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Abstract

In 1937, the Italian physicist Ettore Majorana showed that there exist

real solutions to the Dirac equation. This suggests the existence of the

Majorana fermion, a neutral fermion that is equal to its antiparticle. Up

until now, no Majorana fermions have been found. Recent developments

in solid state physics have led to evidence that so-called Majorana zero

modes can exist in superconductors. Sometimes these quasiparticles are

also confusingly named “Majorana fermions”. These modes or quasipar-

ticles show some resemblance with the real Majorana fermions, however

they are two completely different physical phenomena. This article math-

ematically describes the differences between these two concepts by the use

of different Clifford algebras. For the description of the Majorana spinor

a Clifford algebra is used that satisfies a pseudo-Euclidean metric, appli-

cable in a selection of space-time dimensions. The Majorana zero mode

is described by a Clifford algebra that satisfies a purely Euclidean metric

in the abstract space of zero modes. Furthermore the statistics of both

entities is described, where Fermi-Dirac statistics applies to the Majorana

fermion and non-Abelian anyonic statistics applies to the Majorana zero

modes.
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Introduction

The goal of this thesis is to mathematically describe the difference between the Majo-

rana fermion, as introduced by Ettore Majorana, and the confusingly equally named

“Majorana fermion”, as been observed in nanowires coupled to semiconductors.

In one of his few articles1, the enigmatic Italian physicist Ettore Majorana published

a theory2 in which he concluded that a neutral fermion has to be equal to its own

antiparticle. As a candidate of such a Majorana fermion he suggested the neutrino.

Very much has been written about Ettore Majorana and his mysterious disappear-

ance in 1938. This article will not focus on this aspect of Majorana.

The second “Majorana fermion”, misleadingly named so, was claimed to be found by

the group of Leo Kouwenhoven in May 2012 [26]. This second “Majorana” is actually

a zero mode in a one-dimensional semiconductor quantum wire. This quasiparticle is

chargeless and has no magnetic dipole moment. There are also several proposals for

creating Majorana modes in two-dimensional topological insulators. There is little

doubt that the Majorana quasiparticle exists and that its existence will be proven

more rigorously in the future. However for the real Majorana fermion there is no

such a certainty [10].

Besides the fact that a fermion and a zero mode are totally different concepts, there

are several unneglegible differences between the fermion and the zero mode. To get

a clear mathematical description of this difference we use Clifford algebras. The true

Majorana spinor, and hence also its corresponding particle after quantization, can

exist in a selection of spacetime signatures. To realize a Majorana spinor in a certain

spacetime, a signature-depending Clifford algebra has to be constructed, consisting

out of so-called Γ-matrices. For a more detailed study of this signature-dependence,

we refer the reader to section 3.4 and its references.

In describing the Majorana zero mode, also a Clifford algebra can be used. However,

this Clifford algebra is very different. Whereas the Majorana spinor corresponds to

1In total Majorana has published nine articles in the years 1928-1937
2The theory was presented in the article “Teoria simmetrica dell’elettrone e del positrone” (Sym-

metrical theory of the electron and positron) in 1937 [22]

iii



a Clifford algebra whose dimensions are dictated by the number of spacetime di-

mensions with non-Euclidean metric, the creation and annihilation operators for the

Majorana zero modes act on the Hilbert space of the zero modes of a one-dimensional

chain with Euclidean metric. Importantly, the statistics of both particles are differ-

ent. The Majorana fermion obeys Fermi-Dirac statistics, whereas the Majorana zero

mode is a non-Abelian anyon. For a more elaborate explanation of this concept, we

refer the reader to section 4.3.1.
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Chapter 1

The relation between the Dirac
equation and the Clifford algebra

Although Clifford algebra1 was already introduced by the English mathematician

W.K. Clifford2 in 1882 [34], physicists were not very much interested in it until Dirac

posed his relativistic wave equation for the electron. After the publication of the

article “The Quantum Theory of the Electron. Part I” on the first of February 1928

[9] and its sequel one month later, the interest of theoretical physicists for Clifford

algebra grew exponentially [12]. To see the link between the Dirac equation and

Clifford algebra, we follow Dirac’s lines of thought in finding the Dirac equation.

1.1 Constructing the Dirac equation

Let us first derive two other equations, which Dirac used for finding his relativistic

wave equation for the electron.

1.1.1 The Schrödinger equation

In classical mechanics, we have the following non-relativistic energy relation for a

particle

E = Ekin + Epot =
p2

2m
+ V. (1.1)

If we now go to quantum mechanics, we substitute the momentum operator for p and

the energy operator W for E. These operators both act now on a wave function Ψ

[12].

p→ −i~∇, E → i~
∂

∂t
=: W. (1.2)

1For a self-contained mathematical introduction of the Clifford algebra, see Chapter 3.
2William Kingdon Clifford 1845-1879 [20].
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Substituting (1.2) into (1.1) gives the well-known Schrödinger3 equation4

i~
∂Ψ

∂t
= − ~2

2m
∇2Ψ + VΨ. (1.3)

1.1.2 The Klein-Gordon equation

The Klein-Gordon equation can be derived in a similar manner. We start now with

the fundamental energy-momentum relation in the relativistic case for a free particle

E2

c2
− p2 = m2 · c2 = pµpµ = pµpνη

µ,ν = p0
2 − p2. (1.4)

Since ηµ,ν is defined as

ηµ,ν =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 .

We now have to generalize our (1.2)-substitution to covariant notation.

p0 =
i~
c
∂0 =

i~
c

∂

∂x0
=
i~
c

∂

∂t
, (1.5)

pi = i~∂i = i~
∂

∂xi
for i=1,2,3. (1.6)

If we now again use the substitution from (1.2) and apply the operators on the

wavefunction Ψ, we get

pµpµΨ = m2c2Ψ, (1.7)

(p0p
0 − pipi)Ψ = m2c2Ψ, (1.8)

(p0
2 − p2)Ψ = m2c2Ψ, (1.9)

(
i~
c
∂0)(

i~
c
∂0)− (i~∂i)(i~∂i)Ψ = m2c2Ψ, (1.10)

(−~2

c2
∂0∂0 + ~2∂i∂i)Ψ = m2c2Ψ, (1.11)

−~2
(

1

c2
∂0∂0 − ∂i∂i

)
Ψ = m2c2Ψ. (1.12)

3Erwin Rudolf Josef Alexander Schödinger 1887-1961 [25]
4There is certainly no guarantee that Schrödinger himself derived his equation in this way. In

[36] D. Ward explains the way Schrödinger found his equation
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If we now use natural units, i.e. setting ~ = c = 1, and denoting the Laplacian as

∂µ∂µ = � we find the Klein-Gordon equation.

(−∂0∂0 + ∂i∂i)Ψ = m2Ψ, (1.13)

(∂µ∂µ +m2)Ψ = 0, (1.14)

(� +m2)Ψ = 0. (1.15)

The question which immediately arises is how to interpret this equation. For the

Schrödinger equation, we know it describes the time evolution of a wave function of a

non-relativistic quantum mechanical system. However, for the Klein-Gordon equation

the situation is a bit more precarious. A detailed explanation of the Klein-Gordon

equation in the book of A. Das [7] shows that we cannot see the Klein-Gordon equa-

tion as a quantum mechanical description for a single relativistic particle. The fact

that the Klein-Gordon equation is second-order in the time derivatives, contrary to

the Schrödinger equation which is first-order in time derivatives, leads to the possi-

bility of negative energy solutions. This property does not have to be critical, one

can account for this solutions with antiparticles. Also the Dirac equation has neg-

ative energy solutions. However, this second-order time derivative leads to negative

probability densities.

However, the Klein-Gordon equation has a clear meaning in quantum field theory,

i.e. interpreted as a field equation for a scalar field φ. The negative energy solutions

correspond now to antiparticles having a positive energy. In this field interpretation it

can be shown that the Klein-Gordon equation is relativistic [33], i.e. invariant under

Lorentz transformations.

1.1.3 The Dirac equation

The second-order time derivatives in the Klein-Gordon equation caused the appear-

ance of negative energy solutions and negative probability densities, when interpreting

it as a relativistic wave equation for a single particle. Hence the English physicist

Paul Dirac5 decided to construct a new wave equation starting from the Schrödinger

equation. That is, an equation linear in temporal derivatives of the form

(H −W )Ψ = 0, (1.16)

5Paul Adrien Maurice Dirac 1902-1984 [12].
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where H is the Hamiltonian and W = i~ ∂
∂t

. Furthermore, the equation should be

Lorentz invariant and in the relativistic limit, the equation should recover the rela-

tivistic energy relation (1.4).

Using Dirac’s original notation, we start with the ansatz that the Hamiltonian is

linear in the time derivatives. Lorentz invariance requires now that the Hamiltonian

is also linear in the spatial derivatives. This leads to the following ansatz

(p0 + α1p1 + α2p2 + α3p3 + β)Ψ = 0, (1.17)

where pµ =
(
p0, p1, p2, p3

)>
=
(
i~
c

∂
∂x0
, i~ ∂

∂x1
, i~ ∂

∂x2
, i~ ∂

∂x3

)>
.

Because we assume that (1.17) is linear in pµ, we see that our α’s and β can be chosen

in such a way that they are indepedent of pµ. Therefore αi and β commute with xi

and t, and the fact that we are considering a free particle implies that our α’s and β

are actually independent of xi and t. This in turn implies their commutation with pµ.

If our α’s would just be numbers, we see that the four vector
(
1, α1, α2, α3

)>
would

define some direction and the equation would not be Lorentz invariant. So what are

our α’s then?

The following step that Dirac used, in order to determine the α’s, is transforming

equation (1.17) to a form similar to (1.15) and comparing the terms. This can be

done as follows. Start with (1.17) and conveniently multiply this with a certain term

as follows.

0 =(−p0 + α1p1 + α2p2 + α3p3 + β)(p0 + α1p1 + α2p2 + α3p3 + β)Ψ (1.18)

= [−p02 + Σα1
2p1

2 + Σ(α1α2 + α2α1)p1p2 + β2 + Σ(α1β + βα1)p1]Ψ. (1.19)

The Σ denotes here the cyclic permutations of the suffixes 1,2,3. Comparing with

(1.15), we see that the two expressions are equal if and only if

αr
2 = 1, αrαs + αsαr = 0, (r 6= s),

β2 = m2c2, αrβ + βαr = 0, where r, s = 1, 2, 3.

To simplify this set of expressions, write β = α4mc. Then we get the following

anticommutator

{αµ, αν} = αµαν + αναµ = 2δµ,ν , µ, ν = 1, 2, 3, 4
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The three Pauli matrices σ1,σ2,σ3 satisfy these conditions, where σ1,σ2,σ3 are given

as

σ1 :=

(
0 1
1 0

)
, σ2 :=

(
0 −i
i 0

)
, σ3 :=

(
1 0
0 −1

)
.

However, we have to represent four terms, namely αi and β. Therefore we have

to construct four 4 × 4-matrices to get a suitable matrix representation. A direct

consequence of this is that our Ψ has to be four-dimensional. We call Ψ, a object

with four complex components, a Dirac spinor. The representation which Dirac firstly

introduced is the so-called chiral or Weyl representation. For this representation also

a “σ0”-matrix” is constructed, defined as

σ0 =

(
1 0
0 1

)
= 1.

Definition 1.1.1 Weyl or chiral representation

αi =

(
−σi 0

0 σi

)
, i = 1, 2, 3, α4 =

(
0 σ0
σ0 0

)
. (1.20)

In this definition all entries of the matrices are itself again 2× 2-matrices, so that the

α-matrices are 4 × 4-matrices. We can subsequently substitute these αµ in (1.17),

implying that Ψ must be four-dimensional.

