Learning to play Connect-Four using Evolutionary

Neural Networks
(Bachelorproject)

Robur Box, s2180952, Roburbox@gmail.com,
Marco Wiering *

May 18, 2015

Abstract

This thesis describes the machine learning technique
Evolutionary Neural Networks applied to learning to
play connect-four. It introduces the concept of Evolu-
tion and Genetic Algorithms, and explains the process
of optimizing neural networks. Genetic Algorithms can
be used in many different ways, so the design decisions
and parameter optimization plays a large role. A total
of 941 hours of (single core) processing time was dedi-
cated to evolving neural networks with various different
evolution settings. These settings include, amongst oth-
ers; population size, mutation rate, crossovers, etc. The
thesis concludes that Evolutionary Neural Networks are
suited to learn to play connect-four, compared to earlier
research of Neural-Fitted Temporal Difference Learn-

ing.

1 Introduction

In this thesis the following research question will
be answered:

Do evolutionary neural networks lend themselves to
learning to play connect-four?

In order to answer this question, we must look at
what evolutionary neural networks are, and how
they can be implemented. In this paper we describe,
after having established the best evolution setup
(population size, mutation rate, etc), an analysis of
the reliability and repeatability of the best setups.
This allows for an informed conclusion, answering
the research question.

*University of Groningen, Department of Artificial Intel-
ligence

But first let’s start by looking at what genetic al-
gorithms are.

1.1 Genetic Algorithms

In the field of Artificial Intelligence, Genetic Al-
gorithms (GAs) are a heuristic search procedure
based on the concepts of natural/biological evolu-
tion (Booker, Goldberg, and Holland (1989)). GAs
consist of a cycle of steps in which a population of
chromosomes undergoes improvements. Each chro-
mosome in the population is a representation of a
solution to the problem. At first the “solutions” are
expected to be very poor but they improve over the
generations. The longer a GA is able to evolve its
gene pool (population of chromosomes), the more
it will move to its optimum. Each generation re-
combines and/or mutates the better portion of the
population in the hope of creating even better chro-
mosomes. The process that determines which chro-
mosomes will make offspring is referred to as natu-
ral selection. In order to be selected the individual
has to survive until it can mate. This creates se-
lection pressure on all individuals (chromosomes)
in the population, resulting in a competitive envi-
ronment. Separating the best and procreating them
to form new and sometimes better chromosomes is
what GAs derive their results from.

1.2 Reinforcement Learning

Reinforcement learning (Sutton and Barto (1998))
relies on obtaining feedback on the outcome of
actions, and subsequently adjusting the decision
making rules for future actions. When using evo-

lutionary algorithms the feedback takes the form
of performance of an individual. This performance
is measured through the use of tournaments where
individuals are measured against each other or an-
other agent. Feedback is received in the form of
a reward, and the accumulation of rewards is what
represents the total fitness of an individual. The re-
ward structure of the game is as follows; the agent
receives one point for winning, half a point for
a draw, and no points for losing. The agent will
need to play several games in order to accumulate
enough feedback in order for the evolutionary algo-
rithm to make accurate assessments of the agent.

1.3 The Game

Connect-four is a two player zero-sum game, played
on a board consisting of seven columns and six
rows. Each player takes turns making his/her/its
move until a terminal state is achieved. One move
consists of choosing a non-full column in which a
stone (or piece) is dropped. After at least seven
moves and maximally 42 moves, one of two termi-
nal conditions will be met. The winning condition
consists of four connected stones of the same color.
Four connected pieces may be positioned horizon-
tally, vertically, or diagonally, and can only consist
of one color. The draw condition is met when all
columns are filled up and no connect-four is at-
tained.

1.4 Neural Networks

Now that we know what game will be played, let’s
meet the player: the Neural Network. An elegant
description of neural networks was made by Kevin
Gurney:

“A neural network is an interconnected assembly of
simple processing elements, units or nodes, whose
functionality is loosely based on the animal neu-
ron.” Gurney (1997).

