
faculteit Wiskunde en
Natuurwetenschappen

Reducing Multi-Agent
Systems in Discrete Time

Bachelor thesis Applied Mathematics

October 2013

Student: M. Jaspers

Supervisor: Prof. dr. H.L. Trentelman, N. Monshizadeh

Advisor: Prof. dr. H. Waalkens

Reducing multi-agent systems in
discrete time

Abstract

Multi-agent systems are, in general, complicated and have a high
complexity. In order to make it easier to work with these systems, the
complexity of the models has to be reduced. This reduction should
be done without loss of properties of the system. A method for this
in continuous time is made by H. L. Trentelman and N. Monshizadeh
[1]. In this report we will describe a method to reduce the complexity
of multi-agent systems in discrete time, conserving its properties as
much as possible.

2

Contents

1 Introduction 4

2 General knowledge 5
2.1 Graph theory . 5
2.2 Matrices associated with graphs 6
2.3 Multi-agent systems 9

3 Method for continuous time multi-agent systems 11
3.1 Petrov- Galerkin projections 11
3.2 Projection by graph-partitions 12
3.3 Input-Output approximation of multi-agent systems . 13

4 Example 16

5 Method for discrete time 19
5.1 Petrov- Galerkin projections 19
5.2 Projection by graph-partitions 19
5.3 Consensus preservation for the reduced order model . 21
5.4 Input-Output approximation of multi-agent systems . 24

6 Conclusion 30

A Script Example 32

3

1 Introduction

In the 80’s and throughout the 90’s there has been an increase of
interest in multi-agent systems in computer science and systems and
control. This interest has also spread in other fields, leaving even fields
such as physics and biology requiring more theory on applications and
properties of multi-agent systems. In mathematics this flow of interest
has yielded in more research on multi-agent systems and properties of
these systems.

As said before, multi-agent systems are, in general, complicated and
have a high complexity. This makes working with these systems more
difficult and therefore we want to reduce the complexity of these sys-
tems. This can be done in several ways. In this report we will discuss
a method to do this for discrete time.

In order to do this, we first need some general background on systems,
which will be discussed in the second section.
After that we will briefly discuss the method for continuous time multi-
agent systems in the third section. This section will contain three
subsections; some theory behind Petrov-Galerkin projections will be
discussed in the first subsection, the Petrov-Galerkin projection ap-
plied to the general system will be discussed in the second subsection
and input-output approximations of multi-agent systems will be dis-
cussed in the third subsection.

In the fourth section we will discuss an example on the normalized
reduction error between the original and the reduced order model in
continuous time. The subject of the fifth section will be the method
for discrete time. This section will contain four subsections; again
some theory behind Petrov-Galerkin projections will be discussed in
the first subsection, the Petrov-Galerkin projection applied to the gen-
eral system will be discussed in the second subsection, one of the most
important properties of the multi-agent system, the consensus preser-
vation for the reduced order system, will be discussed in the third
subsection and input-output approximations of multi-agent systems
will be discussed in the fourth subsection. The report will end with a
conclusion.

4

2 General knowledge

In this section we will discuss some general material on graphs, some
matrices associated with graphs and multi-agent systems.

2.1 Graph theory

Definition 1: Graph
A graph G is a pair G = (V,E), where V = {1, 2, ..., n} with n a
positive integer, and E ⊆ V × V . Any element of V is called a vertex
and any element of E is called an edge of the graph G. In general the
graph G, as defined above, is called a directed graph. An undirected
graph is a pair G = (V,E) where V = {1, 2, ..., n} and E is a set of
unordered pairs {i, j} with i, j ∈ V .

In this report self-loops (edges (i, i) ∈ E or {i, i} ∈ E of G) and multi-
ple edges (multiple arcs in the same direction) between one particular
pair of vertices are not permitted.

An example of an undirected graph is given in Figure (1).

Figure 1: Example of a graph

For this example V and E are given by:

V = {1, 2, 3, 4, 5, 6} and
E = {{1, 2}, {1, 5}, {2, 5}, {2, 3}, {3, 4}, {4, 5}, {4, 6}}.

A path of length k in a directed graph is a sequence of distinct ver-
tices i1, . . . , ik+1 such that (im, im+1) ∈ E for m = 1, . . . , k. A path
of length k in an undirected graph is a sequence of distinct vertices
i1, . . . , ik+1 such that {im, im+1} ∈ E for m = 1, . . . , k. In a directed
graph a path will be called a directed path, a path in an undirected
graph will be called an undirected path.

For an undirected graph the distance from i to j is defined to be
the length of the shortest undirected path from i to j, the distance

5

between i and i is defined to be zero. The degree of a vertex i for
an undirected graph is equal to the number of vertices j for which
{i, j} ∈ E. For a directed graph the distance from i to j is defined to
be the length of the shortest directed path from i to j, the distance
between i and i is again defined to be zero. When defining the degree
of a vertex i for a directed graph we distinguish between in-degree
and out-degree. The in-degree of a vertex i is equal to the number of
vertices j for which (j, i) ∈ E. The out-degree of a vertex i is equal
to the number of vertices j for which (i, j) ∈ E.

Definition 2: Connected graph
A directed graph is called connected if there exists a directed path
from every vertex i to every other vertex j of the graph. An undi-
rected graph is called connected if there exists an undirected path
from every vertex i to every other vertex j of the graph.

Definition 3: Directed spanning tree
A directed graph G has a directed spanning tree if there exists a ver-
tex r ∈ V such that all other vertices in V can be linked to r via a
directed path.

Definition 4: Weighted directed graph
A weighted directed graph is a directed graph G = (V,E) with V =
{1, 2, ..., n}, n a positive integer, and E ⊆ V × V , where with each
(j, i) ∈ E we associate a positive real number wij , called the weight
of (j, i).

Definition 5: Weighted undirected graph
A weighted undirected graph is an undirected graph G = (V,E) with
V = {1, 2, ..., n}, n a positive integer, and E a set of unordered pairs
{i, j} with i, j ∈ V , where with each {j, i} ∈ E we associate a positive
real number wij , called the weight of {j, i}.

2.2 Matrices associated with graphs

Definition 6: Weighted adjacency matrix
The weighted adjacency matrix A = [aij] of the weighted directed
graph G with weigths wij for (j, i) ∈ E is the square n × n matrix
with elements aij , in which aij is defined as:

aij =

{
wij if (j, i) ∈ E,
0 otherwise.

6

The weighted adjacency matrix of a weighted undirected graph is de-
fined analogously as in Definition 6. Note that in this case the adja-
cency matrix is symmetric.

Definition 7: Stochastic matrix
A square matrix M = [mij] ∈ Rn×n is called a stochastic matrix if

mij ≥ 0 for every i, j and

n∑
j=1

mij = 1 for all i = 1, . . . , n.

