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Abstract

One major challenge in effective treatment of cancer is posed by intra-tumor
heterogeneity. Understanding the mechanism for the derivation of intra-tumor
heterogeneity can provide insight for precise determination of targeted therapeutic
treatment and overcome drug resistance. Currently, there are two models that are
proposed to explain the origin of phenotypic intra-tumor heterogeneity, i) the clonal
evolution model that focuses on heritable origin of heterogeneity such as by genetic
mutations and ii) the cancer stem cells (CSCs) model that focuses on non-heritable
origin of heterogeneity such as by epigenetic changes, protein stability and micro-
environment fluctuation. In this review, | will describe the two models and discuss
the underlying concepts, supporting evidences, the limitation of each model and the
methods available for the study of each model. Although these two models are often
considered as mutually exclusive, recently it has been proposed that these two
models can be harmonized into a CSCs evolution model. The methods that can be
applied to explore the extent to which intra-tumor heterogeneity can be explained
by CSCs evolution model are not yet established. To fill this gap, | propose several
new ideas to adapt the existing computational method, such as metabolic network
modeling and comprehensive comparative analysis, in order to better explain the

intra-tumor heterogeneity and identify relevant therapeutic targets.
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Introduction

Cancer exhibits a wide range of phenotypic intra-tumor heterogeneity on multiple
levels, such as cellular morphology, gene expression, metabolism, immunogenicity,
motility, proliferation and metastasis potential[1]. Intra-tumor heterogeneity poses a
main challenge in the effective treatment of cancer at least in two aspects i) it can
misguide the detection of molecular diagnosis biomarkers and even bias the
determination of targeted therapeutic treatments, ii) it fuels drug resistance
capability of tumor cells.

Such heterogeneity can be attributed to both heritable sources such as genetic
variants and non-heritable sources. Currently there are mainly two models that
attempt to explain for the widespread intra-tumor heterogeneity, i.e. the clonal
evolution model for heritable sources and the cancer stem cells (CSCs) model for
non-heritable sources. The clonal evolution model suggests the competition for
growth space and resources, involving a sequential acquisition of genetic mutations
with growth advantages enabling one or multiple groups of tumor cells (subclones)
to become dominant and sweep out the less fitted ones. In this competition process,
the co-existence of subclones with different genetic mutants leads to the intra-
tumor heterogeneity. The other model, the CSCs model, proposes that tumors arise
from a rare population of cells with stem-cell-like properties, i.e. having infinite self-
renewal capacity and the ability to give rise to differentiated progenitors[2].
Consequently, CSCs can result in the generation of all differentiated cell types within
a tumor, and therefore lead to tumor heterogeneity. These two models are
fundamentally different mechanisms and have different clinical implications.
Understanding which mechanism drives intra-tumor heterogeneity in patient tumors
will provide better insight to design more effective treatment strategy.

| will focus this review on the two models that can explain tumor heterogeneity by
covering the concepts, provide supporting evidence, discuss the limitation of each
model and summarize the methods available for the study of each mechanism.
Although these two models are often considered as mutually exclusive, recently it
has been proposed that these two models can be harmonized as CSCs evolution

model [3]. This model, which overcomes some limitation of both clonal evolution



and CSCs model, bears the potential to better explain the intra-tumor heterogeneity.
In order to figure out to what extent CSCs evolution model can explain the intra-
tumor heterogeneity, we proposed several novel computational methods via the
adaption of existing computational methods, such as metabolic network modeling

and comprehensive analysis.

