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Abstract

Coherent states are quantum mechanical states with properties close to the
classical description. Before coherent states are considered there will be some
theory about canonical transformations and Poisson brackets. Transformations
that leave the Poisson bracket invariant are symplectic matrices and form for n
dimensions the symplectic group Sp(2n,R). Sp(2,R) is isomorphic to SU(1,1),
which has various representations. Coherent states can be created from the
vacuum state by a displacement operator, which is in the super-Lie algebra of
SU(1,1). Coherent states have minimal uncertainty and can be transformed to
squeezed states. Squeezed states are states with one of its standard deviations
smaller while the minimal uncertainty relation still holds. Squeezing can be
done by the squeezing operator, which is in SU(1,1). Squeezed states can for
example be used as qubit states or to amplify measurement signals without
amplifying the noise.
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Chapter 1

Introduction

In this bachelor thesis we are going to discuss some topics of quantum optics.
Before considering quantum optics, we start with some theory about phase
space. Here will consider canonical transformations and Poisson brackets and
some properties of both. Next we will consider coherent states. Those type of
states are of interest since they are quantum mechanic states with properties
close to classical mechanical states. Coherent states have a circular area of
uncertainty, which turns out to be an area of minimum uncertainty. After
considering the coherent state we will give an introduction to some symmetry
groups which will later on show to be useful. In the fourth chapter we will focus
on squeezed states. Those type of states can be created out of coherent states by
the use of a squeeze operator. Squeezed states can produce a variance smaller
than the variance of the coherent states. This nice property can for example be
used by measuring very weak signals. In theory the signal can then be ampli�ed
without amplifying the uncertainty. The last chapter we will therefore spend
on some applications of the squeezed state.
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Chapter 2

Phase space

In classical mechanics a physical system is described by states which are points
of its phase space. Phase space is a space in which all possible states of a
system are represented. Each possible state of the system corresponds to an
unique point in phase space. Usually the phase space consists of all possible
values of position variables, qi, and momentum variables, pi. The Hamiltonian
mathematical function or operator can be used to describe the state of a sys-
tem. In classical mechanics, the Hamiltonian is a function of coordinates and
momenta of bodies in the system, and can be used to derive the equations of
motion for the system. In quantum mechanics, the Hamiltonian is an operator
corresponding to the total energy of the system. Hamiltonian formulations of
classical mechanics serves as a point of departure for both statistical mechanics
and quantum mechanics.[1]

2.1 Canonical transformations

The Hamiltonian is a function dependent on the coordinates qi and momenta
pi, so in general we have H = H(q1, q2, . . . , qn, p1, p2, . . . , pn, t). There is one
type of solutions of the Hamilton's equations that is trivial, namely if all co-
ordinates qi are cyclic. (A coordinate is cyclic if it doesn't explicitly show up
in the Lagrangian and thus the generalized momentum becomes a conserved
quantity. The generalized momentum is de�ned as the momentum expressed in
the coordinates selected such that number of independent coordinates is mini-
mal. Such coordinates are called generalized coordinates). The number of cyclic
coordinates can depend upon the choice of generalized coordinates. For each
problem there may be one particular choice for which all coordinates are cyclic.
The obvious generalized set of coordinates will normally not be cyclic, so we
have to �nd a speci�c procedure for transforming from one set of variables to
some other set of variables that may be more suitable. In the Hamiltonian for-
mulation the coordinates and the momenta are both independent variables. We
need to do a simultaneous transformation of the independent coordinates and
momenta, qi, pi to a new set Qi, Pi, with invertible equations of transformation

Qi = Qi(q, p, t), Pi = Pi(q, p, t). (2.1)

3



Equations 2.1 de�ne a point transformation of phase space. Transformations are
only of interest if the new coordinates Qi, Pi are canonical coordinates. Canoni-
cal coordinates is de�ned as the set of the generalized coordinates together with
their conjugate momenta pi = ∂L∂q̇i. This requirement will be satis�ed if there
exists some function K(Q,P, t) such that the equations of motion in the new
coordinates are in the Hamiltonian form

Q̇i =
∂K

∂Pi
, Ṗi = − ∂K

∂Qi
(2.2)

The function K is the Hamiltonian of the new set. Equations 2.2 must be
the form of the equations of motion in the new coordinates and momenta no
matter what the particular form of H is. We then have that the transformations
are problem-independent. As is shown in a most classical mechanics textbooks
(like [1] and [2]), Qi and Pi must satisfy Hamilton's principle to be canonical
coordinates. Hamilton's principle can be stated as

δ

∫ t2

t1

(PiQ̇i −K(Q,P, t))dt = 0, (2.3)

where summation over i is implied. For the old coordinates we have a similar
principle:

δ

∫ t2

t1

(piq̇i −H(q, p, t))dt = 0, (2.4)

The simultaneous validity gives a relation of the integrands of the form

λ[piq̇i −H(q, p, t)] = PiQ̇i −K(Q,P, t) +
dF

dt
, (2.5)

where F is any function of the phase space coordinates with continuous second
derivatives, and λ is a constant independent of the canonical coordinates and
the time. With the aid of a suitable scale transformation, it will always be
possible to restrict our attention to transformations of canonical coordinates for
which λ = 1. When we simply speak of a canonical transformation we assume
λ = 1. If λ 6= 1 we speak of an extended canonical transformation. Thus, for
canonical transformations we are now left with the relation:

piq̇i −H(q, p, t) = PiQ̇i −K(Q,P, t) +
dF

dt
. (2.6)

The function F is useful for specifying the exact form of the canonical trans-
formation only when half of the variables (except time) are from the old set
and half from the new. It then acts, as it were, as a bridge between the two
sets of canonical variables and is called the generating function of the trans-
formation. To show how the generating functions can specify the equations of
transformation, we are going to treat an example that is called a basic canonical
transformation. Suppose F is given as

F = F1(q,Q, t). (2.7)

Then equation 2.6 becomes

piq̇i −H(q, p, t) = PiQ̇i −K(Q,P, t) +
dF1

dt

= PiQ̇i −K(Q,P, t) +
∂F1

∂t
+
∂F1

∂q1
q̇i +

∂F1

∂Q1
Q̇i.

(2.8)
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Figure 2.1: Properties of the four basic canonical transformations.[2]

Since the old and new coordinates, qi and Qi, are mutually independent the
coe�cients q̇ and Q̇ needs to vanish, so

pi =
∂F1

∂q1
, (2.9)

Pi = − ∂F1

∂Q1
, (2.10)

leaving �nally

K = H +
∂F1

∂Q1
, (2.11)

Assuming the equations 2.9 can be inverted, they could then be solved for the
n Qi's in terms of qi, pi and t. Once the relations between the Qi's and the
old canonical variables (q, p) have been established, equations 2.10 can be used
to give the n Pi's as functions of qi, pi and t. Finally equation 2.11 gives the
relation between the new Hamiltonian K and the old Hamiltonian H. This
procedure described shows how, starting from a given generating function F1

the equations of the canonical transformations can be obtained. Usually the
process can be reversed and we can derive an appropriate generating function
from given equations of transformation. The corresponding procedures for the
remaining three basic types of generating functions are obvious and the general
results are displayed in �gure 2.1.
Not all transformations can be expressed in terms of the four basic types. Some
transformations are just not suitable for descriptions in terms of these or other
elementary forms of generating functions. Furthermore it is possible, and for
some canonical transformations necessary, to use a generating function that is a
mixture of four types. It is then a mixture in the sense that di�erent coordinates
can use di�erent types of the generating function. For this reasons we de�ne
F as a unspeci�ed function of 2n-coordinates and momenta with continuous
second derivatives. In formula:

