at j = 13 (dashed). (♦) denotes grid points
where φ is forced to agree with the law of the wall inside the viscous
layer. (�) are grid points where blending is applied. Solid: DNS data of
Kim et al. [1].

The normalised mean velocity gradient gives the most insightful relationship to analyse the
improvements made over the the first attempt. The viscous sublayer now shows excellent agreement
with u+ = y+. Moving the blending point to the left did not seem to have much influence on the
normalised mean velocity gradient, except that the ’bump’ around y+ = 300 seems to agree better.
One, so far unexplained, artefact occurs around y+ = 30. Whether this is due to an error or
whether this can be explained by studying the energy contributions is unknown so far. Perhaps
studying this artefact may lead to further improvements.

Finally large scale figures of both the normalised mean velocity gradient as the velocity profile
are shown summarising the results from this report. This includes a dynamic model based on the
invariants of the rate-of-strain tensor, which is added for comparison [9].
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Figure 5.8: Velocity profile shown for several SGS models
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6 Concluding remarks

In this report a brief overview of channel flow was given. This leading up to large eddy simulation
which inevitably lead to the discussion of several traditional wall models. One of the issues with
such a model, the Mason & Thompson wall model, was discussed. The mismatch of the normalised
mean velocity gradient was recognised and analysed. We realised that mostly the dissipation of
the subgrid scales contributed to this velocity gradient in the inner layer. Hence why a model
by Wu & Meyers was derived to dynamically change the Smagorinsky length scale such that it
would force the normalised mean velocity gradient to be approximately equal one inside the log
layer. Furthermore this model was modified to also work with relatively low Reynolds number
flow. Further adjustments were made such that the normalised mean velocity gradient would also
agree to DNS in the viscous sublayer.

Results from this model look promising. It performs much better than traditional models,
without the need of a lot of tweaking. However there are still some issues. For future research the
discretisation of the friction velocity could be done by integrating the momentum balance to reach
a higher accuracy. Finally the noticed bump in the normalised mean velocity gradient around
y+ = 30 requires further investigation.
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Appendices

A Einstein notation

Einstein’s summation convention is a useful shorthand notation for writing summations. It is based
on repeated indices. Whenever in a multiplication or fraction an index is repeated, it implies a
sum. Some examples:

ui
∂uj
∂xi

=

n∑
i=1

ui
∂uj
∂xi

but also

∂ui
∂xi

=

n∑
i=1

∂ui
∂xi

= ∇ · u

The summation maximum n is always known from the context in which it appears. Note that
it is almost always equal to three.

B Filter properties

The linearity and scalar multiplication properties follow directly from the definition of a filter , as
was given in Equation (3.1). The third property however, which states that filtering commutes
with taking a derivative, holds only in special cases and requires some attention. Let G(r,x) be a
kernel. Then taking a spatial derivative of a filtered function f(x) becomes

∂f(x)

∂xj
=

∂

∂xj

∫
Ω

G(r,x)f(x− r)dr

=

∫
Ω

∂

∂xj
[G(r,x)f(x− r)] dr

=

∫
Ω

G(r,x)
∂f(x− r)

∂xj
dr +

∫
Ω

∂G(r,x)

∂xj
f(x− r)dr

=
∂f(x)

∂xj
+

∫
Ω

∂G(r,x)

∂xj
f(x− r)dr

I.e. if a spatial filter is invariant under translation G(r,x) = G(r) then taking a spatial derivative
commutes with filtering.

C Linearity of law of the wall in the viscous sublayer

Consider u′, v′, w′, the fluctuating parts of the velocity field, in a fixed x, z coordinate. Then for
small y, let u′ and v′ be approximated as follows

u′ = a1 + b1y + c1y
2

v′ = a2 + b2y + c2y
2

From the boundary conditions (no-slip and no permuation) at y = 0 it follows that

u′|y=o = v′|y=0 = 0

So a1 = b1 = 0. Also from the same boundary conditions the following can be derived
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(
∂u′

∂x

)
y=0

=

(
∂w′

∂z

)
y=0

= 0

Hence from the continuity of the fluctuating part of the velocity field it follows that

b2 =

(
∂v′

∂y

)
y=0

= 0

From this analysis an estimate for 〈u′v′〉 can be made

〈u′v′〉 = 〈b1c2〉 y3 + . . .