Intra-tumor Heterogeneity: clonal evolution model as a mechanism

Description of the model

The clonal evolution model was first proposed by Nowell[4], which states that the
tumor cells acquire various genetic mutations over time, and the stepwise natural
selection for the fittest and most aggressive subclones drives the progression of
tumor cells. Such sequential selection is parallel to Darwinian natural selection,
where cancer clones are equivalent of asexually reproducing quasi-species.
According to the model, the initiation of tumors takes place once the normal cells
escape from normal growth control by accumulating multiple mutations, leading to
mutated cells with selective growth advantages over the adjacent normal cells and
bear the potential to undergo clonal expansion. In the expansion stage, the acquired
genetic instability generates tumor subclones with additional novel mutations and if
such mutations confer a selective advantage in a certain condition they will allow
those new subclones to be the predominant progeny subclones until an even more
favorable mutant appears. As such, clonal evolution in tumor cells can result in

tumor heterogeneity (Figure 1).
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Figure 1 Clonal evolution is driven by acquired novel genetic mutations. The grey eclipses
represent normal cells. The different colored eclipses represent subclones with accumulated
mutations. At time point to, mutation A initiates the growth of tumor from normal cells. The
subclone with mutation A (green eclipses) with growth advantages outcompetes the
adjacent normal cells (grey eclipses). Along the time scale, different mutations take place at
different time point and drive the tumor clonal evolution in a branched pattern. This results
in intra-tumor heterogeneity where tumors are composed of subclones with different

mutations and growth properties. (Adapted from Fig.1 in [5])

Supporting evidence for the model and clinical implications

According to the description of this model where tumor subclones acquire novel
mutations with selective survival advantage, the most straightforward evidence is
that the tumors are found to be composed of one dominant genetic clone together
with several genetically distinct subclones. One example is that topological sampling
of a renal-cell carcinoma has shown that distinct mutations are detected in different
tumor regions, which indicates that multiple subclones develop to different parts of
a tumor[6]. Several studies[7-9] of comparing genetic alterations between primary
tumor samples and the associated metastatic or relapsed samples have revealed the
existence of substantial genetic heterogeneity between primary tumors and

metastatic/relapsed samples. More interestingly, these studied found that within



the primary tumor samples, multiple genetically distinct subclones were detected to
be co-present with a ‘founding’ clone that only harbor the common mutations found
in all subclones. In these studies, the presence of the subclones with additional
mutations are proposed to i) give rise to metastatic or relapsed clones and ii) survive
the initial therapeutic treatment. More clinically relevant, the clonal evolution model
is also supported by studies where drug resistant sub-clones were observed after
antitumor therapies, such as treatment with BRAF inhibitor for melanoma patients
with BRAFVGOO-mutant[lo] and with Bcr-Abl tyrosine-kinase inhibitor, e.g., imatinib,
for chronic myelogenous leukemia[11]. After treatment subclones evolved with
drug-resistance ability in both studies. Two different mechanisms have been
proposed to explain how drug resistance subclones emerge, either intrinsic (i.e.,
mutations present at baseline) or acquired (i.e., development of novel mutations
after initial response). As for the intrinsic model, drug resistance can arise when a
pre-existing subclone carrying a set of drug resistant related genetic mutations
survives the treatment and expands at relapse. One example is that subclones with a
secondary mutation in KIT (c-kit Hardy-Zuckerman 4 feline sarcoma viral oncogene
homolog) are present in gastroinitestinal stromal tumors that bear the potential to
resist the therapeutic drugs[12]. According to the other model, the acquired model,
the dominant tumor clone evolving into relapse clone involves the gain of novel
mutations[10]. Even though it is proposed that BRAF-mutant melanoma obtains drug
resistant capacity by acquiring novel mutations, it should be noted that the study did
not measure the intra-tumor genetic heterogeneity in the baseline tumor samples.
Thus, the so-called acquired resistance can possibly reflect outgrowth of small
amount of pre-exiting clones. The determination of which model plays a role in
tumor drug resistant requires high—resolution sequencing to identify the existence of
subclones that are rare but convey the potential capability to resist drug treatment.