Another matrix associated with graphs that we will use in this report
is the Laplacian matrix.

Definition 8: Laplacian matrix
The Laplacian matrix of a graph G is defined by L = D − A. Here
the matrix D is the diagonal matrix in which the in-degrees (if G is
directed) or degrees (if G is undirected) of the vertices are on the diag-
onal and A is the weighted adjacency matrix as defined in Definition 6.

As an example we look again at the graph of Figure (1). This graph
consists of 6 vertices, so our Laplacian matrix L will be a 6×6-matrix.
We first construct the adjacency matrix A. Vertex 1 is only connected
to vertices 2 and 5. We repeat this for all other vertices to obtain the
matrix A:

A =



0 1 0 0 1 0
1 0 1 0 1 0
0 1 0 1 0 0
0 0 1 0 1 1
1 1 0 1 0 0
0 0 0 1 0 0

 .

The matrix D follows from A by putting dii =
∑n

j=1 aij and dij = 0
for j 6= i.

To obtain L we subtract A from D:

L =



2 −1 0 0 −1 0
−1 3 −1 0 −1 0
0 −1 2 −1 0 0
0 0 −1 3 −1 −1
−1 −1 0 −1 3 0
0 0 0 −1 0 1

 .

7

Since L = D −A, we can also write L = [lij] with

lii =

n∑
j=1

aij , lij = −aij , for i 6= j. (1)

For an undirected graph, the adjacency matrix is symmetric so the
Laplacian matrix will also be symmetric. Furthermore all off-diagonal

elements of the Laplacian matrix are non-positive and

n∑
j=1

lij = 0 for

each i.

If the Laplacian matrix L is weighted and symmetric, it can also be
written as L = RWRT . Here the matrix R = [rij], which is called the
incidence matrix of the directed graph G, is defined as:

rij =


1 if the j-th edge starts at vertex i,

−1 if the j-th edge ends at vertex i

0 otherwise,

(2)

for i = 1, 2, . . . , n and j = 1, 2, . . . , k, where k is the total number of
edges. An incidence matrix for an undirected graph can be obtained
by first assigning an arbitrary orientation to each of the edges and
next take the incidence matrix of the corresponding directed graph
(see [10], p.21). Furthermore let the matrix W ∈ Rk×k be given by:

W = diag(w̃1, w̃2, . . . , w̃k), (3)

with w̃j a positive number, called the weight associated to the edge j
for each j = 1, 2, . . . , k.

Both matrices and a list of vertices and edges can be used to describe
the same graph. As seen before, matrices can be associated with
graphs, but also graphs can be associated to matrices. This is what
we will see in the next definition.

Definition 9: Weighted directed graph associated to a matrix
A weighted directed graph associated to the matrix M = [mij] ∈
Rn×n, denoted by G(M) = (V,E), is a weighted directed graph with
V = {1, 2, ..., n} such that (j, i) ∈ E if i 6= j and mij 6= 0. Note that
G(M) does not contain self-loops so (j, i) /∈ E for j = i.

8

2.3 Multi-agent systems

In this subsection we will discuss some general theory behind multi-
agent systems. Let G = (V,E) be a weighted undirected graph with
weighted adjacency matrix A = [aij]. The set of vertices is given by
V = {1, 2, ..., n} and E is a set of unordered pairs {i, j} with i, j ∈ V .
Choose VL = {v1, v2, ..., vm} to be a subset of V and let VF = V \ VL,
a vertex i ∈ VL is called leader and a vertex i ∈ VF is called a follower.

Definition 10: Leader-follower multi-agent system, continu-
ous time
A leader-follower multi-agent system in continuous time is given by
the following dynamical system:

ẋi(t) =



n∑
j=1

aij(xj(t)− xi(t)) if i ∈ VF ,

n∑
j=1

aij(xj(t)− xi(t)) + ul(t) if i ∈ VL.

Here xi(t) ∈ Rn represents the state of agent i and ul(t) ∈ R is the
external input applied to agent i = vl.

The multi-agent system associated with the graph G can also be writ-
ten as (4):

ẋ(t) = −Lx(t) +Mu(t), (4)

with L the Laplacian matrix of G, x(t) = [x1(t), x2(t), . . . , xn(t)]T ,
u(t) = [u1(t), u2(t), . . . , um(t)]T and M ∈ Rn×m given by :

Mil =

{
1 if i = vl,
0 otherwise.

Definition 11: Leader-follower multi-agent system, discrete
time
In discrete time each agent updates its state to the weighted average of
the states of all other agents. Therefore a leader-follower multi-agent
system in discrete time is given by the following dynamical system:

xi(t+ 1) =



n∑
j=1

qijxj(t) if i ∈ VF ,

n∑
j=1

qijxj(t) + ul(t) if i ∈ VL.

9

Here, again xi(t) ∈ R represents the state of agent i, ul(t) ∈ R is the
external input applied to agent i = vl and qij ≥ 0 is the weight agent
i assigns to agent j when agent i updates its state.

Similarly as in the continuous time case, this can be rewritten as:

x(t+ 1) = Qx(t) +Mu(t), (5)

where Q = [qij] ∈ Rn×n, x(t) = [x1(t), . . . , xn(t)]T ,
u(t) = [u1(t), u2(t), . . . , um(t)]T and the matrix M ∈ Rn×m:

Mil =

{
1 if i = vl,
0 otherwise.

The weights qij satisfy the following condition:

n∑
j=1

qij = 1,

qij ≥ 0 and qii > 0 for i ∈ {1, 2, . . . , n}. So Q is a stochastic matrix.

Just like we have matrices associated with graphs, we also have matri-
ces associated with multi-agent systems. An example of such a matrix
is the transfer matrix.

Definition 12: Transfer matrix, continuous time
The transfer matrix H(s) of a general system in continuous time,

ẋ(t) = Ax(t) +Bu(t),
y(t) = Cx(t),

is defined by H(s) = C(sI −A)−1B.

Definition 13: Transfer matrix, discrete time
The transfer matrix H(z) of a general system in discrete time

x(t+ 1) = Ax(t) +Bu(t),
y(t) = Cx(t),

is defined by H(z) = C(zI −A)−1B.

With this general background on systems we are now able to proceed
with the method to reduce the complexity of multi-agent systems. In
the next section we will first briefly discuss the method for continuous
time multi-agent systems.

10

3 Method for continuous time multi-

agent systems

In order to obtain a better insight in the method for discrete time
multi-agent systems, we will first briefly discuss the method for the
continuous time case in this section.

Remark 3.1
In this section we will only give a brief explanation behind the method
for the continuous time case, for more details we refer to [1] and the
explanation behind the method for discrete time, section 5.

3.1 Petrov- Galerkin projections

We start with some general theory behind Petrov-Galerkin projec-
tions.