Which can be written as

〈u′v′〉 = −σu2
τy

+3

+ . . . (C.1)

Where σ is a dimensionless constant. Recall from Section 2.2

τ(y) = ρν
d 〈u〉
dy
− ρ 〈u′v′〉 (C.2)

= τw

(
1− y

δ

)
(C.3)

Such that from Equations (C.2) & (C.3) it follows that

d 〈u〉
dy

=
τw
ρν
− τw
δρν

y +
〈u′v′〉
ν

From which up to the fourth order derivative of 〈u〉 can be derived (using Equation (C.1))

d2 〈u〉
dy2

= − τw
δρν

+
1

ν

d

dy

(
−σu2

τy
+3
)

= − τw
δρν

+
1

ν

d

dy+

(
−σu2

τy
+3
) dy+

dy

= − τw
δρν

+
uτ
ν2

(
−3σu2

τ

)
y+

d3 〈u〉
dy3

=
−6σu4

τ

ν3
y+

d4 〈u〉
dy4

=
−6σu5

τ

ν4

Hence using a Taylor series expansion of 〈u〉 the following estimate can be obtained

〈u〉 ≈ 〈u〉y=0 +

(
d 〈u〉
dy

)
y=0

y +
1

2

(
d2 〈u〉
dy2

)
y=0

y2 +
1

6

(
d3 〈u〉
dy3

)
y=0

y3 +
1

24

(
d4 〈u〉
dy4

)
y=0

y4

Finally an estimate for u+ arises

u+ =
〈u〉
uτ

≈ 1

uτ

[
u2
τ

ν

ν

uτ
y+ − u2

τ

2δν

ν2

u2
τ

y+2

+
1

24

−6σu5
τ

ν4

ν4

u4
τ

y+4

]
= y+ − 1

2Reτ
y+2

− 1

4
σy+4
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So for large Reτ the law of the wall in the viscous sublayer yields

u+ = y+ − 1

4
σy+4

= fw(y+)

Hence the law of the wall in the viscous sublayer is linear up to third order approximation.

D Turbulent kinetic energy equations

The turbulent kinetic energy equations are used for the analysis of the velocity gradient overshoot.
The derivation of the equations is a rather straightforward calculation, however it might initially
not be obvious to derive in the way it is done here. In the end an equation in terms of the turbulent
kinetic energy is obtained.

D.1 DNS

The turbulent kinetic energy equations follow from fluctuating part of the NS momentum equation
for incompressible and stationary flow. Recall the NS momentum equation

uj
∂ui
∂xj

= −1

ρ

∂p

∂xi
+ ν

∂2ui
∂xj∂xj

(D.1)

Hence the mean of Equation (D.1) is given by

∂ 〈ujui〉
∂xj

= −1

ρ

〈
∂p

∂xi

〉
+ ν

∂2 〈ui〉
∂xj∂xj

Where the continuity equation is used together with the fact that taking the mean and differ-
entiating commute. So from this the fluctuating part of the NS equation can be derived

∂

∂xj
[uiuj − 〈ujui〉] = −1

ρ

∂p′

∂xi
+ ν

∂2u′i
∂xj∂xj

(D.2)

Where p′ is the fluctuating part of p. The LHS can be written in the following way

∂

∂xj
[uiuj − 〈ujui〉] =

∂

∂xj

[
(〈ui〉+ u′i)(〈uj〉+ u′j)−

〈
(〈ui〉+ u′i)(〈uj〉+ u′j)

〉]
=

∂

∂xj

[
u′iu
′
j −

〈
u′iu
′
j

〉
+ u′i 〈uj〉+ u′j 〈ui〉

]
Furthermore Equation (D.2) is multiplied by u′i and subsequently the mean is taken of that

result, this leads to〈
u′i

∂

∂xj

[
u′iu
′
j −

〈
u′iu
′
j

〉
+ u′i 〈uj〉+ u′j 〈ui〉

]〉
= −1

ρ

∂ 〈u′ip′〉
∂xi

+ ν

〈
u′i
∂2 〈ui〉
∂xj∂xj

〉
(D.3)

Considering the LHS only〈
u′i

∂

∂xj

(
u′iu
′
j

)〉
︸ ︷︷ ︸

I

−
〈
u′i

∂

∂xj

〈
u′iu
′
j

〉〉
︸ ︷︷ ︸

II

+

〈
u′i

∂

∂xj
(u′i 〈uj〉)