Clonal evolution of a tumor can result in both spatial (typically for solid tumors) and
temporal heterogeneity. Both levels of heterogeneity are closely relevant to
effective tumor treatment. For spatial heterogeneity, one related issue is tumor-
sampling bias, which can confound the interpretation and validation of biomarkers[6,
13]. In clear cell renal cell carcinomas (ccRCC), except for VHL mutation, it has been

demonstrated that around 70% of the driver mutations were subclonal[14], which



indicates that multiple biopsies are required to better identify the clinically relevant
mutations. As for temporal heterogeneity, the most relevant issue is emergence of
metastasis or replase after treatment. One mechanism of the recurrence of tumor is
that treatment can act as a selection pressure to drive tumor progression when pre-
exising subclones possess mutations that are linked with drug-resistant
phenotype[15-17]. For instance, in non-small cell lung cancer (NSCLC), it was
demonstrated that the presence of MET amplification before treatment is the
driving force for the development of drug resistance in patients with an EGFR-
mutant that are treated with EGFR tyrosine kinase inhibitors. The combined
inhibition of EGFR and MET was conceived to be beneficial for patients via
preventing the selection of the drug resistance subclones[17]. The other mechanism
is that cancer therapy can also generate novel subclonal driver events[18-20]. After
treatment with temozolomide in low-grade glioma, multiple de novo mutations were
detected in recurrent tumors, such as RB1 and PIK3CA, which are associated with
GBM, a high-grade tumor with worse prognosis. These examples indicate that the
key step in effective cancer treatment is to trace the clonal evolution history by

keeping track of longitudinal analysis of tumors in clinical setting.

In silico depiction of clonal evolution

A tumor’s subclonal architecture can be reconstructed from sequencing approaches,
which can provide insight into cancer evolution. There are two ways to infer tumor
evolutionary history from tumor genomes: i) identifying and comparing subclones
from genetic mutations in a single mixed tumor sample and ii) comparing multiple
samples in an individual tumor or temporal correlated samples.

When phylogenetic inference is conducted in a single mixed tumor sample, the
reconstruction of a phylogeny tree for subclonal evolution is comprised of two step: i)
identifying clones and ii) relating the clones to each other. Such schema has been
applied to reconstruct the progression in studies of breast tumor and
neuroblastoma[21, 22]. Genetic mutations can be ordered during tumor
development. Here, the principle of these methods is illustrated in Figure 2a. A single
mixed tumor sample is a snapshot of the evolutionary process and usually contains

cells from multiple subclones that contain different groups of mutants. The first step



is to identify subclones from the genomic profile of a single mixed sample.
Bioinformatics tools[23-25] have been developed to infer the number of cells
carrying the mutation (the cellular frequency) from its allelic frequency. For instance,
PyClone[23] uses a mixture model to identify clusters of single nucleotide variants
(SNVs) with the same frequency and meanwhile it corrects the frequencies for copy-
number change and loss of heterozygosity to estimate the fraction of tumor cells
carrying these mutations. Thus, clustering mutation frequencies can provide
information for population structure of tumor. The second step is to order the
clusters in a tree, so that these mutation clusters can be linked to clones. For each
node in the tree that represents for a clone in a cancer sample, the clonal genome is
given by the mutations that occurred along the path in the tree to this node. There
are mainly two approaches to order the clusters into a tree. Firstly, cluster the
mutations based on frequencies and then build a tree in an independent second step
or, secondly the joint clustering and tree building in an integrated model. The first
approach can be implemented by using TrAp[26], which uses frequencies of
clustered mutations as input and reconstruct a evolutionary tree with consistent
given frequencies by solving a highly constrained matrix inversion. The second
approach can be implemented by using two very recently developed tools,
PhyloSub[27] and BitPhylogeny[28], which combines clustering and tree
reconstuction. Compared with the available tools (i.e., TrAp) for the first approach,
the unified methods have three advantages. Firstly, since the clustering and tree-
building steps are not independent, decoupling them can limit the performance of
phylogeny reconstructions. For instance, the identified clusters are expected to be
one node in the reconstructed tumor phylogeny tree. However, the consecutive
clustering and tree-building can lead to a suboptimal tree where one initially
established cluster spreads out over different part of the tree [29], which is expected
to be avoided by using integrated models. Secondly, TrAp puts a limitation on the
number of mutation clusters (up to 25) used for phylogeny reconstruction. With such
a limitation, TrAp cannot make use of all genetic mutants to infer phylogeny
relationship. This might cause the problem of missing some information embedded
in mutations that are left out by TrAp. Thirdly, the combined method, BitPhylogeny,

is the only available tool that can be applied to methylation data.