Let the general input-state-output system be given by:

ẋ(t) = Ax(t) +Bu(t),
y(t) = Cx(t),

(6)

with x(t) ∈ Rn the state, u(t) ∈ Rm the input and y(t) ∈ Rp the
output of the system.

Furthermore let V and W ∈ Rn×r such that WTV = I. A reduced
order model can be obtained by using the projection Γ = VWT in
the following way: first substitute ẋ(t) by V ˙̂x(t) in (6) and then pre-
multiply the first line with WT .

Summarizing, we obtain the following system:

˙̂x(t) = WTAVx̂(t) + WTBu(t),
y(t) = CVx̂(t),

(7)

in which x̂(t) ∈ Rr is the state of the reduced order system.

This projection is called a Petrov-Galerkin projection. More informa-
tion on Petrov-Galerkin projections is described in section 5, subsec-
tion 5.1.

11

3.2 Projection by graph-partitions

In this section we will apply the Petrov-Galerkin projection, as dis-
cussed in section 3.1, to the system (4). This is a method to reduce
the complexity of the system.

If we apply the Petrov-Galerkin projection to the system (4), the
system becomes:

˙̂x(t) = −WTLVx̂(t) + WTMu(t). (8)

A disadvantage of a Petrov-Galerkin projection is that it in general
destroys the spatial structure of the network. In general the matrix
WTLV in the representation of the reduced order system will not be
structured, and so the reduced order system can not be written as
(4). By using graph partitions the structure of the network will be
preserved. This is what we will exploit.

We now introduce some general background on partitions.
Let V = {1, 2, . . . , n} be the set of vertices of the graph G. Any
nonempty subset of V is called a cell Ci of V . A collection of cells,
given by π = {C1, C2, . . . , Cr} is called a partition of V if ∪iCi = V
and Ci ∩ Cj = ∅ whenever i 6= j. Vertices i and j belong to the same
cell, i.e. are cell mates in π, if i, j ∈ Ck for k ∈ {1, 2, . . . , r}. The
characteristic vector of a cell Ck ⊆ V is defined by:

P (Ck) :=


p1(Ck)
p2(Ck)

...
pn(Ck)

 , (9)

in which pi(Ck) :=

{
1 if i ∈ Ck,

0 otherwise,

with i ∈ {1, 2, . . . , n}.

The characteristic matrix of the partition π = {C1, C2, . . . , Cr} is de-
fined by: P (π) = [P (C1) P (C2) . . . P (Cr)].

Let us now again look at the system (8), with associated graph G =
(V,E), π = {C1, C2, . . . , Cr} a partition of V and P (π) the character-
istic matrix of π.

12

Choosing WT and V in the following way :

WT = (P T (π)P (π))−1P T (π),
V = P (π),

(10)

we obtain that WTV = I. The columns of P (π) are orthogonal,
P T (π)P (π) is a diagonal matrix with strictly positive diagonal ele-
ments and is therefore invertible. If we write P (π) as P then system
(8) can be written as:

˙̂x(t) = −L̂x̂(t) + M̂u(t), (11)

with
L̂ = (P TP)−1P TLP,

M̂ = (P TP)−1P TM.
(12)

Let the graph of the reduced order system be called Ĝ. Since P con-
tains only zeros and ones, the structures of M̂ and L̂ are similar to
the structures of M and L respectively, but the input signals are now
weighted. By this each cell of π ⊂ V of the graph G is mapped to a
vertex of Ĝ, which means that the number of cells in π is equal to the
number of vertices in Ĝ. The matrix L̂ does not have to be symmetric
(the number of vertices may differ from cell to cell in π) but is simi-

lar to the symmetric matrix (P TP)−
1
2P TLP (P TP)

1
2 , thus L̂ inherits

properties of L like diagonalizability and having real eigenvalues.

Summarizing, this method (the projection) describes a way to bundle
some vertices together and map them to a single vertex. By this we
reduce the order of the system and the reduced order model becomes
associated with a new multi-agent system based on the associated
graph Ĝ. Furthermore the reduced state x̂ approximates the average
of the states of the agents that are in a same cell of π. If the cell
mates in π have a similar connection to the rest of the network, the
approximation will become exact.

In the next section we will discuss appropriate choices of partitions
such that the input-output behavior of the reduced order model re-
mains ’close’ to the input-output behavior of the original model.

3.3 Input-Output approximation of multi-agent
systems

In this section we will discuss appropriate choices of partitions such
that the input-output behavior of the reduced order model remains

13

’close’ to the input-output behavior of the original model.

So far, we have only looked at multi-agent systems described by the
inputs and states of the agents. We will now also look at multi-agent
systems with outputs. In order to do this we first assume that the
associated graph G is connected. If G is not connected, the proposed
model reduction technique can be applied to the disconnected compo-
nents of G individually.

We choose the output as y(t) = W
1
2RTx(t), where R is the incidence

matrix of G defined by (2) and W is defined by (3). (The explanation
why we exactly choose this to be the output is given in section 5,
subsection 5.4.)

The following input-state-output representation is now obtained for
the original multi-agent system:

ẋ(t) = −Lx(t) +Mu(t),

y(t) = W
1
2RTx(t),

(13)

where the first equation is as before, R is the incidence matrix of G,
W is defined by (3) and L = [lij] is the Laplacian matrix given by (1).

We now choose π again to be a partition of G. The input-state-output
model for the reduced order multi-agent system is defined by:

˙̂x(t) = −L̂x̂(t) + M̂u(t),

y(t) = W
1
2 R̂T x̂(t),

(14)

where L̂, M̂ are given by (12), x̂ ∈ Rk with k ≤ n, W is given by (3),
and R̂T = RTP , where P is a shorthand notation for P (π).

In order to approximate the behavior of the original multi-agent sys-
tem as efficient as possible, we have to choose an appropriate partition.
There are two trivial partitions: one is taking each vertex as a sin-
gleton and the other one is taking the whole set of vertices as the
projection, i.e. π = {V }. No order reduction occurs in the first case
and therefore the corresponding reduction error will be zero. In the
second case the reduced model will be a single agent with a zero trans-
fer matrix from u to y. The finest and the coarsest approximation by
graph partitions are obtained by these two trivial partitions. In gen-
eral we have to find a compromise between the order of the reduced
model and the accuracy of the approximation.
We first introduce some background on almost equitable partitions.

14

Definition 14: Almost equitable partition, unweighted undi-
rected graph
Let G = (V,E) be an unweighted undirected graph. For a given cell
C ⊆ V , we write N(i, C) = {j ∈ C|{i, j} ∈ E}. Now a partition
π = {C1, C2, . . . , Cr} is called an almost equitable partition of G if for
each p, q ∈ {1, 2, . . . , r} with p 6= q there exists an integer dpq such
that |N(i, Cq)|= dpq for all i ∈ Cp.

