
Optimalisation of a

Graphics Engine for 2D

Platform Games on

Mobile Devices

Bachelor thesis

July 2013

Student: B. Reigersberg

Primary supervisor: prof. dr. A.C. Telea

Secondary supervisor: prof. dr. ir. M. Aiello

Contents

1 Introduction 3
1.1 Mobile Games . 3
1.2 Platform Games . 4

1.2.1 Structure and History . 4
1.2.2 Running games . 5
1.2.3 Performance and Visual Quality 5

1.3 MAGE . 6
1.3.1 Architecture . 7

1.4 Structure of this thesis . 10

2 Problem 11
2.1 Problem de�nition . 11
2.2 Problem modeling . 11
2.3 Rendering pipeline . 12

2.3.1 Vertex Shader and Bu�er Objects 14
2.3.2 Fragment Shader and Textures 16
2.3.3 Fragment Operations . 17

3 Optimalization Strategies 19
3.1 Texture Resolution . 20

3.1.1 Method . 21
3.1.2 Results . 22
3.1.3 Conclusion . 23

3.2 Texture Parameters . 24
3.2.1 Method . 27
3.2.2 Results . 27
3.2.3 Conclusion . 28

3.3 Alpha Blending . 29
3.3.1 Method . 30
3.3.2 Results . 30
3.3.3 Conclusion . 31

3.4 Texture Format . 31
3.4.1 Method . 34
3.4.2 Results . 35
3.4.3 Conclusion . 36

3.5 Depth Testing . 36
3.5.1 Conclusion . 36

1

4 Conclusion & Discussion 37
4.0.2 Limitations . 38
4.0.3 Future work . 38

2

Chapter 1

Introduction

1.1 Mobile Games

Mobile games are games designed for mobile devices. Mobile devices include for
example PDAs, mobile phones, tablets and other portable media devices. With
the recent uprise of mobile devices such as the smartphones and tablets it may
come as no surprise that the popularity of mobile gaming is also �ourishing. In
the US alone the number of mobile gamers jumps 35 percent every year with
an estimated total of 21 million tablet gamers in 2012. This is lower in key EU
areas, but still 15 percent. On iOS over 6.6 million games are sold every day in
the US and EU alone [7].

Almost all smartphones and tablets can connect to the internet and grant
the user easy access to so called digital application distribution platforms. These
platforms allow the user to easily download new applications directly to his or
her device, rate them and comment on them. These platforms are also providing
developers and publishers with a platform to easily distribute their applications
to a massive audience. Because of this, the number of applications on these
platforms, including mobile games, is growing every day.

One of the mayor digital application distribution platforms, The Google
Play Store for Android OS shows that mobile games are dominating their top
rated, top grossing and most downloaded application lists [3]. One of the most
popular mobile games is Angry Birds by the Finnish company Rovio Mobile
and has been downloaded 1.7 billion times [5] .

Most smartphones and tablets lack possibilities for user interaction which
are available on other devices used for gaming, such as a mouse and a keyboard
for a PC or a controller for gaming consoles. Most smartphones and tablets only
provide touch input and motion sensors but do have relatively high resolution
screens. Due to this nature, the gameplay of mobile games is usually very simple
and the visual appearance is very important.

3

1.2 Platform Games

1.2.1 Structure and History

Platform games form a genre of video games in which the game's character
is required to move and jump from platform to platform to reach a certain
destination or score. In doing this the character may also encounter various
obstacles and enemies. It is the player's task to control the character. He must
make sure the character avoids or destroys the obstacles and enemies, and time
the character's jumps right to prevent the character's untimely demise.

Figure 1.1: Donkey Kong (1981) by Nintendo
was the �rst true platform game

Platform games are among
the oldest of video games.
The �rst Donkey Kong game,
developed by Nintendo in
1981, is known to be the
�rst true platform game [2].
This was a single screen plat-
form game meaning that the
screen contained one entire
level. There was no scrolling
screen or transitions to other
levels/screens.

Modern platform games
are far more complex than
that, usually including more
complex AI for the enemies
and a complete physics en-
gine. Despite this, the ba-
sic gameplay concept remains
largely intact - jumping over

obstacles and avoiding enemies. Platform games have namely evolved graphi-
cally, moving from 8-bit pixel games to multiple layers of high resolution texture
images and post-render e�ects.

These multiple layers are used to create a sense of depth by using parallax
motion. Parallax is the e�ect that objects in the distance appear to move more
slowly or even stand still, while objects that are close by appear to move faster.
For example, when you're sitting in a car in motion the trees on the side of the
road appear to rush past you while the sun, moon or a building in the distance
appear to stand still. This works the same in platform games where the 'lowest'
layer contains those objects which are supposed to appear far away from the
camera and the 'highest' layers those which should appear close by. These
platform games are a subclass of a family of computer graphics applications
known as 2.5D graphics.

Platform games were particularly popular in the 90's with a market share
of 15 percent in 1998 and even more before [1]. After that, popularity dropped
signi�cantly to a market share of only 2 percent in 2002 [1]. This was likely
due to the upcoming of overall more complex and 3D games. However, simple
concepts are popular concept for mobile games. Therefore a whole new market
exists for platform games. In the recent years so called running games have
�ooded this market.

4

1.2.2 Running games

Running games, also known as endless running games, are a subset of platform
games. In these games the game's character runs automatically, typically in a
left-to-right fashion,(in case of 2D examples) through a continuously generated
world. The player does not control the horizontal movement and can only jump
and/or shoot to avoid incoming obstacles and enemies. In most of these games
this theoretically goes on forever, but due to increase in game speed or di�culty
with time or distance, the player will eventually lose the game. The goal of
such a game is not to reach a certain destination but to survive for as long as
possible (Is term of either time and/or distance) or score as many points as
possible. To illustrate the popularity of these games, Apple awarded Rayman
Jungle Run, a running game seen in Figure 1.2, as the best iOS game of 2012. [4]

Figure 1.2: Rayman Jungle Run (Ubisoft), a popular running game

1.2.3 Performance and Visual Quality

The goal of running games is to challenge the player's reaction time and dexterity
with the device's controls. Therefore, it is very important for these games to
run smoothly. In order for these games to run smooth they must maintain a
certain amount of frames per second.

Frames per second, often abbreviated to FPS, describes the rate of which
the image on screen is refreshed. Updating a game's state and rendering the
scene can take some time, which will in�uence the possible FPS. If the FPS is
too low the illusion of motion is lost. If however the FPS is high but varies a
lot in game the motion will seem uneven. Therefore it is important to keep the
FPS constant as well as high. The minimum FPS is debatable and varies from
game to game.

A drop in the FPS could easily cause the player to make a mistake, resulting
in a game over screen - when it is actually the game which is at fault. Should
this happen when the player is just about to beat his friend's score after say
�fteen minutes of contiuous gameplay, the player would most likely get very

5

upset, toss the game and the developers (Which would be us) can expect a
negative review.

But not only FPS is important. As we mentioned before in section 1.1, the
visual appearance is very important for mobile games. Now we want to have
multiple layers of objects using detailed texture images and maintain a high and
constant FPS. This all on mobile devices, which typically have limited hardware
compared with a PC or a gaming console. This can be a problem. Therefore,
we aim to study the challenges that a graphics engine for 2D platform games
typically face in providing both a high and constant FPS as well as a high visual
quality and propose ways to solve or ease these problems.

