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1 Introduction

Polymorphism in loci associated to host resistance and parasite virulence is commonly found in nat-

ural populations [1, 2, 3, 4, 5, 6]. Indeed, host-parasite interactions have been early on identified

as important selective forces promoting the maintenance of genetic diversity in biological systems

[2, 3, 4]. Two alternative scenarios have been proposed to explain the observed amount of poly-

morphism at loci associated to these antagonistic interactions. In the “arms race” model, there

is recurrent fixation of alleles in both the host and the parasite, so polymorphism in virulence and

resistance exists but is transient in time [2, 7]. This model is mainly driven by mutation which intro-

duces novel alleles in the population which then become fixed by selective sweeps (positive selection).

On the other hand, in the “trench warfare” model, the frequencies of resistance and virulence alleles

are maintained at intermediate values by balancing selection. In this case polymorphism is stable

in time and is predicted to be ancient in natural populations [7]. One of the main aims of current

research in host-parasite interactions is to determine the ecological, genetical and epidemiological

factors that can favor each of these two models of coevolution.

The previous scenarios have been studied using discrete time models based on gene-for-gene

(GFG) interactions between hosts and parasites or Matching-Allele models (MAM) [3]. GFG models

are a common mechanism of infection in plant and invertebrate diseases [8, 9]. In the classic GFG

model proposed by Leonard [10], it is assumed that both the host and the parasite have one locus.

The host has two alleles, for resistance and susceptibility and the parasite has two alleles for virulence

and avirulence. Infection occurs if the host is susceptible or if the parasite is virulent. Otherwise,

if the host is resistant and the parasite avirulent, the host produces a resistance reaction avoiding

infection. Since disease is costly, hosts are selected to be resistant which in turn imposes a pressure
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for parasites to become virulent and overcome host defenses. This leads to coevolutionary cycles

where the allelic frequencies of one species determine the fitness of the alleles in the other species

(virulence is favored when resistance is common and resistance is favored when virulence is rare),

which is known as indirect frequency dependence selection (iFDS) [11]. In models where only iFDS

occurs, cycles are unstable, driving alleles to fixation recurrently so the system behaves like an arms

race scenario. Polymorphism can become stable in a GFG model, however, if there is negative direct

frequency dependence selection (ndFDS) [11]. This mechanism imposes a fitness cost in alleles that

are in high frequency in the population preventing them to be fixed. Ecological and epidemiological

factors like polycyclic disease or spatial heterogeneity in the costs of virulence and resistance have

the potential to introduce ndFDS in the system producing a trench warfare scenario for variation of

the allelic frequencies over time [11, 12, 13].

One of the main assumptions of the previous models is that the host encounters the parasite

every generation. However, it is often the case in natural populations that potential hosts are never

exposed to the parasite during their lifetime [14, 15, 16]. Both epidemiological and environmental

conditions can affect the prevalence of the parasite in a population over space and time. For instance,

microclimatic conditions, dormancy periods of the parasite and mechanisms of parasite dispersion

have been reported as factors that can modify the frequency of parasite encounters in plant and

invertebrate populations [17, 18, 15].

Spatiotemporal variation in the encounter rates with the parasite can change the intensity of

selection for resistance traits in the host [14, 20]. When the host does not encounter the parasite,

the effect of iFDS disappears since the fitness of the host is independent of the frequency of vir-

ulence in the parasite population. The importance of variation in the parasite prevalence on the

dynamics of host-parasite interactions has been shown experimentally in studies on plant and bac-

terial populations[14, 21]. These studies have focused mainly in heterogeneity at a spatial scale, a

very common feature of natural systems where species occur as separate demes connected through

migration. In these scenarios, high variation in the parasite encounter rates have been observed

even for neighboring populations [14, 22]. These findings have been integrated into the theory of

the ‘geographic mosaic of coevolution’ which suggests that variation in ecological conditions across

spatially structured populations can lead to differences in selection pressures between demes [23].

Demes where there is strong reciprocal selection are usually referred as “hotspots” of coevolution

while demes with weak reciprocal selection are referred as “coldspots”.

The simple GFG model has been already studied in spatially structured populations where it

was shown that differences in costs of resistance and virulence between demes can promote stability
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of genetic polymorphism by introducing ndFDS through migration [13]. However, the effect of

differences in parasite encounter rates between populations has never been explored in the framework

of GFG interactions in hosts metapopulations.

This project has the following objectives. First, to relax the assumption of permanent exposure

to the parasite in the simple GFG model to determine the effect of parasite encounter rates on the

dynamics of the system. We want to analyze the effect of parasite encounter rates on the frequency

of virulence and resistance alleles and its potential to introduce stability to the polymorphism.

Second, we will introduce variation in parasite encounter rates in spatially structured populations.

This would allow us to evaluate if differences only in the prevalence of the parasite between demes

can introduce ndFDS through migration and stabilize the genetic polymorphism. Third, we aim to

determine what is the effect of fitness differences between resistant and susceptible hosts when they

do not encounter the parasite, on the evolution of virulence and resistance. This is based on the

observation that in natural populations adaptations to parasite infection can be expressed constantly

in host populations even if the parasite is not present [24, 25, 26, 27]. This could disfavor resistant

hosts if the prevalence of the parasite is low.

2 Model description

2.1 One deme scenario

Both the host and the parasite are haploid with discrete generations on time. A GFG model is

assumed so that the host has two alleles, resistance (RES ) and susceptibility (res) and the parasite

has two alleles, virulence (avr) and avirulence (AVR). Infection occurs if the parasite is virulent or

if the host is susceptible. Each generation the hosts encounters the parasite with probability ρ. If

the parasite is virulent it can infect both types of hosts but it faces a cost of virulence b. Avirulent

parasites do not bear this cost but if they encounter a resistant host they have a cost c of not being

able to infect it. Following Tellier and Brown [11], and their biological supported assumption that

parasites not able to infect the host have a very large fitness cost, we assume that c ≈ 1.

Being diseased has a cost s for the host. Based on recent molecular findings on gene expression

and disease resistance network activation, we assume that resistant hosts encountering parasites

trigger a resistance reaction which incurs a cost of fitness [28, 29]. Such resistance reaction can

be overcomed by virulent parasites who switch off defenses via effectors, where avirulent parasites

cannot. The cost of being resistant for the host when exposed to a parasite is u. If the host does not
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encounter the parasite, which happens with probability 1− ρ, susceptible hosts have no fitness cost

because they are not infected. Resistant hosts have a cost u∗, which corresponds to the basal cost of

having the allele for resistance even when the parasite is not present. It is assumed that u = u∗+ ε,

where ε ≥ 0 can be interpreted as the cost of activating and expressing the disease resistance pathway

mentioned before. When the parasite does not encounter the host, it does not survive, regardless of

its genotype. The fitness costs for the host and parasite populations are summarized in Table 1. As

a simplifying assumption, all the costs and the encounter rate are assumed to be constant through

time.

