Proton stopping power and range calculation
using effective atom number and effective electron
density from dual energy CT
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1. Introduction

Proton therapy is a type of radiation treatment that uses accelerated protons to
destroy cancer cells. The advantage of proton therapy in comparison to the
conventional radiation therapy with photons, is that the dose of the protons can
be more accurately delivered at a certain position. The reason for this is that the
dose deposition of a proton sharply peaks at low proton energy after a relatively
well-defined penetration depth (figure 1.1). This peak is called the Bragg peak.
Beyond the Bragg peak the dose sharply falls to zero. Photons on the other hand
have their maximum dose deposition at high photon energies and therefore
immediately after penetrating the body. Beyond this peak, the dose deposition
decreases very gradually in an exponential manner. This means that the
irradiation of healthy tissue around the target tumor is significantly less during
proton therapy in comparison to radiotherapy with photons. Consequently, the
advantage of proton therapy is that it will result in fewer side effects like
secondary tumors, and significantly increases the possibilities to irradiate
tumors that are close to radiation sensitive organs. At this moment there are
about 50 proton therapy centers worldwide [2]. Most of which have been build
in the last few years. In the Netherlands the government has recently appointed
4 locations at which proton therapy centers may be build in the near future.
These are: Groningen, Amsterdam, Delft and Maastricht [10]. Groningen and
Delft are both starting this year with the construction of a proton therapy center.
These are expected to be operating by 2017 [11]. The construction and
operation of the proton therapy center at the UMCG in Groningen will be in
collaboration with KVI-CART.
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Figure 1.1: Dose, relative to the maximum dose, plotted against penetration
depth for a photon and a proton beam. The sharp peak of the proton beam is the
Bragg peak. The blue curve represents a proton beam consisting of protons with
different energies so that the peak spreads out [3].

For the planning of proton therapy treatment it is very important that the
stopping power, which is the energy that is lost by the proton per unit of length,
in the tissue can be predicted in an accurate way. With the stopping power the
dose deposition can be calculated at every point of the trajectory of the proton.
The aim of this study is to construct an accurate model that can predict stopping



powers using information from dual energy CT. The dual energy CT information
that will be used are the effective atom number and the effective electron
density, which have been measured for several materials in a recent study that
was also done at KVI-CART [1].

An overview of the method that will be used is illustrated in figure 1.2. Initially
two models that can calculate the stopping power from the proton energy will
be considered: The Bethe formula, which is a physics based formula [4], and the
Bragg Kleeman rule, which is an empirical formula based on scaling laws [5].
The Bethe formula and the Bragg Kleeman rule contain one and two unknowns
parameters, respectively. Both models will be fitted to stopping power values for
protons in the elements, using the unknown parameters as fitting parameters.
The model that gives the best fit will be used for the rest of the procedure. The
stopping power values that will be used for fitting can be obtained from either
the SRIM dataset from Ziegler [6] or the PSTAR dataset from NIST [7]. These
datasets will be compared in this study, and the most appropriate dataset will be
used for fitting. Elements with atom number ranging from 1 to 50 will be
considered. For every fit, and therefore for every atom number, we then have
either one or two fitting parameters, depending on which dataset is chosen.
From this, we investigated if a relationship between the fitting parameter(s) and
the atom number or electron density can be found.

The fitting parameter(s) of an arbitrary compound can now be found by
combining the fitting parameters of all elements that the compound contains
using the Bragg additivity rule. The Bragg additivity rule adds the fitting
parameters with the electron density that every element in the compound
contributes as weighing factor. This will be done for the compounds that were
used in the dual energy CT study that measured the effective atom number and
the effective electron density [1]. These compounds are mainly tissue-like
materials that represent for example bone or lung tissue. The compounds
consist of elements with an atom number ranging from 1 to 25 and with
effective atom numbers between 6 and 14. The elemental compositions of the
compounds used in the study are known so the fitting parameters can be
calculated. With this method a relationship between the effective electron
density or effective atom number and fitting parameter(s) can be found. This can
be used to find the fitting parameter(s), and therefore the stopping power, of a
compound with unknown composition (which is often the case in real tissues)
when one knows the effective atom number or the effective electron density.
This model will be the main result of this study.