1.3 MAGE

For the purpose of studying performance challenges for a graphics engine for
2D platform games on mobile devices we will look at a possible game engine for
such a game. MAGE, My Android Game Engine, is such an engine developed
by myself and a small group of students of the Rijksuniversiteit Groningen for
the Android operating system.

MAGE is written in Java (Android) and is a fairly small engine consisting
of little over 15000 lines of code. The engine, at this point, provides only the
basic functionality for a simple 2D platform game as seen in Figure 1.3. This
makes it easy to pinpoint issues for performance.

Since we have access to MAGE's source code, and extensive knowledge of
the structure and code of the graphics engine we can easily:

� Measure performance

� Study bottlenecks

� Propose, implement and test improvements

Figure 1.3: Example of a simple platform game implementation made in MAGE

We will use the implementation of the MAGE graphics engine excluding the
rest of the engine and adjust it to a suitable testing environment. This way we

6

can perform time measurements solely over the graphics engine without having
to worry about the game and/or physics engine interfering with the timing
results. We can also easily control the scene, eliminating independent variables
and automate time measurements while changing the scene. We will also use
a simple implementation of an endless running 2D platform game in MAGE
to discuss wether possbile improvements are possible or desirable within the
context and structure of an actual game.

1.3.1 Architecture

Figure 1.4 shows a very simpli�ed overview of MAGE's architecture.

Figure 1.4: A simpli�ed architecture. The red dotted line circles the classes
which are considered part of the graphics engine

Note that this architecture is simpli�ed and serves the purpose of giving an
idea of the basic concept of the graphics engine. Classes for sound, music,
physics, input etc. are not included in the architecture as are helper classes,
implementations of interfaces and other things that are of no direct importance
to the concept of the graphics engine.

Main

The Main class extends from the Activity class and contains the onCreate(...)
method. This is Android speci�c and is comparable with the main(...) method
in an ordinary Java project. This is the method which is called when the
application is launched, and the Activity is started on Android. This class will
perform the initialisation of the GameEngine and View objects and start a new
thread which contains the game loop seen as pseudo-code in Listing 1.1.

7

Listing 1.1: Game loop

while(running) {

start = currentTimeMillis();

engine.update();

view.requestRedraw();

end = currentTimeMillis();

sleep(1000.0f/FPS - (end - start));

}

The game loop updates the engine and then requests a redraw of the view ev-
ery (1000.0/FPS) milliseconds. This e�ectivly draws FPS number of frames
per second. This is done to keep the number of frames per second constant
as stated as important in Section 1.2.3. Note that if engine.update() and
view.requestRedraw() together take too lang - then 1000.0f/FPS − (end −
start) < 0. No sleeping will take place and the required number of frames per
second can not be met.

GameObject

A GameObject is a representation of an in-game object. Every object in the
game is an instance of the GameObject class. This ranges from obstacles such
as a rock or a tree in the background to enemies, platform and the player's
character. A GameObject is composed of a DrawObject, a WorldObject and
an AIObject.

DrawObject contains information on how the GameObject looks and should
be drawn. DrawObject is an interface which has a draw method. This method
can be called by the graphics engine and draws this object to the screen. A typ-
ical implementation of a DrawObject has a set of vertices, texture coordinates
(per vertex), colors (one per vertex) and a reference to a texture.

A WorldObject contains information about the GameObject's position and
orientation in the model. This object is managed and updated by the physics
engine. In order to draw a GameObject's DrawObject in the right position and
the right orientation the graphics engine needs the WorldObject to construct
a matrix of this position and orientation. This Matrix will function as the so
called Model Matrix.

An AIObject contains information on how the GameObject behaves in the
game and how it should respond to various events, circumstances and conditions.
If, for instance, an enemy should move towards the player or how the player's
character should react to user input is behaviour programmed in the object's
AIObject. The AIObject in important to the graphics engine as it controls a
GameObject's DrawObject. An AIObject would in case of an animation for
instance determine which animation to play and when to go to the next frame.
The animation feature however incomplete, so for now the graphics engine has
no interaction with AIObject.

TextureMap

The TextureMap class is a hashmap which maps image names to Texture ob-
jects. The Texture class functions as a wrapper class for the texture id given by
OpenGL and some additional information about the texture. The TextureMap

8

is initialized at the start of every level and contains all loaded textures. Every
textured DrawObject has an image name mapping to a Texture object in the
TextureMap instead of each having their own texture id. This way we prevent
loading the same texture twice when it is used among multiple DrawObjects.

Level

The Level class represents a single level in game. It is divided into multiple
Layer objects.

Each Layer has camera factors for both x and y which determine how much
faster or slower this layer moves relative to the camera movement, to achieve the
layered 2.5D structure with parallax as mentioned in Section 1.2.For example, a
layer with x_factor = 1.0 and y_factor = 1.0 moves just as fast as the camera
in both horizontal and vertical directions. A layer with x_factor > 1.0 and
y_factor = 0.0 would move faster than the camera in horizontal direction but
not move vertically at all.

Each Layer also manages a list of all the GameObjects which are present
in that Layer. All GameObjects which are in such a Layer of the active Level
object form the set of all objects present in the game. These are the only objects
being updated, used for collision detection and drawn.

Renderer

The Renderer is the class which contains the main drawing code and will per-
form the actual drawing on the screen. The Renderer can access the Layers
containing all of the GameObjects via the GameEngine, which holds the active
Level objects. In order to draw a GameObject to the screen, a Model View
Projection matrix is necessary. This matrix is a composition of the Model ma-
trix, View matrix and Projection matrix.The Model matrix is used to map an
object's local vertices to model space, the View matrix is used to map these to
camera space and �nally the Projection matrix to map them to screen space.
The Projection matrix only has to be calculated once (Assuming no window size
changes on mobile devices) using the width and height of the screen. The View
matrix has to be calculated for every drawn Layer, calculated using the camera
position and the Layer's camera factors. The Model matrix has to be calculated
for every GameObject, which as mentioned earlier, is kept in the WorldObject
managed by the Physics Engine. How the basic drawing code looks can be seen
in Listing 1.2

Listing 1.2: Main drawing code

for all Layers in the active Level {

construct view matrix

for all GameObject in this layer {

retrieve model matrix from WorldObject

calculate the model view projection matrix

call draw method of DrawObject

}

}

9

1.4 Structure of this thesis

We are going to study the challenges that a graphics engine for 2D platform
games typically face in providing both a high and constant frames per seconds,
as well as a high visual quality and propose ways to solve or alleviate these
problems.

In order to do this we will analyse the graphics engine for such games. We
will look at MAGE as we have understanding of and access to the source code.
We will analyse the graphics engine for MAGE to �nd possible bottlenecks and
performance issues. This way we want to �nd out how we can optimize such an
engine to provide a high and constant FPS as well as a high visual quality.

In the next chapter we will further analyse the problem. Here we will model
the problem and analyse this model. We will discuss which variables we can vary
within this model and the graphics engine. This way we will construct a set of
variables which we think could possibly a�ect the performance and visual quality
of the game. In the chapter Optimalization Strategies we will look at the set of
variables constructed in the Problem Analysis chapter and argue why they could
a�ect the performance and visual quality and propose solutions or alleviations.
Based on these solutions or alleviations we will perform tests and performance
measurements to conclude wether it are good solutions or alleviations.

In the Conclusion & Discussion chapter we will summarize the various con-
clusions found in the Optimalization Strategies chapter and formulate a �nal
conclusion. We will also discuss the limitations of our performance test.