The neural network derives its power and useful-
ness from its ability to give a simple and clear re-
sponse to a highly dimensional input. The network
is able to do this through the use of layers of neu-
rons connected in a specific way, and with specific
weights between the neurons. When a stimulus (in-
put) is offered, the network will pass this stimulus
through its connections, altering the information
using the weights. But before the network can do

this, it needs to be given the correct weights and
connections. The process which is able to optimize
the neural network’s response versus the desired
response is what makes neural networks a machine
learning algorithm. This optimization can be done
using several different methods but in this paper
we focus on evolutionary algorithms to do this.

1.5 The Background of this Re-

search

Over the years the reinforcement learning technique
known as Temporal Difference learning (TD) has
been studied in depth (Sutton and Barto (1998)
chapter 6). Success has been achieved using ma-
chine learning and neural networks, for example
Wiering (2010), and van den Dries and Wiering
(2012).

In a bachelor’s thesis written by de Haan (2013)
TD learning was applied to connect-four using neu-
ral networks. Some similar implementations will
be made in this thesis. These include, for exam-
ple, the neural network used to interpret the board
state. Other than that the majority of this thesis
is very different. Since the implementations around
the machine learning (e.g. the neural network) are
essentially the same, the machine learning algo-
rithm can very well be compared. This way the
research question can be answered with reference
to this earlier work.

2 Methods

2.1 The Neural Network

The neural network takes the role of function
approximator, and is situated between the game
(connect-four) and the evolutionary algorithm. It
is a fully connected feed-forward network, identi-
cal to de Haan (2013)’s implementation. This net-
work type can be found in Gurney (1997) page 66.
The network takes the board state as input, and
depending on the network type additional higher
level information is offered. The network then com-
putes the output value, which represents the net-
work’s “opinion” on the board state. The higher the
number, the better the board state. The network is
used by trying all possible moves and subsequently
choosing the action the network deems best. The

input layer of the network can consist of three ver-
sions; 42 nodes, 85 nodes, and 129 nodes. The 42
node version is purely the board state as is (6x7
board cells). The 85 node version is based on the
implementation by de Haan (2013) which has the
same 42 input neurons as before, with the addition
of 43 pre-processed information neurons. The 43rd
neuron contains information of whether any four-
in-a-row is present on the board. The remaining
neurons represent the presence of a three-in-a-row
on certain columns and rows, and how the three-in-
a-row is directed (horizontal, vertical, etc). Finally
the last option consists of 129 neurons, which con-
tains the 85 neurons mentioned previously with the
addition of information about two-in-a-rows, with
their location and direction. The last two nodes
(128 and 129) represent the sum of possible winning
moves of both players. The neural network makes
use of a sigmoid function to introduce non-linearity
to an otherwise linear combination of inputs.

2.2 Evolving the Neural Network

Now that it has been established how the neu-
ral network looks and operates, the evolutionary
part of the neural network will be explained. The
weights of the network are arranged in an array (the
chromosome), starting with the input-to-hidden
weights, ending with the hidden-to-output weights.
Adding multiple of these chromosomes together
forms the population, which is then evolved using
selection, mutation, crossovers, etc. The length of a
chromosome is dependent on the number of input
units and hidden units, and can vary between 44
weights and 6550 weights in extreme cases.

2.3 The Evolution Parameters

Evolutionary algorithms naturally have many pa-
rameters which need to be optimized. This section
will explain the methods by which the evolutionary
algorithm is implemented and how each part is ex-
amined for optimization. The program is based on
nine parameter settings, which are subject to opti-
mization. Additionally, a few internal settings are
used to represent some of the design decisions. The
external parameters will now be explained.

2.3.1 Tournaments

A tournament is a process of ranking the individu-
als of a population according to their performance.
Tournaments usually consist of several smaller com-
petitions between smaller populations. The role of
the tournament is to organize the population into
rankings with as few competitions as possible.
Three tournament types were implemented from
existing sources. First off the Random Pairing
Tournament, based on Jacobs (2008) paper. In
this tournament an individual from the population
is paired with another individual, and the win-
ner gets more points than the loser. The second
tournament is the Round Robin (or all-play-all)
tournament based on the implementation by Lucas,
Samothrakis, Runarsson, and Robles (2012). This
tournament pairs up every individual with every
other individual. Because of its “brute force” na-
ture, the Round Robin tournament is the slowest
and most accurate tournament.