From the stopping powers it is also possible to calculate the range of the
protons. In a previous experiment at KVI-CART, the proton range has been
measured using the same compounds that were used in the dual energy CT
study that gave the effective atom number and the effective electron density. In
this study the ranges will be calculated from the stopping powers that are
obtained from the model. These ranges are then compared to the experimental
results.
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Figure 1.2: A schematic overview of the approach that will be used to construct

the model that calculates stopping powers from effective atom number and
effective electron density.



2. Theory

2.1 Stopping power and the Bragg peak

When a proton travels though a medium it loses energy mainly as a result of
Coulomb interactions with electrons. Due to the positive charge of the proton,
momentum is transferred to the electrons in the medium. This results in the
excitation or ionization of the atoms in the medium. To describe this energy loss
of a proton the stopping power is defined. The stopping power is the energy loss
per unit of length or -dE/dx of the proton energy.

The Bethe formula

Bethe derived a formula to calculate the stopping power as a function of the
proton energy. It is based on the Coulomb interactions of the protons with the
electrons. The derivation of the nonrelativistic and semi-classical version of the
Bethe formula is quite straightforward. Consider a proton with a velocity v that
passes an electron in a straight line at a distance b as shown in figure 2.1. Since a
proton is a relatively heavy particle it is legitimate to assume that it travels in a
straight line. The proton and the electron exert a Coulomb force on each other.
We assume that the electron is free and at rest. Furthermore, we assume that the
interaction takes place sufficiently fast, so that the displacement of the electron
during the interaction can be neglected. This means that, due to symmetry
around the y-axis, the average force over time in the x-direction is zero.
Therefore only the force in the y-direction will be relevant for energy transfer.
The momentum that the proton transfers to the electron in the collision then
becomes

T r cosb b
= | F dt=|FcosOdt=k,e’ | ——dt =k, e’ | — dt
S (T T
1
where & =F is Coulomb’s constant, with €, the permeability of free

0
space. To carry out the integration let t=0 represent the time that the proton

passes the Y-axis. Since the above integral is symmetric around t=0 we have
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The energy transferred in the collision is
2 2k 2 4
0= - ° (23)

=2m_b2v2m

where m is the electron mass.
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Figure 2.1: A proton travels along an electron and exerts a force F=Fx+F, on the
electron [4].

When a proton travels through a medium with an electron density of n electrons
per unit volume, the proton will transfer momentum to all surrounding
electrons. From equation 2.3 it follows that the energy that is transferred to an
electron depends on the distance b between the proton and the electron. This
distance is called the impact parameter. The energy transferred to the electrons
at a distance ranging from b to b+db when the proton has traveled a distance dx
is

~dE =27 b db dx n Q(b) (2.4)

For an illustration of this infinitesimal volume of electrons, see figure 2.2. The
stopping power of a proton in a uniform medium now given by

dE b dank’ et " db
-— =27 bybdh=—-""— | —
dx " b{ k) vem . b
2 4
_ 4w n2k0 e Do (2.5)
v.-m min

The limits of integration bmin and bmax can be estimated as h/(mv) and v/f
respectively, with f the orbital frequency and m the electron mass. For this
estimation, quantum mechanical considerations were used which will not be
discussed here. The final result is

2 4 2
_dE _ 4Jrn2k0 € ,my (2.6)
dx v m hf
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Figure 2.2: A disk of electron volume with impact parameter between b and db
around a proton path of length dx [4].
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Since therapeutic protons have energies up to approximately 250 MeV, they
travel at relativistic speeds, and the above nonrelativistic semi-classical formula
is not completely valid. But it does give a good insight in the physics behind
stopping power. The relativistic quantum mechanical version of the Bethe
formula is given by [4]

_dE _4mn koze4 n(2m02/32)_/32 o
- 2.7

dx mc’p IA-p)

Where 8 = v/c is the relativistic speed and I is the mean ionization energy of the
medium. When we write [=2h-f, it can easily be seen that equation 2.6 and 2.7
are identical at nonrelativistic speeds, that is, if we take f <<1.