10

Chapter 2

Problem

2.1 Problem de�nition

As explained in Section 1.2.3 we are studying the challenges that a graphics
engine for 2D platform games face in providing both a high and constant FPS
as well as a high visual quality. We are looking to propose solution to or alleviate
these challenges.

A graphics engine can be described as a function with input and output.
This input is typically a set of vertices and textures, called a scene. The output
is the image presented on the screen after processing the vertices and textures.
As it is important that the game looks good the visual quality of this image is
very important. It is also important that the rate in which these images are
created is high enough to result in an acceptable number of frames per second.
Therefore we are interested in a quality of gameplay value qg ∈ Qg consisting of
the visual quality of the produced images Qv and the interaction quality of the
game Qi. Given the set of all possible scenes S to draw as input, we now we
can de�ne a seperate cost function f to model the quality of a graphics engine.

f : S → Qg

2.2 Problem modeling

Before the scene is an image it goes through a set multiple rendering algorithms
RA.

f : S ×RA→ Qg

In order to optimize f to maximize Qg we can either optimize over S and/or
optimize over RA.

Optimization over S is possible. We can reduce the complexity of the scenes
s ∈ S by for example reducing the number of objects by removing objects which
solely serve for the purpose of decoration. A simpler scene to draw will obviously
result in a faster rendering of this scene, hence increasing Qi. However, the
decrease of the complexity of a scene will also likely result in the loss of visual
quality, hence a decrease of Qv. For example, removing decoration such as
trees will negatively a�ect the richness of a forest scene and hence the visual
quality. Also, this way the scene's designer would have the responsibility of the

11

optimalisation of the scene and would likely have to create multiple scene-sets
for di�erent types of rendering engines. This is counterproductive, so optimizing
over S is undesirable.

So we keep the speci�cation of a scene s ∈ S �xed and only alter our ren-
dering algorithms r ∈ RA. This way the rendering engine will decide how a
scene s ∈ S is rendered. The rendering engine could take runtime performance
factors and platform-speci�c information in to account with this decision. The
rendered scene could also reduce the complexity of the input scene. The di�er-
ence here is that now it is not the scene's designer's responsibility, but that of
the rendering engine. So now the question is: How do we optimize f over RA?

2.3 Rendering pipeline

In order to optimize over RA we have to look at what RA is exactly. In sec-
tion 1.3 it was mentioned that for our graphics engine we use OpenGL ES2.0.
Thus in our case RA is the OpenGL ES2.0 rendering pipeline seen in Figure 2.1.

Figure 2.1: The OpenGL ES2.0 rendering pipeline

Vertex shader and bu�er objects

The vertex shader will process the vertices which are submitted and in the bu�er
objects. Each incoming vertex is converted into a single outgoing vertex. This
is done based on a user-de�ned vertex shader program. [6]. For example an
incoming vertex could be converted to screen space.

The vertex shader can pass on other data to the fragment shader, which will
be interpolated over the vertices. This can be used for texture coordinates for
instance. If for example vertex A has a texture coordinate x value of 0.0 and
vertex B has a texture coordinate x value of 1.0 then all fragments in between
vertex A and vertex B will have an interpolated value between 0.0 and 1.0.These
are called varying variables.

12

Finally, the outgoing vertices are passed on to the primitive assembly stage.

Primitive Assembly

In the primitive assembly stage the vertices received from the vertex shader
are assembled into primitive shapes. There are three possible primitive shapes,
being a point, a line segment and a triangle. The output of this stage is a set
of primitives which are passed on to the rasterizer stage.

Rasterizer

In the rasterizer stage the primitives received from the primitive assembly stage
will be rasterized. The output is a set of fragments. These fragments each have
a position in screen-space and are used to compute the �nal color for a pixel.
This happens in the fragment shader stage.

Fragment shader and textures

The fragment shader basicly loops over all fragments received from the rasterizer
stage. For every fragment a color value and depth value are calculated based on
a user-de�ned fragment shader program. The calculation may involve the use
of the varying variables passed on from the vertex shader. Take the example
of texture coordinates. These can (but don't necessarily have to) be used to
perform a texture lookup in a given texture - which can only be done in this
stage.

For each fragment the output is a color, depth and stencil value.

Fragment Operations

Before the fragment color from the fragment shader is written to the screen is
passes through the fragment operations stage. In this stage the fragment values
undergo various tests. A stencil and depth test, if enabled, are performed. If
one of these fails the fragment is discarded. If it passed blending, if enabled, is
performed on the fragment color and the existing color on the screen.

As seen in Figure 2.1 the stages are color-coded. The stages with a green color
are the stages which we, as the programmer, have full control over. The stages
with a red color we only have limited control over and the �nal framebu�er
stage in purple is optional.

The limited control over the red stages means that we can, at the most, only
control their parametrization. To illustrate the di�erence, in the vertex shader
stage we have full control over what happens to the vertex before it passes to the
next stage with the means of the vertex shader program, whilst at the fragment
operation stage we can only turn the various test on and o� with the means of
parameters.

For our test game we will not use frame bu�ers as they are used for more
complex post-render e�ects and such. These can really only be optimized for
speci�c post-render e�ects and implementations - for example how much frame-
bu�ers are needed, the actual implementation of the e�ect in the vertex and

13

fragment shader. This is too diverse from game to game to make a test case to
represent this.

The green stages give us full control, so we can analyse these stages to see
what we can do there to improve Qg. So we will at least analyse the vertex
shader and bu�er objects stage and the fragment shader and textures stage.
For the red stages we must determine wether or not they have some form of
parameterization and wether they can be varied in the context of a 2D platform
game.

Looking at the GL ES2.0 functions and their documentation there is no
parameter for us to vary for the primitive assembly stage [?]. For the ras-
terizer stage only the width of rasterized lines can be varied by means of the
glLineWidth function. As we are not interested in drawing the lines and meshes
for our platform games, but rather use textures instead, this too is of no use
for us. The fragment shader o�ers multiple parameters to switch tests such as
blending and depth on or o�. As our platform game uses textures and colors
and multiple layers we can expect to have some use for blending and depth. We
can analyse these tests and the parameters.

So possible challenges can be found in the following stages in the rendering
pipeline:

� The Vertex Shader and Bu�er Objects

� The Fragment Shader and Textures

� Fragment operations.

2.3.1 Vertex Shader and Bu�er Objects

The vertex shader could be optimized in the following respects:

� reduce number of vertices

� Optimize the user-de�ned vertex shader program.

The bu�er objects could be optimized in the following respects:

� reduce bu�ered data

� tightly pack bu�ered data.

Both the vertex shader and bu�er object can be optimized by a reduction
of data. But how much data do we have in the �rst place? Imagine a typical
2D platform game scene as seen in Figure 2.2.

14

Figure 2.2: Analysis of number of vertices in a typical 2D platform game scene.
On the left a typical game scene, on the right the same scene stripped from
textures only showing estimation of vertices

Most objects are just simple rectangles consisting of just 4 vertices function-
ing solely as a frame to map a texture over. In the case of our platform game
the ground is the most complex shape, but it doesn't even hold a candle to the
complexity of even a simple 3D environment seen in Figure 2.3.

Figure 2.3: Sketch of lines and vertices in a simple 3D game (Temple Run)

So not only would it be impossible to make our shapes even less complex by
reducing the number of vertices - it probably wouldn't improve a whole lot as
3D games such as Temple Run seen in Figure 2.3 show little to no performance
issues dealing with far more complex geometry. Therefore we will not look to
optimize this.