F := F (q1, . . . , qn, p1, . . . , pn, Q1, . . . , Qn, P1, . . . , Pn) (2.12)

An instructive transformation is provided by the generating function of the
�rst type, F1(q,Q, t), of the form

F1 = qiQi, (2.13)
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which gives the transformation equations (from 2.9 and 2.10)

pi =
∂F1

∂q1
= Qi, (2.14)

Pi = − ∂F1

∂Q1
= −qi. (2.15)

The transformation interchanges the momenta and the coordinates! This simple
example should emphasize the independent status of generalized coordinates
and momenta. They are both needed to describe the motion of the system in
the Hamiltonian formulation. The distinction between them is basically one of
naming.The names can be shift around with at most no more than a change
in sign. A transformation that leaves some of the (q, p) pairs unchanged is a
canonical transformation of a "mixed" form.[1]

2.2 Symplectic transformations

As an introduction to symplectic transformations we start considering canonical
transformations (transformations that preserve the form of Hamilton's equa-
tions) in which time does not appear in the equations of the transformation.
Those type of canonical transformations are called restricted canonical trans-
formations and give the following equations of transformation:

Qi = Qi(q, p) (2.16)

Pi = Pi(q, p), (2.17)

with the inverses
qi = qi(Q,P ) (2.18)

pi = pi(Q,P ). (2.19)

In a restricted canonical transformation the Hamiltonian does not change. By
equation 2.2 the transformation will be canonical if

Q̇i =
∂K

∂Pi
=
∂H

∂Pi
. (2.20)

We have

Q̇i =
∂Qi
∂qj

q̇j +
∂Qi
∂pj

ṗj =
∂Qi
∂qj

∂H

∂pj
− ∂Qi
∂pj

∂H

∂qj
:= {Q,H}, (2.21)

where {Q,H} represents the Poisson bracket, which will be explained in the
next section. Furthermore we have

∂H

∂Pi
=
∂H

∂qj

∂qj
∂Pi

+
∂H

∂pj

∂pj
∂Pi

, (2.22)

so the transformation is canonical, only if

∂Qi
∂qj

=
∂pj
Pi

,
∂Qi
∂pj

= −∂qj
Pi

. (2.23)
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In a similar way we can compare Ṗi with the partial of H with respect to Qj to
get the conditions

∂Pi
∂qj

= −∂pj
Qi

,
∂Pi
∂pj

=
∂qj
Qi

. (2.24)

The algebraic manipulation that leads to equations 2.23 and 2.24 can be pre-
formed in a compact manner if we make use of the symplectic notation for the
Hamiltonian formulation. If η is a column matrix with the 2n elements qi, pi
then Hamilton's equations can be written as

η̇ = J
∂H

∂η
, (2.25)

where J is the matrix

J =

(
0 I
−I 0

)
(2.26)

with I the unit n-by-n matrix.[3, 4, 5] Similarly the equations of transformation
of a canonical transformation from qi, pi to Qi, Pi take the form

ζ = ζ(η), (2.27)

where ζ is a column matrix with the 2n elements Qi, Pi. The equations of
motion can be found by looking at the time derivative of a typical element of ζ:

ζ̇i =
∂ζi
ηj
η̇j , i, j = 1, . . . , 2n (2.28)

In matrix notation this gives
ζ̇ = Mη̇ (2.29)

with M the Jacobian matrix of the transformation:

Mij =
∂ζi
∂ηj

. (2.30)

Combining equations 2.25 and 2.28 gives

ζ̇ = MJ
∂H

∂η
. (2.31)

By the inverse transformation we get

∂H

∂ηi
=
∂H

∂ζj

∂ζj
∂ηi

, (2.32)

or, in matrix notation
∂H

∂η
= MT ∂H

∂ζ
. (2.33)

Making use of equations 2.31 and 2.33 we get the form of the equations of
motion for any set of variables ζ transforming, independently of time, from the
canonical set η:

ζ̇ = MJMT ∂H

∂ζ
. (2.34)
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From the generator formalism we know that for a restricted canonical transfor-
mation the old Hamiltonian expressed in terms of the new variables is the new
Hamiltonian, so

ζ̇ = J
∂H

∂ζ
. (2.35)

The transformation will therefore be canonical if M satis�es the condition

MJMT = J, (2.36)

This condition is called the symplectic condition. The matrix M satisfying the
condition is called the symplectic matrix.[1]
The symplectic matrices for a system with n degrees of freedom form the sym-
metry group Sp(2n, R).
For a classical system with just one degree of freedom we have the group of
symplectic matrices Sp(2,R). The general form of a Sp(2,R)-matrix is given by

M =

(
a b
c d

)
with ad− bc = 1. (2.37)

[6, 5]

2.3 Poisson brackets

The Poisson bracket of two functions u, v with respect to the canonical variables
(q, p) is de�ned as

{u, v}q,p =
∂u

∂qi

∂v

∂pi
− ∂u

∂pi

∂v

∂qi
. (2.38)

Since we have a typical symplectic structure, as in Hamilton's equations (where
q is coupled with p and p with −q) the Poisson bracket lends itself to being
written in matrix form:

{u, v}η =
∂u

∂η

T

J
∂v

∂η
. (2.39)

The transpose sign is omitted a lot of times, but indicates the fact that the �rst
matrix must be treated as a single-row matrix. It follows from the de�nition
that Poisson brackets of canonical variables are given by

{qj , qk}q,p = 0 = {pj , pk}q,p (2.40)

and
{qj , pk}q,p = δjk = −{pj , qk}q,p. (2.41)

We can introduce a square matrix Poisson bracket, {η, η}, with element jk given
by {nj , nk}. Equations 2.40 and 2.41 can then be summarized as

{η, η}η = J (2.42)

If we take for u and v the members of the transformed variables (Q,P ) repre-
sented by ζ, we get the set of all Poisson brackets formed out of (Q,P ) by the
matrix

{ζ, ζ}η =
∂ζ

∂η

T

J
∂ζ

∂η
= MTJM, (2.43)
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where we use that the partial derivatives de�ne the Jacobian matrix M of the
transformation. If the transformation from η to ζ is canonical the symplectic
condition holds, so we get

{ζ, ζ}η = J, (2.44)

and conversely we have that a transformation is canonical if 2.44 holds. We
are now going to show that all Poisson brackets are invariant under canonical
transformation. We consider the Poisson bracket of two functions u, v with
respect to the set of coordinates represented by η. The partial derivative of v
with respect to η can be written as

∂v

∂η
= MT ∂v

∂ζ
(2.45)

and in a similar way
∂u

∂η

T

= (MT ∂u

∂ζ
)T =

∂u

∂ζ

T

M. (2.46)

Now we can write the Poisson bracket

{u, v}η =
∂u

∂η

T

J
∂v

∂η
=
∂u

∂ζ

T

MJMT ∂v

∂ζ
. (2.47)

If the transformation is canonical, the symplectic condition holds and we have

{u, v}η =
∂u

∂ζ

T

J
∂v

∂ζ
= {u, v}ζ . (2.48)

So the Poisson bracket has the same value when evaluated with respect to any
canonical set of variables, thus all Poisson brackets are canonical invariants.
This means we can leave away the subscripts of the Poisson brackets.