Definition 15: Almost equitable partition, weighted undi-
rected graph
Let G = (V,E) be a weighted undirected graph. Recall that aij indi-
cates the nonzero weights associated to edge {i, j}. Now a partition
π = {C1, C2, . . . , Cr} is called an almost equitable partition of G if for
each p, q ∈ {1, 2, . . . , r} with p 6= q there exists an integer dpq such
that

∑
j∈N(i,Cq)

aij = dpq for all i ∈ Cp.

Let us now assume that π = {C1, C2, . . . , Cr} is an almost equitable
partition of the weighted undirected graph G that contains no self-
loops. Furthermore suppose that the reduced order model (14) is
obtained from the original model (13) by the partition π. Recall that
VL = {v1, v2, ..., vm} and let ki be an integer such that vi ∈ Cki for
each i = {1, 2, . . . ,m}. Then the normalized model reduction error
between the original and the reduced order model is provided in the
following theorem.

Theorem 3.1. Let G be a weighted undirected graph that is connected
and contains no self-edges. Let π = {C1, C2, . . . , Cr} be an almost
equitable partition of G. Furthermore let the reduced order model (14)
be obtained from the original model (13) by the partition π. Also let
H(s) and Ĥ(s) be the transfer matrices from u to y in (13) and (14)
respectively. Then the normalized model reduction error between the
original and the reduced order model is given by:

‖H(s)− Ĥ(s)‖22
‖H(s)‖22

=

∑m
i=1(1−

1
|Cki
|)

m(1− 1
n)

,

where n is the total number of vertices of G and where ki is an integer
such that vi ∈ Cki for each i ∈ {1, 2, . . . ,m}.

Proof. For the proof of this theorem we refer to [1].

15

4 Example

In this section we will discuss an example on the normalized reduction
error between the original and the reduced order model in continuous
time.

First we need some nomenclature.

A vertex i is called pendant if the degree of i is equal to one. A path
graph GP = (VP , EP) is an undirected graph with VP = {1, 2, . . . , n}
and E a set of unordered pairs {i, j} with i, j ∈ V , for which exactly
two vertices are pendant vertices and the rest of the vertices have a
degree equal to two.

Consider two path graphs GP1 = (VP1 , EP1) and GP2 = (VP2 , EP2),
where VP1 = {1, 2, 3, 4, 5} with vertices 1 and 5 being the pendant
vertices and VP2 = {1, 2, 3, 4, 5, 6} with vertices 1 and 6 being the pen-
dant vertices. Furthermore for both graphs, let VL = {1}.

The graph GP1 is depicted in Figure 2 and the graph GP2 is depicted
in Figure 3.

Figure 2: Graph GP1

Figure 3: Graph GP2

For these graphs we want to know which partition gives the least
model reduction error within the set of all partitions with the same
number of cells. In these cases however the partitions are not almost
equitable partitions. So we can not use the theory as stated in subsec-
tion 3.3. Therefore we wrote a script in matlab to calculate the errors

16

and normalized errors for a partition with a certain number of cells.
An example of the script for a certain partition is given in appendix A.

In Table 1 and Table 2 the error and the normalized error for all pos-
sible partitions for a certain number of cells are given. The partitions
resulting in the least error bounds for graphs GP1 and GP2 are given
in Table 3.

Table 1

Number of Cells Partition Error Normalized Error
Two {{1,2},{3,4,5}} 0.6165 0.9748

{{1,3},{2,4,5}} 0.5981 0.9456
{{1,4},{2,3,5}} 0.5706 0.9022
{{1,5},{2,3,4}} 0.5102 0.8068
{{2,3},{1,4,5}} 0.5349 0.8458
{{2,4},{1,3,5}} 0.5985 0.9463
{{2,5},{1,3,4}} 0.5875 0.9289
{{3,4},{1,2,5}} 0.6424 1.0158
{{3,5},{1,2,4}} 0.6608 1.0449
{{4,5},{1,2,3}} 0.6488 1.0259
{{1},{2,3,4,5}} 0.3345 0.5288
{{2},{1,3,4,5}} 0.579 0.9155
{{3},{1,2,4,5}} 0.6356 1.0049
{{4},{1,2,3,5}} 0.6481 1.0247
{{5},{1,2,3,4}} 0.6472 1.0233

Three {{1,2},{3,4},{5}} 0.6115 0.9669
{{1,2},{3,5},{4}} 0.6119 0.9674
{{1,2},{4,5},{3}} 0.5892 0.9316
{{1,3},{2,4},{5}} 0.5985 0.9463
{{1,3},{2,5},{4}} 0.5981 0.9456
{{1,3},{4,5},{2}} 0.5992 0.9474
{{1,4},{2,3},{5}} 0.5706 0.9022
{{1,4},{2,5},{3}} 0.5706 0.9022
{{1,4},{3,5},{2}} 0.5706 0.9022
{{1,5},{2,3},{4}} 0.5009 0.7919
{{1,5},{2,4},{3}} 0.5 0.7906
{{1,5},{3,4},{2}} 0.5127 0.8107
{{2,3},{4,5},{1}} 0.2967 0.4691
{{2,4},{3,5},{1}} 0.3154 0.4987
{{2,5},{3,4},{1}} 0.2907 0.4596
{{1},{234},{5}} 0.3322 0.5252
{{1},{235},{4}} 0.331 0.5234
{{1},{245},{3}} 0.3168 0.5009
{{1},{345},{2}} 0.1802 0.2849
{{2},{134},{5}} 0.5936 0.9386
{{2},{135},{4}} 0.5985 0.9463
{{2},{145},{3}} 0.5349 0.8458
{{3},{124},{5}} 0.6634 1.0489
{{3},{125},{4}} 0.6424 1.0158
{{4},{123},{5}} 0.6411 1.0136

Four {{1,2},{3},{4},{5}} 0.5838 0.923
{{1,3},{2},{4},{5}} 0.5898 0.9326
{{1,4},{2},{3},{5}} 0.5706 0.9022
{{1,5},{2},{3},{4}} 0.5 0.7906
{{2,3},{1},{4},{5}} 0.2832 0.4477
{{2,4},{1},{3},{5}} 0.3162 0.5
{{2,5},{1},{3},{4}} 0.2907 0.4596
{{3,4},{1},{2},{5}} 0.163 0.2577
{{3,5},{1},{2},{4}} 0.1681 0.2658
{{4,5},{1},{2},{3}} 0.0763 0.1207

17

Table 3: Least model reduction error per number of cells.
Graph Number of Cells Partition Error Normalized Error
GP1 Two {{1}, {2, 3, 4, 5}} 0.3345 0.5288
GP1 Three {{1}, {3, 4, 5}, {2}} 0.1802 0.2849
GP1 Four {{1}, {4, 5}, {2}, {3}} 0.0763 0.1207
GP2 Five {{1}, {5, 6}, {2}, {3}, {4}} 0.0532 0.0824

The results given in Table 3 give us a heuristic idea on how to choose
the partition which gives the least model reduction error within the
set of all partitions with the same number of cells. In particular, we
recommend that clustering of the vertices is done based on the dis-
tance that each vertex has to the leader. We state this idea more
formally next.