In generation g, the frequency of avr in the parasite population is ag and the frequency of RES

in the host population is Rg. Ag and rg correspond to the frequencies of AVR and res respectively.

The recurrence equations are:

Host

Rg+1

rg+1
=
Rg

rg

(
ρ(1− u)(1− s+ sAg) + (1− ρ)(1− u∗)

1− ρs

)
(1)

=
Rg

rg

(
(1− u)(1− ρs+ ρsAg) + (1− ρ)ε

1− ρs

)

Parasite

Ag+1

ag+1
=
Ag

ag

(
1− cRg

1− b

)
(2)

Note that the fitness of the virulence allele in the parasite population is independent of ρ. This

means that the probability of encountering a host is assumed to be equal for virulent and avirulent

parasites, so ρ does not introduce fitness differences between the two type of parasites. This system

has four trivial equilibriums (R̂, Â) in (0,0), (0,1), (1,0) and (1,1). The non-trivial equilibrium for

this system is:

R̂ =
b

c
(3)

Â =
u∗ − sρu∗ − sρε+ ρε

ρs(1− u∗ − ε)
(4)

=
ε(1− s)
s(1− u)

+
u∗(1− ρs)
ρs(1− u)
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2.1.1 Analysis of the equilibrium

Note that the frequency of host alleles depends on the parasite parameters and vice versa (see

[11, 30]). From (3) this means that resistance increases with the cost of virulence which is expected

since resistant plants are favored when virulence is not common. An internal equilibrium point exists

i.e. 0 < R̂ < 1 since all the costs are assumed to be less than 1 and c > b which is necessary for

virulence to evolve in the first place. The equation for Â can be written in terms of u as,

Â =
u(1− ρs)− ε(1− ρ)

ρs(1− u)

Â > 0 when u∗(1 − ρs) + ερ(1 − s) > 0, this is when ρ, u, s and ε are between 0 and 1. Note that

Â < 1 if u∗ + ρε < ρs. This means that the expected cost of resistance over plants that encounter

and not the parasite, must be lower than the expected cost of being diseased. In the simple GFG

model, this corresponds to the condition s > u which is necessary for resistance to evolve in the first

place.

If we fix the value of u, at the equilibrium the frequency of AVR decreases when ε increases.

That is, the frequency of virulent parasites increases when the basal cost of resistance decreases.

This happens because lower cost of basal resistance selects for higher frequency of resistant plants,

which in turn favors virulent parasites. Note that the effect of ε is proportional to 1 − ρ, which is

the rate at which hosts do not encounter parasites.

The equation for Â can also be written as,

Â =
ε− su
s(1− u)

+
u∗

ρs(1− u)

This means that ρ has a negative effect on the frequency of avirulent parasites. In other words,

when the encounter rate with the parasite increases, virulent parasites are favored. This result can

be explained in terms of the intensity of selection for resistance in the host population with respect

to ρ. When ρ is low, susceptible hosts are favored because they have no fitness cost in contrast to

resistant hosts that have a cost u∗. Then, avirulent parasites are favored. When ρ is high, resistance

can provide advantages since disease can be avoided so the frequency of res increases, which favors

virulent parasites.

Note that the effect of ρ in the equilibrium value depends on the existence of a cost u∗ for resistant

plants that do not encounter the parasite. Otherwise, if u∗ = 0, the equilibrium of the system does

not depend on ρ because when the parasite is not present selection is neutral in the host since
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both RES and res have the same fitness. This can have the potential to maintain polymorphism

in the host, because if the prevalence of the parasite is low and selection for resistance is mainly

neutral when the parasite is not present, most of the change in the allelic frequencies for resistance

will be driven by stochastic effects like drift and mutation. We will explore this, by accounting for

stochasticity using simulations.

2.1.2 Stability analysis

The dynamics of the system was analyzed using its Jacobian matrix. The logit transformations

fR = log
Rg

rg
and fA = log

Ag

ag
were made to simplify the analysis and the discriminant QA of the

characteristic equation of the Jacobian matrix JA was calculated. Under the reasonable assumptions

that costs are between 0 and 1 and that u∗ + ρε < ρs and b < c, which are necessary for resistance

and virulence to evolve in the first place (see above), the sign of QA is negative, which means that

the frequencies rotate anti clockwise in a plot of (R,a). See Figure 1.

The model does not introduce negative frequency dependence selection (ndFDS) because the

diagonal elements of JA, d∆fR/dfR and d∆fA/dfA equal zero. This means that the fitness of an

allele is independent of its own frequency. Since the diagonal elements of JA are zero, the eigenvalues

have no real parts. Then, the complex parts of the eigenvalues should be zero for the equilibrium to

be stable which is not the case for this system. Then, the equilibrium is unstable. See Appendix I

for the calculations.

2.2 Two demes scenario

As it was discussed before, heterogeneity in spatial structured populations has the potential to

introduce stability to the system promoting the long-term maintenance of genetic polymorphism.

In this model the influence of the parasite prevalence is studied in the case of two demes that are

linked by migration of both the host and the parasite. Selection happens inside each deme as in the

one deme model and migration takes place after selection. Each deme has its own costs and parasite

encounter rates which are noted by ui, bi, si, ci, ρi, u
∗
i and εi(= ui − u∗i ) for deme i. As in the one

deme scenario, these correspond to cost of resistance, cost of virulence, cost of being diseased for

the host, cost for the parasite of not being able to infect the host, encounter rate with the parasite,

basal cost of resistance and cost of expression of a resistant allele respectively. For simplicity it is

assumed that migration for both the host and the parasite is symmetrical between the two demes so

there is the same number of immigrants and emigrants per generation in each deme. The migration
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rates for the host and the parasite are noted as mH and mP respectively. To illustrate the system

of equations for each deme, the equations for deme 1 will be shown. Before migration, when just

selection has acted, the allele frequencies are as in the one deme model (See (1) and (2)):

R̃1 = R1((1− u1)(1− ρ1s1 + ρ1s1A1) + (1− ρ1)ε1)

r̃1 = r1(1− ρ1s1)

Ã1 = A1(1− c1R1)

ã1 = a1(1− b1)

where R1, r1, A1 and a1 correspond to the allele frequencies of RES , res, AVR and avr in deme

1 before selection and R̃1, r̃1, Ã1 and ã1 indicates frequencies after selection. The frequencies in

deme 2 after selection are noted by R̃2, r̃2, Ã2 and ã2 and are calculated in the same way as for

deme 1 but with the parameters u2, b2, s2, c2, ρ2, u∗2 and ε2 and the starting frequencies R2 and

A2. Once migration occurs the allelic frequencies in the next generation for deme 1 are given by:

Host:

R′1
r′1

=
(1−mH)R̃1 +mHR̃2

(1−mH)r̃1 +mH r̃2
(5)

Parasite:

A′1
a′1

=
(1−mP )Ã1 +mP Ã2

(1−mP )ã1 +mP ã2
(6)

If there is no migration between the two demes (mH = mP = 0) the dynamics in each of them

collapses to the one deme model that was analyzed in the previous section. As it was shown

analytically for the one deme model, the internal equilibrium of the system is unstable.

