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Abstract

In this thesis we consider some iterative methods for image reconstruction in the context
of diagnostic medicine. From a CT-scanner we get projection data of a patient. This data is
used to reconstruct an image of the patient such that the physician can see into the body of the
patient without cutting the patient. This can be seen as a linear programming problem and can be
converted to a system of linear equations. This gives rise to mathematical analysis of optimization
and row-action methods for solving linear systems. To get good image reconstructions we analyze
and compare iterative image reconstruction algorithms such as the Kaczmarz algorithm and block-
iterative versions such as Cimmino's algorithm and Block-Kaczmarz. We consider the stability of
the block-iterative methods and show the possibility and advantage of parallel computing for the
Block-Kaczmarz algorithm.
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1 Introduction

In many situations people want to see something of the interior of an object without damaging the
object. For example a cheese factory wants to know how much bubbles there are in the produced
cheese. For this example there are possibly alternatives to overcome the problem of cutting all cheeses.
If we look at another �eld such as diagnostic medicine then a physician wants also to see the inside of
a human body. Due to the discovery of X-rays by Röntgen there exists physical phenomena to derive
information from the inside of a human body without damaging it. Also other properties can be used
to derive information from a human body, like radioisotopes, ultrasound or magnetic resonance [14].

This leads us to a general class of problems which we will discuss in this thesis. The problem
described above can be seen as a inversion problem [6]. We have an object x from which we want to
know something about the interior. We can relate that object x to data y, which we know through
the following relation:

y = Ox

where O is a general operator on the object x such as �send X-rays through the object x�. A standard
X-ray image shows mainly bones and some organs within the body because they absorb a large part
of the radiation [18]. Thus sending X-rays to an object results in projections like `shadow images'.
In this thesis we will focus on Image Reconstruction based on this sort of `projection data'. This will
result in the implementation of a number of iterative algorithms to reconstruct image x based on the
data y.

Therefore we want to begin with some analysis on constraint optimization and the Lagrange
multiplier in Section 2. In Section 3 we discuss linear programming to minimize linear cost functions
subject to linear equality and inequality constraints. This will result in a discussion of the Simplex
Method. In Section 4 we consider a number of general methods for solving linear systems.

After these sections we come back to the already sketched context of diagnostic medicine and
formulate a discretized model for transmission tomography in Section 5. In Section 6 we consider
iterative methods to reconstruct the image from the projection data. The iterative methods we discuss
are the row-action methods Kaczmarz (ART), Cimmino (SIRT) and Block-Kaczmarz (SART).

The �nal part of this thesis brings the discussion about image reconstruction to a basic implemen-
tation of the three algorithms, the implementation is discussed in Section 7. When the implementation
is clear we can do some practical analysis of the di�erent implementations in Section 8 to compare
the performance of the di�erent algorithms. This gives us also a basic understanding of how we can
in�uence the quality of the resulting images. This thesis will end with a conclusion in Section 9 where
we summarize the main results we found.

1.1 Some linear algebra notation

In this thesis we will use some linear algebra. In almost all cases it is clear from the context what
we mean with our notation. In some cases it is not immediately clear and therefore we will introduce
some conventions in our notation:

• Vectors are written in lowercase and bold-face as in: x ∈ Rn.

• Matrices are written in uppercase and bold-face as in: A ∈ Rm×n. This matrix A has m rows
and n columns.

• Column i of matrix A is written as ai (or if in the context also rows of A are used then column
i can also be written as A(•,i))

• Row i of matrix A is written as A(i,•)

• The product between vectors (u ·v) is always the inner product, so we neglect the notion of row
or column vectors.

• The ith element of vector x is written as xi.
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2 Constraint optimization and the Lagrange multiplier

In this section we will consider the �eld of mathematical optimization. We will consider the minimum
of a function of multiple variables and introduce constraints for the minimum. This will end with the
Lagrange multiplier.

2.1 Minimum and critical points of functions Rn → R
In many applications it is important to �nd an optimal solution for a quantity that changes over some
variables. A natural question in these cases is when a quantity reaches its largest or smallest value.
For example in the context of economy people wants to minimize cost or maximize pro�t. In the
case that a quantity only depends on one variable we can use the derivative of that function to �nd
extrema of that function. If a quantity depends on more than one variable then we need some extra
theory to �nd the extrema of a function [7]. Therefore we introduce the following de�nition:

De�nition 2.1. Let f : X ⊆ Rn → R, X open.
The function f has a local minimum at the point a ∈ X if ∃U as neighborhood of a such that
f(x) ≥ f(a) ∀x ∈ U .

In the same way we could also de�ne a local maximum but because the maximum of function f
is the minimum of function g := −f we skip that de�nition.

Note that the de�nition de�nes a local minimum in stead of a global or absolute. This is because
in a neighborhood of point a ∈ X the function f did not reach a lower value than the value at a but
the de�nition did not exclude the possibility that the function f reaches a lower minimum at a point
elsewhere in X. It is also possible that f did not have a minimum in the region X because X is open.

From functions of one variable we know that if we seek a minimum (or maximum) of a function
g : R → R we could consider the derivative of the function g. At a minimum the tangent line
is horizontal thus the derivative at a minimum is zero. This notion can also be extended to the
multi-variable case, which is shown in the following theorem:

Theorem 2.2. Let f : X ⊆ Rn → R di�erentiable, X open.
If f has a local minimum (or maximum) at a ∈ X, then Df(a) = 0

Proof. De�ne a new function F : R→ R as F (t) := f(a + th) ∀h
Then F (t) must have a local minimum at t = 0 for all h. Note that F (t) is a function from R → R
thus we can use the one-variable calculus, and thus dF

dt (0) = 0. Using the chain rule, we have also:

dF

dt
(t) =

df(a + th)

dt
= Df(a + th) · h = ∇f(a + th) · h.

And thus:

0 =
dF

dt
(0) = Df(a) · h = fx1

(a)h1 + fx2
(a)h2 + . . .+ fxn

(a)hn ∀h

By choosing h = ei for i = 1 . . . n (where ei ∈ Rn is the ith basis vector of Rn) we get:

fxi
(a) = 0 ∀i = 1 . . . n

And thus Df(a) = 0.

The previous theorem shows that if function f has a local minimum at a ∈ X then Df(a) = 0.
This is only a necessary condition for a local minimum (or maximum) and not a su�cient condition.

For example the function f(x, y) = x2 − y2 has a derivative Df(x, y) = (2x,−2y). At a = (0, 0)
we see Df(a) = 0, but f(x, y) has not a minimum (or maximum) at (0, 0) as seen in Figure 1.

To formalize the di�erence in meaning of a minimum (or maximum) at a point a of a function f
and the points that satisfy the condition of Theorem 2.2 we introduce the notion of critical points:

De�nition 2.3. Let f : X ⊆ Rn → R di�erentiable, X open.
A point a ∈ X is called a critical point if Df(a) = 0.

From Theorem 2.2 we see that the set of minimum (or maximum) points is a subset of the set of
critical points of a function f .
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Figure 1: Plot of the function f(x, y) = x2 − y2 which does not have a minimum (or maximum) at
(0, 0). The point (0, 0) is called a saddle-point.

2.2 Constraint minimization

In many applications it is the case that we need not only to minimize (or maximize) a function, but
there are also some additional constraints for a solution. First we will look at an example to see the
context of this minimization:

Example 2.4. An open rectangular box (a box without a top-side) needs to have a speci�ed volume:
4 dm3. The manufacturer wants to minimize the amount of materials used to make this box. The
sizes of the box can be described by three variables x, y, z as the length of the box in the appropriate
dimension. Thus we want to minimize:

A(x, y, z) = 2xy + 2yz + xz

We have also the constraint that describes the volume of the box, namely:

V (x, y, z) = xyz = 4

In this example we have two equations but three variables. In general this system is not solvable, but
in this case we are lucky that we can solve the variable z in terms of x and y using the constraint
equation and we get the new equation to minimize:

a(x, y) = 2xy +
8

x
+

4

y
.

Thus we have one equation and two variables. We can �nd the critical points of a(x, y) by setting the
derivative equal to zero: Da(x, y) = 0. This gives us two equations and two variables, from which we
can conclude that x = 2 and y = 1 yields a local minimum for the new area function. After computing
z = 4

xy = 2 we get the solution for the minimization problem as shown in Figure 2.

From the previous example we see that we want to minimize a function f : Rn → R (in the
example A(x, y, z)) subject to a constraint g(x) = c (in the example V (x, y, z) = 4). In the example
it was possible to solve one variable in terms of the other variables using the constraint equation, but
that is not always easy or possible. So we want another method to solve this constraint optimization
problems. This leads us to the method of Lagrange multiplier.
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Figure 2: The box for the manufacturer wo wants to minimize material costs for a volume of 4 dm3

2.3 Geometric properties

Instead of using some algebra to reduce the number of variables in the optimization problem we
will consider some geometric properties of optimization problems to see another method to solve the
optimization problems [3].

From vector calculus we know the following theorem that states that the directional derivative of
a multivariate function is the dot product of the gradient and the (unit) direction[7]:

Theorem 2.5. Let f : X ⊆ Rn → R di�erentiable at a ∈ X, X open.
Then ∀v ∈ Rn with ‖v‖ = 1, the directional derivative Dvf(a) exists and we have

Dvf(a) = ∇f(a) · v.

If we see a function f : Rn → R as a pressure in Rn and the pressure function is di�erentiable
then we can seek for the direction in which the pressure increases the most. Suppose we look at point
x ∈ Rn in the direction of u ∈ Rn with ‖u‖ = 1. Then from the previous theorem we know:

Duf(x) = ∇f(x) · u.

Let θ be the angle between u and the gradient vector ∇f(x). Then the equation becomes:

Duf(x) = ‖∇f(x)‖‖u‖ cos θ = ‖∇f(x)‖ cos θ

This leads us to the following theorem:

Theorem 2.6. Let f : X ⊆ Rn → R di�erentiable, X open.
The directional derivative Duf(x) is maximized with respect to the direction when u points in the
same direction as ∇f(x) and is minimized when u points in the opposite direction. Furthermore the
minimum and maximum values of Duf(x) are ∓‖∇f(x)‖.

Proof. From the previous discussion we get:

Duf(x) = ‖∇f(x)‖‖u‖ cos θ = ‖∇f(x)‖ cos θ

Where θ is the angle between u and ∇f(x). To maximize this expression we need cos θ = 1, thus
θ = 0. This means that u and ∇f(x) points in the same direction. To minimize the expression we
need cos θ = −1, thus θ = π. This means that u and ∇f(x) points in the opposite direction.

Example 2.7. If we restrict Theorem 2.6 to R2 then we can get some feeling with the geometric
interpretation of this theorem. The function z = f(x, y) describes the surface of a mountain. If
we want to increase the height (or explicit the z-value) as fast as possible then we need to climb
the mountain in the direction of the gradient of our current location, see Figure 3. The vector
∇f(a, b) ∈ R2 describes the direction on the map of the mountain.

From the previous example we could also suggest that the gradient vector points perpendicular to
the height lines of the map. This is indeed the case, as the following theorem states:

Theorem 2.8. Let f : X ⊆ Rn → R, f ∈ C1, X open.
Let S be the level set de�ned by S = {x ∈ X | f(x) = c}. If a ∈ S then ∇f(a) is perpendicular to
S.

7
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Figure 3: To increase the height as fast as possible climb in the direction ∇f(x)
‖∇f(x)‖ .

Proof. Let C be a curve in S parameterized by x(t) = (x1(t), x2(t), . . . , xn(t)) with a < t < b and
∃t0 ∈ (a, b) such that x(t0) = a. C ⊂ S, thus:

f(x(t)) = f(x1(t), x2(t), . . . , xn(t)) = c

Thus if we derive f we get:
df(x(t))

dt
=

dc

dt
≡ 0.

And we have also the function f ◦ x : (a, b)→ R that gives with the chain rule:

df(x(t))

dt
= ∇f(x(t)) · x′(t)

At t0 this gives:
∇f(x(t0)) · x′(t0) = 0

Note that the vector v = x′(t0) is the velocity vector at x(t0) and thus tangent to S at x(t0). Combined
with x(t0) = a becomes the equation:

∇f(a) · v = 0

And thus ∇f(a) is perpendicular to the level set S.

If we want to �nd a minimum of a function f : Rn → R we can also look at the level sets of func-
tion f . If the minimum of f exists then there will be a lowest level set that contains the minimum of f .

If we want to solve the optimization problem subject to a constraint g(x) = c then at a minimum
the value of f that satis�es the constraint g(x) = c cannot decrease along the curve g = c. Otherwise
the point was not a minimum. On the curve g = c we seek points x where f(x) did not change, that
points are the critical points that could be a minimum for this optimization problem.

If we found a critical point then it could be that the curve g = c is parallel to a level set f(x) = h.
The other possibility is that g = c crosses a plateau where f(x) = h and f(x) did not change in any
direction. Thus ∃P open ∈ Rn, such that ∀a ∈ P : f(a) = h.

The �rst possibility (the curve g = c is parallel to a level set f(x) = h at a ∈ Rn) is by Theorem
2.8 equivalent to the case where ∇g(a) is parallel to ∇f(a). This can be expressed as

∇f(a) = λ∇g(a) (1)

The second possibility (f(a) did not change in any direction) can be expressed as ∇f(a) = 0. Thus
by setting λ = 0 this can also be expressed by Equation 1.

Formally this method can be described by the following theorem:

Theorem 2.9. Let X open and X ⊆ Rn and f, g : X → R ∈ C1.
Let S = {x ∈ X | g(x) = c} denote the level set of g at height c. Then if f |S has an extremum at
a ∈ S such that ∇g(a) = 0, there must be a λ ∈ R such that:

∇f(a) = λ∇g(a)

8



This give the following recipe to �nd critical points of f subject to the constraint g(x) = c:

Recipe 2.10. Find critical points of a function f subject to a constraint g(x) = c:

1. Form the vector equation ∇f(a) = λ∇g(a)

2. Solve the system of n+ 1 variables and n+ 1 equations:

{
∇f(x) = λ∇g(x)

g(x) = c

3. Determine the nature of f at the found critical point.

De�nition 2.11. The variable λ ∈ R in the previous recipe is called Lagrange multiplier.
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3 Linear Programming

In the previous section we saw how we can solve a general optimization problem in minimizing a cost
function subject to an equality constraint. This leads to a recipe to solve an optimization problem
using the Lagrange Multiplier. However, equality constraints are not the only type of constraints that
can be used in optimization problems. Therefore we introduce linear programming: the problem of
minimizing a linear cost function subject to linear equality and inequality constraints [2, 8].

3.1 General and standard linear programming problems

Supporting the description of a general linear programming problem we will give an example of a
linear programming problem that contains the most elements we will use in this section.

Example 3.1. An example of a linear programming problem can be stated as follows:

minimize f(x1, x2, x3, x4) = 2x1 − x2 + 4x3

subject to



x1 + x2 + x4 ≤ 2

3x2 − x3 = 5

x3 + x4 ≥ 3

x1 ≥ 0

x3 ≤ 0

De�nition 3.2. A cost vector c = (c1, c2, . . . , cn) is a vector that de�nes the costs per variable in
x ∈ Rn and in the linear programming problem the cost function f(x) = c · x will be minimized.

The constraints on the cost function can be divided into three groups of constraints, namely the
constraints with a ≥,≤ and = relation. The setsM1,M2 andM3 contains the indices of the constraints
of the original problem related to the relations ≥,≤ and =, respectively. The sets N1 and N2 contains
the indices of the variables xi that are non-negative or non-positive, respectively. In abstract form
becomes the problem:

minimize fc(x) = c · x

subject to



ai · x ≥ bi, i ∈M1

ai · x ≤ bi, i ∈M2

ai · x = bi, i ∈M3

xj ≥ 0, j ∈ N1

xj ≤ 0, j ∈ N2

De�nition 3.3. The following terminology is used in relation to the linear programming problem:

• The variables x1, x2, . . . , xn are called decision variables.