For a path graph GP = (VP , EP) let π∗r denote the partition which
gives the least model reduction error within the set of all partitions
with r cells. Then we have the following conjecture for a path graph
with n vertices.

Conjecture 4.1. Let GP = (VP , EP) be a path graph where VP =
{1, 2, . . . , n} with vertices 1 and n being the pendant vertices. Suppose
that VL = {1}. Then, for each 2 6 r 6 n, π∗r is given by

π∗r = {1}, {2}, . . . , {r − 1}, {r, r + 1, . . . , n},

and obviously π∗1 = VP .

18

5 Method for discrete time

For discrete time multi-agent systems a method similar to continuous
time multi-agent systems can be developed. However we will give a
more extensive explanation on the discrete time method in this section.

5.1 Petrov- Galerkin projections

As in the continuous time case, in this section we will describe the
general theory behind Petrov-Galerkin projections.

Let a general input-state-output system be given by:

x(t+ 1) = Ax(t) +Bu(t),
y(t) = Cx(t),

(15)

with x(t) ∈ Rn the state, u(t) ∈ Rm the input and y(t) ∈ Rp the
output of the system.

Furthermore let V and W ∈ Rn×r such that WTV = I. A reduced
order model can be obtained by using the projection Γ = VWT in
the following way: first substitute x(t + 1) by Vx̂(t + 1) in (15) and
then premultiply the first line with WT .

Summarizing, we obtain the following system:

x̂(t+ 1) = WTAVx̂(t) + WTBu(t),
y(t) = CVx̂(t),

(16)

in which x̂ ∈ Rr is the state of the reduced order system.

This projection is called a Petrov-Galerkin projection. If the matrix
W is equal to the matrix V, the projection Γ becomes orthogonal
and is called a Galerkin projection. The matrices W and V can be
chosen differently, depending on the application, to preserve certain
properties. A disadvantage is however that a direct application of
a Petrov-Galerkin projection will destroy the spatial structure of the
network. We propose a method to handle this in the following section.

For more information on Petrov-Galerkin projections we refer to [4].

5.2 Projection by graph-partitions

In this section we will develop a reduction method that is analogous
to the one that was developed for the continuous time case. The

19

basic idea is again to apply the Petrov-Galerkin projection, as dis-
cussed in section 5.1, to the system (5). The general background of
graph-partitions, definitions and nomenclature is the same as stated
in subsection 3.2. For example the characteristic vector of a cell will
again be given by (9).

If we apply the Petrov-Galerkin projection to the system (5), the
system becomes:

x̂(t+ 1) = WTQVx̂(t) + WTMu(t). (17)

As said before, a disadvantage of the Petrov-Galerkin projection is
that it will destroy the spatial structure of the network. In general
the matrix WTQV in the representation of the reduced order system
will not be structured, and so the reduced order system cannot be
written in the form (5). By using graph partitions the structure of the
network will be preserved. This is what we will exploit.

Let us now return to the system (17), with associated graph G =
(V,E), π = {C1, C2, . . . , Cr} a partition of V , and P (π) the charac-
teristic matrix of π. Choosing WT and V in the following way :

WT = (P T (π)P (π))−1P T (π),
V = P (π),

(18)

yields WTV = I. The columns of P (π) are orthogonal, P T (π)P (π)
is a diagonal matrix with strictly positive diagonal elements and is
therefore invertible. If we write P (π) as P then (17) can be written
as:

x̂(t+ 1) = (P TP)−1P TQPx̂(t) + (P TP)−1P TMu(t). (19)

By defining new matrices Q̂ and M̂ as:

Q̂ = (P TP)−1P TQP

M̂ = (P TP)−1P TM
(20)

this simplifies to

x̂(t+ 1) = Q̂x̂(t) + M̂u(t). (21)

Since P contains only zeros and ones, the structures of Q̂ and M̂ are
similar to the structures of Q and M respectively, but the input sig-
nals are now weighted. By this, each cell of the partition π of the

20

graph G is mapped to a vertex of Ĝ, which means that the number
of cells in π is equal to the number of vertices in Ĝ. There is an edge
between two vertices in Ĝ if and only if this edge was already there
between two vertices of the corresponding different cells in G. Stated
mathematically: there is an edge between vertices a and b (a 6= b) in
Ĝ if and only if there exists a vertex i ∈ Ca and a vertex j ∈ Cb such
that (i, j) ∈ E. Therefore if we choose (i, j) ∈ Ê then also (j, i) ∈ Ê,
so Ĝ is a directed graph which is symmetric.

Between the adjacency matrices Â of Ĝ and A of G there exists the
following relationship:

A = [aij]

Â = [âab],with âab = 1
|Ca|

∑
i∈Ca, j∈Cb

aij , (22)

with |Ca| the cardinality (the number of elements) of the set Ca.

The matrix Q̂ is not necessarily symmetric (the number of vertices
may differ from cell to cell in π) but is similar to the symmetric ma-

trix (P TP)−
1
2P TQP (P TP)

1
2 . Thus Q̂ inherits properties of Q like

diagonalizability and having real eigenvalues.

Overall, this method describes a way to cluster some vertices and map
them to a single vertex. By this we reduce the order of the system and
the reduced order model becomes associated with a new multi-agent
system based on the associated reduced graph Ĝ. Furthermore, the
reduced state x̂ approximates the average of the states of the agents
that are in the same cell of π. The approximation becomes exact by
using almost equitable partitions in which agents with similar connec-
tions to the rest of the network are placed within the same cell.

As said before, Q̂ will inherit certain properties of Q (diagonalizability
and having real eigenvalues). However, these are not the only useful
properties. In the following section we will discuss what happens with
another useful property, namely consensus.

5.3 Consensus preservation for the reduced or-
der model

In this section we will see if the property that consensus has been
reached in the original system is retained in the reduced system.
Consider a network of n agents given by (5). In discrete time each
agent updates its state according to the weighted average of the states

21

of its neighbor agents. The most common consensus algorithm is
defined without external input so the system becomes:

x(t+ 1) = Qx(t). (23)

We say that the multi-agent system (23) reaches consensus if xi(t)−
xj(t) converges to 0 as t goes to infinity, for every i, j ∈ {1, 2, . . . n}.

