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Summary

The circuit approach of the cochlea model written out by van den Raadt has been recon-
sidered to extend the circuit for the middle ear. The middle ear model of O’Connor and
Puria has been coupled and the equations of motion are derived in the same structure.
Differences in model elements of the middle ear cause singularities which prohibit the
original explicit time integration to solve the equations of motion. Inspired by equiva-
lent problems in fluid mechanics, an implicit time integration method has been chosen
that resolves the problem of singularity. The original cochlea model has been rewritten
in implicit structure and verified with results from the explicit version of INCAS3. The
middle ear model is built with an implicit time integration and verified with results from
O’Connor and Puria. After coupling of the two model parts, simulations are made to
study the effect of the new model and a nonlinear damping function is implemented to
show the capabilities to simulate active behaviour of the cochlea considering future re-
search on otoacoustic emissions.
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Chapter 1

Introduction

The knowledge of the human inner ear, the cochlea, has been developing for over several
centuries. In the 1980s, modeling techniques and tools started to evolve and problems
started to leave the biological sense and stretch towards the field of mechanics. By ob-
serving the cochlear mechanics in great detail one could say that it is an outstanding piece
of engineering by the human body with complex functionalities that are responsible for
digesting sound from the environment. To develop a model describing the complexities
of cochlear mechanics, the departments of Biophysics and Applied Mathematics of the
University of Groningen cooperated in the development of a numerical model, the cochlea
model described in van den Raadt [4] and Duifhuis [5]. The Institute for Control Systems
and Sensor Systems (INCAS3) in Assen, the Netherlands is in possession of a cochlea
model and performs research on the improvement. This thesis is inpsired by the research
ideas at INCAS3.

One of the most fascinating features of the cochlea is its ability to produce emissions of
sound. Using common sense, we would consider the cochlea as a passive device recording
emissions from the environment and reporting its analysis to the brain. Deeper research
however, shows that the cochlea also has an active part that allows the cochlea to pro-
duce an emission as a response to an external emission and surprisingly also spontaneous.
These emissions are called (spontaneous) otoacoustic emissions. Since otoacoustic emis-
sions are produced within the cochlea itself, they provide an objective method to test the
cochlea in hearing screenings [12].

Otoacoustic emission measurements can be performed by placing a microphone and re-
ceiver in the earcanal. The receiver produces acoustic stimuli and the microphone receives
the response out of the cochlea. Placing it in the ear canal reduces many environmental
influences but we cannot get closer to the cochlea and we will always have to deal with
the effect of the middle ear. In the existing cochlea model, the middle ear model is a
crude simplification and there is much space for improvement. Moreover, the otoacoustic
emissions are of very low amplitude so every form of noise from the environment should
be lowered to the minimum to recognize the active behaviour of the cochlea. Therefore,
a proper model of the middle ear is necessary.

A more detailed model, in an analagous modeling structure as the cochlea model, has
been presented recently by O’Connor and Puria [1] and matches experimental data quite
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2 CHAPTER 1. INTRODUCTION

well. The goal for this thesis is to link the new middle ear model to the cochlea model.
The coupling must not affect the capabilities of the present model in simulating active
behaviour of the cochlea in the aim of studying otoacoustic emissions. Therefore, after
coupling, the model should be verified extensively with results achieved before. Eventu-
ally, a more detailed middle ear model would improve our knowledge of the behaviour of
the human ear and contribute in many audiological applications.

Section 2 presents an overview of the physiology of the human ear to build up some
terminology and explains the functioning of the cochlea qualitatively. This is followed
by the derivation of the cochlea model and the method to solve the model equations in
section 3. The middle ear model is coupled in section 4 and we encounter problem of the
time integration of the new model equations. An implicit time integration method instead
of an explicit one is presented for the cochlea and middle ear, which solves the problem
of solving the model equations. Finally, section 5 presents results of the validation with
the middle ear model of [1] and simulations in detecting active behaviour of the cochlea.



Chapter 2

Anatomy and function of the
human ear

We start with providing some pictures and terminology to just get a feeling of the en-
vironment we will study. The functionality of the cochlea is described qualitatively and
we distinguish the essential elements we have to study in more detail to come up with
a mathematical model. Also some medical applications are presented to support the
importance of a suitable cochlea model.

2.1 Anatomy

The main function of the human ear is receiving sound waves and report to the brains
what it is perceiving. A good way to study the anatomy and functionality of the human
ear is just to follow an incoming sound wave on its way through the complex structures
of the ear. An overview of the basic elements of the ear is given in figure 2.1 and will be
used as reference for terminology.

A sound wave enters the ear at the auditory canal, or simply ear canal, where it has to
pass through the ear drum. Probably this is the point where the knowledge on ears of an
average person ends and where we will continue. The ear drum is the separation of the
region called the outer ear with the middle ear (ME). It is set in motion by the incoming
sound wave due to pressure change in the air. The ear drum is attached to a chain of
ossicles called malleus, incus and stapes. The translation from Latin is hammer, anvil and
stirrup, respectively. Their names can be deduced from the figure with a little creativity.
The displacement of the ear drum is mechanically transported by the chain of ossicles
to end at the stapes. This ossicle is connected to the right with the oval window (OW)
which is the border of the ME with the inner ear. The most important part of the inner
ear and for hearing, is the cochlea, a tube filled with fluid which is coiled in the shape of
a snail shell. The beginning at the OW is called the base and the end the apex which lie
approximately 35 mm from each other. The cochlea is responsible for the translation of
mechanical processes to electrical signals through its connection with the nerves. So how
does this translation work?

The cochlear tube is further specified in figure 2.2. In this cross section of the tube
we see that it is divided in three chambers; the scala vestibuli (SV), the scala media

3



4 CHAPTER 2. ANATOMY AND FUNCTION OF THE HUMAN EAR

Figure 2.1: Anatomy of the human ear

(SM) and the scala tympani (ST). The SV and ST are filled with perilymph, the cochlear
fluid, and are separated by the SM. However, at the apex, there is a small hole called the
helicotrema where fluid flow between the SV and ST is possible. The SM is filled with
fluid called endolymph and together with Reissner’s membrane and the basilar membrane
(BM) it forms the cochlear partition (CP).

Within the CP we have the Organ of Corti where the hair cells are situated. The bundles
of hair cells are covered by the tectorial membrane and are responsible for reading the
mechanics and passing the information to the nerves. The interaction of the tectorial
membrane, the Organ of Corti and the hair cells is a very complex process which will
not be studied in more detail. It is assumed that the SM and the other elements in the
CP do not affect the mechanics of the cochlea. The main lesson is to treat the CP as a
membrane containing hair cells and separating the SV from the ST.

2.2 Functionality of the cochlea

The oval window (OW) transports the mechanical energy from the ME ossicles into the
SV. The ST has a round window (RW) located at the entrance of the cochlea. The trans-
port of energy causes pressure change within the fluid chambers initiating displacement
of the CP. So how is the cochlea capable of identifying sound and translating this into
electric signals?

It was already mentioned that the fabrics responsible for this process are the hair cells.
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Figure 2.2: Cross section of the cochlear tube

There are two types of hair cells; the inner hair cells (IHCs) and outer hair cells (OHCs).
The hair cells are covered by the tectorial membrane. Changes in fluid pressure in the
SV and ST cause the elements in the CP to move and therefore the IHCs. Stimulation
of a bundle generates a potential which leads to an electric signal in the underlying nerve
cell. Via the auditory nerves this is transported to the brain. The OHCs have a differ-
ent, more undiscovered function. Fact is that OHCs contribute to the functioning of the
cochlea. OHCs are able to change length when a pressure or electric field is varied, this
is called motility. This motility has a relation with the property of the cochlea to damp
high levels of sound to protect itself and reversely amplify low levels of sound to make
them detectable. However, the mechanics behind this process is not clear [2] and these
are details that do not have to be considered for the micromechanics of the CP.

The mechanical parameters (mass, damping and stiffness) of the CP vary along the length
of the cochlea. A stimulus that travels along the CP causes the membrane to resonate
at a certain point. This is called the characteristic place regarding this frequency. Here,
the displacement of the membrane will be at its maximum. The connecting IHCs will be
triggered and send a nerve signal to the brains reporting that the frequency belonging to
this characteristic place has been sensed. Throughout the cochlea every frequency (within
the human aural range) has a characteristic place. This is called the frequency-place map.
High frequencies at the base and low frequencies at the apex. The relation between the
frequency f and place x is nonlinear. This has to do with the aforementioned property to
deal with a broad range of amplitudes and frequencies. A visualization of the resonance
process of the CP is given in figure 2.3.

2.3 Why study the cochlea?

The functioning of the cochlea is explained very briefly. We can build on this knowledge
to derive a quantitative model. But, besides our natural curiosity, why would we develop
a so called cochlea model? There are some nice industrial applications which benefit
from a quantitative understanding of the cochlea which we will study briefly but the main
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Figure 2.3: The cochlea represented as a tube with fluid and the CP as a membrane.
When a pure tone finds its way through the cochlea, the membrane will resonate at the
characteristic place giving maximum amplitude.

application area is in improving diagnostics and revalidation for the hearing impaired.

2.3.1 Otoacoustic emissions

One of the most interesting features of the cochlea is that it is able to produce sound
and send this to the outside world. These self generated sounds are called otoacoustic
emissions (OAEs). OAEs are generated as a response to an incoming stimulus. However,
it is even possible to measure emissions without an evoking stimulus. This subgroup of
OAEs is called spontaneous otoacoustic emissions (SOAEs) and hence these emissions oc-
cur spontaneously. One should realize that these emissions are only detectable by highly
sensitive microphones plugged into the ear canal with not even the smallest bit of noise
from the environment.

The clinical application of OAEs is that such emissions can indicate whether a cochlea is
healthy or not. If we present a stimulus to a patient and measure the evoked OAE we
can compare the result with OAEs from a healthy cochlea. This gives us an objective
testing method to determine whether the patient has a hearing deficit, specifically in the
cochlea. At the moment the only alternative is just asking whether a patient hears a
specific stimulus. A disadvantage of this test is the level of subjectivity and we depend
on the assessment skills of the patients. Moreover, we cannot distinguish whether the
hearing deficit lies in the cochlea or somewhere else in the hearing system. With regard
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to the subjectivity problem, infants are not capable of answering these questions. An
objective testing method allows us to diagnose hearing deficits at a very young age and
start necessary procedures earlier. Having a good understanding of cochlear mechanics is
essential for developing such a method.

2.3.2 Cochlear implants

A cochlear implant is an artificial cochlea for humans who do not possess a functional
cochlea themselves. A microphone is placed at the outside of the skull and an implant
transforms the incoming sound to electric signals which are sent to the auditory nerve
through an electrode, see figure 2.4.

Figure 2.4: Figure of a human ear where a cochlear implant has been placed

The implant needs to imitate the function of the cochlea which is a very complex process.
The healthy cochlea is able to distinguish around ten thousand frequencies. A performance
that is not feasible for an artificial cochlea with the current surgical techniques delivering
such high resolution signals electrically to the cochlear nerve. However, with a set of a few
electrode contacts at essential frequencies, completely deaf patients are able to perceive
and learn speech to an acceptable level, young children in particular. To develop and
improve this device, a reliable cochlea model would be very useful. Future improvements
could lead to the ability for deaf patients to perceive sound better, for instance music
which is not possible so far, and improve life quality.

2.3.3 Sensor development

A good example of research where the cochlea model is applied is the field of sensor
systems. Basically, a sensor can be seen as a device which measures a certain physical
quantity. The coupled system analyzes the measurement and outputs a signal to the
environment. These signal data assist the environment in taking decisions. For example,
when a person perceives the sound of an approaching car, the cochlea system identifies
the frequencies and amplitudes belonging to sound of an approaching car and sends this
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information to the brains. By experience from previous situations, the human brain
decides whether danger is on the lurk and takes action. How do we develop a sensor
system that warns a deaf person to step away from the road? Can we use sound to
determine whether a patient is in need of help if the person is physically not able to
press a button? How to classify sound with such a precision that situations that require
action and dangerless situations are distinguished well? These kind of questions can be
answered basically by understanding and imitating the perceivement skills of the human
body. From the perspective of sound, the development and improvement of the cochlea
model is essential to develop software for sensor systems.



Chapter 3

Cochlear Modeling

In the following chapter we use the anatomical knowledge of the cochlea to set up a
mathematical model. The construction of such a model requires a lot of assumptions
which could lead to a model that does not represent nature anymore. In making each
assumption, we should be very careful in the trade-off between the representation of a
natural cochlea and being able to cope with the mathematics and solvability of the model.
We will describe the one-dimensional cochlea model as presented by van der Raadt in [4].

3.1 Assumptions

First it is necessary to describe how we come from the anatomical description of the
cochlea to a one-dimensional model still containing the essential mechanics of the cochlea.
Therefore, we make a list of assumptions specified in [2].

• The ear is placed in an infinite space containing only air. There are no external in-
fluences from outside the ear except for the mechanical properties of the surrounding
air.

• The existence of the ear canal is neglected.

• For now, the ME is treated as a mechanical bandpass filter which transforms incom-
ing displacement and pressure difference in air to that in the cochlear fluid through
an impedance match. Later in this thesis we study the modeling of the ME in more
detail.

• The cochlear windows (the OW and RW) are assumed to be open and have no
mechanical properties influencing the incoming signal. Of course , these windows
might have these properties because they are an existing piece of tissue in the ear.
We assume that properties of the OW are incorporated in the ME. For the RW this
is not possible but we neglect its influence until this is proven wrong.

• As described earlier, the cochlea is a rolled circular tube decreasing in diameter. For
modeling purposes we roll out this tube and assume the shape to be rectangular and
constant in cross-section. It is shown that these assumptions do not cause a lot of
loss in accuracy [2]. Furthermore, we are only interested in the longitudinal direction
of the cochlea which rectifies the assumption for the rectangular cross-section.

9



10 CHAPTER 3. COCHLEAR MODELING

• The cochlear fluid is assumed to be uniform: there is no difference in concentration
or chemical composition of the fluid throughout the cochlea.

• The fluid is incompressible, linear and inviscid: the density of the fluid is constant
and there are no transport phenomena like resistance, turbulence or stress.

• The CP is treated as only the basilar membrane so mechanics due to Reissner’s
membrane, the Organ of Corti and the SM are neglected. The BM is a row of
unconnected segments coupled through interaction through the surrounding fluid.

So what is now left at the end of all our assumptions? The geometry of the cochlea
model we are going to work with is given in figure 3.1. It is now time te define variables,
parameters and mechanical equations to set up a mathematical model for the cochlea.

Figure 3.1: Geometry of the cochlea

3.2 A one-dimensional model

As described above, the cochlea is modeled as a straight, two chambered box as suggested
by Viergever [6] given in figure 3.1. The upper chamber represents the SV and the lower
the ST separated by the CP. The walls of both chambers are rigid at each side except
at the OW and RW where the ME performs a transition from fluid to the outside air.
Of course the CP is also not rigid and can displace due to pressure differences and fluid
displacement. The longitudinal direction lies along the x-axis with the ME at x = 0. The
apex is the helicotrema at x = L, which is the length of the cochlea. Throughout the
whole length it is assumed that the width (the y-direction) of the CP is b, a constant
independent of x. The height (the z-direction) of the SV and ST are assumed equal and
constant h with the CP at z = 0.
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We are interested in the way the cochlea responds on an incoming stimulus. When a
stimulus enters the SV at the OW two phenomena occur.

• Fluid will displace because of the pressure difference initiated by the stimulus

• Displacement in the cochlear fluid yields a pressure difference in the fluid that causes
the CP to move.

The goal is to model this mechanical behaviour and solve variables like the velocity and
pressure in the fluid and the displacement of the CP.

Start with the first phenomenon, the flow of cochlear fluid. As usually in problems in
Computational Fluid Dynamics (CFD) conservation laws are derived. Since we work to-
wards a one-dimensional model we are only interested in the x-direction. Consider figure
3.1 and take a slice of the SV and the ST with thickness ∆X, see figure 3.2.