For reasons explained in [6] it is more convenient to introduce another family of

matrices, the γ-matrices, deduced from the α matrices. The reason lies in the fact that

the γ-matrices help to have a simple representation for the chiral projection operators,

which project out the positive or negative chirality parts of the four-dimensional Dirac

spinor Ψ. The definition of the γ-matrices is as follows.

Definition 1.1.2 γ-matrices

γ0 = α4, γi = α4αi. (1.21)

5



With this definition, we can rewrite (1.17) by multiplying it with α4.

0 = α4(p0 + α1p1 + α2p2 + α3p3 + β)Ψ,

0 = (α4p0 + α4α1p1 + α4α2p2 + α4α3p3 + α4β)Ψ,

0 = (α4p0 + α4α1p1 + α4α2p2 + α4α3p3 + α4
2mc)Ψ,

0 = (γ0p0 + γ1p1 + γ2p2 + γ3p3 +mc)Ψ,

0 = (iγµ∂
µ −m)Ψ, (1.22)

where in the last step we switched to natural units (~ = c = 1) and used the Einstein

summation convention. Note that γ0 is Hermitian, whereas γi is antihermitian, since

(γ0)
† = (α4)

† = α4 = γ0

and

(γi)
† = (α4αi)

† = (αi)
†(α4)

† = αiα4 = −α4αi = −γi.

The hermiticity properties can be summarized by the relation

(γµ)† = γ0γµγ0. (1.23)

One can easily check from the anticommutation relation for αµ, that γµ has the

following anticommutation relation.

{γµ, γν} = γµγν + γνγµ = 2ηµ,ν . (1.24)

So with equation (1.24) we have thus found a representation of the so-called Clif-

ford algebra in Minkowski spacetime, i.e. four-dimensional spacetime in which ηµ,ν

determines the metric, where ηµ,ν is defined as in (1.5).
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Chapter 2

The Majorana Fermion

2.1 Weyl, Dirac and Majorana Spinors

To provide a rigorous description of the different types of spinors, we must firstly

make ourselves comfortable with the concept of the Lorentz group and the Lorentz

algebra1. The Lorentz algebra will lead us to spinor representations. After categoriz-

ing certain types of spinors and showing their key properties, we conclude this chapter

by quantizing these spinor fields.

2.1.1 Lorentz group and algebra

Let us start with the definition of the Lorentz group. This is an example of a more

general family of groups, the Lie groups2.

Definition 2.1.1 Lorentz group

The Lorentz group is the group of all linear transformations, boosts, rotations and

inversions which preserve the spacetime interval c2τ 2 = x20 − x2.

If we exclude the parity operations (inversions) x0 → x0, x → −x, we obtain the

proper Lorentz group. A boost is a different name for a pure Lorentz transformation,

i.e. a Lorentz transformation of the general form;

x0
′
= γx0 + γβ · x, (2.1)

x′ = γβx0 +
γ2

1 + γ
β(β · x) + x, (2.2)

1For a more mathematical description of an algebra see Chapter 3
2For the formal definition of a Lie group, see [2]
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where x0 = ct and β = v
c
, γ = 1√

1−β2
. In other words a boost is just a coordinate

transformation between two inertial frames with a relative speed β = v
c

to each other.

For later use we also introduce the concept of rapidity φ. Rapidity is an alternative

way to describe the speed of an object, defined as

φ = arctanh β = arctanh
v

c
. (2.3)

Using γ = coshφ, γβ = sinhφ and β̂ = β
β

, our boost will then get the form

x0
′
= x0 coshφ+ β̂ · x sinhφ, (2.4)

x′ = β̂x0 sinhφ+ β̂(β̂ · x)(coshφ− 1) + x. (2.5)

Notice that this parametrization is only possible if β = |β| < 1, the domain of

arctanhx is x ∈ (−1, 1). The group of all symmetries of Minkowski spacetime is

called the Poincaré or inhomogeneous Lorentz group. The Poincaré group can be seen

as the Lorentz group extended with spacetime translations. From the Lorentz group

we can derive the Lorentz algebra. To acquire the Lorentz algebra from its group,

we just find the infinitesimal generators Ji of the group. This set of infinitesimal

generators forms a basis for the Lie algebra. Since we have 3 rotations (around the

x̂1-, x̂2- or x̂3-direction) and 3 boosts (along the x̂1-, x̂2- or x̂3-direction), which span

the Lorentz group, we need the infinitesimal forms of these 6 elements to find the Lie

algebra. The infinitesimal generators of the Lie algebra depending on one variable α

have the following form in a general representation D

−iJ =
dD(α)

dα

∣∣∣∣
α=0

. (2.6)

The general form of a Lorentz transformation which is a rotation around the x̂1-axis

is

R1(θ) =


1 0 0 0
0 1 0 0
0 0 cos θ − sin θ
0 0 sin θ cos θ

 .
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Formula (2.6) now gives us the corresponding infinitesimal generator of this transfor-

mation;

J1 =


0 0 0 0
0 0 0 0
0 0 0 −i
0 0 i 0

 .

In a similar way we can derive J2 and J3, resulting in

J2 =


0 0 0 0
0 0 0 i
0 0 0 0
0 −i 0 0

 , J3 =


0 0 0 0
0 0 −i 0
0 i 0 0
0 0 0 0

 .

If we for example look at a pure Lorentz transformation in the x̂1-direction, we see

that equation (2.4) will get the following form, written out in components

B1(φ) =


coshφ sinhφ 0 0
sinhφ coshφ 0 0

0 0 1 0
0 0 0 1

 .

The corresponding infinitesimal generator will have the form

K1 =


0 i 0 0
i 0 0 0
0 0 0 0
0 0 0 0

 .

Again we can also derive the other infinitesimal generators K2 and K3, resulting in

K2 =


0 0 i 0
0 0 0 0
i 0 0 0
0 0 0 0

 , K3 =


0 0 0 −i
0 0 0 0
0 0 0 0
−i 0 0 0

 .

Since an algebra is a vector space equipped with an extra product3, mapping again

to the algebra, there must be a product L : A × A → A, which takes two elements

from our Lorentz algebra and maps them again into one single element of the Lorentz

algebra. In the Lorentz algebra this product is just simply the commutator of two

3besides the “usual” multiplication of the vector space
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matrices. One can show that the following commutation relations hold in the Lorentz

algebra.

[Ji, Jj] = iεijkJk,

[Ji, Kj] = iεijkKk, (2.7)

[Ki, Jj] = −iεijkJk.

Note that the infinitesimal rotation generators form an invariant set under the com-

mutator. Hence the infinitesimal rotation generators form a subalgebra, so(3). We

can simplify these commutation relations by introducing the linear combinations

J±r =
1

2
(Jr ± iKr). (2.8)

Explicit calculations show that with these entities we get the following commutation

relations

[J+i, J+j] = iεijkJ+k,

[J−i, J−j] = iεijkJ−k, (2.9)

[J+i, J−j] = 0.(!)

We learn from this last commutation relation that J+ and J− satisfy seperately an

su(2) algebra. Apparently the Lorentz algebra so(3, 1) is isomorphic to su(2)⊗su(2).

2.1.2 Spinors

The special unitary group SU(2) is the set of all unitary matrices, endowed with the

normal matrix multiplication as the group multiplication. One can give a general

form of a matrix U in this group by using the following parametrisation

U =

[
α1 + iα2 β1 + iβ2
−β1 + β2 α1 − iα2

]
, α2

1 + α2
2 + β2

1 + β2
2 = 1.

Reparametrizing this expression and using the Pauli spin matrices gives

U(x1, x2, x3) = α11 + ix · σ/2,

where σ = (σ1, σ2, σ3) and x1 = 2β2, x2 = 2β1, x3 = 2α2. Due to the Pauli matrices,

it follows that SU(2) can be used to describe the spin of a particle. In SU(2) we

10



know that we have invariant subspaces labelled by j, which is the orbital angular

momentum number. The quantum number mj from the projection operator Lz can

run from −j to j. So for each j we have a set of (2j+ 1) wavefunctions (|j, mj〉), i.e.

a (2j + 1)-dimensional subset or irreducible representation.

So it follows that in our su(2) ⊗ su(2) algebra any element can be represented

by the notation (j+, j−). Consequently each pair (j+, j−) will correspond to a

(2j++1)(2j−+1)-dimensional invariant subspace, since in each state |j+ m+〉 |j− m−〉
both m+ as m− can run from −j+ to j+ and from −j− to j− respectively. The first

four combinations (j+, j−) are used the most and they have acquired special names

(0, 0) = scalar or singlet,(
1

2
, 0

)
= left-handed Weyl spinor,(

0,
1

2

)
= right handed Weyl spinor,(

1

2
,

1

2

)
= vector.

To see what the
(
1
2
, 0
)

means, let us look at the basis wave functions which span

the invariant subspace of (j+ = 1
2
, j− = 0);

∣∣1
2

1
2

〉
|0 0〉 and

∣∣1
2
, −1

2

〉
|0 0〉. So we

expect Weyl spinors to describe spin-1
2

particles. Let us denote these states by Ψα

respectively, with α = 1, 2. If we act with J+i on Ψα, we get 1
2
σi. Acting with J−i

results in 0. Combining these two outcomes we get

Ji =
1

2
σi, iKi =

1

2
σi.

We could do the same for the (j+ = 0, j− = 1
2
). We use the so called van der Waerden

notation to write down this right handed Weyl spinor. In the van der Waerden

notation we “dot” the indices of the right handed Weyl spinors. In this way we can

already see from the indices whether we are talking about a left- or right-handed

Weyl spinor. Hence we denote the two basis wave functions of (j+ = 0, j− = 1
2
) as

ξ†
α̇
. However we then obtain a minus sign in the iK−i-expression

Ji =
1

2
σi, iKi = −1

2
σi.

We call the two dimensional spinors χc and ξ†ċ left- and right-handed Weyl spinors

respectively. The Weyl spinors can be seen as the building blocks for Dirac and
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Majorana spinors. The Dirac spinor is simply the combination of these two two-

dimensional spinors as a four-dimensional entity

ΨDir =

(
χc
ξ†ċ

)
. (2.10)

A different reason, other than the one of chapter 1, why the Dirac spinor has to be

four-dimensional is because of parity. Since velocity v changes sign under parity,

so does Ki. Angular momentum which corresponds to the infinitesimal generator

Ji is an axial vector and hence doesn’t change sign under parity operations. The

consequence of this is that under parity: (j+ = 0, j− = 1
2
) ↔ (j+ = 1

2
, j− = 0),

i.e. a left-handed Weyl spinor turns into a right-handed Weyl spinor and vice versa.

More mathematically, one could say that the Dirac spinor lies in the (j+ = 0, j− =
1
2
)⊕ (j+ = 1

2
, j− = 0) representation [38]. There is an operator which whom we can

project out the left- and right handed parts of the Dirac spinor. For this we need the

so-called γ5-matrix. It is defined in the following way

γ5 = −iγ0γ1γ2γ3.

This matrix has the obvious properties{
γµ, γ5

}
= 0, (γ5)2 = +1.

Since (γ5)2 = +1, we see that γ5 can only have two eigenvalues namely ±1. In the

chiral representation, one can calculate that γ5 has the form

γ5 =

(
1 0
0 −1

)
.

So if we now define the following Lorentz invariant projection operators

P± =
1

2
(1± γ5),

we see that we exactly project out the Weyl spinors.