〉
︸ ︷︷ ︸

III

+

〈
u′i

∂

∂xj

(
u′j 〈ui〉

)〉
︸ ︷︷ ︸

IV

I: 〈
u′i

∂

∂xj

(
u′iu
′
j

)〉
=

1

2

〈
u′i

∂

∂xj

(
u′iu
′
j

)〉
+

1

2

〈
u′iu
′
j

∂

∂xj
(u′i)

〉
=

1

2

〈
∂

∂xj

(
u′iu
′
iu
′
j

)〉
=

d

dy
〈qv′〉
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Where in the last step the statistical one-dimensionality of fully developed flow is used. Also,
q is defined as

q ≡ u′iu
′
i

2

II: 〈
u′i

∂

∂xj

〈
u′iu
′
j

〉〉
= 〈u′i〉

∂

∂xj

〈
u′iu
′
j

〉
= 0

III: 〈
u′i

∂

∂xj
(u′i 〈uj〉)

〉
=

〈
u′i
d

dy
(u′i 〈v〉)

〉
= 0 , since 〈v〉 = 0

IV: 〈
u′i

∂

∂xj

(
u′j 〈ui〉

)〉
=

〈
u′iu
′
j

∂

∂xj
〈ui〉

〉
=
〈
u′iu
′
j

〉 ∂

∂xj
〈ui〉

= 〈u′v′〉 d 〈u〉
dy

, since 〈v〉 = 〈w〉 = 0

Furthermore the second RHS term of Equation (D.3) can be written as

ν

〈
u′i

∂2u′i
∂xj∂xj

〉
= ν

〈
∂

∂xj

(
u′i

∂

∂xj
u′i

)〉
− ν

〈
∂u′i
∂xj

∂u′i
∂xj

〉
= ν

〈
∂

∂xj

(
u′i
∂u′i
∂xj

)〉
− ν

〈
∂u′i
∂xj

∂u′i
∂xj

〉
= ν

d2k

dy2
− ν

〈
∂u′i
∂xj

∂u′i
∂xj

〉
Where

k ≡ 〈u
′
iu
′
i〉

2

Hence in total, Equation (D.3) leads to the turbulent kinetic energy equation

0 = − d

dy
〈qv′〉 − 〈u′v′〉 d 〈u〉

dy
− 1

ρ

d

dy
〈v′p′〉+ ν

d2k

dy2
− ν

〈
∂u′i
∂xj

∂u′i
∂xj

〉

D.2 LES

The derivation for the turbulent kinetic energy equation for LES is very similar to the one for
DNS, hence some steps will be omitted. Similar to the DNS case the fluctuating part of the NS
equations is the starting point. However for LES, the filtered NS equations are considered.

Recall the filtered NS Equation (3.7) (for stationary flow).

∂ūiūj
∂xj

= −1

ρ

∂p̄

∂xi
+

∂

∂xj

(
2νS̄ij − τ rij

)
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Similarly to the derivation of the turbulent kinetic energy equation, the fluctuating part of the
filtered NS equation is considered.

∂ūiūj − 〈ūiūj〉
∂xj

= −1

ρ

∂p̄′

∂xi
+

∂

∂xj

(
2νS̄′ij − τ r

′

ij

)
(D.4)

Now Equation (D.4) is multiplied by ū′i and subsequently the mean of this result is taken. The
derivation of the LHS is analogous to it’s DNS counterpart, hence it will be omitted here. The
term involving the fluctuating part of the residual stress tensor becomes

−

〈
ū′i
∂τ r

′

ij

∂xj

〉
= − ∂

∂xj

〈
ū′iτ

r′

ij

〉
+

〈
∂ū′i
∂xj

τ r
′

ij

〉
= − d

dy

〈
ū′iτ

r′

i2

〉
+

〈
∂ū′i
∂xj

τ r
′

ij

〉
Hence the turbulent kinetic energy equation for LES becomes

0 = − d

dy
〈q̄v̄′〉 − 〈ū′v̄′〉 d 〈ū〉

dy
− 1

ρ

d

dy
〈v̄′p̄′〉 − d

dy

〈
ū′iτ

r′

i2

〉
+

〈
∂ū′i
∂xj

τ r
′

ij

〉
+ ν

〈
ū′i

∂2ū′i
∂xj∂xj

〉
Where

q̄ ≡ ū′iū
′
i

2

D.3 Splitting the pseudo-dissipation

This is a straightforward calculation. It relies on writing the fluctuating velocity gradient in terms
of its symmetric and anti-symmetric part