2.2.1 Calculation and analysis of the equilibrium

When there is migration of both the host and the parasite, the internal equilibrium (R̂i , Âi) in

deme i depends on the equilibrium value in the other deme. This makes the analytical calculation

of the equilibrium in each deme very difficult because the frequencies of both R̂i and Âi depend on

the selection coefficients of the two demes and on the migration rates. Some special cases can be,

however, computed analytically when assuming that either mP = 0 or mH = 0.
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a) mP =0

If the parasite does not migrate (mP =0) the frequency of virulence in each population behaves

as in the simple one deme model and A′1 = Ã1 and A′2 = Ã2 (to see it replace mP =0 in (6)). Then,

the frequencies of the virulent allele in the next generation are the same as the frequencies after

selection because migration does not occur. Since the allelic frequencies in one species determine the

equilibrium in the other species, this means that R̂i for both demes is independent of the migration

rate and corresponds to the value in the simple one deme model. Then, for mP = 0,

R̂1 =
b1
c1

and R̂2 =
b2
c2

The frequencies of Â1 and Â2 are then calculated based on R̂1 and R̂2. For Â1 this is,

Â1 = Âod
1 +

mH

(1−mH)

1

(1− u1)ρ1s1

(
r̂2

r̂1
(1− ρ2s2)− R̂2

R̂1

((1− u2)(1− ρ2s2 + ρ2s2Â2) + (1− ρ2)ε2)

)
(7)

where Âod
1 corresponds to the equilibrium for A1 in the simple one deme model (See previous

section, equation (4)). First, note that the effect of migration is to deviate the equilibrium from the

value expected in the case of a single population, Âod
1 . As expected, higher migration rates have a

larger effect on the equilibrium frequency since mH

1−mH
increases. There are two possible scenarios:

If the frequency of resistant hosts is higher in deme 1 than in deme 2, R̂1 > R̂2, the term inside the

parenthesis in (7) is positive and migration will favor avirulent parasites in deme 1. This happens

because if there are more resistant hosts in deme 1 than in deme 2, migration will decrease the

frequency of resistance in deme 1 which favors in return avirulent parasites. On the other hand,

if the number of susceptible hosts is higher in deme 1, R̂1 < R̂2, the term inside the parenthesis

is negative, so migration will increase the frequency of virulent parasites in deme 1 since resistant

hosts are entering the population of deme 1.

The encounter rate with the parasite modifies the influence of migration on the equilibrium.

More specifically, when ρ1 increases, the effect of migration on the frequency of virulence in deme

1 decreases (See (7)). In other words, a deme with a high prevalence of the parasite is less affected

by migration than a deme with low prevalence of the parasite. This asymmetry in the effects of

“hot spots” (high parasite prevalence) and “cold spots” (low parasite prevalence) has been observed
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experimentally and has been attributed to the fact that hot spots act as net sources of migrants and

cold spots as net recipients [21]. Our result suggests that even if the contribution to the migrant pool

is identical for both type of demes, cold spots are more likely to be affected by migration than hot

spots (when mP = 0). Finally, note that the effect of the encounter rate on migration is independent

of u∗. Even if the basal cost of resistance is zero, the encounter rate can still modify the equilibrium

point, which is not the case for the one deme model.

b) mH = 0

If the host does not migrate (mH=0), the frequency of resistance in each deme behaves as in the

one deme model. Then, R′1 = R̃1 and R′2 = R̃2 (to see it replace mH=0 in (5)). The equilibrium

values for Â1 and Â2 are given as in the one deme model by,

Â1 =
u1(1− ρ1s1)− ε1(1− ρ1)

ρ1s1(1− u1)
and Â2 =

u2(1− ρ2s2)− ε2(1− ρ2)

ρ2s2(1− u2)

The frequencies of R̂1 and R̂2 are then calculated based on Â1 and Â2. For R̂1 this is,

R̂1 = R̂od
1 −

mP

(1−mP )

1

c1

(
â2

â1
(1− b2)− Â2

Â1

(1− c2R̂2)

)
(8)

As before, R̂od
1 corresponds to the equilibrium for R1 in the simple one deme model (See previous

section, equation (3)) and the effect of migration is to move the equilibrium point away from this

value. There are two possible scenarios: If the frequency of virulence is higher in deme 1 than in

deme 2, â1 > â2, the term in the parenthesis in (8) is negative so migration favors resistance in deme

1. This happens because migration increases the frequency of avirulent parasites which in turn favor

resistant hosts. If the frequency of virulence is lower in deme 1 than in deme 2, â1 < â2, the term

in the parenthesis is positive, so migration decreases the frequency of resistant hosts since virulent

parasites are entering the population and then susceptible hosts become favored. Note that in this

scenario, as opposed to the case when mP =0, the encounter rate of the parasite does not have a

direct effect on the influence of migration in the allele frequencies (See (8)). However, since Â1 and

Â2 are defined as in the one deme model because the host does not migrate, they depend on ρ. As

it was shown higher encounter rates favor virulent parasites, which means that differences between

Â1 and Â2 could be potentially caused by differences in the encounter rates between the demes.

Differences between Â1 and Â2 can in turn modify the frequency of resistance in each deme through

migration of the parasite according to (8).
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Finally, note that if u∗1 = u∗2 = 0, the encounter rate has no effect on the frequencies of Â1

and Â2. This means that if there is no cost of resistance for the host when the parasite is not

present and the host does not migrate, the encounter rates have no effect on the equilibrium of

both the resistance and virulence alleles in each deme. This result is explained because selection for

virulence is equivalent in a deme with high prevalence than in one with low prevalence as long as

the prevalence does not affect the allelic frequencies in the host. This is the case if u∗1 = u∗2 = 0

because selection in the host is neutral when the parasite is not present, so the encounter rate has

no effect on the frequencies of resistance. Then, if only the parasite migrates, differences in parasite

prevalence in each deme will not affect the equilibrium of the system. Further discussion will be

made about this point, however note that this does not mean that the encounter rate does not have

an effect in the trajectories of the allele frequencies in general but only on the equilibrium point.

See the Appendix for all the calculations.

2.2.2 Stability analysis

The system was analyzed using the Jacobian matrix of each deme. The logit transformations fRi =

log Ri

ri
and fAi = log Ai

ai
were made to simplify the analysis and the discriminant of the characteristic

equation of the Jacobian matrix Ji for each deme was calculated.