Another important canonical invariant is the magnitude of a volume element
in phase space. A canonical transformation from η to ζ transforms the 2n-
dimensional phase space with coordinates ηi to another phase space with coor-
dinates ζi, i.e. volume element

dη = dq1dq2 . . . dqndp1dp2 . . . dpn (2.49)

transforms to the new volume element

dζ = dQ1dQ2 . . . dQndP1dP2 . . . dPn. (2.50)

The sizes of this two volume elements are related by the absolute value of the
Jacobian determinant det(M). Thus,

dζ = |det(M)|dη. (2.51)

In the two dimensional transformation this equation becomes

dQdP =

∣∣∣∣∣ ∂q∂Q ∂q
∂P

∂p
∂Q

∂p
∂P

∣∣∣∣∣ dqdp = {q, p}dqdp. (2.52)

But if we take the determinant of both sides of the symplectic condition we get

det(M)2 det(J) = det(J), (2.53)
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which means that in a real canonical transformation the Jacobian determinant
is ±1. The absolute value is thus always unity, such that

dζ = dη, (2.54)

proving the canonical invariance of the volume element in phase space. It follows
that the volume of any arbitrary region in phase space is a canonical invariant.
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Chapter 3

Coherent states

Coherent states are superpositions of quantum states which have many features
analogous to those of their classical counterparts.This are features like proper-
ties and dynamical behavior. Coherent states can be viewed as formally close
to the classical description and are de�ned as the eigenvectors of the annihila-
tion operator. They allow for a classical interpretation in a host of quantum
situations, but coherent states are strictly quantum states which saturate the
Heisenberg inequality (σxσp = 1

2~, where σ represents the standard deviation
of the subscripted quantity) which will be shown later on.[7] Before considering
coherent states we start with considering monochromatic light from a classical
point of view.

3.1 Classical point of view

The sinusoidal electric �eld strength of monochromatic light can be expressed
as a sum of two complex time-varying quantities,

E(t) =
1

2
[a(t) + a∗(t)], (3.1)

where a∗(t) stands for the complex conjugate of a(t). The quantities a(t) and
a∗(t) are phasors that rotate in the complex plane as time progresses. The
complex time-varying quantities can be described in a complex amplitude a =
x + iy and a time dependent factor e−iωt. The electric �eld strength can now
be written as

E(t) = x cosωt+ y sinωt. (3.2)

where

x =
a+ a∗

2
and y =

a− a∗

2i
(3.3)

Since the sine and cosine di�er in phase by 90 degrees the components x and
y are called quadrature components. They represent, respectively, the real and
imaginary parts of the complex amplitude a. The phasor a(t) can be represented
either in terms of its x and y projections (cartesian coordinates), or in terms of
its magnitude and initial phase φ (polar coordinates). The phasor rotates with
an angular frequency ω of the optical �eld. [8]
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3.2 Quantum-mechanical point of view

To represent single-mode monochromatic light viewed from a quantum-mechanical
point of view the quantities E(t), a(t), a∗(t), x, and y must be converted into op-
erators in a Hilbert space. This conversion follows from common principles in
quantum mechanics. It follows from the Schrödinger equation that the anni-
hilation operator a(t), and its hermitian conjugate the creation operator a†(t),
obey the boson commutation relation

[a(t), a†(t)] = a(t)a†(t)− a†(t)a(t) = 1. (3.4)

This means that x and y do not commute with each other, too. They obey the
commutation relation.

[x, y] =
i

2
. (3.5)

This relation implies a Heisenberg uncertainty relation of the form

σxσy ≥
1

4
. (3.6)

So the state of minimum uncertainty obeys the equality σxσy = 1
4 . The mean

values x̄ and ȳ and their uncertainties σx and σy together create an area of
uncertainty, which is typical for the quantum description (see �gure 3.1). Just
like for the harmonic oscillator, the average energy in the quantum mode is
~ω(n̄ + 1

2 ). Here ~ω comes from the energy per photon and n = a†a is the
photon-number operator, which tells how much photons there are in a speci�c
state. As can be seen, the average energy is not equal to zero for ā = 0.
The energy for ā = 0, 1

2~ω, represent vacuum �uctuations. Since x and y
have standard deviations |a| has a standard deviation, σ|a|. So the photon-
number will have an uncertainty. In polar coordinates a phasor has an amplitude
standard deviation σ|a|, a phase-angle uncertainty σφ and a mean magnitude ā.
Using the approximate relationship n ≈ |a|2 we get

∆n ≈ 2|a|∆|a| (3.7)

or, by de�ning σn ≡ ∆n,

σn = 2n̄1/2σ|a|. (3.8)

The azimuthal uncertainty σφ can be expressed as the ratio of the arc-length
uncertainty to n̄1/2. Note that there is no de�ned operator for the phase. You
can compare this to σt. The uncertainty in t can be described by the energy-time
uncertainty principle σEσt ≥ ~

2 [9], while there is no explicit time-operator.

3.3 Coherent State

Now we consider coherent states. A coherent state is represented by a phasor of
mean magnitude ā = α and a surrounding circular area of uncertainty. Coher-
ent states are de�ned as the eigenfunctions of the lowering operator a− of the
harmonic oscillator, so

a− | α〉 = α | α〉, (3.9)
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Figure 3.1: Cartesian and polar coordinate representations of the uncertainty
area associated with a quantum-mechanical �eld.[8]

Figure 3.2: Quadrature-component and number-phase uncertainties for the co-
herent state.[8]

where α can be any complex number. The probability density P (x) of �nding
the value x is Gaussian, with mean x̄ and standard deviation σx = 1

2 . This is
the same for the value y, since the area of uncertainty is circular, so σxσy = 1

4 ,
which means that the coherent state is a minimum-uncertainty relation. [8]
As told earlier the minimum-uncertainty is also reached in the Heisenberg uncer-
tainty relation σxσp = 1

2~. For the stationary states of the harmonic oscillator
(| n〉 = ψn(x)) holds, in general, σxσp = 2n+1

2 ~. So for stationary states of the
Harmonic oscillator only n = 0 has minimum uncertainty. Stationary states are
solutions of the time-independent Schrödinger equation:

Ĥψ = Eψψ. (3.10)

Here Eψ is a real number which corresponds with the eigenvalue of ψ. Ĥ is the
harmonic oscillator Hamiltonian operator.
Although coherent states are no stationary states, they are linear combinations
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of stationary states

| α〉 =

∞∑
n=0

cn | n〉 (3.11)

which also minimize the uncertainty product. Before showing that coherent
states are indeed minimum uncertainty states, we will �rst �nd out what the
coe�cients cn exactly are. We need to use that ψn = 1√

n!
(a+)nψ0. Then we

have

cn = 〈ψn | α〉 =
1√
n!
αn〈ψ0 | α〉 =

αn√
n!
c0 (3.12)

c0 is determined by normalizing α:

1 =

∞∑
n=0

| cn |2=| c0 |2
∞∑
n=0

| α |2n

n!
=| c0 |2 e|α|

2

(3.13)

So the coherent state becomes

| α〉 = e−|α|
2/2

∞∑
n=0

αn√
n!
| n〉. (3.14)

Now we are going to show that coherent states indeed minimize the uncertainty
limit. We recall that σ2

a = 〈a2〉 − 〈a〉2. Since x and p can be expressed in terms
of the raising and lowering operators:

x =

√
~

2mω
(a+ + a−); p = i

√
~mω

2
(a+ − a−) (3.15)

So for the Heisenberg relation we need to get the values of 〈x2〉α, 〈x〉2α, 〈p2〉α
and 〈p〉2α:

• 〈x2〉α = 〈α | x2 | α〉 = ~
2mω [1 + (α+ α∗)2]

• 〈x〉2α = (〈α | x | α〉)2 = ~
2mω (α+ α∗)2

• 〈p2〉α = 〈α | p2 | α〉 = ~mω
2 [1− (α− α∗)2]

• 〈p〉2α = (〈α | p | α〉)2 = −~mω
2 (α− α∗)2

Combining this altogether we get

σxσp =

√
~

2mω

√
~mω

2
=

~
2

� (3.16)

Another really nice property of coherent states is that they stay coherent, and
continue to minimize the uncertainty product.This can be seen be putting in
the time dependence we have for an harmonic oscillator, | n〉 → e−iEnt/~ | n〉.
The time-dependent state becomes

| α(t)〉 =

∞∑
n=0

αn√
n!
e−|α|

2/2e−i(n+
1
2 )ωt | n〉

= e−iωt/2
∞∑
n=0

(αe−iωt)n√
n!

e−|α|
2/2 | n〉.