The Majorana spinor is an even simpler construction. It is actually composed of

only one Weyl spinor. As P. B. Pal explains in [27], after its theoretical discovery

scientists were not very interested in the Majorana spinor. Neutrino’s introduced by

Pauli could be Majorana particles, however everyone assumed that neutrino’s were

Weyl particles, i.e. described by a Weyl spinor. Weyl spinors are elegant solutions of

the Dirac equation, provided that the particle is massless. The absence of the mass
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term will prohibit mixing between left-handed and right-handed spinors. When in

the second half of the twentieth century people started studying the consequences of

a massive neutrino, the interest in Majorana spinors grew since it described a massive

fermion which is its own antiparticle. Despite the simpler nature of the Majorana

spinor, scientists are so accustomed to Dirac spinors that working with Majorana

spinors is a bit uncomfortable. However the Majorana spinor is actually a more

constrained, simpler solution of the Dirac equation.

2.1.3 Majorana spinors

The Majorana spinor is constructed out of one Weyl spinor in the following way.

Start with a left-handed Weyl spinor Ψc, now define the right-handed part of the

Majorana spinor simply as the Hermitian conjugate of Ψc, Ψ†ċ. We have now created

a Majorana spinor

ΨMaj =

(
Ψc

Ψ†ċ

)
. (2.11)

There is also another approach from which we more directly see how the Majorana

spinors arise from the Dirac equation. Look again at the Dirac equation

(iγµ∂
µ −m)Ψ = 0.

If we could find a representation of the Clifford algebra in terms of purely complex

gamma matrices, then iγµ would be real. So then this equation could have a real

solution, ΨMaj. But this real solution ΨMaj would imply Ψ†Maj = ΨMaj. So indeed

the Maj-subscript is well placed. Ettore Majorana found such a purely imaginary

representation of the gamma-matrices, namely

γ̃0 = σ2 ⊗ σ1
γ̃1 = iσ1 ⊗ 1

γ̃2 = iσ3 ⊗ 1

γ̃3 = iσ2 ⊗ σ2

One could write this Kronecker product out to get the following imaginary matrices.

13



γ̃0 =


0 0 0 −i
0 0 −i 0
0 i 0 0
i 0 0 0

 ,

γ̃1 =


0 0 i o
0 0 0 i
i 0 0 0
0 i 0 0

 ,

γ̃2 =


i 0 0 0
0 0 −i 0
0 0 −i 0
0 0 0 i

 ,

γ̃3 =


0 0 0 −i
0 0 i 0
0 i 0 0
−i 0 0 0

 .

One can easily check that these matrices satisfy the Clifford algebra from (1.24). To

see the key feature of the Majorana spinor we must first familiarize ourselves with

the concept of charge conjugation.

2.1.4 Charge conjugation

Besides the continuous symmetries of a dynamical system, such as Lorentz invariance

or translational invariance. One can also look at discrete symmetries of a dynamical

system. The three most familiar discrete symmetries are charge conjugation (C), par-

ity (P), which we already met, and time reversal (T )4. Since this article deals with

Majorana fermions it will only focus on charge conjugation and its corresponding

symmetry.

Assume we have Dirac fermions minimally coupled to the photons of an electro-

magnetic field. Minimally coupled means that in the interaction all multipoles are

ignored, except for the first, i.e. the monopole or the overall charge. To account for

this coupling we must add an interaction term to our Lagrangian, namely eAµΨ†γ0Ψ,

resulting in the Lagrangian

L = Ψ(iγµ/∂ −m)Ψ + eAµγ
µΨ = Ψ(iγµDµ −m)Ψ. (2.12)

4These three symmetries are united in the so called CPT -theorem. See for example Mann [23]
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Here we have defined the covariant derivative Dµ = ∂µ − ieAµ. Deriving the Euler-

Lagrange equations from this formalisms gives us a different version of the Dirac

equation

[iγµ(∂µ − ieAµ)−m]Ψ = 0. (2.13)

Taking the complex conjugate of (2.13) gives us

[−iγµ∗(∂µ + ieAµ)−m]Ψ∗ = 0. (2.14)

Since the γµ satisfy (1.24), we see by complex conjugating (1.24) −γµ∗ must satisfy

also (1.24). Hence the −γµ∗ can be acquired by applying a basis transformation on

γµ, call this transformation matrix Cγ0. Thus

−γµ∗ = (Cγ0)
−1
γµ(Cγ0). (2.15)

This is the definining property of the charge conjugation matrix. If we furthermore

define ΨC := CΨ
>

= Cγ0
>

Ψ∗, insert (2.15) in (2.14) and multiply this from the left

by Cγ0, we get

[iγµ(∂µ + ieAµ)−m]ΨC = 0. (2.16)

So if Ψ satisfies the Dirac equation (2.13), then the charge conjugate field ΨC with

the same mass but opposite charge satisfies (2.16). We can also rewrite the defining

equation (2.15) in a different form.

Note that if we complex conjugate equation (1.23) we have

(γµ)† = γ0γµγ0

(γµ)†∗ = γ0
∗
γµ∗γ0

∗
= (γµ)>

Assuming that γ0 is real.

(γµ)> = γ0γµ∗γ0

We can use this expression for deriving the following relation between γµ> and γµ

−γµ = Cγ0γµ∗γ0C−1,

= Cγµ>C−1.

To see the signature property of the Majorana spinor, let us calculate the charge

conjugate of both the Majorana spinor and the Dirac spinor. Define again

ΨMaj =

(
Ψa

Ψ†ȧ

)
, ΨDir =

(
χa
ξ†ȧ

)
.

Then we want to calculate ΨC = CΨ
>

= C
(
Ψ†γ0

)>
. However by using van der

Waerden notation we can be more precise in the spinor index structure.

15



Intermezzo I: Manipulating spinors in van der Waerden notation
If we have a certain four vector xµ we can lower the index in the following way:
xµ = gµνxν . Evenso for xµ, xµ = gµνx

ν , where gµν is a Lorentz invariant metric.
For raising and lowering the indices in the van der Waerden notation we use a
similar Lorentz invariant symbol, namely εab, the two-dimensional Levi-Cevita
symbol, defined in the following way

ε12 = ε21 = −ε12 = −ε21 = −1.

Consequently we raise and lower spinor indices of two dimensional spinors in the
following way

Ψa = εabΨ
b, Ψb = εbaΨa,

Ψȧ = εȧḃΨḃ, Ψḃ = εḃȧΨ
ȧ.

We can also define the charge conjugate more precise by writing down explicitly
the spinor index structure. Write

ΨC = CΨ
>

= C(Ψ†τ)>,

here τ =

(
0 δȧċ
δca 0

)
, where we have substituted τ for γ0 since τ does have a correct

spinor index structure.

The charge conjugation matrix can be written explicitly for four dimensional spinors

as

C :=

(
εac 0
0 εȧċ

)
.

One can check with this explicit form that the charge conjugation matrix satisfies

certain properties such as C> = C† = C−1 = −C and the relation between the

gamma matrix γµ and its transpose. Let us now finally see what happens when we

take the charge conjugate of both the Majorana as Dirac spinors.

16



ΨMaj
C = C(ΨMaj

†τ)>, ΨDir
C = C(ΨDir

†τ)>

=

(
εac 0
0 εȧċ

){(
Ψa

Ψ†ȧ

)†(
0 δȧċ
δca 0

)}>
, =

(
εac 0
0 εȧċ

){(
χa
ξ†ȧ

)†(
0 δȧċ
δca 0

)}>
5

=

(
εac 0
0 εȧċ

){(
Ψ†ȧ Ψa

)( 0 δȧċ
δca 0

)}>
, =

(
εac 0
0 εȧċ

){(
χ†ȧ ξa

)( 0 δȧċ
δca 0

)}>
=

(
εac 0
0 εȧċ

)(
Ψc Ψ†ċ

)>
, =

(
εac 0
0 εȧċ

)(
ξc χ†ċ

)>
=

(
εac 0
0 εȧċ

)(
Ψc

Ψ†ċ

)
, =

(
εac 0
0 εȧċ

)(
ξc

χ†ċ

)
=

(
Ψa

Ψ†ȧ

)
, =

(
ξa
χ†ȧ

)
= ΨMaj . 6= ΨDir.

As above calculation shows, the key feature of the Majorana spinor is that it is equal

to its own charge conjugate. In contrast to the Dirac spinor, where the left- and

right-handed fields switch roles.

2.2 Canonical quantization

After quantization of both spinor fields, the Dirac spinor gives rise to electrons and

positrons, whereas the Majorana spinor gives rise to only one particle; the Majorana

fermion.6 Very briefly this follows for the Dirac spinor from inserting a test solution

Ψ(x) = u(p)eipx + v(p)e−ipx

into the Dirac equation (1.22), resulting in the following solution;

ΨDirac(x) =
∑
s=±

∫
d3p

(2π)32ω
[bs(p)us(p)eipx + d†s(p)vs(p)e−ipx].

Here the bs(p) and d†s(p) can be interpreted as the annihilation and creation opera-

tors respectively, which appear just as integration coefficients from solving the Dirac

equation with the test equation above. Their hermitian conjugates b†s(p) and ds(p)

are also creation and annihilation operators respectively. The action of the creation

6this will be a very concise description of the quantization, for more information on quantization
see [30].
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annihiliation operators on the vacuum state |0〉 can be summarized as follows

bs(p) |0〉 = 0, ds(p) |0〉 = 0,

b†s(p) |0〉 = |b(p)〉 , d†s(p) |0〉 = |d(p)〉 .

where for example denotes |d(p)〉 a “d”-particle with momentum p.

We can now incorporate quantum mechanics in our theory by “quantizing” our spinor

fields. That is imposing the following quantum mechanical anticommutation relations

{ΨDir,α(x, t),ΨDir,β(y, t)} = 0,{
ΨDir,α(x, t),ΨDir,β(x, t)

}
= (γ0)αβδ

3(x− y).

This results, by (omitted) explicit calculation7, in the following anticommutation

relations for the Dirac creation and annihilation operators

{bs(p), bs′(p
′)} = 0,

{ds(p), ds′(p
′)} = 0,{

bs(p), d†s′(p
′)
}

= 0,

By hermitian conjugating these expressions{
b†s(p), b†s′(p

′)
}

= 0,{
d†s(p), d†s′(p

′)
}

= 0,{
b†s(p), ds′(p

′)
}

= 0,

Explicit calculation gives us

{bs(p), ds′(p
′)} = 0,

But also the non vanishing relations{
bs(p), b†s′(p

′)
}

= (2π)3δ3(p− p′)2ωδss′ ,{
d†s(p), ds′(p

′)
}

= (2π)3δ3(p− p′)2ωδss′ .

For the Majorana spinor the situation is different. We do arrive in a similar manner

as in the case of the Dirac spinor at the solution (2.2). However, we now have to

impose the Majorana reality condition (ΨMaj
C = ΨMaj) on the solution. Using this

condition gives us ds(p) = bs(p). Inserting this in (2.2) gives us the Majorana field

as

ΨMaj(x) =
∑
s=±

∫
d3p

(2π)32ω
[bs(p)us(p)eipx + b†s(p)vs(p)e−ipx].

7See again [30].
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If we now again apply quantum mechanical anticommutation relations,

{Ψα,Maj(x, t),Ψβ,Maj(y, t)} = (Cγ0)αβδ
3(x− y),{

Ψα,Maj ,Ψβ,Maj(y, t)
}

= (γ0)αβδ
3(x− y),

we find the following anticommutators for the creation and annihilation operators.

{bs(p), bs′(p
′)} =0,{

bs(p), b†s′(p
′)
}

=(2π)3δ3(p− p′)2ωδss′ .
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Chapter 3

Mathematical definition of the
Clifford algebra

3.1 Preliminaries

Since this thesis deals with Clifford algebras, let us start with the mathematical

definition of an algebra over a field K.