The third tournament is the Random Agent
Tournament. In this tournament the individuals
are paired up against semi-random moving agents.
The random agents will make the winning move
and block a winning move if possible, otherwise
they move randomly. This tournament is unique
in that the opponent is fixed and does not change
over the generations.

2.3.2 Selection

The process of selection is closely intertwined with
the tournaments, and can be seen as one process.
Selection determines which individuals in the pop-
ulation should procreate and live to the next gen-
eration, based on the results of the tournament.
The number of individuals chosen is determined
with the “Selection proportion” parameter in sec-
tion 2.3.3. Two distinct selection procedures were
used in the implementation:

Fitness Proportionate Selection, also known as
Roulette Wheel Selection (Goldberg (2012) pages
11 and 237).

fi

N
Zj:l I J
Formula 2.1 states that the selection probability

(pi) is equal to the fitness of the individual (f;) rel-
ative to the fitness of the population size (N). This

pi = (2.1)

method is well suited when tournament scores dif-
fer significantly; or when certain individuals score
significantly better than the rest.

Truncated Selection dismisses the numerical fit-
ness scores and replaces them with the ranking of
the individuals. Each individual is given a ranking
based on its fitness score (e.g. 1, 3, 4, ... 20) and
the top ranking individuals are selected (according
to section 2.3.3). Even if individuals vary in fitness
scores, their position in the ranking is always fixed.
This method is preferred over fitness proportion-
ate selection when the tournament scores do not
diverge much. However this method does not give
the bottom portion of the population any opportu-
nity, even if the top portion is only slightly better.

2.3.3 Selected proportion

The selected proportion parameter represents the
percentage of the population that is selected by
the selection procedure. In truncation selection, for
example, this parameter represents the truncation
threshold. The individuals which are not selected
are removed from the population and replaced by
the offspring of the selected individuals.

2.3.4 Population Size

The population consists of a predetermined number
of individuals, ranging from 2-200. Some individu-
als are newly added, and some have been removed,
but the population size is always consistent. Hav-
ing a large population size is rarely detrimental to
the quality of evolution, though it can slow down
the simulation. This is especially true when using
tournaments like Round Robin. The risk of having
a small population size is limiting the diversity of
the number of solutions found by the algorithm.

2.3.5 Mutation

Mutation is the process of slightly changing the
chromosome in the hope of creating a better one.
The chance of creating an improvement reduces
over time, as the population becomes more fit. In
this implementation we separated mutation into
two parameters: mutation rate and mutation prob-
ability:

2.3.6 Mutation rate

Every mutation changes the value of the chromo-
some point by a certain value. This implementa-
tion uses Gaussian Mutation, which favors small
changes over large changes. The mutation rate pa-
rameter represents the standard deviation of the
Gaussian distribution from which the random vari-
able is derived. The idea of using Gaussian Mu-
tation instead of a normal linear random number
generator is that the non mutated version of the
chromosome is already quite good because it sur-
vived this far. This method searches near this value
rather than a distant value. The implementation is
given by formula 2.2, where x is the input chromo-
some, =’ is the mutated result, and m,. is the value
of the mutation rate parameter, where i is the it"
neural network weight in the chromosome.

x, =z; + N(0,m,) (2.2)

2.3.7 Mutation Probability

The mutation rate parameter described above will
mutate along the entire chromosome. The problem
with this is that sometimes the mutations bring
too much change, and it may be more favorable to
have less mutations, and thus the mutation prob-
ability was introduced. This parameter represents
the chance of any point on the chromosome to re-
ceive a mutation. Since the parameter can be set
to 100% chance to mutate, some of the trials are
run without this parameter; the results will show
whether this parameter was useful or not.

2.3.8 Crossovers

By the process of crossing over (recombination)
the newly generated chromosome receives parts
of two chromosomes. Recombination was imple-
mented through the N-point method (Goldberg
(2012) pages 119-120). In this method, N points
along the new chromosome are considered, and at
each point this chromosome switches to the other
parent for the receiving of information. The version
of the N-point crossovers method creates N evenly
spaced points along the chromosome. The parame-
ter took on values in the range of 0 to 20, where 0
means no crossovers were made.