Figure 3.2: A slice of width ∆X with a visualization of the transpartition velocity w and
volume flux qv and qt

The cross sectional area of both chambers is Av = bh. We represent the flow with the
flux q; the amount of volume that has been transported per second through a surface
(the cross-sectional area), hence the unit of flux is m3

s . Consider a flux qv through a slice
of the SV. Then the difference of the fluxes at both ends is the transpartition velocity ,
the velocity which the CP is moving in the y-direction, represented by an average point
velocity w(x, t). Conservation of mass gives us:

w(x, t)b∆X = qv(x+ ∆X, t)− qv(x, t) (3.1)

Divide both sides by ∆X and let ∆X → 0 and we find:

w(x, t)b =
∂qv(x, t)

∂x
= Av

∂uv(x, t)

∂x
(3.2)

We assume that uv is small and hence in the conservation of momentum (the Euler
equation) in x-direction the convective term disappears:

∂uv
∂t

+ uv
∂uv
∂x

= −1

ρ

∂pv
∂x

=⇒ −ρ∂uv
∂t

=
∂pv
∂x

(3.3)
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Now it is time to study the mechanical activity of the CP better. Due to the transpartition
velocity a force is exerted on the membrane. But how can we connect force with velocity?
The coupling between these two properties is called the mechanical impedance Z. Z is
the ratio between force and velocity and is a measure of how much opposition a velocity
will face when created by a force. This can be generalized as follows. When a certain
potential difference acts on a system, this system will resist against this change of state.
The resistance is generally called impedance and is specified by the properties of the
system. In this case the system is the membrane which is resistive because of its elastic
properties. In an electrical wire the potential difference is the voltage which creates a
current of electrons. These electrons will face a resistance, the electrical impedance, on
their way through the wire. Equally, when a sound pressure is applied in a fluid, a flux
will be initiated (mentioned earlier as qv) to transport the acoustic energy. Pressure and
flux are connected via the acoustic impedance. The pressure in both the SV and ST, pv
and pt respectively, are set to zero in the rest position of the membrane (of course there
is a reference pressure pref in both chambers but only the difference pv − pt, where pref
disappears is of interest). pv and pt are equal with different sign since they are connected
through the membrane, such that pv = −pt. There is a force balance at the CP. At
the LHS of (3.4) the pressure of the fluid (which is force per area) and at the RHS the
force (velocity × impedance) pointing in the other direction. ZCP is the specific acoustic
impedance (which is mechanical impedance per unit area).

pv(x, t)− pt(x, t) = 2pv(x, t) = −w(x, t)ZCP (x) (3.4)

We are only left with the elastic properties of the CP. The CP is modeled as a row of N
oscillators representing the hair cells on the BM. These oscillators have a mass, damping
and stiffness and are driven by the pressure force explained above. To understand the
choice for oscillators we make a short step to basic theory of mechanical oscillators.

Normally in mechanics, we use Newton’s second Law;

F = ma (3.5)

with mass m [kg] and acceleration a [m
s2

]. Acoustics appear in fluids through differences
in pressure and therefore it is common to refer to pressure p instead of force F . Pressure
is a force per unit area A, so (3.5) in terms of pressure is derived by dividing both sides
by A.

p = msa (3.6)

Where ms [ kg
m2 ] the specific acoustic mass. The same for specific acoustic damping ds and

stiffness ss which have unit kg
m2 , kg

m2s
and kg

m2s2
respectively. Specific acoustic variables are

indicated with a superscript s.

For a pressure p the mechanical oscillator is modeled by the following ODE:

p = ms∂
2y

∂t2
+ ds

∂y

∂t
+ ssy = p0 cos(ωt) (3.7)

where y is the displacement and ms, ds and ss specific acoustic mass, damping and stiff-
ness .
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The solution of (3.7) is given by:

x(t) =
p0

|Za|ω
sin(ωt− φ), with Za = d+ i

[
ωm− s

ω

]
and φ = arctan

[
1

d

(
ωm− s

ω

)]
(3.8)

Za is the acoustic impedance of the cochlear fluid. It is a complex function with an imag-
inary part that vanishes when ω = ω0 =

√
s
m . This ω0 is called the resonance frequency.

At ω = ω0, Za equals the damping d and the size of |Za| reaches a minimum. Hence,
with this minimal damping the displacement x will be maximal. Over the whole CP there
are N oscillators which vary in damping and stiffness and therefore each oscillator has its
own resonance frequency. Hence, the function of the CP is modeled. An external pressure
wave will have a frequency which will be the resonance frequency of one of the oscillators
at the CP. The mechanism to detect sound and to identify its frequency.

To indicate whether d is small compared to m and s (to indicate the amplitude at reso-
nance) we define the damping factor δ = d√

ms
. A good damping gives a sharp response,

i.e. in the frequency domain a peak with a high amplitude and small width.

So for each section we can set up the standard model for a harmonic oscillator from
mechanics:

−w(x, t)ZCP (x) = ms(x)
∂2y

∂t2
(x, t) + ds(x)

∂y

∂t
(x, t) + ss(x)y(x, t) (3.9)

y(x, t) is the displacement of the membrane caused by the pressure, so w(x, t) = ∂y
∂t (x, t).

Furthermore, the mass ms, damping ds and stiffness ss are dependent of x because each
row of hair cells has its own properties.

−w(x, t)ZCP (x) = ms(x)
∂w

∂t
(x, t) + ds(x)w(x, t) + ss(x)

∫
w(x, t)dt (3.10)

Head back to (3.2) and differentiate both sides with respect to t.

b
∂w

∂t
= Av

∂2uv
∂x∂t

(3.11)

Plug in the Euler equation of (3.3) to substitute ∂uv
∂t .

− ρb
Av

∂w

∂t
=
∂2pv
∂x2

(3.12)

Substitute (3.4) for the emerging pv (for the sake of simplicity the x and t-dependency of
the functions is omitted):

2ρ

h

∂w

∂t
=

∂2

∂x2
(−wZCP ) =

∂2

∂x2

(
ms∂w

∂t
+ dsw + ss

∫
wdt

)
(3.13)

Equation (3.13) is a PDE for w but if we are interested in the displacement of the mem-
brane we can substitute w(x, t) = ∂y

∂t (x, t) and integrate both sides to t to find the same
PDE for y. These modifications are justified under the assumption that w(x, t) and y(x, t)
have sufficient properties concerning differentiability.
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∂2

∂x2

(
ms∂

2y

∂t2
+ ds

∂y

∂t
+ ssy

)
− 2ρ

h

∂2y

∂t2
= 0 (3.14)

We go one step further by considering the flux q instead of velocity w. In (3.2) the concept
of flux was explained to be the quantity of fluid flowing through a surface A and hence
q = Aw [m

3

s ]. It depends on the direction of q which surface A we are dealing with. In
case of the cochlea, the flux q on the CP is in the y-direction on the surface A = b∆X.
The fluid flux in the SV in contrary would consider the surface Av = bh (see figure 3.2).

The model of (3.13) will be solved for q instead of w and therefore we subsititute w = q
A

in this equation .

2ρ

Ah

∂q

∂t
=

∂2

∂x2

(
m
∂q

∂t
+ dq + s

∫
qdt

)
(3.15)

The one-dimensional model (3.15) is named the ’coupled oscillator model’. At the LHS
of (3.15) logically q emerges. At the RHS the division by A is included in the parameters
m, d and s , the acoustic mass, damping and stiffness with units [ kg

m4 ], [ kg
sm4 ] and [ kg

s2m4 ]
respectively. Up to this point, m represented the regular ’mechanical’ mass in kg but from
now now on we work purely with acoustic masses. The different acoustic parameters will
be treated in the next section.

3.3 The discrete 1D-model

To solve the model of (3.15) numerically we will set up a computational grid and discretize
the model equations. The corresponding figure is figure 3.3.

Figure 3.3: The grid for the cochlea in the x-direction

The total cochlea has length L and is divided in N sections. The position of the i-th
section is located at xi and the width of a section is ∆X. Some exceptions are made at
the boundaries. The most right section has width h because the helicotrema is situated
here and we want to let the grid correspond with figure 3.4. On the other side, the most
left section has width ∆X0. This has to do with the fact that the distance between two
oscillators ∆X could differ from the distance of the first oscillator to the ME. From figure
3.3 we conclude:

∆X0 +N∆X + h = L (3.16)

For the time interval in which we want to solve the equations, define the interval [t0, tend]
and take a timestep ∆t such that each point in time t(j) = j∆t is defined.
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Each section has an acoustic mass, damping and stiffness parameter which we will study
in more detail. As mentioned in the previous section, the parameters depend on the
direction of the dynamics. First, we will treat every parameter present in the cochlea.

• mn is the acoustic mass of the membrane at the n-th position in the cochlea. It is
calculated by the specific acoustic mass of an oscillating hair cell (constant through-
out the cochlea) on a slice b∆X on the membrane.

mn =
ms

b∆X
(3.17)

• mc is the mass of the cochlear fluid and determined by the slice of fluid with length
∆X and the geometry of the SV and ST which is Av.

mc =
ρAv∆X

A2
v

=
ρ∆X

Av
(3.18)

Note that mc and mn have different areas, Av and b∆X respectively, that convert
the mechanical masses [kg] to acoustic masses [ kg

m4 ]. This is because mc is the mass
term belonging to the fluid in the SV and ST (x-direction, surface Av = bh) and
mn belongs to the oscillatory dynamics of the CP (y-direction, surface b∆X). P

• mc0 follows the same story as for mc except that the oscillator distance ∆X could
be different at the first section.

mc0 =
ρAv∆X0

A2
v

=
ρ∆X0

Av
(3.19)

This feature of the model is not of interest for our research and therefore ∆X0 is
assumed to be equal to ∆X. The result is that mc0 equals mc but we keep mc0 in
the upcoming equations to see where it would appear.

• mh, the acoustic mass at the helicotrema can be derived by considering the geometry
of the helicotrema in more detail, see figure 3.4. We assume the helicotrema as a
circular tube coiling around the CP. It has radius h so it connects perfectly with
the geometry of the SV and ST. Figure 3.4 only gives a side view but the width of
the helicotrema in y-direction is given b (just as the rest of the cochlea). The unit
area on which the pressure is acting is still Av, so the acoustic mass is:

mh =
ρ
(
π
2h

2b
)

A2
v

=
πρ

2b
(3.20)

• mm, dm and sm are the parameters representing the ME. These are explained to-
gether because of their relations from the theory on mechanical oscillators. The ME
should be modeled with the important feature that we make the transition from
cochlear fluid to air. The first oscillator is situated at n = 1 and the mechanisms
belonging to the ME at n = 0. The transition of air to cochlear fluid is modeled as a
transformator. A transformator transforms an incoming stimulus by a transforma-
tion factor nt. The pressure pin of an input stimulus is transformed to pout = ntpin
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and the velocity uin becomes uout = u
nt

. In this way, the energy E (proportional to
the product of p and u) of the incoming and outgoing stimulus is equal because:

E ∝ poutuout = (ntpin)

(
uin
nt

)
= pinuin (3.21)

Consider a stimulus that approaches from the ear canal. It brings an external
pressure pe and a velocity ue. This stimulus has to find its way through air which
has a characteristic impedance Za (given in the Appendix), so Za = pe

ue
. With a

transformation factor nt the transformed pressure and velocity are ntpe and ue
nt

and
the new impedance reads:

Z =
ntpe
ue
nt

= n2
tZa (3.22)

Z has unit kg
sm4 and as presented in section 3.2 its real part is equal to d (see (3.8)) so

therefore dm = n2
tZa. In this section we also introduced the relation δm = dm√

mmsm

(in case of the ME oscillator). The damping factor δm is a given parameter and ωrm
is the resonance frequency of the ME. The values of these parameters are known
from acoustic standards and can be found in the Appendix.

ωrm =

√
sm
mm

=

√
smmm

(mm)2
⇐⇒ ωrmmm =

√
smmm (3.23)

Use the relation between δm and dm to find:

dm
ωrmmm

= δm =⇒ mm =
dm

ωrmδm
=

n2
tZa

ωrmδm
(3.24)

And the same idea for finding sm:

ωrm =

√
sm
mm

=

√
(sm)2

mmsm
=
smδm
dm

=⇒ sm =
dmωrm
δm

=
n2
tZaωrm
δm

(3.25)

The specific impedance of air Zsa is a given parameter in acoustics (see Appendix)
and Za is calculated by scaling with the given area of the ear drum At so Za = Zsa

At
.

The final properties that we have to specify is the value of the damping and stiffness of
the hair cells. For the damping di and stiffness si at the i-th oscillator in the cochlea
there are different choices. The stiffness si is modeled by a continuous function s(x) so
si = s(xi) (xi is the position of the i-th oscillator).

s(x) =
ss0
b∆X

e−λx (3.26)

λ is a parameter based on experiments and ss0 is the specific acoustic stiffness constant
(given in the Appendix). It is the stiffness of hair cells so the area converting ss0 to the
acoustic stiffness is b∆X.
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Figure 3.4: The geometry of the helicotrema

With s(x) we can also derive the frequency-place map mentioned in section 2 of a res-
onance frequency fr and the position x on the BM of the triggered hair cell. Use the
relation for resonance frequency from the mechanical oscillator and ωr = 2πfr:

fr =
1

2π
ωr =

1

2π

√
s(x)

m
=

1

2π

√√√√ ss0
b∆X e

−λx

ms

b∆X

=
1

2π

√
ss0e
−λx

ms
=

1

2π

√
ss0
ms

e−
λx
2 (3.27)

The damping is divided into a linear part dL(x) and a nonlinear part dNL(x). The linear
part is based on s(x) and for the nonlinear damping different choices exist. Remind from
the mechanical oscillator the definition of the damping factor δ: δ = d√

ms
. With s = s(x)

from (3.26) and δ a given constant the damping becomes:

d(x) = dL(x)dNL(x) with dL(x) =
δ

b∆X

√
msss(x) =

δ

b∆X

√
msss0e

−λx
2 (3.28)

In the upcoming part, we choose to have linear damping, i.e. dNL(x) = 1 but this simple
choice is purely for the sake of research. The goal is to derive a new ME model and
therefore the damping is kept simple.
We close the section by specifying the stimulus pressure pe a bit more. Assume that we
send a signal with one single frequency into the cochlea.

pe = pAM1 cos (2πf1t) (3.29)

where pAM1 is the amplitude of the external stimulus, f1 the frequency (Hz).

3.4 The electrical analagon of the 1D-model

Thus far we have derived a nice PDE for the 1D cochlea. From a mathematical point of
view it would be a logic step to consult our theory in PDEs and find out if there exist
nice solutions. However, in the upcoming section we will study an alternative way to deal
with the cochlea through the electrical analagon. First, some basic theory in electrical
engineering will be explained and applied afterwards to the model. This circuit model for
the 1D cochlea is derived by van der Raadt in [4]. At the moment, the link between an
electrical circuit and fluid dynamics seems quite far away but the similarity in describing
the dynamics will hopefully be more clear afterwards.
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3.4.1 Basic electronics

The basic knowledge in electronics will be illustrated by the RLC circuit in figure 3.5.
The first two laws that hold in a circuit are the Kirchoff Current Law (KCL) and Kirchoff
Voltage Law (KVL)

Figure 3.5: A basic RLC circuit with a side branche

• (KCL) In every node the sum of all in- and outcoming current is zero. So for
example in the southwest node in the circuit of figure 3.5 this would give us: I0 +
Iside − Imain = 0.

• (KVL) In a closed loop the sum of all voltages is zero. A voltage is always measured
between two points in the circuit, so in a closed loop both ends are at the same
point. The KVL applied to figure 3.5 gives: V1→2 + V2→3 + V3→4 − V0 = 0.

The first element (between 1 and 2) is the inductor. An inductor resists changes in electric
current passing through it. The voltage across the inductor is given by:

∆V (t) = L
∂I(t)

∂t
(3.30)

with L the inductance. Keep in mind that I is a function of t since the power source gives
an alternating current. Now we arrive at making an analagon of dynamics in electronics
and mechanics. If we go back to (3.3) and transform this to an Euler equation for the
volume flux qv:

∂pv
∂x

= −ρ∂uv
∂t

= − ρ

Av

∂qv
∂t

(3.31)

Compare (3.31) and (3.30) and we see the same dynamics. The x-derivative is the contin-
uous version of the difference between sections and the pressure p resembles the voltage
V . One can think of a voltage as the pressure which electrons are pushed through a
wire. The volume flux q resembles the current I, think of the amount of electrons or the
quantity of fluid that has to be transported per second. ρ represents a unit mass in the
Euler equation, which is divided by a unit area. Hence, the inductance L represents the

acoustic mass m
[
kg
m4

]
up to a minus sign that we should not forget.