The diagonal elements of the Jacobian matrix for deme i are given by (see the appendix for

calculations),

d∆fRi

dfRi
= Riri

(
((1− ui)(1− ρisiai) + (1− ρi)εi)(1−mH)

(1−mH)R̃i +mHR̃j

+
(1− ρisi)(1−mH)

(1−mH)r̃i +mH r̃j

)
− 1 (9)

d∆fAi

dfAi
= Aiai

(
(1− ciRi)(1−mP )

(1−mP )Ãi +mP Ãj

+
(1− bi)(1−mP )

(1−mP )ãi +mP ãj

)
− 1 (10)

After simplifying these expressions it is clear that both differentials are negative as long as there

is migration between both demes and at least some of the costs differ between the demes. These

results were already described in [13], where the authors showed that differences in u, b, s or c have

the potential to generate ndFDS through migration. What our results suggest is that even if all

those costs are equal between both demes, differences only in the parasite prevalence can introduce

ndFDS to the system. This is because even if all the other costs are constant, ρ can introduce

differences in selection for resistance affecting both R̃i and R̃j and in turn, Ai and Aj . Since u∗

can also introduce fitness differences between resistant and susceptible hosts it can also introduce

differences between R̃i and R̃j . The effect of u∗ on stability is lower, however, since its importance
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into the model depends on ρ because this cost only appears if the parasite is not present.

Note that in the case that mP = 0 there is no ndFDS in the parasite but only in the host.

The opposite applies when mH = 0. The equilibrium can be stable, however, since the condition

d∆fRi

dfRi
+ d∆fAi

dfAi
< 0 holds even if ndFDS is introduced in only one species.

We showed that differences in the prevalence of the parasite can introduce ndFDS through

migration. This means that they have the potential to stabilize genetic polymorphism in the long

term. Analytically we could not derive conditions for the stability of the equilibrium (see appendix)

so we will explore the system with simulations.

3 Simulation studies

3.1 Simulation description

So far this model has been explored deterministically in both the one and two deme versions. To

determine the effect of genetic drift and mutation in the context of this model, stochastic simula-

tions were implemented for both scenarios. The additional parameters in these simulations are the

population sizes, NH and NP of both the host and the parasite, and the mutation rates between the

alleles. For all the results that will be shown it is assumed that the size of the parasite population

equals the size of the host population. In the two deme model it is further assumed that the two

demes have the same size.

At the start of each generation the allele frequencies for resistance and virulence, R and a, are

obtained using the recursion equations that were explained before for each of the models (See (1),

(2), (5) and (6)). Then, the number of resistant individuals is sampled from a binomial distribution

with parameters N = NH and p = R and the number of virulent individuals is sampled from a

binomial distribution with parameters N = NP and p = a. In this way genetic drift is introduced

to the model.

Once drift has occurred there is mutation in both the host and the parasite populations. Mutation

occurs in both directions, this is, resistant individuals can become susceptible and vice versa and

virulent individuals can become avirulent and vice versa. All the mutation rates are assumed to

be equal. For the results that will be shown they were set to 1 × 10−5. This corresponds to the

probability per individual per generation of mutating.

After mutation the frequency of resistant and virulence individuals is calculated and a new

generation starts.
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3.1.1 Statistics calculated from the simulations

The statistics presented were calculated in simulations for 10000 generations. Over this period

of time the following statistics were measured to assess the stability properties of the system and

the speed of evolution. Percentage of time in fixation for R, r, A and a, which is the number of

generations when the allele was fixed in the population over the total number of generations. Based

on this measure it is possible to determine parameter regions for which there is stability because

when the equilibrium is stable none of the alleles is fixed. For large population sizes mutation can

avoid complete fixation of one allele even if the equilibrium is unstable, for this reason the percentage

of time when the frequencies were near the boundaries (> 0.95) was also measured for all the alleles.

The speed of evolution was measured by counting the total number of cycles for both the resistance

and virulence allele over time. This was done by fitting a smooth spline curve to the trajectory of

the allele frequencies over time. The function used to fit the spline curve is smooth.spline from the

R package ‘stats’ and the smoothing parameter was 0.15.

Since the starting allele frequencies R0 and A0 can affect the behavior of the system, all the

statistics are averaged over 100 runs where R0 and A0 are sampled from a uniform distribution over

the interval [0.1, 0.5].

3.2 Results

3.2.1 One deme scenario

As it was shown analytically, simulations confirmed that the equilibrium is unstable, so recurrent

fixation of alleles was observed as in the arms race scenario (Figure 1).

High encounter rates favor virulent parasites because they select for resistant hosts. This was

observed in the simulations where the time near fixation (> 0.95) of the virulence allele increased

with the encounter rate (Figure 2). Since resistance hardly gets fixed even if the host encounters the

parasite every generation (unpublished results), the effect of the encounter rate can be seen in the

time near fixation (> 0.95) of the allele for susceptibility. This time decreases with higher encounter

rates which then implies that resistance is favored (Figure 2).

When the prevalence of the parasite is low, the basal cost of resistance u∗ plays a more important

role in the dynamics of the system. Indeed, one of the questions we raised before was if polymorphism

in resistance could be maintained when u∗ = 0 because selection in the host is neutral when the

parasite is not present. If the strength of positive selection acting on the host is weak i.e. when the

parasite has low prevalence, polymorphism in host populations could be maintained by the effect of

12



drift and mutation. This prediction was confirmed in the simulations where stable polymorphism

was observed when u∗ = 0 (Figure 3).

Finally, it has been suggested that in GFG models resistance costs must exist, otherwise all

the individuals would evolve to be resistant and polymorphism in natural populations could not be

explained. We explored the case when the costs are zero, u∗ = u = 0 and we found that for low

parasite prevalence, polymorphism for the host can be stable in time even if there are no costs of

resistance (Figure 4a). This result points again to the balance between neutral and positive selection

in the host which depends on the encounter rate with the parasite. If the host population is frequently

exposed to the parasite, there is strong selection for resistance which eventually gets fixed in the

population (Figure 4b). On the other hand, if the host encounters the parasite sporadically, selection

on resistant hosts will be mainly neutral which then can maintain polymorphism in resistance over

time (Figure 4a). Note that stable polymorphism is only observed in the host population since the

parasite is always virulent.

Speed of evolution: High parasite prevalence speeds up coevolutionary cycles over time (Fig-

ure 5). This was expected since iFDS, which is the main driver of change in allelic frequencies in

this model, occurs only when the parasite encounters the host.