2.3.9 Input size

The input layer of the neural network can be set to
different sizes; each corresponding with the 42, 85,
or 129 node input layer version. See section 2.1 for
more information.

2.3.10 Hidden size

The hidden layer consists of a variable number of
neurons, ranging from 1 to 50.

2.4 Internal design decisions

The before mentioned internal parameters are
hard-coded and thus consistent for all trials. First
off all randomly moving agents will always do the
winning or blocking move. The knowledge and in-
sight required to make this move is very basic and
natural, any human player would know this right
from the start.

Secondly any simulated game starts with a random
first mover. This is to remove the effects of the first
mover advantage or disadvantage. Finally, none of
the contestants will be paired up with themselves.

2.5 The Parameter Search Proce-
dure

The aim of the experiment is to find the best set
of parameters, and is split up into separate trials.
In each trial one parameter set is tested. In early
testing, up to 1000 epochs (generations) were used
for each trial. It was noted that bad parameters give
bad results from the start. The good parameters
consistently show steep initial curves in the first 50
or so epochs. For these two reasons 50 epochs are
used per trial.

2.5.1 Single Parameter Variation

Before deciding to use Random Search, this method
was used to set the values of the parameters. Each
parameter was determined by looping through a
predetermined range of values. This results in
evenly scattered “measurements” across the nine
dimensions (parameters). This would then be plot-
ted in order to see how the fitness landscape looks
for every individual parameter. The problem with
this method was that it proved hard to find the
correct range and incrementation size.

2.5.2 Random Search

An improvement upon this method was the random
search method. This procedure takes random values
for each parameter within a predetermined range.
This results in an evenly scattered set of samples
for each parameter. The advantage of this method
is that the search is always in a complete state, but
a more detailed (more sampled) result can always
be made by continuing the search.

2.6 The opponent of the game

Thus far we have covered the game playing abil-
ity of the learning agent, and how it is improved
through the use of GAs. In each epoch, which
starts with tournaments and ends with selection,
the progress of the GA is measured with the test-
ing procedure. This procedure matches all the in-
dividuals of the population versus the advanced
randomly-moving agent. This agent makes random
moves until it encounters a winning move, by ei-
ther player, in which case it always makes the win-
ning or blocking move. This agent was also used by
de Haan (2013), and has proven to be quite difficult
to beat. The behavior of this advanced randomly-
moving agent is similar to an experienced player
with no strategy. Playing equal versus this oppo-
nent (50% winrate) means one needs to learn to
make the winning and blocking move. Beating this
opponent requires the addition of learning strategi-
cal gameplay (>50% winrate).

2.6.1 Complexity of the simulation

While running the simulation a large amount of
calculations are made. To give a perspective into
the complexity of the simulation, a few details were
computed:

e The average chromosome represents a neural
network of 85 input units, 25 hidden units, and
1 output unit, resulting in 85*25+25+425 =
2175 weights. The largest chromosome consists
of 6550 weights, and the smallest 44 weights.

e The average population consists of 100 of these
chromosomes.

e An average epoch (generation) using the
Random Agent Tournament consists of 50

(matches) * 100 = 5000 games of connect-four
played.

e The average simulation also performs 50 test-
games versus the Random Agent per chromo-
some in earlier trials. In order to save process-
ing time, in the final trials only the top 5 chro-
mosomes of the tournament are tested. This
testing is independent of the tournament, and
is purely to show the progress of the evolution.

e Every trial consists of 50 epochs. The aver-
age number of connect-four tournament games
played per trial is 250,000. The total number
of testing games is 250.

e A total of 814 trials was run for a total of 203.5
million connect-four games, and over 200,000
testing games. Figures 1 through 8 in the re-
sults section compile the results from these 814
trials.

e A trial can consist of at least 5000 tournament
games, and 1.9 million at most.

e From the 814 trials the best ten were separated
for further prospecting. Since these ten results
were only given 50 epochs to perform their evo-
lution in, they should now be given the oppor-
tunity to fully evolve. These ten parameter sets
vary broadly in the amount of processing time
required. In reality some take much longer per
epoch; in the order of 20 times longer.

e A total of 175 hours of (single core) proces-
sor time was dedicated to this random search
method.

e A further 766 hours of (single core) processor
time was dedicated to further testing with the
top 10 parameters and the number 1 parame-
ter in the results section.