For this same reason we will not look how to optimize the storage in the
bu�ers. There is just too little data to store to spend time on optimizing this
at this point.

15

The vertex shader program also can not be optimized. In most 3D applica-
tions the program is used to perform calculations for lighting and other e�ects.
In case of our simple 2D game the vertex shader only converts the vertices to
screen-space and interpolates the texture coordinates over the fragments. Both
of which we can not do without.

2.3.2 Fragment Shader and Textures

The fragment shader could be optimized in the following respects:

� Optimize the user-de�ned fragment shader program.

Note that following RA we can only reduce the amount of fragment by either
reducing the amount of vertices or adjust them to change the resulting primitive
shapes. So we can not optimize this.

The fragment shader program in our case only performs a single texture
lookup per fragment in order to calculate the �nal color for the fragment. We
can not do without this. Therefore the fragment shader program can not be
optimized.

The textures could be optimized in the following respects:

� Resolution

� Format

� Parameters

All of these variations could possibly a�ect both Qv and Qi. Therefore these
topics deserve more attention.

- Texture resolution is the amount of detail that a texture image has. The
higher the resolution, the more detail can be seen in the texture image.
Resolution of a texture image can be described in various ways. In this
thesis, when I refer to the resolution of a texture image, I refer to the pixel
resolution. The pixel resolution is the number of pixels in the image, often
described as two positive integers with the �rst one being the number of
pixel columns, or the width of the image, and the other the number of
pixel rows, or the height of the image. For example an image with 512
pixel columns and 1024 pixel rows would have a resolution of 512 by 1024
pixels or simply 512 x 1024. It would be interesting to see how varying
the resolution might a�ect the rendering speed.

- Texture format is the format the texture is stored in. One could picture
an image as a large 2D array, each index representing a pixel in the image.
The entry for this value usually represents a color value. The entry could
for example be red, green and blue colors. Internally we can chose to store
these images in a di�erent format than their external format. As some
formats are smaller than others it is interesting to see if and how this will
a�ect the rendering speed.

- Texture paramaters are parameters which can be set in OpenGL per
loaded texture. These parameters are used to control how the texture
is treated in certain circumstances. We can vary these and study the
e�ect on the rendering speed.

16

So for the fragment shader and textures stage important factors are:

� Texture resolution

� Texture format

� Texture parameters

2.3.3 Fragment Operations

In the fragment operations stage the following operations are performed.

� Depth testing

� Stencil testing

� Blending

We can in�uence these operations by means of changing parameters.

- Depth testing is used for depth management. It used an additional bu�er
called the depth bu�er. Before a fragment is written, the depth value of
this fragment is compared to the existing depth value in the depth bu�er.
If for example the value in the bu�er is smaller, it means that another
fragment which is 'closer' is already written in the color bu�er and this
our fragment is discarded. This way objects which are far away will appear
to be behind near objects, in whichever order we draw them. Depth testing
can be either turned on or o�. As 2D games use an ortogonal projection
there is no actual depth involved. However, there is a certain order in
which we want things to appear. Should grass for example appear in front
of the player or behind? In order to achieve this we would normally have
to sort our list of objects to �t our needs. We could however abuse the
depth testing to just give our objects a depth value (which doesn't matter
as the projection is orthogonal) and we no longer have to worry about the
drawing order. This would save us from having to implement an e�cient
sorting mechanism, so this topic deserves further attention.

- Stencil testing introduces another bu�er called the stencil bu�er. This
bu�er in contrast to the color and depth bu�er holds values with appli-
cation speci�cs meanings. Depending on a comparance between a certain
reference value and a value in the stencil bu�er (called the stencil test) a
fragment is either passed on or discarded. In games this is primarily used
for shadows in 3D application. In a 2D platform game there is no direct
use for the stencil bu�er and test. Hence, we will not test it.

- Blending is used to perform a blend between a new incoming fragment
color in the color bu�er and the color already present at that location.
This may be, for example, the color of the background or the color of an
object previously drawn. The blending is performed based on a blending
equation, which has te be evaluated for every fragment drawn. Due to
these extra calculations the rendering speed might su�er. Blending can
be turned on or o� and the equation can be changed. This topic deserves
attention.

17

So for the Fragment Operations important factors are:

� Depth testing

� Blending

18

Chapter 3

Optimalization Strategies

In Chapter 2 we outlined that the most important factors which may in�uence
Qi and Qv are as follows:

� Texture Resolution

� Texture Format

� Texture Parameters

� Blending

� Depth testing

In this chapter we will study the e�ect of these factors on the Qi and Qv.
We consider our cost function f : RA→ Qg to be approximated by

f : (Texture Resolution, Texture Format, Texture Params,Blending,Depth Testing)→ Qg

In order to study this function we will vary each of these factors seperately.
By doing so we hope to understand how the overall quality is a�ected by these
factors.

19

3.1 Texture Resolution

Figure 3.1: High resolution (left) versus low resolution (right)

Higher resolution texture images, so more detailled texture images, make for
a better visual quality as seen in Figure 3.1. So to get the best visual quality
possible, we need the highest resolution texture images as possible. Here we are
limited by a few factors.

� The hardware limitation on texture sizes of the device's GPU will prevent
us from loading in texture images which surpass this limitation.

� The Android heap size of the device will prevent us from allocating too
much space for the texture image, which we will need for reading the image
data from the image �le.

But not only are we limited for the maximum resolution, we are also limited
in which resolutions we can choose at all. In older hardware it was required for
each texture image's dimensions to be a power of two. Meaning that

∃n,m : width = 2n ∧ height = 2m

This requirement no longer holds true for more recent hardware however
it does for some older smartphones. Also the OpenGL ES 2.0 documentation
states:

if the width or height of a texture image are not powers of two and
either the GL_TEXTURE_MIN_FILTER is set to one of the func-
tions that requires mipmaps or the GL_TEXTURE_WRAP_S or
GL_TEXTURE_WRAP_T is not set to GL_CLAMP_TO_EDGE,
then the texture image unit will return (R, G, B, A) = (0, 0, 0, 1).

So, if we were to chose textures that have non power of two dimensions, we are,
if not directly restricted by hardware, restricted in our available options. For
the sake of portability and leaving all our options open I will only use texture
images which have power of two dimensions.

In order to determine the maximum texture size I tried loading di�erent
image sizes on three di�erent devices. If a texture was loaded and displayed it

20

means that the image could �t the heap and loaded to the device's GPU and
is counted as succes. If an insu�cient memory error was thrown or the image
would not show the image was most likely too big and this is counted as a
failure. The results can be seen in Table 3.1 and based on these results I chose
for a maximum texture resolution of 2048 x 2048.

Device 512 x 512 1024 x 1024 2048 x 2048 4096 x 4096 8192 x 8192

HTC Legend X X X × ×
Sinvigo R75 X X X × ×
Samsung GT-i9300 X X X X ×

Table 3.1: Results of attempting to load several di�erent resolution images on
di�erent devices. Succes means the texture was both loaded and displayed.

So our maximal achievable texture resolution is 2048 x 2048, and this will
result in the highest Qv in terms of texture resolution. However, when using
such high resolution texture images might cause our rendering performance to
decrease. Especially when looking at the concept of multiple layers, which might
quickly increase the quantity of such textured objects on a single screen. Imagine
a background image of the horizon, a mountain in the layer on top of that, trees
on top of that and multiple other layers of trees to make the forest look deeper
and �nally some plants in the foreground - all high resolution textures. Now the
�rst solution would be to see how much the rendering performance increases as
we lower the texture resolution. From this results we could then �nd an optimal
resolution - one which still provides su�cient visual detail but does not cost too
much time to render. Note that this would ofcourse di�er on other devices. A
device with better hardware would probably be able to use higher resolution
textures.