3.2.2 Two deme scenario

As it was already shown analytically, ndFDS can be introduced through migration between demes

with different prevalence of the parasite even when all the other costs are equal. To determine under

which conditions this can stabilize genetic polymorphism we explored the effect of modifying ρ and

u∗ in deme 1, on the stability properties of the system. In deme 2, these parameters were fixed

to ρ = 0.5 and u∗ = 0.05. All the other costs were equal in both demes to u = b = 0.1, s = 0.4

and c = 0.95. This was done for three different migration rates (0.01, 0.05, 0.1) and two different

population sizes (N = 1000, 5000). In most of of the simulations fixation of avirulence and resistance

was not observed (even with low population size), thereafter, we investigate stability properties of

the system based on the alleles for virulence and susceptibility. All the graphs shown are for statistics

measured in deme 1. Since the demes are coupled by migration it is enough to evaluate if there is

stability in only one of them, to asses stability in both.

Stability increases with population size since the times near fixation decrease considerably for

N = 5000 in comparison to N = 1000 (Figure 7). This is consistent with the observation that

genetic drift can pulled frequencies away from the equilibrium even if this is stable. Besides, stability

decreases with higher migration rates, which is expected since the oscillations for the two demes are
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synchronized with high migration. Migration rates under 0.01 were not explored but its effect is

expected to be the opposite, namely, that populations become independent. In both cases the system

behaves as in the one deme scenario which is unstable.

Differences in the prevalence of the parasite can stabilize polymorphism even when u∗ is equal

between the two demes (see Figure 6 and Figure 7, red dotted line). This is an important observation

because even if u∗ is unknown in natural populations a large difference in the parasite prevalence

between demes connected by migration can be enough to stabilize polymorphism. The main reason

why differences in prevalence stabilize polymorphism is because the strength of selection for both

virulence and resistance changes with the parasite encounter rate (Figure 2). Then, migration

between demes with different prevalence can bring the frequencies to intermediate values introducing

ndFDS in the system. The deme with lower parasite prevalence would act as coldspot - where

evolution happens at a lower speed and the effect of iFDS is weak -, while the deme with higher

parasite prevalence would be a hotspot. On the other hand, when ρ is constant differences only in

u∗ can also stabilize polymorphism but to a much lower extent. When ρ is constant, fixation times

can decrease for some values of u∗1 − u∗2 but they are never below 20% (Figure 7, black dotted line).

When both ρ and u∗ differ between demes, stability was mainly found in three regions of the

parameter range (Figure 8): a) ρ1 < ρ2, u
∗
1 > u∗2 which corresponds to the lower right corner of the

parameter space; b) ρ1 < ρ2, u
∗
1 < u∗2, which is the lower left corner; c) ρ1 ≈ 1, ρ1 > ρ2, which is the

upper part. In these three regions, the alleles for virulence and susceptibility are not fixed which

means that there is long term polymorphism of the allele frequencies. The characteristics of the

three regions are discussed next:

a) ρ1 < ρ2, u
∗
1 > u∗2

In this case, there is a low prevalence of the parasite in deme 1 and carrying the allele for resistance

is costly for the host. In deme 2, the conditions are the opposite because there is a higher prevalence

of the parasite and carrying the allele for resistance is not very costly. This generates two opposite

selection pressures in each of the demes: There is strong selection for hosts in deme 1 to become

susceptible and for hosts in deme 2 to become resistant. Migration then maintains polymorphism

because it introduces ndFDS in each deme avoiding fixation of susceptible hosts in deme 1 and

resistant hosts in deme 2. This is the region of the parameter space where there is always stability,

even for low population size and high migration rates (Figure 7).

b) ρ1 < ρ2, u
∗
1 < u∗2

In this case, there is a low prevalence of the parasite in deme 1 but carrying the allele for resistance
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is cheap for the host while in deme 2, the parasite has a high prevalence and carrying resistance is

costly. These conditions generate fitness differences between the host and the parasite populations.

In deme 1, the host population has a higher mean fitness than the parasite population, contrary to

deme 2 where the parasite does best.

c) ρ1 ≈ 1, ρ1 > ρ2

In this case deme 1 behaves as the simple GFG model (parasite encounter rate is assumed to be

one) which selects for virulent parasites and susceptible hosts. Migration from a deme with lower

prevalence of the parasite (where the frequency of avirulence is higher) prevents virulence to be fixed

and favors resistant hosts in deme 1 stabilizing polymorphism.

Determining the biological systems in which each of the scenarios mentioned can occur requires

a better understanding of the genetic system of host populations. Then, it would be possible to

determine whether there is large variation in the basal cost of resistance between populations and

which type of factors (e.g. genetical, ecological) are responsible for this variation.

Speed of evolution: It was found that migration from demes with high prevalence of the parasite

can increase the speed of evolution in demes with low prevalence of the parasite (Figure 9). This is

consistent with the analytical results for the equilibrium frequency that predicted a larger effect of

migration for demes with lower ρ.

4 Discussion

Most of the models [11, 13, 31, 32] in host-parasite coevolution assume that the host is constantly

exposed to the parasite, although there is much empirical evidence showing that this is not the case

in natural populations [17, 18, 19, 22]. Parasite survival, dispersal and transmission are highly

dependent on environmental conditions [14, 15], so infection rates in the host population can be

very small. Indeed, it is not rare that a potential host never encounters a parasite during its lifetime

[16]. When the host is not exposed to the parasite there is no indirect FDS because the fitness of

the host does not depend on the frequency of virulence in the parasite population. For this reason,

the parasite prevalence can have a large effect on the coevolutionary dynamics of host-parasite

interactions.

By accounting for parasite prevalence in the simple GFG model we showed that the parasite

encounter rate affects the strength of selection for resistance and virulence alleles in the host and

parasite populations, respectively. High prevalence of the parasite selects for virulent parasites by
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favoring resistance, while low prevalence of the parasite selects for avirulent parasites by favoring

susceptibility (Figure 2). This is consistent with results of laboratory experiments in plant popu-

lations where resistance was found to be positively correlated with the rate of parasite encounter

[14].

If the rate of parasite encounter is constant in time (as we assume), negative direct FDS is

not introduced in the simple GFG model. This means that if the prevalence of the parasite does

not vary over time, the model predicts an arms race scenario where there is recurrent fixation of

alleles in both the parasite and the host (Figure 1). Theoretical models have shown that temporal

variation of selection coefficients due to changes in the environment can increase stability of genetic

polymorphism in a single population [33]. Since temporal variability in the parasite encounter rate

is a common feature of natural populations [15], we suggest that exploring the stability properties of

a single population model with heterogeneity in parasite prevalence over time is an important topic

for further research.

4.1 Statistical polymorphism in resistance in a single population

Genetic polymorphism can be maintained in the absence of ndFDS, however, if there is weak selection

for resistance in the host and genetic drift has a large effect [3]. This is known as “statistical

polymorphism” and can emerge in multilocus GFG systems where there are no costs of resistance

or virulence [34], or where there are epistatic interactions between loci associated with the costs

[38]. Ecological factors such as spatial heterogeneity and the existence of pacemaker demes can also

account for the existence of this type of polymorphism [13, 32, 37].