Definition 3.1.1 Algebra (A) over a field K
An algebra A over a field K (for example C or R) is a vector space V over K, together

with a binary operation A × A → A, called multiplication. Let (a,b) ∈ A × A be

mapped to ab ∈ A. The binary operation must satisfy three properties.

1. Left distributivity; (αa + βb)c = αac + βbc,

2. Right distributivity; a(βb + γc) = βab = γac,

3. Scalar compatibility, (λa)b = aλb = λ(ab).

Here the multiplication is simply represented by the juxtaposition ab. As explained

in [32], Clifford1 introduced his “geometric algebra” (a.k.a. Clifford algebra) in 1878.

The Clifford algebra arose from two earlier constructed algebraic structures, Hamil-

ton’s2 quaternion ring and Grassman’s3 exterior algebra. For didactical purposes we

will not follow Clifford’s lines of thought. Throughout this whole section we will as-

sume that the so-called characteristic of the field is not equal to 2. The characteristic

1William Kingdon Clifford (1845-1879)
2Sir William Rowan Hamilton (1805-1865)
3Hermann Günter Grassmann (1809-1877)
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is the smallest number p such that 1 + 1...+ 1︸ ︷︷ ︸
p times

= 0. It is in other words the smallest

generator of the kernel of the map κ, where κ is defined as κ : Z→ K0 ⊂ K, with

κ(n) = 1 + 1...+ 1︸ ︷︷ ︸
n times

∈ K0

κ(0) = 0 ∈ K0

κ(−n) = − 1 + 1...+ 1︸ ︷︷ ︸
n times

∈ K0.

Here K0 is the so called prime subfield, it is defined as

K0 =
⋂
K′⊂K

K′,

where K′ is a general subfield of K. So the prime subfield is the intersection of all those

subfields. A field in which the kernel for κ is trivially 0, is said to have characteristic

0. For example the field of real numbers R has characteristic 0. The reason for this

assumption is that in the case that char K = 2, very fundamental theorems are not

applicable. We will start with the most algebraic definition of the Clifford algebra

right away4. For the purpose of this article the algebraic definition is directly given

[4]. Since a so-called quadratic form is used in the definition of a Clifford algebra,

let’s first define the quadratic form.

Definition 3.1.2 Quadratic Form

A quadratic form on a vector space V over a field K is a map q: V → K, such that

1. q(αv) = α2q(v), ∀α ∈ K, v ∈ V.

2. the map (v, w) 7→ q(v + w)− q(v)− q(w) is linear in both v and w.

We can now define a corresponding bilinear form to this map, the so-called polariza-

tion. Here we need the char K 6= 2-assumption, this is to ensure that the quadratic

form is induced by a symmetric bilinear form. We always have a symmetric bilinear

form (β = βq) associated to a quadratic form q. This is realized in the following way

βq(v, w) :=
1

2
(q(v + w)− q(v)− q(w)).

Or the other way around:

q(x) = β(x,x).

4Many texts provide introductory explanations in two or three spatial dimensions, see for example
[19]
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To see why a quadratic form is induced by a symmetric bilinear form, look at the so

called polarization identity.

β(x+ y, x+ y)− β(x, x)− β(y, y) = β(x, y) + β(y, x),

If β is symmetric, the right hand side reduces to 2β(x, y), resulting in

β(x+ y, x+ y)− β(x, x)− β(y, y) = q(x+ y)− q(x)− q(y) = 2β(x, y).

Here we see clearly why we need the char K 6= 2-assumption for a good definition of

the symmetric bilinear β in terms of the quadratic form q. If the characteristic of the

field would be 2, the right hand side would vanish and a definition of the quadratic

form in terms of a symmetric bilinear form is not possible. However the quadratic

form can then be defined in terms of a non symmetric bilinear form [5].

Intermezzo II: charK = 2-case

To give a more concrete idea of the charK 6= 2-condition on the field, for a
proper definition of the polarization, let us see what happens when charK = 2.
For example, take the 2-dimensional finite field F2

2 over F2 = {0, 1}. Now take the
quadratic form q : F2

2 → F2, x = (x1, x2) → x1x2. Then there is no symmetric
bilinear form β, such that Q(x) = β(x,x).

Since let there be a matrix A =

(
a b
c d

)
, then we would have

β(x,x) =
(
x1 x2

)(a b
c d

)(
x1
x2

)
= ax1

2 + (b+ c)x1x2 +dx2
2 = x1x2. Concluding

from this, a = 0, d = 0 and b + c = 1. Since b and c lie in F2, this gives us two
possibilities. (b, c) = (0, 1) or (b, c) = (1, 0). But this obviously means that our
bilinear form β is not symmetric.

So from now on we assume that this bilinear form is symmetric, i.e. βq = (v, w) =

βq(w, v) ∀v, w ∈ V . Another concept that we need is the tensor and the corresponding

tensor algebra.

Definition 3.1.3 Mixed tensor of type (r, s)

Let V be a vector space with dual space V∗. Then a tensor of type (r,s) is a multilinear

mapping

Tr
s : V ∗ × V ∗...× V ∗︸ ︷︷ ︸

r times

×V × V...× V︸ ︷︷ ︸
s times

→ R. (3.1)

The set of all tensors with fixed dimensions (r, s) is a vector space, denoted by T rs .

If we now define the following space
⊕

(r,s) T
r
s and equip this vector space with an
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additional product which maps two elements in this vector space again onto the vector

space we obtain an algebra. This additional product is the tensor product and the

corresponding algebra is the so called tensor algebra T .

Definition 3.1.4 Tensor product

Let Tr
s be an (r, s)-tensor and Uk

l be an (k, l)-tensor, then their product is Tr
s ⊗Uk

l

which is a (r + k, s+ l)-tensor, which operates on (V ∗)r+k × V s+l, defined by

T⊗U(θ1, ...., θr+k,u1, ....,us+l) = U(θ1, ...., θr,u1, ....,us)T(θr+1, ...., θr+k,us+1, ....,us+l)

Definition 3.1.5 Tensor Algebra T
A tensor algebra T over a field K is the vector space T =

⊕
(r,s) T

r
s endowed with the

tensor product, which serves as the multiplication T × T → T .

Lastly one should know the ideal Iq = (v ⊗ v − q(v)1) with v ∈ V . This is the ideal

in the tensor algebra generated by the set

{(v ⊗ v)− q(v)1} ,

where v ∈ T . We are now ready to define the Clifford algebra.

Definition 3.1.6 Clifford Algebra C`(V, q) over a field K
A Clifford algebra C` over a field K is a vector space V over the field K endowed with

a quadratic form q, defined by

C`(V) := T (V)/Iq(V).

The so-called Clifford product serves as the multiplication C`(V)× C`(V), defined as

(A,B) 7→ AB := A⊗B = A⊗B + Iq.

Hence the Clifford algebra is a quotient algebra. Due to the division by the ideal(v⊗
v − q(v)1) every square of an element in V will be an element of the field K, namely

q(v). The Clifford product is now the tensor product in T (V)/Iq(V). The associa-

tivity and linearity of the Clifford product is inherited from the tensor product. As

noted above, every squared element out of V will be a scalar, by

v2 = v ⊗ v = q(v).5

5The 1 here is to make the element q(v) an element of the tensor algebra, since q itself maps to
the field K.
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We can also recover the already found expression for the Clifford algebra, by evalu-

ating q(v + w).

q(v + w) = (v + w)2 = v2 + vw + wv + w2 = 6q(v) + vw + wv + q(w).

By now using the expression of βq we find

vw + wv = 2βq(v, w). (3.2)

By choosing the Minkowski metric βq(v, w) = η(v, w), we find back our equation

(1.24). Another nice thing to see is that if we set βq(v, w) = 0, we obtain the

Grassmann algebra which inspired Clifford.

3.2 Properties of the Clifford algebra

There is a huge amount of properties and theory of Clifford algebras that can be

found in numerous both mathematical and physical articles and books. This article

deals with the properties needed for a better understanding of the Majorana spinors

and the most fundamental notions of a Clifford algebra.

A convenient basis for the Clifford algebra is the following basis

Theorem 3.2.1 Basis for a Clifford algebra

Let e1, ..., eN be a basis for the vector space V, then the vectors

1, ei, eiej (i < j), eiejek (i < j < k), e1...eN (1 < ... < N)

form a basis for the Clifford algebra C`(V , q).

If the vector space V is N -dimensional, this means that we can choose a basiselement

for the Clifford algebra, consisting out of k vector space basis elements, in
(
N
k

)
ways.

In total this gives us thus a basis for the Clifford algebra consisting out of

N∑
k=0

(
N

k

)
=

N∑
k=0

(
N

k

)
1k1N−k = (1 + 1)N = 2N basis vectors.

6We have nowhere assumed commutativity.

24



Note that a different basis can by antisymmetrization of the previous basis in the

following way

1→ 1

ei → ei

eiej →
1

2
(eiej − ejei)

...

e1e2...ek →
1

k!
(
∑
σ∈Sn

sign(σ) · σ(e1e2...ek) := e[1e2...ek]

...

e1e2...en →
1

n!
(
∑
σ∈Sn

sign(σ) · σ(e1e2...en)) =: e[1e2...en] =: e∗

It would be very useful if we could define an orthogonal basis on the space (V ,q) for

our Clifford algebra. Let us first define what we exactly mean with an orthogonal

basis of a Clifford algebra C`(V , q).

Definition 3.2.1 Orthogonal basis of a Clifford algebra

A basis {e1, ..., en} is said to be orthogonal if

q(ei + ej) = q(ei) + q(ej), ∀ i 6= j.

If we have in addition have q(ei) ∈ {−1,0,1} the basis is called orthonormal.

We can guarantee the existence of an orthogonal basis when char K 6= 2.

Theorem 3.2.2 Existence of orthogonal basis for (V, q)

If char K 6= 2, then there exists a orthogonal basis for (V,q).

Proof 1 For the proof of this theorem, see for example [21] or [5].

3.2.1 Graded algebras

Let us start with the definition of a graded algebra.

Definition 3.2.2 Graded algebra

An algebra A is said to be Z-graded if there is a decomposition of the underlying vector

space A = ⊕p∈ZAp such that ApAq ⊂ Ap+q.
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Examples of Z-graded algebras are the tensor algebra and the exterior algebra. The

Clifford algebra is also graded algebra, more specifically it is a Z2-graded algebra (a

superalgebra.) This means that the Clifford algebra decomposes as a direct sum of

an even and an odd part. The terms even and odd can be identified with the number

of basis elements of the vector space which are used to construct a basis element of

the Clifford algebra, i.e.

C` = C`− ⊕ C`+,

=
(
⊕C`k
k odd

)
⊕
(
⊕ C`k
k even

)
.

For example e1e2e3 is an odd basisvector of C`3 and e1e2e3e4 is an even basisvector

of C`4. This decomposition is actually defined by the following function, which is the

so-called main involution.

Definition 3.2.3 Involution

An involution is a function f which is its own inverse, i.e. f(f(x)) = x for x a

general element of the domain of f.

The main involution is the linear mapping ω: v → −v where v ∈ V , this linear map

extends to an algebra isomorphism ω: C` → C`. Since ω2 gives the identity, we can

conclude that ω has two eigenvalues namely {±1}. Now, the eigenvectors correspond-

ing to the negative eigenvalue form the subspace C`−, the “positive” eigenvectors form

the subspace C`+, which is even a subalgebra. A subalgebra is a subset of an algebra,

closed under all operations.