(3.17)
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If we compare this to equation 3.14 we see that this is still a coherent state.
Apart from the overall phase factor e−iωt/2, which does not a�ect its status
as an eigenfunction of a−, | α(t)〉 is the same as | α〉, but with eigenvalue
α(t) = e−iωtα. [9] The eigenvalue behaves like a classical �eld. To show this we
�rst get an alternative expression for the coherent state α.

| α〉 = e−|α|
2/2

∞∑
n=0

(αa+)n√
n!
| 0〉

= e−|α|
2/2eαa+ | 0〉

(3.18)

Now it is clear that we have 〈α | a− | α〉 = α and 〈α | a+ | α〉 = α∗. Using these
equations we get

Eeffective(α, t) = 〈e−iωtα | Â(t) | e−iωtα〉 =

√
~

2ε0ωV
[αεe−iωt+ik·r+α∗εeiωt−ik·r],

(3.19)
where Â stands for the magnetic vector potential. Comparing this to the clas-
sical electric �eld of monochromatic light as given in equation 3.1 we conclude
that the �eld expectation values in a coherent state behave as a monochromatic
classical �eld. [10]

Furthermore for the coherent state the probability density P (n) of the photon-
number is a Poisson distribution. This can be seen by looking at equation 3.8:

σn = 2n̄1/2σ|a|. (3.20)

For a coherent state we have that the area of uncertainty is circular and thus
σ|a| = 1

2 , giving

σn = 2n̄1/2
1

2
= n̄1/2 (3.21)

so the photon-number variance σ2
n is equal to the photon-number mean n̄, in

accordance with the Poisson distribution. Since the area of uncertainty is cir-
cular we have, besides an amplitude standard deviation of 1

2 and an azimuthal
arc-length uncertainty of 1

2 , leads to the number-phase equality

σnσφ =
1

2
. (3.22)

[8]
The state with α = 0, and thus x̄ = ȳ = 0, is given by

a− | ψ0〉 = 0. (3.23)

This is also a coherent state, with eigenvalue α = 0. This state is known as the
vacuum state. [9, 10]
Unlike the classical electric �eld E(t) the quantum electric �eld is always un-
certain. Each value of α in the uncertainty circle traces out a sinusoidal time
function, of appropriate magnitude and phase, determined by its projection on
the x-axis (the real part). For coherent states, including the vacuum state, the
noise about the mean is phase independent.
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Figure 3.3: Quadrature-component uncertainties for the vacuum state.[8]

3.4 Displacement operator

Coherent states can be generated by acting with the displacement operator on
the vacuum

| α〉 = D(α) | 0〉 (3.24)

where D(α) is de�ned as

D(α) := exp[αa† − α∗a] (3.25)

which also can be written as

D(α) = eαa
†
e−α

∗ae−|α|
2/2 (3.26)

The displacement operator is a unitary operator, since

D†(α) = D−1(α) = D(−α). (3.27)

It can be shown that
D†(α)aD(α) = a+ α (3.28)

D†(α)a†D(α) = a† + α∗ (3.29)

To discuss the displacement operator in more detail we �rst have to learn some-
thing about some symmetry groups.

3.5 The Husimi function

The coherent state can also be used to represent the Husimi function. The
Husimi function is one of the simplest distributions of quasiprobability in phase
space. If the normal probability function quantum mechanical state ψ, ρt(x) =

|ψ(x, t)|2, is computed a lot information about the quantum mechanical state
will be lost. Meanwhile, the Husimi function can be used to encode the full
quantum information, so there is no loss of information about a state.[11]
The Husimi function can be de�ned directly in terms of coherent states | α〉. If
we have the density operator ρ̂ = |ψ〉〈ψ|, then we have the Husimi function

Hψ(α) = 〈α | ρ̂ | α〉 = trρ̂ | α〉〈α |=| 〈α | ψ〉 |2 . (3.30)
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The Husimi function can also be de�ned in terms of Wigner functions. Therefore
we �rst de�ne the Wigner function for a 2L-dimensional phase space:

W (x) =
1

(π~)L
trρ̂R̂x, (3.31)

where R̂x the operator for the re�ection through the point x = (p1, . . . , pL, q1, . . . , qL):

R̂x =
1

2L

∫
dQ | q − Q

2
〉〈q − Q

2
| eip·Q/~. (3.32)

Now the Husimi function is de�ned as

H(α) =
1

(π~)L

∫
dxW (x) exp

−(x− α)2

~
. (3.33)

The Husimi function is a way to represent a state as a function on phase space,
whereas a wave function is a function in position or momentum only. [12]
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Chapter 4

Symmetry groups

After we have seen some properties of coherent states we now will look which
transformations will let coherent states remain coherent states. Since the uncer-
tainty is a disk in phase space we can say in other words that where looking for
transformations that keep the open disc in phase space invariant. To get these
transformations we have to use some group theory. We �rst consider a number
of various groups which will be useful.

4.1 SU(2)

The group SU(2) is the special unitary group of 2 dimensions. The group
contains all complex unitary 2-by-2 matrices with determinant one. In formula:

SU(2) = {U ∈ GL(2,C) | det(U) = 1, U† = U−1} (4.1)

Here GL(2,C) is the general linear group. A SU(2) matrix can be written in
the general form (

α1 + iα2 β1 + iβ2
−β1 + iβ2 α1 − iα2

)
(4.2)

with α1, α2, β1 and β2 four real numbers which con�rm the relation

α2
1 + α2

2 + β2
1 + β2

2 = 1 (4.3)

The number of independent parameters is three. The relation between the four
real ones de�nes the surface of a three-dimensional sphere embedded in four
dimensional Euclidean space.
The Lie algebra of SU(2) consists of the three generators J0, J1 and J2 and is
de�ned by the commutation relations

[J1, J2] = iJ0, [J0, J1] = iJ2, [J2, J0] = iJ1 (4.4)

The generators of SU(2) can be represented by a set of three linearly indepen-
dent, traceless 2-by-2 anti-Hermitian matrices which are proportional to the
Pauli-matrices via

Jk =
σi
2
. (4.5)
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Here σk are the Pauli matrices

σ1 =
1

2

(
0 1
1 0

)
σ2 =

1

2

(
0 −i
i 0

)
σ0 =

1

2

(
1 0
0 −1

)
(4.6)

Since the generators do not commute with one another SU(2) is a non-Abelian
group. The group has three parameters, too. These are given by

Uθ = e−θkJk where k = 0, 1, 2 (4.7)

Every element can now be written in the form U = exp(
∑3
k=1 θkJk). In terms

of the Pauli matrices we get

U = ei
∑3
k=1

θk
2 σ1 = cos

θ

2
+ i sin

θ

2
n̂ · ~σ, (4.8)

where θi = θn1 and n̂ = (n1, n2, n3). The angle θ can run over the interval
[−2π, 2π]. Now the parameter space can be seen as a �lled sphere of radius 2π,
with all the points on the surface identi�ed with each other. [13, 3, 14]

We now make a change of basis and de�ne the ladder operators J± by

J± = J1 ± iJ2 (4.9)

and the Casimir operator

J2 = J2
1 + J2

2 + J3
0 . (4.10)

A Casimir operator is a quadratic operator that commutes with all elements
of the Lie algebra, in this case every Jk. We know from quantum mechanical
applications that J2 has eigenvalues j(j + 1) with j = 0, 12 , 1,

3
2 , . . . .