Here, we proposed a simpler scenario where statistical polymorphism can occur in a single popu-

lation with one locus. This corresponds to a population where the parasite is in low prevalence and

the cost of basal resistance is zero. In this scenario, selection does not occur in the host population

when the parasite is absent because carrying the resistance allele has no cost, so susceptible and

resistant hosts have the same fitness. Since the parasite is in low prevalence, the effect of neu-

tral selection in the host is higher than the effect of positive selection for resistance and genetic

polymorphism can be maintained over time by drift and mutation (Figure 3).

Studies in plant-pathogen systems have found that there are high levels of resistance in pop-

ulations that have not been exposed to the parasite for many generations [22]. These results are

consistent with the scenario proposed before because if carrying resistance genes would be costly,

resistant individuals would be eliminated by natural selection in the absence of the parasite. Finally,
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note that this does not imply that the cost of expression is also zero. For this reason we suggest that

more empirical studies should be done to measure separately the cost of carrying and expressing

resistance genes.

4.2 Spatial heterogeneity in parasite prevalence

Spatial heterogeneity has been recognized as an important mechanism for stabilizing genetic poly-

morphism in host-parasite interactions [3, 13, 32]. Selection pressures acting on host and parasite

populations can change between populations with different environments which has the potential

of introducing ndFDS through migration. Heterogeneity has been mainly studied in the context of

variation in costs, with models accounting for differences in the cost of being diseased [32], and in

the costs of resistance and virulence between demes [13].

Our results suggest an alternative scenario that does not require differences in the costs between

populations, which are in general hard to prove in nature [35]. We showed that even if all the costs are

equal between demes, heterogeneity in parasite prevalence can introduce ndFDS through migration.

This has the potential of generating long-term balanced genetic polymorphism if the differences in

prevalence are large enough between the populations (Figure 6 and see Figure 7, red dotted line). If

polymorphism is maintained, variation of allele frequencies over time would be consistent with the

trench warfare model of evolution. This result implies that even if the costs of resistance, virulence

or disease are unknown in a natural system, only large heterogeneity in the prevalence of the parasite

would be enough to stabilize genetic polymorphism.

Large differences in parasite prevalence are plausible in natural populations connected by migra-

tion. In fact, spatial variation in parasite prevalence has been observed at a regional scale [15, 19, 36]

and even at smaller scales for neighboring plant populations [14]. This has been explained because

the prevalence of the parasite, at least in plant-pathogen systems, can be very sensitive to microcli-

matic conditions [14]. In the case of species that perform long migrations, variation in the parasite

encounter rate between sites can also be common. For instance, in birds, it has been found that

diversity and abundance of blood parasites is higher in migrant than non-migrant individuals [5].

If spatial heterogeneity in the costs could be demonstrated in natural populations, considering the

prevalence of the parasite would be still important. As it was shown for the cost of basal resistance,

if both u∗ and the encounter rate differ between populations, stability of genetic polymorphism can

be achieved in a larger area of the parameter space compared to the case when only one of the two

changes (Figure 7 and Figure 8). Some preliminary simulations showed that this is also the case for
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coupled variation of the encounter rate and the costs u, s, b and c.

4.3 Speed of evolution

The speed of evolution in host-parasite systems has raised some attention because it could be useful

to distinguish between contrasting evolutionary scenarios in natural populations. Indeed, it has

been proposed that coevolution in the trench warfare scenario is in general faster than in the arms

race model [39]. What our results suggest is that one additional factor that should be taken in

consideration when studying the speed of evolution in natural populations is the prevalence of the

parasite in the population. Here, we showed that parasite encounter rate has a large effect on the

speed of evolution in a GFG model. Higher prevalence of the parasite speeds up coevolutionary

cycles even when all the other parameters are constant (Figure 5), due to the effect of iFDS which

is not present when the host does not encounter the parasite. Since variation in parasite prevalence

is common in the wild [14, 15, 19, 22, 36], parasite encounter rates are likely to have an important

effect on the speed of evolution observed in natural populations.

In terms of the speed of evolution in spatial heterogenous landscapes, our results showed that

migration from demes with high prevalence of the parasite, increased the speed of evolution in demes

with low prevalence (Figure 9). This is consistent with experimental studies of the effect of migra-

tion between demes with different strength of selection in bacteria populations [21, 20]. There, it

was shown that the speed of evolution in coldspots (demes where reciprocal selection is weak) can

increase through migration from hotspots (demes where reciprocal selection is strong). This pattern

has also been predicted by theoretical models on coevolution in heterogeneous landscapes [23, 40].

In our model hotspots would correspond to demes with high parasite prevalence, and coldspots to

demes with low prevalence.

In conclusion, accounting for parasite prevalence in the simple GFG model can stabilize genetic

polymorphism. We showed that “statistical polymorphism” is observed when the cost of resistance

in the absence of the parasite is zero in a single population. In the case of spatially structured popu-

lations, differences in parasite prevalence between demes can stabilize polymorphism by introducing

ndFDS through migration. Further empirical studies should be done to determine how selection

in the host population operates when the parasite is not present and which conditions can account

for spatiotemporal variation of the parasite encounter rate. Parasite prevalence is a factor that can

influence the stability and the general dynamics of host-parasite interactions as it was shown in
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this work. For this reason, it should not be ignored when studying host-parasite coevolution both

theoretically and in natural populations.
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5 Figures and tables

Table 1: Fitness of hosts and parasites for this model. When the host encounters the parasite, which
happens with probability ρ, the model corresponds to the simple GFG model. When the host does
not encounter the parasite, the fitness of both species is independent of the frequencies in the other
species. It is assumed that if the parasite does not encounter the host, it has fitness zero. na stands
for not applicable (because there is no encounter of both species).

Genotypes (frequency) Fitness

Parasite encounter Host Parasite Host Parasite
RES (Rg) AVR (Ag) 1− u 1− c

ρ avr (ag) (1− u)(1− s) 1− b
res (rg) AVR (Ag) 1− s 1

avr (ag) 1− s 1− b
RES (Rg) 1− u∗ na

1− ρ res (rg) 1 na
AVR (Ag)/avr (ag) na 0

Figure 1: Phase plot of the frequencies of virulence and resistance. The blue triangle indicates the
starting allele frequencies (R0,a0) and the red square corresponds to the equilibrium frequencies
(R̂,â). The equilibrium is unstable so recurrent fixation of alleles is observed. The parameters are
N=10000, ρ = 0.7, u∗ = 0.01 u = b = 0.1, s = 0.4, c = 0.95.
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Figure 2: Effect of the parasite encounter rate in the fixation time of the alleles for susceptibility and
virulence. The mean and standard deviation were calculated over 100 runs with the same parameters
but different initial allele frequencies. The other parameters were set to N = 1000, u∗ = 0.05, u =
b = 0.1, s = 0.4, c = 0.95.