3.2.2 Signature of the Clifford algebra

As we know we can represent a bilinear form as a matrix, q(v) = v>Av. Since we

assume char K 6= 2, we know that the bilinear form is symmetric. Hence, also the

matrix is symmetric and therefore the matrix is diagonalizable. We are now ready to

define the signature.

Definition 3.2.4 Signature of a quadratic form

The signature of a quadratic form is the triple (s,t,u) where s, t and u represent the

number of positive, negative and vanishing diagonal entries of the quadratic form in

the orthogonal basis respectively.
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According to Sylvester’s law of inertia7 the signature of a quadratic form is invariant

under basis transformations. Thus we can talk without any obscurity about the

signature of a quadratic form. As a second assumption for the rest of this article,

after the char K 6= 2-assumption, we from now on assume that the field on which we

construct our (real) Clifford algebra is R. We will not treat complex Clifford algebras

in this article. Furthermore we will from now on focus on a certain type of vector

spaces V to build our Clifford algebra on, the so-called pseudo-Euclidean spaces. This

focussing is done by constraining our quadratic form even further

Theorem 3.2.3 Non-degenerate bilinear form

A quadratic form β is called non-degenerate if its kernel or radical is zero. The kernel

is defined as

Kerβ := {v ∈ V|β(v,w) = 0 ∀w ∈ V} .

As a consequence of this non-degeneracy we know that there are no basis vectors

ei 6= 0 with q(ei) = 0 anymore. If we now assume our bilinear form is non-degenerate

and symmetric, then we know according to a fundamental result of linear algebra

that there exists an orthonormal basis. This means according to definition 3.2.1 that

we can use this orthonormal basis to write the bilinear form of the vector space V
over the field R as a diagonal matrix with entries q(ei) = β(ei, ei) ∈ {−1,1}. 8

Consequently, our vector space is d = t + s-dimensional, denoted by Rt,s,9 and our

quadratic form q obtains the form

q(v) = βq(v,v) = v1
2 + ...+ vt

2 − vt+1
2 + ...− vd2. (3.3)

Here the similarity with the pseudo-Euclidean spacetime interval cannot be missed.

Equation (3.3) is just expression for the spacetime interval, invariant under Lorentz

transformations, in a Minkowski space with t time dimensions and s space dimensions.

3.3 Dirac algebra

To get really acquainted with the interlocking of the mathematical definition and the

physical application of a Clifford algebra, let us study in more detail the Clifford

algebra of Chapter 1. If we take theorem 3.2.1 and use the gamma matrices from

Chapter 1 as basis elements, then we can find a basis for the Clifford algebra derived

7See for example [13]
8We start to see appearing the Minkowski metric again, only now in a more general form.
9Mathematicians use often the opposite sign convention, but anticipating on the fact that we will

apply this theory to Minkowski spacetime this sign convention was chosen
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by Dirac, the so-called Dirac algebra. The Dirac algebra consists out of the following

basis elements, listed below.

• 14×4 identity matrix, of course we have the identity matrix 14×4 in our basis.

• Secondly, we have the four gamma matrices γµ, µ = 0, 1, 2, 3.

• Thirdly, we have the products of two gamma matrices. γµγν . Due to the

anticommutativity and due to , six independent combinations

• The products of three gamma matrices provide us with four, new independent

basis elements. One can see this by noting that we can omit four times a gamma

matrix in the product.

• Finally, we have only one element which is product of four gamma matrices.

This matrix is given a special name γ5 = iγ0γ1γ2γ3 = i
4!
εµνρσγµγνγργsigma

Table 3.1 summarizes the basis for the Dirac algebra. We already know from Chapter

Basis element Number of elements
1 1
γµ 4
γµγν 6
γµγνγρ 4
γ5 = iγ0γ1γ2γ3 1

Table 3.1: the Dirac basis of the Clifford algebra

1 that we have the anticommutativity relation (1.24) and so we see that the γ-matrices

form an orthonormal basis.

3.4 Clifford algebras in different dimensions

We will now develop our most general view on Clifford algebras and the gamma ma-

trices, adapted from [35]10.

Up until now we have looked at various concepts of quantum field theory in Minkowskian

spacetime, i.e. a spacetime with three spacelike dimensions and one timelike dimen-

sion, with metric signature (+,-,-,-). This metric signature corresponds to the num-

ber of positive (corresponding to timelike dimensions) and negative (corresponding

10For a more complete description of gamma matrices in arbitrary dimensions, see chapter 3 from
[35] and its references.
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to spacelike) dimensions of the spacetime. Familiarized with the concepts of Weyl-,

Dirac and Majorana spinors in Minkowski spacetime, we can use our mathematical

knowledge of Clifford algebras in various dimensions to study different spacetime di-

mensions and their admitted spinors.

Let us first look at a generic way to construct our gamma matrices forming a Clifford

algebra on a spacetime with signature (t, s), where from now on t denotes the number

of temporal dimensions (associated with a plus in the metric η) and s denotes the

number of spatial dimensions (associated with a minus). Thus we want our gamma

matrices to satisfy

ΓaΓb + ΓbΓa = 2ηab (3.4)

The gamma matrices for a spacetime with d time dimensions, which means we have

the signature (t, s) = (d, 0), can be constructed using the Kronecker product as follows

Γ1 = σ1 ⊗ 1⊗ 1⊗ ... (3.5)

Γ2 = σ2 ⊗ 1⊗ 1⊗ ...

Γ3 = σ3 ⊗ σ1 ⊗ 1⊗ ...

Γ4 = σ3 ⊗ σ2 ⊗ 1⊗ ...

Γ5 = σ3 ⊗ σ3 ⊗ σ1 ⊗ ...

... = ...

Here ⊗ denotes the Kronecker product between matrices.

For even dimensions this is a representation of dimension 2
d
2 . For odd dimensions one

simply ends with a tensor product of σ3’s. The dimension of the representation will

be 2
d−1
2 . So for example when d = 5 the last σ1 is not needed in Γ5. We thus have 5

4× 4 Γ-matrices11. We know that the σ-matrices are Hermitian and that (σi)
2 = 1.

We can combine this with the following properties of the Kronecker tensor product

concerning hermicity and multiplication [31].

(A⊗B)† = A† ⊗B†

and

(A⊗B) (C ⊗D) = AC ⊗BD.

From above we see that in this way all of our Γ-matrices are Hermitian and that

they square to one. To incorporate s spacelike dimensions in this construction, we

112
5−1
2 = 4
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simply multiply the first s matrices with i, the complex unit. This gives us after the

multiplication by i

Γ†s = −Γs, Γ†t = Γt.

In general the following relation can be derived

Γ†a = (−)tAΓaA
−1, A = Γ1...Γs. (3.6)

Since we have

Γs
2 = −1 and Γs

−1Γs = 1→ Γ−1s = −Γs = Γ†s.

Now assume that a corresponds to a timelike dimension. Then we have, due to the

Clifford algebra (3.4),

ΓaΓi = ΓiΓa, ∀i ∈ [1, .., s].

Thus,

(−1)sAΓaA
−1 = (−1)s (Γ1...Γs) Γa (Γ1...Γs)

−1

= (−1)s(−1)sΓ1...ΓsΓaΓs...Γ1

= (−1)s(−1)s(−1)sΓaΓ1...ΓsΓs...Γ1

= (−1)s(−1)s(−1)s(−1)sΓa

= Γa

= Γ†a

If a corresponds to a spacelike dimension, we would get

ΓaΓi = ΓiΓa,∀i 6= a.

However we would once have i = a, so that

ΓaΓi = ΓiΓa = (Γa)
2 = −14×4.

So starting in the same way,

(−1)sAΓaA
−1 = (−)s (Γ1...Γs) Γa (Γ1...Γs)

−1 ,

= (−1)s(−1)sΓ1...ΓsΓaΓs...Γ1.
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Here we now try to swap the Γa-matrix to the right, however we will meet the same

matrix at some point resulting in Γa
2 = −1 somewhere. So continuing,

= (−1)s(−1)sΓ1...Γa...ΓsΓaΓs...Γa...Γ1

= (−1)s(−1)s(−1)s−aΓ1...ΓaΓa...ΓsΓs...Γa...Γ1

= (−1)s(−1)s(−1)s−a(−1)Γ1...1...ΓsΓs...Γa...Γ1

= (−1)s(−1)s(−1)s−a(−1)(−1)s−aΓ1...1Γa...Γ1

= (−1)s(−1)s(−1)s−a(−1)(−1)s−aΓ1...Γa−1ΓaΓa−1...Γ1

= (−1)s(−1)s(−1)s−a(−1)(−1)s−a(−1)a−1Γ1...Γa−1Γa−1...Γ1Γa

= (−1)s(−1)s(−1)s−a(−1)(−1)s−a(−1)a−1(−1)a−1Γa

= (−1)Γa

= Γa
†.

One preserves the Clifford algebraic property of the Γ-matrices by applying the fol-

lowing transformation

Γ′ = U−1ΓU

To still satisfy (3.6) U must be a unitary matrix. As we have seen earlier in chapter

3, we can construct an antisymmetrized matrix. We can distinguish symmetric and

antisymmetric tensor parts of a tensor [12].

Symmetric

A tensor is called symmetric if τσT = T . τσ is here a permutation operator working

on T applying a permutation σ. We can apply a so-called symmetrizer on T to get

the symmetric part of T .

Sym T =
1

r!

∑
σ∈Sr

τσT

Here Sr denotes the permutation group of r elements with r ∈ [1, ..., d].

Antisymmetric

A tensor is antisymmetric if τσT = sign(σ)T We can also apply an antisymmetrizer

Antisym T =
1

r!

∑
σ∈Sr

sign(σ)τσT

Here Sr denotes the permutation group of r elements with r ∈ [1, ..., d].

The complete Clifford algebra consists out of the 1-identity matrix, the d generating

elements Γµ, plus all the independent products of the matrices. It turns out that due
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to (3.4) symmetric products reduce to products containing fewer Γ-matrices, thus the

new elements must be antisymmetric products [11].

In even dimensions a complete set of new Γ-matrices can be formed
{

Γ(n)
}

of dimen-

sions 2
d
2 × 2

d
2 with n = 1, ..., d and

1 and Γ(n) = Γa1...an := Γ[a1Γa2 ...Γan]. (3.7)

This is a set of 2d matrices.

Basis for even dimensions{
1,Γa1 , ...,Γ[a1Γa2] , ...,Γ[a1Γa2 ...Γad]

}
The last matrix Γ(d) of this collection becomes a special name, Γ∗.

Γ∗ = (−i)
d
2
+sΓ1...Γd, Γ∗Γ∗ = 1 (3.8)

where the normalization. Due to the (−i)s-factor, Γ∗ is independent of the spacetime

signature; the i-factors from the time-matrices are cancelled. In the representation

(3.5), Γ∗ is given as

Γ∗ = σ3 ⊗ σ3 ⊗ σ3 ⊗ σ3...

In odd dimensions the set of initial Γ-matrices can be extended by Γ∗ since we see

from (3.8) that Γ∗ commutes with all Γa and thus we can use it as the next Γ-matrix

in the odd dimension.

Basis for odd dimensions{
1,Γa1 , ...,Γ[a1Γa2], ...,Γ[a1Γa2 ...Γad],±Γ∗

}
So we find two sets of matrices which satisfy (3.4) and hence can both serve as a

basis. The groups are not equivalent and lead to different representations of the

Lorentz group.

Now that we have constructed a general basis for the Clifford algebra. Let us turn

to the different kinds of spinors. To classify certain categories of irreducible spinors,

one can work with two projections. The two most important concepts we need are

chirality and charge conjugation.