The commutation relations become

[J2, J±] = 0, [J0, J±] = ±J±, [J+, J−] = 2J0 (4.11)

Since J2 and J0 commute, they can be diagonalized simultaneously. The eigen-
value of J0 gives the well-known m which runs over 2j + 1 values from −j to j.
[13]

4.2 SU(1,1)

The next group we are going to consider is the group SU(1,1). The group
SU(1,1) is another special unitary group. SU(1,1) consists of all non-singular
2-by-2 matrices which leave the matrix g1 = diag(1,−1) invariant. This leaves
us with the de�nition

SU(1, 1) = {U ∈ GL(2,C) | det(U) = 1, U† = gU−1g−1}, (4.12)

where g =

(
1 0
0 −1

)
. An SU(1,1) matrix can be written in the general form

(
α β
β∗ α∗

)
(4.13)
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with α and β two complex numbers which con�rm the relation

| α |2 − | β |2= 1 (4.14)

[13, 3]

The Lie algebra of SU(1,1) consists of the three generators K0, K1 and K2

and satisfy the commutation relations

[K1,K2] = −iK0, [K0,K1] = iK2, [K2,K0] = iK1 (4.15)

[6, 15]
The generators of SU(1,1) can be represented, just like SU(2), as matrices pro-
portional to the Pauli matrices (4.6). They are proportional via

K1 =
i

2
σ2 K2 = −−i

2
σ1 K0 =

1

2
σ3 (4.16)

[13, 3]
Just like for SU(2), we can also choose a di�erent basis

K± = K1 ± iK2 (4.17)

Now the commutation relations become

[K0,K±] = ±K±, [K+,K−] = −2K0, (4.18)

where we have a di�erence in sign compared to SU(2).
For SU(1,1) the Casimir operator becomes

C = K2
0 −K2

1 −K2
2 (4.19)

The eigenvalue of C is equal to k(k−1). The parameter k is called the Bargmann
index and is a positive real number. For the representations of interest the states
| k,m〉 diagonalize the operator K0:

K0 | k,m〉 = (k +m) | k,m〉, (4.20)

where m can be any nonnegative integer.
All states can be obtained from the lowest state | k, 0〉 by the action of K+

according to

| k,m〉 =

√
Γ(2k)

m!Γ(2k +m)
(K+)m | k, 0〉 (4.21)

[14]

4.3 Möbius Transformations

A Möbius transformation is a transformation of the form

f(z) =
az + b

cz + d
, (4.22)

20



with a, b, c and d ∈ C and ad 6= bc. These kind of transformations are complex
maps, which are useful in many applications. [16]
We de�ne

f(∞) =

{
a
c if c 6= 0
∞ if c=0

and f(−d
c

) =∞ if c 6= 0 (4.23)

[17]
Since the derivative of f(z),

f ′(z) =
ad− bc

(cz + d)2
, (4.24)

does not vanish, the Möbius transformation f(z) is conformal at every point
except its pole z = −d/c. This means that the map preserves angles.
For c = 0 we clearly have a linear transformation. For c 6= 0 we can show the
decomposition by writing

az + b

cz + d
=

a
b (cz + d)− ad

c + b

cz + d
=
a

c
+
b− ad

c

cz + d
. (4.25)

We now can see that the Möbius transformation can be expressed as a linear
combination w1 = cz + d, followed by an inversion w2 = 1/w1 and thereafter
again a linear transformation w = (b− ad/c)w2 + a/c.[17, 18] This results into
the following properties of Möbius transformations:

• f(z) can be expressed as the composition of a �nite sequence of transla-
tions, magni�cations, rotations and inversions.

• f(z) is a 1− 1 map of the extended complex plane (C ∪ {∞}) onto itself.

• f(z) maps the class of circles and lines into itself.

• f(z) is conformal at every point except its origin.

[18] The �rst property may need some explanation. It states that f(z) is a
�nite sequence of translations, magni�cations, rotations and inversions. The
four operations are in formula given as

translations : z 7→ z + b, b ∈ C
magni�cations : z 7→ az, a ∈ C {0}

rotations : z 7→ (cos θ + i sin θ)z = eiθz, θ ∈ R

inversions : z 7→ 1

z

(4.26)

We have shown that a Möbius transformation can be expressed as a linear
combination, followed by an inversion and then a linear transformation. These
three operations all can be expressed in combinations of the four basic maps
given in 4.26.
Furthermore note that our goal is to try to �nd transformations that leave a disc
in phase space invariant. So the third property is interesting for us especially.
The possibilities for this property are as follows. A line or circle that doesn't
pass through the pole z = −d/c of the Möbius transformation, gets mapped
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into a circle. If a line or circle does pass through the pole, it gets mapped to a
unbounded �gure, its image is a straight line. We can think of a line as a circle
that happens to go through in�nity. [17, 18]
Next we are going to show that the Möbius transformation describes a group.
We start by calculating the inverse of an arbitrary Möbius transformation given
by

f(z) =
az + b

cz + d
(ad 6= bc). (4.27)

The inverse can easily be calculated by expressing z in terms of w, giving

z = f−1(w) =
dw − b
−cw + a

. (4.28)

So the inverse of any Möbius transformation is again a Möbius transformation.
Moreover, if we take the composition of two Möbius transformations,

f1(z) =
a1z + b1
c1z + d1

and u = f2(w) =
a2w + b2
c2w + d2

, (4.29)

we have that

u = f2(f1(z)) =
(a2a1 + b2c1)z + (a2b1 + b2d1

(c2a1z + d2c1)z + (c2b1 + d2d1)
. (4.30)

. This is again a Möbius transformation. The last part we have to concern
about is the identity element of the group. However if we take f−11 (f1) we
de�nitely get the identity function I(z) = z. [18] We have that the collection of
all Möbius transformations form a group denoted by PGL(2,C), the projective
general linear group. The map

φ : GL(2,C) 7→ PGL(2,C);

(
a b
c d

)
7→ f(z) (4.31)

is a group homomorphism where GL(2,C) is the general linear group, is the set
of 2-by-2 invertible matrices.A matrix is in the kernel of this homomorphism
when

az + b

cz + d
= z for allz ∈ C ∪ {∞}. (4.32)

This occurs if and only if a = d and b = c = 0, so

(
a b
c d

)
= λI for some scalar

λ ∈ C {0}. This shows that a M "obius transformations is unaltered when we
multiply each coe�cients a, b, c, d by a non-zero scalar λ. We can always choose