3.1.1 Method

In order to measure the e�ect of texture resolution on the render speed I used
the following set-up. First I created a texture image with the chosen maximum
of 2048 x 2048. I used photo editing software to create a set of this texture
image scaled down to various resolutions. My �nal test set consisted of 11 the
texture image in 11 di�erent resolutions:

1. 64 x 64

2. 128 x 64

3. 128 x 128

4. 256 x 128

5. 256 x 256

6. 512 x 256

7. 512 x 512

8. 1024 x 512

9. 1024 x 1024

10. 2048 x 1024

11. 2048 x 2048

For the scene I used a rectange consisting of 4 vertices. This rectangle is �t
exactly to the screen - meaning the top left vertex of the rectangle is the top left
point of the screen and the bottom right vertex of the rectangle is the bottom

21

right point of the screen. This way I know exactly how much pixels are being
drawn on a single draw of this rectangle - ws×hs, where ws is the screen width
and hs is the screen height.

I draw this rectangle N times every frame to draw as many pixels per frame.
This way the measurement of render speed in pixels per second is more accurate.
The pseudo code for the drawing of the rectangle can be seen in Listing 3.1

Listing 3.1: Rectangle draw method

bind buffer objects;

bind texture;

start = currentTime(); //in milliseconds!

for(0 to N) {

draw rectangle;

}

time = currentTime() - start;

So using this method the number of pixel drawn per frame is thus ws×hs×N
and the render speed in pixels per second as follows:

ws × hs ×N × (1000/(time))

To increase accuracy I measure the average time over 100 frames. This
method is repeated for all of the chosen texture resolutions.

3.1.2 Results

The results of the time measurements with N = 100 on a Samsung GT-i9300
can be seen in Table 3.2 and the corresponding graph in Figure 3.2.

Resolution Average time (ms) Render speed (G pixels/s)

64 x 64 662.1 1.3919347531
128 x 64 667.8 1.3800539084
128 x 128 668.4 1.3788150808
256 x 128 669.3 1.376961004
256 x 256 673.9 1.3675619528
512 x 256 675.0 1.3653333333
512 x 512 676.2 1.3629103815
1024 x 512 681.4 1.3525095392
1024 x 1024 742.2 1.2417138238
2048 x 1024 1205.7 0.7643692461
2048 x 2048 2293.9 0.4017611927

Table 3.2

22

Figure 3.2: The e�ect of texture image resolution on the render speed

Surprisingly, the render speed seems fairly constant until we reach 1024 x
512. From this point, every increase in resolution results in a steep drop in
render speed. Varying from 64 x 64 all the way up to 1024 x 512 results in a
total decrease in render speed of only 2.832%, while taking only one more step
up from 1024 x 512 to 1024 x 1024 the decrease in render speed over just that
step is already 8.192%. This gets even worse with 43.485% from 1024 x 512 to
2048 x 1024 and 70.295% from 1024 x 512 to 2048 x 2048.

The step from 64 x 64 to 1024 x 512 results in an immense gain of visual
quality, comparable with the di�erence portayed in Figure 3.1. The di�erence
between 1024 x 512 to 1024 x 1024 is hardly noticable. The higher resolutions
show no noticable di�erences at all.

3.1.3 Conclusion

As we can see in the results, texture resolution can negatively a�ect the render
speed and thus Qi. This is the case for textures higher than 1024 x 512. Iron-
ically, from this same point the gain in visual quality Qv is minimal to none.
Now we could say that 1024 x 512 is the optimal texture resolution and should
use it for all our object. There is however something we're overlooking.

The surface we draw our texture on remains constant size. As our surface
covers the exact screen size of the mobile device we're testing on this constant
size is the screen width x screen height of our testing device. So this 'constant'
size is only constant for this particular device. So it is highly likely that our
optimal 1024 x 512 resolution we so proudly found is not at all so optimal for
other devices.

A quick run of our test on various other devices con�rms this, as seen in
Figure 3.3.

23

Figure 3.3: The e�ect of texture image resolution on the render speed on various
devices

So we can conclude that a too high texture resolution can negatively a�ect
Qi and a too low texture resolution can negatively a�ect Qv. There seems to be
some optimal texture resolution for a certain surface size. A possible solution
could be mipmaps, which we will discuss further in Section 3.2.

3.2 Texture Parameters

For each texture we can set various parameters with the glTexParameter func-
tion. The following four parameters can be changed:

� GL_TEXTURE_WRAP_S

� GL_TEXTURE_WRAP_T

� GL_TEXTURE_MIN_FILTER

� GL_TEXTURE_MAG_FILTER

WRAP_S & WRAP_T

The GL_TEXTURE_WRAP_S and GL_TEXTURE_WRAP_T parameters
determine how a texture is wrapped over an object when the a texture coordinate
falls outside of the [0,1] range. GL_TEXTURE_WRAP_S determines the
behaviour for the texture coordinate s value (which corresponds to x in our 2D
environment) and GL_TEXTURE_WRAP_T for the t value (which would
then of course correspond to y). There are three di�erent options for both of
these parameters.

� GL_CLAMP_TO_EDGE

� GL_REPEAT

� GL_MIRRORED_REPEAT

24

The GL_CLAMP_TO_EDGE option will clamp any value which falls out-
side of the range. This basicly means any value < 0 will be set to 0 and any
value > 1 will be set to 1. GL_REPEAT will repeat the values. This is done
by simply ignoring the integer part of the value. Hence -1.67 will become 0.67
and 4.76 will become 0.76. GL_MIRRORED_REPEAT is similar to this but
it will check wether the integer part is odd or even. If it's odd the value is
set to 1 minus the fractional part of value if it is even is will be the same as
GL_REPEAT. This way the repeating texture is also being mirrored.

For normal texture images we would not have any particular use for these
texture images as our texture coordinates only range from 0 to 1. Even if we
would use them, it would be for such speci�c purposes that there is no choice
but to use it. Therefore I will not study this any further.

MIN_FILTER & MAG_FILTER

Figure 3.4: Di�erence between NEAREST (left half) and LINEAR (right half)

The GL_TEXTURE_MIN_FILTER and GL_TEXTURE_MAG_FILTER
specify which minify and magnify �lters to use respectively. These determine
how samples are derived from the texture image when the surface on which it
is drawn is smaller or larger than the texture respectively.

For the GL_TEXTURE_MAG_FILTER parameter there are the following
options:

� GL_NEAREST

� GL_LINEAR

The GL_TEXTURE_MIN_FILTER parameter can be set to one of the
following options:

� GL_NEAREST

� GL_LINEAR

� GL_NEAREST_MIPMAP_NEAREST

� GL_LINEAR_MIPMAP_NEAREST

25

� GL_NEAREST_MIPMAP_LINEAR

� GL_LINEAR_MIPMAP_LINEAR

GL_NEAREST will simply use the nearest texture element to the center of
the fragment being rendered. GL_LINEAR will �nd the four nearest texture
elements to the center of the fragment and use the weighted average. The visual
di�erence between these two �lters is displayed in Figure 3.4. GL_NEAREST
is noticably pixelated so Qv is higher for GL_LINEAR. In all previous test we
used the GL_LINEAR �lter for both minify and magnify.