From formula 2.7 the origin of the Bragg peak becomes clear. At high velocities
and therefore high proton energies, the stopping power is small because of the
1/ % term. But as the velocity gets smaller the 1/ 32 term increases rapidly. The
logarithmic term on the other hand decreases at low velocities. The combination
of these two terms causes a peak in the stopping power.

For the derivation of the Bethe formula several assumptions were made [4]
[8]: The protons travel much faster and are much heavier than the target
electrons and only Coulomb interactions are relevant. This leads to limitations
on the proton energy domain for which the Bethe formula gives accurate results.
Besides Coulomb interactions, protons can also lose energy as a result of elastic
scattering with atomic nuclei. But only at very low proton energies these
interactions make a significant contribution to the proton energy loss and in
most cases it can be neglected. Furthermore the protons can capture electrons
that reduce the average effective charge op the protons and therefore the
stopping power. This effect becomes significant when the proton speed is
comparable with the speed of the electrons orbiting around the nuclei, which is
at proton energies in the order of 25 keV. To correct for the assumption that the
proton velocity is far greater than the orbital velocity of the electrons an extra
term needs to be included between the square brackets in equation 2.7. This
correction term is called the shell correction term and is relevant for the
energies we will be considering (1-250 MeV). The shell correction is at
maximum only about 6% of the stopping power. Other correction terms that are
often mentioned in literature are the Barkas and the Bloch correction terms that
account for the fact that equation 2.7 is only the first Born approximation. These



terms are however not significant for the proton energies we will be
considering.

The Bragg additivity rule

The mean ionization energy of a compound, as used in the Bethe formula, can be
found with the Bragg additivity rule. This rule combines the excitation energies
of all the elements that the compound contains. It can be derived from the fact
that every element contributes a certain amount of electrons per unit volume to
the compound, which have a certain ionization energy. Therefore every element
has a contribution to the stopping power. When all these stopping powers are
added we get the total stopping power. From equation 2.7 it then follows that

dE
_E - nc‘ompound C (C compound)
= E elementc (C element) (28)
where
4k, e’ 2m c*p’
C1=ﬂ—()2i ;C2=lnﬂ -F
mcp 1-p

The summation is over all elements that the compound contains. nejemen: and
Ncompounda are the electron densities of the elements and the compound,
respectively. When this equation is solved for Ilcompound We obtain the Bragg
additivity rule

elemen
compound = E : ln Ielement (29)
compound
The Bragg Kleeman Rule

Another model to calculate the stopping power is the Bragg-Kleeman rule [5]
[9]. Unlike the Bethe formula it is an empirical formula. According to the Bragg-
Kleeman rule the proton range is given by

R=oE/S (2.10)

where Ejis the initial energy of the proton, ¢ is a material dependent constant
and P is a constant that depends on the proton energy. Nevertheless we will use
P as material dependant parameter for fitting later in this study. From this
equation, an expression for the proton energy after it has travelled a distance x
can be derived.

R-x=0E(x)" < E(x) =( (2.11)



Differentiating the energy with respect to x gives the stopping power

dE E"°

dx  aP

(2.12)

Besides physical constants that are known, the Bethe formula (2.7) and the
Bragg Kleeman rule (2.12) have one and two parameters respectively that
determine the stopping power for some proton energy. These are the mean
ionization energy [ for the Bethe formula and « and P for the Bragg Kleeman
rule.

2.2 Basics of dual energy CT

Dual energy computed tomography (CT) is a medical imaging technique that
uses two different x-ray energies to image a 3-dimensional object. In figure 2.3
the geometry of a dual energy CT scan is shown. Two x-ray tubes with
corresponding detectors opposite of the tubes rotate around the scanned tissue.
The tubes and detectors are oriented at an angle of 90 degrees with respect to
each other and both detectors acquire a dataset of x-ray intensities. By looking at
the material specific attenuation at different energies a classification of the
composition of the scanned tissues can be made. Therefore dual energy CT is
often contemplated as an imaging modality to supply this information for proton
therapy planning.

Figure 2.3: Geometry of a dual energy CT scan. In this figure the two tube
potentials are 80 and 140 kV, therefore the maximum x-ray energies from the
tubes are 80 and 140 keV respectively [12].