The realization of the concept of chirality in arbitrary spacetime dimensions is actually
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just the generalization γ5 → Γ∗. This leads to the following definition of left- and

right-handed spinors

λL =
1

2
(1 + Γ∗)λ, λR =

1

2
(1− Γ∗)λ.

The existence of a charge conjugation C matrix is proven in for example [17] or [28].

This matrix satisfies

C> = −εC, Γ>a = −ηCΓaC−1. (3.9)

Here η and ε can have the values ±1, depending on the spacetime dimensions. In

even dimensions (d = 2k) η can both be +1 or −1.

For even dimensions we have the chirality projection, in which we generalize the

notion of chiralty developed in chapter 2. The generalization is done by substituting

γ5 → Γ∗. Using this projection we can define right- and left-handed parts of spinors

in the following way

λL =
1

2
(1 + Γ∗)λ, λR =

1

2
(1− Γ∗)λ. (3.10)

Another projection is the reality condition. To construct this condition, we combine

(3.6) and (3.9) to get

Γa
∗ =

(
Γa
†)>

= (−1)t
(
A−1

)>
Γa
>A>

= (−1)t(−η)
(
A−1

)>
C︸ ︷︷ ︸

B

ΓaC
−1A>︸ ︷︷ ︸
B−1

= (−1)t(−η)BΓaB
−1

Concluding,

B> = C>A−1

Since A and C are unitary, B is also unitary. Now take a spinor λ and start with the

following ansatz for a reality condition

λ∗ = B̃λ.

Here B̃ is a yet undetermined matrix. Of course we want to guarantee consistency

with Lorentz transformation. So taken the Lorentz transformation on both sides of

(3.4) gives us (
−1

4
Γabλ

)∗
= −1

4
B̃Γabλ

(−1)t(−η)BΓabB
−1B̃ = B̃Γab
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From which we see that for example

B̃ = αB,

satisfies this relation. Furthermore we know from λ∗∗ = λ, that B̃∗B̃ = 1. Combining

this with (3.4) gives us |α| = 1. It turns out that this reality condition is satisfied for

certain values of s− t mod 8, see tabel 3.2. For these spacetime dimensions, one can

impose the reality condition of (3.4). Spinors that satisfy these conditions are called

Majorana spinors. A less known spinor is the symplectic Majorana spinor. These

spinors satisfy a slightly different reality condition, namely

λi
∗ :=

(
λi
)∗

= BΩijλ
j.

Here Ω is an antisymmetric matrix that satisfies ΩΩ∗ = −1. Finally, one could also

study the possibility of imposing a reality condition that respects chirality. In other

words can there be (symplectic) Majorana Weyl spinors? It turns out that in certain

spacetime dimensions this is also possible. For an overview of the possible irreducible

spinors in different spacetime dimensions, see the table below.

d ↓/t→ 0 1 2 3
1 M M
2 M− MW M+

3 M M
4 SMW M+ MW M−

5 MW M−

6 M+ SMW M− MW
7 M M
8 MW M− SMW M+

9 M M
10 M− MW M+ SMW
11 M M
12 SMW M+ MW M−

Table 3.2: Possible spinors in different spacetime dimensions. M indicates a Majorana
spinor. The superscript indicates which sign of η should be used ±1. MW stands for
a Majorana-Weyl spinor. For even dimensions (d = 2k) one can always have Weyl
spinors. Also one always can have symplectic Majorana spinors, when there are no
Majorana spinors. So both those spinors have been omitted from the table.
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Chapter 4

Clifford algebras and “condensed
matter Majorana’s”

In this chapter we will finally focus on the possible realization of “Majorana fermions”

or a generalization of them as quasiparticles in condensed matter physics. There are

many proposed realizations of Majorana quasiparticles in condensed matter physics

[10]. Only experiments which use one-dimensional semiconductor nanowires as an en-

vironment for their quasiparticles have provided real evidence for realizing the Majo-

rana quasiparticle. The first experiment succesfully using this approach was executed

by the research group of Leo Kouwenhoven at the Kavli Institute in Delft [26]. This

is also the reason why we will primarily focus on this research. In their experiment

the nanowire approach was combined with the presence of superconductivity to show

the existence of this quasiparticle.

Before we can understand what the research group from Delft did, let us first familiar-

ize ourselves with the concept of a “Majorana fermion” in condensed matter physics.

Of course the most important and actually the only fermionic particles in solid state

physics are the electrons. Since electrons are electrically charged, they cannot be

Majorana fermions. Instead, they are Dirac fermions with ΨDir
C 6= ΨDir. The

story could end here with the conclusion that no Majorana fermions exist in solids.

But actually it is very interesting to study whether certain Majorana-like objects,

quasiparticles or modes, can be realized. Here quasiparticles stands for a collective

excitation of the quantum many-body system made of interacting electrons in the

solid. In other words a specific collection of electrons and nuclei of the solid that

move in a certain organized way is a quasiparticle. Hence quasiparticles only exist in

solids, contrary to ordinary particles.1 The “Majorana” adjective here indicates that

we are talking about a quasiparticle which is identical to its antiquasiparticle. A, in

1For a more elaborate description on quasiparticles, see Kittel.
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this case, relevant example of a quasiparticle is the exciton, which is a combination of

electronic bound states. This electronic bound states are made of states of electrons

and “holes”. These holes can be thought of as the absence of an electron in a mode,

which is occupied in the ground state. These holes act like they are electrons with

opposite charge in the solid, i.e. they are the electron’s antiparticles.

Let us now construct a set of creation and annihilation operators describing such a

quantum many-body state in a solid. The creation operator for an electron state

with quantum number j, where j collectively indicates the spatial degree of freedom

as well as the spin or other quantum numbers, is c†j. At the same time c†j is the

annihilation operator for a hole with quantum number j. Since we are dealing with

spin-1
2

fermions, we should use Fermi-Dirac statistics

{cj, ck} =
{
c†j, c

†
k

}
= 0,{

c†j, ck

}
= δjk.

In this system, charge conjugation can be realized by swapping cj ↔ c†j. So did we

cross a “Majorana fermion” yet? After the exclusion of the electron, also the exciton

is not a Majorana particle. Since it is a superposition of electron and hole states,

they are created by operators of the general form c†jck + cjc
†
k. Indeed under charge

conjugation c†j ↔ c†j this operator stays the same. However conventional excitons are

bosons, meaning that they have an integer spin quantum number , thus they are not

“Majorana fermions”.

4.1 Superconductivity’s solution

If we, after the exclusion of the electron and the exciton as a Majorana (quasi)fermion,

stubbornly continue studying our system, we see that we can manipulate our system

in the following way. Let us transform our basis to the “Majorana basis” without any

loss of generality

cj =
1

2
(γj1 + iγj2), c†j =

1

2
(γj1 − iγj2).

Inverting this relation gives

γj1 = c†j + cj, γj2 = i(c†j − cj). (4.1)

One can check that the γ-operators satisfy:

{γiα, γjβ} = 2δijδαβ, γ†iα = γiα. (4.2)
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Here the first index of γ-indicates the associated fermion and the second index indi-

cates the left or right Majorana operator in figure 4.1.

Figure 4.1: Visualization of the Majorana basis. Adapted from [18]

If we look at the last expression on the right side, we see why we call this a Majorana

basis, the γ-operator creates a particle as well as its antiparticle, hence the particle

and antiparticle must be the same. We see from above that any electronic system can

be described in terms of the γ-operators. However, in most situations this transfor-

mation brings no benefit. The physical reason for this is that the Majorana-operators

which can be used to describe an electron are related, so a separate description of

the system in the two Majorana terms very often does not make sense. There is a

situation in which this transformation does have physical relevance, namely in the

situation of superconductivity. This can be seen directly from (4.1), since the theory

of superconductivity predicts the realization of a coherent superposition of electrons

and holes. Furthermore, the γ-operators are known to act only non-trivially on states

with an unknown number of particles. Hence we need superconductivity to guarantee

these states of unknown particle number. According to Schrieffer, superconductivity

occurs when

“In a superconducting material, a finite fraction of electrons are in a real sense con-

densed into a “macromolecule” (or “superfluid”) which extends over the entire volume

of the system and is capable of motion as a whole. At zero temperature the condensa-

tion is complete and all the electrons participate in forming this superfluid, although

only those electrons near the Fermi surface have their motion appreciably affected by

the condensation.”[29]

Here the Fermi surface is a surface of constant energy in three dimensional momentum

space for the electrons. The Fermi surface is the surface that separates the occupied

states of electrons in a solid from unoccupied states in which there are no electrons at

T = 0K.2 A more etymological description of superconductivity is the sudden drop

2See Kittel and Schrieffer.
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in electrical resistivity of a metal or an alloy when the temperature is decreased far

enough. The theory of superconductivity was developed in the fifties by Bardeen,

C ooper and Schrieffer from which the term BCS theory originates, the theory that

describes superconductivity.

The positive effect of superconductivity in our context, lies in the fact that super-

conductivity supersedes the initially very clear difference between holes and electrons

[37]. This happens due to the so-called Cooper pairs. At low energies near the Fermi

surface, there is an attractive force between electrons. This attractive force leads to a

decrease in energy when two electrons form a pair, hence we have a bound pair state.

The two fermions behave in some sense as a composite particle3 Due to their bosonic

nature, Cooper pairs can approach each other more closely, because of the absence of

Pauli’s exclusion principle and form a condensate. This condensate accounts for the

superconductivity of the solid. A normal (=ground) state electron mode can lower its

energy even further by forming a superposition with a normal state hole mode com-

bined with a Cooper pair. This can again be seen mathematically by a mixing of the

creation and annihilation operators, since we have a superposition of electrons and

holes. The formalism describing this situation is the Bogoliubov-Valatin formalism

and its corresponding Bogoliubov-Valatin modes have the form

cos θcj + sin θc†k.

Obviously, except for the specific case j = k and θ = π
4
, they are not Majorana

quasiparticles. The Cooper pairing has two more important properties. Firstly, con-

servation of the electron number is violated in a “Cooper condensate”, i.e. a Cooper

pair can be taken from or added to the condensate without really altering properties

of the condensate. Secondly, the Cooper pairs shield electric fields and constrain mag-

netic fields. As a consequence of this phenomenon, charge is no longer observable, so

that we have got rid of our original “charge problem” of creating Majorana quasipar-

ticles. In figure 4.2.a the coupling of a hole and a Cooper pair is shown. Figure 4.2.b

shows the “charge invisibility”, i.e. due to the violation of the electron number, one

cannot determine if one sees a hole with 6 Cooper pairs or an electron with 5 Cooper

pairs.

3To be more precise on this, Cooper pairs have a length of approximately 100nm, three orders
of magnitude larger then the average spacing of a lattice of a solid. So the justifiability of equating
this fermion pair to a single particle can be questioned.
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Figure 4.2.a: Hole-Cooper pair coupling
Figure 4.2.b: Charge invisiblity in a supercon-
ductor

Figure 4.2: Figures are adapted from [37]

So how do we find those Majorana quasiparticles?