• If j /∈ N1 ∧ j /∈ N2 then xj is called a free variable

• The vector x ∈ Rn that satis�es all the constraints is called a feasible solution

• The set of all feasible solutions is called feasible set

• A feasible solution x∗ that minimizes the cost function is called the optimal solution and the
value c · x∗ is the optimal cost

• If ∀K ∈ R ∃ feasible solution with cost < K, then the cost is −∞ or unbounded (below)

If we look in more detail to the constraints we can see some equivalent relations between them to
convert all type of constraints to one type.

Recipe 3.4. Convert all linear programming systems to general form:

1. The constraint ai · x = bi is equivalent to the two constraints ai · x ≤ bi and ai · x ≥ bi.

2. In the same way we can also rewrite the constraint ai · x ≤ bi to (−ai) · x ≥ −bi.

3. Constrains in the form xj @ 0 can be converted to ai ·x @ bi where ai is the j
th unit-vector and

bi = 0. The @ denoted the ≤ and ≥ relation.
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Thus the feasible set in a general linear programming problem can be expressed in terms of in-
equality constraints of the form ai · x ≥ bi. If there are m constraints then this can be expressed in a
matrix A ∈ Rm×n as described by the following de�nition:

De�nition 3.5. A linear programming problem of the form

minimize fc(x) = c · x
subject to Ax ≥ b

is said to be in general form.

Next to the de�nition of a general form we will state also the de�nition of the standard form of a
linear programming problem:

De�nition 3.6. A linear programming problem of the form

minimize fc(x) = c · x

subject to
Ax = b

x ≥ 0

is said to be in standard form.

The standard form is a form in which explicitly is expressed that the value of bi must be built up
from a non negative usage of recourses A(i,•) while we also want to minimize the cost c · x.
Example 3.7. An example of a problem in standard form is the diet problem. In that problem
are n di�erent foods and m di�erent nutrients. A food i has an own amount of nutrient j stored in
food-matrix A: aji. The vector b describes the amount of the di�erent nutrients for the food.

The standard form is a special case of the general form of a linear programming problem as we saw
in Recipe 3.4, but the statement is also true the other way around as the following theorem states:

Theorem 3.8. A linear programming problem in general form can also be converted in an equivalent
linear programming problem in standard form. I.e. from a feasible solution of the �rst problem a
feasible solution of the other problem can be constructed with the same cost.

Proof. The proof is descriptive following Recipe 3.9.

Recipe 3.9. Convert a general form to a standard form

1. An unrestricted variable xj can be replaced by x+j and x−j where x+j ≥ 0 and x−j ≥ 0. This is
true because ∀a ∈ R ∃x, y ∈ R such that a = x− y.

2. The inequality constraint A(i,•) · x ≥ bi can be replaced by the constraints A(i,•) · x − si = bi
and si ≥ 0.

Thus all linear programming problems can be converted in general and standard form.

Example 3.10. Now we will introduce an example of a linear programming problem that we will use
also in the next sections to illustrate the topics we discuss there.

minimize fc(x) = −10x1 − 12x2 − 12x3

subject to



x1 + 2x2 + 2x3 ≤ 20

2x1 + x2 + 2x3 ≤ 20

2x1 + 2x2 + x3 ≤ 20

x1 ≥ 0

x2 ≥ 0

x3 ≥ 0

We can convert this linear programming problem to standard form by introducing slack variables
x4, x5 and x6:

minimize fc(x) = −10x1 − 12x2 − 12x3

subject to


x1 + 2x2 + 2x3 + x4 = 20

2x1 + x2 + 2x3 + x5 = 20

2x1 + 2x2 + x3 + x6 = 20

x1, x2, . . . , x6 ≥ 0

11
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Figure 4: Graphical solution of the two variable linear programming problem.

3.2 Graphically solve linear programming problems

In this section we will discuss some graphical ideas about the feasible set and methods for solving
linear programming problems. Therefore we will introduce a simple two variable problem[9]:

minimize f(x) = −2x1 − x2

subject to


x1 + x2 ≤ 5

2x1 + 3x2 ≤ 12

x1 ≤ 4

x ≥ 0

The non-negativity constraints x ≥ 0 describe that the solution for this problem will be in the �rst
quadrant of the (x1, x2)−plane. We can plot the lines from the constraints when the equality holds.
For example the constraint x1 + x2 ≤ 5 results in a line x1 + x2 = 5. This lines separates the plane
into two sections. Now we need to �nd out on which section the constraint holds. If we take for
example the origin then x1 and x2 are both zero and thus we have x1 + x2 = 0 ≤ 5. Therefore the
section containing the origin is the section that holds the feasible set. If we draw lines for the three
constraints we get a picture like Figure 4. In this case we see a marked region in which the problem
has a feasible solution.

We want to minimize the linear function f(x) = −2x1 − x2. In the (x1, x2)−plane solutions for
this function are lines with slope −21 = −2. The value on the line decreases when the line moves to
the north-east corner of the �rst quadrant. Thus, to �nd the feasible solution x that minimizes f(x)
we seek the last point(s) x that exists in the intersection between f(x) and the feasible set, when f(x)
decreases.

If we move the line f(x) = −2x1 − x2 to the north-east corner we see that the value of f(x)
decreases. From the picture we see that this line hits �rst point O (at f(x) = 0) then point A (at
f(x) = −4), then D and B (both at f(x) = −8) and as last point C (at f(x) = −9)

From the description and the picture it looks that the optimal solution (if a unique solution ex-
ists) is on the boundary of the feasible region. This is indeed the case, as we will see in the next section.

In the case of Figure 4 there exists a unique feasible solution, the point C. However, this is not
always the case. Also other cases can arise for a minimization problem. For example the cases shown
in Figure 5a, 5b and 5c.

It is harder to draw and interpret pictures for solving linear programming problems with more
than two variables / dimensions so the ideas are presented in 2D. The notion of a line that divides
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Figure 5: Sketches of possible types of constraints in which no feasible set exists (Figure 5a), a
unbounded feasible set exists (Figure 5b) or not a unique minimum exists (Figure 5c).

the plane into two sections is also expendable to R3 and Rn. The lines of the 2D picture will then be
planes (for R3) or hyperplanes (for Rn).

3.3 Convex sets

At the beginning of the �rst discussion of the minimum and critical point in Section 2.1, we saw that
there was not an equivalence relation between a minimum of a function f(x) : Rn → R and a critical
point of that function. Or more precisely, if we found a critical point a ∈ Rn of the function f(x) in
general it is not true that the critical point a is also the point on witch the minimum of a function f(x)
is attained. In this section we will construct additional constraints such that there is an equivalence
for the minimum point and the point a [2].

3.3.1 Polyhedron

To get this equivalence we introduce the following de�nition:

De�nition 3.11. A polyhedron P is a set that can be described in the form P = {x ∈ Rn | Ax ≥ b},
where A ∈ Rm×n is a matrix and b ∈ Rm a vector.

Example 3.12. Following De�nition 3.5, the general form of a linear programming problem can
be described by the inequality constraints of the form Ax ≥ b. Thus the feasible set of any linear
programming problem is a polyhedron.

De�nition 3.13. A set S ⊂ Rn is convex if ∀x, y ∈ S and λ ∈ [0, 1] the following statement holds:

zλ = λx+ (1− λ)y ∈ S.

Note that the points zλ ∈ S are points on the line segment between the two points x, y ∈ S. Thus
a set S is convex if the line segments between two points x, y ∈ S are also in S.

For our discussion about about polyhedrons and convexity some facts are important for the further
discussion:

Theorem 3.14. The following statements holds:

• The intersection of convex sets is also convex.

• An halfspace Hb
a = {x ∈ Rn | a · x ≥ b} with 0 6= a ∈ Rn and b ∈ R is a convex set.

• Every polyhedron is a convex set.

Proof. We prove the statements one by one:

13



• The proof of the �rst part is by induction over n where n is the number of intersections. Let
Si for i ∈ N be convex sets. Clearly, the (intersection)set I1 = S1 is convex. For 1 ≤ n ≤ k let
In =

⋂n
i=1 Si be convex.

First we look at the (intersection)set Ik+1:

Ik+1 =

k+1⋂
i=1

Si

=

(
k⋂
i=1

Si

)
∩ Sk+1

= Ik ∩ Sk+1

Suppose x, y ∈ Ik+1, because Ik+1 is an intersection we have x, y ∈ Ik and x, y ∈ Sk+1. Because
Ik and Sk+1 are convex the points zλ = λx+ (1− λ)y are in Ik and Sk+1. Thus the points are
also in the intersection Ik+1. Therefore the intersection Ik+1 is also convex. And thus is the
intersection of convex sets also convex.

• Let Hb
a = {x ∈ Rn | a · x ≥ b} with 0 6= a ∈ Rn and b ∈ R. Let x, y ∈ Hb

a and λ ∈ [0, 1]. For
the points λx + (1− λ)y on the line segment between x and y we have:

a · (λx + (1− λ)y) ≥ λb+ (1− λ)b = b

Thus the points zλ = λx + (1− λ)y ∈ Hb
a. Therefore the halfspace H

b
a is convex.

• A polyhedron is de�ned as P = {x ∈ Rn | Ax ≥ b,A ∈ Rm×n} and is thus the intersection of
m halfspaces Hbi

A(i,•)
with i = 1, 2, . . .m where A(i,•) is the i

th row of matrix A. The halfspaces

are convex and the intersection of convex sets is convex thus a polyhedron is convex.

3.3.2 Extreme points and basic feasible solution

From Figure 4 we noted that an optimal solution to a given linear programming problem is in a corner
of the feasible set. In the picture the meaning of a corner was clear, but if we want to use this property
in computations we need to de�ne what it means to be at a `corner' of the feasible set. We do that in
terms of a polyhedron:

De�nition 3.15. Let P be a polyhedron. A vector x ∈ P is a extreme point of P if we cannot �nd
two other vectors y, z ∈ P with x 6= y and x 6= z and λ ∈ [0, 1] such that:

x = λy + (1− λ)z

With this de�nition we require that an extreme point is a point that is not on a line segment
between two points in P . If x is between two other points in P then in both directions λ → 0 and
λ → 1 there exists points in P and thus is x not an extreme on that line in P . Both cases are
illustrated in Figure 6.

To move to an algebraic interpretation of a corner we introduce the concept of a basic feasible
solution.

De�nition 3.16. If a vector x∗ satis�es constraint i: A(i,•) ·x∗ = bi of the general linear programming
problem then the corresponding constraint is called active.

De�nition 3.17. Given the polyhedron P = {x ∈ Rn | Ax = b,x ≥ 0} with A ∈ Rm×n and let
x∗ ∈ Rn. Then

• The vector x∗ is a basic solution if the following two statements holds:

1. All m constraints of Ax = b are active.

2. Out of all the corresponding vectors of the constraints that are active at x∗ from A(i,•) or
ei for all constraints xi = 0 there are n linearly independent.
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Figure 6: The point x is an extreme point of P because if x = λy + (1 − λ)z with x 6= y and x 6= z
then y /∈ P or z /∈ P . The point u is not an extreme point because v,w ∈ P and ∃λ ∈ [0, 1] such that
u = λv + (1− λ)w

• If x∗ is a basic solution that satis�es all the original constraints then x∗ is a basic feasible
solution.

Example 3.18. In this example we consider a polyhedron P =
{

(x1, x2, x3) ∈ R3 | x1 + x2 + x3 = 1,x ≥ 0
}
.

This polyhedron de�nes a plane in R3 as shown in Figure 7. All points on the marked plane satisfy
the 4 constrains: x1 +x2 +x3 = 1 and x ∈ R3 ≥ 0. Thus all points on the plane are feasible solutions,
according to De�nition 3.3.

If we consider the basic solution we look at the constraints when the equality-relation must be
satis�ed (also for the ≥ and ≤ relations), according to De�nition 3.17. Thus we search points x ∈ R3

that satis�es:

Ax =


1 1 1
1 0 0
0 1 0
0 0 1


 x1
x2
x3

 =


1
0
0
0

 = b

If we make the �rst three rows of this system active then we get an invertible matrix A∗ from the
original matrix A. This matrix has one row (the �rst one) related to the constraint x1 + x2 + x3 = 1.
The other two rows are rows of the type ei that corresponds to xi = 0. We have chosen three linearly
independent rows, and thus A∗ is invertible. Thus we can compute x = A∗−1b = (0, 0, 1) as a basic
solution. If we check if this solution is also feasible, which is indeed the case, then we have a basic
feasible solution.

In Figure 7 we see the basic feasible solutions A,B and C. These points are basic solutions because
they satisfy the constraint x1 + x2 + x3 = 1 and two of the three constraints xi = 0 for i = 1, 2, 3.
Point D is not a basic solution because D = (0, 0, 0), and thus the constraint (1, 1, 1) ·x = 1 failed for
D. Point E is a feasible solution (see De�nition 3.3) but it is not basic because only two constraints
are active. On E only x1 + x2 + x3 = 1 and x2 = 0 are active.

Theorem 3.19. Let P be an non empty polyhedron and x∗ ∈ P . Then the following statements are
equivalent:

• x∗ is an extreme point.

• x∗ is a basic feasible solution.

Proof. For the proof of this theorem, see Reference [2], Theorem 2.3.

3.4 Solve Linear programming problems

If we want to solve linear programming problems we write the polyhedron in a standard form: P =
{x ∈ Rn | Ax ≥ b,x ≥ 0}, where A ∈ Rm×n. Thus we have m equality constraints that de�nes the
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Figure 7: P =
{

(x1, x2, x3) ∈ R3 | x1 + x2 + x3 = 1,x ≥ 0
}

polyhedron. For now we assume that the m rows of matrix A are linearly independent. The rows of
matrix A are n-dimensional, thus m ≤ n.

For a basic solution we need n linearly independent constraints that are active. Also every basic
solution must satisfy the m equality constraints Ax = b. Thus there are m active constraints. To
get a total of n active constraints we can choose n −m variables xi that must satisfy xi = 0. The
following theorem shows how we can choose these xi variables.

Theorem 3.20. Let Ax = b and x ≥ 0 describe the constraints for a linear programming problem.
Assume A ∈ Rm×n has linearly independent rows. Then, the vector x ∈ Rn is a basic solution if
Ax = b and there exists indices B(1), B(2), . . . , B(m) such that:

1. The columns A(•,B(i)) for i = 1, 2, . . . ,m are linearly independent.

2. If i /∈ I = {B(1), B(2), . . . , B(m)} then xi = 0.

Proof. Let x ∈ Rn. Suppose ∃B(1), B(2), . . . , B(m) that satisfy the two conditions of the theorem.
Because the active constraints xi = 0 for i /∈ I do not contribute in Ax we can convert x ∈ Rn to a
(not longer) vector xB ∈ Rm where xBi = xB(i) for i = 1, 2, . . . ,m. Thus the following relation holds:

m∑
i=1

A(•,B(i))x
B
i =

n∑
i=1

A(•,i)xi = Ax = b

The m columns A(•,B(i)) with i = 1, 2, . . . ,m are linearly independent and thus form a basis for
Rm. The vector b is a linear combination of this basis with the coe�cients xBi with i = 1, 2, . . . ,m.
Thus the system with this set of active constraints has a unique solution.

There are n linearly independent active constraints and thus is x a basic solution.

Now we can construct a basic solution using the following recipe:

Recipe 3.21. Construct a basic solution x for linear programming problem in standard form:

1. Choose m linearly independent columns A(•,B(i)) for i = 1, 2, . . . ,m of A

2. Set xi = 0 ∀i /∈ I = {B(1), B(2), . . . , B(m)}

3. Solve the (to m×m reduced) system Ax = b for the unknowns xB(i) with i = 1, 2, . . . ,m

Note: if the solution also satis�es x ≥ 0 then the basic solution x is also feasible.
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De�nition 3.22. From the previous discussion we summarize some concepts in the following de�ni-
tions:

• The variables xB(i) with i = 1, 2, . . . ,m are called basic variables. The remaining variables
are nonbasic.

• The matrix B =
[
A(•,B(1)),A(•,B(2)), . . . ,A(•,B(m))

]
∈ Rm×m is called a basic matrix and its

columns are called basic columns

• The vector xB is the vector containing the values of the basic variables. Thus

BxB = b ⇒ xB = B−1b.