Now we want to prove that if the system (23) reaches consensus, then
also the reduced order system x̂(t+1) = Q̂x̂(t) reaches consensus. We
first introduce some background in order to give this proof.

Definition 16: Interlacing eigenvalues
Let A and B be real symmetric matrices in Rn×n and Rm×m respec-
tively, with m 6 n. Furthermore let the eigenvalues of A be denoted
by λA1 , . . . , λAn in an increasing order and the eigenvalues of B by
λB1 , . . . , λBm in an increasing order. We say that the eigenvalues of
B interlace the eigenvalues of A if:

λAi 6 λBi 6 λAn−m+i for each i = 1, 2, . . . ,m.

Theorem 5.1. Let A be a real symmetric n × n matrix and let H
be an n × m matrix such that HTH = I. Set B equal to HTAH
and let v1, . . . , vm be an orthogonal set of eigenvectors of B such that
Bvi = λBivi. Then the eigenvalues of B interlace the eigenvalues of
A.

Proof. For the proof of this theorem we refer to [2], page 203, theorem
9.5.1 a.

Theorem 5.2. Let Q = [qij] ∈ Rnxn, with qij ≥ 0, be a stochastic and
symmetric matrix, and let Q̂ be given by (20) for a given partition π.
Then the eigenvalues of Q̂ interlace the eigenvalues of Q.

Proof. As seen before P TP is a diagonal matrix with strictly positive
diagonal elements. Recall that Q̂ is similar to the symmetric ma-
trix (P TP)−

1
2P TQP (P TP)

1
2 (section 5.2). Choosing F = P (P TP)−

1
2

then F TQF = (P TP)−
1
2P TQP (P TP)

1
2 , so Q̂ is similar to the sym-

metric matrix F TQF , for F = P (P TP)−
1
2 . Furthermore F TF = I,

so by theorem 5.1 we obtain that the eigenvalues of Q̂ interlace the
eigenvalues of Q.

22

Theorem 5.3. Let Q be a stochastic matrix. Then 1 is an eigenvalue
of Q. Furthermore 1 is a simple eigenvalue of Q if and only if its
weighted directed associated graph G(Q), has a directed spanning tree.
Moreover if G(Q) has a directed spanning tree and qii > 0 for i =
1, 2, . . . , n, then 1 is the unique eigenvalue of maximum modulus.

Proof. For the proof of this theorem we refer to [9] and [8].

Theorem 5.4. The discrete time multi-agent system (23) achieves
consensus if and only if the weighted directed associated graph G(Q)
has a directed spanning tree.

Proof. For the proof of this theorem we refer to [9] and [8].

With these theorems we are now able to prove that if the system (23)
reaches consensus, then also the reduced order system x̂(t+1) = Q̂x̂(t)
reaches consensus.

Theorem 5.5. If the multi-agent system x(t + 1) = Qx(t) reaches
consensus, then also the reduced order system x̂(t+1) = Q̂x̂(t) reaches
consensus.

Proof. Since x(t + 1) = Qx(t) reaches consensus, by theorem 5.4 the
associated weighted directed graph G(Q) has a directed spanning tree.
Therefore, by theorem 5.3, 1 is a simple eigenvalue of Q. Moreover
since qij is the weight agent i assigns to agent j when agent i up-
dates its state, qij is larger than 0, so 1 is the unique eigenvalue
of Q with maximum modulus. By theorem 5.2 and since q̂ii > 0
for i = 1, 2, . . . , n, 1 is also an unique eigenvalue of Q̂. Theorem
5.3 then implies that the associated weighted directed graph G(Q̂)
has a directed spanning tree. Now applying theorem 5.4 implies that
x̂(t+ 1) = Q̂x̂(t) reaches consensus, which had to be proved.

Remark 5.2
The rate of convergence of a multi-agent system depends on the eigen-
values of the associated matrix. The interlacing property holds for the
reduced order system, therefore every eigenvalue of Q̂ will be smaller
or equal to an eigenvalue of Q and the biggest eigenvalue of Q̂ will be
smaller or equal to the biggest eigenvalue of Q. Consequently the rate
of converge in the reduced order model is at least as fast as that of
the original model.

So far we have seen that a reduced order model can be obtained by
applying an appropriate projection to the original multi-agent system
defined on an associated graph G. This reduced order model can be
modeled as a multi-agent system defined on a new associated graph Ĝ.

23

Furthermore Q̂ will inherit certain properties of Q (diagonalizability
and having real eigenvalues), and consensus and the convergence rate
are preserved by the model reduction. In the next section we will dis-
cuss appropriate choices of partitions such that the input-output be-
havior of the reduced order model remains ’close’ to the input-output
behavior of the original model.

5.4 Input-Output approximation of multi-agent
systems

In this section we will discuss appropriate choices of partitions such
that the input-output behavior of the reduced order model is ’close’
to the input-output behavior of the original model.

So far, in discrete time we have only looked at multi-agent systems
with inputs and states. We will now also look at multi-agent systems
with outputs. In order to do this we first assume that the associated
graph G is connected. If G is not connected the proposed model re-
duction technique can be applied to the disconnected components of
G individually. Furthermore, in the context of distributed control, the
differences of the states of the agents play a crucial role in consensus.
We therefore want the incidence matrix R (in which the differences of
the states of the agents are embedded), to be present in the output

variables. So let us choose the output as y(t) = W
1
2RTx(t), where R

is defined by (2) and W is defined by (3).

Since G is connected, reaching consensus for the multi-agent system
(5) means that y(t) converges to zero as t goes to infinity for all initial
states of the multi-agent system.

The following input-state-output representation is now obtained for
the original multi-agent system:

x(t+ 1) = Qx(t) +Mu(t),

y(t) = W
1
2RTx(t),

(24)

where x,M,R and W are as defined before. Furthermore to satisfy

that

n∑
j=1

qij = 1, qij ≥ 0 and qii > 0 for i ∈ {1, 2, . . . , n} (see Definition

11), we choose Q = I − εL. Here I is the identity matrix, L = [lij]
is the Laplacian matrix given by formula (1) and ε is a parameter
0 < ε < 1

max{lii} .

24

We now choose π again to be a partition of G. The input-state-output
model for the reduced order multi-agent system is given by:

x̂(t+ 1) = Q̂x̂(t) + M̂u(t),

y(t) = W
1
2 R̂T x̂(t),

(25)

where Q̂, M̂ are given by formula (20), x̂ ∈ Rk with k ≤ n, W is given
by formula (3), and R̂T = RTP .

Just as with the continuous case we want the behavior of the original
multi-agent system to be approximated as efficient as possible. So we
have to choose an appropriate partition. The finest and the coarsest
approximation are again given by the two trivial partitions. We want
to find a compromise between the order of the reduced model and the
accuracy of the approximation.

