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Chapter 1

Introduction

A microgrid is an electrical distribution network, heterogeneously composed of
distributed generation, storage and load, and managed autonomously from the
larger transmission network. Microgrids are able to connect to a larger electric
power system, but are also able to island themselves and operate independently.
In a microgrid we are dealing with both DC-current and AC-current. The
DC-current is flowing in one direction and the AC-current is flowing in both
directions. This is given by a sinusoidal graph, where the upward movement
represent the positive direction and the downward movement represents the neg-
ative direction. AC is due to inductors and capacitors. The portion of power
flow that, averaged over a complete cycle of the AC waveform, results in the net
transfer of energy in one direction is known as real power/active power, P.
Reactive power, Q, is linked with energy storage in inductors and capacitors,
and can be calculated, but the physical definition is not clear.

When there is a demand of active/reactive power, generators and inverters
are working together to ensure synchronization, voltage stability, power balance,
load sharing and economic operation.

The total power, also called the apparent power, S, is defined by: S = P+;Q.
The active power, transmitted across a purely inductive line between point 1
and point 2 has a relation with the frequency:

PX
o [ f= 22
/f U1 [|Us|

where X is called the reactance and |Ui|, |Us| are the voltage magnitude mea-
sured at point 1, respectively point 2. Likewise, the reactive power has a relation
with difference in voltage magnitude:

QX
Us| — |UL] = 22
|Us| — |Uh] A

This means that by controlling P and ) one controls the frequency and the
voltage magnitude, [6], [7], [10]. A generator is using the swing equation
to control the frequency and the inverter is using droop control to regulate
the frequency and voltage magnitude. The active power droop equation relates



a change in active power with respect to the nominal active power, Py, to a
change in frequency with respect to the nominal frequency fy. The relation is
controlled by the active droop coefficient, k,. This yields the following active
droop equation:

f=1Jo—kp(P—FR) (1.1)

Likewise, the reactive power droop equation relates a change in reactive power
with respect to the nominal reactive power, Qg, to a change in voltage magnitude
with respect to the nominal voltage magnitude Fy. The relation is controlled
by the reactive droop coeflicient, k,. This yields the following reactive droop
equation:

E = Ey— k,(Q - Qo) (1.2)

When a load is increasing, multiple parallel units with the same droop char-
acteristic can react to the fall in frequency by increasing their active power
outputs simultaneously. The increase in active power will counteract the reduc-
tion in frequency and the units will settle at active power outputs and frequency
at a steady-state point on the droop control characteristic. A same thing holds
for the voltage droop control.

There are some levels of hierarchy the generators and inverters are working
on, [1], [4].

Primary control

Rapidly balances generation and demand, while sharing the load, synchroniz-
ing the AC voltage frequencies and stabilizing their magnitudes. Accomplished
by decentralized droop control, where generators are controlled such that their
power injections are proportional to their voltage frequencies and magnitudes.
This is the type of control we will be focusing on.

Secondary control

Droop controllers induce steady state errors in frequency and voltage magni-
tudes, which are corrected in a secondary control layer. We will briefly look at
this subject.

Tertiary control

Fair load sharing among the sources, or dispatch the generation to minimize
optimal costs. We will not be working on this level, we are focusing on the
droop control.

We will mainly look at (1.1) and how power is being shared between paral-
lel generator/inverters. Later on we will also look at reactive power, which
proved to be a bigger challenge. We will be modeling our theories, for which we
can use either pscad, [11], or SIMULINK. We have chosen SIMULINK, since we
allready had experience with Matlab. From SIMULINK, we will be using the
SimPowerSystems toolbox explained in [13].



Chapter 2

Apparent, active and
reactive power

In an electrical circuit the power is the rate of flow of energy past a certain
point in the circuit. Inductors and capacitors in an AC circuit can reverse the
direction of the energy flow. We call the portion of power that, averaged over
a complete cycle of the AC waveform, results in net transfer of energy in one
direction the active power. Reactive power has something to do with stored
energy in inductors and capacitors. While it can be calculated, a real physical
meaning is still not clear. We denote the active power by P, which has unity
Watt and the reactive power by @, which has unity volt-ampere reactive (var).
The apparent power is defined as S = P + j@Q and had unity voltage-ampere
(VA).

In this chapter we start by calculating the active and reactive power, see section
2.1. Then we will show how the phase angle changes for different transmis-
sion lines in section 2.2. From this we go to the calculation of the active and
reactive power for different transmission lines and show how their dependence
on frequency and voltage magnitude changes, see section 2.3. Finally, we will
write out a different way that shows the connection between active power and
frequency, based on the swing equation, in section 2.4.

First we will express the active and reactive powers in terms of voltage and
current.

2.1 Calculating the active and reactive power

We start with a single phase electric circuit.
The voltage in an electric circuit can be written as:

U(t) = |U| cos(wt) (2.1)

in which |U]| is the magnitude and w is the angular frequency. Also for the



current:

I(t) = |I| cos(wt — ) (2.2)

where |I| is the amplitude of the current and ¢ is the phase difference between
current and voltage [5]. For purely resistive circuits ¢ = 0 and for purely induc-

s

tive circuits ¢ = 7 (see section 2.2).
In stead of looking at (2.1) and (2.2) we write:

U(t) = |U|es*? (2.3)
I(t) = |[I|e?@t=9) (2.4)

The reason why we can do so, is because of Euler’s formula REF cos(wt — ¢) =
% (ej(“’t’d’) + e’j(‘*’t"i’)). This means that the voltage and current can be writ-
ten as the sum of two complex-valued functions. Because of the symmetry we
only need to analyze one of the two terms, the results will be identical. To get
back to the original voltage or current, note that cos(wt — ¢) = R{e/@i=9)},
Also note that another way of writing (2.3) and (2.4) is by:

U(t) = |U|e?%eIt (2.5)

I(t) = |[Ile 7%el (@t (2.6)

When not observing the time dependence, these equations result to the so-called
phasors:

U=|Ule® (2.7)
I=|Ile7? (2.8)
The phasor notation is very common to use, but we will stick to the time domain

equations (2.3) and (2.4).

The apparent power S is defined as S = U(t)I(¢)* where I(¢)* is the complex
conjugate of the current. When we write the voltage and current as:

U(t) = U]’ = |U|(cos(wt) + j sin(wt)) (2.9)

I(t) = |1’ =) = |I|(cos(wt — ¢) + jsin(wt — ¢)) (2.10)



and we calculate the apparent power, we find it as:
$ = UMI(t)" = [U]11]((cos(wt) + jsin(wt)) (cos(wt — ¢) — jsin(wt — 0)) )

= U] (cos(wt) cos(wt — ¢) + sin(wt) sin(wt — ¢)
+ j(sin(wt) cos(wt — @) — cos(wt) sin(wt — 6)) )

— [U]1](‘cos(wt)  cos(wt) cos(6) + sin(wt) sin(6))
+ sin(wt) ( sin(wt) cos(¢) — cos(wt) sin(¢))
+ j (sin(wt)  cos(wt) cos(6) + sin(wt) sin(4))
+ cos(wt) ( cos(wt) sin(g) — sin(wt) cos(¢))))

= U1|1](‘cos(9) (cos?(wt) + sin (wt))

+ j (sin(e) (cos?(wt) + sin®(wt)) ))

= |Ul|I] cos() + j|U||1| sin(¢)
(2.11)

Since S = P+ jQ, we obtain, referring to equation (2.11) that P = |U||I| cos(¢)
and @ = |U||I|sin(¢). This means that when ¢ = 0, the purely resistive circuit,
P =|U||I| and @Q = 0.

Next we will explain the term phase difference and how big this value is in
a resistor, inductor and capacitor.

2.2 Phase difference voltage and current

When there are inductors and capacitors in a AC-circuit, the voltage and cur-

rent do not peak at the same time. Expressing the fraction of time of this

difference in radians yields the phase difference between voltage and current.
For this phase difference, ¢, it holds that:

T

e (——, —} 2.12

ve(-1.7 (2.12)

o . -
where — 7 is corresponding with 7.

The impedance is the measure of resistance the circuit presents to the cur-
rent when a voltage is applied. The impedance of a RLC-circuit is given by
Z = R+ j(Xr — X¢), [7], where R is the resistance, X, is the inductive re-
actance and X is the capacitive reactance. The impedance is thus a complex
resistive value. We denote the voltage by U(t) = |U|e’** and the current by
I(t) = |I|e’@*=%), In this way, the impedance can be expressed by the complex
ratio between voltage and current:

Z=— (2.13)



If there is just DC flow, the phase angle is zero and the impedance corresponds
to the resistance R. In AC flow however, there is a nonzero phase angle and
thus the impedance becomes complex. First we will write down the impedance
in a resistor, inductor and capacitor.

For the resistor we know that:
U(t) = RI(t) (2.14)

For which the impedance is of course just R, which means that the voltage and
current are in phase.

For the inductor we have:

Ut)=L——= 2.15
() =15 (215)
aI(t) iwL|T|ed(@t—¢) .
Impedance = =&~ = ]‘jl‘le]!fwt,(b) = jwL
And for the capacitor:
dv(t)
I(t) =C——= 2.16
(== (2.16)
|I|ej(“’t_¢)dt %H\E'j(“’t—d)) 1
Impedance = o= = Biloe— = ju0
Now, there is a way to rewrite the imaginary unit j:
j=e% (2.17)
In the same way:
1 —
- =2 (2.18)
J

This means that the impedance over an inductor is X; = wLe’Z and over a
capacitor X¢ = —=e/ 2 which shows that the phase difference over an inductor

wC
is 5 and over a capacitor is 5.

The phase difference of 5 corresponds to a voltage leading the current, or the
current lagging the voltage and for the phase difference of 5* it is vice versa.
In a RLC-circuit, the total impedance is Z = R+ j(X;, — X¢) = R+ jX.
Or written in polar form, Z = |Z|e??® = | Z| cos(¢) + j| Z| sin(¢). This yields that
R =|Z|cos(¢) and X = |Z|sin(¢) and therefore:

¢ = arctan (g) (2.19)

(2.19) is called the % ratio and it determines how much the current lags or
leads the voltage.



2.3 Active power and reactive power for differ-
ent transmission lines

We consider a network with two nodes as depicted in Figure 2.1.

Figure 2.1: Transmission line represented by a resistor and an inductor

The voltage at point 1 is given by U; = |U;|e’”* and at point 2 by U = |Us|e%2.
We are using phasor notation at this point because it is common in the literature
and is gives a clearer view of what we want to show at this point. The impedance
on the line is the complex value Z = R + j X, where R is the resistance and X
the reactance. The current flows from point 1 to point 2 and is calculated by
I = %, where U = U; — Us. The apparent power at point 2 is calculated by
S = UyI*, where I* is the complex conjugate of I, which is equal to:

I U —Us\"
R+jX
Uur —-Us
- 71%1_],; (2.20)
_ |Uile™7% — |Uple—7%
B R—jX

The apparent power at point 2 is then given by:

S =UI*
Uile=3% — |Uy|; 7%
R—jX (2.21)
UL ||Un|e™7 %) — |U[?
- R—jX

= |Ugle’®

2.3.1 Purely inductive transmission line

Very often the special case is considered, where the transmission line has no
resistance, i.e. R = 0. In this case, the apparent power at point 2, (2.21),
becomes:

_ U [|Ug]e™70r=02) — U]

_ 5

- |UL[[Ug|e71=02)|Uy|? 2.99

=J < I~ (2.22)
2

= OO o, —02) + 5 (|U1)|(U2| cos(ty — ) — 72 )

S

10



Since the apparent power is defined as S = P 4+ j@), we observe that:

A

sin(91 — 02)

(2.23)
U ||U: Us|?
Q= [ [U] 1)”( 2| cos(fy — 03) — 107 ;'
The difference #; — 6, is called the phase angle and is denoted by 6. Often
this value is & 0, [23], since the voltages are almost in phase. This means that

sin(d) =~ 0 and cos(f) ~ 1. This results in:

p_ gl
\U H)é | 0?0 (224
_ Ul[Us] _ |U2|” _ |Us| _
Q= e e X (|U1] = |U2])

There is a relation between the angular frequency and the phase angle, w = 0,
so it becomes clear that in this specific case the real power P depends on the
frequency, since f = 5-. The reactive power Q on the other hand, depends on
|Uy| —|Us|, which is the change in voltage amplitude. So the classic linear droop
control equations, which focuses on purely inductive lines, are now clear. We
should remember that this is the simple case, where we assumed that there was
no resistance on the line. We will now consider the case of a purely resistive

line.