The second element is the resistor which implements resistance in a circuit. The voltage
is given:
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∆V (t) = RI(t) (3.32)

with R the resistance. Following the story of the inductor, this is equivalent with the

linear damper in mechanics with d
[
kg
sm4

]
the acoustic damping:

∆p(t) = dq(t) (3.33)

The third element is the capacitor which is able to store electrical charge. The voltage is
given:

∆V (t) =
1

C

∫
I(t)dt (3.34)

With s
[

kg
m4s2

]
the acoustic stiffness, this has the following equivalence in mechanics:

∆p(t) = s

∫
q(t)dt (3.35)

If we combine the inductor, resistor and capacitor in series (as in the RLC circuit) we can
add the voltages to form:

∆p(t) = m
∂q(t)

∂t
+ dq(t) + s

∫
q(t)dt (3.36)

We can now recognize the link of an RLC circuit with the mechanical oscillator of (3.10).
Hence, an RLC circuit is also known as the electrical oscillator. The difference with (3.10)

is the variable to solve which is now the flux q
[
m3

s

]
instead of the velocity w

[
m
s

]
. This

is compensated by the acoustic mass, damping and stiffness which are defined per unit
area. The displacement y [m] is now the volume displacement indicated by Y

[
m3
]

and

subsequently q = ∂Y
∂t .

3.4.2 The circuit model of the cochlea

Now that we made the step from mechanics to electronics we can set up the circuit
representing the 1D cochlea. Recalling figure 3.1 we have two compartments, the SV and
ST, connected through the CP. As mentioned earlier, the hair cells are modeled as a row of
operating oscillators on the CP, so for each section we have an RLC circuit in z-direction
representing the motion of the cells on the CP. The CP connects the two chambers of
fluid. The only mechanics in both chambers is the mass flow which is modeled with an
inductor as explained above.

Connecting these elements gives the circuit given in the left panel of figure 3.6. The upper
horizontal branche represents the mass flow of the cochlear fluid in the SV indicated by
mc by placing an inductor between each section.

Both chambers are connected by the electrical oscillator of section n, with mass mn,
damping dn and stiffness sn. For the left circuit of figure 3.6 the circuit equations are
written out in the left column of Table 3.1.

To eliminate a part of the variables we derive a transformed sytem of circuit equations.
By means of the local KCL’s, we add the dynamics of the lower branches to the upper
branch . To do this, we have to define a new variable:



20 CHAPTER 3. COCHLEAR MODELING

Figure 3.6: (left) The original circuit model for a single section in the cochlea; (right) the
transformed circuit model for one cell.

pn := p+
n − p−n (3.37)

which results in the circuit in the right panel of figure 3.6 and the transformed equations
in Table 3.1.

qn = q−n−1 − q−n qn = q+
n−1 − q+

n

mc
∂qn
∂t = mc

∂q−n−1

∂t −mc
q−n
∂t mc

∂qn
∂t = mc

q+n−1

∂t −mc
q+n
∂t

mc
∂qn
∂t =

(
p−n − p−n−1

)
−
(
p−n+1 − p−n

)
mc

∂qn
∂t =

(
p+
n−1 − p+

n

)
−
(
p+
n − p+

n+1

)
mc

∂qn
∂t = −p−n−1 + 2p−n − p−n+1 mc

∂qn
∂t = p+

n−1 − 2p+
n + p+

n+1

Original circuit Transformed circuit

p+
n−1 − p+

n = mc
∂q+n−1

∂t pn−1 − pn = 2mc
∂q+n−1

∂t

p+
n − p+

n+1 = mc
∂q+n
∂t pn − pn+1 = 2mc

∂q+n
∂t

q+
n−1 = qn + q+

n q+
n−1 = qn + q+

n

p−n − p+
n = mn

∂qn
∂t + dnqn + sn

∫
qndt pn = mn

∂qn
∂t + dnqn + sn

∫
qndt

p−n − p−n−1 = mc
∂q−n−1

∂t

p−n+1 − p−n = mc
∂q−n
∂t

q−n−1 = qn + q−n

Table 3.1: The original circuit equations and the result of the transformation
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Add both results for mc
∂qn
∂t and we will find:

2mc
∂qn
∂t

=
(
−p−n−1 + 2p−n − p−n+1

)
+
(
p+
n−1 − 2p+

n + p+
n+1

)
=

(
p+
n − p−n−1

)
− 2

(
p+
n−1 − p

−
n

)
+
(
p+
n+1 − p

−
n+1

)
:= pn−1 − 2pn + pn+1

If we transform the circuit to the circuit in the right panel of figure 3.6 we get an equivalent
result:

pn−1 − pn = 2mc
∂q+

n−1

∂t

pn − pn+1 = 2mc
∂q+

n

∂t

 pn−1 − 2pn + pn+1 = 2mc
∂q+

n−1

∂t
− 2mc

∂q+
n

∂t
= 2mc

∂qn
∂t

(3.38)

From the vertical branche in figure 3.6 we have:

pn = mn
∂qn
∂t

+ dnqn + sn

∫
qndt := mn

∂qn
∂t

+ gn ⇐⇒
∂qn
∂t

=
pn − gn
mn

(3.39)

With this new definition of gn, (3.38) becomes:

pn−1 − 2

(
1 +

mc

mn

)
pn + pn+1 = −2

mc

mn
gn (3.40)

This equation is boxed since it is important and we should keep it in mind.

The next step is to extend the model throughout the entire cochlea. To connect all
the sections the circuit representing one cell is simply repeated. Eventually this would
give us a system with N parallel oscillators connected through inductors. We only have to
consider both ends of the cochlea. According to PDE theory we have to impose boundary
conditions.

Figure 3.7: The circuit for the most right cell in the cochlea

Start with the helicotrema at n = N . In the anatomy of the cochlea we learned that this
is the place where the CP ends and cochlear fluid is able to flow from SV to ST. Since
we have N oscillators, at n = N we will place the final oscillator and add a point at
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n = N + 1 to model the mass flow through the helicotrema. This is done by an inductor
with acoustic mass in the helicotrema mh (details of mh are specified later). This gives
the circuit in Figure 3.7. The circuit equations for figure 3.7 can be written down at
n = N,N + 1 and the same process is followed.

n=N n=N+1

q+
N−1 = q+

N − qN q+
N = qN+1

pN−1 − pN = 2mc
∂q+N−1

∂t pN − pN+1 = 2mc
∂q+N
∂t

pN = mN
∂qN
∂t + dNqN + sN

∫
qNdt pN+1 = mh

∂qN+1

∂t

pN − pN+1 = 2mc
∂q+

N

∂t
= 2mc

∂qN
∂t

= 2
mc

mh
mh

∂qN+1

∂t
= 2

mc

mh
pN+1 (3.41)

⇐⇒ pN =

(
1 + 2

mc

mh

)
pN+1 ⇐⇒ pN+1 =

(
mh

mh + 2mc

)
pN (3.42)

2mc
∂qN
∂t

= pN−1 − 2pN + pN+1 = pN−1 −
(

2− mh

mh + 2mc

)
pN (3.43)

∂qN
∂t

=
pN − gN
mN

⇐⇒ 2mc
∂qN
∂t

=
2mc

mN
(pN − gN ) (3.44)

Combine (3.43) and (3.44) to get the final result:

pN−1 −
(

2− mh

mh + 2mc
+

2mc

mN

)
pN = −2

mc

mN
gN (3.45)

pN−1 −
(

1 +
2mc

mh + 2mc
+

2mc

mN

)
pN = −2

mc

mN
gN (3.46)

The ME was modeled by an oscillator with mass mm, damping dm and stiffness sm. This
gives the circuit of figure 3.8. Also, the stimulus is represented here by the voltage source
ntpe, where the factor nt comes from the transformator equation from (3.21).

Figure 3.8: The circuit for the most left cell in the cochlea

With the following circuit equations:
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n=0

q0 = −q+
0

p0 − p1 = 2mc0
∂q+0
∂t

p0 − ntpe = mm
∂q0
∂t + dmq0 + sm

∫
q0dt

Define g0 in the same way as for other values of n.

p0 − p1 = 2mc0
∂q+

0

∂t
= 2mc0

(
ntpe − p0 − g0

mm

)
(3.47)

−
(

1 +
2mc0

mm

)
p0 + p1 = −2mc0

mm
ntpe −

2mc0

mm
g0 (3.48)

Finally, combine all circuit parts to a circuit model for the total cochlea.

Figure 3.9: The circuit for the total cochlea

The equations derived above form the equations for the circuit model of the cochlea.
These can be placed in a linear system:

Ap = r (3.49)

Where A is an N + 1 - by - N + 1 matrix with the coefficients for p a vector of size N + 1
and r the known right hand side with the same size as p.


a11 1
1 a22 1

. . .
. . .

. . .

1 aN,N 1
1 aN+1,N+1




p0

p1
...

pN−1

pN

 =


r0ntpe − r0g0

r1g1
...

rN−1gN−1

rNgN

 (3.50)
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a11 = −
(

1 +
2mc0

mm

)
ann = −2

(
1 +

2mc

m

)
, n ∈ 2, . . . , N

aN+1,N+1 = −
(

1 +
2mc

mh + 2mc
+

2mc

m

)
r0 = −2mc0

mm

rn = −2mc

m
,n ∈ 2, . . . , N + 1

We see that A has the tridiagonal [1 −2 1] - structure at each row which is the finite

difference approximation matrix, call it L2. This corresponds with the ∂2

∂x2
-term in (3.15).

It is supplemented with the mass terms coming from the vertcial branches.

Solving (3.49) will give us a solution for p through the cochlea. We may have to ask
ourselves whether it is always possible to solve this system, i.e. is A nonsingular? To
show this we use the concept of a diagonal dominant matrix.

Definition 1 A diagonally dominant matrix is a matrix A with the property |aii| ≥∑
j 6=i |aij | for all i. When these inequalities are strict, the matrix is called strictly di-

agonally dominant.

�

By checking all the rows of A we can show that A is a diagonal dominant matrix.

|a11| = | −
(

1 +
2mc0

mm

)
| = |

(
1 +

2mc0

mm

)
| > 1 = |a12|

|ann| = | − 2

(
1 +

2mc

m

)
| > 2 = 1 + 1 = |an,n−1|+ |an,n+1|, n ∈ 2, . . . , N

|aN+1,N+1| = | −
(

1 +
2mc

mh + 2mc
+

2mc

m

)
| > 1 = |aN+1,N |

For diagonal dominant matrices we can use Lemma 1.

Lemma 1 A is a diagonally dominant matrix =⇒ A is nonsingular.

�

The conclusion is that we do not have to worry about any inconvenience with A being
singular. We will not focus further on solution methods for (3.49) but just use a standard
routine like Gauss elimination.

We continue with our process to find a solution for the displacement y of the CP. First
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of all, this is done solving for the volume displacement Y [m3]. The displacement y[m] is
then calculated by dividing through the surface on which the volume displaces (b∆Xor
Av = bh depending on the direction).

Assume that at a time stage t(j) we have:

q(j) =
[
q

(j)
0 , q

(j)
1 , . . . , q

(j)
N−1, q

(j)
N

]
(3.51)

Y(j) =
[
Y

(j)
0 , Y

(j)
1 , . . . , Y

(j)
N−1, Y

(j)
N

]
We calculate g(j) rather easily:

g(j) = dq(j) + sY(j) (3.52)

Then solve the linear system of (3.49) to find:

p(j) =
[
p

(j)
0 , p

(j)
1 , . . . , p

(j)
N−1, p

(j)
N

]
(3.53)

From this result we want to reach the new time stage t(j+1). This is done by using
equation (3.39):

∂qn
∂t

=
pn − gn
mn

(3.54)

And for the equation to go from the flux q to displacement Y :

qi =
∂Yi
∂t

(3.55)

Equation (3.55) holds for all i ∈ 0, 1, . . . , N . The same for (3.54) with an exception for
i = 0:

∂q0

∂t
=
p0 − ntpe − g0

mm
(3.56)

(3.54), (3.55) and (3.56) can be solved with an explicit time integration method. One of
the most accurate methods would be a fourth order Runge Kutta time integration which
gives us a solution for q(j+1) and Y (j+1). Runge Kutta requires to execute the process of
solving (3.49) four times per timestep. In between these four steps, estimates for q(j+1)

and Y (j+1) are used and weighted to get a very accurate solution. For simplicity, we use
a standard explicit time integration, the explicit Euler method. The results can be used
to calculate g(j+1) and we can just repeat the process we started at (3.51).

3.5 Overview

To give some structure in the equations of the one-dimensional model and the process of
solving a small overview is necessary. Define M,D and S are diagonal matrices with the
value for mi, di and si at every postion xi and c = 2ρ

h . L2 is the tridiagonal matrix repre-
senting the finite difference approximation of the second order derivative, for the structure

see (3.50). At time stage t(n) = n∆t we want to solve Y(n) = [Y
(n)

0 , Y
(n)

1 , . . . , Y
(n)
N ].
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The PDE of (3.14) becomes:

L2

(
MŸ +DẎ + SY

)
− cIŸ = 0 (3.57)

Write (3.55) and (3.52) as:

Ẏ(t) = q(t) (3.58)

g (q,Y) = Dq + SY (3.59)

such that (3.57) becomes:

L2 (M q̇ + g(q,Y))− cIq̇ = 0 (3.60)

Next we have p from (3.36) and find an explicit formula for q̇:

p(t) = M q̇(t) + g⇐⇒M q̇ = p− g⇐⇒ q̇ = M−1 (p− g) (3.61)

Substitution of (3.61) in (3.60) results into the linear system:(
L2 − cM−1

)
p = cM−1g (3.62)

The system of (3.62) must be solved for p accompanied by the ODE’s given by (3.58) and
(3.61). The process of solving these equations in time is given stepwise.

Step 1: Calculate the right hand side g through (3.59): g(n) = dq(n) + sY(n).
Step 2: Solve (3.62): Ap(n) = cM−1g(n) 7−→ p(n), with A = L2 − cM−1. The dense
matrix structure is presented in more detail below (ri = cm−1

i ).
a11 1
1 a22 1

. . .
. . .

. . .

1 aN,N 1
1 aN+1,N+1

 ·


p0

p1
...

pN−1

pN

 =


r0ntpe − r0g0

r1g1
...

rN−1gN−1

rNgN

 (3.63)

Step 3: Solve (3.61): q̇ = p(n)−g(n)
m 7−→ q(n+1) by applying an explicit time integration.

Step 4: Solve (3.58): Ẏ = q(n+1) 7−→ Y(n+1) again by applying an explicit time integra-
tion.

Repeat all steps with n = n+ 1 until the last time step is reached. This gives us the total
solution for Y at all points in time n and points in space i. A schematic overview of all
the steps is given in figure 3.10.
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Figure 3.10: An overview of the process described in [4]
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Chapter 4

Extension to the middle ear

In the past section the details of modeling the cochlea have become more clear. The aim
of this thesis is to study the cochlea model and extend this model to the ME. In the
previous section the cochlea model proposed by van der Raadt was studied in great detail
and we will use this knowledge to derive a hopefully more accurate model for the ME. Up
to this stage, the ME was represented as the far left oscillator in the cochlea. Mechanical
influences of the ME were taken into account at this point in the model but we will study
the ME in more detail to find out whether there is space for improvement. First, we will
ask ourselves the question why the ME model should be improved. A proposed model by
O’Connor and Puria [1] will be introduced and coupled to the cochlea. We will see that
the ME model resembles the cochlea model in many ways. However, some difference in
mechanics will lead to a problem in the equations. A solution and an adjusted model for
both the ME and the cochlea will be presented.

4.1 Why study and improve the model for the ME?

If we consider the anatomy of the cochlea we can see that a stimulus always passes
the ME. It is remarkable that in the cochlea model of figure 3.9 the ME is represented
by a single oscillator while it anatomically consist of three ossicles. These ossicles are
connected but are individually able to move with their own dynamics and have their own
effect on the stimulus. It is well known that the main function of the ME is to efficiently
transfer the acoustic energy from air to fluid to make the dynamics suitable for analysis
in the cochlea [8]. The apparent complex anatomy and functions of the ME versus the
simple interpretation in the cochlea model so far indicates that there is some space for
improvement:

• Which elements form the ME and what is the function of these elements? We
have to find out whether these elements can be represented by the single oscillator
element and whether it is wise to expand the element structure.

