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Introduction

The Cauchy residue theory is one of the most important theories in the complex analysis of one
variable. The applications of this theory extend beyond the boundaries of mathematics into fields such
as physics, mechanics, etc. Unfortunately, this theory only holds for functions of one variable. Not
only from a mathematical perspective but also from a practical point of view, it would be interesting
to have such a theory for two or more variables.

Halfway through the first half of the previous century mathematicians such as Friedrich Hartogs
started to work on a theory of complex functions of n variables. He discovered that when n > 1 each
isolated singularity is removable. Moreover, shortly after the Second World War a large number of
obscurities on analytic continuation was clarified. A major difference from the one-variable theory
became evident: while for any connected open set D in C we can find a function that will be nowhere
continue analytically on the boundary of D, that is not the case for any connectod open set D′ in Cn,
n > 1 (See section 4.2).

Naturally the analogues of contour integrals will be harder to handle: when n = 2 an integral
surrounding a point should be over a three-dimensional manifold (since we are working in four real
dimensions), while iterating contour (line) integrals over two separate complex variables results in a
double integral over a two-dimensional surface. This means that the residue calculus will be quite
different from the residue calculus in one dimension.

This thesis contains two parts. The first part, i.e. chapters 1 through 5, is a summary of the
knowledge acquired in order to be able to start my investigation. The remaining chapters are the
results of this research.

The goal of this research is to investigate what is known about the existence and the applications
of a theorem like Cauchy’s theorem, but in several variables. Does there exist a residue theorem for
functions from Cn to C? Is it still easy to evaluate such integrals? Which difficulties do we meet?
(See chapter 6)

In this thesis we will follow closely the theory expounded in the book of A.K.Tsikh [15], but
we add some material for a broader understanding. Furthermore, we discuss local residues on local
intersections and display some examples of trigonometric integrals. (See chapter 7)

I would like to thank professor Wiegerinck for his knowledge, patience and support. Also I would
like to thank professor Top for his supervision. Last, but not least, I would like to thank dr. Van
Doorn for improving my English. Without the help of these three men, this thesis would never be
accomplished.
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Chapter 1

Preliminaries

Let us first recall [9] that Cn ' R2n by the isomorphism ϕ(x, y) = x + iy, with x, y ∈ Rn and
i the imaginary unit. Now, Cn forms a vector space of complex vectors z = x + iy over R. We
denote z̄ = x − iy the complex conjugate of z and define the real and imaginairy part of z
resp. as Re(z) := x ∈ Rn, Im(z) := y ∈ Rn, furthermore we define the inner product to be
〈z, w〉 :=

∑n
j=1 zjw̄j which defines the (Euclidian- or 2-) norm on Cn by: ‖z‖2 =

√
〈z, z〉.

The normed complex vector space is also a metric space, with the metric d(z, w) = ||z − w||2.
With this notion ahead, it makes sense to talk about open and closed subsets of Cn, about continuity
of functions defined on this vector space and about convergence of sequences and series. Since every
metric space is a topological space, Cn is also a topological space with open sets generated by open
balls Br(z) = {w ∈ Cn : d(z, w) < r}, r > 0. A set Ua is called a neighborhood of the point a if
there exists an open ball Br(a) which is contained in Ua.

Let K ⊂ Cn, then K is called convex if for every pair of vectors k1, k2 ∈ K and for all t ∈ [0, 1]
also the vector (1 − t)k1 + tk2 is in K. A set K is called logarithmically convex if the image of
the mapping K → M : z 7→ ln |z| = (ln |z1|, . . . , ln |zn|) is convex and K is called circular or
Reinhardt if for every k ∈ K also keiθ ∈ K, for θ ∈ [0, 2π). Note that in one complex variable, a
logarithmically convex Reinhardt domain is simply an annulus centered at the origin. The closure of
V , will be denoted by V . For example, the closure C is C := C ∪ {∞}.

Let us also recall that functions on the complex plane may be multiple valued, i.e. f(z) ⊂ C.
This phenomenon also occurs on Cn. If f(z) is a multiple valued function over a domain D ∈ Cn,
then Bf (z) is called a branch of f if Bf (z) is single valued and continuous over D and has one of

the values of f(z) [11]. For instance, the function f(z) = z
1
2 , where we choose f(1) = 1, is double

valued throughout the negative real axis. One takes two copies of the complex plane and cuts both
plains open on the negative real axis. Now one glues the two copies together such that the function
f(z) moves over the two sheets in a continuous way. The glued sheets are a Riemann manifold as in
figure 1.1.

3
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Figure 1.1: Construction of the Riemann surface of f(z) = z
1
2



Chapter 2

Fundamental groups

In this chapter we recall, following [10], some topological aspects of subspaces in Cn by looking
at fundamental groups, chains and loops. We start with describing homotopy and continue with the
study of simplices, which will be used to define homology. This will be the basis for chapter 6.

2.1 Fundamental groups

Assume that X and Y are two topological spaces. We define the following equivalence relation on
the set of continuous maps from X to Y as follows.

Definition 1. Let f, g : X → Y continuous, then f and g are called homotopy equivalent (write
f ' g) if there exists a continuous map F : X × [0, 1]→ Y such that F (x, 0) = f and F (x, 1) = g.
The map F is called a homotopy between f and g cf. [10].

This is an equivalence relation. Indeed, F (x, t) = f(x) shows that f ∼ f (reflexivity) and if
f ' g by F (x, t) then g ' f by F (x, 1 − t) (symmetry). To show that also transitivity holds, let
F1(x, t) be the homotopy of f ' g and F2(x, t) be the homotopy of g ' h. We then have that f ' h
by the homotopy

F (x, t) =

{
F1(x, 2t) : 0 ≤ t ≤ 1

2
F2(x, 2t− 1) : 1

2 ≤ t ≤ 1
. (2.1)

One can think of homotopy equivalence of two maps as meaning that one can transform the first
map into the second map in a continuous way. The next proposition is meant as an illustration.

Proposition 1. Every pair of continuous maps f, g : X → Y is homotopy equivalent if Y is convex.

Proof. The homotopy is F (x, t) = (1− t)f(x) + tg(x).

Note that F is indeed a correct homotopy, since F is continuous, because f and g are continuous,
and the image of F is a subset of Y , because Y is convex.

Using homotopy equivalent maps, we define homotopy equivalence in the next definition. Here
IdX will be the identity mapping from X to itself.

Definition 2. X,Y are called homotopy equivalent if there exists continuous maps f : X → Y and
g : Y → X , such that g ◦f ' IdX and f ◦g ' IdY . Then g is called the homotopy equivalent inverse
of f .

Homotopy equivalence is a weaker notion than homeomorphy.

5
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Theorem 1. If X and Y are homeomorphic, then they are homotopy equivalent.

Proof. If two spaces are homeomorphic, then there exists a homeomorphism φwhich is invertible and
continuous. Let f = φ and g = φ−1, then f ◦ g = IdY .

Not every pair of spaces that is homotopy equivalent is also homeomorphic. Indeed, a solid disk
is homotopy equivalent to a point, see also proposition 1, but a point is obviously not homeomorphic
to a disk. Homotopy equivalence is not necessarily dimension preserving, homeomorphy is.

Another way of classifying topological spaces is by means of paths and loops. This will result in
two types of connectedness. Let us first give formal definitions of paths and loops.

Definition 3. Suppose x1, x2 are points in the space X . A path from x1 to x2 is a continuous map
u : [0, 1]→ X such that u(0) = x1 and u(1) = x2. A loop in X based at x1 is a path from x1 to x1.

We call a topological space X path-connected if and only if there exists for every two points
x1, x2 ∈ X a path u from x1 to x2 andX is called simply connected if every loop inX is contractible.
The next theorem shows that a homotopy preserves these two properties.

Theorem 2. Let X and Y be homotopy equivalent spaces, then

1. if X is path-connected then so is Y ;

2. if X is simply connected then so is Y .

Figure 2.1: Two homotopy equivalent spaces X and Y and some mappings.

Proof. Let X and Y be homotopy equivalent then by the previous definition there exists two maps f
and g such that g◦f ' IdX and f ◦g ' IdY . Also, let F (x, 0) = f ◦g, F (x, 1) = IdX ,G(y, 0) = g◦f
and G(y, 1) = IdY . See also figure 2.1.

1. It’s clear that the image of f is path connected. Thus, it is enough to show that any point
of Y can be connected to a point of f(X). Let f ◦ g homotopic to idY , via the homotopy
h : Y × I → Y . Let y ∈ Y , then y′ = f(g(y)) ∈ f(X) and γ(t) = h(y, t), a path from y′ to y.

2. If X is simply connected then X is homotopy equivalent with a point. Therefore, also Y is
homotopy equivalent to a point and hence it is simply connected.
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To be specific, also paths and loops can be homotopy equivalent, because they are maps and
definition 1 applies. Two paths u1, u2 both from x1 to x2 are homotopy equivalent if there exists a
map U : [0, 1]2 → X with U(x, 0) = u1(x) and U(0, 1) = u2(x) for every x ∈ X . We write
u1 ∼ u2. This is also an equivalence relation, since homotopy equivalence is an equivalence relation.
The equivalence class of a path (or a loop) u will be denoted as [u] and is called the homotopy class
of u.

Definition 4. The set π1(X,x0) of all homotopy classes of loops u : [0, 1] → X at basepoint x0 is
called the fundamental group of X at basepoint x0.

Let u, v be two loops with u(1) = v(0), then the composition of u and v is given by

u ∗ v :=

{
u(2x) if 0 ≤ x ≤ 1

2
v(2x− 1) if 1

2 ≤ x ≤ 1
(2.2)

The word ‘group’ in the definition is permitted because of the following theorem.

Theorem 3. The fundamental group π1(X,x0) is a group with respect to the group law ∗.

For a formal and detailed proof, we refer to [7]. Here, we just try to convince the reader that
π1(X,x0) is indeed a group.

The identity of the group is the equivalence class of the constant loop u : [0, 1] → {x0} and the
inverse of a class of loops [u] is given by [u]−1 = [u−1] = {v(x) : v ∼ u(1 − x)}. The product of
two loops can be seen as walking a first loop at double speed and afterwards also the second loop at
double speed. One can imagine that this is again a loop. The group operation ∗ is therefore closed.
Also, ∗ is associative, because walking two loops and then a third is equivalent to walking the first
loop and then the last two.

It is natural to ask about the dependence of π1(X,x0) on the choice of the basepoint x0. In order
to answer this question, we recall the change of basepoint map βh : π1(X,x1) → π1(X,x0) by
βh[p] = [h ∗ p ∗ h−1]. Here h is a path in X from x1 to x0.

Theorem 4. The map βh : π1(X,x1) → π1(X,x0) is an isomorphism if h is a path in X from x1 to
x0 and X is path connected.

Proof. βh[u ∗ v] = [h ∗ u ∗ v ∗ h−1] = [h ∗ u ∗ h−1 ∗ h ∗ v ∗ h−1] = βh[u] ◦ βh[v]. The inverse of
βh[u] is βh−1 [u] since βh[u] ◦ βh−1 [u] = βh[h−1 ∗ u ∗ h] = [u]. Similarly βh−1 [u] ◦ βh[u] = [u].