Figure 3: Polymorphism of the allele for resistance in the host population when there is low preva-
lence of the parasite and the basal cost of resistance is zero (ρ = 0.2, u∗ = 0). Since selec-
tion in the host does not occur when the parasite is absent, most of the change in the frequen-
cies of resistance is driven by drift and mutation. The other parameters were fixed to N=10000,
u = b = 0.1, s = 0.4, c = 0.95.
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(a) Low parasite prevalence, ρ = 0.2 (b) High parasite prevalence, ρ = 1

Figure 4: Low prevalence of the parasite can maintain the polymorphism in the host even when
there is no cost associated to resistance u∗ = u = 0. Otherwise, if the prevalence is high, resistance
becomes fixed in the host population. Note that virulence is always fixed in the parasite population.
The parameters used were N = 10000, b = 0.1, s = 0.4, c = 0.95.
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(a)

(b) Low parasite prevalence, ρ = 0.2 (c) High parasite prevalence, ρ = 0.8

Figure 5: The number of cycles of the allele frequencies increases when the prevalence of the parasite
is higher (a). Then, the parasite prevalence speeds up co-evolution. For instance, in b) there
is low prevalence of the parasite, while in c) the prevalence is high. In figure a), the mean and
standard deviation were calculated over 100 runs with the same parameters but different initial allele
frequencies. All the other parameters were set to N=10000, u∗ = 0.01 u = b = 0.1, s = 0.4, c = 0.95
in the three figures.
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(a) Parasite prevalence, ρ1 = 0.4 (b) Parasite prevalence, ρ2 = 0.8

Figure 6: Example of a scenario where only differences in parasite prevalence stabilize genetic
polymorphism. In deme 1 prevalence is ρ1 = 0.4 and in deme 2 prevalence is ρ2 = 0.8. Migration
rates are mH = mP = 0.01 All the other parameters are equal to N=10000, u∗ = 0.01 u = b =
0.1, s = 0.4, c = 0.95 in both demes.
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(a) N=1000

(b) N=5000

Figure 7: Effect of the magnitude of differences in parasite prevalence (ρ1- ρ2) and cost of basal
resistance (u∗1 − u∗2) on the stability of genetic polymorphism. N = 1000 in the first figure and
N = 5000 in the second figure. The percentage of time above 0.95 is plotted when N = 5000 because
due to mutation (Nµ) alleles are hardly fixed even if the equilibrium is unstable (as opposed to when
N=1000 where the mutational input is lower and complete fixation is observed). Low, medium and
high migration rates correspond to 0.01, 0.05 and 0.1 respectively (mH = mP ). The red dotted
line indicates the case where only the parasite encounter rate differs between demes. The black
dotted line indicates the case where only the basal cost of resistance, u∗ differs between demes. The
parameters in deme 2 are fixed to ρ2 = 0.5, u∗2 = 0.05 so only ρ1 and u∗1 change. All the values
correspond to the mean over 100 runs with the same parameter combination but different initial allele
frequencies. The other parameters are equal between demes and fixed to u1 = u2 = b1 = b2 = 0.1
s1 = s2 = 0.4, c1 = c2 = 0.95.
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Figure 8: Regions where stability increases when both ρ and u∗ differ between the populations. a)
ρ1 < ρ2, u

∗
1 > u∗2, b) ρ1 < ρ2, u

∗
1 < u∗2 and c) ρ1 ≈ 1, ρ1 > ρ2.

(a) Single population, ρ = 0.2 (b) Same population with migration from a hotspot where
ρ = 0.8

Figure 9: In the single population (graph a) the prevalence of the parasite is low (ρ = 0.2) so
reciprocal selection is weak and the deme behaves as a coldspot. When this deme receives migration
from a hotspot (ρ = 0.8) the speed of evolution increases with respect to the case without migration
(graph a). In both the hotspot and coldspot, N = 10000, u∗ = 0.01, u = b = 0.1, s = 0.4, c = 0.95.
Migration rates are mH = mP = 0.01.
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6 Appendix: Analytical calculations

6.1 Stability analysis for the one deme model

The recurrence equations are,

Host

Rg+1

rg+1
=
Rg

rg

(
ρ(1− u)(1− s+ sAg) + (1− ρ)(1− u∗)

1− ρs

)
(11)

Parasite

Ag+1

ag+1
=
Ag

ag

(
1− cRg

1− b

)
(12)

The dynamics of the system was analyzed using its Jacobian matrix. The following logit trans-

formations were made:

fR = log
Rg

rg
and fA = log

Ag

ag

Then, the system can be written as,

∆fR = fR+1 − fR

= log
Rg+1

1−Rg+1
− log

Rg

1−Rg

= log
Rg+1rg
Rgrg+1

= log(ρ(1− u)(1− s+ sAg) + (1− ρ)(1− u∗))− log(1− ρs)

∆fA = fA+1 − fA

= log
Ag+1

1−Ag+1
− log

Ag

1−Ag

= log(1− cRg)− log(1− b)

From the definition of fA and fR it follows that,

dR

dfR
= Rgrg

dA

dfA
= Agag
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Using the chain rule, the coefficients of the Jacobian matrix are calculated as follows:

d∆fR
dfR

=
d∆fR
dR

dR

dfR
= 0

d∆fR
dfA

=
d∆fR
dA

dA

dfA
=

Agag(1− u)ρs

ρ(1− u)(1− s+ sAg) + (1− ρ)(1− u∗)
d∆fA
dfR

=
d∆fA
dR

dR

dfR
= −cRg(1−Rg)

1− cRg

d∆fA
dfA

=
d∆fA
dA

dA

dfA
= 0

First, note that this model does not introduce direct-frequency dependence since d∆fR/dfR =

d∆fA/dfA = 0. The discriminant of the characteristic equation of the matrix near the equilibrium

is:

QA = 4

(
Âg(1− Âg)(1− u)ρs

(1− u)(1− ρs+ ρsÂg) + (1− ρ)ε

)(
−cR̂g(1− R̂g)

1− cR̂g

)

= −4

(
(ρs− u+ ε(1− ρ))(u(1− ρs)− ε(1− ρ))

ρs(1− u)(1− ρs)

)(
b(c− b)
c(1− b)

)
(13)

If u∗+ρε < ρs, which is equivalent to the condition s < u in the simple GFG model, the expression

(ρs− u+ ε(1− ρ)), in the first term of (13) is positive and QA < 0. Note that (u(1− ρs)− ε(1− ρ))

is positive if all the costs are assumed to be less than 1 since u > ε and 1 − ρs > 1 − ρ. The

second term in (13) is also positive because the costs are less than 1 and also because c > b which is

necessary for virulence to evolve in the first place. Since the diagonal elements of JA are zero, and

both eigenvalues are complex with no real parts the internal equilibrium is unstable.