Example 3.23. (continued, previous part Example 3.10)
In the previous example we have converted the linear programming problem in standard form. To
reduce the notation of this problem we go further in matrix notation for the constraints:

minimize fc(x) = −10x1 − 12x2 − 12x3

subject to
Ax =

 1 2 2 1 0 0
2 1 2 0 1 0
2 2 1 0 0 1

x =

 20
20
20

 = b

x ≥ 0

Note that the last three columns of matrix A are linear independent columns. We can choose columns
A(•,4),A(•,5) and A(•,6) as the basic columns for the basic matrix B.

This results in a basic solution x = (0, 0, 0, 20, 20, 20). This solution also satis�es x ≥ 0 and is
thus a basic feasible solution.

There are in general many possibilities to choose m linearly independent columns out of the n
columns of a matrix A. We need a method to �nd an optimal solution that minimizes fc(x).

3.5 Simplex Method

3.5.1 General overview

From Section 3.1 about the general and standard linear programming problems we saw that all linear
programming problems can be converted to a standard form. The only type of constraints on the non-
negative variables xi are equality constraints. To discuss the simplex method we will begin with an
minimization example to show the most important ingredients we will discuss further in this section:

Example 3.24.
minimize f(x) = 2x2 − 4x3

subject to

{
2 = x1 + 6x2 − x3
8 = −3x2 + 4x3 + x4

x ≥ 0

In this example we see that we have N = 4 variables and M = 2 equality constraints. We see that
the variables x2 and x3 are used in the function f(x) that we want to minimize. If we set these two
values to zero we can use the other two constraints to compute the values for x1 and x4. If we set x2
and x3 to zero we get a feasible solution x = (2, 0, 0, 8) for this problem.

From the coe�cients of the variables in the function f(x) we see that we can decrease the value
of the function by increasing the value of x3. The coe�cient of x3 is −4 and a negative quantity of a
larger non-negative variable will result in a lower value for the function f(x).

We can change the second constraint to express x3 in terms of x4 and x2. This gives us:

x3 = 2 +
3

4
x2 −

1

4
x4

Note that we have chosen the second constraint to express x3 in terms of other variables. That is
because we want to increase the value of x3 to a possible maximum but the �rst constraint gives no
bound for a maximum value of x3 (i.e. we can increase x3 to all values we want and we do not violate
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any non-negativity constraint on x1) If we substitute the new expression for x3 into the function f(x)
we get:

f(x) = 2x2 − 4x3

= 2x2 − 4

[
2 +

3

4
x2 −

1

4
x4

]
= −8− x2 + x4

and for the other constraint:
2 = x1 + 6x2 − x3

= x1 + 6x2 − 2− 3

4
x2 +

1

4
x4

= −2 + x1 +
21

4
x2 +

1

4
x4

⇐⇒

4 = x1 +
21

4
x2 +

1

4
x4

Next we can repeat this step to further minimize the value of f(x). In this case we can do this by
increasing the value of x2.

For a compact notation we introduce a so called tableau in which the calculations we did before
reduces to row and column operations. The tableau of the initial problem is:

Step 0 x1 x2 x3 x4
cost 0 0 2 -4 0
x1 = 2 1 6 -1 0
x4 = 8 0 -3 4 1

On the �rst line of the table we see the so called `cost-row' for all variables xi. The values in this
row corresponds with the coe�cients of the cost-function f(x).

Below the `cost-row' we see the rows that describe the constraints of the linear programming
problem. As described earlier we found the solution x = (2, 0, 0, 8) as a x that satis�es the constraints.
In the table we can read-o� the negative cost of this solution in the `cost'-row. The non-zero elements
of x correspond with rows of the table. We can see that through neglecting the columns of the zero-
valued elements, in this case x2 and x3. Then we see in the bottom-right block the identity matrix
I and in the bottum-left block the vector b for the equation Ix∗ = b. From that equation we can
read o� the values for x∗. We can reconstruct the vector x by using the values of x∗ for the non-zero
elements and set the other elements of x to zero.

After the �rst substitution the tableau becomes:

Step 1 x1 x2 x3 x4
cost 8 0 -1 0 1
x1 = 4 1 21

4 0 1
4

x3 = 2 0 − 3
4 1 1

4

The algebra of the previous section can also be seen as row operations on this table. From step 0
we came to step 1 using the row operations `add one row to another row' and `multiply one row with
a constant'.

In a linear programming problem we want to minimize the cost function. In the tableau this means
that we want to maximize the number in the top-left corner of the tableau. Therefore we add the third
row (x4 = 8| . . .) once to the �rst row. Then the cost coe�cient of x3 in the programming problem
reduces to zero.

Then we want to reconstruct the identity matrix for the columns x1 and x3. This can be done by
dividing the third row by 4 (this gives the 1 on the diagonal of the identity matrix) and add the new
third row to the second row (this gives the 0 on the element on the second row in column x3).

The last tableau can be constructed using the same type of operations: add 4
21 times the second

row to the �st row (this makes the cost of x2 zero), multiply the second row with 4
21 (this makes the

diagonal element of the identity matrix one) and add 3
4 of the new second row to the third row.

This result in the following tableau:

Step 2 x1 x2 x3 x4
cost 8 16

21
4
21 0 0 1 1

21

x2 = 16
21

4
21 1 0 1

21
x3 = 2 4

7
1
7 0 1 2

7
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This is the last tableau because no element in the cost-row is negative and thus are there no possibilities
to minimize f(x) = 2x2−4x3 further and thus x =

(
0, 1621 ,

18
7 , 0

)
is the solution vector to the objective

function.

3.5.2 Optimality

In this section we will take a closer look at the simplex method and the ideas behind it. Therefore we
continue our discussion which brought us by a basic feasible solution.

De�nition 3.25. Let x ∈ P where P is a polyhedron. A vector d ∈ Rn is a feasible direction at
x if ∃θ > 0 such that x + θd ∈ P .

For basic variables we saw that a vector xB corresponding to a vector x with the following relation
holds:

xB = B−1b

Let j be the index of a nonbasic variable xj , thus xj = 0. We want to increase the value of xj to θ
and do not violate the constraints x ≥ 0. This means that dj = 1 and di = 0 for all nonbasic xi where
i 6= j. We can also de�ne a vector dB = (dB(1), dB(2), . . . , dB(m)) ∈ Rm as the corresponding feasible
direction vector for the basic feasible solution xB. To get a feasible solution we require:

A(x + θd) = b

The solution x is feasible thus Ax = b. Since θ > 0 we need thus Ad = 0. Thus

0 = Ad =

n∑
i=1

A(i,•)di =

m∑
i=1

A(B(i),•)dB(i) + A(j,•)

The matrix B is a basic matrix and thus invertible. We can thus compute the vector dB in the jth

basic direction:
dB = −B−1A(j,•)

If a solution is optimized in the direction of d by construction we have required that the new
solution satis�es the constraints Ax = b. We need only to check if the constraints x ≥ 0 are
satis�ed by the new (optimized) solution. The value xj = θ > 0 and all other nonbasic variables are
unchanged, thus xi = 0 ∀i nonbasic and i 6= j. For basic variables we have a constraint xB ≥ 0 with
two possibilities:

• We have a strict constraint xB > 0. Then ∃θ > 0 such that xB + θdB ≥ 0.

• We have one (or more) basic variable xBk = 0. If dBk ≥ 0 then we have also xBk + θdBk ≥ 0. But
if dBk < 0 then ∀θ > 0 : xBk + θdBk < 0 and thus violates the non negativity constraint.

If we want to see the e�ects of this optimization we compute the cost that we have reduced. We
can compute the cost for solution x with the cost function c · x. Thus the cost of the optimized
solution is:

c · (x + θd) = c · x + c · θd

Note that di = 0 and dj = 1 for i nonbasic and i 6= j with j is the index of the basic direction in
which dB is computed. If we write cB for the cost vector of the basic variables then the reduced cost
per θ in the direction of d becomes:

c · d = cj + cB · dB = cj − cB ·B−1A(j,•)

De�nition 3.26. Let x be a basic solution, B the associated basic matrix and cB the cost vector of
the costs of the basic variables. ∀j the reduced cost c̄j of variable xj can be computed as follows:

c̄j = cj − cB ·B−1A(j,•)
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3.5.3 Method

This leads us to the following recipe to compute the optimal solution:

Recipe 3.27. Simplex method for linear programming problem in standard form:

1. Compute an initial basic feasible solution x0

2. Pick a nonbasic variable xi with a negative cost ci, this variable will inter the basis.

3. Pick a basic variable xB(j) that leaves the basis.

4. Update tableau for this change of basis.

5. Terminate if c ≥ 0.

Example 3.28. (continued, previous part Example 3.23)
In this example we will execute the simplex method and see how it works. As noted in the previous
example will we begin with the variables x4, x5 and x6 as basic variables. This results in a basic
feasible solution x = (0, 0, 0, 20, 20, 20). The �rst simplex method tableau is then:

Step 0 x1 x2 x3 x4 x5 x6
xB(i)

u1
i

c 0 -10 -12 -12 0 0 0
x4 = 20 1 2 2 1 0 0 20
x5 = 20 2 1 2 0 1 0 10
x6 = 20 2 2 1 0 0 1 10

Now we see that three variables x1, x2 and x3 have negative costs ci. We need to pick some
variable from this three and choose x1. Then we compute the value

xB(i)

u1
i

where the vector uj is the

data column below xj . Using this computed quantity
xB(i)

u1
i

we can pick a xB(i) that leaves the basis.

We chooses the xB(i) that minimizes
xB(i)

u1
i
. In this case x5. This gives us a pivot row and a pivot

column. The pivot cell is marked in boldface.
Now we apply row operations on the tableau such that

• an identity matrix relation exists between the basis variables on the left-side of the tableau and
the corresponding variables on to top-side.

• the cost for the variable that enters the basis is zero.

We do this by �rst adding the pivot row 10
2 = 5 times to the cost row. Then we divide the pivot

row by the value of the pivot cell (thus by 2) to get the value 1 at the pivot cell. Next we add or
subtract a multiple of the pivot row to the other rows to get zeros at the other cells in the pivot
column. We say that x1 enters the basis and x5 leaves the bases.

After applying this row operations to the tableau we came to the next step:

Step 1 x1 x2 x3 x4 x5 x6
xB(i)

u2
i

c 100 0 -7 -2 0 5 0
x4 = 10 0 1 1

2 1 1 − 1
2 0 6 2

3
x1 = 10 1 1

2 1 0 1
2 0 20

x6 = 0 0 1 -1 0 -1 1 0

We can read the values of the basic variables of the solution on the left-most column. The variables
that are not in the left-most column are zero. Thus after this iteration we have x = (10, 0, 0, 10, 0, 10).

We see that there are variables with negative costs so we repeat the previous instruction. This
results in the step: x2 enters the basis and x6 leaves the basis according to the described minimum
criterion.

Step 2 x1 x2 x3 x4 x5 x6
xB(i)

u3
i

c 100 0 0 -9 0 -2 7
x4 = 10 0 0 2 1

2 1 1 −1 1
2 4

x1 = 10 1 0 1 1
2 0 1 0 6 2

3
x2 = 0 0 1 -1 0 -1 1 -
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Figure 8: Sketch of the feasible set from Example 3.28 in (x1, x2, x3)-space

This step did not decrease the cost but still we can continue to �nd a further optimization of this
linear programming problem. The current solution is: x = (10, 0, 0, 10, 0, 0). For the next step x3
enters the basis. When we look for the u vector we see that u3 < 0. We do not allow this negative
sign because that could result in a non-feasible solution. Thus we decide that x4 leaves the basis.

Step 3 x1 x2 x3 x4 x5 x6
c 136 0 0 0 3 3

5 1 3
5 1 3

5

x3 = 4 0 0 1 2
5

2
5 − 3

5
x1 = 4 1 0 0 − 3

5
2
5

2
5

x2 = 4 0 1 0 2
5 − 3

5
2
5

Now we see that all costs are positive and thus we have reached the optimal feasible solution
which is: x = (4, 4, 4, 0, 0, 0). Note that the last three variables x4, x5 and x6 are slack variables that
we have introduced. When de constraints Ax ≤ b describes a bounded set of resources, then the
slack variables can be seen as some �rest consuming� variables that consumes resources but did not
contribute in decreasing of the cost function. Then it looks intuitive that an optimal solution do not
uses this �rest consuming� variables.

Geometrically we can see the feasible set as a simplex. The feasible set looks in (x1, x2, x3)-space
as a tetrahedron because we had three constraints that are active at each time. Then the simplex
method searches for an optimal point at the corners of the feasible set. The simplex method found
corner E by traveling from A = (0, 0, 0) via D = (10, 0, 0) and C = (10, 10, 0) to E = (4, 4, 4), as
shown in Figure 8.
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4 General methods for solving linear systems

4.1 Algorithm complexity

Before we can do some analysis on algorithms we need to introduce methodology to describe the
complexity of an algorithm. Experiments can be useful but have also some limitations such as a
limited set of input [11]. Therefore there are some rules that results in an analytic framework:

• All possible inputs are taken into account.

• The framework allows an evaluation of the e�ciency of an algorithm, independent from the
hardware or software environment.

• Can be performed by study the algorithm at a high level and does not require an implementation
of the algorithm.

For some algorithms it is possible to count the primitive operations executed by the algorithm.
However, if the complexity of the algorithm increases in most cases the absolute number of operations
can not be computed. Therefore the Bigg-O notation is introduced. The Bigg-O notation gives a
description of the asymptotic behavior for large input.

De�nition 4.1. Let f(n) and g(n) : N+ → R. f(n) is O(g(n)) if ∃c > 0 and an integer N ≥ 1 such
that:

f(n) ≤ cg(n) ∀n ≥ N

Thus when the input is large enough the run time is bounded by a �xed multiple of g(n).

Example 4.2. When the primitive operations of algorithm A can be computed as:

f(n) = 3n3 + n2 + 10

then algorithm A is O(n3).

4.2 Gaussian elimination

From the discussion in the previous sections we want to �nd methods to solve the problem Ax = b
for x. From linear algebra we know already the Gaussian elimination where we apply three types of
row operations on the rows of A to get the matrix A in row echelon form or reduced row echelon form.
The three types of row operations are `exchange rows', `add a scalar multiple of one row to another
row' and `multiply a row by a non-zero constant'.

More details about this direct method for solving linear systems can be found in [4]. In this book
Burden and Faires computed also that the Gaussian elimination an algorithm is with computations
in O(n3). Intuitively this can be seen through the following reasoning. Assume matrix A ∈ Rm×n is
approximately a square matrix so O(n) =O(m). The Gaussian elimination needs to reduce for all n
columns the n entries below the diagonal entry to zero. This can be done using addition of a scalar
constant of one row to another row, which is also O(n). This gives a computational complexity of
O(n3).

4.3 Jacobi and Gauss-Seidel iterative method

If the dimensions of matrix A increases then the Gaussian elimination is less interesting due to its
computational complexity of O(n3). Therefore we introduce some iterative methods. In this iterative
methods we approximate the solution of a system Ax = b. For large spare systems the iterative
methods becomes e�cient in computation and also storage [4].

Iterative methods for solving Ax = b are based on the idea that we can convert that system to
another system for a �xed T and c as follows:

x = Tx + c.

Iterative methods come with an initial approximation x(0) of the solution x. By iteratively com-
puting new approximations x(k) this class of methods will result in a sequence of vectors {x(k)}∞k=0

with the property lim
k→∞

{x(k)} = x.
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Example 4.3. Given the linear system Ax = b:

Ax =


10 −1 2 0
−1 11 −1 3

2 −1 10 −1
0 3 −1 8



x1
x2
x3
x4

 =


6
25
−11
15


We can rewrite the system in the form x = Tx + c by using row i to express xi in terms of the other
rows. This results into:

x = Tx + c =


x1
x2
x3
x4

 =


1
10 − 1

5 0
1
11

1
11 − 3

11
− 1

5
1
10

1
10

0 − 3
8

1
8



x1
x2
x3
x4

+


3
5
25
11
− 11

10
15
8


where we can read o� the matrix T and the vector c.