3 Results

3.1 Random-Search Results

The random search method in section 2.5.2 of this
paper has resulted in hundreds of trials, of which
the full results are shown in figures 1 through 8.
The y-axis of the plots are labelled ” Performance

score” which refers to the tail-end (last 5 gener-
ations) average score of the top five individuals.
Using the tail-end eliminates most distortions by
fluctuations, if present, and the top five individuals
are a more accurate representation of what the
population has to offer. The red line in the plots
represents the data using a self-made smoothing
function. This function takes the average value of
all data points in the neighborhood.

3.1.1 Opbservations of the Evolution Pa-
rameters

This section gives a general reflection of how the
evolution parameters perform. In results section 3.2
a more detailed description will be given with only
the best parameters sets.

First off, in figure 1 (Tournament and Selection)
we can see that the Random Agent Tournament
has the overall best performance, followed by the
Round Robin Tournament. Additionally, Fitness
Selection yields higher scores than Truncated Se-
lection, with the exception of the Random Pairing
Tournament where they score equally well. From
figure 7 we can see that the NN Input parameter
clearly favors the more complex 129 input neurons
over the 85 and 42 variants. This indicates that
the additional information provided by the extra
neurons has proven useful. As for the other seven
parameters, none of them show clear cut tendencies
or preferences. This shows that the individual pa-
rameters do not have any optimal range of values
for themselves. What matters is the combination
of all the parameters combined, there is no “sweet
spot” for an individual parameter.

That being said, some of the parameters do show
small tendencies towards higher or lower values:

e The Selection Proportion (figure 2) favors high
values over low values.

e The Population Size (figure 3) performs
slightly better with higher values over smaller
values. There is a slight drop in performance
below roughly 50-80 population size.

e The Mutation Rate (figure 4) favors lower val-
ues over high values.

o The Mutation Probability (figure 5) favors low
values over high values on the broad scale.

e The Crossovers (figure 6) shows no tendencies.

e The NN Hidden (figure 8) favors low values
over high values.

Tournament & Selection

80

60
1

VVINn rate (%)
40
|

[

-

e I I
RP4+T| po-[[J----de o

20
1
I._____
I,AAAAAAAA
R+T| b [J----1=

RA+T
RA+F
RP+F

=4 o
Parameter value

Figure 1: All 814 trials, Tournament & Selection
RA = Random Agent Tournament

RR = Round Robin

RP = Random Pairing

T = Truncated Selection

F = Fitness Selection

Selection Proportion

80

60

VVIN rate {%o)
40

Parameter value

Figure 2: All 814 trials, Selection Proportion

Population Size

40 60 80 100
1

VVIN rate (o)

20

0 50 100 150 200
Parameter value

Figure 3: All 814 trials, Population Size

Mutation Rate

100

80

60

wVin rate (o)
40

20

00 05 10 15 20
Parameter value

Figure 4: All 814 trials, Mutation Rate

Mutation Probability

40 60 80 100

yVIn rate (%)

20

00 02 04 06 08 10
Parameter value

Figure 5: All 814 trials, Mutation Probability

Crossovers

80 100

60

wvIn rate (%)
40

0 5 10 15 20
Parameter value

Figure 6: All 814 trials, Crossovers

NN Input
[e=)
S 4
=)
o | o
@® . —_
s ; i
£ £
Lgf . ' :
0] : !
L !
© - !
— | |
c 2 | =
=
- I
Q| g
[aN] 1 H
; e £
-
o4

Parameter value

Figure 7: All 814 trials, NN Input

NN Hidden

100
1

80

60

YVIN rate (o)
40
1

Parameter value

Figure 8: All 814 trials, NN Hidden

3.2 The top 10 parameters

The ultimate goal is to find the best parameter
setup. The top ten parameters are separated from
the rest and studied in more detail. The results are
shown in figure 9.