2.3.2 A purely resistive transmission line

We will look at a purely resistive transmission line, i.e. X =0 1in (2.21). In this
case, the apparent power at point 2, (2.21), becomes:

|Utle=7% — |Us|e7%

S = |U2‘6j02 R
_ |U|Uz]e 7 @m%) |0y (2.25)
R R
U1|U: U2 |Uh]|Us| .
= 7| 12 2| cos(fy — 03) — | ;2| 7_]| 1A|X|' 2| sin(6, — 02)
This time, the active and reactive power are thus:
2
P = U1 | cos(by — 03) — U]
ol R (2.26)
Q = *% sin(91 — 92)
Again, we take the 6 ~ 0, which results in:
Us
L AR .
2.2
Q:_\U1HU2|0 )
X

This time, the active power depends on |U;| — |Uz|, which is the change in volt-
age amplitude and the reactive power depends on the frequency.

Finally, we will look at the combined case.

11



2.3.3 Combined resistive/inductive transmission lines

We assume that R # 0 and X # 0, s0 Z = R+ jX = |Z|e’?. The apparent
power now becomes:

S = U, (UlUQ)

7
|U1‘6_j91 — ‘U2|€_j02
Zje5
_ |G|y e~ i(01-02—¢) _ ‘U2|263¢
1Z| |Z|

|U1||U2| |U1|| 2|
= 0s(f — ¢) —
|Z] |Z]

= |Us]e’”

|Us|* (U
(0 ¢) |Z‘ COS(¢)_] |Z| Sln(¢)
(2.28)

This means that, since S = P+ j@, the active and reactive power are given by:

_ |Gl U2

A os(0 — ¢) — Z] cos(¢)
||[;2| (|U1 cos(0) cos(¢) + sin(0) sin(¢)) — |Us| cos(¢)) (2.29)
= U7< [U1| = |Us]) cos(¢) + |U1|0sin(¢))
= ‘U 02| sin(6 — ¢) — |U2|2 sin
= ||UZ2|| — |U1|(sin(8) cos(¢) — sin(¢) cos(6)) — |Us| Sjn((b)) (2.30)
- ||UZ2||<(|U1 — |Uz]) sin(¢) — |U1\900s(¢))

assumed that ¢ ~ 0, so sin(#) ~ 6 and cos(#) ~ 1.

Writing P and @ in matrix form yields:

. [U1|[Us]
(P> _ ( sin(¢) COS(¢)) “ar 0 (2.31)
Q) ~\=cos(@) sin(g)) 1L (j07] - |0))
One observes that the right-hand side of the equation above is nothing more than
a transformation matrix times the active and reactive power of the simplified
case. We will call these simplified P and @, P; respectively Q1. Furthermore,

since Z = R+ jX and Z = |Z|eJ¢’ |Z| cos(p) + j|Z|sin(¢), we can write
= |Z]| cos(¢) and X = |Z|sin(¢). This way we end up with:

(o) - <—% :§> () (232

This means that the inductance of the transmission line plays a huge role in the
droop control methods. We will look, as in done in most literature, at purely

12



inductive lines. This is because it is the simplest case, and because we are look-
ing at high voltage circuits, which are mostly inductive, see Figure 2.2. This
means that we will be observing the behavior of the original droop equations,
where P depends on the frequency and @ on the voltage amplitude.

TYPICAL LINE IMPEDANCES VALUES

. X
T C /1 /. LU
T'ype of Line R (Q/km) (Q/km) R/X (p.u.)
Low Voltage Line 0.642 0.083 7.7
Medium Voltage Line 0.161 0.190 0.85
High Voltage Line 0.06 0.191 0.31

Figure 2.2: Impedance values for transmission lines at different voltage

2.4 Relation between frequency and active power

We know that P = WG, and that the phase angle is in relation with the
frequency. It is however not clear how we can explain the structure of the fre-
quency droop controller, i.e. f — fo = —k,(P — Fy) or its less known form:

f—foz—%(P—Po)-

We now will explain the relations stated above, by reformulating known for-
mulas. We denote by AP = P — Py the change in active power, where Py is the
base value of the active power. In the same way we denote by A7 =7 — 7 the
change in torque and by Aw = w — wp the change in angular frequency. The
torque can be expressed as T = T, — Te, where 7, is the mechanical torque and
7. the electrical torque. In steady state, 7,0 = 7eo, i-6. 70 = 0[26], [19].

A well-known formula is

P=uwr (2.33)

Another way of writing 2.33 is the following:

P=Py+ AP = (wy + Aw) (19 + AT) (2.34)
= woTo + AwTy + W AT + AwAT (2.35)
~ Py + woAT (2.36)

The cross term AwAT is neglected as it is often =~ 0 and since 79 = 0 we did not
write the term Aw7y. We now cross of the Py terms on both sides to obtain:

AP = woAT (2.37)

13



Next, the torque can also be expressed as:

4

Ar=J
T

Aw (2.38)

where J is called the moment of inertia. Using the Laplace transform we obtain:

AT = JAws (2.39)
Rearranging terms yields:
Aw= A (2.40)
w= AT :

Now, the moment of inertia can be written as J = %, where H is called the
inertia constant and wy is just the nominal angular frequency. Substituting this
into (2.40) yields:

1

Using the fact that w = 27 f and substituting 2.37, we obtain:

1
2nAf = —AP 2.42
TAf = o (2.42)
which can be rewritten to:
f=fo= ——(P—P) (2.43)
" 4rHs 0 '

This is of the well known form, where the droop constant seems to be k, =
1
T 4nHs®

Very often, a torque damping component is added to 2.39:

Ar = J%Aw + K ng (2.44)

wo

Here, k, is called the damping torque coefficient. Switching to the Laplace form

again, and substitute J = % we obtain:

2H
(s + kd) Aw = AT (2.45)

wo wo

Substituting 2.37 and rewrite a little yields:

1

Aw=—
Y OHs + ky

AP (2.46)

Writing the angular frequency as 27 f again we get the very often used frequency

14



droop control equation:

1
—fo==——————(P— P, 2.47
I —Jo 27r(2Hs+k:d)( 0) (2.47)
The last equation can be rewritten to:
2Hs(w — wo) + kdg(w —wo) = P — Py (2.48)

which is the equation the synchronous generator uses to control its frequency
and active power output. We will look extensively to the synchronous generator
in the next chapter.

15



Chapter 3

Synchronous Generator

In this section we will look at one way to produce power, that is very common in
creating a microgrid, namely by using generators. Specifically, we will be using
synchronous generators [20]. In SIMULINK there is a block available that is
called Simplified Synchronous Machine (SSM). There is an option to either use
the block as a motor, or as a generator. The difference is that a synchronous
motor demands energy from the grid and a synchronous generator delivers it.
A generator turns mechanical power into electrical power, and a motor turns
electrical power into mechanical power. Since we are using the generator form
of the SSM block, we must have some sort of mechanical power source. In real
life, this source can be a steam turbine, solar cells, a water turbine or a diesel
engine. In our analysis we keep the mechanical power, P,,, as a constant value,
determined by the nominal power of the grid.

A SSM consists of a rotor and a stator. The rotor is a rotating cylinder which
is driven by the mechanical power. Due to this rotation, a magnetic field is
generated which moves through the stationary stator where the coils induce a
voltage. This generating of voltages can be seen in Faraday’s law. The volt-
age that is generated will have in each of the three phases the same amplitude,
same frequency and the phases are 120° displaced from each other, since the
coils within the stator are displaced in this matter. The frequency of the elec-
trical power that is produced by the SSM is synchronized with the mechanical
rotational speed; f. = {55nm. Here, fc is the electrical frequency in Hertz, p
is the number of poles, and n,, is the rotor speed of the machine in rpm (revo-
lutions per minute). The number of poles is determined by the circumstances;
steam turbines are most efficient when rotating at high speed, i.e. to generate
60 Hz, the rotor is rotating at 3600 rpm, so the number of poles is 2. On the
other hand, water turbines are most efficient at low speeds, around 300 rpm,
so the number of poles is much higher. In our analysis we will be using p = 2,
since this is most common in real life. The voltage that is generated within the
stator is not exactly the same as the voltage leaving the synchronous generator.
Reasons for the difference are found by the fact that the coils have a small resis-
tance as well as a self-inductance. The small loss will be seen in the experiments
we looked at. The relation between the electrical power generated by the SSM,

16



P and the angular frequency w is given by the swing equation [19]:

J%(w—wo)—i—Kd(w—wo) =P —-P (3.1)
Here, J is the inertia momentum, K, is the damping coefficient, wy is the ref-
erence angular frequency and Py is the nominal power reference, corresponding
to the mechanical power. Notice the resemblance with (2.48) from the previous
chapter. In the SSM block we are using in our experiments, we can specify not
only the frequency, line to line voltage and nominal power of the generator, but
also the coefficients J and K4. In the upcoming sections, we will look at how
these values influence the behavior of the generator. Note that from now on
out we will refer to the synchronous generator as SG. In the first section we
will observe the behavior of a SG when the loads in the grid are varying. In
the second section we will add an ideal voltage source to the model in order to
simulate a connected to the grid situation. Next, in section three, we will look
at two parallel generators and examine what happens if we alter:

o K, (subsection 3.3.1)

o J (subsection 3.3.2)

o The nominal power Py (subsection 3.3.3)

o The nominal angular frequency wy (subsection 3.3.4)

We will only look at the active power-frequency relation, since this is a built
in equation in the SG. The SG is however also capable of handling the reactive
power-voltage magnitude, since it has an internal impedance, [?]. We are just
focusing on P — f control at this point.

17



3.1 A single generator

We begin with the simplest form where we have constant load connected to a
SG. The schematics are shown in Figure 3.1. The nominal power of the SG is
set at 1000 MW and the phase to phase voltage is 380 kV. The load has an
active power demand equal to the nominal power. This means that when one
load is connected, the frequency of the generator should be the value of your
chosen wq divided by 27, which in our case is 60 Hz. This is because at this
time P = Py, i.e. there is nominal power.

Load

Load

Load

Figure 3.1: Schematic of a SG and three identical loads which can be connected
and disconnected by use of the breakers

The same can be seen from (3.1). When the transition time after a power change
is over, i.e. the %(w — wp) term is zero, the swing equation results in:

1
=wyg— — (P — P, 3.2
w wo l{d ( O) ( )
When P = Py, the equation results in w = wgy, when P > Py, w < wg and when
P < Py, w> wy.

The two graphs Figure 3.2(a) and Figure 3.2(b) also make clear what hap-
pens to the angular frequency w when the active power increases or decreases.
Figure 3.2(a) shows that when a load is added, hence the active power de-
mand increases, the angular frequency at which the generator is working should
decrease. In the same way Figure 3.2(b) shows the reverse: when a load is re-
moved, hence the active power demand decreases, the angular frequency of the
generator is increased.

We model the situation where we start with no load connected to the generator.
At time t = 0.5, t = 1 and ¢t = 1.5 the first, second and respectively the third
load are connected, all of equal size. At time t = 2, ¢t = 2.5 and ¢t = 3, the loads
are disconnected one at a time. Figure 3.3 shows the results.