Thus the fundamental group π1(X,x0) is isomorphic for all base points x0 ∈ X , if X is path-
connected. If X is not path-connected, then the fundamental groups are isomorphic for all base points
which can be reached by a path h in X .

We give three examples of spaces and calculate their fundamental groups. Note that the funda-
mental group is in general not commutative.

Example 1. The Euclidean space Cn (or any convex subset of Cn). All loops in the (convex subspace)
of the Euclidean space are contractible to the basepoint. This means that the fundamental group is
the group with the constant map. Such a group is called trivial.
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Example 2. The circle. Each homotopy class consists of all loops which wind around the circle a
given number of times (which can be positive or negative, depending on the direction of winding).
The product of a loop which winds around m times and another that winds around n times is a loop
which winds around m+ n times. So the fundamental group of the circle is isomorphic to (Z,+), the
additive group of integers. We can write down explicitly the generator ϕn(s) = (cos(πns), sin(πns)).
To prove that ϕ : Z → π1(X,x0) is indeed an isomorphism, needs quite some work and a detailed
proof can be found, for example, in [7].

Let us consider an example where this theory is applied to complex analysis.

Theorem 5. Fundamental theorem of algebra Every nonconstant polynomial with coefficients in C
has at least one root in C.

Proof. Let us assume that there is a polynomial p(z) = zn + a1z
n−1 + · · ·+ an without roots in C.

Define a homotopy pt(z) = tp(z) + (1− t)zn for t ∈ [0, 1]. Now,

pt(z)

zn
= t

(
1 + a1

1

z
+ . . .+ an

1

zn

)
+ 1− t = 1 + t

(
a1

1

z
+ . . .+ an

1

zn

)
. (2.3)

The terms between the parenthesis tend to zero as z goes to infinity. Therefore pt(z) is never zero on
a circle |z| = r > 0. Now the function

fr(s) =
pt(re

2πis)

|pt(re2πis)|
(2.4)

defines a loop in the unit circle S1 ⊂ C with basepoint 1 and [fr] ∈ π1(S1, 1). This shows that for
the complex polynomial p(z) of degree n, there is a circle of sufficiently large radius in C such that
both p(z)/|p(z)| and zn/|zn| are homotopic mappings from {|z| = r} to the unit circle. This implies
that p(z)/|p(z)| has also degree n.

Now define ft = p(tz)/|p(tz)|, which is a homotopy from the constant map p(0)/|p(0)| to
p(z)/|p(z)|. Under the homotopy, the degree should not change, so if we assume p(z) to have no
zeros, it has to have degree 0, which is a constant map.

Example 3. Lemniscate (∞-figure, rose or bouquet of circles). This figure contains two fundamental
loops. The left- and the right part of the∞-figure. Therefore, the fundamental group is the free group
generated by those two paths. In general, the fundamental group of a rose is free, with one generator
for each petal.

Note that every n-dimensional torus of genus m is homotopy equivalent to a rose with n · m
petals, so it has the same fundamental group. Suppose we have two path-connected spaces X and Y ,
the fundamental group π1(X × Y ) is isomorphic to π1(X) × π1(Y ). One can see this from the fact
that a loop u in X × Y based at (x0, y0) is a pair of loops v in X based in x0 and w in Y based at
y0. Similarly, a homotopy F (X × Y, t) is a pair of homotopies G(X, t) and H(Y, t), so we obtain
a bijection π1(X × Y, (x0, y0)) ∼ π1(X,x0) × π1(Y, y0), [u] 7→ ([v], [w]). Indeed, this is only an
isomorphism when both X and Y are path-connected.

2.2 Fundamental polygons

We can construct for every closed surface an even-sided polygon, called the fundamental polygon,
and visa verse by identification of the edges of the polygon. This construction can be represented as a
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string of length 2n of n distinct symbols where each symbol appears twice with exponent either +1
or −1. The exponent −1 signifies that the corresponding edge has the orientation opposing the one of
the fundamental polygon. First some examples.

(a) Sphere (b) Torus (c) Klein bottle

Figure 2.2: Examples of fundamental polygons.

(a) If we cut open the sphere from the north pole to the south pole, we can deform it to a square.
Let us call the path from the north pole (z0) to the equator A and from the equator to the south
pole B. If we walk the paths A, B, B in opposite direction and finally A in opposite direction,
we have that ABB−1A−1 ∼ z0. Now the fundamental group is the group generated by loops,
and so there is just one loop ABB−1A−1, which is a contractible loop with basepoint z0. The
fundamental group is trivial.

(b) If we cut open the torus first longitudinal and second latitudinal, we obtain a square. Let A be
the path along the first cut and B the path along the second cut. Both A and B are loops, so the
group is generated by A and B with relation ABA−1B−1 ∼ z0. Hence the fundamental group
is isomorphic to Z×Z and one can see from this relation that the fundamental group is Abelian.

(c) It is not easiliy seen without figure 2.3 how the transformation from the Klein Bottle to the
square is done. Again, by setting A to be the first cut and B to be the second, we have the group
relation ABAB−1 ∼ z0. As one can see, the fundamental group is not Abelian.

Figure 2.3: From Klein bottle to square.

For the set of polygons, the symbols of the edges of the polygon may be understood to be the
generators of the fundamental group. Then, the polygon, written in terms of group elements, becomes
a constraint on the free group generated by the edges, giving a group presentation with one constraint.

Thus, for example, given the complex plane C, let the group element A act on the plane as A(x+
iy) = x+ 1 + iy while B(x+ iy) = x+ i(y+ 1). Then A,B generate the lattice Γ = Z2. The torus
is given by the quotient space T = C/Z2. For the torus, the constraint on the free group in two letters
is given by ABA−1B−1 = z0.
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2.3 Seifert - van Kampen Theorem

The Seifert - van Kampen theorem (abbreviated Van Kampen’s theorem) gives a method for comput-
ing the fundamental groups of spaces that can be decomposed into simpler spaces whose fundamental
groups are already known. By systematic use of this theorem one can compute the fundamental groups
of a very large number of spaces. The free product is in this context very important, because van Kam-
pen’s theorem states that the fundamental group of the union of two path-connected topological spaces
is always an amalgamated free product of the fundamental groups of the spaces.

The free product Fn
j=1Gαj (abbreviated FαGα) of groups Gαj is the set of words g1g2 · · · gm

of finite length m ≥ 0, where each letter gk belongs to a group Gαj , not the identity, and successive
letters gk, gk+1 are from different groups. We also allow the empty word, which is the identity of
the free product. To show that the free product is a group is quite tedious, but not difficult. One
can imagine that the free product would be a group if the group operation was just the juxtaposition
(w1 · w2 = w1w2) of words. The compulsary simplifications of successive letters form the same
group, as is treaded in the proof of Hatcher [7].

Before we state Van Kampen’s theorem, we will come up with two important remarks.

Remark 1. Because successive letters from the same group in a word generates a unique simplified
word and any sequence of simplifications in any order produces the same reduced word the group
operation is associative.

Remark 2. A collection of homomorphisms ϕα : Gα → H extends uniquely to a homomorphism
ϕ : FαGα → H: ϕ(g1 · · · gm) = ϕα1(g1) · · ·ϕαm(gm).

Suppose a space X can be decomposed as a union of two path-connected open subsets A and B.
Each of these subsets contain the basepoint x0. Denote iαβ : π1(A ∩ B)→ π1(A) and iβα : π1(A ∩
B)→ π1(B), which are homomorphisms induced by resp. the inclusions A∩B ↪→ A and A∩B ↪→
B. Likewise jα : π1(A) → π1(X) and jβ : π1(B) → π1(X), also by inclusion maps A ↪→ X and
B ↪→ X . The homomorphisms j extend naturally to a homomorphism Ψ : π1(A) ? π1(B)→ π1(X).
Since jαiαβ = jβiβα, the kernel of Ψ contains of elements iαβ(ω)iβα(ω)−1, for ω ∈ π1(A ∩B).

Theorem 6. Seifert-van Kampen theorem Under the assumptions as stated above, Ψ is surjective,
the kernel of Ψ is the normal subgroup N and Ψ induces an isomorphism

Φ : π1(X)→ (π1(A) ? π1(B)) /N. (2.5)

Figure 2.4: Loops in A,B and A ∩B.

Proof. First, pick a loop u ⊂ X with basepoint x0 in X . Start in x0 and follow the loop until you are
again inA∩B and call this walk u1. SinceA∩B is path connected, we can walk back to the basepoint
with a path v to have a loop in just A or just B. Now we can walk back with v−1 and continue this
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(a) Two hemispheres (b) An annulus and a tube

Figure 2.5: Decomposition of the Sphere and the Torus

precedure until you have walked the entire loop u. In other words, u = u1vv
−1u2vv

−1 · · ·uk, where
uj is in just A or just B. Hence, Ψ is surjective.

Second, we will show that N = ker(Ψ). Obviously, the kernel of Ψ is a normal subgroup. To
show that the normal subgroup is the kernel, let [v] ∈ π1(A ∩B), then

Ψ(iαβ(v) ? iβα(v)−1) = Ψ(v ? v−1) = [v ? v−1] = x0,

and hence N ⊂ ker(Ψ).
The statement that Ψ is an isomorphism is a direct consequence of the first isomorphism theorem.

Let us consider the following example.

Example 4. The fundamental group of X = S1 is euqal to Z, since we have one class of noncon-
tractible loops. A more interesting case is the fundamental group ofX = Sk for k > 1. AssumeA and
B to be two hemispheres, as in figure 2.5 (a), and A ∩B to be the ‘equatorial’ (k − 1)-sphere. Since
the k-hemisphere is contractible, A and B have a trivial fundamental group. Now Van Kampen’s
theorem tells us that π1(X) ∼ π1(A) ? π1(B)/kern(Ψ) and so also π1(X) is trivial.

Let us consider an other example where we need the use of the fundamental polygon. We calculate
the fundamental groups of the torus.

Since A ∩ B must be path-connected, on can’t split up the torus into two tubes. In stead of
calculating the fundamental group of the torus X , we calculate the fundamental group of a tube with
a ring on it X ′ as in figure 2.5 b. We will call this space the ’tubering’, since π1(X) ∼ π1(X ′).

Example 5. We split up the tubering in a tubeA and an ringB as in figure 2.5 (b). Now Van Kampen’s
theorem tells us that π1(X ′) ∼ π1(A) ? π1(B)/kern(Ψ). The kern(Ψ) is the set of contractible loops
and therefore from the fundamental polygon, the free group generated by

〈
aba−1b−1

〉
. Here a is a

loop in A and b a loop in B. Now, π1(X ′) ∼ 〈a, b〉 /
〈
aba−1b−1

〉
. Indeed, this is the abelization of

〈a, b〉 and hence the fundamental group is isomorphic to Z2.
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Chapter 3

Homology

In this chapter we discuss the theory of homology like in Hatcher’s book [7].

3.1 Simplicial and singular homology

Recall from chapter 2 that the sphere, the torus and the Klein bottle can each be obtained from a
square by identifying opposite edges. The idea of simplicial homology is to generalize constructions
like these to any number of dimensions. The n dimensional analog of the triangle is the n-simplex.