S′ij ≡
1

2

(
∂u′i
∂xj

+
∂u′j
∂xi

)
And

A′ij ≡
1

2

(
∂u′i
∂xj
−
∂u′j
∂xi

)
Hence the pseudo-dissipation can be written as

ν

〈
∂u′i
∂xj

∂u′i
∂xj

〉
= ν

〈(
S′ij +A′ij

)2〉
= ν

〈
S′ijS

′
ij

〉
+ 2ν

〈
S′ijA

′
ij

〉
+ ν

〈
A′ijA

′
ij

〉
As can be easily seen, the term concerning the product of the symmetric and anti-symmetric

part equals zero. The third term yields

ν
〈
A′ijA

′
ij

〉
= ν

〈
1

4

(
∂u′i
∂xj
−
∂u′j
∂xi

)2
〉

= ν
〈
S′ijS

′
ij

〉
− ν

〈
∂u′j
∂xi

∂u′i
∂xj

〉
= ν

〈
S′ijS

′
ij

〉
− ν ∂

∂xi∂xj

〈
u′ju
′
i

〉
= ν

〈
S′ijS

′
ij

〉
− ν d

2

dy2
〈v′v′〉
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Where statistical independence is used together with the continuity equation of the fluctuating
velocity field. Hence in total the following holds

ν

〈
∂u′i
∂xj

∂u′i
∂xj

〉
= 2ν

〈
S′ijS

′
ij

〉
− ν d

2

dy2
〈v′v′〉

E Fortran code

All the Fortran code that is presented here is implemented in the subroutine called CLOSUR. This
subroutine calculates the closuremodel.

E.1 Mason & Thompson SGS model

1 C The d i s t a n c e from t h e n e a r e s t w a l l
2 dist = y(j) - 0.50D0*dy(j)

3 i f ( j .gt. 32) then
4 dist = 1-dist

5 endif
6 C D e l t a i s t h e volume o f t h e i , j , k t h c e l l
7 Delta=(dx(i)*dy(j)*dz(k))**(1.0/3.0)

8 ls = (1.0D0/(Cs*Delta)) + (1.0D0/( Kappa*dist))

9 ls = 1.0D0/ls

10 C The t o t a l v i s c o s i t y i s t h e sum o f t h e m o l e c u l a r
11 C and eddy v i s c o s i t y
12 nu(i,j,k) = (1.0D0/re) + (ls **2)*2.0 D0*SQRT(qq)

E.2 Dynamic model

1 C The a l t e r n a t i v e t e n s o r PSI i s c a l c u l a t e d . PSI = −S∗4∗ s q r t ( qq )
2 C This w i l l be used ( i n meanxz ) t o c a l c u l a t e terms used f o r t h e
3 C t h e a d a p t i v e model
4 do mi=1,3

5 do mj=1,3

6 PSI(i,j,k,mi ,mj)= - s(mi ,mj )*4.0D0*SQRT(qq)

7 end do
8 end do
9 Delta=(dx(i)*dy(j)*dz(k))**(1.0/3.0)

10 i f (j .le. 32) then
11 tau = (9.0E0*(u1mn (1) -0.0D0)/(re*0.5E0*dy(1))

12 & - (u1mn (2) -0.0D0)/(re*(dy (1)+0.5 E0*dy (2))))/8.0 E0

13 utau=sqrt(tau)

14
15 dist= y(j)-0.5D0*dy(j)

16 i f (j .le. 15) then
17 lsf(i,j,k) = -(1.0D0/mass )*(( meanP(i+1,j,k)-

18 & meanP(i-1,j,k))/( dxs(i) + dxs(i-1)))

19 C In t h e l o g−law l a y e r du / dy=utau /( kappa ∗y )
20 soo2(j)= meanPSI(j,1 ,2)*( utau/( Kappa*dist))

21 C c o r r i s t h e c o r r e c t i o n o f phi , t o p r e v e n t d i s c r e r r o r s
22 visdis=utau/( Kappa*dist)

23 i f (j .le. 3) then
24 C In t h e v i s c o u s s u b l a y e r , u+=y+
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25 corr=dist*Kappa*utau*re

26 soo2(j)= meanPSI(j,1 ,2)*( utau **2)*re

27 visdis =(utau **2)*re

28 e l s e i f (j .lt. 8) then
29 corr =(( LOG(dist +0.5D0*dy(j))-LOG(dist -0.5D0*dy(j)))