We can observe that the generator decreases it’s frequency when the power
demand in increased, and increases it’s frequency when the power demand is
decreased. The SG is working like we expected. Observe that at t = 0.5, there
is only one load connected, which has the value of FPy. One observes that the
frequency indeed move close to our chosen f; = 60 Hz. The reason why the
frequency of the generator is not exactly 60 Hz, is due to the resistance and
self-impedance of the coils in the SG as well as the transmission line.
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(a) P> Py (b) P< Py

Figure 3.2: w — P droop control

time(s)

time(s)

Figure 3.3: Frequency and active power generation of the SG

The SG acted the way the theory explained and now we can expand the network
to more difficult situations. In the next section an ideal voltage source will be
added to the network in order to simulate how the SG behaves when connected
to the network.
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3.2 A synchronous generator connected to the
main grid

In this subsection we will add a ideal voltage source to the network of the
previous section in order to create a situation where the SG is connected to the
main grid. The loads remain the same, only the time interval is doubled for a
more clearer view. As can be seen in Figure 3.4

60.5

s il

—fSG

time(s)
9

10

o

—P SG

I L
0 1 2 3 4 5

time(s)

Figure 3.4: The frequency and active power output of the SG when connected
to the grid

The first thing that becomes clear is that the SG is not powerful enough to
compete with the grid. Since the frequency of the ideal voltage source has been
set to 60 Hz, the SG operates at the same frequency. When a load is added, the
frequency does decrease, but quickly get’s back to the frequency of the main grid.
This can be seen at time ¢t =1, t = 2 and ¢t = 3. As for when a load is removed,
the frequency indeed increases, but again falls back to the grid frequency very
quickly. This can be seen at time t =4, ¢t =5 and t = 6. Also observe that the
active power output of the SG converges back to it’s nominal power, which has
been set to 1000 MW. In real life, there will be multiple generators acting at
the same time, so their contribution will be bigger. In the next section we look
at a grid with two synchronous generators, without a connection to the main
grid.
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3.3 Two parallel SG

We look at two identical synchronous generators, placed in parallel, working on
the three loads which are connected and disconnected at the same time as in
the previous section. The schematics are shown in Figure3.5. Since the SGs
are identical, and the loads have not changed, the total nominal power is now
2 GW. this means that when two loads, each of power 1 GW, are connected to
the network, the frequency of both generators should be the nominal frequency.
In our case this is 60 Hz. We plotted the frequency and output active power of
both generators in Figure 3.6.

C _ Load
SG ¥
)i

h —— 4
SG } — Load

Load

)

Figure 3.5: Schematic of two parallel SGs with three identical loads
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Figure 3.6: Two identical parallel SGs

The two plots of both the two frequencies as well as the active power output
are identical, since the SGs have all the same values. As we said, at time ¢ = 2
and t = 4, there are two loads connected to the grid, which means that after
a transition period P = Py and so w = wqg or f = fo = 60 Hz. Again there
where some losses within the SGs, so it is not exactly 60 Hz, but we explained
the reasons for this in a previous section.

Next we will alter the parameters of one of the two SGs in order to see their in-

fluence on the frequency and active power. We will start with K, the damping
factor.
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3.3.1 Different K,

We start by stating the swing equation again.

d
Ja(w—wo) + Kglw—wo)=Py— P

We define one of the SGs as SG1 and the other as SG2. Equivalently, all co-

efficients get the same extension, so Ky is the damping coefficient of SG1 and

K45 is the damping coefficient of SG2.

};(or the investigation of the contribution of the damping factor, we set K4 =
dl

2
The term J %(w —wy) is only of influence in the transition periods, so we could
neglect them and only look outside the transition periods. The swing equation
results in:

Kd(w—WO):Po—P

or, equivalently:
1
=wyg— — (P— P, 3.3
w=wo — - ( 0) (3.3)

For both generators (3.3) holds and if we write them in terms:

1
= —— (P} — P, 4
w1 = wo Kdl(l 0) (3.4)
and ) )
—wp— — (P — P)) =wyg — — (Py — P, 3.5
Wy = Wo Kd2(2 0) = wo Kd1(2 0) (3.5)

With these two equations we can draw the w — P graph again, now for both
SGs, which is depicted in Figure 3.7.

\
\

SG1

SG2

Py

Figure 3.7: w — P droop control for two parallel generators with different K
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Figure 3.8: (a) shows the situation where there are no loads, P; is canceled
against Pa, (b) shows Pr = Py and (c) shows Pr = 3Py

We can establish a relation between the active power outputs P; and P. In
steady state, so after the transition period, we have that w; = wy. This means
that (3.4) is equal to (3.5) and we can write:

2P, — P)) =P, — P, (3.6)

which results in:
P, =2P, — P, (3.7)

Now we will look at different situations. We start with the case where no load
is connected, which means that there is no active power demand. The total
delivered power, Pr = P; + P5 is equal to zero. This means that P, = —P;.
Substituting this in (3.7) yields P, = —3 P and thus P, = 1 F,. This can be
seen in Figure 3.8(a). P cancels out Py by acting like a synchronous motor, i.e.
it is demanding active power of the network.

Next we look at the situation where one load is connected. This means that
the sum of the active power delivered by the SGs should be equal to Py, i.e.
Pr = Py. This means that P, = Py — P;. Substituting this in (3.7) results in
Py = 1Py and P, = 2P,. This situation is shown in Figure 3.8(b).

Then, when we add another load, the total power demand will be 2F,. This
means that P, = 2Py — P;. Substituting this in (3.7) yields P, = Py and
P, = Py. This case was allready shown in Figure 3.7.

Finally, when the total demand is 3Py we have P, = 3P, — P;. Substituting this
in (3.7) results in Py = 3P and P, = §P,. This case is shown in Figure 3.8(c).

We again model the situation. Figure 3.9 shows the frequency and output ac-
tive power of the parallel SGs. Now we can look at different situations. At time
t =0 and t = 6 there is no load connected. We observe that the active power
output are as we predicted, P, = =3P and P, = £P,. At timet =1and ¢t =5,
there is only one load connected. This means that the sum of the active power
delivered by the SGs should be equal to Py. Again the active power outputs
are in line with the theory, namely P, = %PO and P, = %Po. At time t = 2
and t = 4 we observe that P, = P, = Py and w; = ws = wy. Finally, at time
t = 3, we see that the third load is added, which results indeed in P, = %PO
and Py = %PO. We can conclude that our model is working correctly.

23



time(s)

time(s)
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Figure 3.9: Frequency of two parallel SGs with K42 = =5

This concludes the situation where we alter the damping factor Ky. We started
with neglecting the inertia term of the swing equation, in the next section this
is the term that will be investigated.

3.3.2 Different J

In this subsection we will look at different values for the moment of inertia. First
we switch back to the network with just one SG and measure the frequency and
active power output for a moment of inertia J. Then we change the moment of
inertia to % and plot both cases in the same graph shown in Figure 3.10.
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Figure 3.10: Frequency and active power output of a SG with two different
moments of inertia

It can be observed that the case with the smaller moment of inertia, so the
red graph, is quicker in getting to the steady state. This means that the term
J % (w — wp) has become zero. It is not difficult to see why a smaller moment
of inertia results in a faster convergence to steady state.

In the first case the moment of inertia is equal to J. The swing equation can
be rewritten to:

d AP Ky
aAw = 7 + TAC()

where Aw = w —wg and AP = P — P,.

In the second case the moment of inertia is % This time:
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This means that when you decrease J to half the value in the original case, you
double the speed of convergence to steady state. It should also be observed from
Figure 3.10 that the active power output of the generator remains the same in
the two different cases.

However, this section is about parallel SGs, which means that we should look
at the situation of two parallel SGs where the moments of inertia are different
from one another. Again, the moments of inertia are chosen as Jo = % and the
result is shown in Figure 3.11. Note that we start the simulation when there is
already a load of size nominal active power connected. At ¢t = 1 and t = 2 the
second and third identical loads are connected and at ¢t = 3 and ¢ = 4 they are

disconnected again.
r—r—f —fSG1
'-'75527
| |
4 5 6
(s)

time(s

61
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x10°
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Figure 3.11: Frequency and active power output of two parallel SGs with dif-
ferent moments of inertia

We observe that the first SG with the higher moment of inertia reaches the
steady state frequency faster, which was to be expected. Because it reaches this
frequency faster, the power it produces will have an overshoot whenever a load
is added, and an undershoot whenever a load is deleted. This can be seen in
the active power output plot.

In the next subsection we alter the nominal power Fp.
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Figure 3.12: w — P droop control

3.3.3 Different nominal power

The nominal power P, is a parameter that can be chosen in the synchronous
machines available in SIMULINK. When the load is equal to the nominal power,
the frequency at which the generator is working should be equal to the nominal
frequency, in our case chosen as 60 Hz. We will now examine what will happen
when the nominal powers of the two parallel generators are not equal. We de-
note the nominal power of SG 1 and SG 2 by Py; respectively Pyz. We choose
the nominal power as Pys = 2FP1. The total nominal power is now 3Fy;, which
means that when three loads are connected to the two parallel generators, each
with active power demand equal to Py, the frequency of the grid should become
60 Hz.

For both generators we write out (3.3):

1

e (Py — Po1) (3.8)

w1 = Wy —

and

(P2 _POQ) = Wy — (PQ —2P01) (39)

1 1
Wy =Wy — — —
2 T K, K,

We draw the w — P graph again, which is depicted in Figure 3.12.
We can establish a relation between the active power outputs P; and P,. In

steady state, so after the transition period, we have that w; = ws. This means
that (3.8) is equal to (3.9) and we can write:

P1 — P01 = P2 — POl (310)

which results in:
Pr=P —-F (3.11)

where we have chosen Py, = Py
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Figure 3.13: (a) shows the situation where there are no loads, P; is canceled
against P, (b) shows the situation Pr = Py, (¢) shows Pr = 2P, and (d) shows
Pr =3F,

Now we will look at different situations. We start with the case where no load
is connected, which means that there is no active power demand. The total
delivered power, Pr = P; + P5 is equal to zero. This means that P, = —P;.
Substituting this in (3.11) yields P; = —%PO and thus P, = %Po. This can be
seen in Figure 3.13(a).

Next we look at the situation where one load is connected. This means that
the sum of the active power delivered by the SGs should be equal to Py, i.e.
Pr = Py. This means that P, = Py — P;. Substituting this in (3.11) results in
P, =0 and P, = Py. This situation is shown in Figure 3.13(b).

Then, when we add another load, the total power demand will be 2F,. This
means that P, = 2Py — P;. Substituting this in (3.7) yields P, = %Po and
P, = 2 P,. This case is shown in Figure 3.13(c).

In the last case, when the total demand is 3P, we have P, = 3Py — P;. Sub-
stituting this in (3.7) results in P, = Py and P> = 2P,. This case is shown in
Figure 3.13(d).

Now we will show the result we found in our SIMULINK model. Again the
loads are the same as before and so are there operating periods. The results are
seen in Figure 3.14

We observe that at ¢ = 3, when the third load is added to the network, both
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time(s)

Figure 3.14: Frequency and active power output of two parallel SGs with dif-
ferent nominal power

SGs have reached their nominal power. At this time both frequencies of the
generators have reached the nominal frequency of 60 Hz. Again there where
some losses due to the internal resistance and self inductance of the generators.
Furthermore, SG2 delivers twice as much power in comparison to SG1 whenever
there is a load connected to the network.

At time ¢t = 0 and ¢t = 6 there is no load connected. The frequency the two SGs
are operating on, will be the average of the two measured on the x-axis of the
w— P graph. At this frequency P; is negative and P; is positive and they cancel
each other out to get a total power of zero. The values are as we predicted.