To solve the system Ax = b we can introduce a random vector x(0) and apply iteratively:

x(k+1) = Tx(k) + c. (2)

The method of rewriting a system Ax = b into a system x = Tx + c and compute x(k) is called
the Jacobi iterative method.

This method can be improved when we note that T = L + U, where L and U are strictly lower
and upper triangular matrices. Another observation we made is that we divided row i of A by the
value of −aii to get the values of row i of T in Example 4.3. The diagonal elements becomes −1 and
goes to the other side of the equality sign.

Thus we can Ax = b also transform into another form, namely Dx = (L + U)x + b using
A = D− L−U. Thus if detD 6= 0 then the system becomes:

x = D−1(L + U)x + D−1b.

For the non-zero elements lij of L we have that i > j. For the computation of x
(k+1)
j we need a value

for xi. Assumed that x(k) for k → ∞ converges to x the already computed value x
(k+1)
i is a better

approximation for xi then x
(k)
i . This improvements brings us to the Gauss-Seidel iterative method :

x(k+1) = D−1Lx(k+1) + D−1Ux(k) + D−1b. (3)

For the details and analysis of both the Jacobi and the Gauss-Seidel iterative method we refer to [4].

4.4 Relaxation

De�nition 4.4. Suppose x̄ ∈ Rn is an approximation of the solution of the linear system Ax = b.
The residual vector for x̄ with respect to this system is given by:

r = b−Ax̄

Let r
(k)
i be the residual vector associated with x

(k)
i , where the �rst i components of x

(k)
i are form

x(k) and the other components correspond to the components of x(k−1). Thus x
(k)
i contains the

appropriated solution for the system after k− 1 full iterations and i− 1 row updates for the next kth

iteration.
Thus the mth component of r

(k)
i is:

(
r
(k)
i

)
m

= bm −
i−1∑
j=1

amjx
(k)
j −

n∑
j=i

amjx
(k−1)
j

= bm −
i−1∑
j=1

amjx
(k)
j −

n∑
j=i+1

amjx
(k−1)
j − amix(k−1)i

Thus for the ith component of r
(k+1)
i we have:

(
r
(k+1)
i

)
i

= bi −
i−1∑
j=1

aijx
(k+1)
j −

n∑
j=i+1

aijx
(k)
j − aiix

(k)
i
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This gives us

aiix
(k−1)
i +

(
r
(k)
i

)
i

= bi −
i−1∑
j=1

aijx
(k)
j −

n∑
j=i+1

aijx
(k−1)
j (4)

From Equation 3 we saw that:

x
(k+1)
i = − 1

aii

i−1∑
j=1

aijx
(k+1)
j − 1

aii

n∑
j=i+1

aijx
(k)
j +

1

aii
bi.

Thus Equation 4 can be rewritten as:

aiix
(k)
i +

(
r
(k+1)
i

)
i

= aiix
(k+1)
i

m

x
(k+1)
i = x

(k)
i +

(
r
(k+1)
i

)
i

aii

On the other hand we have for the ith component of r
(k+1)
i+1 and using the expression for x

(k+1)
i :

(
r
(k+1)
i+1

)
i

= bi −
i∑

j=1

aijx
(k+1)
j −

n∑
j=i+1

aijx
(k)
j

= bi −
i−1∑
j=1

aijx
(k+1)
j −

n∑
j=i+1

aijx
(k)
j − aiix

(k+1)
i

= bi −
i−1∑
j=1

aijx
(k+1)
j −

n∑
j=i+1

aijx
(k)
j +

i−1∑
j=1

aijx
(k+1)
j +

n∑
j=i+1

aijx
(k)
j − bi

= 0.

Thus the Gauss-Seidel iterative method chooses x
(k+1)
i in such a way that

(
r
(k+1)
i+1

)
i

= 0.

If we want to minimize
∥∥∥r(k+1)
i+1

∥∥∥ it is not always true that this condition results in the fastest

convergence. Therefore we can introduce a relaxation parameter λ > 0 and modify the iteration
schema to:

x
(k+1)
i = x

(k)
i + λ

(
r
(k+1)
i

)
i

aii

The notion of relaxation can be generalized to other methods which result in a new class of methods
called relaxation methods. When 0 < λ < 1 the method is an under-relaxation method and if λ > 1
then the method is an over-relaxation method.
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Figure 9: An object, and also a person, can be seen as a stack of thin slices that are built up of voxels
[13].

5 Computer Tomography

Tomography refers to cross sectional imaging of an object from transmission or re�ection data [14].
Fundamentally, tomographic imaging deals with reconstruction of an image from its projections. The
projections are from an unknown function of two variables with has real and non-negative values [6].

For computer tomography an object can be seen as a stack of thin slices, see Figure 9. If we put
a grid on one of the slices then we get small blocks as (minimal) volumes that can be sampled from
the object we look at. The small volumes are called voxels [13]. If we want to see a picture of this
slice, the slice is converted from a 3D volume to a 2D picture. If we put a Cartesian grid on the 2D
picture we get small square points of picture-elements with a speci�ed color. The points are called
pixels. We see thus that voxels and pixels are related in a sense that a pixel shows a color on an image
that represents a (physical of biological) property of a voxel as part of an object.

The projections can be seen as line integrals of some parameter of the object along that line. In the
next part of this thesis we will focus on diagnostic medicine applications. In the context of diagnostic
medicine a typical example of a property we visualize is the attenuation of X-rays propagating through
a biological tissue. Also other phenomena such as response to magnetic resonance, ultrasound or
radioisotopes can be used to derive some information from a biological tissue.

A projection is formed by a combination of line integrals. The di�erent lines can be taken as
parallel lines to get a parallel projection. This can for example be done by moving an X-ray source
and a detector along parallel lines on opposite sides of the object we want to measure. An example
of a parallel projection is shown in Figure 10.

It is also possible to use a single source and a line of detectors. In that case we get a fan beam
projection. An example is shown in Figure 11. In this thesis we will use the parallel projections in
our computations.

5.1 Shepp Logan Phantom

In the context of diagnostic medicine the algorithms used for computer tomography must reconstruct
images of a special structure. To compare algorithms there exists a standard input that models a
head. This `head phantom' is de�ned as a set of ellipses with some properties. The advantage of
ellipses in the context of projections is that the projection of an ellipse can be computed analytically.
The `head phantom' from Shepp and Logan [14, 15] de�nes a number of ellipses and gray intensities,
as shown in the Table 1.

If we plot the `head phantom' and stretch the gray values between 0.9 and 1.1 to the full range of
0 to 255 we get a picture like Figure 12.
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Figure 10: Parallel projection of a given angle (eg. θ = 1
2π)

Center of ellipse Major axis Minor axis Rotation angle Gray value
(0, 0) 0.92 0.69 90 2.00

(0,−0.0184) 0.874 0.6624 90 −0.98
(0.22, 0) 0.31 0.11 72 −0.02

(−0.22, 0) 0.41 0.16 108 −0.02
(0, 0.35) 0.25 0.21 90 0.01
(0, 0.1) 0.046 0.046 0 0.01

(0,−0.1) 0.046 0.046 0 0.01
(−0.08,−0.605) 0.046 0.023 0 0.01

(0,−0.605) 0.023 0.023 0 0.01
(0.06,−0.605) 0.046 0.023 90 0.01

Table 1: De�nition of ellipses of the Shepp Logan Phantom
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Figure 11: Fan beam projection

Figure 12: The Shepp Logan phantom with gray intensities 0.9 to 1.1 stretched to the full gray-range
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5.2 Discretization of the model for transmission tomography

With the analytic de�nition of the Shepp Logan Phantom it is possible to compute the projections
analytically and do the discretization a step later. If we want to use a computer for the tomography
at some point we need to discretize the model. In this project we choose to discretize the input of the
algorithm also instead of using the analytic expressions for the head phantom. This is done because
this results in a program that can process the algorithm on all square images in stead of only the
Shepp Logan phantom.

The discretization of the model leads to a �nite dimensional linear algebra and so also to the
optimization theory we discussed earlier [6].

If we use again the notation we stated already in the introduction of this thesis, we are looking for
the inverse of operator O in the following equation:

y = Ox

In the context of diagnostic medicine this operator O is for example the projection with x-rays. The
measured data from the detectors of Figure 10 is stored in y. The values of this vector represent line
integrals and because we have discretized the original object to the image vector x ∈ Rn we can build
a projection matrix A ∈ Rm×n such that the line integrals can be described as �nite sums:

n∑
j=1

aijxj = yi, i = 1, 2, . . . ,m

where y ∈ Rm is the measurements vector with m measurements.
Thus summarizing the model we have built for the transmission tomography we have the following

vectors:

• The vector x ∈ Rn that contains the pixels of the image representing the object we want to see.

• The vector y ∈ Rm that contains the data measured with the detectors. When we have d
detectors and project on a angles then we have m = ad.

• The matrix A ∈ Rm×n that contains which pixels are present in a projection ray and it could
eventual also store di�erent weights for di�erent pixels.

for which the following equation holds:
y = Ax

where y and A are known and x is unknown and we want to know x. In the next section we will
look at a method to come to the inversion problem so that we can reconstruct the image from the
projection data.
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6 Row-action method

In the context of linear programming problems for computer tomography we have some additional
problems to solve Ax = b for x where A ∈ Rm×n. Therefore we want some other iterative methods
then the general methods like Jacobi or Gauss-Seidel iterative methods. The problems in computer
tomography are often undetermined, due to a lack of information, or over-determined [5]. When the
system is over-determined we have a high change of a self-contradicting system. The systems are also
huge systems to get a better quality image. A computer tomography ray hits only a couple of all
pixels and thus the system is also sparse.

Given that the input of the system is often measured data, we have also inaccuracy in measure-
ments. Therefore we want an iterative method that can deal with the noise in the data.

There are multiple possibilities do deal with inconsistency of systems of this form. Some approaches
to deal with it are:

1. The feasibility approach; In this approach we seek x in a neighborhood of hyperplanes de�ned
by Ax = b. To de�ne a neighborhood we introduce a tolerance vector α ∈ Rm, such that the
solution x must satisfy: b− α ≤ Ax ≤ b + α.

2. The optimization approach; If a linear programming problem does not have a unique solution
then we can reduce the solution space by applying an extra objective function g(x) : Rm → R
on the solutions of the �rst linear programming problem. Another or additional approach is to
use box constraints for x such as w ≤ x ≤ v

3. The regularized approach; In this approach we solve Ax = b subject to x ∈ Q where Q describes
some extra constraints. This leads to minimize f(x) + rg(Ax − b) subject to x ∈ Q, where
f : Rn → R and g : Rm → R. An often used example is the least square regularization.

De�nition 6.1. A row-action method is an iterative algorithm with the following properties:

• No changes are made to the original matrix.

• No operations are performed on the matrix as whole.

• A single iteration step uses only one row of matrix A.

• In a single iteration step where x(k+1) is calculated only the direct predecessor x(k) is needed.

Example 6.2. Note that the previously described iterative methods, namely the Jacobi and the
Gauss-Seidel method are not row-action methods because in each iteration function f in x(k+1) =
f(x(k)) (see Equation 2 and also Equation 3) we multiply the input with a whole matrix. This
violates the second requirement of De�nition 6.1.

De�nition 6.1 states explicitly that in one iteration step only one row of the matrix A may be
used. Therefore we have the freedom to choose an order of rows on which we want to iterate the
row-action method. The order on which we iterate over the rows of matrix A is described by the so
called control sequence:

De�nition 6.3. A sequence of indices {ik}∞k=0 according to the rows of matrix A is called a control
sequence of a row-action method. That is, in the iteration from k to k+ 1 the ik

th row of A is used.

Example 6.4. Examples of control sequences are:

• Cyclic control, where ik = k mod m+ 1.

• Almost cyclic control, where ik ∈ {1, 2, . . . ,m} ∀k and ∃C such that ∀k ≥ 0 : M ⊆
{ik+1, ik+2, . . . , ik+C}. Thus at iteration ik, after C steps the algorithm has at least once iterated
over all rows of the system Ax = b.

• Remotest set control, ik is determined such that d(x(k), Qik) = maxi∈M d(x(k), Qi). Thus
the next row to iterate is the row that has the largest distance to the constraints.

• Most violating constraint control, ik+1 is determined by the constraint most violated by
iteration x(k). ik+1 is the row on which the maximum distance is attained between fi(x

(k)) and
bi.
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6.1 Kaczmarz algorithm - ART

An example of a row-action method is the Kaczmarz algorithm [5, 6] or ART (Algebraic Reconstruction
Technique). Assuming that a solution to Ax = b exists the Kaczmarz algorithm will �nd a solution
to the class of problems Ax = b. The algorithm is initialized with an arbitrary solution x ∈ Rn and
in each iteration the following computation is done:

x(k+1) = x(k) + λk
bik −A(ik,•) · x(k)∥∥A(ik,•)

∥∥2 A(ik,•) (5)

6.1.1 Geometrically interpretation

Geometrically the Kaczmarz algorithm projects in each step the current solution x(k) on a hyperplane
described by one of the m constraints in Ax = b. Assumed that they intersect in a point (which is
required with the constraint that a solution must exists) this will lead to a sequence of solutions that
converges to a solution that satis�es all the constraints at the same time.

6.1.2 Kaczmarz in diagnostic medicine

If we apply this algorithm to an image reconstruction problem in the context of diagnostic medicine
we can make the equation Ax = b more concrete. Following the discretized model for image re-
construction in Section 5.2 we can interpret the matrix A as a projection matrix. The rows of the
projection matrix describe which pixels contributes to a given projection and with what weight.

The vector x as the unknown solution to this problem can be seen as the image of the object that
we want to reconstruct. The vector b describes the measured data from the di�erent projections.

Thus when we iterate in the Kaczmarz algorithm over the rows of matrix A we iterate over the
projections that are taken from the object by the CT-scanner. In each iteration the algorithm changes
the values on the entries of the image vector x. For the next discussion we neglect relaxation, thus
we can set the relaxation parameters to one: λk = 1 ∀k.

The change of the value of x in iteration i is done in such a way that x(k+1) satis�es the constraint
described by row ik of the equation Ax = b. This can be done by adding a vector to x(k) with data
in the same proportion as the pixels contribute to the projection of that ray. Thus the vector we
add to x(k) is a multiple of the vector A(ik,•). The di�erence between the projection data from the

CT-scanner and the projection data that we could expect based on x(k) can be computed by the dot
product between the projection row and the image vector x(k):

δik = bik −A(ik,•) · x
(k)

Combining this δik di�erence with the normalized projection row ik of matrix A, the vector
A(ik,•)

‖A(ik,•)‖2
,

we get the di�erence vector we add to in iteration k+1 to x(k) to get x(k+1), as described in Equation
5.

6.1.3 Convergence

In this thesis we do not treat the convergence of the Kaczmarz algorithm. However, we want to state
something about the convergence. In the context of image reconstruction for medical imaging the
existence of a solution is assumed, because the patient in the CT-scanner exists and the CT-scanner
computes projections of this patient.

A bigger problem for image reconstruction is the uniqueness of a solution. In most cases the number
of constraints is less than the number of pixels we want to see, so the system is under-determined. Also
in this cases the Kaczmarz algorithm will �nd a solution and the following theorem and corollary state
something about additional properties and a constraint of the solution of the Kaczmarz algorithm:

Theorem 6.5. Let
lim
k→∞

sup |1− λk| < 1.

If the system Ax = b is consistent then the Kaczmarz algorithm described by Equation 5 converges
to a solution of Ax = b. Moreover if x(0) is in the range of AT then the sequence

{
x(k)

}∞
k=0

converges
to the minimum-norm solution, that is:

lim
k→∞

x(k) = A+b.
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Figure 13: Plot of an execution of the Kaczmarz algorithm in a 2D space of Example 6.7

Proof. This theorem is treated by Reference [10] and references to proofs can be found there.