The attenuation 4; of an incoming x-ray spectrum j in a CT scan is given by
A = J fwj(E) exp(—{M(E, r)dr) dE (2.13)
j 0

where [; and Ip; are the measured intensities with and without attenuating
material respectively [1]. w;(E) is a factor that accounts for the energy spectrum
of the beam and the detector efficiency. u(E,r) is the spectral attenuation
coefficient, which is integrated over the projection path L. The attenuation
coefficient is a measure for the intensity loss of an x-ray beam in a material. As
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can be seen from equation 2.13 a large attenuation coefficient means that the
intensity loss is large. The spectral attenuation coefficient can also be expressed
in the electronic cross section, which is a measure for the attenuation coefficient
that is independent of electron density

W(E.r) = p, o(E,Z(r) (2.14)

Here p, is the electron density of the material and O(E,Zeﬁ(r)) is the electronic

cross section that depends on the energy and the effective atom number Z. The
ratio of two attenuation coefficients averaged over different energy spectra is
given by

) { w(E) 0(E,Z,;(r)) dE

(1) TWZ(E) O(E.Z,;(r) dE

(2.15)

where w;(E) and w;(E) are again factors that accounts for the energy spectrum
of the corresponding beam and the detector efficiency. The ratio of the
attenuation coefficients can be measured with dual energy CT and w;(E) and
wz(E) can be determined from measurements with a Compton spectrometer in
combination with Monte Carlo simulations [15]. By considering the dependence
of the cross section to the energy and effective atom number equation 2.15 can
be solved for the effective atom number at each position r. Using the effective
atom number in combination with the attenuation coefficient (equation 2.14),
the effective electron density can then also be determined.

11



3. Methods

3.1 Stopping power datasets, SRIM vs PSTAR

To obtain a relationship between effective atom number and effective electron
density the procedure shown in figure 1.2 will be followed. The first step is to
determine which stopping power dataset (PSTAR or SRIM) is the most
appropriate for fitting. Proton energies from 1 to 250 MeV will be considered in
these fits. To get some insight in which dataset is the most appropriate, the
characteristics of the datasets will be considered.

PSTAR

The PSTAR dataset is constructed by the United states National Institute of
Standards and Technology (NIST). It consists of mass stopping powers for a
large range of proton energies but only for a limited amount of elements. Most
elements that are commonly present in human tissues like hydrogen and carbon
are included. But for instance magnesium, which may also be present in tissues,
is not included in the PSTAR dataset. The total stopping power is calculated from
the sum of the stopping power due to Coulomb interactions and the stopping
power due to elastic scattering with atomic nuclei [13]. But as mentioned in the
theory only the stopping power due to Coulomb interactions, also called
electronic stopping power, is significant. At high energies, electronic stopping
powers are evaluated using Bethe's stopping power formula. At low energies,
fitting formulas are used which are based on experimental stopping power data.
The boundary between the high- and low-energy regions is approximately
0.5 MeV. Several correction terms are included in the Bethe formula. These are:
the shell correction, the Barkas and Bloch corrections and the density effect
correction which is only significant for proton energies above several hundred
MeV. The uncertainties of the stopping powers in the high-energy region are
stated to be 1% to 2% for elements.

SRIM

The SRIM dataset is constructed by J.F.Ziegler. It contains mass stopping powers
for a large range of proton energies and for almost all elements. Just like in the
PSTAR dataset the total stopping power is calculated from the sum of the
electronic stopping power and the stopping power due to elastic scattering with
atomic nuclei. For the electronic stopping power at energies above 1 MeV the
Bethe formula is used with comparable correction terms as in PSTAR [8]. In
figure 3.1 the significance of the different correction terms used by Ziegler at
different energies is shown. The uncertainties of the stopping powers are stated
to be about 2%.

12
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Figure 3.1: The percentage contribution of the different terms in the Bethe
formula plotted against proton energy for gold. F(B) and In<I> are terms in the
basic Bethe formula without correction. The other terms are the correction terms.
Taking the sign of the terms into account they add up to 100%. As can be seen from
the graph the density correction is not very significant for the energies we will
consider [8].

On first sight the PSTAR and SRIM seem to have an equivalent way of calculating
the stopping powers. The accuracy is also comparable. Therefore one would
expect that the stopping power values of the two datasets are almost the same.
The advantage of SRIM over PSTAR is that it includes all elements.