The tournament is unanimously the Random
Agent Tournament, with mostly a Truncated
Selection. The reason for this is likely that the
Random Agent tournament is the only objective
tournament type, and it remains exactly the same
throughout the evolution. The other tournaments
are based on a relative comparison, which changes
as the individuals evolve. Since the testing phase
consists of matches versus Random Agents, the re-
sults are to be expected.

The Selected Proportion appears to be mostly in
the range of 30%, with a population size of around
150. This shows large population sizes are more
prominent than smaller ones.

Some of the Mutation Probability have taken
very low values, effectively not using mutations.
These trials would then mostly rely on recombi-
nation. Of the trials which did use mutation, a mu-
tation rate of roughly 0.5 was used. One prominent
outlier; trial 22_1, has a 93% mutation probability
and a very high (1.67) mutation rate.

Figure 9 shows that Recombination (crossovers)
is deemed useful, as the best scoring parameters
sets have values between 1 and 20 (not 0). A sim-
ilar observation can be made about the Hidden
layer where 3 of the 10 trials (including the best
one) used 1 hidden neuron.

Finally, as was also noted in section 3.1, the 42
neuron networks do not make it to the top 10. The
remaining 85 and 129 neuron networks are both
represented in the top 10, but the 129 networks are
slightly better.

Trial code 46_2|94_2[140_2/20_1|22_1|278_1|184_1/28_0[365_1|41_0
Order of ranking | 1 2 3 4 5 6 7 8 9 10
Tournament RA/RA| RA|RA|RA|RA|RA|[RA|RA|RA
Selection Fit [Trunc| Trunc |Trunc|Trunc|Trunc | Trunc |Trunc| Fit |Trunc

Selected prop. |63%|45% | 34% | 45% | 31% | 28% | 28% | 32% | 27% | 11%
Population size | 182 | 193 | 157 | 143 | 199 | 147 | 164 | 84 | 152 | 66
Mutation rate 0.25/0.35| 0.55 | 0.11 | 1.67 | 0.34 | 0.72 | 0.16 | 0.49 | 1.69
Mutation prob. [60%| 8% | 2% |31% [93% | 11% | 1% |77% | 67% | 4%
N-pnt crossovers| 8 1 5 20 6 8 11 14 15 12
Input neurons 129|129 | 129 | 85 | 85 | 85 85 | 8 | 8 | 85
Hidden neurons | 1 14 35 17 1 26 30 21 1 18

Figure 9: Table of top 10 parameters

3.2.1 Evolution in the long run

Now that some of the best parameters are identified
it is time to see how they perform in the long run.
Each setup was allowed to evolve for a duration
of 5000 epochs, the results of which are shown in
figure 10.

The learning curve is very steep at the start, re-

flecting the decision to have 50 epochs of run-time
in the random search. After this short period of
rapid learning, the curve starts to slow down. Some
curves still fluctuate at the end, but are mostly sta-
ble in the long run, with the exception of a few
curves that seem to keep gradually improving over
time. The overall observation is that a thousand or
so epochs results in most improvement, after which
relatively little improvement is made.
It was noted by de Haan (2013) that in the Tem-
poral Difference implementation the learning curve
has a peak somewhere, and drops off after that.
This phenomena is not observed in these findings.
The final result achieved by the GA is a fluctuating
but otherwise stable end result.

3.2.2 The reliability of the GA

In order to establish how reliable these results are, a
final test is performed. The best trial (46_2) was re-
peated multiple times to see how reliably it achieves

Top 10 trials, long evolution timespan

90

80
1

Winrate (%)

60
I

50
I

T T T T T T
0 1000 2000 3000 4000 5000

Epochs (Generations)

Figure 10: The top 10 trials with long runtime

its final scores, and how consistent its learning
curve is. Looking at figure 11 we can conclude ap-
proximately the same score is achieved each run
with very similar curves. Especially in the last few
epochs they all stabilize close together. Especially
in the first hundred or so generations there seems to
be much discrepancy. This is likely due to the ran-
domness of the initialization. The effects of this will
be analysed in further detail in the next section.