Corollary 6.6. If the system Ax = b has not a unique solution then the Kaczmarz algorithm �nds
the solution x that satis�es the linear programming problem:

minimize ‖x‖
subject to Ax = b

Proof. By the previous theorem the Kaczmarz algorithm �nds the minimum-norm solution x satisfying
Ax = b. Thus ∀y ∈ Rn : ‖x‖ ≤ ‖y‖. This is the de�nition of a minimization problem.

6.1.4 Interpretation of the algorithm

After a general description of the Kaczmarz algorithm and the geometry behind it we will look at an
example. From this example we can see the comments we made earlier about the Kaczmarz algorithm.

Example 6.7. In this example we will give an intuitive idea about the Kaczmarz method and the
geometry behind it. Figure 13 plots the iterations of the Kaczmarz algorithm for the following system
with an arbitrary initial guess x(0):

Ax = b =

[
1 1
2 5

] [
x1
x2

]
=

[
1
1

]
We see the two constraint lines:

x1 + x2 = 1⇔ x1 = −x2 + 1 (black line)

2x1 + 5x2 = 1⇔ x1 = −5

2
x2 +

1

2
(red line)

and the solution is alternating between the one and the other constraint.

In the following example we will go through the Kaczmarz row-action method to see how it
works. For small systems like this example this is not the best method to solve systems because the
convergence is not fast and the disadvantages of the Gaussian elimination are not high in systems of
this size.

Example 6.8. (continued, based on Example 3.10)
In this example we will compute again a solution for the linear programming problem we used also to
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illustrate the Simplex Method. For the Simplex Method we have introduced the slack variables but
for the Kaczmarz algorithm we do not need them, so we solve the following system:

Ax = b =

 1 2 2
2 1 2
2 2 1

 x1
x2
x3

 =

 20
20
20


We will begin with an initial guess for x as x(0) = (1, 1, 1). For the computations we use no

relaxation (thus λ = 1) and a cyclic control sequence (thus i = k mod 3 + 1). To compute the next
x image vector we apply equation 5:

x(1) = x(0) +
b1 − a1 · x(0)

‖a1‖2
a1

= (1, 1, 1) +
20− (1, 2, 2) · (1, 1, 1)

9
(1, 2, 2)

= (1, 1, 1) + (
15

9
, 2

15

9
, 2

15

9
)

= (2.6667, 4.3333, 4.3333)

If we now compute Ax(1) we get the following result:

Ax(1) =

 1 2 2
2 1 2
2 2 1

 2.6667
4.3333
4.3333

 =

 20.000
18.333
18.333


we see that after the �rst iteration the �rst row satis�es the constraint de�ned by the initial system.
If we proceed with the following iteration we get:

x(2) = x(1) +
b2 − a2 · x(1)

‖a2‖2
a2

= (2.6667, 4.3333, 4.3333) +
20− (2, 1, 2) · (2.6667, 4.3333, 4.3333)

9
(2, 1, 2)

= (3.0370, 4.5185, 4.7037)

and

Ax(2) =

 1 2 2
2 1 2
2 2 1

 3.0370
4.5185
4.7037

 =

 21.481
20.000
19.815


If we proceed we get the following results for x(k):

x(1) = (2.666667, 4.333333, 4.333333)

x(2) = (3.037037, 4.518519, 4.703704)

x(3) = (3.078189, 4.559671, 4.724280)

x(4) = (2.895290, 4.193873, 4.358482)

x(5) = (3.183864, 4.338160, 4.647056)

x(10) = (3.264204, 4.012754, 4.355144)

x(100) = (4.003872, 3.999318, 3.998746)

x(200) = (3.999992, 4.000002, 4.000007)

x(300) = (4.000000, 4.000000, 4.000000)

We see that after 300 iterations we get a result that is accurate up to 6 decimals according to what
we found with the simplex method.

Remark: From the procedure above something is implicit: we have changed the less or equal
sign in an equality sign because we know that we can use this constraint and that this satis�es the
minimization problem. But if we introduce the slack variables x4, x5 and x6 we used also for the
Simplex Method we get another solution:

x(100) = (3.692287, 3.692314, 3.692305, 1.538475, 1.538448, 1.538458)
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that also satis�es the constraint but not minimizes the cost function f(x) = −10x1 − 12x2 − 12x3.
This cost-function is not used in the Kaczmarz algorithm. According to Corollary 6.6 the Kaczmarz
algorithm uses another function to minimize, namely the cost function f(x) = ‖x‖.

If we compute the di�erence in norm between x(100) and the expected solution x∗:

x(100) = (3.692287, 3.692314, 3.692305, 1.538475, 1.538448, 1.538458)

x∗ = (4, 4, 4, 0, 0, 0)

we see indeed a small di�erence: ∥∥∥x(100)
∥∥∥ − ‖x∗‖ ≈ −10−5.

6.2 Block-iterative method

In the Kaczmarz method as described in the previous section all rows are processed in a given sequence
and one by one. If we take a closer look at the system Ax = b where A ∈ Rm×n we see that we can
divide the system in blocks. Therefore we make a partition in the following form:

Ax = b =


A[1]

A[2]

...
A[M]

x =


b[1]

b[2]

...
b[M]

 (6)

where A[i] is a submatrix of A and b[i] is a subvector of b. To get this form we de�ne M blocks based
on the row indices of the constraints of Ax = b. Thus we choose the boundary indices that split the
blocks {st}Mt=0 such that:

0 = s0 < s1 < s2 < . . . < sM−1 < sM = m (7)

For all t with 1 ≤ t ≤M we de�ne the set of all indices of constraints contained in block t:

It = {st−1 + 1, st−1 + 2, . . . , st − 1, st}

The set of It's give a partition:
M⋃
t=1

It = {1, 2, . . .m} (8)

With this partition we have de�ned blocks, and we can apply a block-iterative algorithm such
as the block-iterative generalization of the Kaczmarz algorithm. In this block-iterative algorithm we
compute in iteration k not only a di�erence between x(k+1) and x(k) for one row, but we compute
that for more than one row and add that to the previous solution x(k). In general form this becomes:

x(k+1) = x(k) + AT
[t(k)]Φk

(
b[t(k)] −A[t(k)]x

(k)
)

where we can choose a control sequence t(k) in which order we want to loop through the blocks, for
example cyclic: t(k) = k mod M + 1. In this equation Φk ∈ RL×L is the relaxation matrix where L
is the size of block t(k), i.e. L = |It(k)|. The convergence of this method is stated in e.g. [10].

A special case of the block-iterative Kaczmarz algorithm is when the relaxation matrices Φk are
diagonal matrices de�ned for k ≥ 0 by:

Φk = λkdiag(φ
(k)
l )

where for l = 1, 2, . . . , |It(k)|, φ
(k)
l is de�ned by:

φ
(k)
l =

1∥∥∥A(st(k)−1+l,•)

∥∥∥2
Then we can rewrite the block-iterative Kaczmarz algorithm in a similar form to the original Kaczmarz
algorithm:

x(k+1) = x(k) + λk
∑
i∈It(k)

bi −A(i,•) · x(k)∥∥A(i,•)
∥∥2 A(i,•) (9)

From the algorithm step in Equation 9 we can go back to the Kaczmarz algorithm by choosing m
blocks of size 1. Thus s0 = 0, s1 = 1, . . . , sm = sM = m.
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6.2.1 Cimmino's algorithm - SIRT

Another extreme of this block-iterative algorithm is when we choose only one block of size m. Thus
s0 = 0, s1 = SM = m. Thus to come in step k + 1 from x(k) to x(k+1) we need to compute the
di�erences for all rows in Ax = b in stead of only one row. This method is known as Cimmino's
algorithm or SIRT (Simultaneous Iterative Reconstruction Technique) [14].

One of the disadvantages of the Kaczmarz algorithm is that the reconstructed image shows `strip-
ping' [18]. This can be solved with Cimmino's algorithm by updating the pixels in the x image vector
only after processing all rows. Then the x vector is updated with the di�erence vectors of all projection
rows at once. This results only also in a big downside: Cimmino's algorithm has a slow convergence
and therefore it takes a long time to reconstruct the image.

Remark: in our explanation we said that in each iteration the di�erence for that row is added
to a di�erence vector. The addition of the di�erence vector to the image x is done only when the
algorithm processed over all rows of the equationAx = b. This makes the relation between Cimmino's
algorithm and the block-iterative Kaczmarz algorithm clear, and is also explained by [6]. Some other
authors do not use the addition of the full di�erence vector, but average the di�erence over all rows
of the equation, such as [14].

This means that we have another notion of relaxation. The version where the averaged di�erence
is added to image x can be seen as a version with relaxation of the algorithm with full addition of the
di�erence, namely λ = 1

length(b) .

Example 6.9. In this example we will give an intuitive idea about the block-iterative Kaczmarz
method and the geometry behind it. We use therefore a 2D problem, thus the only block we can make
is the full matrix A (thus this is also an example of Cimmino's algorithm for 2D). In this method
we project again the point x(k) on the two constraint lines as we also did for the standard Kaczmarz
algorithm. But now we add both di�erence vectors d1 and d2 to the solution x(k) to get the new
solution x(k+1). This is also shown in Figure 14a.

If we execute this method iteratively we get a picture like Figure 14b. In this �gure we plot the
iterations of the Block-iterative Kaczmarz algorithm for the following system with an initial guess
x(0) = (−1, 32 ):

Ax = b =

[
1 1
2 5

] [
x1
x2

]
=

[
1
1

]
If we compute the �rst iteration of Cimmino's algorithm by hand we get the following results. As

said earlier we begin with the initial guess x(0) = (−1, 32 ). We use also a cyclic control sequence, thus
i = k mod 2 + 1). Before we compute the next x image vector we unpack the summation in equation
9 and set the relaxation parameters λk = 1:

x(k+1) = x(k) +
b1 −A(1,•) · x(k)∥∥A(1,•)

∥∥2 A(1,•) +
b2 −A(2,•) · x(k)∥∥A(2,•)

∥∥2 A(2,•)

Now we can compute the �rst iteration:

x(1) =

(
−1,

3

2

)
+

1− (1, 1) ·
(
−1, 32

)
2

(1, 1) +
1− (2, 5) ·

(
−1, 32

)
29

(2, 5)

=

(
−1,

3

2

)
+

1

4
(1, 1)− 9

58
(2, 5)

= (−1.06034, 0.97414)

The next iterations can be computed in the same way. If we look at the found x(1) we see that
this is indeed the �st computed point in the plot of Cimmino's algorithm as shown in �gure 14b.

Important is the di�erence with the standard Kaczmarz algorithm: now we compute the part
bi−A(i,•)·x(k)

‖A(i,•)‖2
A(i,•) for all projections before the results are added to the solution vector x.

6.2.2 Block-Kaczmarz algorithm - SART

Another Row-action method for reconstruction of images from projections is the Block-Kaczmarz al-
gorithm or Simultaneous Algebraic Reconstruction Technique (SART). In problems of two dimensions
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Figure 14: Sketch and plot illustrations for Example 6.9

we do not have any choice for de�ning blocks in the Block Kaczmarz method. When the dimensions
increase, and that is the case in image reconstruction, we have many choices and are not forced to
make the choice to iterate over all projections before we update the x image vector.

The SART method is an iterative method what must yield reconstructions of a good quality and
accuracy in only one iteration [1, 14]. Therefore Anderson and Kak describe some main features of
SART. Some of them are related to some modi�cations in the model behind image reconstruction. To
reduce the noise of the general Kaczmarz algorithm they also suggest to apply the correction term
not after each projection (as in the Kaczmarz algorithm) or after each full iteration (as in Cimmino's
algorithm) but after the computation of all projections of a speci�c angle.

Another way to improve the quality of the reconstruction is to give only partial weights on the
picture elements on the boundaries of a ray.

6.3 Classi�cation of block-iterative methods

In the previous sections we discussed multiple row-action methods which can be used to �nd solutions
for huge systems. In this section we will introduce a classi�cation for row action methods. This
classi�cation is based on the classi�cation of algorithms in [6].

We divide the row action methods in four classes based on two axes, namely whether the algorithm
is sequential or parallel and whether the algorithm is performed on a row or a block of rows:

• Sequential Algorithm. The algorithms in this class are controlled with a control sequence
{i(k)}∞k=0. The algorithm performs the row operations sequentially until a stopping criterion is
ful�lled.

• Parallel Algorithm. The row operations are performed in parallel on all rows. The next iterative
solution x(k+1) is generated based on the intermediate results of the other processors.

• Sequential Block-Iterative Algorithm. The system Ax = b is divided into blocks as shown in the
section about block-iterative methods. Then the blocks are processed sequentially following a
control sequence.

• Parallel Block-Iterative Algorithm. The block iterations are performed in parallel on all blocks.
The next iterative solution x(k+1) is generated based on the intermediate results of the other
processors.

Example 6.10. The Kaczmarz algorithm (Equation 5) is an example of a Sequential Algorithm. All
rows are processed sequentially and one by one according to a control sequence.

Example 6.11. With a similar reasoning the Block Kaczmarz algorithm (Equation 9) is a Block-
Iterative Algorithm. In this case blocks are de�ned and the algorithm performs the row operations in
parallel on all rows in a block.
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In this case we see a summation over all i ∈ It(k). This summation can be parallelized such that
multiple processors perform the vector multiplication such that a master processor only needs to sum
the results of the multiplications done by the other processors. Therefore the Block-iterative Kaczmarz
algorithm is a Parallel Block-Iterative Algorithm.
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7 Implementation

After the analysis of some row-action methods we will implement some of the algorithms and discuss
the behavior and some of the parameters with which we can adjust the behavior of the algorithm. The
implementation of the algorithms for this thesis is done in the object oriented programming language
C#. The bene�ts of C# as programming language for this implementation are for example operator
overloading and a clear usage of delegates with lambda expressions.

The C# program as result of this implementation is compilable with Mono1 and thus platform
independent.

7.1 Program pipeline

Before we go in details we describe some main functions of our program to get an idea about what is
going on and how that is related to image reconstruction and the application of diagnostic medicine.
The main part is the reconstruction of an image based on projection data. Before we can reconstruct
images we need two preparation steps to create data that we can use for reconstruction.

7.1.1 Generate Shepp-Logan Phantom

The �rst phase of or program is the phase where a standardized image is generated. Based on the
de�nition of the Shepp-Logan `head phantom', see Table 1, our program can generate a picture of this
`head phantom' in all resolutions we want.

7.1.2 Generate projections

The second phase is to generate projections based on an `original' input image. We want to treat also
other input images then the Shepp-Logan Phantom and so we compute the projections by constructing
rays over the input image and sum the gray-value of the pixels that are on the given line.

The computation of the ray sums on the horizontal or vertical lines of the image are clear. But
we need to say something more about how we selected the pixels that are on a line with a given angle
θ. Given that we know two end points p1 = (x1, y1) and p2 = (x2, y2) where p1 and p2 are on
two di�erent borders of the input image we can select pixels between p1 and p2 using Bresenham's
algorithm [16].

Bresenham's algorithm, see Pseudocode 1, is a known algorithm from Computer Graphics to draw
discrete lines on a pixel grid given a start point and an endpoint. Given a start point p1, an end
point p2 and a linear function f : [x1, x2] → R, then the algorithm selects connected points with
the shortest distance to the line given by the function. If the line that must be drawn is increasing
and in the �rst quadrant then the algorithm starts at the start point p1 and decides in each step if
it must pick the east or the north-east pixel next to the current pixel. For a detailed discussion of
Bresenham's algorithm we refer to [16].

1 i n t y = y1 ;
double d = f ( x0 + 1 , y0 + 0 . 5 )

3 f o r ( i n t x = x0 ; x =< x1 ; x++) {
do_something_with_pixel (x , y ) ;

5 i f (d < 0)
{

7 y = y + 1 ;
d = d + x1−x0 + y0−y1

9 }
e l s e

11 d = d + y0−y1
}

Code 1: Pseudocode of Bresenham's algorithm.

In this case we do not use Bresenham's algorithm to draw lines at a picture but we use the
handle do_something_with_pixel(x, y) to select that pixel for the ray and add its gray-value to
the ray-sum.