Definition 5. Let {e0, . . . , en} be a basis of Rn+1, then the standard n-simplex is defined as the closed
polyhedron with the orthogonal basis vectors as vertices. In general an n-simplex is a polyhedron
with n+1 linear independent vectors vi as their vertices denoted as [v0, . . . , vn]. Also points and line
segments are considered to be simplices. We denote the set of n-simplices as ∆n.

If we delete one of the n + 1 vertices of an n-simplex [v0, . . . , vn], the the remaining n vertices
span an (n− 1)-simplex, called a face of the n-simplex.

Definition 6. Let K be a set of simplices. Then K is called a simplicial complex if every face of σj
is also a simplex in K and σj ∩ σk is a lateral face of both σj and σk. K is said to be an n-complex
if any k-simplex contained in K satisfies k ≤ n.

The boundary of a simplex can be calculated as follows. The boundary of a simplex An =
(a1, . . . , an) is defined as

∂(An) =
n∑
r=0

(−1)r(a1, . . . , ar−1, ar+1, . . . , an). (3.1)

In what follows, let F r : (a1, . . . , an) 7→ (a1, . . . , ar−1, ar+1, . . . , an). One can easily verify that
F r ◦ F s = F s ◦ F r+1 if s < r.

Proposition 2. For a n-simplex An(X), ∂2(An) := ∂(∂(An)) = 0.

13
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(a) A 2-simplex in C3 (b) A simplicial com-
plex

(c) Not a simplical
complex

Figure 3.1: Example of a 2-simplex, a simplical 3-complex in C3 and of a complex that is not simpli-
cial.

Proof. For n > 1, we can explicitly derive the boundary of a boundary.

∂2 = ∂

[
n∑
r=0

(−1)rF r

]
(3.2)

=

n−1∑
s=0

(−1)sF s

[
n∑
r=0

(−1)rF r

]
(3.3)

=
n−1∑
s=0

n∑
r=0

(−1)r+sF r ◦ F s (3.4)

=
n∑
s<r

(−1)r+sF r ◦ F s +
n∑
s≥r

(−1)r+sF r ◦ F s (3.5)

=
n∑
s<r

(−1)r+sF s ◦ F r−1 +
n∑
s≥r

(−1)r+sF r ◦ F s (3.6)

Since every termF iF j appears twice but with opposite sign, this equals 0. This proves the proposition.

For a topological space X , we denote Cn(X) to be the free abelian group generated by the n-
simplices from the simplicial complex K in X . The boundary mapping as in 3.1 together with the
groups Cn(X) is called the simplicial chain complex (Cn, ∂). Note the two important properties
∂2 = 0 (as proven in proposition 2) and ∂ : Cn → Cn−1. Now, the image of ∂ is the group of
boundaries and the kernel of ∂ is the group of cycles. The group of boundaries is a subset of the
group of cycles. This leads us to the simplicial homology groups.

Definition 7. Let Cn a singular complex then

1. the group Bn(Cn) is the set of boundaries and hence the image of ∂n;

2. the group Zn(Cn) is the set of n-cycles and hence the kernel of ∂n−1;
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3. the quotient group Hn(Cn) = Zn(Cn)/Bn(Cn) is called the nth homology group.

The fundamental groups of a topological space X are related to its first simplicial homology
group, because a loop is also a simplical 1-cycle. It turns out, by Hurewicz theorem, that π1(X,x0) '
H1(X), if X is connected. The required isomorphism between H1(X) and π1(X,x0) is the abeliza-
tion of π1(X,x0). The proof of this theorem is beyond the purpose of this thesis.

This idea can be extended to a more general theory. We can use a general covering of a topo-
logical space X in stead of simplexes. Direct sums of such covers form abelian groups. In general,
a chain complex is defined as a sequence of abelian groups An and connecting homomorphisms
dn : An → An−1 with the relation dn ◦ dn−1 = 0. Just analogous to the simplical complex, we define
homology groups to be im(dn−1)/ker(dn). Note that these connecting homomorphisms dn not need
to be boundaries.

3.2 Mayer-Vietoris exact sequence

Let X be a topological space which can be written as the union of two open subspaces X = A ∪ B.
We are concerned with the question what relation exists between the three subspacesA, B andA∩B.
The answer can be found in the exact sequence of Mayer-Vietoris.

Let us give the definition of an exact sequence.

Definition 8. A diagramA
f−→ B

g−→ C of abelian groupsA,B andC and connecting homomorphisms
f and g is short exact if ker(g)=im(f ) and f is injective and g is surjective. A diagramD

d1−→ E
d2−→ F

of chain complexes and chain maps is short exact if the resulting Dk −→ Ek −→ Fk is short exact for
every k ∈ Z.

Now, let us look at the following inclusion maps

i∗ : Hn(A ∩B) ↪→ Hn(A) (3.7)

j∗ : Hn(A ∩B) ↪→ Hn(B) (3.8)

k∗ : Hn(A) ↪→ Hn(X) (3.9)

l∗ : Hn(B) ↪→ Hn(X) (3.10)

and the following homomorphisms.

ϕ : Hn(A ∩B)→ Hn(A)⊕Hn(B) ϕ(z) 7→ (i∗(z), j∗(z)) (3.11)

ψ : Hn(A)⊕Hn(B)→ Hn(X) ψ(u, v) 7→ k∗(u)− l∗(v) (3.12)

Without proving, we state one of the most important results in algebraic topology and homology
theory.

Theorem 7. The Mayer-Vietoris exact sequence. The following sequence is exact.

· · · ∂n+1−−−→ Hn(A ∩B)
ϕ−→ Hn(A)⊕Hn(B)

ψ−→ Hn(X)
∂n−→ Hn−1(A ∩B)

ϕ−→ · · · (3.13)

Here ∂q is the boundary operator as defined before.

We conclude this section with an example. We want to calculate the homology class of the k-
sphere with the Mayer-Vietoris exact sequence. With our intuitive concept of the homology groups
– the n-th homology of X equals the number of “holes of dimension n” in X – we expect that the
homology will be Z for the k-th homology group of the k-sphere and otherwise zero.
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(a) Two hemispheres (b) Two tubes

Figure 3.2: Decomposition of the Sphere and the Torus

Example 6. Take X = Sk for k > 0, and assume A and B to be two hemispheres, as in figure 2.5,
and A ∪ B to be the ‘equatorial’ (k − 1)-sphere. Since the k-hemisphere is contractible, A and B
both have a trivial homology. The exact sequence will be given by

0→ Hn(Sk)
∂n−→ Hn−1(Sk−1)→ 0. (3.14)

Now, the statement that Hn(Sk) ∼ Z for n = k and zero otherwise can be proven by induction to
the dimension k. Let us first look at the 1-sphere (the circle). The first homology group H1(S1),
containing one singular cycle, is isomorphic to the additive group Z, since it is isomorphic to it’s
fundamental group (see example 1). The first homology group of the ball H1(S2) is zero, becease it’s
surface is simply connected. Now assume for some m, Hn(Sm) ∼ Z if m = n and zero otherwise.
By sequence 3.14, there is an isomorphism ∂n+1 : Hn+1(Sm+1) → Hn(Sm). This homology group
is the required Z if m = n and zero otherwise from the induction hypothesis.

Let us consider an other example. We calculate the homology groups of the torus. Note that, in
contrast to Seifert-Van Kampen, Mayer-Vietoris does not require A ∩B to be path-connected.

Example 7. Take X = T 2. We split up the torus in two tubes A and B. Now, Hk(A) = Hk(B) =
Hk(A ∩ B) = Hk(S

1) = Z if k = 0 or 1 and zero otherwise (see previous example). Let us set up
the Mayer-Vietors sequence.

0→ H2(T 2)→ Z→ Z× Z→ Z× Z→ Z→ Z× Z→ Z→ 0. (3.15)

Now, H2(T 2) is either 0 or Z. From the first part of the sequence,

0
ψ−→ H2(T 2)

∂2−→ Z, (3.16)

we see that the kernel of the left map is 0, so the kernel of the right map is Z, so the image of the left
map is also Z, so H2(T 2) cannot be 0. Hence, H2(T 2) = Z.



Chapter 4

Holomorphic and Analytic functions

In this chapter we study the local properties of functions from Cn tot C, which can be deduced from
the classical theory of complex functions in one complex variable. We discuss differentiability, inte-
gration, Cauchy’s integral formula for polydiscs and power series. Subsequently, we discuss analytic
continuation, which is in higher dimensions quite different from analytic continuation in one dimen-
sion. The information in this chapter relies mainly on the lecture notes of Korevaar and Wiegerinck
[8].

4.1 Holomorphic functions

A complex valued function is a mapping f : Ω ⊂ Cn → C which is of the form

f(z) = f(z1, z2, . . . , zn) = u(x1, y1, . . . , xn, yn) + iv(x1, y1, . . . , xn, yn). (4.1)

These functions map n-tuples of complex numbers onto the complex plane. Here u, v are functions
from R2n to R. The derivative of a complex function with respect to the jth variable is, by definition,
given by the limit

∂f

∂zj
= lim

∆z→0

f(z + ∆zej)− f(z)

∆z
, (4.2)

if it exists. Here ∆z = ∆x + i∆y ∈ C and ej is the jth basis vector of Cn. For R-differentiable
functions, this limit exits and is unique, i.e.

lim
∆x→0

u(x+ ∆xej , y)− u(x, y)

∆x
+ i

v(x+ ∆xej , y)− v(x, y)

∆x
=

∂u

∂xj
+ i

∂v

∂xj
(4.3)

and

lim
∆y→0

u(x, y + ∆yej)− u(x, y)

i∆y
+ i

v(x, y + ∆yej)− v(x, y)

i∆y
= −i ∂u

∂yj
+
∂v

∂yj
(4.4)

must be equal.

Definition 9. Cauchy-Riemann Equations A function f(x + iy) = u(x, y) + iv(x, y) : Cn → C is
said to be complex differentiable if it satisfies the Cauchy-Riemann equations:

∂u

∂xj
=

∂v

∂yj
and

∂v

∂xj
= − ∂u

∂yj
, j = 1, . . . , n. (4.5)

A function f : Ω → C is said to be holomorphic if it is complex differentiable in a neighborhood of
each point in Ω and we write f ∈ O(Ω).

17
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In practical calculations, we do not split up the function in a real and an imaginary part. If f is
complex differentiable, we write ∂f

∂xj
= ∂u

∂xj
+ i ∂v∂xj

and 1
i
∂f
∂yj

= 1
i

(
∂u
∂yj

+ i ∂v∂yj

)
= ∂u

∂xj
− 1

i
∂v
∂xj

.
Analogous to 2x = z + z̄ and 2iy = z − z̄, we write

2
∂f

∂xj
=
∂f

∂zj
+
∂f

∂z̄j
and 2i

∂f

∂yj
=
∂f

∂zj
− ∂f

∂z̄j
. (4.6)

Now we write derivatives in terms of the Wirtinger differential operators which are given by

∂f

∂zj
:=

1

2

(
∂f

∂xj
+

1

i

∂f

∂yj

)
j = 1, . . . , n (4.7)

∂f

∂z̄j
:=

1

2

(
∂f

∂xj
− 1

i

∂f

∂yj

)
j = 1, . . . , n. (4.8)

These operators look like partial derivatives with respect to zj and z̄j which, actually, they are not.
On the other hand, in calculations they do behave like partial derivatives. This justifies this notation.
Hence, the Cauchy-Riemann equations can stated as follows.