For this we again need almost equitable partitions (as explained in sec-
tion 3.3, defined by Definition 14 and Definition 15). The key property
of an almost equitable partition is that imP (π) is L-invariant. This
will be stated in the following theorem.

Theorem 5.6. Let π be a partition of a weighted undirected graph
G and let L denote the Laplacian matrix of G. Then π is an almost
equitable partition if and only if imP (π) is L-invariant, i.e.

L imP (π) ⊆ imP (π).

Proof. For the proof of this theorem we refer to [1].

Remark 5.3
For the discrete time method we work with Q = I − εL. So we want
that a subspace is Q-invariant if the subspace is L-invariant, i.e. if
L imP (π) ⊆ imP (π) then also Q imP (π) ⊆ imP (π). Note that since
L imP (π) ⊆ imP (π), also −εL imP (π) ⊆ imP (π) and furthermore
I imP (π) ⊆ imP (π). Hereby Q imP (π) ⊆ imP (π).

We now want to find the normalized model reduction error between
the original and the reduced order model

�H(s)−Ĥ(s)�22
�H(s)�22

. For this, we

try to mimic the steps given in the proof of [1], theorem 6.

We first construct a matrix T = [P F], where P = P (π) and
F ∈ Rn×(n−k) such that the columns of T are orthogonal.
Then P TF = 0.

25

Now we apply the state space transformation x(t) = T x̃(t) to (24).
This yields

x(t+ 1) = Qx(t) +Mu(t) = QTx̃(t) +Mu(t) = T x̃(t+ 1).

So
x̃(t+ 1) = T−1QTx̃(t) + T−1Mu(t).

Since T−1 = [(P TP)−1P T (F TF)−1F T]T , the following input-state-
output system is obtained:

x̃(t+ 1) =

[
(P TP)−1P TQP (P TP)−1P TQF
(F TF)−1F TQP (F TF)−1F TQF

]
x̃(t) +

[
(P TP)−1P TM
(F TF)−1F TM

]
u(t)

y(t) =
[
W

1
2RTP W

1
2RTF

]
x̃(t)

(26)
The transfer matrices of system (24) and system (26) are of course
identical. Also, by truncating the second state component of x̃ the
reduced order model is obtained.

Since π is an almost equitable partition of G, imP is L-invariant
and, as explained in Remark 4, imP is also Q-invariant. Therefore
there exists a matrix X such that QP = PX. Hence we obtain
F TQP = F TPX = (P TF)TX = 0 and P TQF = (F TQP)T = 0.

In this way system (26) can be written as:

x̃(t+ 1) =

[
(P TP)−1P TQP 0

0 (F TF)−1F TQF

]
x̃(t) +

[
(P TP)−1P TM
(F TF)−1F TM

]
u(t)

y(t) =
[
W

1
2RTP W

1
2RTF

]
x̃(t).

(27)
The transfer matrix of (27), called H(z), (and therefore also the trans-
fer matrix of the original system (24)) is obtained by the following
relation:

H(z) = Ĥ(z) + ∆(z),

with Ĥ(z) = W
1
2RTP (zI−(P TP)−1P TQP)(P TP)−1P TM the trans-

fer matrix of the reduced order system (25),

and ∆(z) = W
1
2RTF (zI − (F TF)−1F TQF)(F TF)−1F TM the error

between the transfer matrices H(z) and Ĥ(z).

Also the following relation holds: Ĥ(z)T (z̄)∆(z) = 0, since P TLF = 0.
Therefore

�H(z)�22 = �Ĥ(z)�22 + �∆(z)�22.

26

We now want to find the error

�∆(z)�22 = �H(z)− Ĥ(z)�22 = �H(z)�22 − �Ĥ(z)�22. (28)

For this we first calculate �H(z)�22 and �Ĥ(z)�22.

In general for a discrete time system of the form:

x(t+ 1) = Ax(t) +Bu(t),
y(t) = Cx(t),

(29)

the finite two-norm of the transfer matrix ‖ H ‖22 is given by:

‖ H ‖22= trace(BTSB), (30)

where S =
∑∞

t=0(A
T)tCTCAt (S is not equal to the null-matrix) is a

solution to the discrete Lyapunov equation

ATSA− S + CTC = 0. (31)

So �H(z)�22 = trace(MT
∞∑
t=0

(QT)tLQtM),

and �Ĥ(z)�22 = trace(M̂T
∞∑
t=0

(Q̂T)tP TLPQ̂tM̂).

Now let the matrices χ ∈ Rn×n and ψ ∈ Rr×r be defined by:

χ =
∞∑
t=0

(QT)tLQt

ψ =

∞∑
t=0

(Q̂T)tP TLPQ̂t.

We want to find a relation between χ and ψ.

First of all χ can be written as χ =
∞∑
t=0

LQ2t since Q is symmetric

and LQt = QtL. Some further calculations give χ = L lim
N→∞

N∑
t=0

Q2t.

Now we want to use the general rule:

N∑
t=0

At = (I −A)−1(I −AN+1). (32)

27

If we substitute A = Q2 we obtain the following:

N∑
t=0

Q2t = (I −Q)−1(I −Q2N+2).

However (I − Q)−1 does not exist since Q2 has an eigenvalue equal
to 1 (in order to reach consensus) so (I −Q) has an eigenvalue equal
to zero, which makes it not invertible. Even if (I −Q)−1 would exist,
we could not apply the same trick to ψ since Q̂ is not symmetric and
P TLPQ̂t 6= Q̂tP TLP , so the general rule (32), can not be used to
rewrite and calculate χ and ψ or find a relation between them.

So what goes wrong here what does not go wrong for continuous time?
In the continuous time case we also have

�∆(z)�22 = �H(z)− Ĥ(z)�22 = �H(z)�22 − �Ĥ(z)�22.

There however �H(z)�22 = trace(MT

∫ ∞
0

e−LtLe−Ltdt M),

and �Ĥ(z)�22 = trace(M̂T

∫ ∞
0

e−L̂
T tP TLPe−L̂tdt M̂).

The integral
∫∞
0 e−LtLe−Ltdt can be computed since Q is symmetric

and furthermore

P T

∫ ∞
0

e−LtLe−LtdtP =

∫ ∞
0

e−L̂
T tP TLPe−L̂tdt.

This can be obtained by the properties of e−Lt.
So let us try to use the same method for the discrete time case. If we
set Q = e−A, we obtain the following matrices χ and ψ:

χ =
∞∑
t=0

e−AtLe−At

ψ =

∞∑
t=0

(Q̂T)tP TLPQ̂t,

with Q̂ = (P TP)−1P T e−AP .

28

Now we get the following:

P TχP = P T
∞∑
t=0

e−AtLe−AtP

=
∞∑
t=0

P T e−AtLe−AtP

=

∞∑
t=0

e−((P
TP)−1PTAP)T tP TLPe−(P

TP)−1PTAPt.