A start point p1 of a ray is chosen as boundary point of the input-image. Depending on the angle
of the ray we use the pixels at the bottom and left sides or the bottom and right sides as start points
for the rays with the given angle. The endpoint of the ray is selected by adding δ = (cos θ, sin θ) to

1Mono is a cross platform open source .NET development framework, see http://www.mono-project.com
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p1 until we hit another boundary of the image. The pixel where we leave the image when we add
something in the direction of δ is called p2.

7.1.3 Reconstruction phase

The third and main phase of the program is the part where the reconstruction of the input image is
done based on the projection data from the second phase.

One of the properties of a row-action method is that it uses in one iteration only one row of the
system Ax = b. The data of that row is used in some linear algebra computations. Therefore we
implemented some objects in a LinearAlgebra project. An example of a class in that project is the
class Vector, for the important parts see Section A.1. With the operator overloading for this class
we can implement the usual operations for addition and multiplication of constants and vectors and
also vectors and vectors. This makes the source-code more readable and the implementation of the
algorithms more in line with the equations for the iteration of the algorithms in Equation 5 and 9.

7.2 Kaczmarz - ART

Equation 5 describes the iteration that is done in the Kaczmarz algorithm. In the implementation we
have bounded the number of iterations with MaxRowOperations which describes the total number of
rows that can be processed in the algorithm.

In every iteration the Kaczmarz algorithm chooses an index idx. The index idx represents the
row of the system Ax = b that will used in this iteration of the algorithm. The choice of idx based
on the iteration number can be controlled with a given function controlSequence(i, m).

We assume a (almost) cyclic control sequence and choose idx == 0 as the indicator that the
algorithm has processed a full iteration over all rows of the system.

From the implementation of the Kaczmarz algorithm in Code 2 we see that in all iterations the
image vector x is updated in such a way that row idx satisfy the constraint:

aixi = bi

On the image vector x we apply also a Bound(min, max). The Bound sets all elements in x below a
given minimum to the minimum value and all elements above a given maximum value to the maximum
value. This is a little modi�cation of the Kaczmarz algorithm but with this operation we can apply
an additional constraint we know already before: all gray intensities are between 0 and 255.

This bound is applied after each update of the x vector so that we do not use illegal color values
in the next iterations of the algorithm. Under the given constraints we saw in the experiments that
the Kaczmarz algorithm changed only a small number of pixel-values with the Bound method.

Vector x = in i t i a lGues sForX ;
2 Vector de l t a = new Vector (A. SizeN ) ;

f o r ( i n t i = 0 ; i < MaxRowOperations ; i++)
4 {

// Get the index o f the row to proce s s in t h i s i t e r a t i o n
6 i n t idx = contro lSequence ( i , b . S i z e ) ;

8 i f ( idx == 0)
{ // We s t a r t a new cyc l e

10 // Check i f s topping c r i t e r e a i s t rue
i f ( s t opp ingCr i t e r ea )

12 break ;
}

14

double b_i = b . Data [ idx ] ;
16 Vector a_i = A.GetRow( idx ) ;

18 // Compute the de l ta−vec to r that makes x s a t i s f y the idx−th c on s t r a i n t
double d = Lambda ∗ ( b_i − a_i ∗ x ) / a_i .Norm2 ( ) ;

20 de l t a += d ∗ a_i ;

22 // Update the x−vec to r with the new de l t a
x += de l t a ;

24 x . Bound (0 , 255) ;
d e l t a . SetValue (0 ) ;

26 }
re turn x ;

Code 2: Code that applies the Kaczmarz algorithm following Equation 5.
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(a) Overview of implementation Kaczmarz algorithm (b) Overview of implementation Cimmino's algorithm

Figure 15: Comparison of implementation of Kaczmarz and Cimmino's algorithm. The block that
updates x is moved to execute only if the algorithm starts a new iteration.

7.3 Cimmino - SIRT

Cimmino's algorithm is based on the same idea as the Kaczmarz algorithm. We can see that also back
in the implementation of Cimmino's algorithm. The addition of the delta vector which is done in the
Kaczmarz algorithm after each iteration is moved in the implementation of Cimmino's algorithm to
the part that is done when a new cycle starts, as illustrated Figure 15 and seen in Code 3.

Also in Cimmino's algorithm implementation we can control the choice of idx using a control
sequence (although a change in a cyclic control sequence of Cimmino's algorithm does not result in
another computation in the iteration. The changes are at most a change in the numerical error of the
solution of the iteration) and bound the resulting x to the gray intensity range.

1 Vector x = in i t i a lGues sForX ;
Vector de l t a = new Vector (A. SizeN ) ;

3

f o r ( i n t i = 0 ; i < MaxRowOperations ; i++)
5 {

// Get the index o f the row to proce s s in t h i s i t e r a t i o n
7 i n t idx = contro lSequence ( i , b . S i z e ) ;

9 i f ( idx == 0)
{ // We s t a r t a new cyc l e

11 // Update the x−vec to r with the new de l t a
x += de l t a ;

13 x . Bound (0 , 255) ;
d e l t a . SetValue (0 ) ;

15

// Check i f s topping c r i t e r e a i s t rue
17 i f ( s t opp ingCr i t e r ea )

break ;
19 }

21 double b_i = b . Data [ idx ] ;
Vector a_i = A.GetRow( idx ) ;

23

// Compute the de l ta−vec to r that makes x s a t i s f y the idx−th c on s t r a i n t
25 double d = Lambda ∗ ( b_i − a_i ∗ x ) / a_i .Norm2 ( ) ;

d e l t a += d ∗ a_i ;
27 }

re turn x ;

Code 3: Code that applies Cimmino's algorithm following Equation 9.
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7.4 Block-Kaczmarz - SART

When we implement the Block-Kaczmarz algorithm we need to introduce some additional bookkeeping
to know which block we process. Therefore we use an array with indices that de�nes the blocks as
described in Equation 7. We can use di�erent types of partitions as suggested by the discussion of
Equation 7. A natural partition can be the partition that groups the rows of the system according to
the rays of one direction into one block. In the phase of the generation of the projections the indices
of rays that belongs to the same angle are already stored in such an array. So the default partition is
the partition into blocks with rays that corresponds to the same direction.

This partition related to directions has also the advantage (in the continuous case) that all pixels
are hit at most once per block. Due to the discretization we used and the choice of Bresenham's
algorithm to construct projection lines this advantage is not always true.

In the Block-Kaczmarz implementation we compute for all rows in a block also the di�erence
vector as in the Kaczmarz implementation and add that to a delta-vector. When all rays in a block
are processed we add the delta-vector to the image vector x and process the rows of the next block.

In the Block-Kaczmarz implementation we iterate using a standard cyclic control over the rows in
a block. Also here a change in this sequence results in another order of addition of delta-vectors and
not another summation. Therefore we neglect this possibility for control and use the cyclic control
t(k) = k mod m.

We can control the choice of the next block, the currentBlockId, using a control sequence. Also
in this implementation we bound the resulting x to the gray intensity range.

Vector x = in i t i a lGues sForX ;
2 Vector de l t a = new Vector (A. SizeN ) ;

4 i n t currentBlockId = 0 ;
i n t b locksProce s sed = 0 ;

6 i n t b lockLine = 0 ;

8 f o r ( i n t i = 0 ; i < MaxRowOperations ; i++)
{

10 // Get the index o f the row to proce s s in t h i s i t e r a t i o n
i n t idx = blocks [ currentBlockId ] + blockLine ;

12

i f ( b locks == nu l l | | idx == blocks [ currentBlockId +1])
14 { // We came to a row that be longs to another b lock

// Update the x−vec to r with the new de l t a
16 x += de l t a ;

x . Bound (0 , 255) ;
18 de l t a . SetValue (0 ) ;

20 // Enter the next block
blockLine = 0 ;

22 b locksProce s sed++;
currentBlockId = contro lSequence ( b locksProcessed , b locks . Length − 1) ;

24

// Recompute the idx based on the next block
26 idx = blocks [ cur rentBlockId ] + blockLine ;

28 i f ( idx == 0)
{ // We s t a r t a new cyc l e

30 // Check i f s topping c r i t e r e a i s t rue
i f ( s t opp ingCr i t e r ea )

32 break ;
}

34 }

36 double b_i = b . Data [ idx ] ;
Vector a_i = A.GetRow( idx ) ;

38

// Compute the de l ta−vec to r that makes x s a t i s f y the idx−th c on s t r a i n t
40 double d = Lambda ∗ ( b_i − a_i ∗ x ) / a_i .Norm2 ( ) ;

d e l t a += d ∗ a_i ;
42 blockLine++;

}
44 r e turn x ;

Code 4: Code that applies the Block-Kaczmarz algorithm following Equation 9.

40



When we take a closer look at the Block-Kaczmarz implementation and the Kaczmarz implemen-
tation we see indeed that the Block-Kaczmarz is a generalization of the Kaczmarz algorithm. To see
that we construct blocks of size one, thus:

blocks = [0, 1, 2, . . . ,m− 1,m];

For all iteration i ≥ 1 of the for loop the following condition is true:

idx == blocks[currentBlockId+1]

This because 0 ≤ idx ≤ m is the potential row of the system Ax = b that is used in iteration i. All
integers between 0 and m are a boundery of a block, and thus idx == blocks[currentBlockId+1].
Thereby the body of the if statement on line 13 is always executed. The only di�erence between
the two implementations is the iteration-number. The computation of iteration n in the Kaczmarz
implementation is done in iteration n+ 1 of the Block-Kaczmarz implementation because the update
of image x for the previous block is done before the update of the delta-vector for the current ray.

A similar reasoning can be used to show that Cimmino's algorithm is another extreme version of
the Block-Kaczmarz. Therefore we choose only one block, thus:

blocks = [0,m];

The condition on line 13 is not the same but equivalent to idx == 0. The condition is true when
idx = m and before the idx is used it is in the recomputation of idx set to 0. That makes this version
the same as Cimmino's algorithm.

41



8 Practical analysis

In this section we will do some experiments with the implementations of the algorithms for solving
image reconstruction problems. In the experiments we will discuss some variables or parameters and
what the in�uence of that parameter is on the computation or the result. Therefore we discuss in
Section 8.1 the in�uence of the relaxation parameter. In Section 8.2 we will consider the relation
between the block size and the convergence of the Block-Kaczmarz algorithm. In Section 8.3 we look
at the relation between the number of directions and the number of rays from the input of the image
reconstruction. The in�uence of a di�erent control sequence is shown in Section 8.4. We summarize our
practical results in Section 8.5 and we discuss also some possibilities to execute the Block-Kaczmarz
algorithm in parallel to reduce the computation time of the Block-Kaczmarz implementation.

8.1 Relaxation parameter

Until now we did not spent a lot of attention to the relaxation parameter in the row action methods.
The analysis of the relaxation parameter in equations like Equation 5 is often done in practice [12].
So before we can compare the three implementations of the row action method we need also to look
at the relaxation parameter to optimize the row action method.

8.1.1 Introduction

The relaxation parameter is a weight-parameter for the delta-vector we add to the solution x(k) to
come to the next iteration x(k+1). If we decrease the relaxation parameter the iterations are more
conservative to the computations already done. So the speed of convergence slows down, but the
quality of the image increases [4]. On the other hand when we use over-relaxation the speed of
converges increases, but the quality of the result image reduces.

An optimal relaxation parameter minimizes the execution time of the algorithms and also results
in a speci�ed quality of the image. Therefore we ask ourselves:

What is the best relaxation parameter for the Kaczmarz (ART), Cimmino (SIRT) and
Block-Kaczmarz (SART) algorithm for a good execution time and also a good image?

8.1.2 Method

In this experiment we use the Shepp-Logan head phantom as sample input to look at the relaxation
parameter. We use a 128 × 128 pixels image with the gray-values between 0.9 and 1.1 stretched to
the whole gray-range, as in Figure 12. In this experiment we use projections from 64 directions with
128 rays each. This results in 64 ∗ 128 = 8.192 constraints for 1282 = 16.384 unknown pixel values. In
this way the system is under-determined as in most image reconstruction problems. But due to the
relative high number of directions and rays this setup will result in reasonably good quality images.

We introduce the following measure to compare the results of the iterative reconstruction algo-
rithms with the original image of the head phantom, x:

δ(x(k)) :=
∥∥∥x(k) − x

∥∥∥ (10)

Note that this distance cannot be used in practice. This distance function requires that we know the
original image x. For this experiment it is a good distance measure because we want a reconstruction
of the original image with a given quality. This distance is also independent of the choice of relaxation
parameter λ but the rate of convergence is not a criteria in this distance and stopping criteria.

If we want to use the algorithms in practice we need other measures. The choice of a good stopping
criteria for practice is out of the scope of this experiment. For alternative distances we could use for
example the rate of convergence. We could also say that a good image has a high contrast and a low
level of noise. Mentioned that we have increased the contrast of the Shepp-Logan phantom this could
also be a nice measure, but due to the simplicity of the δ-measure we choose the norm of the di�erence
as measure for x(k).

Now we need to de�ne what we mean with a `good quality' image. In terms of the δ(x)-function
of Equation 10 we say that all images x(k) with δ(x(k)) ≤ 1000 have a `good quality'. This criterion
can serve as a stopping criterion for the algorithms.
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Figure 16: Plot of total number of iterations needed for the implementation of the Kaczmarz algorithm
to achieve the `quality' δ ≤ 1000.

8.1.3 Hypothesis

If we plot computation time against the relaxation parameter we expect to �nd a parabola-like �gure
from which we can read-o� the best relaxation parameter. From that relaxation parameter there is
a branch to lower relaxation parameters in which the computation time increases. This is because
the relaxation is too conservative to converge fast to the original good image. On the other branch,
where the relaxation parameter increases, the computation time also increases. This is because the
algorithm jumps faster to other images towards the original image but it needs multiple iterations to
establish a good quality image.

8.1.4 Results

When we apply the Kaczmarz implementation we choose λ ∈ {0.5, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3, 1.5}.
When we run the algorithm the computation time does not vary much when the total number of
full iterations stays the same. The computation time grows linearly with the number of iterations
needed. On the machine where we tested the implementations the execution of one full iteration of
the Kaczmarz algorithm tooks approximately 2.2 · 103 ms.

When we plot the total iterations needed for di�erent λ to achieve the `good quality' image we see
a plot as in Figure 16. The red points are the absolute number of iterations needed to terminate the
algorithm, i.e. achieve an image of good quality.

When we apply the Block-Kaczmarz implementation we choose λ ∈ {0.5, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3, 1.5}.
When we run the algorithm also for the Block-Kaczmarz implementation the computation time does
not vary much when the total number of full iterations stay the same. The computation time grows
linearly with the number of iterations needed. On the machine where we tested the implementations
the execution of one iteration tooks approximately 1.9 · 103 ms. The plots of the total number of
iterations needed for the Block-Kaczmarz implementation is shown in Figure 17.

The implementation of Cimmino's algorithm has some varying results. For some values of the
relaxation parameter λ the algorithm is unstable or the algorithm jumps between two di�erent images
where both series of images did not converge to the original image x. For example, λ values in the order
of the λ for the Kaczmarz implementation result in a bad image and no convergence to original image
x. Some values in the range 0.01 ≤ λ ≤ 0.06 result in a sequence of images that sometimes converges
to x. Also in this interval for some λ values the algorithm did not converge, such as λ = 0.048. If the
algorithm convergences then the convergence is very slow. Therefore we have increased our notion of
a `good' quality to δ ≤ 3000. In Figure 18 we see the total number of iterations needed to achieve the
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Figure 17: Plot of total number of iterations needed for the implementation of the Block-Kaczmarz
algorithm to achieve the `quality' δ ≤ 1000.

`good' quality and terminate the implementation of Cimmino's algorithm.
Remark: We have used 64 direction from which we have taken rays through the object. Therefore

all pixels will have approximately 64 value updates when all lines in the system are processed once.
Thus if we choose a relaxation parameter λ = 1

64 ≈ 0.016 then we �nd indeed some λ-values where
the algorithm converges.