6.2 Calculation of the equilibrium for the two deme model

a) mP = 0

Replacing mP =0 in (6), A′1 = Ã1 and A′2 = Ã2. This is, the frequencies in the next generation for

the parasite population are equal to the frequencies after selection because the parasite does not

migrate. Since the allelic frequencies in one species determine the equilibrium in the other species,

R̂i for both demes is independent of the migration rate and corresponds to the value in the simple

one deme model. Then,

R̂1 =
b1
c1

and R̂2 =
b2
c2
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At the equilibrium for Ri (See (5)),

R̂i

1− R̂i

=
(1−mH)R̃i +mHR̃j

(1−mH))(1− R̃j) +mH(1− R̃j)

where,

R̃i = R̂i((1− ui)(1− ρisi + ρ1siÂi) + (1− ρi)εi)

r̃i = r̂i(1− ρisi)

Âi can be obtained from the previous equation, since it appears in the term for R̃i. After simplifying

and reorganizing the equation, we obtained,

Âi =
ui(1− ρisi)− εi(1− ρi)

(1− ui)ρisi
+

mH

(1−mH)

1

(1− ui)ρisi

(
r̂j
r̂i

(1− ρjsj)−
R̂j

R̂i

((1− uj)(1− ρjsj + ρjsjÂj) + (1− ρj)εj)

)

Note that the first term corresponds to the equilibrium calculated for the one deme model (See

the expression for the equilibrium in section 2.1.1). We will call this term Âod
i .

a) mH = 0

Replacing mH=0 in (5), R′1 = R̃1 and R′2 = R̃2. This is, the frequencies in the next generation for

the host population are equal to the frequencies after selection because the host does not migrate.

Since the allelic frequencies in one species determine the equilibrium in the other species, Âi for both

demes is independent of the migration rate and corresponds to the value in the simple one deme

model. Then,

Âi =
ui(1− ρisi)− εi(1− ρi)

ρisi(1− ui)
and Âj =

uj(1− ρjsj)− εj(1− ρj)
ρjsj(1− uj)

At the equilibrium for Ai (See (6)),

Âi

1− Âi

=
(1−mP )Ãi +mP Ãj

(1−mP )(1− Ãj) +mP (1− Ãj)

where,
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Ãi = Âi(1− ciR̂i)

ãi = âi(1− bi)

R̂i can be obtained from the previous equation, since it appears in the term for Ãi. After simplifying

and reorganizing the equation, we obtained,

R̂i =
bi
ci
− mP

(1−mP )

1

ci

(
âj
âi

(1− bj)−
Âj

Âi

(1− cjR̂j)

)

The first term corresponds to the equilibrium calculated for the one deme model (See (3)). We

will call this term R̂od
i .

6.3 Stability analysis for the two deme model

The recurrence equations are,

Host

R′i
r′i

=
(1−mH)R̃i +mHR̃j

(1−mH)r̃i +mH r̃j
(14)

Parasite

A′i
a′i

=
(1−mP )Ãi +mP Ãj

(1−mP )ãi +mP ãj
(15)

where,

R̃i = Ri((1− ui)(1− ρisi + ρisiAi) + (1− ρi)εi)

r̃i = ri(1− ρisi)

Ãi = Ai(1− ciRi)

ãi = ai(1− bi)

The following transformations were made to simplify the calculations,

fRi = log
Ri

ri
and fAi = log

Ai

ai
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Then the changes of fRi and fAi are,

∆fRi = fR′i − fRi

= log((1−mH)R̃i +mHR̃j)− log((1−mH)r̃i +mH r̃j)− fRi

∆fAi = fA′i − fAi

= log((1−mP )Ãi +mP Ãj)− log((1−mP )ãi +mP ãj)− fAi

From the definition of fAi and fRi it follows that,

dRi

dfRi
= Riri

dAi

dfAi
= Aiai

The diagonal elements of the Jacobian matrix for deme i are:

d∆fRi

dfRi
=
d∆fRi

dRi

dRi

dfRi

= Riri

(
((1− ui)(1− ρisiai) + (1− ρi)εi)(1−mH)

(1−mH)R̃i +mHR̃j

+
(1− ρisi)(1−mH)

(1−mH)r̃i +mH r̃j

)
− 1

This can be simplified as,

d∆fRi

dfRi
= − R̃iRi(1−mH)r̃jmH + r̃iri(1−mH)R̃jmH + R̃j r̃jm

2
H

((1−mH)R̃i +mHR̃j)((1−mH)r̃i +mH r̃j)

If mH 6= 0, d∆fRi

dfRi
6= 0 because R̃i, r̃i, R̃j , r̃i ≥ 0 and R̃i + r̃i = 1, R̃j + r̃j = 1. Indeed, the sum of

the terms in the numerator is positive, which means that the expression is negative (because of the

minus sign) and there is ndFDS.

d∆fAi

dfAi
=
d∆fAi

dAi

dAi

dfAi

= Aiai

(
(1− ciRi)(1−mP )

(1−mP )Ãi +mP Ãj

+
(1− bi)(1−mP )

(1−mP )ãi +mP ãj

)
− 1

This can be simplified as,

d∆fAi

dfAi
= − ÃiAi(1−mP )ãjmP + ãiai(1−mP )ÃjmP + Ãj ãjm

2
P

((1−mP )Ãi +mP Ãj)((1−mP )ãi +mP ãj)
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If mP 6= 0, d∆fAi

dfAi
6= 0 because Ãi, ãi, Ãj , ãi ≥ 0 and Ãi + ãi = 1, Ãj + ãj = 1. Indeed, the expression

is negative so there is ndFDS.

The previous analysis shows that is possible to introduce ndFDS through migration between

demes that have different coefficients of selection. To determine if the equilibrium is stable it is

necessary to determine the terms outside the diagonal of the Jacobian matrix. These are given by,

d∆fRi

dfAi
=
d∆fRi

dAi

dAi

dfAi
= Aiai

(
Riρisi(1− ui)(1−mH)

(1−mH)R̃i +mHR̃j

)

d∆fAi

dfRi
=
d∆fAi

dR

dRi

dfRi
= Riri

(
−ciAi(1−mP )

(1−mP )Ãi +mP Ãj

)

The discriminant of the Jacobian matrix can be approximated near the equilibrium point by,

Qi =

(
d∆fRi

dfRi
− d∆fAi

dfAi

)2

+ 4

(
d∆fRi

dfAi

)(
d∆fAi

dfRi

)

However, we could not derive analytically conditions for the stability of the equilibrium point so we

explored the system by simulations.
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