λ so that the determinant ad − bc = 1. Then the matrix

(
a b
c d

)
is in the

special linear group SL(2,C), de�ned as all 2-by-2 matrices with a, b, c, d ∈ C
and ad− bc = 1. Now

φ : SL(2,C) 7→ PGL(2,C);

(
a b
c d

)
7→ f(z) (4.33)

is a group homomorphism whose kernel consists of the two matrices ±I. Con-
sequently, the Möbius group is the quotient SL(2,C)/Z2. So we have found
PGL(2,C = SL(2,C)/Z2.[19]
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Note that we also have found that PGL(2,C) =PSL(2,C). Since Möbius trans-
formations were unaltered when multiplied by a non-zero scalar λ all matrices
in PGL(2,C) can be set to matrices with determinant 1, which exactly de�nes
the projective special linear group PSL(2,C). It turns out that for all projective
general linear groups PGL(n, F ) holds that PGL(n, F ) equals PSL(n, F ) if and
only if every element of F has an nth root in F . So, for example, we have that
PSL(2,C) = PGL(2,C), but PSL(2,R) < PGL(2,R).[20]

4.4 A closer look at SU(1,1)

Now we are going use the acquired knowledge of symmetry groups in single
mode optics. The radiation �eld can be described by the bosonic operators a
and a†. We obtain a realization of the su(1, 1) algebra if we form the quadratic
combinations

K+ =
1

2
√

2
(a†)2, K− =

1

2
√

2
a2, K0 =

1

4
(1 + 2a†a) (4.34)

In this case the Casimir operator reduces identically to

C = k(k − 1) = − 3

16
(4.35)

so we have k = 1
4 or k = 3

4 . [21, 6] The action of the operators is relatively
simple. If we start from the vacuum state we note that

K− | 0〉 = 0 (4.36)

and

K+ | 0〉 =
1

2
| 2〉. (4.37)

By repeated application of the raising operator K+ we obtain an in�nite se-
quence of states

(K+)m | 0〉 =

√
(2m)!

2
√

2
| 2m〉. (4.38)

Each state is an eigenstate of K0

K0 | 2n〉 =
1 + 4n

4
| 2n〉. (4.39)

Now recall equation 4.21:

| k,m〉 =

√
Γ(2k)

m!Γ(2k +m)
(K+)m | k, 0〉 (4.40)

and �ll in 4.38 to obtain

| k,m〉 =

√
Γ(2k)

m!Γ(2k +m)

√
(2m)!

2
√

2
| 2m〉 =

√
(2m)!Γ(2k)

m!8Γ(2k +m)
| 2m〉 (4.41)

So we get an in�nite sequence of states | 0〉, | 2〉, . . . , | 2n〉, . . . that forms a
representation of the algebra where the spectrum K0 is bounded below by the
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value 1
4 . In the same way we can get an in�nite sequence of states | 1〉, | 3〉, . . . , |

2n + 1〉, . . . where the spectrum starts at 3
4 . So we have that states with even

2m form a basis for the unitary representation with k = 1
4 , while the states

with odd n form a basis for the case k = 3
4 . The two in�nite towers are called

singleton representations since they involve only one harmonic oscillator. The
two di�erent singleton seem a bit strange, since the one-dimensional oscillator
has no particular symmetry of its own. It happens to come from the fact that
the Hamiltonian

H = a†a+
1

2
= 2K0 (4.42)

is itself a member of the algebra. The algebra relates states of di�erent en-
ergy; such an algebra is called a spectrum generating algebra. Each repre-
sentation contains all of its states of a given parity: all states in the single-
ton | 0〉, | 2〉, . . . , | 2n〉, . . . have even parity and all states in the singleton
| 1〉, | 3〉, . . . , | 2n + 1〉, . . . have odd parity. The singleton representations is
of course not the only representation of the su(1,1) algebra, some other repre-
sentations can be found in [21].

In terms of su(1, 1) algebra canonical transformations of are generated by the
vector �elds

{−q ∂
∂p

+ p
∂

∂q
= 2iK0, −q ∂

∂p
− p ∂

∂q
= 2iK1, −q ∂

∂q
+ p

∂

∂p
= 2iK2} (4.43)

[6, 5] These operators clearly have the same commutation relation, where the
Poisson bracket is used as the product, as the su(1,1) algebra. We are now
going to show that Sp(2,R) and SU(1,1) do not only share the same Lie algebra:
they are isomorphic, too! Two groups are isomorph if there is an isomorphism
between them. An isomorphism is a bijective homomorphism, so in other words
we have to �nd a map which gives a one-one correspondence and is structure-
preserving (which means that for a map φ : G 7→ G′ and all group elements
gi,j ∈ G we want to have φ(gi ◦ gj) = φ(g1) · φ(g2)[22]). Consider the matrix

T =
1√
2

(
1 −i
−i 1

)
(4.44)

T is a unitary matrix since we have

T−1 =
1

1
2 + 1

2

(
1√
2

i√
2

i√
2

1√
2

)
=

1√
2

(
1 i
i 1

)
= T † (4.45)

and

det(T ) =
1√
2

1√
2
− −i√

2

−i√
2

= 1 (4.46)

Recall that a matrix in Sp(2,R) can be written in the general form

M =

(
a b
c d

)
with ad− bc = 1. (4.47)

This is exactly the same form as the de�ning matrix of SL(2,R). If we do a
similarity transformations on M using T we get

TMT † =
1

2

(
a+ d+ i(b− c) b+ c+ i(a− d)
b+ c+ i(d− a) a+ d− i(b− c)

)
(4.48)
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Let us now de�ne

α :=
1

2
[a+ d+ i(b− c)] and β :=

1

2
[b+ c+ i(a− d)] (4.49)

Then we get the following matrix

TMT † =

(
α β
β∗ α∗

)
:= UM (4.50)

with determinant

det(UM ) =| α |2 − | β |2

=
(a+ d)2

4
+

(b− c)2

4
− [

(b+ c)2

4
+

(a− d)2

4

=
1

4
(4ad− 4bc)

= ad− bc = 1

(4.51)

So UM ∈ SU(1,1) and we can conclude that T is a bijective map. The only
thing left to show is that the map is homomorphic, this means that we have to
show that

UMM ′ = UMUM ′ (4.52)

So we want to have
TMM ′T † = TMT †TM ′T † (4.53)

However this is clearly the case since T is a unitary matrix and thus T †T =
T−1T = I We now have shown that T is an isomorphism between Sp(2,R) and
SU(1,1), so Sp(2,R) ∼= SU(1,1).