1. For two- and three-dimensional systems the solution lies in the realm of Abrikosov

vortices or magnetic flux tubes. A vortex is a concept from fluid dynamics and

can also be applied for currents in superconductivity. The Vorticity ω is defined

as ω = ∇ × u. It can be seen as an indicator for the way particles move rela-

tively to each other as they follow the flow u in a fluid. Here u(x, t) is defined

as the velocity of an element of fluid at position x and time t. The vortex is

a region in the fluid in which the particles are mostly spinning around a line;

the vortex line. The vortex lines form a vortex tube as the family of all vortex

lines passing through a closed and reducible4 curve in the fluid. A magnetic

flux tube is a topologically cylindrical volume whose sides are defined by mag-

netic field-lines[3]. The magnetic flux tube is sometimes used as a simplification

of magnetic behaviour. The magnetic flux through the surface of the defined

space of the magnetic flux tube is constant. An Abrikosov vortex (or fluxon) is

a magnetic flux tube in a type-II superconductor around which a superconduct-

ing current runs. Basically there are two types of superconductors, type-I and

type-II. Type-I superconductors have one critical value of an applied magnetic

field Hc, above which superconductivity is completely destroyed. Type-II su-

perconductors have two critical values, Hc1 and Hc2, of applied magnetic field at

which their conductive behaviour changes drastically. Below Hc1 superconduc-

tivity occurs. Between Hc1 and Hc2 magnetic flux tubes are formed and their

density increases with an increase of the applied magnetic field. One could see

this as the leaking of the magnetic field into the superconductor. Above the

Hc2-limit superconductivity is destroyed.

4Reducible means here that the curve can be reduced to a point by continuously deformating the
curve, without passing the surface of the fluid
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The Abrikosov vortices can trap zero modes. Zero modes are with very low,

formally zero, energy. Each vortex has a finite number of associated zero

modes.5. Now we get to the solution provided by the Abrikosov vortices for

creating Majorana fermions. Since the zero modes are low-energy excitons, it

are quasiparticles. Furthermore, the zero modes are superpositions of particle-

and hole-states in equal measure. Thus, let us call these quasiparticles parti-

holes. We have already seen the operators that create the partiholes, see (4.1).

The invariance under charge conjugation tells us that we have found operators

for localized quasiparticles, that are equal to their own antiquasiparticles. It is

therefore justified to call the zero modes associated with the partihole Majorana

quasiparticles or Majorana zero modes.

Now that we have been dreaming theoretically about Majorana modes, let us

make it more practical; Where do we find these Majorana modes? Majorana

modes are only predicted to occur in very special instances of superconductors.

If the electrons have orbital angular momentum 0 (s-wave) and the electrons

behave non-relavistically, then the Majorana modes cannot be predicted the-

oretically. Basically one can be distinguish two sorts of experiments creating

Majorana modes in the context of superconductivity.

• p-wave electrons, this case can occur in a special fractional quantum Hall

state, namely the Pfaffian or Moore-Read state. In this state the filling

factor is ν = 5
2
.6

• relativistic s-wave electrons, in this case the Majorana modes could be

found at the surface of topological insulators or in graphene. As Joel

Moore explains [24], a topological insulator is “an insulator that always

has a metallic boundary when placed next to a vacuum or on ‘ordinary’

insulator. These metallic boundaries originate from topological invariants,

which cannot change as long as a material remains insulating.” A topolog-

ically invariant property of an object is a property that is invariant under

smooth deformations. For example, a coffee cup and a donut can be turned

5A fundamental mathematical theorem, the Atiyah-Singer index theorem, relates the number of
zero modes with the shape of the Abrikosov vortex. More specifically with the genus of the vortex

6In the quantum Hall effect, which is the quantum-mechanical brother of the classical Hall effect,
the conductance of a two-dimensional electron system in strong magnetic fields at low temperatures
takes quantized values. The conductance is defined as σ = Ichannel

VHall
and in the quantum Hall effect

the conductance takes on the values σ = ν e2

h . Here e is the elementary charge quantum, h is Planck’s
constant and finally ν is the filling factor, which accounts for the quantization. ν can attain fractional
and integer values. ν = 5

2 is a fractional Hall state.

40



into each other by continuous deformation, they have both genus 1. For

more information on topological insulators, see Moore [24].

2. For one-dimensional systems there are also several possibilities for creating Ma-

jorana modes. For example [10],

• at the edges of a two-dimensional topological insulator.

• in nanowires from a 3D-topological insulator.

• in helical spin chains

• in semiconductor quantum wires

As already said, one-dimensional experiments with nanowires have provided real

evidence for realizing the Majorana zero modes. So that is why this article will

mainly focus on the last bullet. In order to get a good idea of Kouwenhoven’s

experiment, we first study a simple theoretical model of Majorana zero modes

in one-dimensional quantum wires.

4.2 The Kitaev Chain model

This is a very simple ‘toy model’ introduced by Kitaev [15].78 We already know from

(4.1), that we can write every fermion as a combination of Majorana operators. Of-

ten the Majorana modes are localized close to each other, meaning that they overlap

undeniably and so the separate description does not lead to anything useful. However

sometimes the two Majorana modes are prevented from overlapping by for example a

large spatial separation. Such a state, consisting out of two spatially separated Majo-

rana modes, is safe for most types of decoherence (information loss) since local energy

perturbations can only effect one of its Majorana parts. Furthermore, this state can

be manipulated due to its non-Abelian statistics. So if we could store information in

these modes, it is rather safe for pertubations and manipulatable9. This is why there

is so much interest in Majorana modes from the quantum computation sector.

To see how above the statements can be realized, we introduce the following Hamil-

tonian. It describes a spinless p-wave superconductor, having eigenstates that are

7Actually this is even a more simplified and pedagogical version than Kitaev’s original model,
adapted from [18], but it is very similar.

8It is important to notice that Kouwenhoven’s experiment even as this model is one-dimensional.
9The term “manipulatable”” refers here to the braiding, that will be discussed in section 4.3
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spatially isolated Majorana modes. The 1D p-wave binding chain has N sites for

operators to be localized on.

Hchain = µ

N∑
i=1

ni −
N−1∑
i=1

(tc†ici+1 + ∆cici+1 + h.c.)

Here h.c stands for hermitian conjugate, µ stands for the chemical potential, ci is the

annihilation operator for an electron on site i, and consequently n = c†ici is then the

electron number operator. t is the hopping amplitude and ∆ is the superconducting

gap. ∆ and t are assumed to be equal for all sites. We now recall the transformations

(4.1).

γj,1 = c†j + cj, γj,2 = i(c†j − cj).

Figure 4.3: The Kitaev Chain Model. Figure adapted from [18]

In the upper subfigure of figure 4.3, one can see the pairing of the Majorana operator

forming a fermionic operator. If we now set µ = 0, t = ∆10, and insert the γ-operators

in our Hamiltonian, we acquire;

Hchain = −it
N−1∑
i=1

γi,2, γi+1,1.

The pairing of Majorana modes can now be seen in a different way. The pairing can

be concretized by constructing the following fermionic operators.

c̃i =
γ(i+1)1 + iγi2

2
.

We now have

2c̃†i c̃i = 2ñi = 2

(
γ†i+1,1 − iγ

†
i,2

2

)(
γi+1,1 + iγi,2

2

)
= −iγi,2γi+1,1.

10This is known as the ideal quantum wire limit
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So our Hamiltonian in terms of our new fermionic operators, constructed out of a

different choice of Majorana operators, becomes

H = 2t
N−1∑
i=1

c̃†i c̃i. (4.3)

The creation of c̃i fermionic mode has energy 2t. A closer look at our new Hamiltonian

fin (4.3) reveals something very interesting. The Majorana mode terms γN2 and γ11,

which are localized at the two ends of the wire, do not appear in this Hamiltonian

anymore! We can combine these two Majorana modes in one fermionic operator as

c̃M =
γN2 + iγ11

2
. (4.4)

Obviously these Majorana modes are delocalized since they appear on opposite ends

of the wire. The mere fact that this modes do not appear in the Hamiltonian leaves

us no other option than to conclude that this mode has zero energy.

The analysis used above, was carried out in the ‘ideal quantumwire’-limit, mean-

ing ∆ = t and µ = 0, but it turns out that the Majorana end-states can exist as long

as

|µ| < 2t. (4.5)

Furthermore, the Majorana modes remain at zero energy as long as the wire is long

enough so that the modes do not overlap. Kitaev’s chain model is not a very realistic

model, however it is a good way to give lay readers intuition for the way Majorana

modes can be created in more complex systems, for example continuous 1D, p-wave

superconductors or in honeycomb 2D structures.

4.3 Statistics of Majorana modes in two dimen-

sions

We know that Fermi-Dirac statistics apply to fermions. From the so-called spin-

statistics theorem, we know that for a system of fermions the wavefunction changes

sign under the exchange of two particles. More mathematically,

Ψ(r1, r2) = −Ψ(r2, r1).

As a consequence of this, the wavefunction vanishes if you try to put two identical

fermions in the same place. This is a manifestation of the Pauli exclusion principle
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for fermions. This is also why the square of a fermionic creation operator must be 0.

Applying methods from statistical mechanics, we can derive a distribution function

for a system of identical fermions. This theoretical statistical distribution is known as

the Fermi-Dirac statistics. For a boson, which follows the Bose-Einstein statistics, the

square of its creation operator should create identical particles. However, we know

from (4.2) γiα
2 = 1, thus the adding of a partihole to a state already occupied by a

partihole results in

γiαγiα |0〉 = γ2iα |0〉 = |0〉 ,

i.e. in the vacuum state again.11 Hence, Majorana modes cannot be fermions nor

bosons.12 So if a Majorana mode is not a fermion nor a boson, what is it then, what

statistical behaviour does it have? Well, a Majorana quasiparticle is correctly de-

scribed as a non-Abelian anyon or an Ising anyon. For convenience the treatment of

anyons and Majorana modes statistics is confined here to the two-dimensional case,

i.e. we are considering a plane in which the vortex lines have reduced to vortex points,

around which the supercurrents flow. The non-Abelian anyonic exchange behaviour

is the main reason for the scientific interest in Majorana zero modes.

For the simplest Abelian anyons the effect on the phase of an anticlockwise exchange

between two anyons can vary continuously between the fermionic or bosonic anti-

clockwise exchange effect. More mathematically, the exchange effect for anyons can

be summarized as

|Ψ1Ψ2〉 = eiθ |Ψ2Ψ1〉 . (4.6)

One can see that for θ = π, we obtain Fermi-Dirac statistics and for θ = 2π we obtain

Bose-Einstein statistics. However, anyons are way more general as (4.6) shows. For

a Majorana mode it turns out that we find a more complex factor instead of the

exponent, which results in non-Abelian statistics.

4.3.1 Non-Abelian statistics

To have non-Abelian statistics, a degenerate ground state, separated from other

(higher energy) states by an energy gap , is essential. In the case of such a degenerate

ground state, adiabatic exchanges of quasiparticles can bring the system from one

11In some way this reminds us of the Z2-grading of the Clifford algebra. However this is something
completely different.

12So note that we can never speak of Majorana fermions in solid state physics, since they simply
are not fermions.
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groundstate to another. This process is called braiding13. To give a concrete example

of braiding and its associated non-Abelian statistics, a transparent simplified analysis

of Ivanov [14] is used for the p-wave semiconductor, where the electrons have orbital

angular momentum one.

Recalling (4.1), but now for simplicity writing the relations down with only one index,

gives

γ2i−1 = c†i + ci, γ2i = i(c†i − ci).

Let us now have two Abrikosov vortices in a two-dimensional topological superconduc-

tor, trapping Majorana modes with corresponding operators γ1 and γ2. Associated

with each vortex, there is a superconducting phase φ with a winding of 2π. The

phase of each vortex has a branch cut and we choose the branch lines to be parallel.

A clockwise exchange of the vortices one and two results in a crossing of vortex 1

through the branch cut of vortex 2, as shown in figure 4.4. Consequently vortex 1

acquires a phase shift of 2π. The Majorana quasiparticle in vortex 1, made up from

single fermion operators (rather than of products of two), takes a phase shift of π by

crossing the branch cut. This results in

γ1 → −γ2,

γ2 → +γ1.