• Is it possible to translate the ME elements to the circuit model interpretation as
presented by [4] ?

• Can this circuit model be coupled to the cochlea model and be solved?

29
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An improved ME model could give more explanation to problems audiologists encounter.
Basically, a better understanding and implementation of the ME model would contribute
to the development in the previously mentioned applications in audiological research and
engineering.

4.2 Physiology of the ME and O’Connor and Puria’s circuit
model

Figure 4.1: The physiology of the ear

The model for the ME starts by taking a closer look at the physiology of the ME. There-
fore, consider figure 4.1 specifically for the ME. We will walk through the process of a
stimulus entering the ear from the outside world and slowly work towards a circuit model
proposed by O’Connor and Purina in [1]. The are many other proposals for the ME
model but our choice for this model is based on the fact that this is published quite re-
cently and uses the right mix of simplifications of the problem and amount of elements
that are important to consider. Moreover, it uses the same the circuit formulation as the
one-dimensional circuit model for the cochlea.

• A stimulus enters the outer ear and passes through the ear canal to arrive at the
ear drum. As mentioned earlier, the effects of the ear canal are neglected.

• The outer ear and ME are separated by the tympanic membrane (TM) , or ear drum.
The stimulus meets an acoustic impedance Zec and this impedance is transformed
to Zoc when it passes the TM. The physics behind the TM will be worked out later.
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• The transformed stimulus enters the ME which consists of the ME cavity and three
ossicles called the ossicular chain. The effects of the ME cavity are incorporated in
the paramters of the TM. This simplifies the fitting procedure and once the TM block
is characterized, it is possible to produce an approximate full middle-ear model by
later adding suitable ME cavity model [1]. The three ossicles are called the malleus,
incus and stapes and operate as three mechanical levers to transfer the sound energy
through the ME to the oval window, the entrance to the cochlea. The ossicles are
attached to the walls of the ME cavity through ligaments. Furthermore, the incudo-
malleolar joint (IM joint) connects malleus with incus and the incudostapedial joint
connects the incus with the stapes (IS joint).

Figure 4.2: Schematic overview of the ME by Puria and Allen in [7]

A schematic overview of the ear is given in figure 4.2. No technical details are given yet
but this figure gives a nice indication how the circuit model for the ME will look like. We
will now write out the ME model in equations. The described processes are all mechanical
but to remain consistent with the acoustic variables in the cochlea model we transform
to acoustic equations.

Tympanic membrane

The TM converts the vibrations in the air that come from the left side to vibrations
in the malleus, the connected ossicle at the right hand side of the TM. This conversion
means that the incoming acoustic impedance Ztm = ptm

qtm
is mapped to a new impedance

going into the malleus Zoc = pmal
qmal

. In the circuit this is modeled by a so called acoustic
transmission line. A transmission line is a model for the transfer of energy through a
medium. During transportation, properties in the medium like velocity and pressure can
change. In terms of impedance we say that it maps a source impedance Ztm to a load
impedance Zoc by a process called impedance matching. When this matching is not ideal,
a part of the load signal will not be transmitted but reflected by the line. This is quantified
by a reflection coefficient [7]:

R(ω) = |R(ω)|eiφ(R(ω)) =
Ztm(ω)− Zoc(ω)

Ztm(ω) + Zoc(ω)
(4.1)

The first equality sign of (4.1) is the decomposition of the reflection in amplitude and
phase indicating that the transmission not only effects the amplitude but also the phase
of the load signal. This is called the delay of the transmission line. The circuit model of
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[1] is not very explicit about the elements contained in the transmission line and keeps
this as a two-port block system. However, [7] is one of the few articles that does make a
choice which we will use (and probably is used in [1]). The transmission line is modeled
as a mass mtm with a shunt stiffness stm, see figure 4.3.

Figure 4.3: The two-port block system of the TM including the circuit elements

Malleus

The malleus itself is an ossicle which has a mass and is able to rotate. Mass is displaced
through rotation so therefore we define the mass mmal and this can be modeled in the
same way as mass flow in the cochlear fluid, i.e. with an inductor. The value of mmal can
be calculated from:

mmal =
mw
malκ

2

L2
mal

(4.2)

where mw
mal is the measured mass, κ the radius of gyration and Lmal the length of the

malleus. Dividing by the square of the area where the mass is acting, the area of the TM
Atm gives the acoustic mass ( unit kg

m4 ). This holds for all parameters in the ME.

The ligament connecting the malleus and the incus with the walls of the ME cavity con-
tains damping and stiffness represented by dmal and smal respectively.

Incus and IM/IS-joint

The incus is also an ossicle capable to rotate which is modeled with an inductor of mass
minc. The ligament connecting incus with the wall is taken into account in dmal and smal.
The incus is both connected with the malleus and stapes through the IM and IS joint
respectively. These connecting elements both contain damping and stiffness represented
by dIM , sIM , dIS and sIS but no mass term.

Stapes and the OW/RW

The stapes itself is a moving ossicle with mass msta. The connection at the left is al-
ready modeled in the IS joint. At the right it has a connection through a so called
annular ligament with the OW. This is the position where sound energy will be trans-
ferred through the OW on its way to the cochlea. The annular ligament has damping
and stiffness dsta and ssta. In the cochlea model it was assumed that the influences of the
OW are incorporated in the ME, this assumption still holds and we assume its stiffness
is in the value of ssta. For the RW this assumption was more doubtful and therefore we
assume it has a stiffness sRW which should be placed at the lower half of the circuit.
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However, by applying the same transformation as been done for the mass mc in the ST
in section 3, we can place the capacitor with sRW in the upper branche next to the stapes.

Take all elements specified in previous paragraphs and the circuit model for the cochlea
derived in previous section in figure 3.9. Until now, the ME was represented by a single
oscillator at n = 0. It is now time to extend the cochlea model with the ME model from
O’Connor and Puria [1]. We remove the oscillator at n = 0 and couple the cochlea model
in the same way as indicated by figure 4.2. The resulting circuit model is given in figure
4.4.

......................... 
P

......................... 

N+1

Figure 4.4: The circuit model for the ME coupled to the cochlea

4.3 Extension of the circuit equations

The circuit modeling phase of the ME is done and it is now time to work out the circuit
equations for the ME part in exactly the same way as for the cochlea. Before doing that,
let us observe the coupled cochela and ME model in figure 4.4 and spot some differences
on the circuit branches between the cochlea part and the ME part.

• On the upper horizontal branches not only inductors but also resistors and capac-
itors are placed. Furthermore, in the TM there is a delay element which is not
studied yet and a resistor takes place instead of an inductor.

• On the vertical branches representing the IM and IS joint the inductor is missing.

These differences in elements are justified since the physiology of the ME is simply dif-
ferent. Let us consider a point in the ME, say psta, and just work out the equations as
we did in section 3.4.2 to study the consequences.

qinc = qsta + qIS (4.3)

psta − p1 = msta
∂qsta
∂t

+ dstaqsta + (ssta + sRW )

∫
qstadt := msta

∂qsta
∂t

+ gsta (4.4)

pinc − psta = minc
∂qinc
∂t

(4.5)

psta = dISqIS + sIS

∫
qISdt := gIS (4.6)
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The next step was to add the two upper branches:

pinc − 2psta + p1 = minc
∂qinc
∂t
−msta

∂qsta
∂t
− gsta (4.7)

The two differentials were added by differentiating the KCL of (4.4). However, the term
∂qsta
∂t has a prefactor msta and ∂qinc

∂t the prefactor minc. In the cochlea these two differ-
entials could be added since all masses were identically 2mc. We could overcome this
problem by doing the following modification.

minc
∂qinc
∂t

+msta
∂qsta
∂t

= minc
∂qinc
∂t

+minc
∂qsta
∂t
−minc

∂qsta
∂t

+msta
∂qsta
∂t

= minc
∂qIS
∂t

+ (msta +minc)
∂qsta
∂t

The term ∂qsta
∂t could be substituted back by rewriting (4.4):

psta − p1 = msta
∂qsta
∂t

+ gsta =⇒ ∂qsta
∂t

=
psta − p1 − gsta

msta
(4.8)

BUT! This is not possible for the branche of the IS joint in (4.6) since it does not contain
a term ∂qIS

∂t . The KCL incorporates the vertical branche through the derivatives of q but
since there is no mass term anymore this is impossible. If we would try to write (4.4) in
the same form as (4.4) we would have to divide by mIS which is zero. The same problem
would emerge in the IM joint and the TM where the shunt masses are absent.

A possible solution is to artificially add mass terms in the equations in the ME to over-
come this problem of a zero mass. The disadvantage is that the model may not represent
the ME as well as the original model would do. Moreover, these masses should stay
very close to zero to give an accurate model which will lead to elements in the system
approaching infinity. Tweaking the other parameters could compensate this but later on,
the parameters should also be tweaked to fit experimental data. These data contain a lot
of features like the reaction on different frequencies and amplitudes. Also there are a lot
of choices to be made in damping and stiffness (we saw this in section 3). We can imagine
that this is a very complex process and entering this process with already constraints
concerning artificial parameters is not desirable.

Conclusion: The ME model of O’Connor and Puria could be coupled to the cochlea
model of van der Raadt but it is impossible to solve the circuit equations in the same way
as van der Raadt described for the cochlea. The reason is the difference in physiology
between the cochlea the ME.

4.4 The implicit cochlea model

So how are we going to deal with this technical problem? Is there a method to solve the
ME circuit model without redefining the model? In the upcoming section we present the
answer to this questions.
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Start with considering the KVL of a random branche from pi to a neighbouring pj in the
circuit model of figure 4.4 containing all the possible combinations electrical elements.

pj − pi = mij
∂qij
∂t

+ dijqij + sij

∫
qijdt (4.9)

We discretize in time by assigning mesh size dt and grid points t(n) = n·dt and performing
an implicit time discretization:

p
(n+1)
j − p(n+1)

i = mij

(
q

(n+1)
ij − q(n)

ij

dt

)
+ dijq

(n+1)
ij + sij

∫
q

(n+1)
ij dt (4.10)

q =
∂Y

∂t
=⇒ Y (n+1) = Y (n) + dtq(n+1) (4.11)

For the integral term in (4.9) this means:∫
q

(n+1)
ij dt =

∫
q

(n)
ij dt+ q

(n+1)
ij dt = Y

(n)
ij + q

(n+1)
ij dt (4.12)

Combine the results of (4.10) and (4.12) to solve for q
(n+1)
ij :

p
(n+1)
j − p(n+1)

i = mij

(
q

(n+1)
ij − q(n)

ij

dt

)
+ dijq

(n+1)
ij + sij

(
Y

(n)
ij + q

(n+1)
ij dt

)
(4.13)

⇒
(
p

(n+1)
j − p(n+1)

i

)
dt =

(
mij + dijdt+ sijdt

2
)
q

(n+1)
ij −mijq

(n)
ij + sijY

(n)
ij dt = 0

⇒ q
(n+1)
ij =

mij

mij + dijdt+ sijdt2
q

(n)
ij +

dt

mij + dijdt+ sijdt2

(
p

(n+1)
j − p(n+1)

i

)
− sijdt

mij + dijdt+ sijdt2
Y

(n)
ij

(4.14)

The implicit version of the KCL is just:∑
all neighbouring j

q
(n+1)
ij = 0 (4.15)

Substitute the result of (4.14) in (4.15), take for example the point i = 2 in the cochlea:


q

+(n+1)
2 = q

+(n)
2 + dt

2mc
(p

(n+1)
2 − p(n+1)

3 )

q
+(n+1)
1 = q

+(n)
1 + dt

2mc
(p

(n+1)
1 − p(n+1)

2 )

q
(n+1)
2 = m

(m2+d2dt+s2dt2)
q

(n)
2 + dt

(m2+d2dt+s2dt2)
p

(n+1)
2 − s2dt

m2+d2dt+s2dt2
Y

(n)
2

The KCL at the top node of i = 2 is: q
+(n+1)
1 − q+(n+1)

2 − q(n+1)
2 = 0.
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− dt

2mc
p

(n+1)
1 +

(
dt

mc
+

dt

m2 + d2dt+ s2dt2

)
p

(n+1)
2 − dt

2mc
p

(n+1)
3 =

q
+(n)
1 −

(
m

m+ d2dt+ s2dt2

)
q

(n)
2 − q+(n)

2 +
s2dt

m+ d2dt+ s2dt2
Y

(n)
2

(4.16)

This result provides the solution for the problem of the missing mass term! Equation
(4.16) forms one equation in a linear system with solution p. It is the equivalent of equa-
tion (3.40) in section 3 but now formulated in an implicit way. The denominators of
the system elements now consist of all present elements of the branche instead of only
the mass. This has the big advantage that in the case of a m = 0 no problems emerge
from dividing by zero. Except for the case that m, d and s all equal zero, but this is a
nonrelevant case since we would not have any dynamics left. The circuit equations (3.46)
and (3.48) for the helicotrema and the middle ear are also derived in implicit form.

The helicotrema (i = N):

− dt

2mc
p

(n+1)
N−1 +

(
dt

2mc
+

dt

2mc +mh
+

dt

mN + dNdt+ sNdt2

)
p

(n+1)
N =

q
+(n)
N−1 −

(
ms

mN + dNdt+ sNdt2

)
q

(n)
N +

sNdt

mN + dNdt+ sNdt2
Y

(n)
N

(4.17)

The ME (i = 0):

(
dt

2mc0
+

dt

mm + dmdt+ smdt2

)
p

(n+1)
0 − dt

2mc0
p

(n+1)
1 =

−q+(n)
m −

(
mm

mm + dmdt+ smdt2

)
q(n)
m +

smdt

mm + dmdt+ smdt2
Y

(n)
0 +

ntm
sdt

mm + dmdt+ smdt2
p(n)
e

(4.18)

So we found the solution to our problem of a zero mass but this means we have to derive
the whole cochlea and ME model in an implicit form. We could propose to do the cochlea
in the original, explicit way since this already exists and the ME implicit since this is the
area where zero masses occur. The problem is that the two models are connected with
each other and solving these in a different order in time would lead to contradictions at
the position where they connect. Therefore, it is logical to reformulate the cochlea model
in implicit form. When this is done, we will extend the model with the new ME.

We return to the original circuit model for the cochlea in figure 4.5. First, to make things
more clear, we will use a system formulation by contracting all variables into column
vectors. Considering figure 4.5 we need to solve forN+1 points of p and 2·(N+1) = 2N+2
points of q. The branch at the helicotrema is merged with the branch of pN to pN+1 so
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Figure 4.5: The circuit for the total cochlea

we consider one branche with two masses and we do not need to solve for pN+1 (this has
also been done in the explicit cochlea model). Define the following vectors:

q(n) =
[
q

(n)
0 , q

+(n)
0 , q

(n)
1 , q

+(n)
1 . . . , q

(n)
N , q

+(n)
N

]
∈ R2N+2

Y(n) =
[
Y

(n)
0 , Y

+(n)
0 , Y

(n)
1 , Y

+(n)
1 . . . , Y

(n)
N , Y

+(n)
N

]
∈ R2N+2

p(n) =
[
p

(n)
0 , p

(n)
1 , . . . , p

(n)
N−1, p

(n)
N

]
∈ RN+1

Details concerning size and elements of all upcoming matrices and vectors will be given
in the Appendix. For now, only the main structure of the system is relevant. (4.14) can
now be written

q(n+1) = M̃−1Mq(n) + dtM̃−1KTp(n+1) − M̃−1SY(n) − dtM̃−1KTe(n) (4.19)

where M , D, and S are define as diagonal matrices with elements mi, di and si from
(4.14) respectively. M̃ is the diagonal matrix with the elements mi+didt+ sidt

2 which is
non-singular. e(n) represents the incoming stimulus; a row vector with the first element

representing p
(n)
e and the rest zeros. In fact, this is the implementation of a boundary

condition. We write the KCL of (4.15) in its discrete version:

Kq(n+1) = 0 (4.20)

The structure of K derived from (4.15):

K =


−1 1 1

−1 1 1
. . .