3.2 Fitting dataset to stopping power formulas

The stopping powers from the dataset for energies from 1 to 250 MeV will be
fitted to a stopping power formula as a function of energy. The Bethe formula
and Bragg Kleeman rule will be considered, which were discussed in the
precious chapter. The stopping power formula that gives the best fit will be used
to make fits for all elements with atom number ranging from 1 to 25. To
determine which model gives the best fit, the Bethe formula and the Bragg
Kleeman rule will be fitted to the stopping power values from the dataset for a
number elements. The errors of the two fits will then be compared. All fits are
made using a Python script [16] that uses the least square method, minimizing
the error between the stopping power values of the dataset and the values of the
fitted function. The free parameters used for fitting are o and P in the Bragg
Kleeman rule (equation 2.10) and the mean ionization energy [ for the Bethe
formula (equation 2.7). For every element and therefore every atom number we
then have one or two fit parameters depending on whether we choose the Bethe
formula or the Bragg Kleeman rule respectively. From this, we can see if a
relationship between the fitting parameter(s) and the atom number can be
found. From the atom number Z one can easily calculate the electron density

Z
p.=N,—p (3.1

az
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where N, is the Avogadro constant, az is the gram molecular weight of the atoms
and p is the mass density. Therefore we can also study if there is a relationship
between the fitting parameter(s) and the electron density.

For a compound, an effective fitting parameter can be found by combining the
fitting parameters of the elements that the compound contains. In the case of the
Bethe formula this can be done using the Bragg additivity rule (equation 2.9).
The compounds that will be considered are shown in figure 3.2. In a previous
study at KVI-CART the effective atom number and effective electron density
were calculated for these samples using dual energy CT measurements. The
mass fractions of all the elements in the compounds, and the densities of the
compounds, are shown in figure 3.2.

ROINo. Material Z 1 6 7 8 12 13 14 15 17 20 25 Z. p PePex
A 1008 12011 14007 15999 24.305 26.982 28.086 30.974 35453 40.078 54.938 [gem™3]
1 LN-300 lung 846 5937 196 1814 11.19 0 078 0 010 0 0 760 029 0.283
2 LN-450 lung 847 5956 197 1811 1121 0 058 0 010 0 0 757 0428 0418
3 AP6 adipose 906 7229 225 1627 0 0 0 0 013 0 0 6.19 0946 0929
4 BR-12 breast 859 7010 233 1790 0 0 0 0 013 095 0 691 0981 0.960
5 Water insert 11.19 0 0 8881 0 0 0 0 0 0 0 747 0998 1.000
6.8,17-21 CT solid water 800 6729 239 1987 0 0 0 0 014 231 0 772 1014 0987
7 Solid water M457 802 6722 241 1991 0 0 0 0 014 231 0 772 1.045 1.017
9 Aluminium AIMgSil 0 0 0 0 10 972 10 0 0 0 08 1325 2691 2341
10 BRN-SR?2 brain 1083 7254 169 1486 0 0 0 0 008 0 0 6.07 1.051 1.049
11 LV1 liver 806 6701 247 2001 0 0 0 0 014 231 0 772 1.095 1.066
12 IB3 inner bone 667 5565 196 2352 0 0 0 323 0.1 886 0 1039 1.153 1.107
13 B200 bone mineral 665 5551 198 2364 0 0 0 324 0.1 887 0 1040 1.159 1.113
14 CB2-30% CaCOs 6.68 5347 212 2561 0 0 0 0 011 1201 0 1086 1330 1.278
15 CB2-50% CaCO; 477 4162 152 319 0 0 0 0 008 2002 0 1249 1560 1473
16 SB3 cortical bone 341 3141 184 3650 0 0 0 0 004 2681 0 1359 1.823 1.699

Figure 3.2: Elemental compositions (weight percentages) of tissue like
compounds. p is the density of the compounds [1].