An anticlockwise exchange would have resulted in

γ1 → γ2,

γ2 → −γ1.

These exchange transformations can be represented by so-called braid-operators. The

braid operators act as

γi → B12γiB
†
12

The clockwise braid operator is B12 = 1√
2
(1 + γ1γ2), or more generally Bij = 1√

2
(1 +

γiγj), whereas the anticlockwise exchange has the braid operator B̃12 = 1√
2
(1−γ1γ2).

One can easily check that these operators have the required effect on the γ-operators.

In the right part of figure 4.4, we have to bring vortex 1 around vortex 2 and bring

13The analysis will stay focussed on two-dimensional systems. Reference [1] shows how to develop
non-Abelian statistics in a one-dimensional wire using T-junctions.
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it back to its original position. This is topologically equivalent to two subsequent

exchanges. Hence, we must calculate

(B12)
2 =

1

2
(1 + γ1γ2)(1 + γ1γ2) =

1

2
(1 + 2γ1γ2 + γ1γ2γ1γ2) =

1

2
(1− 1 + 2γ1γ2) = γ1γ2

So, we have

γ1 → (γ1γ2)γ1(γ1γ2)
† = −γ1

γ2 → (γ1γ2)γ2(γ1γ2)
† = −γ2

So a loop of one vortex around the other vortex gives a minus sign to each Majorana

operator. This can also be seen from figure 4.4: due to the loop, the γ1-operator

crosses the branch cut of vortex 2, however vortex 2 gets also swiped through the

branch cut of vortex 1.

Figure 4.4: A visualization of the exchange process. The red dashed lines represent
the branch lines. Adapted from [18]

It is useful to evaluate the braid operator B12 on the vacuum state |0〉 at the fermionic

site c1, which can be split in Majorana states γ1 and γ2. We thus have

B12 |0〉 =
1√
2

(1 + γ1γ2) |0〉 ,

where

γ1γ2 |0〉 = (c†1 + c1)i(c
†
1 − c1) |0〉

Since c1 |0〉 = 0

= (c†1 + c1)i(c
†
1) |0〉

= i((c†1)
2 + c1c

†
1) |0〉

Since c is a fermionic operator, (c†1)
2 = 0.

= i |0〉
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So we conclude

B12 |0〉 =
1√
2

(1 + i) |0〉 .

To see the non-Abelian nature of the Majorana modes, we need a system with at

least 4 Majorana modes.14 These 4 Majorana modes can be described by 2 fermionic

number states |n1n2〉. Choose the branch cuts of all Majorana modes to be in the

same direction. Number the Majorana modes based on their position orthogonal to

the branch cut. This way, we have only one crossing of Majorana mode (i + 1) by

Majorana mode (i), when exchanging Majorana modes i and (i + 1) in a clockwise

manner. In this system it turns out that the braid operators of adjacent Majorana

modes do not commute, so for example

[B12, B23] = γ2γ3 6= 0

For B21 one has,

B12 |00〉 =
1√
2

(1 + γ1γ2) |00〉

with

γ1γ2 |00〉 = i(c†1 + c1)(c
†
1 − c1) |00〉 15

= i((c†1)
2 + c1c

†
1) |00〉 = i |00〉 .

So, this gives

B12 |00〉 =
1√
2

(1 + i) |00〉 .

Analogously,

B23 |00〉 =
1√
2

(1 + γ2γ3) |00〉 ,

with

γ2γ3 |00〉 = i(c†1 − c1)(c
†
2 + c2) |00〉 ,

= i((c†1c
†
2 + c†1c2 − c1c

†
2 − c1c2) |00〉 .

Here the annihilation operators on the vacuum let certain terms vanish, this gives

γ2γ3 |00〉 = ic†1c
†
2 |00〉 = i |11〉 .

Leading to,

B23 |00〉 =
1√
2

(|00〉+ i |11〉)

14This is a simplified procedure. However it does give a very good idea why the Majorana obey
non-Abelian statistics.
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If we now combine these two expressions in the commutator, this gives

B12B23 |00〉 = B12

(
1√
2

(|00〉+ i |11〉)
)
,

=
1√
2

(B12 |00〉+ iB12 |11〉),

=
1

2
(1 + i) |00〉+

1

2
i(1 + γ1γ2 |11〉),

=
1

2
(1 + i) |00〉+

1

2
i(1 + i(c†1 + c1)(c

†
1 − c1) |11〉 .

Here, the creation operators on the |11〉 let certain terms vanish, since c is a fermionic
operator

=
1

2
(1 + i) |00〉+

1

2
i(1 + i(c†1 + c1)(0− |01〉),

=
1

2
(1 + i) |00〉+

1

2
i(1− i |11〉),

=
1

2
(1 + i)(|00〉+ |11〉).

We can also evaluate the same expression the other way around.

B23B12 |00〉 = B23
1√
2

(1 + i) |00〉 ,

=
1√
2

(1 + i)B23 |00〉 .

Using the expression we find above for B23 |00〉.

=
1√
2

(1 + i)(
1√
2

(|00〉) + i |11〉)

=
1

2
(1 + i) |00〉) +

1

2
(−1 + i) |11〉)

Evidently, these two expressions are not the same. Moreover one has

[B12, B23] |00〉 = |11〉 .

But it turns out that

γ1γ3 |00〉 = (c†1 + c1)(c
†
2 + c2) |00〉 = |11〉

This whole procedure can be summarized as

[Bi−1,i, Bi,i+1] = γi−1γi+1 6= 0,

from which we can conclude that the Majorana modes obey a non-Abelian statistics.

Figure 4.5 shows the typical way to visualize the braiding of the γ-operators.
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Figure 4.5: Typical visualization of the braiding operations from the example above.

4.4 Kouwenhoven’s experiment

Now that we have an idea how Majorana modes are predicted by theorists, let us give

a briefly discuss the first real evidence for a Majorana mode16 [26].

4.4.1 Setup of the experiment

The experiment was done in a chip at the nanoscale. One can distinguish the following

parts of the experimental setup. A silicon substrate on which golden electrodes are

fabricated with widths ranging from 50 to 300 nm. These golden electrodes work

as gates in the experiment. By applying voltages to these gates you can change the

potential electrostatic fields that the electrons feel. On this substrate, an indium

antimonide quantum wire is placed (silver), contacted with a normal conductor on

one side (gold coloured) and a superconductor (blue) on the other side. The used

materials are gold and niobium titanium nitride, respectively. To prevent electrical

conduction between the gates and the quantum wire, a dielectric film of silicon nitride

is applied to the silicon substrate. This system is cooled down to several mK. This

is done to make sure no thermal excitations are present anymore. Furthermore, a

strong magnetic field is applied, which combined with the large Landé-factors of

indium antimonide nanowires, gives rise to a strong spin orbit coupling. This is done

to guarantee the existence of Majorana modes at the endpoints of the part of the

nanowire that is attached to the superconductor (from now on called endpoints).

16For what we have explained above, we do not refer to these entities as Majorana fermions.
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Figure 4.6: Sketch of the setup of the experiment. Adapted from [8]

4.4.2 Detection

To detect the Majorana modes, the following procedure is followed. In the case

of no magnetic field B = 0, no Majorana modes are present; so when electrons

from the gold electrode are shot towards the nanowire, they simply cannot get any

further and return back to the gold. As a consequence, no tunneling current is

measured. If one now does apply a magnetic field, Majorana modes at the endpoints

are formed. By again shooting electrons from the gold towards the superconductor,

certain electrons with the right energy can interact with the Majorana modes. In this

interaction, due to a process called Andreev reflection, new Cooper pairs are formed

in the superconductor. These Cooper pairs cause a small tunneling current, which

can be measured.
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Figure 4.7: Graph of the conductivity of the nanowire versus the energy represented
in voltage. The zero energy peak for increasing magnetic fields tells us that the mode
does not have a magnetic dipole moment. Since otherwise we would have seen an
increase in energy of the conductance peak. Adapted from [26]

In the above graph of the conductivity, which depends on the creation of the Cooper

pairs, is plotted against the voltage which corresponds to energy. The lower line,

which corresponds to B = 0, is important. At B = 0 and at V = 0, no current

is expected to be measured. When the magnetic field is increased the Majorana

modes appear and even for the “zero energy” case a small peak is starting to appear.

Furthermore, for the increasing magnetic field the peak stays at zero energy. This

immediately implies that the tested quasiparticle does not have a magnetic dipole

moment. We can also change the electric field, and again the peak occurs and stays

at zero energy for increasing values of the electric field. Summarizing the “three times

nothing”-property of the Majorana mode is proved; no charge, no magnetic dipole

moment, no energy.
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Chapter 5

Final comparison and conclusion

Having understood what we have discussed in the preceding chapters, the differences

between the Majorana fermion as first predicted by Ettore Majorana in the early

twentieth century and the Majorana mode (or quasiparticle) as probably detected by

the research group at Delft and other experimental groups, cannot be missed. A final

summary of the main differences is shown in the table below

Majorana fermion Majorana zero mode or quasiparticle
Statistics 1 2
Clifford algebra used in description 3 4
Space-time dimension 5 6

Table 5.1: Summary of the differences the Majorana fermion and the Majorana zero
mode

1. Fermi-Dirac statistics.

2. Non-abelian anyonic/Ising anyonic statistics.

3. Yes, the Clifford algebra used in the description is a pseudo-Euclidan Clifford al-

gebra in spacetime formed by Γ-matrices. These Γ-matrices can be constructed

in arbitrary spacetime dimension following the method from section 3.4.

4. Yes, the creation and annihilation operators of the Majorana modes satisfy a

Euclidean Clifford algebra. However, this is a totally different Clifford algebra

then the Clifford algebra from 3. This Clifford algebra namely lives in the

abstract space of zero modes, i.e. the space of modes that have zero energy.

5. Majorana spinors can be found in a selection of space-time dimensions, see table

3.2. They can also live, for example, in d = t+ s = 1 + 1 spacetime dimensions.
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6. Majorana zero modes are conjectured to at least exist in d = t + s = 1 + 1 or

d = t+ s = 1 + 2 space-time dimensions.

After this elaborate description of the difference of these two physical phenomena,

one could wonder why the term “Majorana fermion” is so often used for the Majorana

zero mode. Probably, this has happened since the will to detect the true Majorana

particle was so large, that when experimentalists found a quasiparticle which showed

some resemblance to the Majorana fermion, they could not resist to call this the

“Majorana particle”, or worse, the article of Kouwenhoven is “Signature of Majorana

fermions ...”. As explained in chapter 4.3.1, the Majorana quasiparticles are Ising

anyons so this title cannot be categorized other than wrong.

It is not that experimentalists do not know of this silly particle taxonomy, Kouwen-

hoven admits openly that “his” quasiparticle is not a fermion and that it is very

different from the real Majorana fermion. In his Kronig lecture in June 2012 he says:

“I think it is obvious, right, that our Majorana fermions are different from the ones

in the cosmos? They obey the same definition, but they appear in a completely dif-

ferent way.”[16]. One could argue about the “same definition”- statement, but if we

ignore that dangerous statement we see that the misnaming is rather born out of a

theoretical carelessness then out of a real different view of physics.

My proposal (and hopefully the reader agrees after this article) would be to, from now

on, make a clear distinction between the proper1 Majorana fermion and the Majorana

quasiparticle or Majorana (zero) mode.

1Instead of the adiective “proper”, one could use the word“real”. However this might again lead
to confusion, since the Majorana fermion has never been observed in nature. This problem would be
solved if the Majorana nature of neutrino’s would finally be confirmed by particle and astroparticle
physics experiments. Then Majorana fermions would then truely be real.
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