Comparison of multiple samples from an individual tumor or patient can also reveal
tumor evolution. Reconstruction of samples collected at different time points, i.e., at
different tumor development stage or before and after treatment, is particularly
informative to identify the initiation mutant and the order of acquisition of
additional genetic mutations at different tumor development stages, which is very
relevant to understand the occurrence of treatment resistance and clinical
relapse[22]. Provided with genomic profiles from multiple samples, one can use each
sample as a node of a phylogenetic tree (Figure 2b). Multiple computational
tools[30-32] have been developed to infer evolutionary trajectory among different
samples. For instance, MEDICC is a recently published method to infer phylogenetic
trees of multiple samples by copy number alternation (CNA) profiles, which
calculates the distanced between two genomes by counting the minimal number of
changes required to ‘translate’ one genome to the other one. By applying this
method to 177 temporally and spatially distinct high-grade serous ovarian cancer
samples from 18 patients a phylogenetic tree was generated to quantify the intra-
tumor heterogeneity and allowed the identification of seven patients with high
clonal expansion degree[33]. The authors demonstrated that these patients have
significantly shorter survival duration. Interestingly, by reconstructing the
evolutionary history of the tumor within each patient a subclone was identified
carrying a certain mutant that was associated with chemotherapy resistance.

Multiple phylogenetic methods have been recently developed to automate the
modelling of the evolutionary relationship between tumor subclones (Table 1). Most
of these methods can be applied to infer evolutionary history from a mixed single
sample or multiple samples. The required input for these methods can be either
single-nucleotide variation (SNV), copy number alteration (CNA) or both. What needs
to be pointed out is that the combination of SNV and CNA can help to determine the
order of acquired mutations during tumor development. For instance, if there exists
a CNA in a population and the same SNV is found on all copies, one can postulate
that the SNV event was before the CNA. On the other hand, if the SNV is only found

on one copy, then it can be inferred to happen after the CNA.
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Figure 2 Methods to reconstruct evolutionary relationship. (a) Reconstructing phylogeny
tree of subclones in a mixed tumor sample. The mixed tumor sample is composed of 4
different suclones, where blue, red, green cells represent tumor cells and grey cells
represent normal ones. Mutation profiles are usually measured directly from the mixed
tumor sample. To reconstruct the phylogeny relationship of these subclones, the first step is
to infer subclone clusters from mutation frequency distribution, where each subclone
cluster convey a set of mutants. After identifying subclones within a mixed tumor sample,
the next step is to order and link the clusters in the tree. In this example, the leaf nodes are
characterized by subclones with different combination of four mutations, A, B, C, and D. The
percentage on the tree branches indicate the fraction of cells with a certain set of mutations,
e.g., 84.6% of all cells have mutation A, 69.2% additionally have B. Internal node with
mutation A and B are fully replaced by its descend nodes with mutation ABC or ABD, which
is no longer present in the tumor sample. (b) Reconstruction phylogenetic tree of genomic

profiles from multiple samples. Each row corresponds to a measured genomic profile of one



sample, where black cell represents the presence of a mutation. (adapted from Figure 3 and

Figure 6a in [34])

Table 1 Computational tools to implement phylogenetic methods for
reconstructing evolutionary relationship between subclones (adapted from Table 2

in [34])

Input Data Algorithm/Model Referenced

(PMID)

PhyloSub SNV Tree-stick-breaking process, 24484323
binomial/MCMC

PyClone SNV Dirichlet Process, beta- 24633410

binomial/MCMC

SciClone SNV Beta mixture model 24633410
Colmial SNV Binomial/EM 25010360
Trap SNV Exhaustive search under 23892400

constraints

rec-BTP SNV Local search 24932008
ThetA CNA Maximum likelihood 23895164
cancerTiming CNA Maximum likelihood 24064421
GRAFT CNV Patial Maximum likelihood 21994251
MEDICC CNA Finite state transducer, 24743184