. . .
. . .

−1 1 1
−1 1

 ∈ R(N+1)·(2N+2) (4.21)

where we can see the analagon with fluid dynamics. Equation (4.19) is just the discretized
version (implicit) of the Navier-Stokes equation in terms of a flux q and (4.20) where K
is the discrete equivalent of a flux that is divergence free. Substitute (4.19) in (4.20):

−dtKM̃−1KTp(n+1) = KM̃−1Mq(n) − dtKM̃−1SY(n) − dtM̃−1KTe(n) (4.22)
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Equation (4.22) is the equivalent of (4.16) and in terms of fluid dynamics the Poisson
equation in the pressure. For more background in terms from fluid dynamics (like Navier-
Stokes, divergence and Poisson) we refer to [3].

The right hand side of (4.22) is known. It is split in terms for q, Y and the known
boundary condition. The system has to be solved for p(n+1). The solution p(n+1) is then
substituted in (4.19) to find q(n+1). The result, in turn, can be used as the new right
hand side for (4.22) to calculate p(n+2). Switching between these processes gives the total
solution for q throughout the time interval. Additionally, the Y n+1 can be calculated
through an implicit time integration of q(n+1):

Y(n+1) = Y(n) + dtq(n+1) (4.23)

The inverse of
(
KM̃−1KT

)
from (4.22) should be calculated and it can be proven that

KM̃−1KT is indeed non-singular. If we observe the matrix K in (4.21), the N + 1 rows
of K are obviously linear independent, all rows contain a non-zero element with zero’s in
the rest of this column (at elements ki,2i for i ∈ [1, 2, . . . , N + 1]). This means that the
row space spanned by the row vectors of K has dimension N + 1, i.e. rank(K) = N + 1.
Now use the following properties:

Property 1 Let A ∈ Rm×n and B ∈ Rn×k with rank(B) = n then the following state-
ments hold:

1. rank(A) = rank(AT )

2. rank(AB) = rank(A)

�

Property 2 Let A ∈ Rn×n, then:

A is non-singular ⇐⇒ rank(A) = n, i.e. A has full rank

�

So from the first statement of property 1, for KT ∈ R(2N+2)×(N+1) it follows that
rank(KT ) = N + 1.

M̃ ∈ R(2N+2)×(2N+2) is the diagonal matrix with elements mi + didt + sidt
2 for i ∈

[1, 2, . . . , 2N + 2] which is non-singular since mi, di and si are never zero at the same
value for i. Hence, rank(M̃−1) = 2N + 2.

Now, by expanding the second statement of property 1 to a product of three matrices,
we can determine that:

rank(KM̃−1KT ) = rank(KM̃−1) = rank(K) = N + 1 (4.24)

So KM̃−1KT is of full rank and therefore by property 2 it is non-singular.
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The solving process schematically can be summarized as follows:

Given an initial condition at some time stage n: q(n) and Y(n).
Step 1: Solve (4.22) which gives p(n+1)

Step 2: Use result from step 1 in (4.19), this gives q(n+1)

Step 3: Use result form step 2 in (4.23) to calculate Y(n+1)

Repeat the steps for n = n + 1 until the final time stage is reached. Schematically
this is given in figure 4.6.

Figure 4.6: The schematic process for solving the implicit cochlea model

4.5 Differential algebraic equations

The choice for an implicit method for the cochlea is not only made because the equations
work out pretty well. There is some more mathematical background behind this problem.
Therefore, consider the KVL’s once again (for simplicity the boundary condition e is left
out and added later):

M q̇(t) = KTp(t)− g(q,y) (4.25)

KT : RN+1 7−→ R2N+2 maps p through the difference ∆p to a KVL for every branche
with flux q, and it is the transpose of K which comes from the KCL:

Kq(n+1) = 0 (4.26)

which maps the fluxes q towards solutions for p. Every timestep (4.25) and (4.26) are
solved. This system is an example of a Differential Algebraic Equation (DAE). As the
name suggests it is a system which contains both a differential part and an algebraic
equation emerging from the singular part, this part is called the algebraic constraint. A
more formal definition of a DAE is given by [10]:

Definition 2 A Differential Algebraic Equation (DAE) system is a set of differential
equations which can be expressed in general form as:

F (t, q̇, q,p) = 0 (4.27)

where F : R1+2n+m 7−→ Rn , F is singular (i.e. rank(∂F∂q ) < n), u ∈ Rn and p ∈ Rm the
input of the system.
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�

To see the connection of our problem with the definition write the system of (4.25) and
(4.26) as:

F (t, q̇,q,p) =

{
F1(t, q̇,q,p) = −M q̇(t)− (p(t)− g(q,y)) = 0

F2(t,q) = Kq(n+1) = 0
(4.28)

We can now see that the differential part is given by the KVL’s and the algebraic part,
which is often called the constraint, by the KCL. Actually, an ODE-system is a special
case of a DAE where no algebraic part is present.
The system of (4.28) still has the secret assumption that M is non-singular. However,
when the ME is incorporated some values of m may be zero leaving zero rows in M . So,
M is becoming a singular matrix and some of the KVL’s in (4.25) lose their dependence
on u̇. In DAE theory this means these KVL’s will become members of the algebraic part
of the DAE. This means that initially the circuit model of the cochlea is a DAE-system
with a nested DAE-system in the differential part showing itself when the ME is added
to the cochlea.

So what is the difference between an ODE and a DAE in developing a solution method?
The measure that defines the distance between a DAE and an ODE is given by the
definition of an index [10].

Definition 3 The differential index of a DAE system is the minimum number of times
that all or part of the implicit differential equation of (4.27) must be differentiated with
respect to t in order to determine q̇ as a continous function ψ(t, q,p).

�

It is easily seen that an ODE has index 0 since the differential is already given explicitly
q̇ = F (q,p). The equations of motion of real time mechanical systems (as we are having
in the cochlea model) often have index 3 or higher [9]. The index will not be worked out
for the cochlea model, but the main message is finding a numerical method to solve these
equations. Systems of higher order index often pose difficulties for applying numerical
algorithms. A variety of problems such as robustness, error estimation and ill-conditioning
emerge because of poorly conditioned constraints. However, these constraints are required
by the physics and there are methods to reformulate DAE’s to overcome these problems.
An other problem is the drift-off effect ; the numerical solution of the transformed systems
tends to ’drift’ away from the physical solution due to numerical errors in each timestep
[9]. Solving DAE’s and developing solution theory for the cochlea model would give a
lot of research beyond the scope of this thesis and therefore we presented an alternative
treatment for the problem by an implicit numerical method.
We head back to (4.25) and (4.26) and discard the definition of g.{

M q̇(t) = KTp(t)−Dq(t)− Sy(t)

Kq(t) = 0
(4.29)

This is still the case where M is non-singular. When we enter the ME equations M
becomes singular and the algebraic part of the DAE system grows. The DAE system is
now:
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
M̃ q̇(t) = KT

nsp(t)−Dnsq(t)− SnsY(t)

0 = KT
s p(t)−Dsq(t)− SsY(t)

0 = Kq

(4.30)

The matrices indicated with subscript ns contain the non-singular part of the row equa-
tions and the singular (algebraic) part of the equations is separated from the differential
part.

A growing singular part is disadvantageous for solving so we have chosen an alterna-
tive way. Consider the system of (4.29) again and discretize the time derivative implicitly
giving:

M
q(n+1) − q(n)

dt
= KTp(n+1) −Dq(n+1) − SY(n+1)

= KTp(n+1) −Dq(n+1) − S
(
Y(n) + dtq(n+1)

)
=⇒

(
M + dtD + dt2S

)
q(n+1) = Mq(n) + dtKTp(n+1) − dtSY(n)

We see that we overcome the problem of M being singular. The matrix to invert is now
M + dtD + dt2S := M̃ which allows us to have a singular M .

q(n+1) =
(
M + dtD + dt2S

)−1
(
Mq(n) + dtKTp(n+1) − dtSY(n)

)
(4.31)

The result for q(n+1) is also valid for the algebraic part of the DAE and would give:

q(n+1) =
(
dtD + dt2S

)−1
dtKTp(n+1) −

(
dtD + dt2S

)−1
dtSY(n) (4.32)

Substitute (4.31) into the KVL of (4.30). This gives the linear system for p(n+1):

−dtKM̃−1KTp(n+1) = KM̃−1Mq(n) − dtKM̃−1SY(n) (4.33)

(4.33) and (4.31) are solved each timestep. The boundary condition −dtM̃−1KTe(n) may
be added to (4.31) and (4.33). So, by sliding forward the choice for an implicit time
discretization solves the problem of singularity of M without applying theory for DAE’s.
This idea is inspired by the solution method for solving the Navier-Stokes equations for
incompressible flow in CFD theory. The incompressiblity of fluid adds a constraint to the
differential equations which is digested by applying the implicit time discretization before
solving for p. Eventually p is calculated by the Poisson equation which we can recognize
in (4.33).

4.6 Results

The implicit cochlea model is implemented in Matlab, the code is provided in the Ap-
pendix. To validate the results of the implicit cochlea model we will run simulations and
try to reproduce the results of the explicit cochlea model, from which the code is provided
by INCAS3.
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For both time integrations, we offer a stimulus with frequency f = 1000 Hz, 60 dB
amplitude during a time interval of 100 ms. First of all, we see that both models give a
nice resonance at the characteristic position and damping through the rest of the cochlea.
Also we see a significant difference in amplitude which we will discuss later this section.
Through the frequency-place map (3.27) in section 3 and the parameters that can be
found in the Appendix we can check whether the position of the resonance agrees with
the frequency of the offered stimulus. Observe that we present the result x with the scaling
x = Lx̃, also in figure 4.7 to validate results with the INCAS3 which is implemented with
scaled variables.

fr =
1

2π

√
ss0
ms

e−
λ x
2 → 1000 =

1

2π

√
1 ∗ 1010

0.5
e−

300∗35∗10−3x̃
2 → x̃ = 0.59312 (4.34)

which corresponds to the position of the maximum displacement in figure 4.7.

Figure 4.7: (Left) Solution for u and y in the explicit cochlea model. (Right) Solution for
u and y in the implicit cochlea model.

First we discuss the choice for N = 400 and dt = 10−6, as specified in Figure 4.7, which is
not made randomly. There are some issues in the results that contaminate the robustness
of both models. Research has been done and we observe the following:

• At the helicotrema (x̃ = 1) we see small oscillations in the solution. When the grid
is not fine enough the oscillations of the explicit solution tend to explode and as
time marches onward the rest of the solution is dragged towards infinity. These
oscillations also emerge in the implicit solution but stability is preserved for every
choice of N . In future research one could possibly reconsider the modeling of the
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boundary condition at the helicotrema. For now choose N ≥ 160 to find stable
solutions for both models.

• The same problem occurs when the timestep dt is not small enough. Again the
oscillations drag the explicit solution towards infinity. Adapting N or the final time
of the stimulus do not seem to solve this problem. It is recommended to choose
dt ≤ 1.47 ∗ 10−5 for stable solutions. This maximum value for dt corresponds with
results of further stabiltity analysis at INCAS3 [11]. The implicit method however,
provides a stable solution for all choices of dt.

• From the previous two statements one may conclude that only the explicit method
gives problems due to stability but there are other aspects. Indeed the implicit
method provides stable solutions regardless the choice of dt and N , but it takes a
small dt to have convergence of the implicit to the exact solution. The explicit time
integration is a four step Runge Kutta integration which has fourth-order accuracy.
Hence, the explicit solution is quite a good indication of how the exact solution will
look like. In Figure 4.7, the choice dt = 10−6 is made and we still see a significant
difference in the amplitude of the explicit and implicit solution. Lowering dt would
improve this result at the cost of computational effort. More on the difference in
amplitude and the convergence of the method will be treated in the next section.

4.6.1 The amplitude envelope

To investigate the difference in amplitude at the resonance we provide plots of the so
called analytic signal (not to confuse with the analytic solution) using the Hilbert trans-
formation. Suppose we have a signal x(t), the analytic signal is defined:

xa(t) = x(t) + ix̂(t) = x(t) + i

(
x(t) ∗ 1

πt

)
(4.35)

where x̂(t) is the Hilbert transform. The Hilbert transform of a signal x(t) is defined as
the convolution with the function 1

πt . The idea behind this transform is the following. If
x(t) is a real-valued signal then its Fourier spectrum X(ω) = F (x(t)) is symmetric around
the zero-axis. Hence, we can discard the negative frequencies without loss of information
of the signal. This is done by multiplying with the function Heaviside step function u(ω)
and gives us the Fourier transform Xa(ω) of the analytic signal.

Xa(ω) =


2X(ω) , ω > 0

X(ω) , ω = 0

0 , ω < 0

= X(ω) · 2u(ω) = X(ω) +X(ω) · sgn(ω)

Applying the inverse Fourier transform gives the analytic signal:

xa(t) = F−1 (Xa(ω)) = F−1 (X(ω)) + F−1 (X(ω)) ∗ F−1 (sgn(ω)) = x(t) + i

(
x(t) ∗ 1

πt

)
(4.36)
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The absolute value |xa(t)| of the analytic signal is called the amplitude envelope and gives
a nice intuitive absolute plot of how the amplitude runs. It is now easier to analyze the
absolute value of the amplitude for example two extreme values of a period who would
first lie above and under the x-axis. The best way to see this is through an example plot
given in figure 4.8.

Figure 4.8: Example of signal and the corresponding analytical signal

We compute the analytical signals of the volume velocity u for both models which can be
compared in figure 4.9. The Hilbert transform can be easily performed in Matlab through
standard functions hilbert and abs.

Figure 4.9: Absolute value of analytic solution ua(x) at t = tend for the explicit and
implicit cochlea model

The analytic solution of both models seem to have the same shape and the difference
in amplitude is also visible. As mentioned before, lowering dt would result in a better
approximation of the solution of the explicit method. At the boundaries there are again
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the problems of oscillations and exploding values. These events at the boundaries do
not effect the important results at the resonance peak but are still an indication that
boundary conditions should be reconsidered.

4.6.2 Artificial diffusion

An explanation for the difference in amplitude of the solution and the observation that
lowering dt makes the solutions converge lies in the concept of artificial diffusion. We will
illustrate this with the most simple PDE, the advection equation:

ut + c · ux = 0 (4.37)

Suppose we are looking for a solution u numerically and define a grid with cell width dx
and dt in x-direction and time direction respectively. The Taylor expansions in the point
(xi, tn)can be made:

u
(n+1)
i = u

(n)
i + dt · ut +

1

2
dt2 · utt

u
(n)
i−1 = u

(n)
i − dx · ux +

1

2
dx2 · uxx

Discretize (4.37) with the explicit Euler time discretization method and plug in the Taylor
expansions. Some modifactions lead to:

ut + c · ux =
c

2
dx · uxx −

1

2
dt · utt =

1

2
c

(
1− c · dt

dx

)
dx · uxx (4.38)

This new PDE is called the modified PDE of (4.37). It can now be seen that the dis-
cretization method actually describes the PDE in (4.38) and is only an approximation
of (4.37). The modification is the right hand side which resulted from the explicit time
discretization. It contains a term uxx which is a diffusion term in PDE theory. The
diffusion term is not in the original (natural) model but created by our numerical method
(artificial) and is therefore called artificial diffusion. Reducing dx and dt will cause the
modified PDE to converge to the original PDE.

We can do the same for the implicit Euler time discretization which leads to the fol-
lowing modified PDE:

ut + c · ux =
c

2
dx · uxx +

1

2
dt · utt =

1

2
c

(
1 +

c · dt
dx

)
dx · uxx (4.39)

We see a comparable artificial diffusion with a plus instead of the minus sign in the explicit
case. The difference in artificial diffusion between implicit and explicit method is:

1

2
c

(
1 +

c · dt
dx

)
dx · uxx −

1

2
c

(
1− c · dt

dx

)
dx · uxx = cdx · cdt

dx
uxx = c2dt · uxx (4.40)

This result gives a possible explanation for the difference in amplitude of the solutions
of the two cochlea models. The solutions are separated by the artificial diffusion term
which depends on dt. An explanation for the observation that reducing dt results in
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convergence of the implicit to the explicit method. Of course it has to be said that the
PDE governing the cochlea model is much more complicated than the one in (4.37) but it
gives a nice illustration. Moreover, there is an easier way in numerical analysis to prove
the convergence of a method by Lax equivalence theorem.