8.1.5 Conclusion

If we consider the iterations needed for the Kaczmarz algorithm and also the Block-Kaczmarz algo-
rithm we see that there is a bandwidth around some λ for which the algorithms converge. For both
algorithms we can choose λ such that 0.8 ≤ λ ≤ 1.2. For that range the number of iterations is
minimal. This makes the Kaczmarz algorithm and its variations a set of good algorithms from where
we can go further to improve the algorithm. The value λ = 1 or 1.1 is for the Kaczmarz and the
Block-Kaczmarz algorithm approximately the center of the bandwidth and results in an image with
the `best quality' with 43 (for the Kaczmarz) or 44 (for the Block-Kaczmarz) needed iterations.

For Cimmino's algorithm a good choice of λ is hard. For multiple λ the algorithm does not converge
and if a λ is found for which the algorithm converges, then there can be another relaxation parameter
in the neighborhood of that λ that does not converge. Also the computation time of Cimmino's
algorithm is very long. Compared with the computation time of the Kaczmarz and Block-Kaczmarz
algorithm � which computes a better quality image � Cimmino's algorithm results in lower quality
images. Therefore we exclude Cimmino's algorithm in the further experiments.

8.1.6 Discussion

Under the given constraints described in the sections introduction (Section 8.1.1) and method (Section
8.1.2) we can �nd a relaxation parameter λ. The result is that λ = 1 is the best relaxation parameter
in this scenario for Kaczmarz and Block-Kaczmarz. Thus we do not need any relaxation. From this
experiment we see that under the given constraints there exist a bandwidth in which the relaxation
parameter can be chosen. But from the results of this experiment we do not know how the relaxation
parameter performs in other situations, such as a stronger under-determined system. Because λ = 1
is equivalent to no over- or under-relaxation and relaxation is an optional parameter for Kaczmarz
and Block-Kaczmarz we use λ = 1 in the further experiments.

About the observation that Cimmino's algorithm is not always stable, we can imagine that it is
related to the fact that after each update of the x(k) image vector we apply a pre-known constraint
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Figure 18: Plot of total number of iterations needed for the implementation of Cimmino's algorithm
to achieve the `quality' δ ≤ 3000.

on x(k+1). We know that x is a gray-scale image representation and thus: 0 ≤ x(k+1) ≤ 255.
Another source from where the elements of x(k+1) can run out of the range [0, 255] is that a set

of multiple constraints all want to change the same element in x(k). Therefore it is possible that the
value of some elements of x(k+1) are over updated, because from multiple constraints that element of
x(k+1) will receive a strong increase or decrease.

The convergence of the Block-Kaczmarz for di�erence block sizes is the subject of the next exper-
iment.

8.2 Block size and convergence of Block-Kaczmarz

As we saw in the discussion of the Block-Kaczmarz algorithm we can see the Kaczmarz algorithm and
Cimmino's algorithm as special cases of the Block-Kaczmarz algorithm. In the experiment of Section
8.1 we saw that Cimmino's algorithm is not stable in the scenario where we took 64 directions with
128 rays per direction for a 128× 128 pixel picture.

8.2.1 Introduction and method

In this experiment we will analyze the in�uence of the total number of blocks on the convergence of the
Block-Kaczmarz implementation. Therefore we use again the scenario where we want to reconstruct
an 128 × 128 pixel image from projection data of 64 directions with 128 rays per direction. When
we apply the Block-Kaczmarz algorithm with a custom number of blocks we use almost equal size
partitions.

To get equal size partitions we choose a number of blocks as a power of two. We applied the
Block-Kaczmarz algorithm on the 14 partitions with 20, 21, 22, . . . , 213 = 8192 blocks.

Also in this experiment we use the δ measure of Equation 10. Again we want a quality of the
reconstructed image x(k) such that δ(x(k)) ≤ 1000.

8.2.2 Results

If we run the Block-Kaczmarz algorithm with the di�erent number of blocks in a partition we get a
total number of iterations needed as shown in Table 2. We see that when the number of blocks is
greater than 64 we see nothing special on the total number of iterations. Therefore we plot the results
with a logarithmic scale on the `number of blocks'-axis in Figure 19. For a detailed view we plot the
data 0 ≤ #Blocks ≤ 64 on a linear axis in Figure 20.
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Number of blocks Total iterations

8192 43
4096 43
2048 44
1024 44
512 44
256 44
128 44
64 44
54 49
48 59
38 70
32 73
30 164
16 -
8 -
2 -
1 -

Table 2: Total number of iterations needed for di�erent number of blocks in a partition for the
Block-Kaczmarz algorithm to achieve the `quality' δ ≤ 1000

To see the convergence for some di�erent block sizes we plot the δ-distance between the result of
a given iteration with the original image in Figure 21.

8.2.3 Conclusion

As indicated in Figure 19 we see the total number of iterations needed to achieve a given quality of
the image. All runs with #Blocks ≥ 64 need 43-44 iterations. Thus when the size of the blocks are
between 8192

8192 = 1 and 8192
64 = 128 rows we have convergence. All these blocks have rays grouped that

are from one direction. For each direction we have 128 rays thus when we add additional rows to
the blocks then each block is built up of rows that are related to rays from at least two directions.
The computations for rays from two di�erent directions can in�uence each other which can lead to
instability and non-convergence of the algorithm.

When we have 32 blocks with 8192
32 = 256 rows all blocks contains the full set of constraints for

two directions. This example shows that in this case the algorithm with 32 blocks converges also but
they need more iterations to achieve the same quality. This shows that the instability of the system
increases. When we do also a run of the Block-Kaczmarz algorithm with 30 blocks we came slowly (in
164 iterations) also to a solution. But when the number of blocks decreases further we see the error
is not decreasing in all iterations, as seen in Figure 21.

We see in Figure 21 also that the error of Cimmino's algorithm alternates between two main error
values. This is an side-e�ect of the Bound we applied after each iteration. When we ignore the Bound
in this implementation we see the error increasing in stead of decreasing.

8.3 Di�erent type of input

In this experiment we will look at some parameters of the input from the CT-scanner that will in�uence
the quality of the reconstructed image.

8.3.1 Introduction

The total number of input constraints for image reconstruction algorithms can be seen as depending on
two variables. The �rst variable D is the number of directions from which projections are taken. The
second variable R is the number of rays (in the CT-scanner the number of detectors) in a projection.
In this experiment we will look how the quality of a image is related to these two variables D and R.
This is done by generating images by varying the parameters D and R. We �xed the total number of
rays that may be processed to 2 ∗ 1282 = 32.768 rays. Thereby we can compare the performance of
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Figure 19: Plot of total number of iterations needed for the Block-Kaczmarz implementation to achieve
the `quality' δ ≤ 1000 with di�erent block sizes.
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Figure 20: Plot of total number of iterations needed for the Block-Kaczmarz implementation to
achieve the `quality' δ ≤ 1000 with di�erent block sizes in the range where convergence goes over to
non-convergence.
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Figure 21: Plot of error as a function of the iteration number for the Block-Kaczmarz implementation
with di�erent block sizes.

the algorithms and also the results from di�erent input parameters because we give all runs the same
amount of computation resource.

8.3.2 Results

If we apply the Kaczmarz and the Block Kaczmarz algorithm to the given input variables with
(D,R) ∈ {(4, 128), (16, 128), (64, 128), (128, 64), (128, 16), (128, 4)} and λ = 1 then we get result images
as in Figure 22 and Figure 23.

In Figure 22 we see the results of the Kaczmarz and the Block-Kaczmarz algorithm with �xed
number of rays per direction. In Figure 23 we see the results of the Kaczmarz and the Block-Kaczmarz
algorithm with �xed number of directions.

8.3.3 Conclusion

The �rst conclusion of this experiment is that the result of the Kaczmarz algorithm and the Block-
Kaczmarz algorithm is almost the same. Visualy we do not see much di�erence and only in the
computed δ-distance we see for some input parameters a small di�erence. This leads us to our �rst
conclusion that the Block-Kaczmarz algorithm is a better algorithm for image reconstruction. This is
because the Block-Kaczmarz algorithm is prepared to be used for parallel computations. So we can
use the power of multiple processors to process all rays of one direction in parallel. The computation
of the di�erence between x(k) and x(k+1) can be done in parallel where each processor handles one
ray (or row in the system Ax = b).

The other conclusion of this images is that when D or R increases the quality of the resulting
image will also increase. We see also that for a good result we need some balance between D and
R. Both variables have its own type of artifact in the resulting images. The quantity D is related to
expressing details in the reconstructed image. The quantity R is related to artifacts as like a sort of
`lines' through the image.

This is because the quantity D stands for the number of directions from which projection informa-
tion is known. When there are more directions the algorithms can better distinguish gray intensities
between pixels that are on a projection line. The quantity R describes something about how `dense'
the projection information is over the image. When the density of the projection data in a image
reduces, the projection of that direction describes only for some `lines' in the image how the gray
intensities are distributed.
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(a) Kaczmarz D = 4, R = 128, δ = 5027 (b) Block Kaczmarz D = 4, R = 128, δ = 5027

(c) Kaczmarz D = 16, R = 128, δ = 2852 (d) Block Kaczmarz D = 16, R = 128, δ = 2853

(e) Kaczmarz D = 64, R = 128, δ = 1693 (f) Block Kaczmarz D = 64, R = 128, δ = 1700

Figure 22: Reconstructed images of the 128 × 128 head phantom from the Kaczmarz and Block
Kaczmarz implementation with a �xed number of rays per direction after processing 32768 rays. This
results in 64 iterations for D = 4, 16 iterations for D = 16 and 4 iterations for D = 64.
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(a) Kaczmarz D = 128, R = 4, δ = 8457 (b) Block Kaczmarz D = 128, R = 4, δ = 8457

(c) Kaczmarz D = 128, R = 16, δ = 4122 (d) Block Kaczmarz D = 128, R = 16, δ = 4119

(e) Kaczmarz D = 128, R = 64, δ = 2948 (f) Block Kaczmarz D = 128, R = 64, δ = 2953

Figure 23: Reconstructed images of the 128 × 128 head phantom from the Kaczmarz and Block
Kaczmarz implementation with a �xed number of directions after processing 32768 rays. This results
in 64 iterations for R = 4, 16 iterations for R = 16 and 4 iterations for R = 64.
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(a) D = 64, R = 128, δ = 1700
(4 iterations)

(b) D = 128, R = 128, δ = 2198
(2 iterations)

(c) Original image δ = 0

Figure 24: Result images of the Kaczmarz algorithm where D = 128, R = 128 has insu�cient compu-
tation resources to get a better quality than D = 64, R = 128

Because the human eye is sensitive for di�erences in gray intensities we want to reduce the `line'-
e�ects over increase contrast. So more rays gives more information about the original images and will
result in a better quality image but when we need to reduce the total number of rays we will advice
to choose D and R in such a way that D ≤ R.

8.3.4 Discussion

The statement �more rays give more information and results in a better quality image� we made in
the conclusion is only true when the computation time is unlimited, or at least we can apply multiple
iterations of the algorithm. When we have more rays one iteration needs also more time to compute.
In general an iteration took D × R rays to process. When we look for example at the case where
R = 128 and D = 128 the quality of the result image is lower as the quality of the result image of
R = 128 and D = 64, as seen in Figure 24. This is because the quality of the reconstruction increases
visually and in δ-distance a lot in the �rst approximately 4 iterations. This example shows that 4
iterations of the Kaczmarz algorithm of a half determined system results in a better quality image as
2 iterations of a fully determined system.

In this experiment we did not call our parallel Kaczmarz implementation SART. This is because
Anderson and Kak describe in Reference [1] more additional features for SART to increase the quality
of the result image, and also to decrease D and R. One of the � not implemented � features is the usage
of interpolation when they introduced bilinear elements for the approximation of the line integrals.
This gives an additional perspective on SART but in this experiment we cannot show the additional
performance of these features.

8.4 Controlling the Block-Kaczmarz algorithm with the control sequence

Until now we had said that row action methods we introduced do in each iteration something with
one row of the system Ax = b. The row that is used can be controlled with a control sequence. But
we have always used the standard cyclic control sequence: ik = k mod m + 1, where m is the total
number of rows of the system Ax = b.

8.4.1 Introduction

In this experiment we will think about another control sequence and use that control sequence to
reconstruct images with the Block-Kaczmarz algorithm according to that control sequence.

8.4.2 Hypothesis

As describes in Section 6.3 a control sequence is a sequence of indices of rows in the system Ax = b.
Because we have a �nite number of rows we can choose in the sequence this sequence will be cyclic.

As mentioned in the discussion of the Simplex Method and the Kaczmarz algorithm the step in
each iteration can be seen as projecting the current solution to the next line, hyperplane or in general
boundary of the feasible set. The convergence of the Kaczmarz algorithm depends on the angle
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Figure 25: Sketch of two type of constraints: perpendicular and almost parallel.

Iteration `Standard control' `Perpendicular control'
1 3810 3119
2 2486 2120
3 1931 1783
4 1701 1620

Table 3: δ-quality of the reconstruced image for di�erent control sequences for D = 64, R = 128

between the boundaries of the feasible set. In 2D we can visualize that with two lines in Figure 25.
To increase the convergence of the algorithm we want to project in the next iteration on a boundary
that is almost perpendicular to the current boundary.

From the construction of the blocks for the Block-Kaczmarz algorithm we know that the blocks
are ascending sorted on projection angle θ in the system Ax = b. Thus with the idea that in the next
iteration we want to project onto a boundary that is almost perpendicular to the current boundary
we think that we can increase the convergence of the Block-Kaczmarz algorithm. In the standard
cyclic control the algorithm steps through the blocks in ascending order. Thus on each iteration the
algorithm projects onto a boundary that has a angle 180◦

D , where D is the total number of projection
directions.

So we introduce the following control sequence: Let c = i mod m be the index of the standard
control sequence. Then we divide the range [0,m] into two parts and use the even indices for the �st
part and the odd indices for the second part:

ik =


c

2
, c even

1

2
m+

c− 1

2
, c odd

To make the idea of this control sequence clear we require also that m as the number of blocks is
even so that we can divide the blocks into two groups of the same size.

8.4.3 Results

If we look at the intermediate images generated by both versions of the control sequence we see small
di�erences between these two implementations. The intermediate images for D = 32 and R = 128
of the �rst four iterations are shown in Figure 26. Visually the di�erences are not large but if we
compute the δ-distances, according to Equation 10, we see some di�erence as shown in Table 4.

When we apply the input D = 64 and R = 128 to the standard control sequence and the perpen-
dicular control sequence after each iteration we get the δ-distance as error to the original image x as
shown in Table 3.

Visually the di�erences between the pictures are not big, but if we look at the image of the �rst
iteration we can see some di�erences, see Figure 27.
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(a) Iteration 1 (Standard control) (b) Iteration 1 (Perpendicular control)

(c) Iteration 2 (Standard control) (d) Iteration 2 (Perpendicular control)

(e) Iteration 3 (Standard control) (f) Iteration 3 (Perpendicular control)

(g) Iteration 4 (Standard control) (h) Iteration 4 (Perpendicular control)

Figure 26: Intermediate images in reconstruction process of the 128 × 128 head phantom from the
Kaczmarz implementation with D = 32 and R = 128.
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Iteration `Standard control' `Perpendicular control'
1 3982, Figure 26a 3491, Figure 26b
2 2958, Figure 26c 2754, Figure 26d
3 2557, Figure 26e 2509, Figure 26f
4 2408, Figure 26g 2384, Figure 26h
5 2312 2301
6 2248 2239
7 2197 2189
8 2154 2148

Table 4: δ-quality of the reconstruced image with di�erent control sequences for D = 32, R = 128

(a) Reconstruction with standard control,
δ = 3982

(b) Reconstruction with perpendicular con-
trol, δ = 3491

Figure 27: Reconstructed images of the `head phantom' after one iteration D = 32, R = 128.
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8.4.4 Conclusion

The previous two examples show that in δ-distance the �rst iterations get a better image with the
`perpendicular control' than with the standard control. When the algorithm applies multiple iterations
on the image the e�ect of the `perpendicular control' will fade out. Thus if we restrict our program
to do only a couple of iterations one can think about how the best result can be achieved with the
limited computational resource. The notion of `perpendicular projection' can be one that increases
the quality of the resulting image.