Furthermore we have by section 4.3 that the group of Möbius transformations
can be represented by matrices of the form:

az + b

cz + d
∼
(
a b
c d

)
. (4.54)

As we have ad 6= bc the matrix is invertible. If we now choose c = b∗ and d = a∗

we get
az + b

b∗z + a∗
∼
(
a b
c d

)
. (4.55)

Since a common vector is unimportant in the transformation, we can associate
it with the matrix (

a b
c d

)
with |a|2 − |b|2 = 1, (4.56)

but this is exactly the general form of the SU(1,1) matrices given in equation
4.13. So we have found that all SU(1,1) matrices are in fact Möbius transfor-
mations!
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4.5 The super-Lie algebra of SU(1,1)

Recall the in�nite towers of states de�ned by the equations 4.38 and 4.39, thus
| 0〉, | 2〉, . . . , | 2n〉, . . . where the spectrum K0 is bounded below by the value
1
4 and | 1〉, | 3〉, . . . , | 2n + 1〉, . . . where the spectrum starts at 3

4 . In a sense
these singleton irreps are the simplest unitary irreps of the su(1,1) algebra,
but they are actually part of a representation of a super algebra, which is an
algebra closed under both commutators and anti-commutators. The states of
the two singleton representation, | 2n〉 and | 2n + 1〉, can be related to one
another by the application of the creation operator a†. In this way we can
extend the Lie algebra to include the operators a and a† that relate the two
singleton representations. The commutator of operators a and a† is not in the
Lie algebra, but the anti-commutator, where we have a plus sign instead of the
minus sign, is:

[a, a†]− := aa† + a†a = 1 + 2a†a = 4K0. (4.57)

Furthermore we have

[K+, a] = − 1√
2
a†, [K0, a] = −1

2
a. (4.58)

We have to extend the Lie-algebra operation to include both commutators and
anti-commutators to obtain a super-Lie algebra. [21] Since the displacement
operator is de�ned as

D(α) := exp[αa† − α∗a] (4.59)

[6] it is not a function with generators of SU(1,1) in the exponent. The dis-
placement operator is not an element of SU(1,1), however is is an element of
the super-Lie group. The super-Lie algebra de�nes a unique double cover of
SU(1,1), and thus of SP(2,R). This double cover is probably the metaplectic
group and is denoted as Mp(2,R).[23, 24, 25]
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Chapter 5

Squeezed states

Now let us go back to quantum optics. Coherent states can be transformed into
squeezed states, which means that one of its standard deviations will be made
smaller while keeping the minimal uncertainty property. States can be squeezed
in various ways. We will �rst treat quadrature squeezed states, then photon-
number squeezed states and we will end this chapter with a section about the
squeeze operator.

5.1 Quadrature squeezed states

Let's �rst consider the quadrature squeezed state. A state is quadrature squeezed,
by de�nition, if any of its quadratures has a standard deviation that falls below
the coherent-state value of 1

2 . If the uncertainty in quadrature component is
squeezed below 1

2 , the uncertainty in the other quadrature need to be stretched
above 1

2 , because by the Heisenberg uncertainty relation the product must at
least have a value of 1

4 .
A �eld in a minimum uncertainty state can be quadrature squeezed by multiply-
ing its x-component by the factor e−r and its y-component by the factorer. The
positive quantity r is called the squeeze parameter. It happens to be convenient
to include a phase factor eiξ in one of the quadratures. The resulting electric
�eld becomes

Es(t) = xe−reiξ cosωt+ yer sinωt (5.1)

The x-component uncertainty σx is squeezed to e−rσx and simultaneously the
y-component uncertainty σy is stretched to erσy. In this way the vacuum states
for example becomes the squeezed vacuum state. They both are minimum
uncertainty states. The squeezed vacuum states in no longer truly a vacuum
state, since the mean photon number is no longer zero:

n̄ = sinh2 r > 0. (5.2)

Furthermore its photon-number statistics are super-Poissonian, since its vari-
ance is twice the Bose-Einstein (geometric) distribution,

σ2
n = 2(n̄+ n̄2). (5.3)
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Figure 5.1: (a) quadrature squeezed states, (b) photon-number squeezed
states.[8]

A coherent state in general can be similarly transformed into a squeezed state,
then we have the state SD | 0〉. Here the factor eiξ is used. By changing the
angle ξ relative to the angle of α, the angle θ between the major axis of the
ellipse and the phasor α is controlled.
The mean photon number

n̄ = |α|2 + sinh2 r (5.4)

has a coherent part |α|2 and a squeeze part sinh2 r. For |α|2 ≥ e2r its variance
is

σ2
n = n̄(e2r cos2 θ + e−2r sin2 θ). (5.5)

Depending on the angle θ the squeezed coherent state can exhibit either super-
Poisson or sub-Poisson photon statistics. The variance is largest when the major
axis of the ellipse aligns with the phasor, so for θ an even integer multiple of
π/2. This position gives a large uncertainty in the radial direction, thus a large
photon-number variance. For θ with an odd integer multiple of π/2 the minor
ellipse axis is aligning with the phasor. This gives a small uncertainty in the
radial direction and thus a small photon-number variance, , see �gures 5.2 and
5.3. The electric �eld uncertainty falls o� to a minimum periodically. The
noise is reduced below the coherent-state value at certain preferred values of
the phase, but is increased at other values of the phase.

5.2 Photon-number squeezed state

Now let us turn to photon-number squeezing. A state is photon-number squeezed,
by de�nition, if its photon-number uncertainty σn falls below the coherent-state
value of n̄1/2. If the uncertainty in n is squeezed, the uncertainty in φ needs
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Figure 5.2: Comparison of quadrature-component uncertainties for a coherent
state (a) and a quadrature squeezed state DS | 0〉(b). [8]

Figure 5.3: Dependence of the squeezed coherent state photon-number variance,
σ2
n, on the angle θ. The maxima represent phase squeezed states and the minima

represent photon-number squeezed states.[8]
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to be stretched. An example of a photon-number squeezed state is the number
state with the properties

σx = (
n

2
+

1

4
)1/2; σy = (

n

2
+

1

4
)1/2 (5.6)

σ|a| ≈ 1; σφ =∞ (5.7)

σa/ā = n̄1/2 (5.8)

σn = 0 (5.9)

Its quadrature uncertainties are symmetrical, but large. The state is not a
minimum-uncertainty state. In polar coordinates the phase is totally uncertain
though its magnitude is rather restricted. The uncertainty area becomes a ring.
(See �gure 5.1.) The mean photon-number variance is equal to zero for this
state, so the state is photon-number squeezed since σn < n̄. The electric-�eld
for the number state is phase-independent. [8]

5.3 Squeeze operator

It is possible to transform a vacuum state into squeezed state by the use of a
squeeze operator S. We de�ne the squeeze operator

S(ε) := exp[
ε∗

2
a2 − ε

2
a†2] = exp(ε∗K− − εK+) (5.10)

where ε = re2iφ.[6] The squeeze operator obeys the relation

S†(ε) = S−1 = S(−ε) (5.11)

and is thus unitary. We can prove that

S†(ε)aS(ε) = a cosh(r)− a†e−2iθ sinh(r) (5.12)

S†(ε)a†S(ε) = a† cosh(r)− ae−2iθ sinh(r) (5.13)

We de�ne the �eld quadrature components

X1 = a+ a† (5.14)

X2 = −i(a− a†). (5.15)

They obey the commutation relation

[X1, X2] = 2i (5.16)

So we get
S†(ε)(Y1 + iY2)S(ε) = e−rY1 + iY2e

r (5.17)

where we de�ne Y1 + iY2 := (X1 + iX2)e−iθ (see �gure 5.4).

Moreover, the squeeze operator is an element of SU(1,1). Since the squeeze
operator is de�ned as given in equation 5.10, it is a function with generators of
SU(1,1) in the exponent and thus an element of SU(1,1). This means that all
properties we have found for SU(1,1) (and thus Sp(2,R) holds for the squeezing
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Figure 5.4: (a) Uncertainty circle in complex-amplitude plane for coherent state
| α〉. (b) Uncertainty ellipse in complex-amplitude plane for squeezed state
| α, reiθ〉 ([26]

Figure 5.5: The coherent state and the squeezed state.[27]
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operator. So we have for instance that the squeezing operator is a canonical
invariant. Further more the surface element given by the uncertainty area will
be invariant under the squeeze operator.