Let f : Ω → C, where Ω ⊂ Cn, and suppose for all z ∈ Ω and j = 1, . . . , n ∂f
∂z̄j

= 0, then f is

holomorphic at Ω and we write f ∈ O(Ω).
Assume α to be a n-tuple of natural numbers, which is called a multi-index. Then,

|α| = α1 + . . .+ αn α! = α1! · . . . · αn! zα = zα1
1 · . . . · z

αn
n . (4.9)

Definition 10. Assume α and β to be multi indexes, then for α = (α1, . . . , αn) and β = (β1, . . . , βm)

resp. the operators Dα, Dβ and Dαβ are defined as

Dα =
∂|α|

∂zα
Dβ =

∂|β|

∂z̄β
Dα,β =

∂|α|+|β|

∂zα∂zβ
. (4.10)

For a function f : Ω ⊂ Cn → C ∈ O(Ω) we have the Taylor expansion of a function f in a
point a is given by

Tf(a)(z) =
∑
α≥0

(z − a)α

α!
Dαf(a) =

∑
α≥0

cα(z − a)α. (4.11)

This is the complex version of the Taylor Series1 for real valued functions over Rn. Of course, this is
only true if Dαf(a) = 0 and thus if f is holomorphic in a neighborhood of a. Now it is easily seen
that also in several complex variables every holomorphic function is analytic and vice versa.

Like we have Cauchy’s integral formula for every continuous function over C there is a similar
definition for Cn.

Theorem 8. Multi dimensional Cauchy integral formula Let f(z) ∈ C(Cn) and T (a, r) be the torus
around a point a with radii rj then the following equality holds.

f(z) =
1

(2πi)n

∮
T (a,r)

f(ζ)

(ζ1 − z1) . . . (ζn − zn)
dζ1 . . . dζn. (4.12)

The following proof uses induction to the dimension.
1If we allow αj to be negative, we have the Laurent series.
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Proof. For n = 1 we have the classical theorem of Cauchy. Now suppose that formula 4.12 holds for
n. Let a′ = (a0, a), r′ = (r0, r), z′ = (z0, z) and ζ ′ = (ζ0, ζ) all in Cn+1. Now let us fix z = w so
we can apply Cauchy’s theorem in one variable with respect to z0.

f(z0, w) = g(z0) =
1

2πi

∮
C(a0,r0)

g(ζ0)

ζ0 − z0
dζ0 =

1

2πi

∮
C(a0,r0)

f(ζ0, w)

ζ0 − z0
dζ0 (4.13)

If we fix ζ0 = w0, then we define h(w) = f(w0, w) to have by the induction hypothesis

h(w) =
1

(2πi)n

∮
T (a,r)

f(w0, ζ)

(ζ1 − z1) . . . (ζn − zn)
dζ1 . . . dζn. (4.14)

By substitution of (4.14) in (4.13) we have

f(z′) =
1

(2πi)n+1

∮
C(a0,r0)

dζ0

ζ0 − z0

∮
T (a,r)

f(ζ0, ζ)

(ζ1 − z1) . . . (ζn − zn)
dζ1 . . . dζn. (4.15)

Which is by Fubini the required

f(z′) =
1

(2πi)n+1

∮
T (a′,r′)

f(ζ ′)

(ζ0 − z0) . . . (ζn − zn)
dζ0 . . . dζn. (4.16)

For functions that are just smooth in stead of holomorphic, there is an extended version of the
Cauchy integral theorem. We state it without proof.

Theorem 9. Extended Cauchy integral formula Let f(z) ∈ C∞(D) be a smooth function over a
closed disk centered at a point a with radius r then the following equality holds.

f(z) =
1

2πi

∮
∂D

f(ζ)

ζ − z
dζ +

1

2πi

∮
∂D

∂f(ζ)

∂w
(w)

dwdw

ζ − z
dζ. (4.17)

Note that if f is holomorphic then ∂f
∂w = 0, and so the second term vanishes and we recover the

standard Cauchy integral formula. The proof of theorem 8 relies on Green’s Formula.
We conclude this section with Osgood’s lemma.

Theorem 10. If a complex valued function f is continuous in an open set Ω ⊂ Cn, and f is holomor-
phic in each variable separately, then f is holomorphic in D.

We will construct a power series for f to show that it is analytic and thus holomorphic.

Proof. For a fixed point a in a closed polydisc D(w, r) ⊂ Ω the series expansion

1

z − a
=
∑
α≥0

(a− w)α

(z − w)α+1
(4.18)

is absolutely uniformly convergent for all points ζ on ∂D = T (w, r). Now, with the multidimensional
Cauchy integral formula we find for f(z) =

∑
α≥0 cα(z − a)α

cα =
1

(2πi)n

∮
T (w,r)

f(z)dz

(z − w)α+1
. (4.19)
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4.2 Analytic continuation

Recall that for any D ⊂ C of the complex plane there exists a complex function f that is analytic
on D such that there exists no complex function g analytic on D′ ⊂ C with the property on a open
subset D ⊂ D′ and f = g|D where D 6= D′. For an analytic function over a domain Ω ⊂ Cn, such a
function does exist. This phenomena is called analytic continuation.

Let f be an analytic function over a neighborhood U around the point a ∈ Cn. A triple (a, U, f) is
called a function element at a. We write down a equivalence relation between such triples (a, U, f) ∼
(b, V, g) if and only if a = b and f = g on a neighborhoodW ⊂ U∩V . The class of function elements
at a is called the germ of the function f at a and is denoted by [f ]a. One can show that every element
of the same germ has the same power series.

Now, the functions holomorphic in a point a modulo their equivalence relation forms a com-
mutative ring Oa with additive operation defined as [f ]a + [g]a = [f + g]a and multiplication by
[f ]a ∗ [g]a = [fg]a as one would expect.

Definition 11. Consider a curve γ : [0, 1] → C and fix k + 1 points γ(t0), . . . , γ(tk). Let f be an
analytic function defined on a neighborhood U of a point z. An analytic continuation of the function
element (z, U, f) along a curve γ is a collection of function elements {(γ(tj), Utj , ftj )}kj=0 such that

1. ft0 = f , Ut0 = U and γ(t0) = z;

2. For each j the function ftj is analytic on Utj ;

3. For each pair of successive neighborhoods Utj ∩ Utj+1 is connected and not empty.

4. For each pair of successive neighborhoods Utj ∩ Utj+1 yields ftj |Utj = ftj+1 |Utj+1
.

The definition of analytic continuation along a curve is a bit technical, but the basic idea is that one
starts with an analytic function defined around a point, and one extends that function along a curve
via analytic functions defined on small overlapping neighborhoods covering that curve.

The continuation along a curve is unique if it exists. This is a very powerful statement, because
it tells us that you can ‘reconstruct’ a function on the entire domain if you know it on just a small
compact subdomain. It is stated in the next theorem.

Theorem 11. Let V be the connected domain of two analytic functions f and g such that for all z ∈ U
yields f(z) = g(z) for U ⊂ V , then f = g for all z ∈ V .

We will prove that the set S = {z ∈ V : f(z) = g(z)} is both open and closed in V .

Proof. That S is closed, follows from the continuity of f and g. Now we will take a look at the Taylor
series of f and g, so we consider the same set S but rewrite it as

S = {z ∈ V : f (k) = g(k), k ≥ 0}.

Assume w to be an element of S. Then, because the Taylor series of f and g at w have non-zero
radius of convergence, the open disk Br(w) also lies in S for some positive real r. (In fact, r can be
anything less than the distance from w to the boundary of V ). This shows that S is open. Since S is
open and closed in V , we have shown that S = V .
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The main consequence of this theorem in the context of this thesis is that analytic functions can’t
have isolated zeros and poles in Cn, n ≥ 2.

Let f be holomorphic on a “punctured polydisc” ∆ = Dn(a, r)\{a}. Then f has an analytic ex-
tension toDn(a, r) and has no irremovable pole at a. As a direct consequence, holomorphic functions
can also not have isolated zeros since an isolated zero of f would be a irremovable isolated singularity
for 1/f .
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Chapter 5

Holomorphic forms

In this chapter we will go a little deeper into complex functions. We discuss differential forms and
the Weierstrass theorem analogous to Korevaar and Wiegerinck [8]. We discuss the relation between
cohomology and Stokes Theorem as in Shabath [12].

5.1 Complex differential forms

In this section we will consider functions and differential forms on complex manifolds.

Definition 12. LetM be a Hausdorff space, thenM is a manifold ifM can be covered by a collection
of domains U = {Uα}α∈A, A an arbitrary set of indices, and Uα ⊂ M that are homeomorphic to
open balls in Rn. Each homeomorphism ϕα : Uα → Rn is called a chart and the collection of all
charts is called an atlas of the covering.

If for every pair of domains (U1, U2) of charts (ϕα, ϕβ) with non empty intersection ϕαβ =
ϕα ◦ ϕ−1

β |ϕβ(V1∪V2) is biholomorphic, i.e. ϕαβ and ϕ−1
αβ = ϕβα are holomorphic, then M is called a

holomorphic manifold.
Let us, by way of example, prove the theorem that the complex projective space CPn is a holo-

morphic manifold.

Theorem 12. The complex projective space is defined as the set of equivalent classes corresponding
to the equivalence relation z ∼ z′ in Cn+1\{0} if z = λz′ for some nonzero complex number λ. We
will show that this is indeed a holomorphic manifold.

Proof. Consider the subsets Uj = {(z0, . . . , zn)|zj 6= 0} of CPn for j ∈ {0, . . . , n}. These subsets
cover the whole projective space. Now, set

ϕj : (z0, . . . , zn) 7→ ( z0zj , . . . ,
zj−1

zj
,
zj+1

zj
, . . . , znzj ) (5.1)

and
ϕ−1
j : (ζ0, . . . , ζn−1) 7→ (ζ0, . . . , ζj−1, 1, ζj+1, . . . , ζn−1). (5.2)

All, ϕj’s are clearly biholomorphic on Uj and so the complex projective space is a holomorphic
manifold with the above atlas.

On holomorphic manifolds we consider complex differentiable forms. We use differential forms
as an approach to define integrands over curves, surfaces, volumes, and higher dimensional manifolds.

23
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So we identify (again) Cn with R2n and a function is said to be R-differentiable iff f is differentiable
with respect to x and y. Now define dzj and dz̄j such that dxj = 1

2(dzj + dz̄j) and dyj = 1
2i(dzj −

dz̄j).

Definition 13. Let Ω ⊂ Cn be a holomorphic manifold and f : Ω→ C be a R-differentiable function.
The exterior derivative of f is given by df =

∑n
j=1

∂f
∂zj
dzj + ∂f

∂z̄j
dz̄j .