The other options, which are only minify �lters, are used for a technique
called mipmapping.

Figure 3.5: Example of a mipmap texture

A mipmap is a pre-calculated set of images. The set conists of the main
image and versions of this image in lower resolution. For example a mipmap
of a 256 x 256 resolution texture image would consist of this image and ver-
sions of 128 x 128, 64 x 64 ... 4 x 4, 2 x 2 and 1 x 1. An example can
be seen in Figure 3.5. When we have generated such a mipmap, or rather
have OpenGL generate such a mipmap, we can use the mipmap options for the
GL_TEXTURE_MIN_FILTER parameter.

- GL_NEAREST_MIPMAP_NEAREST will �rst �nd the texture in the
mipmap which most closely matches the drawing surface and then takes
a texture element from this texture in a GL_NEAREST fashion.

- GL_LINEAR_MIPMAP_NEAREST will �rst �nd the two texture which
most closely match the drawing surface, take a texture element from both
in a GL_NEAREST fashion and use the weighted average of these two
values.

- GL_NEAREST_MIPMAP_LINEAR will �nd the texture in the mipmap
which most closely matches the drawing surface and takes a texture ele-
ment from this texture in a GL_LINEAR fashion.

- And GL_LINEAR_MIPMAP_LINEAR will �rst �nd the two texture
which most closely match the drawing surface, take a texture element
from both in a GL_LINEAR fashion and use the weighted average of
these two values.

26

3.2.1 Method

We will test the following texture parameters:

� GL_TEXTURE_MIN_FILTER

� GL_TEXTURE_MAG_FILTER

We will look at the following options for these �lters:

� GL_NEAREST

� GL_LINEAR

� GL_NEAREST_MIPMAP_NEAREST (MIN only)

� GL_LINEAR_MIPMAP_NEAREST (MIN only)

� GL_NEAREST_MIPMAP_LINEAR (MIN only)

� GL_LINEAR_MIPMAP_LINEAR (MIN only)

In order to test the di�erence in render speed for GL_NEAREST and
GL_LINEAR we will run the same test as described in Section 3.1.1 another
time, but change both the GL_TEXTURE_MIN_FILTER and the GL_-
TEXTURE_MAX_FILTER to GL_NEAREST. This way GL_NEAREST is
used for both the high resolution textures, which have to be mini�ed, as the
low resolution textures, which have to be magni�ed. We can compare these
results to the results we already found in Section 3.1.2, where we only used
GL_LINEAR.

To test the mipmap option for GL_TEXTURE_MIN_FILTER there is
no use in running the previous test, as the di�erent resolutions are present
in the mipmap. Instead we will let OpenGL generate such a mipmap from our
maximum resolution texture (2048 x 2048). Then instead of drawing all di�erent
resolution textures, we only need to draw the mipmap with the di�erent mipmap
options for GL_TEXTURE_MIN_FILTER and measure the time for this.

3.2.2 Results

GL_NEAREST vs. GL_LINEAR

Resolution Render speed GL_LINEAR GL_NEAREST

64 x 64 1.3919347531 1.3819163293
128 x 64 1.3800539084 1.3781965007
128 x 128 1.3788150808 1.3804673457
256 x 128 1.376961004 1.3767553033
256 x 256 1.3675619528 1.3792277761
512 x 256 1.3653333333 1.3683741648
512 x 512 1.3629103815 1.3679679383
1024 x 512 1.3525095392 1.3586908448
1024 x 1024 1.2417138238 1.2785620915
2048 x 1024 0.7643692461 0.792842395
2048 x 2048 0.4017611927 0.434204947

Table 3.3

27

Figure 3.6: The e�ect of texture image resolution on the render speed, for both
GL_LINEAR and GL_NEAREST as GL_TEXTURE_MIN_FILTER

Mipmapping

Figure 3.7: E�ect of di�erent mipmap �lters on render speed

3.2.3 Conclusion

There is no signi�cant di�erence in speed between using GL_LINEAR and
GL_NEAREST. As stated earlier in this section, Qv is higher for GL_LINEAR.
Therefore, we will use GL_LINEAR for the GL_TEXTURE_MAG_FILTER.

The results for mipmapping show that this is a very good way to automati-
cally �nd the optimal texture size mentioned in Section 3.1.2. GL_NEAREST_-
MIPMAP_NEAREST though the fastest, results in noticable visual artefacts.
This is because in essence, once it �nds the nearest texture it is the same as
GL_NEAREST. The other three options show no noticable visual di�erences.

28

Since GL_LINEAR_MIPMAP_LINEAR is signi�cantly slower the best op-
tions for the mipmap �lter are GL_LINEAR_MIPMAP_NEAREST and GL_-
NEAREST_MIPMAP_LINEAR.

3.3 Alpha Blending

The blended color is calculated using a blending equation:

Cr = Cs × S + Cd ×D

Where Cr is the resulting color, Cs is the new incoming color, the source

color and Cd is the old existing color, the destination color. S and D are the
source and destination factors respectively and can be set to various values.
These factors determine how much each color weighs in the equation. Colors
are treated as four-dimensional vectors with a dimension for each of the red,
green, blue and alpha values. So we can also write the blending equation as
follows, if:

Cs = (Rs, Gs, Bs, As)

Cd = (Rd, Gd, Bd, Ad)

S = (Sr, Sg, Sb, Sa)

D = (Dr, Dg, Db, Da)

Then:

Cr = (RsSr +RdDr, GsSg +GdDg, BsSb +BdDb, AsSa +AdDa)

Now imagine with blending enabled this blending equation will have to be
evaluated for every single pixel drawn to the screen. Each pixel might take a
little longer to be drawn and hence this could potentially lead to a decrease
in the overall rendering speed. The simplest solution would be to just disable
blending. This is possible, however this creates several undesired complications.

Transparancy and semi-transparancy depend on blending. A new incoming
transparant or semi-transparant source color should obviously not just simply
replace the destination color. Instead the resulting color should be a blend
as such that it would appear that one can see the destination color through
the source color. There are many ways to achieve something like this with
blending by choosing di�erent values for S and D. Most often S is chosen as
GL_SRC_ALPHA, which would look like:

S = (As, As, As, As)

This way the higher the alpha value, or the visibility so to speak, of the
source color, the higher the weight of this color in the equation, the more of the
color you would see in the resulting color and vice versa. The rest of the total
weight, GL_ONE_MINUS_SRC_ALPHA, would be given to the destination
color:

D = (1−As, 1−As, 1−As, 1−As)

A possible workaround which would allow us to disable blending is alpha
testing. Alpha testing is testing each new incoming source pixel for it's alpha

29

value. If this value does not meet a given set of requirements the pixel is simply
discarded and the old existing color remains. This way we can for example elim-
inate pixel values with alpha < 1.0 and we have a transparency e�ect without
having blending enabled. Another plus side is that if this were to work succes-
fully we would no longer need to sort the objects before drawing but we can
rely on OpenGL's depth (Z-) bu�er. This because the color is simply discarded
so the depth bu�er would not be written with a value. However this technique
would yield some poor results for semi-transparent pixels in the texture. Where
these pixel colors would normally, and are expected to, blend with the exist-
ing color to make it seem you can see through it, these colors are now either
discarded or shown fully opaque. This could result in some strange visual arti-
facts. This is only a solution for objects without any semi-transparent pixels.
Considering these cons, I will not test this.