Theorem 1 (Lax equivalence theorem)

For a consistent numerical method, zero-stability and convergence are equivalent.

�

A numerical method is consistent if the method has an order of accuracy O(kp) in a well-
posed problem. The implicit Euler is known to have order of accuracy O(k), so p = 1.
Furthermore we assume that the problem is well-posed, i.e. it has correct boundary con-
ditions and there exists a unique solution. For more formality and details on this topic
we refer to [3]. The general idea of consistency is sufficient to understand the statements
about convergence.

The last demand for convergence is the zero-stability of the method. Zero-stability means
that if we have the following iteration process with iteration matrix A:

q(n+1) = A(dt)q(n) (4.41)

on a finite time interval [0, tend] there exists a constant Ktend such that ‖An(dt)‖ ≤ Ktend

for 0 ≤ n ≤ tend
dt . In other words, the subsequent multiplication of A due to the iteration

process on a finite time interval remains bounded. From [3] we have the following theorem:

Theorem 2 When A is non-defect, we have the following equivalence property:

The process of (4.41) is zero-stable ⇐⇒ the spectral radius ρ of A satisfies the Von Neu-
mann condition:

ρ(A) ≤ 1 +O(dt) (4.42)

where the order constant is independent of dt and dx.

�

We will show zero-stability using theorem 2. First we have to identify the iteration matrix
A. The iteration process of the implicit cochlea model is recalled from (4.31):

q(n+1) =
(
M + dtD + dt2S

)−1
(
Mq(n) + dtKTp(n+1) − dtSY(n)

)
(4.43)

We can find the iteration matrix by identifying the terms that connect q(n+1) to q(n)

which is the matrix
(
M + dtD + dt2S

)−1
M . There are extra terms in p(n) and Y(n)

which also depend on q(n) through the Poisson equation (4.33) but these are O(dt) in the
Von Neumann condition of Theorem 2 due to the prefactor dt.

The iteration matrix
(
M + dtD + dt2S

)−1
M is the diagonal matrix with diaognal el-

ements mi
mi+didt+sidt2

∀i ∈ [0, . . . , N ] as explained in section 4.4. The first demand is that
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(
M + dtD + dt2S

)−1
M is non-defect which means that it is diagonalizable which is ob-

viously satisfied since the matrix is diagonal. Now, the spectral radius of the iteration
matrix can be calculated quite easily since the eigenvalues of a diagonal matrix are the
diagonal elements itself:

ρ
((
M + dtD + dt2S

)−1
M
)

= max
i

(
mi

mi + didt+ sidt2

)
(4.44)

To estimate the last term of (4.44) we use the Taylor Series of the function f(x) = 1
1+x

around x = 0:

f(x) =
1

1 + x
≈ 1− x+ x2 − x3 + . . . =⇒ 1

1 + x
≤ 1− x+O(x2) (4.45)

And now use (4.45) to write:

mi

mi + didt+ sidt2
=

1

1 + di
mi
dt+ si

mi
dt2
≤ 1−

(
di
mi
dt+

si
mi
dt2
)

+ h.o.t. = 1 +O(dt)

(4.46)
So the results of (4.44) and (4.46) combined prove that the condition of (4.42) is satisfied.
The O(dt)-terms in p(n) and Y(n) are added which does not change the result of (4.44)
and according Theorem 2 zero-stability is satisfied. Finally, we apply Lax equivalence
theorem to secure convergence of the implicit method of the cochlea model.
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Chapter 5

The implicit middle ear model

The aim of the past sections in this thesis was the development of a more detailed model
of the ME according to the circuit structure as in van der Raadt [4]. After we discovered
restrictions in the middle ear which cause problems for the explicit cochlea model, it was
decided to come up with an implicit version. Therefore, the last section was dedicated
to deriving the implicit cochlea model and verification with the original model. Now it
is time to use this basis for the development of an implicit ME model in the same model
structure as for the cochlea. After the developement, its results will be verified with the
results from O’Connor and Puria [1]. The ME will then be coupled to the cochlea. Some
additional simulations with the total model will be done to identify the differences and
opportunities with respect to the original model.

5.1 Circuit model and equations

The goal is to reproduce results presented by O’Connor and Puria. The original circuit
model presented in this article is given in figure 5.1.

Figure 5.1: The ME model presented by O’Connor and Puria [1]

In the previous section we already explained some assumptions regarding the ME cavity
and the implementation of the TM. Together with these assumptions we did the coupling
with the cochlea and ended with the circuit model of figure 5.2 recalled from previous
section. This is the ME model presented by O’Connor and Puria with a coupling to the
cochlea model of van der Raadt. This is the form of the model we eventually desire, but

49
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for the development of the implicit ME model we focus on the ME elements by replacing
the cochlear part of the circuit with a resistor, see figure 5.3.

......................... 
P

......................... 

N+1

Figure 5.2: The circuit model for the ME coupled to the cochlea

The reason for this simplification is not only to allow ourselves to focus on the ME
elements. It mainly has to do with the verification of our model with the model in figure
5.1. In this figure, the cochlear part is also represented with a resistor with a given
damping value dc so we copy this element. This adaption gives us the circuit model in
figure 5.3.

Figure 5.3: The circuit of the ME with simple cochlea

After verification, this implicit ME model is ready for coupling with the implicit cochlea
model.

The circuit equations in the same matrix structure are now set up as presented in the
previous section. Consider the circuit of figure 5.3. Applying the KCL gives the following
equations:


q+
tm − qmal − qtm = 0

qmal − qinc − qIM = 0

qinc − qsta − qIS = 0

qsta = qc

(5.1)

The KVL’s of all the branches can be derived:
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

ptm − pmal = mtm
∂q+tm
∂t

pmal = stm
∫
qtmdt

pmal − pinc = mmal
∂qmal
∂t + dmalqtm + smal

∫
qmaldt

pinc = dIMqIM + sIM
∫
qIMdt

pinc − psta = minc
∂qinc
∂t

psta = dISqIS + sIS
∫
qISdt

psta − pc = msta
∂qsta
∂t + dstaqsta + (ssta + sRW )

∫
qstadt

pc = dcqc

(5.2)

After time discretization of the equations of (5.2) the result can be substituted in (5.1).
An example of a row equation from the node located at the incus is given below:

− dt

mmal + dmaldt+ smaldt2
p

(n+1)
mal +(

dt

mmal + dmaldt+ smaldt2
+

dt

dIMdt+ sIMdt2
+

dt

minc

)
p

(n+1)
inc − dt

minc
p

(n+1)
sta

=
mmal

mmal + dmaldt+ smaldt2
q

(n)
mal − q

(n)
inc

− smaldt

mmal + dmaldt+ smaldt2
Y

(n)
inc +

sIMdt

dIMdt+ sIMdt2
Y

(n)
tm

(5.3)

The second fraction of the coefficient for pinc in (5.3) does not show a mass. We see that
the research and work done in the previous sections is now useful for the first time, a zero
mass at the IM joint does not form a problem in the equations.

The matrix-vector structure is exactly the same as we saw for the implicit cochlea model.
Only the elements and sizes of the matrices become different. For clarification, we present
an overview of the equations.

q(n+1) = M̃−1Mq(n) + dtM̃−1KTp(n+1) − M̃−1dtSY(n) − dtM̃−1KTe(n) (5.4)

−dtKM̃−1KTp(n+1) = KM̃−1Mq(n) − dtKM̃−1SY(n) − dtM̃−1KTe(n) (5.5)

with

q(n) =
[
q

+(n)
tm , q

+(n)
tm , q

(n)
mal, q

(n)
IM , q

(n)
inc , q

(n)
IS , q

(n)
sta , q

(n)
c

]
∈ R8

Y(n) =
[
Y

+(n)
tm , Y

(n)
tm , Y

(n)
mal, Y

(n)
IM , Y

(n)
inc , Y

(n)
IS , Y

(n)
sta , Y

(n)
c

]
∈ R8

p(n) =
[
p

(n)
mal, p

(n)
inc, p

(n)
sta, p

(n)
c

]
∈ R4
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and e(n) representing p
(n)
tm , the pressure coming from a stimulus. The matrix K has

the same structure as the matrix of (4.21) but with the size adapted for the ME, so
K ∈ R4×8. The same for the matrices M , D and S ∈ R8×8 representing the mass,
damping and stiffness elements in the ME. The equations are solved with the implicit
method in Matlab. The relevant code can be found in the Appendix.

5.2 Results

The next step is to verify the results of the implicit ME model with the results from
O’Connor and Puria. The results presented in this article can be found in figure 5.4.
Based on measurement data of various sets of human middle ears all the parameters of
the ME circuit are determined by a fitting procedure. More details of the measurements
can be found in [1].

Figure 5.4: Model ustaPtm
curves fitted through the data of measurements on different sets of

human ears. Results from other methods in previous articles, reference in [1], are added
and the cases with and without TM.

The plotted quantity is the ratio usta
ptm

[mm/sPa ]. This specific ratio is chosen since usta is
the velocity that enters the cochlear part of the model normalized by the pressure ptm
that entered the ME. Hence, the ratio of the two quantities is the transfer function in the
frequency domain. Therefore the input and output signal ptm(t) and ust(t) respectively
are Fourier transformed to ptm(ω) and ust(ω) by applying an FFT. The transfer of the
input signal through the ME not only causes the amplitude to change but meanwhile a
shift of the phase. It is plotted in units of rad

π , i.e. a phase shift of −2 is a shift of one

whole period of a signal. The top three figures in figure 5.4 give the amplitude of ptm(ω)
ust(ω)

and the bottom three the phase. The frequency range is given [0.1, 20] kHz, the hearing
range of a healthy human ear, and is plotted with logarithmic scale.

The parameters that resulted from the fitting procedure can be found Table 1 of [1].
The values for data set C (the mean of the data of all human ears measured) are copied
and used for the implicit model. The only parameters that were not explicitly mentioned
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in [1] are the mass and stiffness of the TM. Since there is no further information about
these parameters, we choose them to be in the same order of magnitude as the mass and
stiffness of other elements in the ME resulting in mtm = 103 kg

m4 and stm = 1012 kg
s2m4 . To

test the new model, this choice is sufficient. Later, these values could be tuned to fit
experimental data.

The goal is to reproduce the results in figure 5.4 to verify the functionality of the new
ME model. To get a smooth frequency spectrum of the transfer function we must have
an input signal ptm(t) that contains every frequency within the specified range. There
are two choices:

• White Gaussian noise signal A signal with a constant power spectral density over
a certain bandwidth and uncorrelated for any pair in time. This means that the
signal has equal power on every frequency within a specified frequency range and
is completely random in each sense. In acoustics engineering, but also many other
fields like statistical signal analysis, this type of signal is used. To give an idea how
such a signal looks like, an example is presented in figure 5.5. The construction of
this signal is done in Matlab through special packages for signal analysis.

Figure 5.5: A white Gaussian noise signal

• Delta function A more simple, but more theoretical option is the delta function. It
is defined as:

δ(t) = lim
n→∞

rn(t) with rn(t) =

{
n , if |t| < 1

2n

0 , if |t| > 1
2n

(5.6)

In audiology this is a rectangle of 1
n seconds and amplitude n at t = 0 and zero

amplitude anywhere else. It has the important property that follows from the
definition: ∫ ∞

−∞
δ(t)dt = 1 (5.7)

Of course, physically seen there are problems with the limit n → ∞. Producing a
spike of zero seconds and infinite amplitude in practice is impossible. However, in
many engineering applications the delta function is very useful and can be imple-
mented in a discrete way just by a vector with zero elements and one element at an
other value. The most interesting property for our topic is the Fourier transform of
δ(t).
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Figure 5.6: The delta function

δ̂(ω) =

∫ ∞
−∞

δ(t)e−iωt = 1 (5.8)

Every frequency is contained in the spectrum of the delta function in equal power.
In discrete sense, a time series with only zeros and one element a large value would
be an acceptable approximation of the delta function and moreover it is very easy
to implement. Therefore it is chosen as the input signal ptm(t) for the rest of the
section.

We send the input signal ptm(t) through the implicit ME model and provide the same
plots as in figure 5.4. Before analysis we have to consider an important factor which is the
sample frequency. When solving the model equations in a discrete way, the time grid is
divided in cells of length dt. Every dt seconds a new value of the input signal is presented
and the solution is calculated. All dynamics that take place on a time scale smaller than
dt are invisible. In terms of signal analysis, the waves with frequency higher that f = 1

dt
are filtered out of the solution. f is the highest detectable frequency and is called the
sample frequency. We need to detect the frequencies in the audible range, so at least
frequencies up to 20 kHz should be detected. However, we set the sampling frequency at
40 kHz to prevent the phenomenon aliasing. The explanation of this phenomenon is done
by considering figure 5.7. When sampling, it could happen that two signals of different
frequencies have the same value in time as can be seen in the figure. Therefore, we are not
able to distinguish these two frequencies. To prevent this, at first the sampling frequency
must be high enough to detect the frequencies of interest (the same conclusion a few
sentences ago). Moreover, to be able to see every ’bump’ in the signal every half of a
period must be detected increasing the sufficient sample frequency with a factor two. Half
of the sample frequency is called the Nyquist frequency. Since an alias frequency is not
distinguished from the real frequency the spectrum of the transfer function is the same
for these frequencies. The alias frequency lies at the other side of the Nyquist frequency
so the spectrum is symmetric around this point.
Now take a look at the results for the sampling frequencies 40 kHz and 320 kHz found in
figure 5.8 (the reason for a second sample frequency is explained later). The amplitude
at 40 kHz seems to fit the data in figure 5.4 quite nicely. A maximum transfer approxi-
mately in the middle of the audible range and decreasing when it reaches the boundaries.
Only at the highest frequency the slope seems to tend to zero where the data indicate an
ongoing descent. The reason for this is the symmetry of the frequency spectrum at the
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Figure 5.7: An example of the phenomenon ’aliasing’ in signal analysis.

Nyquist frequency. The phase plot is somewhat less positive. At lower frequencies, the
line is descending as the data of figure 5.4 demand. However, at higher frequencies this
descent stops and the phase returns to zero shift at the Nyquist frequency. The reason
for this feature is the value of the sample frequency. The sampling creates a time series of
data every dt in time. It will automatically recognize a signal perfectly in phase with this
data serie. In other words, the sample is in perfect alignment with itself. To prevent the
zero slope in the amplitude and zero phase at 20 kHz, we have to increase the sampling
frequency at the cost of simulation time. In signal analysis, it is common to perform
sampling on a frequency a few factors higher than the region of interest.

Therefore in the implicit ME model, the sampling frequency is set to 320 kHz which
resulted in the right plots of figure 5.8. We see that the zero slope has disappeared in
the amplitude which fits the data better. The phase shows better descent at high fre-
quencies since the Nyquist frequency has been shifted to the right. Still, the minimum
is visible which indicates the phase wil return to zero at 320 kHz. This could be solved
by increasing the sampling frequency much more. In [1] the used sample frequency is not
given.

More material for comparison is available by plotting other transfer functions in the ME
model. In figure 5.9, amplitude and phase plots of three other transfer functions are
compared with measurements from [1]. These transfer functions are calculated in the
implicit ME model as well. Results are presented in figure 5.10.

Again, there is a good agreement of the results of our implicit model with the data
provided in figure 5.9. We can conclude that we have an ME model rewritten in implicit
form which shows results similar to models presented in the literature.

5.3 Adding the cochlea to the ME

The cochlea in the model from the previous section (figure 5.1) was kept simple. We
have presented some nice results when solving this ME model implicitly which provided
validation with results of [1]. It is time to couple this ME model to the cochlea model
and solve the total ear model implicitly. The associated circuit model was already given
in the previous section in figure 5.2. So the difference between the models is the cochlear
part where we had the simple cochlea represented by a single resistor dc and the new total
ear model where the cochlear part is the cochlea model described in 3. The equations of
both model are implemented in Matlab (for the code, see the Appendix). To illustrate
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Figure 5.8: Amplitude and phase plots of the transfer function usta
Ptm

of the implicit ME
model for two different sample frequencies.