3.2.3 Random initialization search

Looking at figure 11 one may wonder whether the
top scores can be achieved through a lucky initial-
ization. In order to explore this option, a series of
randomly initialized neural networks were tested.
These networks are of the same structure as de-
scribed in Methods section 2.1. Eight networks were
initially constructed with either 42, 85, or 129 in-
put units, and either 1, 32, or 64 hidden units. One
of the networks was based on the findings in ta-
ble 9, which consists of 129 input units and only
1 hidden unit. The weights are not optimized or
changed after initialization, and are tested against
the Random Agent (used in the Random Agent
Tournament, and also used to test final scores). A
total of 10,000 networks were initialized per net-
work type (80,000 in total), of which only a few

Best trial repeated multiple times

90

80
1

Winrate (%)

60
I

50
I

T T T T T T
0 200 400 600 800 1000

Epochs (Generations)

Figure 11: Best trial repeated 10 times

were able to achieve more than 60% winrate. The
eight variations of networks resulted in similar fre-
quency plots, the best one is shown in figure 12. The
average initialization achieved 10% win rate over all
seven networks. Taking note of the fact that the GA
was able to get over 90% win rate, these results do
not show the same potential. It is very unlikely
for a random initialization to get above 90% win
rate using this method.

4 Conclusion

In this paper we set out to answer the research
question:

Do evolutionary neural networks lend themselves to
learning to play connect-four?

The results of this paper have shown that the over-
all performance of GAs is equal to or better than
the TD algorithm, showing that GAs can learn to
play connect-four on a good level. The GA has
achieved over 95% winrate versus the advanced
random-moving agent. This indicates that the GA
has not only learnt to execute winning and block-
ing moves, it has also learnt some form of strategy
to beat the agent consistently.

This success did not come without effort, as a lot of

Frequency of winrate occurance for random networks
129 input, 1 hidden unit

200 300 400 500 600

frequency of winrate occurance

100

o0,
e e,
*erage 4t

20 40 60

winrate (%)

Figure 12: Randomly initialized networks with-
out evolution

10

work was spent trying to optimize the parameters
of evolution (mutation rate, population size, etc.).
Additionally, looking at the difference in win rate
between the very top parameter sets and the rest,
it is safe to say that the optimization is very im-
portant. Ultimately, getting the genetic algorithm
to work will take some effort, possibly more than
other alternatives.

Summarizing; GAs are good at learning to play
connect-four after correctly optimizing the evolu-
tion parameters.

5 Discussion

In this paper the implementation of a genetic algo-
rithm was described and analysed. Some variations
in the evolution setup were individually tested,
which resulted in several 80%+ win-rate chromo-
somes, and even a few 90%+ win-rate chromo-
somes. Further testing with longer runtimes and
more generations revealed that even the best se-
tups have strong variations in performance between
them. This indicates that extending the duration
of the random search procedure will result in more,
and better, results. This thesis has also shown that
the results achieved by the GA can be repeated
successfully with little to no variations in the end
results. This indicates that correct use of GAs can
result in robust learning curves, and they are not
dependent on their initialization for success.

The cheap alternative to the GA is the random net-
work. The process of initializing and testing thou-
sands of networks in rapid succession could lead
to good findings. However the results indicate that
the probability of achieving good results, compara-
ble to the GA, is highly unlikely.

51 GA vs TD

This research has extended on the work done by
de Haan (2013), with his thesis on Neural-Fitted
Temporal Difference Learning on Connect-Four.
Some of the methods used in this paper are
applicable to that research, so that results can be
compared. The similarities are in, for example,
the implementation of the neural network. The
difference was made with the machine learning
technique.

How do the different neural network input layer

versions compare? Both the TD method and the
GA method have evaluated themselves versus
the advanced randomly moving agent. This agent
will finish a winning move or perform a blocking
move when possible, and otherwise it will make a
random move. The two methods will be compared
using this advanced randomly moving agent.

This paper revealed a win rate of 96% using the
(more complicated) 129 neuron network, where the
Temporal Difference variant has reported roughly
92% win rate versus the same opponent using the
same 129 neuron network. Additionally the TD
method achieved almost 90% win rate using the
85 network, and the GA has achieved almost 93%
win rate using the same network. TD also used
the Boltzmann exploration method, which yielded
nearly 90% winrate. This shows the two methods
have similar results, with the GA scoring slightly
higher.