Minimum-event distance

TuMult CNA Breakpoint distance 20649963
TITAN CNA HMM/EM 25060187
CloneHD SNV+CNA HMM, EM, Variational Bayes 24882004
mixClone SNV+CNA EM 25707430
BitPhylogeny SNV+CNV+methylation  Tree-stick-breaking process, 25786108

Bayesian inference

*SNV: single-nucleotide variant; CNA: copy number alternation; MCMC: Markov-Chain Monte Carlo; EM:
Expectation Maximization; HMM: Hidden Markov Model;
Limitations of the clonal evolution model
First, the performance of the model is constrained by the available mutation
information measured from a biopsy that can be mixed with different subclones or

even normal tissue. Current developments in single cell sequencing technology



provide a potential strategy to overcome this limitation. For instance the mixture of
normal tissue in a tumor biopsy can dampen the signal for tumor specific mutation
calling. Meanwhile, single cell technology allows one to get access to the sequencing
data in a single cell, which is either a tumor or a normal cell, instead of a mixture of
both cells. Using such type of data can precisely identify tumor specific mutations. It
should be noted that due to the cell-to-cell genetic heterogeneity, some of the
identified mutant variants may have no contribution to clonal expansion. This
requires the scale-up of the number of sampled individual cells. If large numbers of
single cells are analyzed, phylogenetic lineage tree can be constructed to describe
their evolutionary relationships and trajectory[35-37].

Secondly, the clonal evolutionary model is mainly focused on genetic heterogeneity,
such as heterogeneity revealed on SNV and CNVs. However, this model has not yet
considered how other non-genetic variability, such as epigenetic variation,
microenvironment variation and functional interactions among clones within tumors,
can affect the intra-tumor heterogeneity. For instance, functional cooperation
between clones were found to be essential for tumor maintenance in breast
cancer[38]. Thus, developing a model which takes into consideration of not only
genetic mutations but also different types of non-genetic variability can contribute
to better explanation of intra-tumor heterogeneity. The potential solution or

methods to achieve a better model is discussed in the next part of the review.

Intra-tumor heterogeneity: cancer stem cells model as a mechanism

Description of the model

The cancer stem cells (CSCs) model proposes that a particular subpopulation of
tumor cells with stem cell-like properties, called ‘cancer stem cells’, drive tumor
initiation, progression and recurrence. These cells have similar characteristics of
normal stem cells, i.e., the capability to self-renewal infinitely and to differentiate.[2]
The differentiated progeny generated by CSCs do not have unlimited self-renewal
and differentiation capacity. Such self-renewal and differentiation capabilities lead
to the generation of all cell types within a tumor, therefore generating tumor

heterogeneity. It should be noted that the CSCs model cannot provide an answer to
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the cell of origin for a tumor because CSCs are isolated from end-stage tumors. The
precise origin of CSCs is still under debate. They are proposed to originate from
normal stem cells that have mutated genes causing loss of the regulation of normal
self renewal, or from mutated progenitors that regain the ability to infinite self
renewal, or from the de-differentiated cells with activated self renewal related genes

(Figure 3) [39].
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Figure 3 Cancer stem cells model. Cancer stem cells are proposed to originate either from

mutated normal stem cell, mutated progenitor cells or mutated differentiated cells. Cancer
stem cells have unlimited self-renewal and differentiation capacities, which can form a clear
hierarchy of differentiated cells within a tumor. The co-existence of CSCs and their various
differentiated progeny cells results in intra-tumor heterogeneity. (Adapted from Figure 1 in

(39])