At time t = 1 and t = 5, there is one load connected with a demand of Py. The
frequency of both SGs is adjusted to the only frequency at which the sum of
Py and P, is equal to Py. This results in the point where P; = 0 and P, = P,
which is as we predicted.

Finally, at time ¢ = 2 and ¢t = 4 the total load is 2F,. The only frequency at
which P, + P, = 2P, is found which results indeed in P; = %Po and P, = %Pg.

We again conclude that our model is working correctly.

Next, and as a final case, we will look at what happens when we alter the
nominal frequency of one of the two parallel SGs.
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Figure 3.15: w — P droop control

3.3.4 Different nominal frequency

The nominal frequency is the frequency at which the generator is working when
it is supplying the system with nominal power. We are going to look at what
happens when we change the nominal frequency of the second parallel genera-
tor, woz, to 2w60.5 Hz in stead of 260 Hz, which is the nominal frequency of
the first SG, denoted by wp;.

For both generators we write out (3.3):

1
w1 = Wo1 — E (P1 — PO) (312)

and 1
Wy = Wp2 — F (P2 — Po) (313)

d

We can draw the w — P graph again, which is depicted in Figure 3.15.

The nominal active power of both generators are the same and so is the damping
factor K4. This means that the slope of both graphs are the same, which causes
the difference between active power output of the two generators two have a
constant difference. What happens is the following; The total load connected to
the network changes. This causes the frequency of the network to take on a new
value. Both generators frequencies converge to this value and the corresponding
power is given to the network.

We can establish a relation between the active power outputs P; and P». In
steady state, so after the transition period, we have that w; = ws. This means
that (3.12) is equal to (3.13) and we can write:

Wo1 — wWo2

(3.14) shows that the difference between active power output stays constant,
regardless of the load that is demanded.
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Figure 3.16: (a) shows the situation where there are no loads, P; is canceled
against P, (b) shows the situation Pr = Py, (c) shows Pr = 2P, and (d) shows
Pr =3F,

We will explain, with use of Figure 3.16, which is the w — P graph, what is
happening at each different load.

We start with the case where there are no loads connected to the network. It
should be noted that at these times the two power outputs cancel each other,
which makes sense, since the total load is zero. Figure 3.16(a) shows this situ-
ation.

Next, there is just one load connected. The total active power is equal to Fp,
SO w > wq and this results in P; < Py and P, < Py which can be seen in Fig-
ure 3.16(b).

Then two loads are connected, meaning that the nominal power is asked. This
leads to a grid frequency of 60.25 Hz, since this is the average of the two nominal
frequencies. This resuls in the active power outputs shown in Figure 3.16(c),
where P; < Py and P, > F,.

In the last graph, Figure 3.16(d), the case is shown where the total power load
is bigger than the nominal power. This results in a grid frequency below 60.25
Hz, resulting in an active power output greater than Py for both generators.

We will again use a simulation of our SIMULINK model to check if our theories
are correct. These can be seen in Figure 3.17

First, when we look at the frequency plot, we observe that at time ¢ = 2 and
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Figure 3.17: Frequency and active power output of two parallel SGs with dif-
ferent nominal frequency

t = 4 the frequency is roughly 60.25 Hz. At these time instances, there are two
loads connected both of the same value as the nominal power of the SGs, which
results in the fact that the generators will work on their nominal frequency.
However, since the two generators are identical in every parameter except the
nominal frequency, their frequencies will converge to the exact average of the
two, which is 60.25 at nominal power.

At time ¢ = 0 and ¢ = 6, no loads are connected. The frequency is higher than
either of the two nominal values and one of the SGs is operating as a motor
again. At ¢t = 1 and t = 5, one load is connected, resulting in still a frequency
higher than both nominal values. Finally, at ¢ = 3 three identical loads are
connected, resulting is a frequency lower than both nominal values.

Again, the SIMULINK model worked as we expected.

This concludes our investigation of the P — f relation in parallel Synchronous
Generators and with that we conclude the chapter about SG. It is shown by the
test results that the models are operating with high accuracy, since our findings
were the same as we would have expected by working out the equations. The
Synchronous Generator is working quit accurate in delivering the active power
demand, not only at standalone mode but also when multiple SGs are working
at the same time.

In the next chapter we will look at a second power source, the voltage source

inverter. In the chapter after that one we will look at the similarities and dif-
ferences between the SG and this inverter.
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Chapter 4

Voltage source inverter

Besides generators, the most common way to produce power to share the re-
quired loads, are with the use of inverters. Inverters transfer a given DC-input
into a AC-output, with the use of droop control. One of these inverters is the
so called voltage source inverter. We look at the case where the original droop
equation, (1.1) holds [8], [18], [12], [14].

In this chapter we will outline the idea behind, the construction and the out-
comes of using a voltage source inverter as a power source to deliver the active
power demand of the loads. From now on we will refer to the voltage source
inverter as simply the inverter.

We start by showing how the inverter tries to act as an SG in section 4.1.
After this we will explain, in section 4.2, some mathematical techniques that
we are using inside our inverter. Then we will explain how the inverter works
in section 4.3. In section 4.4 we will observe the behavior of a single inverter
connected to multiple loads. Then we look at the grid-connected mode in sec-
tion 4.5. From there we will look at two parallel inverters, where we will change
the droop constants, the nominal frequencies and the nominal power in order to
observe the influences of these factors on the active power droop control. This
will be done in section 4.6.

So first the relation between a SG and an inverter.

4.1 SG and inverters

Synchronous generators follow the swing equation given by (3.1). Inverters do
not have an inherent physical relation between frequency and the active power
it generates, nor does it have a an inherent physical relation between voltage
amplitude and generated reactive power. What we try to achieve with inverters,
is copying the behavior of a SG to create such relations for the inverter [22].
We are only looking at the ordinary droop equation at this point, i.e. we are
looking at P — f droop control. This is because we are looking at small, purely
inductive lines. This equation means that the frequency is in relation with the
active power. We use a simple proportional controller which are:
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w=wy — ky (P — P) (4.1)

The measured active, P,,, is being filtered to get rid of the resonance. This is
done by a transfer function H(s) defined by T%_H Here, 7 is called the delay
and the bigger it is selected, the less resonance we will obtain in the active
power. The downside is, however, that the transition time becomes longer. Ac-
tually, the delay factor 7 can be compared with the inertia constant J in the
synchronous generator. This can be seen as follows.

The transfer function represents a low pass filter, which we will be explain
in an upcoming section. The filter can be written as:

_P-P,
B T

P, (4.2)

If we differentiate (4.1) with respect to time we will get & = —k,P,,. Substi-
tuting (4.2) yields:

Tw:7w+wOfkp(P7P0) (43)

Comparing (4.3) to the swing equation (3.1) shows that indeed 7 corresponds
to the inertia term J. In Figure 4.1 one can see the transition times for different
values of 7. It holds that for larger 7 the transition time becomes larger but the
resonance becomes smaller. It is actually a trade off between the two.

But we are getting ahead of ourselves. First we have to explain how the in-
verter operates and before we do that we have to explain some mathematical
techniques, which we will do in the next section.
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Figure 4.1: Transition time and resonance of the active power with different
time delays
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4.2 Different mathematical techniques

In this section we will explain some techniques we will be using in the construc-
tion of our inverter. We will look at:

o Phase-Locked Loop (subsection 4.2.1)

o dqO-transformation (subsection 4.2.2)

o Pulse Width Modulation (subsection 4.2.3)
o LC-filter (subsection 4.2.4)

Figure 4.2 shows the schematics of the inverter and where all techniques listed
above are situated.

WM Droop
m Control [<~—]

DC—soume:> LC Transmission Lin Load
and Bridge Filter

Figure 4.2: Schematic overview of the voltage source inverter

4.2.1 Phase-Locked Loop

The goal of a Phase-Locked Loop, PLL, is to determine the frequency and phase
of an incoming signal, in our case a three-phase voltage [?]. Figure 4.3 shows
the diagram of the PLL we used, which is the standard block from SIMULINK.

P : mJﬂ
|

Variable

Low-pass filter

I
I frequency ! (Rate limited)
: mean value,
| Freq I PID Controlled ot
In* —I’ Controller Oscillator

I

T 7 7 7 Phase detector Automatic
Gain Control

Figure 4.3: Phase-Locked Loop from SIMULINK

The PLL block consists of five main elements: The phase detector, the controlled
oscillator, the PID-controller, the automatic gain controller and the low-pass fil-
ter.
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The first element in the PLL is the phase detector. It takes the input sig-
nal and the output of the controlled oscillator and mixes them to produce a
voltage proportional to the phase difference between the two signals. Next a
PID-controller and an automatic gain controller make sure that the phase dif-
ference becomes constant by letting the internal oscillator adjust its frequency.
The frequency of the oscillator is drawn to the frequency of the input signal
which makes the phase difference will become constant. At this point the loop
is locked. The low-pass filter is used to filter out higher order of harmonics in
the angular velocity and then we divide by 27 to obtain the frequency.

The PLL block outputs besides the frequency also wt which can be used as
input for the so called dqO-transformation which we will explain next.

4.2.2 dqO-transformation

The direct-quadrature-zero-transformation rewrites the three-phase input signal
from a stationary reference frame into a new rotational reference frame [9]. The
angular speed at which this new frame rotates is synchronized with the input,
in our case the voltage. First we will explain how the transformation works and
then the benefits are explained.

We define the three-phase balanced voltage by:

U, |U| cos (wt)
Uit)y= Uy | = | |U|cos (wt —2F (4.4)
U. |U| cos (wt + 2F

Here, |U| is the magnitude of the voltage. It is clear that U(¢) is balanced, since
all the coordinates are 120° apart from one another. The first step in the dq0-
transformation is the Clark transformation. The Clark transformation is just a
rotation around the a-axis followed by a rotation around the b-axis in order to
drive the third coordinate to zero. We rotate first —45° around the a-axis and
then 35.26° around the b-axis. Writing this in transformation matrices we have
that the Clark transformation matrix 73 is given by:

V2 -1 -1 -1

! (1) _01 V3 V3 2 1 \2f 2
T,=10 2 0 0 |=4/=]10 ¥ =3 (4.5)

0 M Ly 2 3l T 1

V2 V2 73 3 V2oV V2

When we multiply (4.4) with this transformation matrix we observe that the
third coordinate has become zero:

5 I |U| cos (wt) £|U\ cos (wt)
TU(t) = \/g (1) ? = |U] cos (wt — 2?:) = £|U|sin(wt)
(4.6)

The three coordinates are now «, 8 and z, in which z is zero.
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After the Clark transformation, we rotate one more time. This time we ro-

tate around the z-axis with angular speed 6 and this transformation 75 is given
by:

cos(d) sin(f) O
To = | —sin(f) cos(d) 0 (4.7)
0 0 1

The total dq0-transformation matrix T is given by T577:

cos(f) sin(d) 0 5 I

T=|—sin(@) cos(@) 0 3 0 ? *T‘/g
1
o0t Vv
(4.8)
5 [ o8 (0)  cos(8—2F) cos (0 + 2F)
=4/= | —sin(f) —si — 20 —sin(f+ &
\/; SE() sm(L ) sm(L )
V2 V2 V2

This transformation is power invariant, meaning that P = u,i, + upip + Uele =
Ugiq + Uqiq. A proof of this statement can be found in the Appendix.