We could also eliminate all alpha pixels by using more vertices to completely
de�ne the shape, instead of letting the visual shape of an object depend on it's
alpha pixels. Some algorithm that constructs the vertices for such a shape would
have to be implemented. This would however potentially lead to very complex
shapes. In case of animations every frame would now also need their own vertex
bu�er - as normally they are just two di�erent image mapped upon the same
rectangle. Also, this does not solve the problem for semi-transparent pixels in
the texture image. Considering this, I will not test this.

So we can not completely turn of blending. We could however �ag objects
with completely opaque rectangular textures and only disable blending for such
objects, as they don't need it. This way if it turns out to be faster, Qg would
improve as a subset of S would render faster.

3.3.1 Method

Using the same scene as described in Section 3.1.1, using a 2048 x 2048 texture I
measured the render speed for both blending enabled and blending disabled.The
device I used for testing was a Samsung GT-i9300.

3.3.2 Results

Blending Average time (ms) Render speed (G pixels/s)

On 23696 0.3889264011
O� 23410 0.3936779154

Table 3.4

30

Figure 3.8: Render speed for both blending enabled and disabled

We see a 1.222 % increase in speed when turning o� blending.

3.3.3 Conclusion

The results show only 1.222 % increase with blending turned o�, even though
the number of calculations has decreased drasticly. Most likely there is some
built in optimalisation for blending - maybe even hardware.

So it is best to just turn blending on. The very small increase in speed is
not worth of changing the entire structure of the graphics engine for. If we were
to �ag all rectangle opaque images and switch blending on and o� the 1 percent
increase would probably already be lost due to the time this would take.

3.4 Texture Format

The default way of loading a texture image on Android is using the BitmapFac-
tory class which will return an instance of Bitmap object. The Bitmap object is
basicly a wrapper class for a 2D bit signed integer table (2D array) representing
the texture image. The dimensions of this table are w×h where w is the width
of the image and h is the height of the image. So each integer entry within
this table represents a single pixel of the image. Within this 32-bit integer the
red, green, blue and alpha values of a single pixel are encoded so to speak. The
integer is basicly divided in four, with each color value occupying 8 bits (or 1
byte) ordered red, green, blue, alpha. So the texture image is stored in a 4
bytes (32-bit) RGBA format. I will refer to this format as the texture image's
external format.

A texture image can be stored internally in a di�erent format than it's
external format. This is called the internal format of the texture image. OpenGL
ES 2.0 support �ve di�erent internal formats which can be seen in Table 3.5.

31

Base internal format RGBA Internal Components

ALPHA A A

LUMINANCE R L

LUMINANCE_ALPHA R, A L, A

RGB R, G, B R, G, B

RGBA R, G, B, A R, G, B, A

Table 3.5: The di�erent internal texture formats and their components which
are supported by OpenGL ES2.0

Here we can see that RGBA stores the most components totalling 4 bytes,
if we assume every internal component to be a single unsigned byte (Which
is quite likely so). ALPHA and LUMINANCE only store a single component
hence only a single byte. This reduction might also reduce the time it takes for
the fragment shader performs a texture lookup - as less data has to be looked
through and transfered. Therefore it might be interesting to analyse wether or
not we can represent our textures in a more e�cient format and wether or not
this will result in a signi�cant increase in render speed. First we will look at
the di�erent internal formats to discuss wether or not we can use this format.

ALPHA

Figure 3.9: A texture in ALPHA for-
mat.

The ALPHA format stores only the al-
pha value of each texture element. This
alpha value At represents the visibil-
ity of this texture element. When the
fragment shader performs a lookup on
a texture stored in this format the re-
sulting color Cl is (0, 0, 0, At). Thus the
colors will range from (0, 0, 0, 0), which
is fully transparent black, to (0, 0, 0, 1),
which is fully opaque black.

This format stores only a single un-
signed byte per texture element mak-
ing it the smallest format available ty-
ing with LUMINANCE. However, us-
ing this format will cause us to lose all
of our red, green and blue values. This
is undesirable for most of our texture
images. Textures with colors solely
within the color range of this format

might still be stored in this format. One could think of shadow textures as a
possible example that could be stored in this format. However, for a simple
platform game I can not think of possible applications of this format. It is po-
tentially a lot faster than RGBA with 4 times a decrease in size, but so does
LUMINANCE - which o�ers us more useful applications. For now I will discard
the ALPHA format.

32

LUMINANCE and LUMINANCE_ALPHA

Figure 3.10: A texture in LUMINANCE format (left) and a texture in LUMI-
NANCE_ALPHA format (right).

The LUMINANCE format stores only the luminance value of each texture ele-
ment. This luminance value Lt with Lt ∈ R+ between 0 and 1 representing the
luminous intensity of this texture element. When the fragment shader performs
a texture lookup on a texture stored in this format the resulting color Cl is
(Lt, Lt, Lt, 1). Thus the colors will range from (0, 0, 0, 1), which is fully opaque
black, to (1, 1, 1, 1), which is fully opaque white. The colors in between are all
greyscale (black and white) colors. Along with the ALPHA format this is the
smallest format, but once again we lose too much color information to store
most of our texture images in this format. Textures with solely black and white
colors could be stored in this format however we will also lose the alpha value,
so we will lose all transparency and semi-transparency in the image. Therefore
we can only store a texture image in LUMINANCE format if this texture only
contains black and white colors and for all of those colors alpha = 1.

This transparency issue can be adressed by using LUMINANCE_ALPHA
format instead. This will store the luminance value of each texture element
along with it's alpha value.

Figure 3.11: A texture in RGB format.

RGB

The RGB format stores the red, green
and blue values of each texture ele-
ment. These red, green and blue val-
ues will be equivalent to those in the
original format Rt, Gt and Bt. Only
the alpha channel is lost. The result-
ing color for a texture lookup in the
fragment shader will be (Rt, Gt, Bt, 1).
Because of this transparent or semi-

33

transparent texture elements will now
be completely visible. This can clearly
be seen in Figure 3.12, where the fully
transparent pixels of the texture have
become black - (0, 0, 0, 0) to (0, 0, 0, 1).
This results in the same problem with
transparency as the LUMINANCE for-

mat does. So this format can only be used for textures that only consist of fully
opaque texture elements.

RGBA

Figure 3.12: A texture in RGBA for-
mat.

RGBA is identical to the external for-
mat. This is the default value for load-
ing in textures in OpenGL ES2.0 on
Android. This format is the largest for-
mat among the possibilities, 4 bytes,
but even though it may not decrease
our rendering speed there is a pro to us-
ing this format. There is no conversion
needed as the texture image is already
in this format in the Bitmap class so
this will decrease the loading time on
startup. Also, there is no loss in tex-
ture data. As the previous discussed
texture formats are limited to very spe-
ci�c textures.

LUMINANCE only black and white,
no alpha

LUMINANCE_ALPHA only black
and white

RGB no alpha

As discussed earlier most of our objects depend on their alpha value for their
shape (ALPHA BLENDING REFERENCE HERE). So in most cases we can
only use RGBA. However, if the other formats prove signi�cantly faster then it
might be worth it to parametrize this option for the scene designer. This way
Qg will still increase higher as Sx ⊂ S, the set of all scenes with textures which
can use these smaller formats, will render faster.

3.4.1 Method

We will measure the performance of the following texture formats:

� LUMINANCE

� LUMINANCE_ALPHA

� RGB

34

� RGBA

To do this we use a method similar to the one described in Section 3.1.1,
but instead of varying the texture resolution, we will vary the texture format.
The texture format can not be changed during run-time, but has to be set when
the texture is loaded, so with varying the texture format we mean switching
between four instances of the same texture each loaded with a di�erent format.