Figure 5.9: Model curves from three other transfer functions in the ME compared with
measurement data. umal, uinc and usta have notation Vu, Vi and Vst respectively

the consequences of coupling the cochlea model, the same transfer plots are made for this
model and compared to the version with the simple cochlea in figure 5.11.
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Figure 5.10: Amplitude and phase plots of three transfer functions in the implicit ME
model at a sample frequency of 320 kHz.

Figure 5.11: Amplitude and phase plots of the transfer functions of (1) the implicit ME
model with simple cochlea and the implicit ME model with implicit cochlea model at a
sample frequency of 320 kHz.

In both models, we are still measuring frequencies in the stapes. The amplitude plot
(left) indicates a faster decay of the transfer function at higher frequencies. A possible
explanation is the distance that waves from the stapes have to endure. The characteristic
position of lower frequencies on the BM is more distant from the stapes than for higher
frequencies. Effects on velocity formed at these positions have to endure more circuit
elements which could cause more damping of these effects than the case where the whole
cochlea is trapped in one element neighbouring the stapes. When frequencies get higher,
these distances play a minor role and the transfer function tends to go back to the be-
haviour of the model with the simple cochlea. The difference of the total cochlea and a
single resistor is also given in figure 17 of [2]. Only at a specific frequency or frequencies
in the neighbourhood of this frequency a single resistor would be sufficient to model the
transfer in the cochlea but covering the whole frequency spectrum is not possible.
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The phase plot also shows a faster decay at lower frequencies and more similarity with
the simple cochlea at higher frequencies. The places where the curves meet again is at
the same frequency as for the amplitude plot at approximately 6 kHz followed by a quite
similar behaviour. However, we see the phase going up again above 15 kHz. To avoid any
misunderstading, the phase is not passing through zero at 20 kHz. The human cochlea is
not able to detect frequencies above 20 kHz. The cochlea model and its parameters are
based on these facts and therefore analysis of the model above 20 kHz is not relevant.

It is very important to keep in mind that the results above are not correct or wrong
in a certain sense. There are different choices possible for the influence of the cochlea.
The first model used one resistor with damping dc to focus on the development of the
ME model. The cochlea model itself uses a damping function d(x) which is also a simpli-
fication since it only represents the linear part of the damping. Moreover, the ME model
parameters are based on the fitting of data in [1]. Two model parts based on different
articles (although very alike in approach) are glued together which could lead to some
contradictions in the choice for parameters. As specified earlier, there are different choices
for nonlinear damping functions which should be added to the linear damping. Further
tweakening of the parameters could then be done by considering more audiological data.

5.4 Implementation of nonlinear damping

The damping is divided into a linear part and a nonlinear part. The linear part is based on
s(x) and for the nonlinear damping different choices exist. Remind from the mechanical
oscillator the definition of the damping factor δ: δ = d√

ms
. With s = s(x) from (3.26)

and δ a given constant the damping becomes:

d(x) = dL(x)dNL(x) with dL(x) =
δ

b∆X

√
msss(x) =

δ

b∆X

√
msss0e

−λx/2 (5.9)

Definition 4 A function f mapping an input variable x(t) to an output variable y(t) is
linear if and only if for all constants α1, α2 and combination of inputs x1, x2 holds:

f(α1x1 + α2x2) = α1f(x1) + α2f(x2) (5.10)

�

The function f may also be interpreted as a linear system mapping an input signal X(t)
to an output signal Y (t) by matrix multiplication. As long as these matrices are constant
and the statement in definition 4 holds we consider linear systems. In particular in signal
analysis, where linear systems play an important role, the mapping of the input X(t) to
the output Y (t) is explicitly defined by a convolution product with the transfer function
H(t).

Y (t) = H(t) ∗X(t) =

∫ ∞
−∞

H(τ)X(t− τ)dτ (5.11)

Calculations with integrals in convolution integrals could be very difficult and time con-
suming and therefore in signal analysis often the analysis is done in the frequency domain
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by applying the Fourier transform F . This has the big advantage of the property that if
for example X(ω) = F (x(t)) the Fourier transform of x(t), (5.11) is equivalent with:

Y (ω) = H(ω)X(ω) (5.12)

This result makes analysis much more easier if we transform the system to the frequency
domain. A linear transfer function indicates per frequency the modification of the ampli-
tude of the input and a possible delay T in the phase such that we can write:

y(t) = A · x(t− T ) (5.13)

However, not every feature in signal processing can be explained by linear systems. An
important example in cochlear modeling can be found in the concept of OAE’s, explained
in section 2. When a signal with more than one frequency is presented to the cochlea
we are able to pick up a response containing frequencies which were absent in the stim-
ulus. In the case of two frequencies f1 and f2 with f1 < f2, a third frequency 2f2 − f1

emerges. This is called the distortion product and and it is clearly formed by the pro-
cessing in the cochlea. A linear transfer function described by (5.13) is obviously not able
to generate distortion products which is a clue for nonlinear processing in the cochlea.
OAE’s formed by distortion products are called distortion product OAE’s (DPOAE’s)
and are an excellent tool to study nonlinear behaviour of the cochlea [2]. Since we need
nonlinear systems in cochlear modeling we do not have the comfort of the property in
(5.12) anymore. Therefore, the development of the cochlea model should be done in the
time domain. The advantage of time domain analysis is that model parameters which
were chosen time-independent can now be adapted over time. It is the same idea as a
feedback system where the systems transfer is adapted each timestep using the infor-
mation of the previous timesteps. This brings us back to the nonlinear part dNL of the
damping d. Different choices for dNL are possible to fit experimental data, some examples:

Van der Pol model [5]

dNL(y) = 1− y2 (5.14)

Duifhuis nonlinear damping [2]

dNL(u) =
χsinh(αu)

αu
− γ

cosh(βu)
(5.15)

The proposed functions for d depend on the solutions for u or y which depend on time.
Hence the value for d is being updated every timestep. The key concept of modeling
active behaviour of the cochlea is the application of a nonlinear damping function. We
will implement the nonlinear damping function proposed by van Hengel [2] in our new
model and run tests to see whether we are able to model active behaviour. The nonlinear
damping function is given:
A plot of this function is given in figure 5.12. The first problem we have to recognize is
the time-dependence of the damping since d(u) = d(u(t)). If we move back to the solving
process of the system where the Poisson equation and u(n+1) (see (4.33) and (4.32) in
section 4.5) are solved. Since M̃ contains d(u(t)), the inverse of KM̃−1KT has to be
calculated each timestep instead of one time at the start of the process. This will have
consequences for the amount of computations. In the case of the explicit method, d was
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Figure 5.12: Plot of the nonlinear damping term with χ = 1, α = 104, β = 106 and γ = 2.

incorporated in the right hand side of the system. Although this right hand side should be
recalculated every timestep, it is cheaper than the calculation of an inverse so this is really
a downside of the implicit method. In practice however, the systems in cochlear model-
ing are not large since the amount of hair cells is on the BM is limited. Calculating the
inverse matrices of size N = 400 every timestep is not a problem for computers nowadays.

The damping function is plotted for an interval of absolute values of |u| that are rel-
evant for the cochlear system. In this interval, the damping has a negative part and
positive part. The velocity where the damping changes sign depends on the choice for
the parameters in (5.15). We fix α = 104 and by increasing β the intersection with the
|u|-axis slides to the left. For the plot in figure 5.12, and in the rest of the paragraph,
β = 106. The values of χ with respect to γ is important. At small velocities, the fraction
with γ is dominant. If γ > χ, negative damping will occur and active behaviour will arise.
For now, we choose χ = 1 and for the moment we set γ = 0.5 which implicates passive
behaviour since γ ≤ χ. We follow [2] further by choosing the Greenwood place-frequency
map:

fr(x) = A · 10−ax − f0 (5.16)

with given constants A, a and f0 (see the Appendix). The stiffness s(xi) = 4π2fr(xi)
2

and the linear part of the damping is still coupled to the stiffness through the resonance
relation dL(xi) = δ

√
m · s(xi) (see section 3.2). We run the model for both linear and

nonlinear damping by presenting a stimulus with frequency 1000 Hz during 0.5 s. The
Nyquist frequency is 6 kHz.

The first results are presented in figure 5.13. We measure the pressure (dB) in the ear
canal and produce the frequency spectrum. The total time frame of 0.5 s is cut into fifty
small frames (left plots) and the average of these frames is taken (right plots) to filter
out events that do not occur on a regular basis. Clearly, we can see the difference that
the nonlinear damping term brings. In both cases we see a clear peak at 1000 Hz coming
from the stimulus and in the linear case further silence (the low-frequent behaviour does
not have to be considered). The nonlinear plots on the contrary, seem to give more
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Figure 5.13: The occurence of distortion products in spectra of the pressure response at
a stimulus of 1000 Hz.

peaks at multiples of 1000 Hz. These are the distortion products explained earlier this
section which are directly linked with the theory of nonlinear behaviour. The peaks lie
at multiples of 1000 Hz because of distortion of the stimulus with itself. The peaks of
the products decay very fast but at odd multiples they are higher. This agrees with
information about distortion products given by Duifhuis [5]. There is given a complex
calculation for the amplitude of the peaks which we will not perform in this thesis. The
most important result is that this is the first sign of nonlinear behaviour in the implicit
model.

5.4.1 Active behaviour

To study active behaviour, we set a few positions next to each other at γ > 1 which will
represent the active part of the cochlea. This idea is presented in [2] where γ = 2 is a
regular choice, but we will choose γ more crude to detect active behaviour more easily.
For the test phase of the model this is satisfied, for OAE simulations and real life results
γ should be chosen more subtle. The frequency of active behaviour is chosen 1567 Hz
(same as in [2]) and with (5.16) we determine its characteristic position to change γ.

We will run the model with no external stimulus presented to the ear. The velocities
within the system are set randomly within the interval of figure 5.12 to give the system
an initial energy. The model is ran for 4 s at the same Nyquist frequency (6 kHz) for
different values of γ at the characteristic position where we also measure the velocity. We
only have N=20 oscillators instead of the regular number of N=400 to save simulation
time, the simulation will now only take approximately a minute, and N = 20 is sufficient
to present active behaviour. The frequency spectra of the measurements are given in
figure 5.14.
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Figure 5.14: Spectra of
velocity measurements at
the characteristic posi-
tion of fr = 1567Hz.
(upper) No active be-
haviour is set at fr, γ =
0.5, (middle) the active
behaviour is visible by
setting γ = 10, (lower)
the active behaviour is
made more clear by in-
creasing γ = 20

The first plot gives the situation of a totally passive cochlea. This spectrum is comparable
with the spectra of figure 5.13 without the peak at 1000 Hz since we have no external
stimulus. The second plot is the case of an active cochlea with γ = 10 at the characteristic
position. Now we see the birth of frequencies at particular places due to the cochlear
activity. Frequencies seem to gather at certain peaks where other frequencies just follow
the original result. To emphasize this phenomenon a bit more, also a spectrum with
γ = 20 is given in the third subplot. We see the peaks arising at the same frequencies
and becoming more clear due to the stronger negative damping.
Since N is very low, not much information can be collected from the position of the peaks.
Therefore, we present two equivalent simulations with N = 200, 400 to compare, see figure
5.15. We see that the peaks concentrate more around the dominant peaks. The location
of the peaks seem to tend more to the characteristic frequency of 1567 Hz but it is not
clear whether it actually converges to this frequency as N is increased.

The most important conclusion is the fact that our new model is capable of handling
nonlinear damping functions to simulate active behaviour of the cochlea. By testing with
crude choices for negative damping, we observed the formation of distortion products and
the birth of peaks in the spectra where only a random initial velocity was applied. In the
future, results could be tuned more to verify results with other work, for example in [2].
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Figure 5.15: Spectra of the velocities Active behaviour at the characteristic position of
fr = 1567Hz for a bigger amount of oscillators. (upper) N = 200, (lower) N=400
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Chapter 6

Conclusion and future research

The objective of this thesis was to derive and implement a more detailed circuit model of
the middle ear. The mathematical basis for the cochlea model has been laid by van den
Raadt in [4]. To understand the mathematics behind cochlear modeling and to set up
terminology we followed the approach of this article in great detail. With this knowledge
of the cochlea we were able to couple the ME model presented by [1] to the cochlea model
of [4].

Derivation of the set of circuit equations for the ME part in the same structure as for the
cochlea turned out to be problematic. The mass term in the cochlea was absent in the
ME equations due to the difference in physiology. This zero mass resulted in singulari-
ties in the ME equations. The mathematical translation of this problem is an algebraic
constraint to the differential equations that govern the dynamics. This brought us to the
theory of differential algebraic equations (DAE’s) having its applications in a lot of other
fields in engineering such as robotics.

The problem is solved however by choosing the time integration method before discretiz-
ing the circuit equations. Inspired by the theory from fluid dynamics, we replaced the
explicit Euler method with an implicit Euler method for solving the differential equations
in time which resulted in a reformulation of equations of the solving method. The zero
mass was not causing singularities in the equations anymore, making the implicit method
suitable for solving the ME equations.

Consequently, to be able to perform coupling with the ME, the cochlea model of [4]
had to be rewritten in an implicit way first. The implicit cochlea model was implemented
and verified with the original model by comparing simulation results from the cochlea
model of INCAS3. Solutions of both models seem to have problems at the boundaries
implicating that these boundary conditions could be reconsidererd in the future, though
results at the resonance do not seem to be influenced by the boundary effects. Finally,
some bounds were specified to the mesh size and timestep to secure numerical stability
and convergence of the results.

The ME model was derived and implemented in the same implicit structure as for the
cochlea. Its correctness was verified by the simulation results presented in [1]. The im-
plementation of the tympanic membrane had to be studied in more detail since its model

65
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structure was not given explicitly in [1]. We chose to model the membrane as a single
transmission line based on the suggestion by [7].

The two implicit models for the cochlea and the ME were then coupled and some results
were presented to indicate the effects of the coupling. The most important functionality
for future research is to be able to model OAE’s and therefore we have sought to show
the capabilities of the new model on this subject. A nonlinear damping function was
implemented in the implicit model to verify whether the model is capable of simulating
an active cochlea, the origin of OAE’s. Results of simulations show signs of an active
cochlea making the new model suitable for research to OAE’s. These results however are
still rough indications and relative high negative damping coefficients have been chosen
to provide clear results. The simulation results are quite raw and audiological knowledge
will have to extend the research to obtain a better interpretation of the results. In the
future, the model should be polished to get more subtle results which can be verified
with the simulation results of nonlinear cochlae in [2]. Especially, the parameters of the
tympanic membrane could be tuned since the choice for these parameters is accurate up
to an order of magnitude.

The implementation of the ME model is based on the simplest implicit time integration
method we know, the Backward Euler Method. The simplicity and its implicit structure
were ideal to develop the implicit ME and cochlea model. More options for implicit time
integration methods could be investigated in the future to optimize the solving process.
This could lead to more accurate results and better numerical efficiency.

In audiology, the development of a time domain cochlea model has made some progress.
The ME is written out in more mechanical elements representing the functionality of each
individual element much better. More parameters can now be varied to investigate their
individual influence on the simulation results and optimized to fit experimental data. In-
spired by other fields in engineering like fluid dynamics and electronics, we introduced the
implicit method in cochlear modeling for the sake of improvement of solving the middle
ear model.