Now we will explain why it is useful to switch to this new reference frame.
A variant of T is called the Park’s transformation and the only difference it has
with T is that the constant factor in front of the transformation matrix is % in

stead of \/% . This means that (4.5) has become:

1 =t =1

;2 3 -3
a1 B 9

V2 V2 V2

When we multiply (4.4) with 77, we obtain:
9 I |U| cos (wt) |U| cos (wt)
TiU(t) = 3 0 ? =y3 |U| cos Ewt -2 | = [ |U|sin (wt) | (4.10)
% %5 75 |U| cos wt—i—%’r) 0

Now, if we let the second transformation rotate with a speed that is synchro-
nized with the angular speed of the voltage, i.e. 8 = wt, we get:

(ud> B < cos(wt) sin(wt)) <|U|cos(wt)) B (|U|) (4.11)
ug) \—sin(wt) cos(wt)) \|U|sin(wt)) \ 0 '

We neglected the z-axis since we showed that this became zero. We have ob-
tained that the ug term is driven to zero and ug is the same as the voltage
magnitude. We can do the same for the current, where the current ’lags’ the
voltage by phase ¢, i.e. I(t) = |I|cos(wt — ¢). Here |I| is the magnitude of the

current. The second transformation is still synchronized with the voltage, so
(4.11) becomes the following for the current:
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tq\ _ [ cos(wt) sin(wt)\ [[I|cos(wt —¢)\ _ [ |I]|cos(¢) (4.12)
iq) \—sin(wt) cos(wt)) \ |I|sin(wt—¢) /)  \—|I|sin(¢) '
This means that when ¢ = 0, which is the case for a resistive element, the i,

term is zero and the iy term is the magnitude of the current. For inductive or
capacitive elements, ¢ # 0.

The apparent power was calculated by S = UI*, were we could write the voltage
and current as:
U =uq+ jug (4.13)

I =14+ jig (4.14)
Now, the apparent power becomes:
S=UI"
= (ua + jug)(ia — jiq) (4.15)
= ugiq + uqiq + j(uqid - Udiq)

This means that the active power and reactive power are given by:

P = ugiq + ugiq (4.16)
Q = ugiq — ugiq (4.17)
Since we just showed that u, = 0, we have that P = ugiq and Q) = —ugi,. This

means that, in the dq0 reference frame, we can control the active and reactive
power by independently iq and ig. An other benefit is that we can now work
with just two quantities, in stead of the original three, which makes calculations
easier.

The inverse dq0-transformation, the power invariant form, is given by:

5 cos (0) —sin (0) %
71— \/; cos (0 — %) —sin(0-3%) o5 (4.18)
cos (0 +2F) —sin (6 + 27”) %

This matrix is needed to switch back to the abc reference frame.
In the next section we will explain how the Pulse Width Modulation works.

4.2.3 PWM

Pulse Width Modulation (PWM) is used to translate an input signal into a
pulsing signal. In our case, this input signal is the voltage. The output signal is
a pulse which differs between 1 and 0. Here, 1 corresponds to the voltage that
is being switched on, and 0 corresponds to the voltage being switched of. The
way the PWM accomplishes this task is by comparing the input signal to the
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triangle carrier function. Whenever the input signal has a value that is higher
than the carrier function, the output is 1 and whenever the input is lower than
the carrier function, the output is 0. This technique is showed in Figure 4.4.
One can specify the frequency of this carrier function. This frequency has to be
much higher than the frequency of the grid so it does not negatively influences
the load.

In the PWM, pulse width is adjusted in order to increase or decrease the aver-
age output value. As can be seen in Figure 4.5, the bigger the pulse width, the
higher the average value will be. In this way the difference in voltage magnitude
obtained from the droop control are delivered back to the network.

T T Reference T Carrier,
» ) A n A

o A \_N\k

\

a3l
-
a5
a3

|

Figure 4.4: Pulse modulation by comparing the reference signal to the carrier
signal

t
Pulse width

1 —

o

o} }‘_ -’i t

Pulse width

l Pulse width -DI

f— Period —¥

Figure 4.5: PWM: How the pulse width influences the average value
The PWM outputs in total six pulses, two for each phase. One of these two

pulses is the signal we described above and the second is the inverse of this
signal, i.e. whenever the first signal has value 1, the second has value 0 and vice
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verse. These six pulses are given to the universal bridge.

Since the output of the bridge is not yet a smooth abc-signal, we use a LC-filter
to obtain a harmonic signal. This is a very time consuming part in the con-
struction of the model. We will show how you can use inductors and capacitors
to change the signal in the next subsection.

4.2.4 LC-Filter

In a LC-filter, we have a inductor in series and a capacitor in parallel with the
grid. Their impedances are denoted by Z; and Zs, as can be seen in Figure 4.6.

The ratio between voltages, %, defines the Laplace transfer function. This

transfer function is evaluated in the following way.

The current is calculated by:

Vi

[= —+——
Zy + Zy

Vout is the current multiplied by the second impedance, i.e. V,,; = IZ5. Sub-
stituting the current yields:

Vot = 175
v;
Y
< =>
Vou _ 22
Vin Z1+ Zy

Now we implement the impendances for an inductor and a capacitor to obtain:

Vout _ é
Vin  Ls+ &
_ 1
LCs2+1
71
+C [ Y Y'Y ] O+
72
Vin — Vout
(e O

Figure 4.6: LC-filter
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Now we have obtained our transfer function which we need to smooth the out-
put of the inverter. It is much more convenient to filter the output with this
transfer function in order to find the correct values for L and C, than to change
the inductor and capacitor in the grid. Once a correct filter is found, it is known
what the product of LC has to be and one can alter the inductor and capacitor
accordingly.

This concludes the mathematical techniques we need to built our inverter. In
the next section we will explain how it is constructed.

4.3 Structure of inverter

As we said in the introduction, an inverter computes a AC-output from a DC-
input. We use a simple DC-voltage source, which is connected to a universal
bridge. The bridge consists of an IGBT (Insulated-Gate Bipolar Transistor)
connected to some diodes. We used the standard block in SIMULINK called
Universal bridge. The bridge needs a PWM (Pulse Width Modulation) as input
and the output is the three phase connected to the grid.

The pulse is generated with the use of the droop method, which we will explain
next.

We start by measuring the voltage and current of the output of the inverter. We
call these U; respectively I;. These measurements are in abc-coordinates, but
what we need are dq0 coordinates. We use the dq0-transformation, explained
in subsection 4.2.2; to obtain two DC quantities in stead of three AC quantities.
The benefit of working in this new framework is that it simplifies the equations.

Now we have obtained the dq0 quantities, we can measure the active power
P,,. The dq0 quantities are denoted by (ud,uq,uo)T and (id,iq,io)T for the
voltage, respectively the current. From subsection 4.2.2 we know that

P, =ugtqg + uqiq (419)

After filtering the measured active power, we apply droop control. At this point,
we just look at P — f droop control:

w=wy— kp(Pm — ) (4.20)

where &, is the frequency droop constant, wg is the nominal angular frequency
(note that w = 27 f, where f is the frequency), and Py is the nominal active
power.

Since we are not looking at voltage magnitude droop control, we choose our
amplitude F as our nominal voltage, which is a constant. Note that the am-
plitude E corresponds to the d-coordinate, and we can choose the g-coordinate
and 0-coordinate to be zero. When one is using ) — E droop control this does
not hold, since the q coordinate is not equal to zero. This will be explained
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later on when we are investigating reactive power.

We now have two values, the amplitude F and the angular frequency w. We
integrate the angular frequency to obtain wt. Now we do the inverse dq0-
transformation, see subsection 4.2.2, to obtain the abc-quantities again.

The obtained abc-signal is given to the PWM Generator as input, which creates
a pulse that is sends to the universal bridge. The output of the PWM is not a
smooth sinusoidal signal. This means that we need to filter this signal and we
use a LC-filter to do so.

After filtering, the signal, a smooth sinusoidal signal, is given back to the net-
work.

This concludes the most simplest case of the inverter, where we used the original
droop controllers.

In the next section we will show how the inverter behaves when connected to
multiple active loads.
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4.4 A single inverter

In this subsection we look at the case where there is a single inverter connected
to three identical loads, which are only active. We are just looking at active
loads and P — f droop control. We will use a constant voltage magnitude which
we give back to the inverse dq0-transformation.

In Figure 4.7 we see the result of the simulation. One can observe that the
inverter behaves similar to the synchronous generator. Whenever a load is con-
nected to the system, the frequency of the inverter lower and the active output
it produces increases. Note that when the load is equal to the nominal power,
which we set at 1000 MW, the frequency of the inverter is equal to the nominal
frequency, i.e. 60 Hz. There are some errors, which are caused by the LC-filter
and the transmission lines. We are still using a inductive line, as explained
before.

Next we will look at a single inverter that is connected to the grid.

—flInv
60— -
2
59+ -
58 I | | I |
0 0.5 1 1.5 2 25 3 35
tme(s)
9
3310 T T T T T
—PInv
ok ml
2z
1 B
0 I | I |
0 0.5 1 15 2 25 3 3.5
time(s)

Figure 4.7: Frequency and active power output of the inverter

4.5 A single inverter connected to the grid

Figure 4.8 shows the result of a single inverter connected to the grid, which
again we simulates with a voltage source. The frequency of the grid is chosen as
60 and we observe that the inverter is working at the same frequency. Whenever
a load is added or removed the frequency decreases, respectively increases, but
the frequency will quickly go back to the frequency of the grid. This is because
the voltage source delivers more power, just as this was the case with the syn-
chronous generator connected to the grid. In real life, multiple parallel inverters
are connected to the grid, so they will have a bigger influence on the power de-
mand. Also note that the active power output of the inverter converges quickly
back to the nominal active power, which we set at 1000 MW. Next we will look
at two parallel inverters, where we alter the values of the droop constant, the
nominal frequency and the nominal power.
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Figure 4.8: Frequency and active power output of an inverter that is connected
to the grid

4.6 Parallel inverters

In this section we will be checking if the inverters operate in the same manner
as SGs when put in parallel [16]. We look at three different cases:

o Different droop constant (subsection 4.6.1)
o Different nominal power (subsection 4.6.2)

o Different nominal frequency (subsection 4.6.3)

4.6.1 Different droop constants

The first thing we will look at is the droop constant k,, which has the same
function as the damping factor Ky of the synchronous generator. We let the
droop constant of the second inverter be half of the droop constant of the first
inverter. So we have: k,o = %kpl. Figure 4.9 shows the resulting frequency and
active power output.

—flnv1

61 -=-flnv2
N
T

time(s)

Figure 4.9: Two parallel inverters with £, = %kpl

We observe that the inverters are operating the same as the synchronous gen-
erators. When there are no loads connected, the total active power output is
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zero, i.e. P; + P, = 0. This is the case at time ¢t = 0 and ¢t = 3. Because the
total power needs to be 0, the inverters are searching for a frequency for which
P, 4+ P, = 0. The only frequency for which this holds is the average of the two
starting frequencies, in our case 60.75 Hz. When there is a load demand, the
inverters behave in the same way as the synchronous generators. At time ¢t = 2
and t = 4, the total load is the same as the total nominal active power and
one can observe that the frequency of the inverters is close to nominal and the
active power outputs are roughly the same, namely Py. There are some errors,
mainly due to the filtering which is done by the LC-filter. When we compare
this graph to Figure 3.9 we conclude that our model is working correctly.

Next we will look at what happens when the two inverters have different nomi-
nal power and check if the outcome is the same as in the case of two parallel SGs.

4.6.2 Different nominal power

In this subsection we choose Py = 2Py;. Figure 4.10 shows the results. Again
we observe that the inverters behave the same as the generators did by referring
to Figure 3.14. The difference in active power output is again constant.

We observe that at ¢t = 3, when the third load is added to the network, both
inverters have reached their nominal power. At this time both frequencies of
the generators have reached the nominal frequency of 60 Hz. Again there where
some losses due to the LC-filter and the transmission line.

At time t = 0 and ¢t = 6 there is no load connected. At this frequency P;
is negative and P» is positive and they cancel each other out to get a total
power of zero. P, = —%Po and P, = %Po as we predicted in the case of the
parallel SGs.