We can apply the exterior derivative d multiple on differential forms, and in general we define the
(p,q)-form to be

ω =
∑
J,K

ωJ,K(z)dzJ ∧ dz̄K , J = {j1 . . . jp} K = {k1 . . . kq}. (5.3)

The space of these (p, q)-forms is denoted by Ωp,q, which is defined as

Ωp,q =

p∧
j=1

Ω1,0 ∧
q∧
j=1

Ω0,1.

Now, we can define for a n-dimensional (p,q)-form three operators if both p, q ≤ n.

∂ : Ωp,q → Ωp+1,q ∂ : ω 7→
∑
J,K

n∑
l=1

∂fJ,K
∂zl

dzl ∧ dzJ ∧ dz̄K (5.4)

∂̄ : Ωp,q → Ωp,q+1 ∂̄ : ω 7→
∑
J,K

n∑
l=1

∂fJ,K
∂z̄l

dz̄l ∧ dzJ ∧ dz̄K (5.5)

d : Ωp,q → Ωp+1,q + Ωp,q+1 d : ω 7→ ∂ω + ∂̄ω (5.6)

where, ∂ and ∂̄ are called the Dolbeault operators and d is the exterior derivative of a (p,q)-form.

In general, for a n-dimensional (n, 0) form ω = f(z)dz = f(z1, . . . , zn)dz1 ∧ . . . ∧ dzn, with
f(z) holomorphic in Ω ⊂ Cn, then dω can be calculated as follows.

dω = df(z1, . . . , zl) ∧ dz1 ∧ . . . ∧ dzl (5.7)

=
l∑

j=1

∂f

∂zj
dzj ∧ dz1 ∧ . . . ∧ dzl +

l∑
j=1

∂f

∂z̄j
dz̄j ∧ dz1 ∧ . . . ∧ dzl (5.8)

The left sum equals zero, because each term can be written as (−1)l−1 ∂f
∂zj
dwj∧dzj∧dzj where dwj =

dz with dzj omitted. The right sum is also zero, because f is holomorphic and all the derivatives with
respect to z̄ vanish.

Thus the exterior derevative of a holomorphic (n, 0)-form is zero.∮
∂M

ω =

∮
M
dω = 0 (5.9)

The d-operator is characterized by three important properties. These properties are stated in the
next lemma.
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Lemma 1. Let X be a complex manifold and ω ∈ Ωp,q(X), η ∈ Ωs,t(X) then:

1. d(αω + η) = αd(ω) + d(η) (Linearity),

2. d2 = ∂(∂ω) = ∂̄(∂̄ω) = 0 and ∂(∂̄ω) = −∂̄(∂ω) (Idempotency),

3. ∂(ω ∧ η) = ∂ω ∧ η+ (−1)p+qω ∧ ∂η and ∂̄(ω ∧ η) = ∂̄ω ∧ η+ (−1)p+qω ∧ ∂̄η (Leibniz rule).

Proof. The proof follows from direct calculations. Since the second statement is of the most interest
in this thesis, we will only prove this statement. The first and third statement are left for the reader.
The definition of d implies

d2 = ∂(∂ + ∂̄) + ∂̄(∂ + ∂̄) = ∂2 + ∂∂̄ + ∂̄∂ + ∂̄2, (5.10)

so let us calculate each therm.

∂(∂ω) = ∂

∑
J,K

n∑
l=1

∂fJ,K
∂zl

dzl ∧ dzJ ∧ dz̄K

 (5.11)

=
∑
J,K

n∑
l=1

n∑
k=1

∂2fJ,K
∂zl∂zk

dzk ∧ dzl ∧ dzJ ∧ dz̄K = 0 (5.12)

(5.13)

since if k 6= l, ∂
2fJ,K
∂zl∂zk

dzk∧dzl = −∂2fJ,K
∂zk∂zl

dzl∧dzk and sum up to zero. If k = l
∂2fJ,K
∂z2l

dzk∧dzk = 0.

The proof of ∂̄2 = 0 goes similarly.
Let us calculate ∂(∂̄(ω)).

∂(∂̄ω) = ∂

∑
J,K

n∑
l=1

∂fJ,K
∂z̄l

dz̄l ∧ dzJ ∧ dz̄K

 (5.14)

=
∑
J,K

n∑
l=1

n∑
k=1

∂2fJ,K
∂z̄l∂zk

dzk ∧ dz̄l ∧ dzJ ∧ dz̄K = 0 (5.15)

If we change the order of dzk ∧ dz̄l once, we can bring the minus sign in front of the summation and
so

= −
∑
J,K

n∑
l=1

n∑
k=1

∂2fJ,K
∂z̄l∂zk

dz̄l ∧ dzk ∧ dzJ ∧ dz̄K = 0 (5.16)

= −∂̄

∑
J,K

n∑
k=1

∂fJ,K
∂zk

dzk ∧ dzJ ∧ dz̄K

 (5.17)

= −∂̄(∂ω). (5.18)

Thus ∂(∂̄ω) = −∂̄(∂ω). Since ∂2 = 0, ∂∂̄ = −∂̄∂ and ∂̄2 = 0, also d2 = 0.

Let us look at the following important definitions.
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Definition 14. Let ω ∈ Ωp,q, then

1. ω is called closed (resp. ∂̄-closed) if dω = 0 (resp. ∂̄ω = 0);

2. ω is called exact (resp. ∂̄-exact) if there exists a form σ such that dσ = ω (resp. ∂̄σ = ω).

Let ω ∈ Ωp,q(X) for a complex manifold X ⊂ Cn. From the notion that ∂̄2 = 0, the ∂̄-operator
is a connecting homomorphism and therefore the next cochain complex is an exact sequence.

. . .
∂̄−→ Ωp,q−1 ∂̄−→ Ωp,q ∂̄−→ Ωp,q+1 ∂̄−→ . . . . (5.19)

The theory of cohomology is dual to the theory of homology. Cohomological chains and boundaries
are called cochains and coboundaries. In the cochaincomplex the connecting homomorphisms work
in the opposite direction, i.e. homomorphisms ∂k : Ak → Ak+1. Note the use of superscript in stead
of subscript.

At first glance cohomology seems completely dual to homology, and therefore seemingly redun-
dant. But in fact it has more structure. Since you multiply (wedge) differential forms together, coho-
mology becomes a ring. This is still true in more general approaches such as singular cohomology.
On the homology side, one has an intersection pairing, but this is harder to describe and only available
for really ”nice” spaces.

5.2 Stokes and Cauchy

We recall Stokes’ formula for a form ω, the exterior derivative d, a manifold M and the boundary of
the manifold ∂M , namely ∮

∂M
ω =

∫
M
dw. (5.20)

Let us recall what this means for integration by chains. For a simplicial chain complex S(X) over a
manifold M ⊂ X and a form ω ∈ Ωp,q and a chain σ =

∑k
j=1 λjσ

j
n ∈ S(X), λj ∈ C, σjn ∈ Sn(X),

the chain integral is defined by ∫
σ
ω =

k∑
j=1

λj

∫
σj

ω (5.21)

By Stokes’ theorem, this is equal to ∫
σ
ω =

k∑
j=1

λj

∫
∂σj

dω. (5.22)

For holomorphic forms dω = 0, integrals over these chains are all zero. The interesting case is
when a function is not holomorphic on the whole manifold. Let us conclude this section with two
important corollaries of Stokes’ formula concerning non holomorphic forms.

Corollary 1. The integral of a closed form ω (dω = 0) over an exact cycle σ = ∂σ′ is equal to zero.

Proof. The proof follows from direct calculations. First we apply that the cycle σ is exact, next we
use Stokes’ formula and last we use that the form ω is closed.∫

σ
ω =

∫
∂σ′

ω =

∫
σ′
dω = 0 (5.23)
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Corollary 2. The integral of an exact form ω = dω′ over a closed cycle σ (∂σ = 0) is equal to zero.

Proof. This proof follows also from direct calculations, but now we first we apply that the the form ω
is exact, next we use Stokes’ formula and last we use that the boundary σ is closed.∫

σ
ω =

∫
σ
dω′ =

∫
∂σ
ω′ = 0 (5.24)

Since every closed form is exact, we can split up each form ω = ω̃ + dω′ in a exact part ω′ and a not
exact part ω̃. The same is valid for the cycle σ = σ̃ + ∂σ′. Combining the results of the previous
corollaries, we have that the integral of a form ω over a cycle σ in fact depends only on the not exact
parts of the form and the cycle.∫

σ
ω =

∫
σ̃+∂σ′

ω̃ + dω′ (5.25)

=

∫
σ̃
ω̃ +

∫
σ
dω′ +

∫
∂σ′

ω̃ +

∫
∂σ′

dω′ (5.26)

=

∫
σ̃
ω̃. (5.27)

This is what is called the cohomology class of the form and the homology class of the cycle. We will
apply this result to residues in the next chapter.
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Chapter 6

Calculating residues

In the next sections we will expound the theory, developed by Tsikh [15], which is needed to prove
and understand the theory of residues in Cn. We present also our extension regarding residues on
local intersections in section 6.3.

6.1 Introduction

We recall two equivalent definitions of a residue of f ∈ O(A\{z0}) at an isolated singularity z0

in the complex plane. Let us rewrite f(z) as its Laurent series in the neighborhood of z0, namely
f(z) =

∑
k∈Z ak(z − z0)k, then the residue of f at z0 is defined either as

resz0(f) :=
1

2πi

∮
C(z0,ε)

f(z)dz, (6.1)

or as the definition by its Laurent series
∑

k∈Z ak(z − z0)k

resz0(f) := a−1. (6.2)

To illustrate one of the problems of generalizing the residue theorem for higher dimensions, we
elaborate the example given by Tsikh ([15] p. 13).

Consider the quotient function f : D → C, with D = C2\({z = 0} ∪ {w = 0} ∪ {z = w}).

f(z, w) =
h(z, w)

zw(z − w)
, (6.3)

where h(z, w) is holomorphic and nonzero in the neighborhood of the origin. We can expand the
function f over two distinct cycles

Γ1 = {|z| = ε1, |w| = ε2 > ε1} (6.4)

Γ2 = {|z| = δ1, |w| = δ2 < δ1} (6.5)

where ε1,2 and δ1,2 are small positive real numbers.
Now the Laurent series of f with respect to respectively Γ1 and Γ2 are

f |Γ1
= − h

zw2

∑
k≥0

( z
w

)k
and f |Γ2

=
h

z2w

∑
k≥0

(w
z

)k
. (6.6)

29
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By term by term integration we have

1

(2πi)2

∫
Γ1

fdz ∧ dw = − ∂h
∂w

(0, 0)
1

(2πi)2

∫
Γ2

fdz ∧ dw =
∂h

∂z
(0, 0). (6.7)

From this example we see that, in contrary to the single dimensional case, a point can have different
Laurent series which approximate f each on a ‘different’ neighborhood of that point, i.e. two domains
are different when they are not homotopy equivalent in D. Such a neighborhood is called a canonical
domain. In our case we find two canonical domains U1 = {|z| < |w|} and U2 = {|z| > |w|}. We
will see later on that there is also a third canonical domain, namely U3 = {|z| = |w|}.

Since the residue will be calculated only on a canonical domain, and thus we have only local
convergence of the Laurent series, we speak of local residues.