Appendix A

Tables of constants and
parameters

Constant Value Unit Description

L 35 ∗ 10−3 m Length of the cochlea

b 1 ∗ 10−3 m Width of the basilar membrane

h 1 ∗ 10−3 m Height of the SV and ST

N 400 Number of oscillators in cochlea

Ast 3 ∗ 10−6 m2 Area of the stapes

At 60 ∗ 10−6 m2 Area of the eardrum

ρ 1 ∗ 103 kg
m3 Density of cochlear fluid

ms 0.5 kg
m2 The specific acoustic mass in the cochlea

δ 5 ∗ 10−2 The damping factor in the cochlea

ωrm 2π ∗ 2000 rad
s Resonance frequency of the ME

δm 2.5 Damping factor at the ME

nt 30 Transformation factor of the ME

Zsa 415 Ns
m3 Specific acoustic impedance of air

t̂0 1 ∗ 10−3 s Characteristic time

ŷ0 1 ∗ 10−9 m Characteristic length in y-direction

∆X̃0
1

400 Dimensionless distance between ME and first oscillator

λ 300 m−1 Parameter for the relation between place and stiffness

ss0 1 ∗ 1010 kg
m2s2

Specific acoustic stiffness constant
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Symbol Formula Unit Description

Av bh m2 Area of the scalae

∆X̃ 1
N Dimensionless distance between two oscillators

∆t s Timestep in time integration

u m
s Velocity

y ∂u
∂t m Displacement

q m3

s Flux or volume velocity

Y ∂q
∂t m3 Volume displacement

p kg
ms2

Pressure

m ms

bL∆X̃

kg
m4 Acoustic mass

mc
ρ∆X
bh

kg
m4 Acoustic mass of cochlear fluid

mc0
ρL∆X̃0

h
kg
m4 Acoustic mass of cochlear fluid at the ME

mh
πρ
2b

kg
m4 Acoustic mass of the helicotrema

mm
n2
tZa
ωrmδ

kg
m2 Acoustic mass of the ME

d kg
m4s

Acoustic damping

dm n2
tZa

kg
m4s

Acoustic damping of the ME

s kg
m4s2

Acoustic stiffness

sm
dsmωrm

δ
kg
m4s2

Acoustic stiffness of the ME

Za
Zsa
At

Ns
m5 Acoustic impedance of air

ms
c

ρL2∆X̃2

h
kg
m2 Specific acoustic mass of cochlear fluid

ms
c0

ρL∆X̃0

h
kg
m2 Specific acoustic mass of cochlear fluid at the ME

ms
h

πρL∆X̃
2

kg
m2 Specific acoustic mass of the helicotrema

ms
m

n2
tZabL∆X̃
ωrmδ

kg
m2 Specific acoustic mass of the ME

ds kg
m2s

Specific acoustic damping

dsm n2
tZabL∆X̃ kg

m2s
Specific acoustic damping of the ME

ss kg
m2s2

Acoustical stiffness

ssm
dsmωrm

δ
kg
m2s2

Specific acoustic stiffness of the ME



Appendix B

Matrices for the implicit total ear
model

To visualize the structure of the matrices in implicit circuit model equations, the matrices
for the implicit total ear model are given below. The matrices of the implicit cochlea and
middle ear model are submatrices of the ones for the total ear.

• M = diag



mtm

0
mmal

0
minc

0
msta

m
2mc

m
2mc

...
m

2mc

m
2mc +mh



, D = diag



0
0

dmal
dIM

0
dIS
dsta
d1

0
d2

0
...

dN−1

0
dN
0



, S = diag



0
stm
smal
sIM

0
sIS

ssta + sRW
s1

0
s2

0
...

sN−1

0
sN
0



∈ R(2N+7)·(2N+7)

• e(n) =


− ntdt
mm+dmdt+smdt2

p
(n)
tm

0
...
0

 ∈ RN+3
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Appendix C

Matlab code of the developed
models

% An implementation of the implicit middle ear model coupled with the

implicit cochlea model

%

%

% Author: Oscar Heslinga

% Version: 0

% Date: 24/9/2013

% Copyright: INCAS3 , The Netherlands

%

%

%

% input_parameters:

%

% - t_end: Total time of simulation in seconds (real time)

function [] = total_ear_model(t_end);

% Parameter list (based on Table 1 O’Connor and Puria

b = 1e-3; % [m] width scalae (page 19)

L = 35e-3; % Length of the cochlea

h = 1e-3; % [m] height of scalae (page 3)

S_sc = 1e-6; % [m^2] cross sectional area of the cochlea

rho = 1e3; % [kg/m^3] density of cochlear fluid

m_s = 0.5; % [kg/m^2] specific acoustic mass BM

s_st = 3e-6; % [m^2] area of a segment (stape)

S_t = 60e-6; % [m^2] area of eardrum

omega_rm= 2*pi *2000; % [rad/s] resonance frequency of midear

delta = 2.5; % reciprocal of the Q factor of the midear

n_t = 30; % transformation factor of the midear

Z_s = 415; % [Ns/m^3] Specific acoustic impedance of air

p_ref = 2e-5; % [Pa] reference pressure , equals 0 dB SPL

s_0 = 1e10; % [Pa/m] specific acoustic stiffness constant

lambda = 300; % [/m] parameter for frequency -place map

epsilon = 5e-2; % modulation factor for a resonator

% Parameters in the middle ear

A_tm = 6.0e-5; % [m^2] Area of the TM
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% Estimated parameters for the TM

m_tm = 1e3; % [kg/(m^4)] acoustic mass of TM

s_tm = 1e12; % [kg/(s^2m^4)] acoustic stiffness of TM

m_mal = 3.24e-6; % [kg] mass of the malleus

d_mal = 0.140; % [kg/s] damping of the malleus

s_mal = 504; % [kg/s^2] stiffness of the malleus

N_LR = 1.3; % Lever ratio of the IM joint

d_IM = 4.56e-2; % [kg/s] damping of the IM joint

s_IM = 1.46e3; % [kg/s^2] stiffness of the IM joint

m_inc = 7.30e-6; % [kg] mass of the incus

d_IS = 3.04e-2; % [kg/s] damping of the IS joint

s_IS = 10.0e3; % [kg/s^2] stiffness of the IS joint

A_fp = 3.14e-6; % [m^2] Area of the stapes footplate

m_sta = 3.55e5; % [kg/m^4] acoustic mass stapes

d_sta = 1e10; % [kg/(sm^4)] acoustic damping stapes

s_sta = 0.81 e14; % [kg/(s^2m^4)] acoustic stiffness stapes

s_RW = 0.3 e14; % [kg/(s^2m^4)] acoustic stiffness RW

d_c = 1.99 e10; % [kg/(sm^4)] acoustic damping cochlea

p_ref = 2e-5; % [Pa] reference pressure , equals 0 dB SPL

% Determine whether we want to use dimensionless variables

% (only possible for the cochlea model yet)

set_dimless = 0;

if set_dimless == 1 % Dimensionless variables

t_0_hat = 1e-3; % [s] characteristic time scale

x_0_hat = 35e-3; % [m] characteristic length scale

y_0_hat = 1e-9; % [m] characteristic amplitude scale

else % No dimensionless variables

t_0_hat = 1; % [s]

x_0_hat = 1; % [m]

y_0_hat = 1; % [m]

end

% Grid settings

freq_max = 6e3; % [Hz] The Nyquist frequency

dt = 1/(2* freq_max*t_0_hat); % [s] time step (1/ samplefreq)

t_stim = 0:dt:t_end; % Set up grid in time

N_t_stim = length(t_stim); % Time stages stimulus

t_part = 0.05; % cut time grid in frames

% for non -linear analysis

N_t_part = floor(t_part ./dt); % Time stages in frame

N = 400; % Grid cells cochlea

dx_01 = L/(N*x_0_hat); % midear segment length

dx = (L-dx_01 -h)/(N*x_0_hat); % length of segment in cochlea

x = [ 0, dx_01 : dx : ... % the place vector

(L-h)/x_0_hat ];

u = zeros( 2*N+7, 1 ); % initial velocity vector

y = zeros( 2*N+7, 1 ); % initial displacement vector

y_ref = zeros( N,1 ); % zero reference line for plot
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p = zeros( N+4, 1); % initial pressure vector

% Parameters for the logartithmic Greenwood place -frequency map

a = 65.1; % [/m]

A_g = 17.927 e3; % [Hz]

f_0 = 145.4; % [Hz]

f_OAE = 1567; % [Hz] Frequency where OAE can

% be detected in Greenwood map

beta_OAE = 0.1e6; % beta value for the place

% where an OAE can be detected

gamma_OAE = 20; % gamma value for the place

% where an OAE can be detected

% Parameters for the non -linear damping term

alpha = 1e4;

beta = 1e6;

gamma = 2;

chi = 1;

% Greenwood place -frequency map

f_r = A_g *10.^( -a.*x(2:N+1)) - f_0;

% Transformation parameters to the acoustic domain , middle ear part

m_mal = m_mal/A_tm .^2; % [kg/m^4] acoustic mass malleus

d_mal = d_mal/A_tm .^2; % [kg/sm^4] acoustic damping malleus

s_mal = s_mal/A_tm .^2;% [kg/s^2m^4] acoustic stiffness malleus

d_IM = d_IM/(A_tm*N_LR).^2; % [kg/sm^4] acoustic damping IM

s_IM = s_IM/(A_tm*N_LR).^2; % [kg/s^2m^4] acoustic stiffness IM

m_inc = m_inc/(A_tm*N_LR).^2; % [kg/m^4] acoustic mass incus

d_IS = d_IS/(A_tm*N_LR).^2; % [kg/sm^4] acoustic damping IS

s_IS = s_IS/(A_tm*N_LR).^2;% [kg/s^2m^4] acoustic stiffness IS

% Acoustic with middle ear transformers taken into account

m_sta = m_sta*A_fp .^2/( A_tm*N_LR).^2; % [kg/m^4] acoustic mass

% of the stapes

d_sta = d_sta*A_fp .^2/( A_tm*N_LR).^2; % [kg/sm^4] acoustic

% damping of the stapes

s_sta = s_sta*A_fp .^2/( A_tm*N_LR).^2; % [kg/(s^2m^4)] acoustic

% stiffness stapes

s_RW = s_RW*A_fp .^2/( A_tm*N_LR).^2; % [kg/(s^2m^4)] acoustic

% stiffness round window

d_c = d_c*A_fp .^2/( A_tm*N_LR).^2; % [kg/(sm^4)] acoustic

% damping of the cochlea

% Further acoustic mass , damping and stiffness in cochlea

m_h = rho*pi/(2*b);

m_c = (rho*x_0_hat*dx)/h;

m_s = m_s/(b*x_0_hat*dx);

% Set up grid for the time stages to plot or write data

t = 0:dt:t_end; % Set column vector for the time
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N_t = length(t); % Number of timestages

number_plots = 10; % Number of stages user wants plot

plot_time = floor(N_t/number_plots); % Time stage for a plot

number_frames = 50;

frame_time = floor(N_t/number_frames); % Time one time frame

frame_nr = 1;

% Construction of external stimulus

signal_type = ’diracdelta ’; % Choose the type of stimulus

if signal_type == ’puresignal ’ % Stimulus one frequency signal

omega_1 = 1; % parameter to smooth -start the signal

f_1 = 1000; % [Hz] frequency of the signal

L_dB = 60; % Sound pressure of stimulus in dB

p_AM1 = p_ref *10^( L_dB /20); % [Pa]

% The input stimulus during one time frame

p_e (1: N_t_part ,1) = ...

p_AM1*omega_1*sin(2*pi*f_1*t_stim (1: N_t_part));

p_e(N_t_part +1: N_t_stim) = 0;

elseif signal_type == ’diracdelta ’ % Stimulus Dirac function

p_e = zeros(N_t_stim ,1);

p_e (5) =10;

elseif signal_type == ’whitenoise ’ % Stimulus is white noise

p_e (1: N_t_stim ,1) = wgn(N_t_stim ,1,60,’dBW’);

p_e = p_ref*p_e; % Transfer units dB Volt to dB SPL

elseif signal_type == ’nostimulus ’

p_e = zeros(N_t_stim ,1); % No stimulus is presented

end

% A random initial velocity is chosen to put energy into the system

u(8:2:2*N+7,1) = ...

randn(N,1).*sort(b*dx *([10.^( -7+4* rand(N,1))]));

% Place mass , damping and stiffness in vector form

m(1:7 ,1)= [m_tm 0 m_mal 0 m_inc 0 m_sta];

m(8:2:2*N+7,1) = [m_s];

m(9:2:2*N+7,1) = [2*m_c];

m(2*N+7,1) = [2*m_c+m_h];

s(1:7 ,1) = [0 s_tm s_mal s_IM 0 s_IS s_sta+s_RW];

s(8:2:2*N+7,1) = m_s*4*pi.^2* f_r .^2;

s(2*N+7,1) = 0;

d(1:7 ,1) = [0 0 d_mal d_IM 0 d_IS d_sta];
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d(2*N+7,1) = 0;

% Linear damping function

d_L (8:2:2*N+7,1) = epsilon*sqrt(m_s*s(8:2:2*N+7,1));

% set the gnuplot toolkit if working in Octave @ INCAS3

% graphics_toolkit(’gnuplot ’);

% Loop through the simulation process

disp(’start of simulation ’);

for n = 1:N_t

% Column vectors for damping which are non -linear

d_NL (1:N,1) = chi*sinh(alpha .*u(8:2:2*N+7,1)./(b*dx))...

./( alpha .*(u(8:2:2*N+7,1)./(b*dx)))

- gamma ./( cosh(beta.*u(8:2:2*N+7,1)./(b*dx)));

% Option to locate an other value for beta at a certain frequency

x_OAE = (-1/a)*log10(( f_OAE+f_0)/A_g); % position in the cochlea

% where f_OAE resides

% according to Greenwood

[x_OAE_approx ,x_OAE_ind] = min(abs(x-x_OAE)); % Determine index of

% the element in x

% closest to x_OAE

% Set active part in non -linear damping

d_NL([x_OAE_ind -1: x_OAE_ind +1] ,1) = ...

chi*sinh(alpha.*u(8+2*( x_OAE_ind -1) ,1)./(b*dx))...

./( alpha .*(u(8+2*( x_OAE_ind -1) ,1)./(b*dx))) - ...

gamma_OAE ./( cosh(beta_OAE .*u(8+2*( x_OAE_ind -1) ,1)/(b*dx)));

d(8:2:2*N+7,1) = d_L (8:2:2*N+7,1).*d_NL; % Update damping function

% Construction of system matrices

% Construction of M and S

for i = 1:2*N+7

M_tilde_inv(i,i) = 1./(m(i)+ d(i)*dt+s(i)*dt.^2);

end

M = diag(m);

S = diag(s);

% Construction of K and G

for i = 1:N+3

K(i,2*i -1:2*i+1) = [-1 1 1];
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end

% Input construction

e = zeros (2*N+7,1);

I = eye(2*N+7);

% Construction of iteration matrix of q

A = dt*K*M_tilde_inv*K’;

invA = inv(A);

% Input pressure of the system

e(1,1) = dt*M_tilde_inv (1,1)*(p_e(n));

% Poisson equation and implicit update of u

p = -invA*K*( M_tilde_inv*M*u - dt*M_tilde_inv*S*y + e);

u = M_tilde_inv *(M*u + dt*K’*p - dt*S*y) + e;

% Implicit time integration of discplacement

y = y + dt*u;

% Write velocity , pressure and displacement cochlea entrance

% in vector for later analysis

v_st(n,1) = u(7,1)*1e3/(A_tm*N_LR);

p_EC_column(n-frame_time *(frame_nr -1) ,1) = p(1,1);

u_data(n,1:3) = [u(x_OAE_ind ,1) u(1,1) u(8,1)];

% Plot lines for u,y during simulation

if rem( n , plot_time ) == 0 || n==N_t

subplot (2,1,1), plot(x(2:end -1) ’, u(8:2:2*N+7,1), ...

’g’, x(2:end -1) ’, y(8:2:2*N+7,1), ’r’, x(2:end -1) ’...

, y_ref , ’k’);

title( sprintf(’Implicit progress %.2f steps , ...

N = %.2f, t = %.2f ’, n, N, t(n) ) );

axis(’tight ’);

drawnow;

pause (0.5);

end

end

if rem( n , frame_time ) == 0

p_EC(:,frame_nr) = p_EC_column;

frame_nr = frame_nr + 1;

end
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% Analysis and plot lines of transfer functions

% Fourier transform the input pressure and output velocity

p_e_four = fft(p_e);

v_st_four = fft(v_st);

% Calculate transfer function (amplitude and phase)

G_ME_amp = abs(v_st_four ./ p_e_four);

G_ME_phase = angle(v_st_four ./ p_e_four);

% Set frequency axis to the Nyquist frequency

f = N_t_stim /(2* t_end)*linspace (0,1, N_t_stim /2+1);

% Amplitude of transfer function

subplot (2,1,1), loglog(f,G_ME_amp (1: N_t_stim /2+1),’r’);

axis ([100 20000 1e-5 1]);

grid on;

% Phase of transfer function

subplot (2,1,2), semilogx(f,G_ME_amp (1: N_t_stim /2+1),’r’);

axis ([100 20000 -8 1]);

grid on;

disp(’end of simulation ’);

end
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