To calculate the mean ionization energy fitting parameter using the Bragg
additivity rule we need to know the electron density fractions instead of the
mass fractions of the elements in the compounds. The electron density that an
element contributes is given by

Z
pez = Na — pcompound CZ (32)
az

with az the gram molecular weight of element Z, pcompound the mass density of the
compound that is given in the table and Cz the mass fraction of element Z in the

compound. For the total electron density of the compound we sum over all the
atom numbers in the compound

compoun Z
pe pound = Na pcompoundza_ CZ (33)

z %z
With these formulas in combination with the Bragg additivity rule we can find
the combined mean ionization energy fitting parameter for the compounds in
the table in figure 3.2. The calculations for this will be done using a Python
script. Since the effective electron densities and the effective atom numbers of
these compounds are known, plots can be made that shows the relationship
between the mean ionization energies of the compounds and the effective atom
numbers and the effective electron densities. The desired result would be that

14



the points in the graphs will form a smooth curve so that there is a clear
relationship between the ionization energy fitting parameter and the effective
atom number or effective electron density. This would mean that one can find a
value for the ionization energy fitting parameter to some accuracy for a tissue
when the effective electron density or the effective atom number is known. This
ionization energy fitting parameter can be plugged into the Bethe formula again
to obtain the stopping power. In the Bethe formula the electron density is also a
variable that needs to be known. In this study the effective electron density is
used since the effective electron density is almost equivalent to the real electron
density [1].

3.3 Range calculation
The ranges of protons traveling trough a medium can be calculated with the
inverse of the stopping power. The range is given by

Eq
R=[ = g
) dE (34)
where the integration is over the proton energy from Ej which is the energy at
which the proton enters the medium, to the point where the proton has lost all
of its energy.

In an experiment at KVI-CART, ranges were measured of protons in some of
the compounds listed in figure 3.2. The setup of this experiment is shown in
figure 3.3. Accelerated protons enter a slice of material that is a few centimeters
thick. The material is surrounded by water, so after the protons have traveled
through the material the resuming trajectory is in water. At a certain distance
the energy deposition peaks (Bragg peak) and then drops rapidly to zero. The
range is defined here as the distance at which the energy deposition is 80% of its
maximum value [14]. By taking the difference between the range in water and
the range in the slice of material in combination with water the range difference
AR, as shown in the figure can be calculated.

<>

-AR

Figure 3.3: The setup of the range experiment. tn is the thickness of the slice of
material and ty is the thickness of a water sample that would yield the same
proton energy loss, also called the water equivalent thickness of tm. Ey is the energy
at which the proton enters the material and Ey is the energy at which the proton
leaves the material.
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AR can be calculated from the stopping power using the formula

I
AR=1, - [|=—| dE (3.5)

dx . . .
where (—) is the inverse stopping power of water. The other symbols are
water

explained in the description of figure 3.3. The material thickness tn can be
expressed in the inverse stopping power of the material.

Bl dx
,, =Ef a5 dE (3.6)

material

The energy Ey at which the proton enters the sample is unknown. But it can be
calculated when the following equation is solved for Ej

I 7
water ~ dE o (37)

0

where Rwater is the range of the protons in water, which was obtained from the
range experiment. The inverse stopping power can be calculated from the
stopping power model. The thicknesses of the samples are known and therefore
equation 3.6 can be solved for Ex This equation will be solved using a Python
script. The resulting Ef can then be plugged into equation 3.5. In combination
with the stopping power in water that can also be calculated with the model and
the thicknesses of the material samples AR can be obtained. The calculated
values for AR will be compared with the measured values for AR.

16



4. Results

4.1 SRIM and PSTAR compared

In figure 4.1 a plot of the ratio of the mass stopping powers from SRIM and
PSTAR for hydrogen is shown. When the ratio is 1 the stopping powers are the
same. The deviation from 1 is at maximum 0.006 or 0.6%. This plot has been
made for oxygen and copper as well, and all plots showed that the difference
between the stopping powers from PSTAR and SRIM is within 1%. Therefore we
conclude that the SRIM and the PSTAR stopping powers are almost equivalent.
This means that the SRIM dataset will be used for the rest of the process because
SRIM gives stopping power values for more elements than PSTAR.

1.006 ‘ Hydrogen '

1.004} J

1.002 -

frecem

0.998

ratio of mass stopping powers

0.996

0.994 - - : -
0 50 100 150 200 250

proton energy (MeV)
Figure 4.1: The ratio of the mass stopping powers from PSTAR and SRIM plotted
against proton energy.