6.2 Local residues

As in a one-dimensional setting we would like f to have an isolated zero in the denominator around
which we can integrate. From section 4.2 we know that a function f : D ⊂ Cn → C has never
an isolated singularity, but a mapping f : Cn → Cn might have one. Now, consider the following
definition.

Definition 15. The residue of a function h associated with the mapping f = (f1, . . . , fn), holomor-
phic in the neighborhood of an isolated zero a of the mapping f , is given by

res
a
f (h) =

1

(2πi)n

∫
Γa

hdz

f1 · · · fn
, (6.8)

where Γa = {z ∈ Ua : |fj(z)| = εj , j = 1, . . . , n}.

In fact, the components of the mapping f form a factorization of the denominator of the integrand.
When we use this formula, we have to be aware of that we might have different possibilities

in choosing such a mapping f with different outcomes. In the case of our example we have three
choices of the mapping f . The choice f I(z, w) = (z, w(z − w)), f II(z, w) = (w, z(z − w)) and
f III(z, w) = (zw, (z−w)). For this reason we speak of a local residue associated with a holomorphic
mapping. The value of a local residue at a point a depends on the choice of the factorization of the
denominator, i.e. the chosen associated mapping.

We will denote Ia(f) to be the ideal in Oa generated by the components [f1], . . . , [fn] of the
mapping f . Now we can prove the following proposition.

Proposition 3. If h ∈ Ia(f), then res
a
f (h) = 0.

Proof. If h is in the ideal Ia(f), it can be rewritten as h = q1f1 + · · ·+ qnfn, for qj ∈ Oa.

res
a
f (h) =

n∑
k=1

1

(2πi)n

∫
Γa

qkdz

f1 · · · [k] · · · fn
(6.9)

Let us rewrite Γa = (−1)k−1∂ck, where ck = {z ∈ Ua : |fj(z)| = εj , j 6= k; |fk(z)| ≤ εk}.
This tells us that Γa is a boundary (exact and closed) and therefore homologous to zero. By Stokes’
theorem each term equals 0.
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From now we will assume h not to be in Ia(f).

Lemma 2. Continuity principle of local residues Let ft : Ua → Cn be a family of holomorphic
mappings continuously depending on a parameter t with a finite set of isolated zeros {Pt}. We assume
that for t = t0 the mapping ft0 has an isolated zero at the the point a and for t close to t0 f has no
zeros on the boundary ∂Ua. Let ht(z) be a function holomorphic in z and continuous in t. Now,

lim
t→t0

∑
{Pt}

res
Pt

ft(ht) = res
a
ft0

(ht0) (6.10)

Figure 6.1: Multiple poles

For a proof of this lemma we refer to [15]. The main idea of the proof relies on the fact that
we present the local residue as an integral over the boundary of the neighborhood of the singularity.
As long as you stay in the neighborhood, the integral over the boundary will remain the same and
therefore the residue will be the same. This lemma will be needed in the proof of the following
important proposition.

Proposition 4. Let f be a holomorphic mapping, then for every holomorphic mapping g and matrix
A with elements holomorphic in a neighborhood of a such that g = Af ,

res
a
f (h) = res

a
g(h · detA) (6.11)

To prove this result, we need two lemmas.

Lemma 3. The Jacobian Jg(a) and Jf (a) resp. of the functions f, g in the point a are related in the
following way if f and g satisfy the conditions of Proposition 4.

Jg(a) = detA(a) · Jf (a) (6.12)

Proof. The proof follows from direct computations. De Jacobian matrix of g in the point a is given
by ∂(g1,...gn)

∂(z1,...zn) (a) = ∂A
∂z (a)f(a) +A(a)∂(f1,...fn)

∂(z1,...zn) (a) = A(a)∂(f1,...fn)
∂(z1,...zn) (a), since f(a) = 0. The lemma

follows from taking the determinant on both sides.

Lemma 4. If f and g are holomorphic mappings also satisfying the conditions of Proposition 4, then
for a point p in the domain of f and g such that f(p) 6= 0 and g(p) = 0, we have det(A) ∈ Ip(f) and
hence res

p
g(hdetA) = 0.

Proof. From the relation g = Af we have that gj =
∑n

k=1 ajkfk. Since f(p) 6= 0, there is at least
one component nonzero. Without loss of generality let us assume this to be the first component f1,
then

aj1 =
gj
f1
−

n∑
k=2

ajk
fk
f1
. (6.13)
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Furthermore, let |Aij | be the determinant of the matrixA without the ith row and the jth column, then
we can rewrite

det(A) =
n∑
k=1

ak1|Ak1| =
n∑
k=1

gk
f1
−

n∑
q=2

akq
fq
f1

 |Ak1| (6.14)

=
n∑
k=1

|Ak1|
f1

gk −
n∑
k=1

n∑
q=2

akq|Ak1|
fk
f1

(6.15)

The first summation is obviously in Ip(g), and the second summation is equal to zero, because every
term is canceled out.

Proof. (of Proposition 5) There are three possibilities.

1. Assume the Jacobian Jf (a) of f in a and det(A) to be nonzero. Now we apply Cauchy’s formula
on h/Jf and on hdet(A)/Jg to find

res
a
f (h) =

1

(2πi)n

∫
Γa

h · Jf
Jf · f

dz =
h(a)

Jf (a)
(6.16)

res
a
g(h · detA) =

1

(2πi)n

∫
Γ′a

h · det(A) · Jg
Jg · g

dz =
h(a) det(A)(a)

Jg(a)
. (6.17)

Now, from lemma 3 we see that (6.16) equals (6.17) and hence res
a
f (h) = res

a
g(h · detA).

2. Let Jf (a) = 0, but det(A) 6= 0. We construct a sequence1
{
ζ(k)

}
⊂ Cn with ζ(k) → 0 such

that w = f(z)− ζ(k) has only simple zeros at
{
P

(k)
ν , ν = 1, . . . , µ

}
. Now,

res
a
f (h) = lim

k→∞

µ∑
ν=1

res
P

(k)
ν

f−ζ(k)(h), (6.18)

since the continuity principle of local residues, and

res
a
f (h) = lim

k→∞

µ∑
ν=1

res
P

(k)
ν

A(f−ζ(k))(h · detA) = res
a
Af (h · detA), (6.19)

which is justified by case 1.

3. Let us assume detA(a) = 0. We write down a sequence of nonsingular matrices {At}, t ∈
[0, 1] and At → A. Now we use the second case gt = Atf . We have proven in lemma 4 that
res
pt
gt(hdetAt) = 0 for all pt 6= a. Now we complete the proof with the following computation.

res
a
g(hdetA) = lim

t→0

∑
{pt}

res
pt
gt(hdetAt) (6.20)

= lim
t→0

res
a
gt(hdetAt) = lim

t→0
res
a
f (h) (6.21)

= res
a
f (h). (6.22)

1The proof of the existence of such a sequence is given in [15] and involves the Martinelli-Bochner integral representation
for holomorphic functions.
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Transformation formula 6.11 gives one of the two important tools for calculating local residues.
In practical calculations one would always use g = ((z1 − a1)k1 , . . . , (zn − an)kn) for some integers
k1, . . . , kn. Hilbert’s Nullstellensatz shows us that for every holomorphic mapping f we can find a
holomorphic matrix A and an integer r such that g = Af and k1 = . . . = kn = r.

Theorem 13. (Hilbert’s Nullstellensatz) Let I be an ideal in the polynomial ring C[z1, . . . , zn] of n
complex variables. Furthermore let V (I) = {z ∈ Cn : ∀p ∈ I, p(z) = 0}. If p satisfies p(a) = 0 for
all a ∈ V (I), then there is an integer r > 0 such that pr ∈ I .

Proof. Suppose that pr 6∈ I for all r > 0; in particular, I is strictly smaller than C[z1, . . . , zn] and
p 6= 0. Consider the ring

R = C[z1, . . . , zn, 1/p] ⊂ C(z1, . . . , zn). (6.23)

The R-ideal RI is strictly smaller than R, since RI =
⋃∞
r=0 p

−rI does not contain the unit
element. Let w be an indeterminate over C[z1, . . . , zn], and let J be the inverse image of RI under
the homomorphism φ : C[z1, . . . , zn, w] → R acting as the identity on C[z1, . . . , zn] and sending w
to 1/f . Then J is strictly smaller than C[z1, . . . , zn, w], so since V (I) is not empty for a proper
ideal I , there exists an element (a1, . . . , an, b) ∈ Cn+1 such that q(a1, . . . , an, b) = 0 for all q ∈ J .
In particular, we see that q(a1, . . . , an) = 0 for all q ∈ I . Our assumption on p therefore implies
p(a1, . . . , an) = 0. However, J also contains the element 1− wp since φ sends this element to zero.
Hence

0 = (1− wp)(a1, . . . , an, b) = 1− bp(a1, . . . , an) = 1, (6.24)

which is a contradiction.

The relation g = Af can be written as a system of equations (zj − aj)kj =
∑n

l=1 ajlfl for each
j = 1 . . . n. In fact, every integer kj can be minimized. This leads to the definition of algebraic
multiplicity.

Definition 16. The (algebraic) multiplicity µa(f) of a holomorphic mapping f with an isolated zero
a is defined as a multi index of integers µa(f) = (κ1, . . . , κn) with property

κj = min
k∈N

{
(zj − aj)k =

n∑
l=1

ajlfl : ∃ajl ∈ O(Ua)

}
(6.25)

where ajl is the holomorphic element on the jth row and the lth column of the matrix A such that
g = Af .

We highlight that this is a different definition of multiplicity than is given in the book of Tsikh,
since he speaks about geometric multiplicity. From now on, if we write multiplicity, the algebraic
multiplicity is meant.

The next theorem shows us that the jth integer of µa(f) will appear in the residue as the derivative
of h with respect to zj .

Theorem 14. Let f be a holomorphic mapping, f(a) = 0 for some isolated zero a and choose a multi
index k and a holomorphic matrix A such that (z − a)k = Af then for a holomorphic function h

res
a
f (h) =

1

(k − 1)!
Dk−1[h · det(A)](a). (6.26)
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Proof. Recall from chapter 4 that the holomorphic function h can be represented as a Taylor series as
follows.

h =
∑
α≥0

Dαh(a)

α!
(z − a)α (6.27)

This leads to the following result.

res
a
h(f) =

1

(2πi)n

∫
|(z−a)k|=ε

det(A) · hdz
(z − a)k

(6.28)

=
1

(2πi)n

∫
|(z−a)|=ε

∑
α≥0

(z − a)α−k

α!
Dα[det(A) · h](a)dz (6.29)

All the integrals vanish except for α = k − 1.

1

(k − 1)!
D(k−1)[det(A) · h](a) · 1

(2πi)n

∫
|(z−a)|=ε

dz

z − a
=

1

(k − 1)!
Dk−1[h · det(A)](a). (6.30)

The previous theorem is a guide to the connection between the multiplicity of a zero and the
derivatives of h that appear in the residue.

Now let us calculate the residues of the example at the beginning of this chapter. Recall that we
want to calculate the residue of h/f , with f(z, w) = zw(z − w), in a = (0, 0) associated with a
holomorphic mapping f , such that f1 · f2 = f . We have three possible choices for the mapping f .