At time t = 1 and ¢ = 5, there is one load connected with a demand of F.
The frequency of both inverters is adjusted to the only frequency at which the
sum of P; and P; is equal to Py. This results in the point where P; = 0 and
P, = Py, which is as we predicted before.

Finally, at time ¢ = 2 and ¢ = 4 the total load is 2F). This results in P| = %PO
and P, = %Po, just as we obtained in section 3.3.3.
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Figure 4.10: Frequency and active power output where Py, = 2Py

Finally we will alter the nominal frequency of one inverter and see if the network
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behaves the same as it did with two SGs.

4.6.3 Different nominal frequency

In this subsection we choose wg; = 60 Hz and wps = 60.5 Hz. Figure 4.11 shows
the results. We observe that the inverters behave in the same way as the SGs
did, by referring to Figure 3.17. The difference in output active power is always
constant as was the case with the parallel generators in section 3.3.4.
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Figure 4.11: Frequency and active power output with fo; = 60 Hz and foo =
60.5 Hz

With this, we end this chapter about the voltage source inverter. We have
showed that it should operate in the same way as a SG and the results show
that this is in fact the case. In the next chapter we will look at the case where
we are using a SG and an inverter at the same time.
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Chapter 5

Synchronous generator and
inverter

In this chapter we are examining a network where both a synchronous generator
and a inverter are connected in order to deliver the power that is demanded by
the loads. The main difference between the two power sources, is the inertia
term that is at hand in the generator. This term, J, is the term that deter-
mines the length of the transition time as is explained in section 3.3.2. In the
inverter, there is a filter placed after the power measurement which acts as this
inertia term. However, it is assumed, as can be verified in [25], that the inverter
operates much quicker than the generator. Whenever a load is connected, the
inverter delivers most of this load step and the generator raises its power output
slowly until finally the inverter and the generator reach a steady state deter-
mined by their droop constant respectively damping factor. In the next section
we will give the relation between the droop constant and the damping factor.

5.1 Relation between damping factor and droop
coefficient

In order for the generator and the inverter to share the load equally, we will
choose the droop coefficient k, accordingly based on the damping factor K.
This is done by first observing that the damping factor of the synchronous gen-
erator is in unit of torque over angular frequency, i.e. T = P. So it just has
unit of power. It is also known, by the SIMULINK block for the generator, that
the value of K is in per unit. This means that the damping factor in SI units
is equal to the damping factor in per unit times the nominal power Py. This
means that the damping factor in SI is K4 Fp.

Note that the damping factor is in front of the w—wq term in the swing equation:

d
Ja(w—wo)—l—Kd(w—wo) =P -P

The inverter, if we neglect the filter, uses the simple droop controller:
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w—WQ:—kp(P—PQ)

Here, the droop coefficient is in front of the P — Py term. The unit of the coef-
ficient is in angular frequency over power, i.e. 5. The power P should be equal
to the damping factor of the generator, since it was in terms of power, which
leads to

w

Fp = KB,

As can be seen in Figure 5.1, it is clear that the generator and inverter share
the power equally, which means that this choice of droop coefficient was correct.
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Figure 5.1: Frequency and active power output of a SG and an inverter acting
in parallel where their droop characteristics are chosen in such a way that they
share the load equally. In the second plot the active power load and the sum of
the delivered load is also plotted.

It is also clear that the inverter acts quicker when the load changes. At time
t = 1 the load is doubled and one observes that the frequency of the inverter
drops almost immediately, whereas the frequency of the SG slowly decreases
to the steady state frequency. Note that since the total nominal power is 2
GW, we put the nominal power of the SG equal to the nominal power of the
inverter, the steady state frequency after the second load is connected will be
our nominal frequency of 60 Hz. There seems to be some start up time before
the SG and inverter are operating on a steady state frequency, which is causing
the strong deviations in frequency and active power output at the beginning of
the simulation.

In the plot of the active powers, there are also the graphs of the active power of
the load load and the graph of the sum of the active power outputs of the SG
and the inverter. It is to be observed that there is a difference between these
two graphs. The total delivered active power will always be bigger than the
load that is demanded. The difference is caused by the transmission lines and is
called the ’active power loss. When the load is doubled this difference becomes
obviously bigger, the loss is bigger for larger load demands.

But why is there this difference in transition time, why does the inverter takes
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one the load step. We will give an explanation in the next section.

5.2 Transient response

The generator uses the swing equation. This time we use P,,, and P., to indicate
that the mechanical power P, is the nominal power P, and the electrical power
P, is the generated power P:

d
Ja(w —wp) + Kg(lw —wo) = Py, — P

The swing equation means that the generator adjusts the active power based on
the error in the angular frequency, after which it adjusts the angular frequency
in proportion to this measured power[25]. Figure 5.2 shows the dynamics of the
generator. The inverter, however, directly adjusts its frequency in proportion
to the power it measures. These are two fundamental different ways to adjust
frequency, which causes the difference in the beginning of the load change.

Pm —|+ Wt —— g4
» Aw L
Pe ——p|— 1/s -

Figure 5.2: The feedback loop that drives the error in the angular frequency to
Zero

So it seems that the factor J is influencing the settling time to steady state.
Since we divide by J, see Figure 5.2, a smaller value for J would correspond to
a faster settling time. We run the simulation for three different values of the
moment of inertia, 2J, J and %J. This result is shown in Figure 5.3. As can be
seen, a smaller J correspond to a faster settling time to steady state.

In the next chapter we will look at secondary control.
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Figure 5.3: Different settling time to steady state. Upper graph is with inertia
2J, the middle is with inertia J and the lower graph is with inertia %J
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Chapter 6

Secondary droop control

Both synchronous generators and inverters can be used to model the relation
between frequency and active power output. The generators use the swing
equation and the inverters use the droop control. Both power suppliers have
deviations in the frequency they are working on. The purpose of secondary
droop control is to eliminate those deviations despite of variable load [2]. We
will look at both the single SG, section 6.1, and parallel SGs, section 6.2, and
examine how the swing equations change. We could have done the same for the
inverter, but since we showed that the inverter works in the same way as the
SG, we will not look at these cases.

6.1 Secondary control in a single SG

In stead of the swing equation (3.1) we obtain:

J%(w—wo)—ﬁ-Kd(w—wo):Po—P—l—u (6.1)
Here, u is the new secondary control. As choice of u we use the proposed inte-
grated angular frequency deviation, so u = k, [ (w — wq)dt, see [2]. Here, kg is a
gain constant and has a unit that is the torque per second, i.e. Né—m This extra
term is subtracted from our mechanical power input, i.e. we are controlling the
input in stead of keeping it constant, in order to deliver the required power.
The input is changed in such a way that the measured power minus the nominal
power converges to zero and hence w will converge to wy.

In state space notation it will look like the following;:

We now show the case where there is a single SG connected to a load and
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two other identical loads are added to the system, the first at ¢ = 3 and the
second at ¢ = 6. Then at ¢ = 9 the first one is removed and at ¢t = 12 the
second one is removed. We use secondary control on the active power input
with u chosen as stated above. We plot both the input active power as well as
the active power load together with the frequency at which the SG operates.

—P input SG
-=-P Load

Figure 6.1: Active power input and frequency of a SG

As can be seen, the active power input is changed to be equal to the active
power load. The speed at which the input power converges to the power load
is determined by k,. Furthermore one observes that the frequency of the SG
converges to the nominal, 60 Hz due to the change in active power input.

Next we will look at two parallel SGs with different secondary control.

6.2 Secondary control for parallel SGs

We look at two parallel SGs, where we have two different values of k;. The
extra input u of the first SG, u; is denoted by:

Uy = —kgl (wl — WQ)dt (64)

with gain constant k41. The extra input u of the second SG, us is given by:

Ug = —kgg / (OJQ — o.)o)dt (65)
with gain constant kgo.

We look at the steady state solution, i.e. w; = ws = w. This is of course
not totally correct, we might have long term instability because of this assump-
tion. But if we do not make this assumption, we can not relate the active power

outputs to each other. Next we choose kgo = 2k41. In this way (6.5) changes
to:

s = —2ky1 / (@ — wo)dt (6.6)
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We look at the steady state of the swing equation, so we neglect the J term.
Furthermore we rearrange the terms to achieve:

Py+u — P
w—wy = OTZI (6.7)
for the first SG and for the second SG we have:
Py +2u; — P.
o= P2 D (6.8)

In steady state, as we explained in the previous section, w = wp and hence the
right hand terms of (6.7) and (6.8) will become zero. Multiplying with K; we
get:

Py+u— P =0 (6'9)
and
or, written in a different way:
U1:P1—P0 (611)
and PP
up = =2 5 0 (6.12)

these two equations gives the following relation between P; and Ps:
P,=2P — P, (6.13)

The total active power demanded by the load, Pr is delivered by both SGs, so
Pr = Py + P,. Whenever Pr < 2PF,, where 2P, is the total nominal power, we
will see that P, > P,. Likewise, when Pr > 2P,, we will have that P, < Ps.
When Pr = 2P, both SGs will deliver equal power.

We will show this by an experiment. We start with one load connected to
the grid with demand P,. Then, after 1 second a second identical load is con-
nected, after 2 seconds a third load is added, after 3 seconds the second load
is disconnected and after 4 seconds the third load is disconnected. This means
that at time ¢t = 0 and ¢t = 4, Pr = Py. Since Pr = P; + P, we know that
P = ]230 — P». Substituting this is (6.13) gives us: P» = %PO, which means that
P =3P

At time t = 1 and ¢ = 3, Pr = 2P,. This means that P; = 2Py — P5. Substi-
tuting in (6.13) yields: P = Py, which means that also P, = P,.

Finally at time ¢t = 2, Pr = 3FP,. This means that P, = 3Py — P,. Substi-
tuting in (6.13) yields: Py = §P07 which means that P, = %Po.

Figure 6.2 shows the results of our SIMULINK model. We observe that the
behavior is as we expected. There are some errors in the amount of power that
is being produced, which is caused by our assumption wy = wy. This can be seen
in the frequency plot, where SG2 is faster in converging back to the nominal
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frequency. If w; = ws, these two frequency plots should have been identical.
This might be a good subject for future studies; how does the difference wy —wy
effects the active output sharing and does it cause long term instability?
Furthermore, the total power produced is larger than the demanded power which
is realistic since there is a loss in the transmission lines.
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Figure 6.2: Secondary control for two parallel SGs, with kg = 2k

With this we conclude this chapter about secondary control. The reason we
looked at this was because it was quite easy to implement in our models and it
did not took a lot of time. Next we will look at reactive power droop control.
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Chapter 7

Reactive power droop
control

In this chapter we will look at combined active-reactive power droop control.
Since we look at purely inductive transmission lines, this means that the active
power is in relation with the frequency, P — f droop control, and reactive power
is in relation with the voltage magnitude, @Q — E droop control, [3].

We have looked at the Synchronous Generator when we were just dealing with
active power. The SG does not have a built in equation that deals with reactive
power. One could try to fabricate such equations, but we will just observe the
case where we are using inverters.

When we were dealing with purely active loads, i.e. purely resistive loads, we
used a constant magnitude that was used as input for our PWM. We said that
this magnitude corresponded with the d-component of our created signal. Let
us call this created signal v, which is used, together with our calculated wt, to
switch back to the abc quantities. These abc quantities are used as the input of

our PWM, which was explained in section 4.3. It holds that v = (Ud Vg UO)T

The reason why we could let the magnitude be equal to the value v; was be-
cause we showed that uy = ug = 0. This meant that the value ug was equal to
the magnitude of the voltage. This of course was the case since we used a PLL
to synchronize with the voltage. We could simply set v, = vo = 0, since the
voltage magnitude was not changed when adding purely resistive loads.

Now we are dealing with combined active-reactive loads. This time the voltage
magnitude will deviate from its nominal value. We can not simply choose v4 to
be zero again. We will have to control both the direct signal v, as the quadra-
ture signal v,. We will use the conventions and model explained in [15], with
some small changes. Figure 7.1 shows the structure of our new model.