We can write the squeeze operator in another form. If we de�ne θ and φ such
that

ε = −1

2
θe−iφ, (5.18)

we can de�ne

ζ = − tanh(
θ

2
e−iφ. (5.19)

The range of the parameters is given by

θ ∈ (−∞,∞), φ ∈ (0, 2π), |ζ| ∈ (0, 1). (5.20)

We can use the disentangling therom of SU(1,1) Lie algebra [28] to write the
squeeze operator as

S(ζ) = exp(ζK+) exp(ln[1− |ζ|2]) exp(−ζ∗K−) (5.21)

Using this notation we can express the squeezed state as

| k, ζ〉 = (1− |ζ|2)k
∞∑
m=0

√
Γ(m+ 2k)

m!Γ(2k)
ζm | k,m〉 (5.22)

[15] We sum over all m, but we know from 4.41 that | k,m〉 will never leave its
own singleton. So the action of the squeeze state will never relate both singleton
to one another, as we would have expected since S ∈ SU(1, 1). Recall that the
displacement operator D is not in the Lie algebra. However, D is in the super-
Lie algebra which include the operators a and a† that relate the two singletons.
We thus have that the squeezed vacuum state will have even parity, since the
vacuum state has even parity, and the (squeezed) coherent state can have parity
odd or even.
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Chapter 6

Generation and applications

of squeezed states

We have learned some things about the squeezing operator. The squeezing
operator works nice in theorem, but in practice we can not just put the operator
in front of a coherent state. So now it its time to tell how squeezed states can
be generated and what the utility of squeezed states can be.

6.1 Generation of quadrature squeezed states

Quadrature states can be generated by separating the �eld into its x and y
components, and then stretching one and squeezing the other. We need a phase
shift to accomplish the separation. The phase shit can be achieved by a non-
linear minimum as can be seen in �gure 6.1.
If the wave and its conjugate are multiplied by µ = cosh r and ν = sinh r,
respectively, and then added together the net result is a quadrature state with
squeeze parameter r. Since cosh r and sinh r have a trigonometric relation, we
have

µ2 − ν2 = 1. (6.1)

The superposition can be viewed schematically as in �gure 6.2.
Quadrature-squeezed can also be generated by the use of a phase-conjugate
mirror. The experiment now uses a degenerate four-wave mixing. A phase-
conjugate mirror of the type used in the process multiplies by a constant and
conjugates �elds re�ected from it, so a 7→ µa†. However, transmitted �elds are
simply multiplied by a constant, thus a 7→ νa. Any open port in such a system
admits vacuum �uctuations which do not weaken the squeezing properties of
the result, which is the squeezed coherent state. This process is illustrated in
6.3. [8]

6.2 Squeezed states as qubits

In quantum computing, a qubit is a unit of quantum information: the quantum
analogue of the classical bit. A pure qubit state is a linear superposition of the
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Figure 6.1: Generation of quadrature-squeezed light by the use of a non-linear
medium providing phase conjugation)[8]

Figure 6.2: Schematic illustration of quadrature-squeezed light generation using
phase conjugation.[8]
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Figure 6.3: Generation of quadrature-squeezed light using a phase-conjugate
mirror. [8]
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basis states. Thus the qubit can be represented as a linear combination of |0〉
and |1〉:

|ψ〉 = α|0〉+ β|1〉, (6.2)

where α and β are complex numbers. The probability to measure |0〉 is |α|2,
the probability to measure |1〉 is |β|2, so we have the restriction

|α|2 + |β|2 = 1 (6.3)

An important distinguishing feature between a qubit and a classical bit is that
multiple qubits can be entangled. Entanglement allows a set of qubits to express
higher correlation than is possible in classical systems. Entanglement also allows
multiple states to be acted on simultaneously, while classical bits can only have
one value at a time. Entanglement is a necessary ingredient of any quantum
computation that cannot be done e�ciently on a classical computer.We de�ne
the Bell state as a maximally entangled quantum state of two qubits.[29]

In a lot of experiment people tried to encode logical qubits into the physical
higher dimensional coherent states | α〉 and | −α〉. It was shown that such
schemes could allow e�cient computation with only simple linear linear oper-
ations in-line. For large amplitudes α the two states are basically orthogonal,
but for small α they have a �nite overlap. Still, this scheme is capable of fault-
tolerant quantum computing with certain advantages over traditional photon-
encoded schemes, as can be seen in [30].In contrast to the usual two cubit case,
all four Bell states can be distinguished. This gives higher e�ciency for, per
example, quantum teleportation. Furthermore it has been shown that simple
coherent states attain the channel capacity, the tightest upper bound on the rate
of information that can be reliably transmitted over a communications channel,
though the receiver have to apply collective decoding with a quantum computer
for coherent state signals to extract he maximum information.
To realize a coherent state-based computing scheme as described here, we need
access to resources of arbitrary qubits a | α〉 + b | −α〉.This generation can
be accomplished by two-photon subtraction of squeezed vacuum with an added
displacement. The displacement before the second photon detector can be ad-
justed, according to which the conditional output state is prepared in any ar-
bitrary superposition of one-photon and two-photon subtracted states as long
α is small. The generated states are therefore superpositions of squeezed vac-
uum and single-photon subtracted squeezed vacuum, which is equivalent to a
squeezed photon.An extensive explanation of the experiment can be found in
[31]
The conditional output state ends up in a superposition of single-photon sub-
tracted squeezed vacuum and normal squeezed vacuum. The exact parameters
of the superposition depend on the phase and amplitude of the displacement
beam. If the displacement beam is strong (weak), the output will be close to a
squeezed vacuum (photon). The output states as a whole can also be considered
as qubits of squeezed states, being superpositions of the two orthogonal states
S|0〉 and S|1〉.[32]
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6.3 Squeezed states and ampli�cation of measured
signals

Squeezed states can for example be used to increase the sensitivity of a gravi-
tational wave detector. The e�ect of the gravitational radiation is so weak that
the expected value of the measurement id of the same order of magnitude as
quantum mechanical uncertainties. If squeezed states are used is should be pos-
sible to detect measurement values less than the quantum uncertainty.
To get this nice results we use the fact that uncertainties in the quadratures of
the generated photon �eld become unequal. One is less than that of a coher-
ent state and the other is greater. Now we can use a typical form of ampli�er.
The most common form of an ampli�er produces phase-insensitive ampli�cation
(PIA), which ampli�es both quadratures of the �eld equally. There also can be
realized phase-sensitive ampli�cation (PSA). Is PSA on quadrature is ampli�ed
while the other is de-ampli�ed. In PIA, the quotient between the signal-to-noise
ratio of the input �eld and that of the output, ampli�ed �eld, approaches two
for large values of the gain, while the quotient for PSA can be unity independent
of the gain. In a suitable PSA the noise is added preferentially to the quadra-
ture not carrying information. This leaves the information of the quadrature
carrying information essentially noise free.
Interferometric techniques are used to detect very weak forces such as the grav-
itational wave. They experience limitations on sensitivity due to quantum noise
arising from photon counting and radiation pressure �uctuations. These sources
of noise can be interpreted as arising from the beating of the input laser with
the vacuum �uctuations entering the unused port of the interferometer. These
two di�erent noise sources are from �uctuations in the two di�erent quadrature
phases of the vacuum entering the unused port. It has been suggested that
injecting a squeezed state into the unused port will reduce one or other of two
sources of noise depending on which quadrature is squeezed.[33, 34]
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