Choice 1. Let us first consider f I(z, w) = (z, w(z − w)). Since the multiplicity of z is one and of w
is two, we solve g = Af I :(

z
w2

)
= A

(
z

w(z − w)

)
⇒ A =

(
1 0
w −1

)
. (6.31)

By using proposition 4 and theorem 14 we find

res
a fI (h) = res

a
g(h · detA) =

1

(2πi)2

∫
|z|=ε

∫
|w|2=δ

−h(z, w)

zw2
dwdz = − ∂h

∂w
(0, 0). (6.32)

A few comments are in order. One sees that the multiplicity of (z, w) has influence on the deriva-
tives of h, as in the one-dimensional case. Also note that for an other choice of A and g the same
residue appears.

Let us also calculate the residue with respect to the holomorphic mapping f II = (w, z(z − w)).
Since the multiplicity of µ(0,0)(f

II) = (2, 1), we expect a derivative with respect to z. Let us verify.

Choice 2. Let us next consider f II(z, w) = (w, z(z−w)). Since the multiplicity of w is one and of z
is two, we solve g = Af II :(

w
z2

)
= A

(
w

z(z − w)

)
⇒ A =

(
1 0
z 1

)
. (6.33)

By using proposition 4 and theorem 14 we find

res
a fII (h) = res

a
g(h · detA) =

1

(2πi)2

∫
|z|2=ε

∫
|w|=δ

h(z, w)

wz2
dzdw =

∂h

∂z
(0, 0). (6.34)
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This example shows that the second cycle Γ2 = {|w| < |z|} is homotopy equivalent to Γ2 = {|w| =
ε, |z| = δ, ε < δ}.

In order to be complete, now also follows the third choice.

Choice 3. We finally consider f III(z, w) = (zw, z − w). Since now the multiplicity of z and w are
now both two, we solve g = Af III :(

z2

w2

)
= A

(
zw
z − w

)
⇒ A =

(
1 z
1 −w

)
. (6.35)

By using proposition 4 and theorem 14 we find

res
a fIII (h) = res

a
g(h·detA) =

1

(2πi)2

∫
|z|2=ε

∫
|w|2=δ

−h(z, w)(z + w)

z2w2
dzdw = −∂h

∂z
(0, 0)− ∂h

∂w
(0, 0).

(6.36)

6.3 Residues on local intersections

In the previous section we have seen that in order to calculate a local residue of a differential form ω,
you have to find a mapping Cn → Cn with an isolated zero. Consider the following differential form.

ω =
h(z, w)

z2 − w2(w + 1)
dzdw (6.37)

Locally, and only locally, this form can be rewritten such that it has an isolated zero at the origin.

ω =
h(z, w)

(z + iw
√
w + 1)(z − iw

√
w + 1)

dzdw (6.38)

Let us be careful, because of the multivaluedness of
√
w + 1. We pick the positive branch (

√
−1 = i)

and we consider the mapping f(z, w) = (z + iw
√
w + 1, z − iw

√
w + 1). One can easily see that

if we would have chosen the negative branch, we would have the same mapping f except that the
components of the mapping would be switched.

Since now the multiplicity of z and w are now both one, we solve g = Af :(
z
w

)
= A

(
z + iw

√
w + 1

z − iw
√
w + 1

)
⇒ A =

(
1
2

1
2

1
2i
√
w+1

− 1
2i
√
w+1

)
. (6.39)

By using proposition 4 and theorem 14 we find

res
(0,0)

f (h) = res
(0,0)

g(h · detA) = − h(z, w)

2i
√
w + 1

∣∣∣∣
(z,w)=(0,0)

=
h(0, 0)

8iπ2
. (6.40)

6.4 Separating cycles

The theory of separating cycles is used to investigate when it is possible to replace a cycle by the
sum of the simplest contours, namely small tori “around” singular points (poles) of the integrand. In
one complex dimension, it is not hard to see which poles are inside and which poles are outside the
contour. In higher dimensions it is sometimes pretty hard. Let us be more precise.
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Let X be a complex analytic manifold of dimension n, and let ω be a quotient differential form
of degree n on X . We assume that the polar set of ω can split into n hyper surfaces F1, . . . , Fn. Here
Fj = {fj = 0}. Let us denote F = ∪nj=1Fj and Z to be the set of isolated intersection points of these
surfaces. Consider the following integral

(2πi)−n
∫

Γ
ω, (6.41)

with Γ a cycle of complex dimension n in X\F . For each point a ∈ Z there is an associated local
cycle

Γa = {z ∈ Ua : |fj(z)| = ε, j = 1, . . . , n}. (6.42)

If it is possible to write
Γ ∼

∑
a∈Z

naΓa, na are integers, (6.43)

meaning that Γ is homotopy equivalent in X\F to a sum of local cycles, then we can rewrite this
according to Stokes’ formula to

(2πi)−n
∫

Γ
ω =

∑
a∈Z

nares
a

(ω). (6.44)

Definition 17. Let Γ be a n-dimensional cycle on X\F not homologous to zero. We call the cycle Γ
a separating cycle if and only if Γ ∼ 0 in X\(F1 ∪ · · · [k] · · · ∪ Fn) for all k = 1, . . . , n.

One can see this as every hypersurface Fj is an obstacle for Γ to be contractible outside the union
of hypersurfaces. The next corollary shows us what this means for cycles in C. We omit the proof.

Corollary 3. Let F1 = {a1, . . . , am} the discrete polar set of points in a convex domain X ⊂ C.
Every cycle with at least one point from F1 inside is a separating cycle.

Theorem 15. Let X ⊂ Cn be a complex manifold of dimension n such that H3(X) is trivial, and let
F1, . . . , Fn be an arbitrary system of hyper surfaces in X such that Z = F1∩ . . .∩Fn is discrete. For
a Γ to be separating it is necessary and sufficient that it can be represented in the form of equation
(6.43).

Proof. First we prove that any cycle Γ representable in the form (6.43) is separating.
Let us write

c(k)
a = {z ∈ Ua : |fj(z)| = εj , j 6= k, |fk(z)| ≤ εk} (6.45)

for a (n+1)-chain inX\(F1∪· · · [k] · · ·∪Fn), then we have for each local cycle Γa = (−1)k−1∂c
(k)
a .

This means that Γa ∼ 0 in X\(F1 ∪ · · · [k] · · · ∪ Fn) and so is Γ, since it is homologous to a linear
combination of separating cycles.

The proof of the fact that every separating cycle Γ is representable in the form (6.43) is more
involved. We will prove it only for n = 2, since the proof for n > 2 is quite similar, although it has
some technical difficulties. The complete proof can be found in [15].

Let A = X\F2 and B = X\F1. We apply the Mayer-Vietors exact sequence to the open sub-
spaces X\Z (= A ∪B), A ∩B,A and B.

H3(X\Z)
∂∗−→ H2(A ∩B)

i∗−→ H2(A)⊕H2(B). (6.46)
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Here i∗ = (i1∗,−i2∗) a pair of inclusion mappings resp. from A ∩ B to A and to B. The mapping
∂∗ is a connecting homomorphism which adds to every 3-cycle in X\Z a certain sum c(1) + c(2) of
chains c(1) ⊂ A, c(2) ⊂ B.

Let us pick a 3-cycle h in X\Z. By definition of the connecting homomorphism ∂c(1) + ∂c(2) =
∂∂∗h = 0 and hence the boundary ∂c(1) is a cycle in A ∩ B which is of the homology class of the
image of ∂∗[h]. Now, for a 2-cycle Γ ∈ X\(F1 ∪ F2) we have that i∗[Γ] = 0 and since the sequence
is exact, there is a 3-cycle h in X\Z such that

∂∗[h] = [Γ]. (6.47)

Since H3(X) is trivial, H3(X\Z) is generated by a family of 3-spheres around the points in Z, or
equivalently by a family of boundaries of the polyhedra Πa = {z ∈ Ua : |fj | ≤ εj , j = 1, 2}. Thus,

h ∼
∑
a∈Z

naha, (6.48)

where, ha = ∂Πa. Now from (6.47) and (6.48) it follows that

[Γ] = ∂∗

[∑
a∈Z

naha

]
=
∑
a∈Z

na[∂∗ha]. (6.49)

We already observed that Γa = (−1)k−1∂c
(k)
a , where c(k)

a is defined as in (6.45).

[Γ] =
∑
a∈Z

na[∂c
(1)
a ] =

∑
a∈Z

na[Γa], (6.50)

which proves the theorem.

This is the main result of the thesis. Only cycles which are separable can be replaced by local cy-
cles around the intersection points of the hypersurfaces and therefore only integrals around separable
cycles can be used to calculate real integrals by local residues.
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Chapter 7

Applications to integrals over R2

In complex analysis over C we can use contour integrals to compute real integrals. In several variables
this is possible when the cycles we want to integrate around are separable. The goal of this chapter is
to give an overview of which type of integrals can be solved by local residues, and which can not.

7.1 A class of functions over R2

For rational functions f(x) = P (x)/Q(x), one can solve the principal value of the integral
∫∞
−∞ f(x)dx

by complexification of de domain of f and apply Cauchy’s residue theorem. There exists a class of
functions G(x, y) of two real variables for which we can also calculate the integral over the whole
real plane by using local residues. This class is stated in the next theorem.

Theorem 16. Let I =
∫∫

R2 G(x, y)dxdy where

G(x, y) =
h(x, y)

Πm
j=1[(ajx+ bjy + cj)2 + r2

j ]
qj
, (7.1)

where h is a polynomial and aj , bj , cj and rj are real numbers, rj > 0 and qj are positive integers
and for each j at least one of aj or bj is nonzero. Without loss of generality we assume that aj ≥
0, rj > 0 and if aj > 0 assume bj > 0. Consider the differential form ω = G(z, w)dz ∧ dw be
the differential form over C2. Now, the denominator of ω can be factorized as f = f+ · f−, where
f± = Πm

j=1[ajz + bjw + cj ± irj ]qj . Let H± = {ζ ∈ C : Im(ζ) ≷ 0}, each half of the plane. Then

I = (2π)2
∑

a∈C×H−

res
a

(f+,f−)(h) = −(2π)2
∑

a∈C×H+

res
a

(f+,f−)(h). (7.2)

For proving this theorem we need the following lemma.

Lemma 5. The divisors F± = {f± = 0} can only intersect the chain c± = H± × R at the point
(∞,∞). I.e. F± ∩ (c±\{(∞,∞)}) = ∅.

Proof. Let ϕj± = ajz + bjw + cj ± irj on c±, then Imϕ+ is strictly positive and Imϕ− is strictly
negative since we assumed that aj ≥ 0, rj > 0.

We pass to a Riemann sphere. We write down the chart z′ = 1/z and w′ = 1/w, now the origin
of our new coordinates corresponds to infinity (∞,∞) of the old ones. If both aj and bj are nonzero,
then the divisor Fj± = {ϕj± = 0} is just the origin of the Riemann sphere. If aj = 0 and bj > 0, then

39
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Im(w′) = Im(−bj/(cj ± irj)) 6= 0. And if aj > 0 and bj = 0, then Im(z′) = Im(−aj/(cj ± irj)) 6=
0. On the charts (z, 1/w) and (1/z, w), we have, as in the cases aj = 0 or bj = 0, empty intersections
of F± and c±. This proves the lemma.