As can be seen, we do not perform a PLL this time. We use the phase we

obtain from the P — f droop equation to perform the dq0-transformations for
the voltage and current. Because of this, the term u, will not be zero, as we
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Figure 7.1: The VSI with both droop equations

showed in section 4.2.2. We will however drive this term again to zero, with
the use of the PI controller seen in Figure 7.1. Furthermore we drive the error
E — ug to zero, again by using a PI controller. These two actions are called the
Voltage Control Loop. Note that we obtain E by the Q — E droop equation.

Next, we drive the errors iy —iq and iy — i, to zero by two more PI controllers.
This part is called the Current Control Loop. The output of both PI controllers
are added to ug, respectively u,, to obtain our signal values vq, respectively v,.
Using the same phase wt (or §) we used for the dq0-transformations, we switch
back to the abc-quantities. This signal is given to the PWM and this concludes
the dynamics.

We will first look at a single inverter connected to two identical, both active
as reactive, loads. In section 7.2 we we look at parallel inverters.

7.1 Single inverter using both active as reactive
droop control

In this section we will observe the case where a single inverter is connected to
four identical loads. The loads are both active (1 GW) as reactive (50 Mvar).
The inverter has the dynamics as explained in the introduction of this chapter.

Since the reactive power demand increases, the voltage magnitude of the droop
equation, F/, will decrease. The magnitude of the grids voltage, measured at the
output of the inverter, will synchronize with E, causing the voltage to stabilize.
Now here comes the part where there is an error in our SIMULINK model.

7.1.1 Error in load demand

The loads we are using in all of our models, are standard load blocks available
in SIMULINK. It consists of a RLC in series, where we can specify the nominal
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frequency, the active power P, the inductive reactive power @), the capacitive
reactive power Q¢ and the nominal phase-to-phase voltage (see [13]). When the
voltage is equal to the nominal value, the load will have the active and reactive
demand as we specified in this block. Since we are changing the magnitude of
the voltage, the demand will be different from what we set as our demand. This
is why the active and reactive power measurements will not be doubled when
we add a second load. They will both increase, but because the voltage is below
nominal value, the increase will be less than what we are asking for.

We will demonstrate this with our SIMULINK model. We will look at three
different cases, where in each case we look at different k, values. Remember
that this is the reactive droop equation constant. The higher this value, the
bigger the change in voltage magnitude E. The bigger the change in F, the
smaller the increase in active and reactive power demand at the load when we
increase the load. This yields a smaller increase in our active and reactive power
measurements.

We show both the voltage magnitude E and the measured active power P.
We start with one load connected and the other three loads are connected at
t=0.3,t=0.6 and t = 0.9. Figure 7.2 shows the results.

—E for kq
4 ==-E for 0.1kq
W E for 0.01kq

time(s)

P —— —Prorka |
-=--Pfor 0.1kq
P for 0.01kq

time(s)

Figure 7.2: Inverters voltage magnitude and active power measurement for (a)
kq, (b) 0.1k and (c) 0.01k,.

We observe that for small a small value of kg, the change is magnitude is in-
deed very small, but the active power measurement is close to what we want.
However, we will look at Q — E droop control in this chapter, meaning that
we want to observe a proportional large change in voltage magnitude. This is
why we will use the value of k, that we used for the red graph in Figure 7.2.
We observe a change is voltage magnitude and the active and reactive power
measurements are not to far of what we demand. Note that k, is defined as the
nominal voltage magnitude divided by the nominal reactive power, i.e. k, = %

In the next subsection we will look at both droop equations.
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7.1.2 Both P-f and Q-E droop control

We will show that our model is working as we expected. We add combined loads,
which means that the frequency and voltage magnitude should decrease in the
grid. We start with one load connected. At time ¢ = 0.5 the second is connected
and at time ¢t = 1 the third is connected. the seond load is disconnected at time
t = 1.5 and the third at time ¢ = 2. Figure 7.3 shows the result.

x10°

w37

05 1 5 2 25

Figure 7.3: Upper left shows the frequency of the inverter and the load. Upper
right shows the corresponding active powers. In the lower left graph the voltage
magnitude is depicted and the corresponding reactive powers are shown in the
lower right.

We observe that indeed the frequency and the voltage magnitude are stabilized
and synchronized with the frequency and magnitude obtained from the droop
equations. We also observe that the inverter has a higher value for @) than the
demand from the load. This is of course caused by the inductive transmission
lines. The next subsection will apply secondary droop control on the voltage
magnitude.

7.1.3 Secondary droop control on voltage magnitude

In real life situations, secondary droop control on the voltage magnitude is ap-
plied in order to get rid off the error in this magnitude, that the droop equations
are creating. Just as in section 6.1 we use an extra input, this time for the nom-
inal reactive power Q. This yields the following equation.

E=Eo—k(Q—(Qo—uw) (7.1)

Here, u is the new secondary control. As choice of u we use the proposed inte-
grated voltage magnitude deviation, so u = k, [ (E — Ey)dt, see [2]. Here, kg
is a gain constant and has a unit that is the torque per second, i.e. % This
extra term is subtracted from our nominal reactive power, i.e. we are control-
ling the input in stead of keeping it constant, in order to deliver the required
reactive power. The input is changed in such a way that the measured power
minus the nominal power converges to zero and hence E will converge to Ey.
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We will show this with our SIMULINK model. We expect that, since the voltage
magnitude converges to its nominal value, the measurements for P and @ will
be exactly the load demands we specified. Figure 7.4 shows the result. We are
adding a second load at time ¢ = 0.5 and a third load at time ¢ = 1.
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02 04 06 08 1 12 14 02 04 06 08
time(s) time(s)

1 12 14

Figure 7.4: Upper left shows the frequency of the inverter and the load. Up-
per right shows the corresponding active powers. In the lower left graph the
voltage magnitude is depicted, where we applied secondary control, and the
corresponding reactive powers are shown in the lower right.

We observe that indeed the voltage magnitude converges back to the nominal
value. This causes the measurement for P to be correct, or equal to our ex-
pected active power demand.

With this we conclude this section about both droop equations for a single
inverter. In the next section we will look at parallel inverters, which are using
both droop equations.

7.2 Parallel inverters using both P— f as ) — FE
control

In this section we did an attempt to look at how the reactive power is being
shared when we are using parallel inverters. In this, however, we did not suc-
ceed. We will explain why our model is not capable of working with parallel
inverters.

We start by showing the result of our SIMULINK model. We use two iden-
tical inverters, where the dynamics are the same as in the previous section. We
have one load connected, which is both active as reactive. Figure 7.5 shows the
results.

It is clear from Figure 7.5 that our model in unstable. But what is the reason
for this instability? We can explain it by showing the current and voltage at

the output of one of the two inverters. These can be seen in Figure 7.6.

As can be seen, the error lies within the current. Apparently, some current is
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Figure 7.5: Two identical parallel inverters. Upper left shows the frequency,
upper right the active power outputs. Lower left shows the voltage magnitude
and lower right the reactive power output

Ampere

Figure 7.6: The three-phase current and the three-phase voltage of one of the
two parallel inverters

flowing from one inverter to the other and vice verse. This phenomenon is called
circulating current [27], [28]. Because the current in unstable, the voltage out-
put of the inverters becomes unstable, causing error in reactive power, voltage
magnitude, active power and frequency.

Some time was spend on trying to fix this problem. Some solutions are men-
tioned in various papers, primarily by using a Space-Vector Pulse Width Mod-
ulation (SV-PWM) in stead of a standard PWM [27] or by adding impedance
to cancel out the circulating current [28]. Due to time limitations, we have not
found a method that solved the problem. This, however, could be a good sub-
ject for future work. When the circulating current problem is solved, one can
add multiple inverters and observe the power sharing.

Note that we have this problem because of the transmission lines. If we were
to neglect the transmission lines, the reactive power is shared in a similar way
as the active power. The error seems to lie within the mismatching in voltage
between the two inverters. If this voltage is exactly the same, as is the case
where there are no transmission lines, the reactive power sharing is accurate.
This problem is being addressed in [?].

This concludes this chapter about reactive power. In the next chapter we will
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explain the third kind of power source, the ICS. Because we will we looking at
the combined active-reactive loads and because the ICS needs to work in parallel
in with another grid former (a SG in our case), there will be again circulating
current. This means that we did not derive good results but still we would like
to explain the model.
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Chapter 8

Grid-supporting power
converter acting as a
current source

There are two types of grid-supporting power convectors. The first acts as an
ideal ac voltage source which is in series with an impedance, the second one is
acting as an ideal ac current source in parallel with a shunt impedance. The
idea behind these two converters is that they keep the frequency and voltage of
the grid close to their rated values, by regulating their output voltage/current.
We will be focusing on the second case, the converter acting as a current source,
because it is more common in real life, [15].

The first thing to observe is that this new grid-supporting power converter
acting as a current source, which we will call ICS from now on, is not able to
work in island mode on its own. It needs at least one grid former, i.e. a syn-
chronous generator or a controlled voltage source, to be able to operate. This
is because the grid voltage needs to be formed in order for the ICS to work.
The main task of the ICS is to participate in regulating the voltage F and the
frequency w of the grid, by controlling the amount of active and reactive power
it delivers to the grid. The dynamics of the ICS are illustrated in Figure 8.1,
which we used from REF.

As can be seen in this figure, we have an power inverter, our ICS where the
output goes through a LC-filter, and a load which is purely resistive. The mea-
surements for our current and voltage are done after the inductor for the current
and after the total LC-filter for the voltage.

The voltage is transferred into dq coordinates by the dqO-transformation. The
v, term is driven to zero by using a PI controller and the output of this controller
is added to the reference angular frequency, in our case 2w60. The result, which
is the estimated grid frequency ', is integrated and then we have found our wt,
in the figure denoted by 6 which is called the phase. These calculations, where
we have the voltage in abc-coordinates as input and the phase wt as output is
just the same as a phase-locked loop, where the goal is to synchronize with the
grid voltage.
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Figure 8.1: Grid-supporting power converter acting as a current source

This phase, 6 or wt, is the input of the dq0-transformation of the current and
of the inverse dq0-transformation, in order for the system to be synchronizes at
the same phase.

After the calculation of i4 and i, the droop control is done. The four terms
on the right of Figure 8.1, w*, P*, E* and Q* are the reference frequency, the
reference active power, the reference voltage amplitude and the reference reac-
tive power.

The estimated frequency of the grid w’ is subtracted from the reference fre-
quency. This error in frequency is then multiplied by the droop coefficient
kl’n after which we add the reference active power. This means that we have
pP* + k;)(w* — w'). Remembering that the ordinary droop equation was, where
we write w in stead of f, w —wp = —k,(P — Py). Rewriting this equation for
the active power P yields P = Py + é(wo — w). This means that in our new
droop control for the Inv.; we have that the droop coefficient kzla is the inverse
of our original droop coefficient k,,.

The result P* + kj(w* — w’) is thus equal to the active power P. Next this
term is divided by vg in order to get an estimate of the d-coordinate of the cur-
rent, 7). This is done since the active power is determined by the dq-coordinates
of the current and voltage as:

P =vgiq + vqiq (8.1)

Since we drive the term v, to zero, P = vgiq and hence we get an estimate of
iq when we divide by vg.

We then subtract the measured value of 74 from our estimate and we do a PI
control over the result in order to let this error, i} — 4, go to zero.

At the same time the reactive power droop control is working, which is done in
a similar way as the active power. The outcome @ is again divided by vy and
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we get a reference for the g-coordinate of the current 7. The reactive power in
dg-coordinates is determined as:

Q = Uq’id - ’Udiq (82)

Since, again, we drive the term v, to zero, Q = —vq4i, and when divided by vg,
we get an estimate of —i,.