30 & /(dy(j)))* dist

31 e l se
32 corr =1.0D0

33 endif
34 lss(i,j,k) = ((( corr*utau*(utau **2 - lsf(i,j,k)*

35 & (dist )))/( kappa*dist))

36 & - tres1(j) - tres2(i,j,k)+ (1.0D0/re)* meanvis(j)

37 & -(1.0D0/re)*( visdis **2))/

38 & (soo1(j)-soo2(j))

39 i f (j .gt. 10 ) then
40 pi = 4.0D0*atan (1.0D0)

41 C B l e n d i n g f a c t o r i s one f o r j = 11 , z e r o f o r j = 15
42 factor = (1.0D0/2.0D0 )*(1.0 D0 +

43 & COS(((j -11.0 D0)/4.0 D0)*pi))

44
45 lss(i,j,k) = factor*lss(i,j,k) + (1.0D0 - factor )*

46 & (1.0D0 /((1.0 D0/(Cs*Delta )) + (1.0D0/(Kappa*dist ))))**2

47 endif
48 e l s e i f (j .gt. 15) then
49 C O u t s i d e t h e l o g−l a y e r , Mason & Thompson w a l l−damping i s used
50 lss(i,j,k) = (1.0D0 /((1.0 D0/(Cs*Delta)) +

51 & (1.0D0/( Kappa*dist ))))**2

52 endif
53 e l s e i f (j .gt. 32) then
54 C Symmetry o f l e n g t h s c a l e i n t h e w a l l−normal d i r e c t i o n
55 lss(i,j,k) = lss(i,ny -j+1,k)

56 endif
57 lstemp = ABS(lss(i,j,k)*2.0D0*SQRT(qq))

58 C Dynamic model i s a p p l i e d a f t e r a few t ime s t e p s , t o
59 C i n i t i a l i s e some v a l u e s used i n t h e model
60 i f (n .gt. 2) then
61 nu(i,j,k) = (1.0D0/re) + lstemp

62 e l se
63 i f (j .le. 32) then
64 dist= y(j)-0.5D0*dy(j)

65 e l s e i f (j .gt. 32) then
66 dist= y(ny-j+1) -0.5D0*dy(ny -j+1)

67 endif
68 nu(i,j,k) = (1.0D0/re) + 2.0D0*SQRT(qq )*(1.0 D0/

69 & ((1.0D0/(Cs*Delta )) + (1.0D0/(Kappa*dist ))))**2

70 endif

Furthermore all the mean terms occuring in the dynamic model are calculated in the subroutine
called MEANXZ . However since this is quite straightforward and lengthy it will be omitted here. In
addition, also those mean terms are saved in mnsXX.dat at the end of every run, such that they
can be used if more than one run is desired.
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A brief summary of variables mentioned in the code and how they relate to the model:

Fortran code Model Calculated in

PSI(I, J,K,mi,mj) Ψ I,J,Kmi,mj ≡ −2|S̄|I,J,K S̄I,J,Kmi,mj CLOSUR

soo2(J) 〈Ψ12〉J d〈ū〉
dy

J
CLOSUR

visdis(J) d〈ū〉
dy

J
CLOSUR

lsf(I, J,K) f I,J,K = − 1
ρ
δ〈p̄〉
δx

I,J,K
CLOSUR & MEANXZ

tres1(J)
〈
ū′i
∂ū′

iū
′
j

∂xj

〉J
MEANXZ

tres2(I, J,K) 1
ρ

〈
ū′i

∂p̄′

∂xi

〉I,J,K
MEANXZ

meanvis(J)
〈
ū′i

∂2ū′
i

∂xj∂xj

〉J
MEANXZ

soo1(J)
〈
∂Ψ ′

ij

∂xj
ū′i

〉J
MEANXZ

All global variables, which are calculated in MEANXZ, can be called by including var/dynamic.

40


	Introduction
	Turbulent channel flow
	Flow statistics
	Mean channel flow
	Law of the wall

	Large eddy simulation
	Filters
	Filtering the Navier-Stokes equations
	Eddy-viscosity model

	Performance of LES
	The log-law
	Analysis of energy contributions

	A self-adaptive SGS-model
	Derivation
	Applying the model
	Results

	Concluding remarks
	Appendices
	Einstein notation
	Filter properties
	Linearity of law of the wall in the viscous sublayer
	Turbulent kinetic energy equations
	DNS
	LES
	Splitting the pseudo-dissipation

	Fortran code
	Mason & Thompson SGS model
	Dynamic model