Proof. (Theorem 16) Let us define a change of variables Φ : H+ × H+ → D × D, which maps the
upper half planes of both coordinates z and w onto the unit disk, that is

(ζ, ω) = Φ(z, w) =

(
i− z
i+ z

,
i− w
i+ w

)
, (7.3)

(z, w) = Φ−1(ζ, ω) =

(
ζ − 1

ζ + 1
,
ω − 1

ω + 1

)
. (7.4)

The integral to be calculated is

I =

∫∫
Γ

h̃(ζ, ω)

f̃+f̃−
dζdω. (7.5)

The chains c± will change under this transformation to

γ+ = {|ζ| ≤ 1, |ω| = 1}, γ− = {|ζ| ≥ 1, |ω| = 1} (7.6)

and the point (∞,∞) into (−1,−1). According to lemma 5, the divisor F̃− = {f̃− = 0} can only
intersect the chain γ− at (−1,−1).

Let R(ζ) be the resultant of the polynomial f1 and f2, i.e. for two polynomials f1, f2 we find two
polynomials L(ζ, ω), S(ζ, ω) such that R(ζ) = Lf1 +Sf2 only depends on ζ. The following follows
from direct calculations.

h

f1f2
=

h(Lf1 + Sf2)

f1f2(Lf1 + Sf2)
(7.7)

=
hLf1

f1f2R
+

hSf2

f1f2R
(7.8)

=
hL

Rf2
+

hS

Rf1
(7.9)

Since the second fraction is holomorphic in ω, the integral reduces to

I =

∫
|ζ|=1

dζ

∫
|ω|=1

h̃L

Rf̃−
dω. (7.10)

Now, with the residue theory over C, the inner integral is just a polynomial p(ω). Since the
original integral converges absolutely by assumption of the theorem, there are no poles of p on the
circle |ζ| = 1. It follows that p(ζ) has no poles in the annulus {1 ≤ |ζ| ≤ 1 + ε} for sufficiently small
ε. Thus,

I =

∫
Γ(ε)

h̃L

Rf̃−
dζ ∧ dω. (7.11)

Let F∞ be the line at infinity, then since Γ(ε) = {|ζ| = 1 + ε, |ω| = 1} is a separating cycle for the
divisors F1 = {R(ζ) = 0} ∪ F∞ and F2 = {f̃− = 0} we have proven the theorem.
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Example 8. We will evaluate the integral

I =

∫∫
R2

1

((x+ 2y)2 + 4)((x+ 5y)2 + 9)3
dxdy. (7.12)

Note that this integral converges because the order of the nominator is greater than the order of the
denominator. After complexification of the domain of the integrand, we find divisors f± = {(z+2w±
2i)(z + 5w ± 3i)3 = 0}. We find the poles a1 = (16

3 i,−
5
3 i) and a2 = (−16

3 i,
5
3 i). Only a2 is on the

right upper halve plane ({Imw > 0}). This is a fourth order pole with respect to both z and w.

res
(− 16

3
i, 5

3
i)
f+,f−(1) = − 1

15552
, (7.13)

we have I = π2

3888 .

In some cases it is not possible to compute the surface integral of a real valued quotient function.
For example

I =

∫∫
R2

dxdy

(x2 + y2 +R)2
, R > 0. (7.14)

In this case also the dominated convergence theorem cannot help us out.
We choose a function

ft(x, y) =
1

(x2 + y2 +R)((1 + 1
t )x

2 + y2 +R)
. (7.15)

This function is dominated by f∞(x, y) = 1
(x2+y2+R)2

everywhere. Note limt→∞ ft = f∞. If we

evaluate the integrals
∫
R2 ftdxdy with ‘polar’ coordinates1, i.e.

x =
√
r cos(θ), y =

√
r sin(θ), (7.16)

and integrate first with respect to r and than with respect to θ, we find 2π
R (
√
t(t+ 1) − t). Taking

the limit of t to infinity we find the integral I = π/R, which is exactly what we would achieve by
evaluating integral I by polar coordinates.

Now let us extend the domain of the function ft to C2 such that for t > 0 we have two isolated
zeroes (0,±i

√
R) of the mapping ft = (z2 +w2 +R, (1 + 1

t )z
2 +w2 +R). Let us solve gt = Aft.(

z2

w − i
√
R

)
= A

(
z2 + w2 +R

(1 + 1
t )z

2 + w2 +R

)
⇒ A = − t

w + i
√
R

(
w + i

√
R −w − i

√
R

−1− 1
t 1

)
.

(7.17)

detA =
t2

(w + i
√
R)2

(w + i
√
R)(1− 1− 1

t ) = − t

w + i
√
R
. (7.18)

res
(0,i
√
R)
ft(1) = res

(0,i
√
R)
gt(detA) =

1

(2πi)2

∫
|z|2=ε

∫
|w−i

√
R|=δ

−t
z2(w2 +R)

dzdw = 0. (7.19)

This result can be checked by calculating the Laurent series around (0,±i
√
R) of ft(x, y). The series

is given by ∑
n≥0

∑
m≥0

(−1)n
(1 + 1/t)m

(y2 +R)n+2
x2n. (7.20)

As one sees, this is an even power series and, since de nominator of ft is independent of z, the residue
is zero indeed.

1See appendix A for the complete computation.
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Remark 3. Note that in stead of solving f = Ag, one can solve g = A−1f , which is more easy to
calculate in practice. Since det(A) = 1/ det(A−1) one even doesn’t need to invert A. However, one
should check whether A has only entries holomorphic in a.

Also if we would have chosen an other function which dominates the integrand, the residue theo-
rem will not lead to a correct answer.

Let us consider for example the function ft(z, w) = 1
(z2+(w−2t)2+R)(z2+w2+R)

. Let us solve
gt = Aft for this ft.(

z − λ
w − t

)
= A

(
z2 + (w − 2t)2 +R

z2 + w2 +R

)
⇒ A = − 1

4t(z + λ)

(
w − 3t −w − t
−z − λ z + λ

)
. (7.21)

Here −λ2 = t2 +R. Now calculating the residue,

res
(t,λ)

ft(1) = res
(t,λ)

gt(detA) =
1

(2πi)2

∫
|z−λ|=ε

∫
|w−t|=δ

−1

4t(z2 − λ2)(w − t)
dzdw = − 1

8λt
. (7.22)

Indeed, now we have a result, but this residue tends to infinity when t goes to zero.

7.2 Real trigonometric integrals

In complex analysis it is well known that we can transform real trigonometric integrals into complex
valued integrals by the transformation sin(θ) = 1

2i(e
iθ−e−iθ) = 1

2i(z−z
−1) and cos(θ) = 1

2(z+z−1).
Likewise we could set for j ∈ {1, . . . , n}

cos(θj) =
1

2
(zj + z−1

j ), sin(θj) =
1

2i
(zj − z−1

j ), dθj =
dzj
izj

, (7.23)

but this does not necessarily lead to a solution. For example, suppose we want to evaluate

I =

∫∫
[−π,π]2

dθdϕ

4 + cos2(θ) sin2(ϕ)
. (7.24)

Note that we can factorize the denominator as (2 + i cos(θ) sin(ϕ))(2 − i cos(θ) sin(ϕ)). After
transformation, the integral will be

I = −
∫
|w|=1

∫
|z|=1

16zwdzdw

(8zw + (w2 − 1)(z2 + 1))(8zw − (w2 − 1)(z2 + 1))
(7.25)

One can easily see that there are four isolated zeros a(1) = (−i, 0), a(2) = (i, 0), a(3) = (0,−1)
and a(4) = (0, 1) which are all inside the torus Γ = {(z, w) : |z| = |w| = 1}.

Let X = C2 and F± = {8zw ± (w2 − 1)(z2 + 1) = 0}. We will show that Γ = {|z| = |w| = 1}
is not a separating cycle.

The next remark is useful in calculating Laurent series.

Remark 4. For |a| < |b|
1

a− b
=

1

b

1

1− a
b

=
1

b

∑
m≥0

(a
b

)m
=
∑
m≥0

am

bm+1
, (7.26)

1

a+ b
=

1

b

1

1−−a
b

=
1

b

∑
m≥0

(
−a
b

)m
=
∑
m≥0

(−a)m

bm+1
. (7.27)
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Clearly Γ is not homologous zero in X\(F+ ∪ F−), since there are four isolated zeros within Γ.
Let us look at the Laurent series of 1/f−, with remark 4 in mind.

1

f−
=

1

8zw − (w2 − 1)(z2 + 1)
=
∑
m≥0

(8zw)m

(w2 − 1)m+1(z2 + 1)m+1
(7.28)

Now it is easily seen that
∫

Γ 1/f− is nonzero in X\F−, and hence Γ is not a separating cycle. Analo-
gous we find that

∫
Γ 1/f+ is nonzero in X\F+.
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Appendix A

Some computations...

Theorem 17. Let t > 0, then∫ ∫
R2

dxdy

(x2 + y2 +R)((1 + 1/t)x2 + y2 +R)
=

2π

R
(
√
t(t+ 1)− t) (A.1)

Proof. First we apply the change of coordinates x =
√
r cos(θ) and y =

√
r sin(θ), with Jacobian∣∣∣∣∣

1
2
√
r

cos(θ) −
√
r sin(θ)

1
2
√
r

sin(θ)
√
r cos(θ)

∣∣∣∣∣ = 1
2 cos2(θ) + 1

2 sin2(θ) = 1
2 (A.2)

on the integral of (A.1).

1

2

∫ 2π

0

∫ ∞
0

drdθ

(r +R)((1 + cos2(θ)/t)r +R)
. (A.3)

Since we first integrate with respect to r, we set a = 1 + cos2(θ)/t as a constant and we take a partial
fraction decomposition.

1

(r +R)(ar +R)
=

(a− 1)−1

r(r +R)
− (a− 1)−1

r(ar +R)
(A.4)

This leaves a single integral over θ.

1

2

∫
log(r)− log(r +R)

(a− 1)R
− log(r)− log(ar +R)

(a− 1)R

∣∣∣∣∞
0

dθ (A.5)

1

2

∫
log(ar +R)− log(r +R)

(a− 1)R

∣∣∣∣∞
r=0

dθ (A.6)

1

2

∫
log(a)

(a− 1)R
dθ (A.7)

Putting in back a(θ) = 1 + cos2(θ)/t gives the following integral.

1

2R

∫ 2π

0

t log(1 + cos2(θ)/t)

cos2(θ)
dθ. (A.8)
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One can verify by differentiating that this is equal to

1

2R

∣∣∣2√t(t+ 1) arctan
(√

t
t+1 tan(θ)

)
+ t tan(θ) log

(
1 + cos2(θ)/t

)
− 2tθ

∣∣∣2π
θ=0

, (A.9)

which gives us the required

1

2R

(
4π(
√
t(t+ 1)− 1)− 0

)
=

2π

R
(
√
t(t+ 1)− t). (A.10)
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