As the default format is RGBA and OpenGL ES2.0 does not provide a
conversion mechanism, we have also added some functions to convert the RGBA
texture to the needed internal formats. The time to convert these textures is
not included in the results as we are only interested in the gain in speed during
the actual game.

3.4.2 Results

Blending Average time (ms) Render speed (G pixels/s)

RGBA 6674 1.3808810309
RGB 6734 1.3685773686
LUMINANCE_ALPHA 6256 1.4731457801
LUMINANCE 6090 1.5133004926

Table 3.6

Figure 3.13: The e�ect of internal texture format on the render speed

No signi�cant di�erence between RGBA, the original format, and RGB -
though strangely a small decrease in render speed (0.891%). Both the LUMI-
NANCE formats show better results. From RGBA to LUMINANCE_ALPHA
shows a 6.682% increase in render speed and to LUMINANCE even 9.589%.

35

3.4.3 Conclusion

The results show that the LUMINANCE_ALPHA and LUMINANCE formats
render only a little faster - but enough to be interesting. Because even though
there is only a slight gain in Qi there is no loss in Qv whatsoever, so there is no
reason not to use these formats.

The downside is that these formats can only be used on very speci�c textures
and conversion is needed which could take long. The latter could be solved by
already storing these textures externally in the LUMINANCE format.

3.5 Depth Testing

If we want things on the screen to appear in a certain order, for example grass is
in front of the player and trees are behind him, then we have to draw the objects
in this order - from back to front. Otherwise the tree would for example just be
drawn over the player - overwriting his pixels in the color bu�er. To maintain
such a drawing order we need some sort of sorting mechanism. However, sorting
all the objects in the game could be quite a hit on performance - especially when
new objects spawn a few times every frame.

As mentioned in Section 2.3.3 we could try to abuse OpenGL's depth testing
to prevent us from having to sort our objects ourself. We could easily enable
depth testing use the depth value of every object as the z-coordinate. The depth
test will now discard any incoming pixels on that position in the bu�er with a
higher depth.

However, there is one problem. Depth testing does not work well with blend-
ing. As a transparent pixel is drawn, it does write it's depth in the depth value.
Therefore, any other pixel to be drawn behind the transparent pixel will be
discarded by the depth test. However, this new pixel should be visible as the
previous one was transparent.

If we were to turn of blending it should work. However, we concluded in
Section 3.3.3 that we can not simply turn o� blending in our context.

3.5.1 Conclusion

Since depth testing con�icts with blending, and we already concluded that we
can not turn of blending there is no way we can use depth testing to do our
sorting for us.

36

Chapter 4

Conclusion & Discussion

We have studied, analyzed and tested the following factors of a graphics engine:

� Texture Resolution

� Texture Format

� Texture Parameters

� Blending

� Depth testing

For each of these factors we have drawn a conclusion on wether or not they
could be tweaked to gain performance while maintaining a high visual quality.
And if yes, how one could do so.

- Texture resolution only start to signi�cantly a�ect the render speed nega-
tively when the resolution is higher than some value. This value depends
on the size of the drawing surface. As texture resolutions higher than that
value would ultimately be mapped on the smaller surface, there is mini-
mal to no gain in Qv to use any higher resolution textures than needed.
To �nd the optimal resolution for a texture given a surface we propose
mipmapping as a solution.

- Wether using GL_LINEAR or GL_NEAREST as the minify or mag-
nify �lter for a texture makes no di�erence in performance. However,
the visual quality for GL_NEAREST is considerably lower than that
of GL_LINEAR. Therefore we will use GL_LINEAR as our magnify
function. For our minify �lter we also looked at various mipmap �l-
ters. GL_NEAREST_MIPMAP_NEAREST is the fastest though shows
noticable visual artefacts. The other three options show no noticable
visual di�erences. Since GL_LINEAR_MIPMAP_LINEAR is signi�-
cantly slower the best options for the mipmap �lter are GL_LINEAR_-
MIPMAP_NEAREST and GL_NEAREST_MIPMAP_LINEAR.

- Wether blending is turned on or o� makes no signi�cant di�erence for
the performance. Turning it o� causes a lot of undesired complications.
Therefore we will leave blending turned on.

37

- A little speed can be gained by storing textures in smaller format such as
LUMINANCE and LUMINANCE_ALPHA. However, this optimalisation
can only be done for a very select number of textures, which have limited
colors and thus �t in such format. Also, conversion is required.

- We can not use depth testing to do out depth sorting for us, as it con�icts
with blending. As we concluded, blending can not be turned o� in our
context. Therefore, we should sort our objects ourself.

So overall we see that we can gain some speed, but not very much. High
resolution textures and blending are required to maintain a high visual quality.
We can improve some in the area of high resolution textures by using mipmaps
and storing them in smaller formats if possible. In the context of such a simple
2D platform game there are no other ways to signi�cantly improve the graphics
engine for such a game. We are now limited by the hardware of the device in
which scenes we can draw.

Even though 2D platform games are much simpler than 3D games, optimal-
isation of such a game proofs di�ucult as there are so few options which we can
change to gain speed without losing visual quality.

4.0.2 Limitations

The problems we analyzed only cover a simple 2D platform game concept. How-
ever, most 2D platform games use complex techniques on top of this basic con-
cept to create richer scenes and a higher visual quality, for example animations
and post-render e�ects. These techniques each come with new and unique chal-
lenges and issues, which are not covered in this thesis. These techniques are
more complex and could provide more dimensions which we can optimize.

The graphics engine we analyzed and tested is using the OpenGL ES 2.0
API. Other graphics API's or other versions of the OpenGL ES API might o�er
di�erent or more functionality, which might o�er more dimensions for optimal-
ization.

4.0.3 Future work

There is not much that can be optimized on the graphics engine for MAGE
as concluded in this thesis. For further optimalization we can only look at the
other aspects in the game engine, such as the game logic or the physics engine.

We will also expand MAGE to support animations and various post-render
e�ects, including for example shadow and lighting e�ects. As mentioned in the
Limitations section this will o�er new and more complex challenges and more
dimensions for optimalization.

38

Bibliography

[1] Daniel Boutros. A detailed cross-examination of yesterday and today's best-
selling platform games. http://www.gamasutra.com/view/feature/1851/
a_detailed_crossexamination_of_.php, August 2004.

[2] Gamesradar. Gaming's most important evolutions. http://www.

gamesradar.com/gamings-most-important-evolutions/, October 2010.

[3] Google Play Store. https://play.google.com/store/apps.

[4] Kyle Hilliard. Apple Awards Rayman Jungle Run Game Of The
Year. http://www.gameinformer.com/b/news/archive/2012/12/13/

apple-awards-rayman-jungle-run-game-of-the-year.aspx, December
2012s.

[5] Ingrid Lunden. Angry birds maker rovio says 2012 sales
up 101% to $ 195m with merchandising, ip 45% of that;
net pro�t $ 71m. http://techcrunch.com/2013/04/03/

rovios-revenues-up-101-to-195m-non-games-45-of-that-net-profit-71m/,
April 2013.

[6] OpenGL Rendering Pipeline Overview. http://www.opengl.org/wiki/

Rendering_Pipeline_Overview.

[7] Wybe Schutte. Mobile Games Trend Report. http://www.newzoo.com/

trend-reports/mobile-games-trend-report/, March 2012.

39