8.5 Remarks

From the experiments in this section we can conclude that the Kaczmarz and the Block-Kaczmarz
algorithms can be used for image reconstruction. Both algorithms support relaxation but in Section 8.1
we saw that the algorithms are stable enough that they do not need relaxation. Cimmino's algorithm
is not always stable as we saw in the analysis of the in�uence of the block-size. Also Cimmino's
algorithm has a slow convergence. The quality of the reconstructed images of Kaczmarz and Block-
Kaczmarz are almost the same. We have also seen that when computation time is not bounded we can
say that projection information from more directions and with more rays will result in better images.

8.5.1 Parallelization

Our practical analysis discussion came to a point that we can parallelize the Block-Kaczmarz imple-
mentation. In each iteration of the Block-Kaczmarz we can divide the rays in a block over a number
of processors. The processors can compute the Kaczmarz algorithm for the rows in parallel and this
results in a double, like the d-variable in our implementations. The resulting variables are given to
a master processor that handles the updates of the x image vector. To reduce the number of inter-
process communications the projection matrix A and the projection vector b need to be broadcast
to all processors in advance. After each update of the image vector x a processor broadcasts the x
vector to the other processors. Then the next block can be computed. Because most computations
can be done in parallel we expect that with enough memory to store the data A and b we can get a
high speed-up.

The blocks are not the only type of data that can be distributed over multiple processors. Also
the parallel geometry gives suggestions for parallelizations. The data collection leads to a parallel
execution of a sequential block-iterative method by grouping disjoint subsets of rays which belong to
the same view [17]. Also other image decompositions can be found [6].

The Block-Kaczmarz algorithm as result of our discussion is sequentially not an improvement of
the Kaczmarz algorithm. But because of the parallelization we think that in this direction the Block-
Kaczmarz can become a better iterative algorithm for image reconstruction. The quality of the image
stays the same in comparison with Kaczmarz but due to a expected good speed up we can reduce
the computation time for one iteration and so the computation time of the whole Block-Kaczmarz
algorithm.
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9 Conclusion

In this thesis we discussed some mathematical background on optimization and linear programming.
From there we saw a �rst iterative method to solve linear systems: the Simplex Method. We saw also
some basic methods for solving linear systems. Because we deal with large systems there are di�erent
reasons why we would not use that method to solve our system. For the solution of the systems we
looked to row action methods and discussed some of the properties of the Kaczmarz algorithm.

From there we gave the linear system an explicit context in diagnostic medicine. There we saw
that computer tomography is a technique that applies something, such as X-rays, to a patient and
records the X-rays that are not absorbed by the patient to get projection data. From this projection
data we used the Kaczmarz algorithm to reconstruct an image of the interior of the body. We looked
also to some alternatives as the Block-Kaczmarz (SART) implementation. This algorithm has the
advantage that it can be parallelized.

We considered also the stability of the Block-Kaczmarz method with di�erent block sizes. We saw
that the Block-Kaczmarz is stable if we use at least 32 blocks for a con�guration with projections from
64 directions and 128 rays per direction. This shows that the Block-Kaczmarz algorithm converges
when we use at most information of two projection directions for one update of the image vector x.

From the context of diagnostic medicine there is also a remark on the total number of rays:
diagnostic medicine wants to minimize the number of rays. For some diagnostic applications in
medicine the rays need to be taken with radioactive and/or other harmful material. With a minimal
number of rays the damage can be minimized. But the other side of the discussion is also that the
physician needs to recognize the structures on the scan.

This gives a perspective on further research of the Block Kaczmarz algorithm and also the addi-
tional features of SART to decrease the number of projection rays and also increase the image quality
in one iteration.
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A Code samples

Most of the comments and method information is removed to reduce the size of this code-samples.
Also some less important methods are changed or removed.

A.1 Vector implementation

2 namespace IRT . LinearAlgebra
{

4 pub l i c c l a s s Vector
{

6 pub l i c i n t S i z e { get ; s e t ; }
pub l i c double [ ] Data { get ; s e t ; }

8 pub l i c s t a t i c Vector operator +(double c , Vector v ) ;
pub l i c s t a t i c Vector operator +(Vector v1 , Vector v2 ) ;

10 pub l i c s t a t i c Vector operator −(Vector v1 , Vector v2 ) ;
pub l i c s t a t i c Vector operator ∗( double c , Vector v ) ;

12 pub l i c s t a t i c double operator ∗( Vector v1 , Vector v2 ) ;
pub l i c s t a t i c Vector operator >=(Vector v , double c ) ;

14 pub l i c s t a t i c Vector operator <=(Vector v , double c )
{

16 Vector r e s = new Vector ( v . S i z e ) ;
f o r ( i n t i = 0 ; i < r e s . S i z e ; i++)

18 { r e s . Data [ i ] = v . Data [ i ] <= c ? 1 : 0 ; }
re turn r e s ;

20 }

22 pub l i c Vector ElementProduct ( Vector v )
{

24 Vector prod = new Vector ( S i z e ) ;
f o r ( i n t i = 0 ; i < prod . S i z e ; i++)

26 { prod . Data [ i ] = Data [ i ] ∗ v . Data [ i ] ; }
re turn prod ;

28 }

30 pub l i c double VectorProduct ( Vector v )
{

32 double prod = 0 . 0 ;
f o r ( i n t i = 0 ; i < S i z e ; i++)

34 { prod += Data [ i ] ∗ v . Data [ i ] ; }
re turn prod ;

36 }

38 pub l i c Vector CrossProduct ( Vector v )
{

40 Vector c r o s s = new Vector ( v . S i z e ∗ v . S i z e ) ;
f o r ( i n t i = 0 ; i < v . S i z e ; i++)

42 {
f o r ( i n t j = 0 ; j < S i z e ; j++)

44 { c r o s s . Data [ i ∗ v . S i z e + j ] = Data [ j ] ∗ v . Data [ i ] ; }
}

46 r e turn c r o s s ;
}

48

pub l i c double Norm2 ( ) { re turn VectorProduct ( t h i s ) ; }
50

pub l i c void Bound( double minValue , double maxValue )
52 {

f o r ( i n t i = 0 ; i < S i z e ; i++)
54 {

i f (Data [ i ] < minValue ) Data [ i ] = minValue ;
56 i f (Data [ i ] > maxValue ) Data [ i ] = maxValue ;

}
58 }

}
60 }

Code 5: Vector.cs

58



A.2 Block-Kaczmarz implementation

us ing System ;
2 us ing IRT . LinearAlgebra ;

4 namespace IR . I t e r a t i v e
{

6 pub l i c c l a s s BlockKaczmarz : Reconstruct ionAlgor i thm
{

8 pub l i c bool UsePerpendicu larContro l { get ; s e t ; }

10 pub l i c BlockKaczmarz ( ) : t h i s ( f a l s e )
{

12 }

14 pub l i c BlockKaczmarz ( bool usePerpend icu la rContro l )
{

16 MaxRowOperations = 128 ∗ 128 ∗ 128 ;
Save In t e rva l = 0 ;

18 Lambda = 1 ;
Eps i lon = 1000 ;

20 Orig ina l Image = nu l l ;
UsePerpendicu larContro l = usePerpend icu la rContro l ;

22 }

24 pr i va t e i n t Perpendicu larBlockIndex ( i n t i t e r a t i o n I d , i n t numberOfBlocks )
{

26 i n t c = i t e r a t i o n I d % numberOfBlocks ;
i f ( c % 2 == 0)

28 r e turn c / 2 ;
e l s e

30 r e turn numberOfBlocks / 2 + ( c − 1) / 2 ;
}

32

pub l i c ov e r r i d e Vector Apply (Matrix A, Vector b)
34 {

i n t [ ] b l ocks = new in t [ 2 ] ;
36 b locks [ 0 ] = 0 ;

b locks [ 1 ] = b . S i z e ;
38 i f ( UsePerpendicu larContro l )

r e turn Apply (A, b , blocks , Perpendicu larBlockIndex ) ;
40 e l s e

re turn Apply (A, b , blocks , ( i , m) => i % m) ;
42 }

44 pub l i c Vector Apply (Matrix A,
Vector b ,

46 i n t [ ] b locks ,
Vector guessX ,

48 Contro lDe legate contro lSequence )
{

50 Vector x = guessX ;
Vector de l t a = new Vector (A. SizeN ) ;

52

i n t currentBlockId = 0 ;
54 i n t b locksProce s sed = 0 ;

i n t b lockLine = 0 ;
56

f o r ( i n t i = 0 ; i < MaxRowOperations ; i++)
58 {

i n t idx = blocks [ currentBlockId ] + blockLine ;
60

i f ( b locks == nu l l | | idx == blocks [ currentBlockId +1])
62 { // We came to a row that be longs to another b lock

64 // Update the x−vec to r with the new de l t a
x += de l t a ;

66 x . Bound (0 , 255) ;
d e l t a . SetValue (0 ) ;

68

// Enter the next block
70 blockLine = 0 ;

b locksProce s sed++;
72 currentBlockId = contro lSequence ( b locksProcessed ,
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b locks . Length − 1) ;
74

// Recompute the idx based on the next block f o l l ow i n g c t r l S e q
76 idx = blocks [ cur rentBlockId ] + blockLine ;

78 i f ( idx == 0)
{

80 // We s t a r t a new cyc l e
i f ( Distance (x , i ) < Eps i lon )

82 break ;
}

84 }

86 double b_i = b . Data [ idx ] ;
Vector a_i = A.GetRow( idx ) ;

88

// Compute the de l ta−vec to r that makes x s a t i s f y the idx−th c on s t r a i n t
90 double d = Lambda ∗ ( b_i − a_i ∗ x ) / a_i .Norm2 ( ) ;

d e l t a += d ∗ a_i ;
92

blockLine++;
94 }

re turn x ;
96 }

}
98 }

Code 6: BlockKaczmarz.cs
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A.3 Projector implementation

us ing System ;
2 us ing System . Co l l e c t i o n s . Generic ;
us ing System . IO ;

4 us ing IRT . LinearAlgebra ;
us ing IRT . SheppLoganPhantom ;

6

namespace IRT . Pro j e c to r
8 {

pub l i c c l a s s Pro j e c to r
10 {

p r i va t e Vector Image { get ; s e t ; }
12 pr i va t e i n t Sq r tS i z e { get ; s e t ; }

14 Vector p r o j e c t i o n ;
Vector p r o j e c t e dF i e l d s ;

16 i n t p r o j e c t i o nF i e l d I d ;

18 pub l i c Pro j e c to r ( Vector image )
{

20 Image = image ;
Sq r tS i z e = ( i n t )Math . Sqrt ( Image . S i z e ) ;

22 }

24 pub l i c Equation GeneratePro j ec t i ons ( i n t numberOfProjections , i n t numberOfRays )
{

26 List<Vector> p r o j e c t i o n s = new List<Vector >() ;
Matrix A = new Matrix ( Image . S i z e ) ;

28

f o r ( i n t p = 0 ; p < numberOfProject ions ; p++)
30 {

double theta = p ∗ Math . PI / numberOfProject ions ;
32 List<IntegerPoint2D> l i n ePo i n t s = new List<IntegerPoint2D >() ;

34 i f ( theta == 0)
{

36 f o r ( i n t j = 0 ; j < Sqr tS i z e ; j++)
{ l i n ePo i n t s .Add(new IntegerPoint2D (0 , j ) ) ; }

38 }
e l s e i f (2 ∗ p == numberOfProject ions ) // theta = 1/2 pi

40 {
f o r ( i n t i = 0 ; i < Sqr tS i z e ; i++)

42 { l i n ePo i n t s .Add(new IntegerPoint2D ( i , 0) ) ; }
}

44 e l s e i f (2 ∗ theta < Math . PI ) // theta < 1/2 p i
{

46 f o r ( i n t j = Sqr tS i z e − 1 ; j >= 0 ; j−−)
{ l i n ePo i n t s .Add(new IntegerPoint2D (0 , j ) ) ; }

48

f o r ( i n t i = 1 ; i < Sqr tS i z e ; i++)
50 { l i n ePo i n t s .Add(new IntegerPoint2D ( i , 0) ) ; }

}
52 e l s e // theta > 1/2 pi

{
54 f o r ( i n t j = 0 ; j < Sqr tS i z e ; j++)

{ l i n ePo i n t s .Add(new IntegerPoint2D (0 , j ) ) ; }
56

f o r ( i n t i = 1 ; i < Sqr tS i z e ; i++)
58 { l i n ePo i n t s .Add(new IntegerPoint2D ( i , Sq r tS i z e − 1) ) ; }

}
60

i f ( numberOfRays < l i n ePo i n t s . Count )
62 {

// There are too many s t a r t i n g po in t s f o r rays , remove s t a r t i n g
64 // po in t s in a uniform maner

i n t l i n e s = l i n ePo i n t s . Count ;
66 double s t epS i z e = −1.0 ∗ l i n e s / ( l i n e s − numberOfRays ) ;

double currentRemoveId = l i n ePo i n t s . Count + s t epS i z e ;
68

whi le ( ( i n t ) currentRemoveId >= 0)
70 {

i f ( ( i n t ) currentRemoveId < l i n ePo i n t s . Count )
72 l i n ePo i n t s . RemoveAt ( ( i n t ) currentRemoveId ) ;
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74 currentRemoveId += s t epS i z e ;
}

76 }

78 // Compute l i n e s and l i n e−sums
Box2D f i e l d = new Box2D(new IntegerPoint2D ( SqrtS ize , Sq r tS i z e ) ) ;

80 p r o j e c t i o nF i e l d I d = 0 ;
p r o j e c t i o n = new Vector ( l i n ePo i n t s . Count ) ;

82

f o r each ( IntegerPoint2D pnt in l i n ePo i n t s )
84 {

p r o j e c t e dF i e l d s = new Vector ( Image . S i z e ) ;
86 IntegerPoint2D . InvokeOnLine ( pnt , theta , f i e l d , Co l l e c tP r o j e c t i o n ) ;

p r o j e c t i o nF i e l d I d++;
88 A.AddRow( p r o j e c t e dF i e l d s ) ;

}
90

p r o j e c t i o n . Save2Text ( " p ro j e c t i on s−" + theta + " . txt " ) ;
92 p r o j e c t i o n s .Add( p r o j e c t i o n ) ;

}
94

Dict ionary<Matrix , L i s t<Vector>> respData = new Dict ionary<Matrix , L i s t<
Vector >>() ;

96 respData .Add(A, p r o j e c t i o n s ) ;

98 // Concate the p ro j e c t i on−vec t o r s i n to one big b−vec to r
Vector b = new Vector (A. SizeM ) ;

100 List<int> blocks = new List<int >() ;

102 i n t bIndex = 0 ;

104 // At pos 0 the f i r s t array w i l l s t a r t
i f ( p r o j e c t i o n s . Count > 0)

106 b locks .Add( bIndex ) ;
f o r ( i n t i = 0 ; i < p r o j e c t i o n s . Count ; i++)

108 {
f o r ( i n t j = 0 ; j < p r o j e c t i o n s [ i ] . Data . Length ; j++)

110 {
b . Data [ bIndex ] = p r o j e c t i o n s [ i ] . Data [ j ] ;

112 bIndex++;
}

114

b locks .Add( bIndex ) ;
116 }

118 r e turn new Equation (A, b , b locks ) ;
}

120

pr i va t e bool Co l l e c tP r o j e c t i o n ( i n t x , i n t y )
122 {

i f ( x < Sqr tS i z e && y < Sqr tS i z e )
124 {

double c o l o r = Image . Data [ x ∗ Sqr tS i z e + y ] ;
126 p r o j e c t i o n . Data [ p r o j e c t i o nF i e l d I d ] += co l o r ;

p r o j e c t e dF i e l d s . Data [ x ∗ Sqr tS i z e + y ] = 1 ;
128

}
130 r e turn true ;

}
132 }

}

Code 7: Projector.cs
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