4.2 Bethe and Bragg Kleeman compared

In figure 4.2 the blue line represents the ratio of the stopping power values from
the Bethe formula fitted to the SRIM stopping power values and the SRIM
stopping power values. The red line represents the ratio of the stopping power
values from the Bragg Kleeman rule fitted to the SRIM stopping power values
and the SRIM stopping power values. The stopping power formula that
corresponds to the graph that stays closest to 1 will be the one that gives the
best fit. Which is without any doubt the Bethe formula. The stopping powers in
this graph are for calcium. But also stopping powers for zinc, lithium, helium and
hydrogen were considered. All graphs showed that the Bethe formula gives a
significantly better fit. The maximum error was for all graphs in the low energy
region and was at maximum 5%. This makes sense because the correction terms,
which are not used in the fit formula, make the most significant contribution to
the stopping power in the low energy region as was shown in figure 3.1. Another
advantage of the Bethe formula is that it only has one fitting parameter. Which
makes it much easier to calculate the effective fitting parameter of a compound.
This can be done with the Bragg additivity rule. Therefore the Bethe formula will
be used in the rest of this thesis.

17



blue: Bethe/SRIM, red: Bragg-Kleeman/SRIM
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Figure 4.2: Blue: the ratio of the stopping powers calculated from the the Bethe fit
and the stopping powers from SRIM. Red: the ratio of the stopping powers
calculated from the the Bragg Kleeman fit and the stopping powers from SRIM.

4.3 Relation between ionization energy and effective atom number

For every element with atom number up to 25 the Bethe formula is fitted to the
stopping powers from SRIM in the energy range from 1 to 250 MeV. The result is
the relationship between mean ionization energy fitting parameter and atom
number represented in figure 4.3 by the blue dots. Every element is one dot. As
can be seen from the graph there is quite a clear relationship between the mean
ionization energy fitting parameter and the atom number. This is logical because
a larger atom number means a higher potential and therefore a positive
relationship between atom number and mean ionization energy makes sense. In
the same figure the relationship between the mean ionization energy of the
compounds and the effective atom number is shown. The mean ionization
energies of the compounds are calculated using the Bragg additivity rule, which
combines the mean ionization energy fitting parameters of the elements. Note
that the horizontal axis is used for two different scales. For the element the
values on the axis represents atom numbers, and for compounds the axis
represents effective atom numbers. These are closely related but not the same.
Some of the compounds are labeled in the graph. These are some of the
compounds that will be used for range calculation. Except for aluminum the
graph of the compounds is quite smooth.
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Figure 4.3: The mean ionization energy plotted against atom number for elements
(blue) and plotted against effective atom number for compounds (red).

In order to find a relationship between effective atom number and mean
ionization energy the curve of the compounds as shown in figure 4.3 has been
interpolated and extrapolated with a fit function. For this purpose a third order
polynomial was used. The fit is shown in figure 4.4. Aluminum was left out
because it disturbs the result too much and because aluminum is not very
relevant for medical purposes anyway.
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Figure 4.4: A fit function was used to find a relationship between mean ionization
energy and effective atom number Z.
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4.4 The relation between ionization energy and effective electron density
For every atom number the electron density can be calculated with equation 3.1.
With the relationship between mean ionization energy and atom number for
elements one can therefore easily obtain a graph of the mean ionization energy
as a function of electron density for elements. This plot is represented by the
blue dots shown in figure 4.5. There seems to be no relationship between the
mean ionization energy and electron density whatsoever. This is not surprising
because the mean ionization energy is considered to be independent of the
density, while the electron density is very closely related to the ionization
energy. Nevertheless there is some relationship between the mean ionization
energy of the compounds calculated with the Brag additivity rule and the
effective electron density represented by the red dots in figure 4.5. Apparently
there is some relationship between the elemental composition of tissue-like
samples and the electron density.
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Figure 4.5: The mean ionization energy plotted against electron density for
elements (blue) and plotted against effective electron density for compounds (red)
since effective electron density and regular electron density are almost equivalent
the axis can be considered as representing only the regular electron density. All
electron densities divided by the electron density of water.
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To find a function for the relationship between the mean ionization energy and
effective electron density the red points in figure 4.5 are again interpolated and
extrapolated using a fit function. This is shown in figure 4.6. Two linear
functions on different domains are used as fit function.
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Figure 4.6: A fit function was used to find a relationship between mean ionization
energy and effective electron density.