One should note that the GA has done over 800
random search trials in a relatively short period
of time. Looking at figure 10 of the results section
shows how varied the top 10 appears. Only the
best one was considered in the comparison with
the TD method. One can foresee that by running
the GA’s random search a couple thousand more
times, the results will be better.

5.2 What is the best GA setup?

The Random Agent tournament has made the
best results when compared to the Round Robin
and Random Pairing tournaments. The method by
which this tournament rates its individuals is an
exact replica of how the performance score is mea-
sured (part 2.6 of the methods section). The other
two tournaments were based on games between
members of the population. In that case the fit-
ness function is not the same as the winrate testing
method, resulting in less success.

Furthermore, both mutations and recombination
proved useful evolutionary operators. Some of the
top results did, however, vary in how much they
used them. For example, some trials used very low
mutation rates and others used very high mutation
rates.

Surprisingly, some of the top scoring trials used
only one hidden neuron, while others used up to
35 hidden neurons.

11

The overall conclusion is that the evolution pa-
rameters can vary quite substantially without mak-
ing much difference in their performance. It seems
like the reason why some parameter sets perform
better than another is through a specific combina-
tion of parameters. This suggests high complexity
of the search space for good parameters combina-
tions. With the exception of the tournament type
there is no clear cut pattern or clustering of good
results. For example, the difference between using
high or low mutation rates is very small. It seems
that the best way to optimize this GA is to look
for combinations of multiple parameters that work
well together.

5.3 Future work

Some future work can be made with alternative
methods for mutation, crossover, tournaments, etc.
In the paper by (Fullmer and Miikkulainen (1992))
the marker based genetic encoding is proposed.
This method is “loosely based on the marker struc-
ture of biological DNA.”

Furthermore, different types of neural networks can
be tested. For example, networks that are not fully
connected, or even cyclical networks. Another op-
tion would be to try other types of evolutionary
neural networks. An example being the NeuroEvo-
lution of Augmenting Topologies (NEAT) (Stan-
ley and Miikkulainen (2002)). The authors pro-
claim that this method “outperform the best fixed-
topology methods.”

Finally, the evolutionary algorithm proposed in this
paper could be applied to another game, like for in-
stance checkers.

References

L.B. Booker, D.E. Goldberg, and J.H. Holland.
Classifier systems and genetic algorithms. FElse-
vier Science Publishers, pages 235282, 1989.

H. de Haan. Neural-fitted temporal difference
learning to learn to play connect four. Bache-
lor thesis, Al dept University of Groningen, the
Netherlands, 2013.

B. Fullmer and R. Miikkulainen. Classifier systems
and genetic algorithms. MIT Press; Toward a
Practice of Autonomous Systems: Proceedings of

the First European Conference on Artificial Life,
pages 255262, 1992.

David E. Goldberg. Genetic Algorithms in Search,
Optimization € Machine Learning. Indianapolis,
Indiana, 13th edition, 2012.

Kevin Gurney. An introduction to Neural Networks.
Boca Raton, Florida, 1997.

B. Jacobs. Learning othello using cooperative
and competitive neuroevolution. diploma the-
sis, Utrecht University, the Netherlands, Febru-
ary 2008.

S.M. Lucas, S. Samothrakis, T.P. Runarsson,
and D. Robles. Coevolving game-playing
agents: Measuring performance and intransitiv-
ities. IFEFE, pages 3-4, February 2012.

K.O. Stanley and R. Miikkulainen. Evolving
neural networks through augmenting topologies.
MIT Press; FEvolutionary computation, 10:99—
127, 2002.

Richard S. Sutton and Andrew G. Barto. Intro-
duction to Reinforcement Learning. Cambridge,
MA, USA, 1st edition, 1998. ISBN 0262193981.

S. van den Dries and M.A. Wiering. Neural-fitted
td-leaf learning for playing othello with struc-
tured neural networks. IEFFEE Transactions on
Neural Networks and Learning Systems, 23:1701—
1713, 2012.

M.A. Wiering. Self-play and using an expert to
learn to play backgammon with temporal differ-
ence learning. Scientific Research, 2:57-68, 2010.

12