To let P TχP = ψ, this would mean that Q̂t = ((P TP)−1P T e−AP)t

should be equal to e−(P
TP)−1PTAPt. But that is not true. So we are not

able to compute χ or ψ and it is also not possible to derive P TχP = ψ.

Another thing we could think of is choosing other input variables. So
that, for example, �H(z)�22 and �Ĥ(z)�22 become:

�H(z)�22 = trace(MT
∞∑
t=0

(QT)t(I −Q)QtM) and

�Ĥ(z)�22 = trace(M̂T
∞∑
t=0

(Q̂T)tP T (I −Q)PQ̂tM̂).

The problems will however remain the same. We are still not able to
compute χ or ψ and it is also not possible to derive P TχP = ψ. This
leaves this part very interesting for future research.

29

6 Conclusion

In this report we discussed a method to reduce the complexity of
multi-agent systems in discrete time.
In order to do this, we first discussed some general background on sys-
tems in the second section. Secondly the method for continuous time
multi-agent systems was discussed in the third section. This section
contained three subsections; Petrov-Galerkin projections, Projection
by graph-partitions and Input-Output approximation of multi-agents
systems.

In the fourth section we discussed an example on the normalized re-
duction error between the original and the reduced order model in
continuous time. The example described a path graph of n vertices
with vertices 1 and n being the pendant vertices and the first vertex
being the leader. For this example we noticed that the best results
were reached by clustering the vertices that have the longest distance
to the leader. Therefore we recommended clustering to be done on
distance to the leader. Furthermore we gave a conjecture for a general
path graph.

In the fifth section we described the method for discrete time, this sec-
tion contained four subsections; theory behind Petrov-Galerkin pro-
jections was discussed in the first subsection and the Petrov-Galerkin
projection applied to the general system was discussed in the second
subsection. One of the most important properties of the multi-agent
system, the consensus preservation for the reduced order system, was
discussed in the third subsection and input-output approximations of
multi-agent systems were discussed in the fourth subsection. In the
last subsection we faced some problems which are very interesting for
future research.

30

References

[1] A projection based approximation of multi-agent systems by using
graph partitions, Trentelman H.L., Monshizadeh N., 2013.

[2] Algebraic Graph Theory, Royle G., Godsil C., Springer-Verlag,
New-York, 2001.

[3] Approximation of Large-Scale Dynamical Systems, Antoulas
A.C., SIAM Advances in Design and Control, 2005.

[4] Computational Methods of Science (lecture notes), Wubs F.W.,
2012.

[5] Consensus and Cooperation in Networked Multi-Agent Systems,
Olfati-Saber R., Murray R.M., Fax J.A., Proceedings of the
IEEE, IEEE Transactions on Automatic Control, Vol. 95, No.
1, 2007.

[6] Consensus Problems in Networks of Agents With Switching
Topology and Time-Delays, Olfati-Saber R., Murray R.M., IEEE
Transactions on Automatic Control, Vol. 49, No. 9, 2004.

[7] Consensus seeking in multiagent systems under dynamically
changing interaction topologies, Ren W., Beard R.W., IEEE
Transactions on Automatic Control, 50:655-661, 2005.

[8] Distributed Algorithms for Interacting Autonomous Agents, Xia
W., thesis, 2013.

[9] Distributed consensus in Multi-Vehicle Cooperative Control, Ren
W., Beard R.W., Springer-Verlag, London, 2008.

[10] Graph Theoretic Methods in Multiagents Networks, Mesbahi M.,
Egerstedt M., Princeton University Press, 2010.

[11] Information Consensus in Multivehicle Cooperative Control, Ren
W., Beard R.W., Atkins E.M., 2007, IEEE control systems mag-
azine.

[12] Information Consensus of Asynchronous Discrete-time Multi-
agent Systems, Fang L., Antsaklis P.J., American Control Con-
ference, 2005.

[13] Laplacian eigenvectors and eigenvalues and almost equitable par-
titions, Cardoso D.M., Delorme C., Rama P., Elsevier, 2005.

[14] Matrix Analysis, Horn R.A., Johnson C.R., Cambridge University
Press, Cambridge, 1985.

[15] Robust Synchronization of Uncertain Linear Multi-Agent Sys-
tems, Trentelman H.L., Takaba K., Monshizadeh N., 2012.

31

A Script Example

% Def in ing a l l g iven matr i ce s

M = [1 ; 0 ; 0 ; 0 ; 0] ;
L = [1 −1 0 0 0 ; −1 2 −1 0 0 ; 0 −1 2 −1 0 ; 0 0 −1 2 −1; 0 0 0 −1 1] ;
R = [1 0 0 0 ; −1 1 0 0 ; 0 −1 1 0 ; 0 0 −1 1 ; 0 0 0 −1];
Rtra= transpose (R) ;
P = [1 0 ; 1 0 ; 0 1 ; 0 1 ; 0 1] ;
Ptra = transpose (P) ;
Pinv = inv (Ptra * P) ;
Ppro = Pinv * Ptra ;
Lhat = Ppro * L * P;
Mhat = Ppro * M;
Rhat = Ptra * R;
Rhattra= transpose (Rhat) ;
D = [0 ; 0 ; 0 ; 0] ;

% Creat ing the t r a n s f e r m a t r i x f o r the o r i g i n a l model

[bb , aa] = s s 2 t f (−L ,M, Rtra ,D) ;
sys1m=t f (bb (1 , :) , aa) ;
sys1=minrea l (sys1m) ;
sys2m=t f (bb (2 , :) , aa) ;
sys2=minrea l (sys2m) ;
sys3m=t f (bb (3 , :) , aa) ;
sys3=minrea l (sys3m) ;
sys4m=t f (bb (4 , :) , aa) ;
sys4=minrea l (sys4m) ;
Tf = [sys1 ; sys2 ; sys3 ; sys4]

% Creat ing the t r a n s f e r m a t r i x f o r the reduced order model

[dd , cc] = s s 2 t f (−Lhat , Mhat , Rhattra ,D) ;
sysr1m=t f (dd (1 , :) , cc) ;
sy s r1=minrea l (sysr1m) ;
sysr2m=t f (dd (2 , :) , cc) ;
sy s r2=minrea l (sysr2m) ;
sysr3m=t f (dd (3 , :) , cc) ;
sy s r3=minrea l (sysr3m) ;
sysr4m=t f (dd (4 , :) , cc) ;
sy s r4=minrea l (sysr4m) ;
Tfr = [sy s r1 ; sy s r2 ; sy s r3 ; sy s r4]

32

% Calcu l a t ing the e r r o r s

Di f = minrea l (Tf−Tfr)

norm1 = norm(Tf , 2) ;
E = norm(Dif , 2)
Enor = E/norm1

33