We then subtract the measured value of iy from our estimate and we do a PI
control over the result in order to let this error, i; — 4, go to zero.

Now we are at the last step, the construction of ug and w4, which are the
new dg-coordinates for the voltage. The term uy is determined by adding the
measured d-coordinate vy to the outcome of the PI controller that drives the
error i} —iq to zero, and we add a cross term which we will explain in a moment.
The g-coordinate is determined by adding the measured g-coordinate v, to the
output of the PI controller that drives the error i; — i, to zero, and again we
add a cross term.

These new dg-coordinates are used, together with the phase wt = 6 to switch
back to the three-phase voltage. This is sent into a PWM, from which the out-
put is sent into a bridge which is connected to a DC voltage source. We will
not explain again how the PWM operates as we done so already in the chapter
about the voltage source inverter.

Next the cross terms need to be explained. As we said, the output of the
universal bridge is filtered using a LC-filter. If we call the voltage before the
inductor E and after the inductor V', then, £ —V = jwLI, where jwLI is the
voltage over the inductor. Writing is dq factor, remember u = uq + ju,, we get:

Eq+ jE; — (Va+3Vy) = jwL(Ig+ jI,)

‘ . (8.3)
E;—Vy +](Eq — %) = —OJLIq +_]LULId

We observe that there is a negative effect of I, on Eq — V; and a positive effect
of I on E,—V,. This is why the cross terms are in the system. They cancel out
the effects that the inductor has on the voltage difference. Indeed, the factor L
in Figure 8.1 is the same as the inductor in the LC-filter, L.

Note that a big difference between the ICS and the IVS, the original inverter, is
what they measure. For the IVS we changed the load in the grid, so the active
power, and observed how the inverter changed its frequency according to the
droop equation. The ICS however, measures a change in frequency in the grid
and adjusts its active power it delivers to the grid. Likewise, the ICS detects a
change in voltage measurement and adjusts its reactive power output in stead
of vice verse.

Now we tested our new inverter, but we found the same error as in section
7.2. Since we connected our ICS to a SG and we change the voltage magnitude,
there will be circulating current. Because we did not solve the problem of cir-
culating current, we are not able to discuss any results about the ICS here. It
is however a good topic for future work, since in real life, the ICS is commonly
used as a power source.
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Chapter 9

Conclusions

In this thesis we investigated and explained the dynamics of power suppliers.
We started with explaining how active and reactive power are determined and
how they have a connection with frequency and/or voltage magnitude, depend-
ing on the transmission lines. We choose to take a time-domain approach, in
stead of the more common method of phasor notation.

Synchronized generators were used to control and share the active power by
changing their frequency according to the swing equation. We observed different
cases when working with parallel SGs, where we changed one of the parameters
in each case. We explained what should happen to the active power sharing and
we modeled our ideas using SIMULINK. Our results were as we expected.

After the SGs, we looked at the voltage source inverter. A detailed expla-
nation was given of how the inverter operates. We explained how the inverter
adjusts its active power output by changing its frequency according to the droop
equation. We showed the correspondence between the swing and droop method
and with the use of our SIMULINK model, we looked at power sharing between
parallel inverters. The results were again as we expected, the inverter behaves
in a same way as the SG.

From here the next step was obvious. We put a synchronous generator in
parallel with our inverter and showed the relation between the damping factor
and the droop coefficient. The difference in transient time was explained and
with our SIMULINK model we showed that by adjusting the moment of inertia
term, we could change the difference in transient periods.

Since it is common in real life, and because it was a small step from our creat-
ing SIMULINK models, we looked at secondary control. An extra input term is
used to adjust the nominal power, which causes the error in frequency to con-
verge to zero, yielding a nominal frequency. Both single case as the parallel case
were explained. In the parallel case, the power sharing was again as we expected.

Next we looked at reactive power. The loads were now both active as reac-

tive, which is more realistic in real life. We used our inverter and showed how
the voltage is stabilized by using the second droop equation, which depends
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on reactive power. The deviation in voltage magnitude, as we showed, has a
large influence on the measurements of active and reactive power. We explained
that this was because of the load blocks we used form the SIMULINK library.
The more realistic case was also viewed, where we applied secondary control on
the nominal reactive power, causing the voltage magnitude to converge to the
nominal value.

Finally we wanted to observe what happened when we used parallel invert-
ers, were they are both using reactive power droop control. In this, however,
we did not succeed, because of the circulating current. Due to time limitations,
we did not found a solution for this problem. The same problem influences our
model of the current source inverter, which is why we were not able to get good
results for this model either.

In total, this thesis is an overview of how power is being shared in a micro-
grid. We showed that primary control can be used to rapidly balance generation
and demand, while sharing the load, synchronize the AC voltage frequency and
stabilize the voltage magnitude.

65



Chapter 10

Future work

Due to time limitations we could not look at each case that we would have
wanted to investigate. We started by explaining how the transmission lines
influence the behavior of the droop equations. In real life, the transmission
lines are more inductive than resistive, but they are not purely inductive as
we assumed. A future investigation topic would be to use the combined droop
equations and investigate how the power is being shared.

Furthermore, the problem of circulating current needs to be solved. There are
existing ways to prevent circulating current, but we were not able to correctly
implement these methods within our time period. When the problem is solved,
one could observe the reactive power sharing and furthermore one could use the
current source inverter we explained.

Since we mainly investigated primary control, one could expend our work by
going more deeply into secondary or even tertiary control. A good topic regard-
ing secondary control would be to investigate the transition period for parallel
inverters (or SGs).

Finally, we only looked at the stand-alone case. This means that the micro-
grid was not connected to the main grid. In real life the microgrid is able to
work in both connected as disconnected mode. One could investigate we con-
nected case and see how parallel SGs and inverters share the load under these
circumstances.
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Chapter 11

Appendix

11.1 Power invariant dq0-transformation
In the power invariant dq0-transformation, it must hold that:
P=VI= Uaia + 'Ubib + Ucic = ’Udid + quq + Uoio (111)

In the ordinary dq0-transformation, d, q and 0 are determined by:

Zq cos(f)  cos (0 — %) cos (0 + %) Zq
2g| =c1 | —sin(f) —sin(0—2F) —sin(0+3F) | |z (11.2)
X0 Co (&) C2 Te

In our case, x is either the voltage v or the current i. We will now show which
values one has to choose for ¢; and ¢y in order to (11.1) to hold.

Vgia + vgiq + voio = <(va cos (8) + vy cos (0 - 2?”) + v, cos (9 " %”))
(o cos (6) + i cos (0 - 2%) +iccos (6+ %ﬁ))

+(—vasin(9) — upsin (9— 2?”) _ v.sin (9+ %ﬂ))
(— i sin (6) — iy sin (9 _ %”) _i.sin (9+ %ﬁ))

+c3 (va + v + vc) (ia + i + zc)>

(11.3)
Now, using the double angle formulas, we know that:
2 2 2 1
cos [0+ -2 ) = cos (0) cos ill F sin (0) sin ) = 2 cos 0) F @ sin (0)
3 3 3 2 2
(11.4)
sin (9 + 2;) = sin (0) cos <237r) + cos () sin <2;> = f% sin (0) F ? cos (0)
(11.5)
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These observations yield that the cross terms in (11.3) become:

cos () cos (9 + 2;) = —% cos? () F ? sin () cos (0) (11.6)

(9 — ) cos <9 + > =~ cos? () — anﬁ (9) (11.7)

sin (6 sm< 2;) ”sm :I:?sin(@)cos(&) (11.8)
(

sin (0 — ) sin

Adding (11.6) and (11.8) yields:

0+ > —sin? (A) — = cos? (0) (11.9)

1

cos () cos <9 + 2;) +sin (0) sin (9 - 2;) = %(sinz (0) +cos? (0) ) = —5

(11.10)
Adding (11.7) and (11.9) yields:

2 2 2 2 1 1
0s (9 - ;) cos (9 + ;)—i—sin (9 - ;) sin (9 + ;) = (1_2) (sin2 (6)+cos? (9)) =-3
(11.11)
Of course it also holds that:

cos® (0 + k) +sin? (0 +k) =1 (11.12)

where k = 0, k——? ork—g.
Substituting (11.10), (11.11) and (11.12) into (11.3) yields:

vdzd—i—vq q—l—vozo =c] ((1—|—02) (va1a+vbzb+vclc>+(§+c§> (va (zb—HC)—i—vb (za—HC)—i—vc (za—i—zb)))
(11.13)

In order fort he transformation to be power invariant, the second term with all
the cross terms in (11.13) should be zero. This means that f% +¢3 =0, hence
co = :I:%. Substituting this value in the first term of (11.13) yields:

. . . 3 ) . .
Vaid + Vqlq + Volo = ic? (vaza + vpip + vczc> (11.14)
In order for (11.14) to be power invariant, ¢; = :I:\/g.

Hence, when we choose ¢; = i\[ and ¢ = +-L%
is power invariant.

73 the dq0-transformation

11.2 SIMULINK models

In this section we give a short summary on how to use the models we used to
simulate our findings.
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11.2.1 Parallel Synchronous Generators

Open the file ParallelSGDroopPfSecondair. In this model we have two SGs
connected in parallel to three identical active loads. One can choose to add sec-
ondary control by choosing a value of 1 in the Sec Droop Enable blocks. Setting
these values to zero results in disabling secondary control.

Double click on the SG blocks to change the values of J, K; and wqg. If one
would like to change Py, you will have to change the P,, block in front of the SG.

The three plots under each other show the voltage, current, frequency and
active power for the first SG, the second SG, respectively the load. The plot on
the right shows how the active power is shared between the two SGs and it also
shows how the frequency is being synchronized.

11.2.2 Parallel Voltage Source Inverters

Open the file ParallellnvertersVSDroopPf. In this model we have two voltage
source inverters connected in parallel to three identical active loads.

Double click on the inverter blocks to observe the dynamics. One can change
the LC-filter, change the carrier function by double clicking on the PWM lock
or change the filtering after the power measurement by altering the transfer
function.

One can change the values of k,, Py and wy in front of the inverter and ob-
serve how the active power is being shared in different situations.

The three plots under each other show the voltage, current, frequency and
active power for the first inverter, the second inverter, respectively the load.
The plot on the right shows how the active power is shared between the two
inverters and it also shows how the frequency is being synchronized.

11.2.3 SG and Inverter in Parallel

Open the file InverterVSandSGDroopPf. In this model we have a synchronous
generator and a voltage source inverter connected in parallel to three identical
active loads.

The values of Ky and k, are chosen in such a way that the SG and Inverter
share the load equally. One can change the value of K; by double clicking on
the SG or change the k; by altering the value that is in front of the inverter.
One can also choose to increase the inertia term J in the SG, to observe how
this value influences the transient time.

The three plots under each other show the voltage, current, frequency and
active power for the SG, the inverter, respectively the load. The plot on the
right shows how the active power is shared between the SG and the inverter and
it also shows how the frequency is being synchronized.
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11.2.4 Parallel Inverters with reactive power droop con-
trol

Open the file ParallelVSDroopPfandQE. In this model we have two voltage
source inverters connected in parallel to three identical active/reactive loads.

One can choose all of the parameters in front of both the inverters. These
parameters include Py, wo, kp, Qo, Eo and k4. To observe the power sharing in
different situations, let just one of these parameters be different in the inverters
and let all the other parameters be identical.

Note that this model becomes unstable after some time, because of the trans-
mission lines, since the voltages mismatch. One could delete the transmission
line blocks to observe the power sharing in the correct way.

The two plots under each other show the voltage, current, frequency, active
power, voltage magnitude and reactive power for both inverters. The plot on
the right shows how the active power is shared between the inverters and it
also shows how the frequency is being synchronized. Furthermore it shows the
voltage magnitudes and the sharing of the reactive powers.
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