4.5 proton ranges

In figure 4.7 the AR values for several materials calculated with the method
described in section 3.3 are shown. The column with the title ‘Electron density
model’ represents the AR values that were calculated using stopping powers
that were calculated with the relationship between mean ionization energy and
effective electron density. The column with the title ‘Z-effective model’
represents the AR values that were calculated using stopping powers that were
calculated with the relationship between mean ionization energy and effective
atom number. The energy at which the proton enters the material Ey was
calculated using equation 3.7. For the stopping power of water calculated with
the z-effective model as well as the stopping power calculated with the electron
density model equation 3.7 was solved. The two outcomes only differed 0.2
electron volts and the average value (184.25 MeV) was taken for the range
calculation. The experimental values are the values that were measured in the
experiment at KVI-CART. The errors in the table are the deviations of the
calculated AR from the experimental values. Except for aluminum in the Z-
effective model, the errors are within a millimeter.
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Elec. dens. model Z-effective model experimental
Material AR (mm) error AR (mm) error AR (mm)
water 0.225 0.225 -0.212 0.212 0
Solid Water | 0.545 0.750 0.108 0.097 -0.205
AP6 1.943 0.776 1.325 0.158 1.167
adipose
SB3 cort -7.725 0.084 -8.342 0.533 -7.809
bone
Aluminium | -10.042 0.352 -11.911 2.221 -9.690
LN450 lung | 27.379 0.177 26.952 0.250 27.202
BR12 1.172 0.208 0.690 0.274 0.964
Breast
LV1 Liver -0.995 0.199 -1.384 0.190 -1.194

Figure 4.7: Calculated and experimental AR values for several materials. All values
are in millimeters.
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5. Conclusion

The main goal of this study was to construct a model that can accurately
calculate stopping power values from effective electron density and effective
atom number from dual energy CT. After considering both the Bragg Kleeman
rule and the Bethe formula we concluded that the Bethe formula is the most
appropriate basis for such a model. The Bethe formula gave the best fit to the
SRIM stopping power values and has only one free fitting parameter which
makes it easy to work with. For fitting the SRIM stopping power values were
used. Comparing the physical basis and the stopping power values of the PSTAR
and the SRIM dataset showed that there is not much difference between the two.
But because SRIM includes more elements this dataset was used.

The mean ionization energy plotted against effective atom number for
compounds resulted in a smooth curve. As mentioned in section 4.3 there is a
logical physical basis for this relationship. Only aluminum gave an inconsistent
result and was not included in the final fit. Aluminum was the only non tissue
like sample that was considered and therefore is less significant for medical
purposes. The reason for this large deviation of aluminum is not known but may
be related to the way the effective atom numbers are calculated from dual
energy CT data. The mean ionization energy plotted against effective electron
density also gave a curve that was also more or less smooth. The physical basis
of such a relationship in general is not present. But in the case of tissues there
may be some relationship between the elemental composition of tissue like
samples and the electron density. In the final fit of the relationship between
mean ionization energy and effective electron density aluminum was included.

The range calculations can be seen as a validation for the stopping power
models since stopping powers calculated from the models were used to calculate
the ranges. The range differences shown in figure 4.7 deviate in most cases less
than 1 mm from the experimental values. The range calculations gave a mean
error of 0.35 mm for the electron density model and 0.49 mm for the Z-effective
model (without aluminum 0.25 mm). For proton therapy an accuracy of 1 to 2
millimeter is required so these results are encouraging. One should however
note that the samples considered were only a few centimeters thick. This means
that the mean error for the ranges on the decimeter scale, which is the case for
proton therapy, will be about a factor ten larger. Therefore this model still
needs some refinement. To make this model more reliable more tissue like
samples should be included in the model. Another method of calculating the
effective atom number can also possibly improve the result. The validation of
this model is now based on a limited number of tissues. To increase the accuracy
of the validation of the model, more samples with measured ranges should be
considered.
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