Supporting Evidence for the model and clinical implications

According to the CSCs model, cancers have a hierarchical organization of tumorigenic
and non-tumorigenic cells. The most direct evidence for this model is to purify the
tumorigenic population from the mixture with non-tumorigenic cells and to show
that only the tumorigenic cells have the capacity to initiate the tumor development.
The first experiments indicating the existence of both tumorigenic and non-

tumorigenic cells within a tumor were performed in an animal model where myeloid
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leukemia initiating cells were successfully isolated by using the cell surface makers
associated with normal hematopoietic stem cells i.e.,CD34+/CD38-. These cells were
found to be able to initiate leukemia in severe combined immune-deficient (SCID)
mouse[40] while other isolated cells, which are CD34+/CD38+ could not. After this
discovery, the CSCs were identified for the first time in solid tumors, i.e., breast
cancer. A subset of breast cancer cells was isolated by using cell surface makers for
normal breast stem cells, CD44+/CD24- and these cells can generate tumors after
being xenografted to SCID mouse while CD44-/CD24+ could not[41]. Till now, CSCs
have been identified in different types of solid tumors, such as brain[42, 43],
colon[44], lung[45], ovary[46, 47], pancreas[48], prostate[49] and melanoma[50].

If CSCs indeed exist in one tumor and their self-renewal capacity stimulates the
tumor progression, the clinical parameters, such as survival rate, relapse and
metastasis, should be more closely related with tumorigenic cells than non-
tumorigenic cells. First, the CSCs appear to be more resistant to standard cancer
treatment compared to non-tumorigenic cells in different type of cancers, i.e.,
chronic myeloid leukemia[51], gliomas[52] and breast cancer[53]. Moreover,
tumorigenic cells also exhibit differences with the remainder of cells in the capacity
of evasion of cell death[54] and metastasis[55]. Collectively, this suggests that an
effective cancer therapy requires the selectively depletion of CSCs. Currently, there
are two different strategies for targeting CSCs. First, inhibiting the over-activated
pathway or protein that controls stemness in CSCs can result in significant reduction
of tumor cell growth. Several signaling pathways were found to be essential for
maintenance of the capacity of self-renewal, proliferation of normal stem cells. The
dysfunction of these pathways may lead to the generation of CSCs, which offers new
strategies for cancer treatment. Particularly, some of the signaling pathways are
characterized to be responsible for the formation of CSCs, such as Hedgehog, Notch
and Wnt/beta-catenin pathways[56, 57]. For instance, blocking over-activated Notch
pathway in glioblastoma by gamma-secretast inhibitors can effectively reduce
neurosphere growth in vitro and reduce tumor growth in vivo[58]. Since these
signaling pathways are also active in normal stem cells, inhibition agents of these
pathways can not only targets the CSCs but also the normal stem cells. The main

challenge for targeting the signaling pathways is to modify the inhibition agent or
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use drug combination to improve the specificity of treatment. Moreover, targeting
the cell surface markers can also provides useful methods to inhibit tumor growth.
For instance, applying an antibody directed against CD44 can inhibit the growth of
xenotransplanted acute myeloid leukemia (AML)[59]. The second approach is to
stimulate the differentiation of CSCs so that it can restrain the capability of self-
renewal. The most well-known example is using all-trans-retinoic acid to enhance
the tumor differentiation in the treatment of acute promyelocytic leukemia[60]. Due
to the clinical need for better treatment, future research should make effort to
understand what genetic or molecular differences lead to the functional differences
between the tumorigenic population and non-tumorigenic cell population. In
addition, due to shared properties between CSCs and normal stem cells it is
important to study to what extent CSCs differ from normal stem cells to minimize

the harmful impact of the treatment on normal stem cells.

Techniques for the study of CSCs model

CSCs are mostly identified and enriched via the approaches for normal stem cells
identification. The most common scenario in CSCs identification is as follows. First,
one or multiple cell surface markers, which are often well established in normal stem
cells, are examined for differential expression in one tumor sample. Based on
heterogeneous expression profiles of the markers, CSC-enriched populations are
sorted out of the remainder of the cancer cells and then transplanted into
immunodeficient mice by limiting dilution assay[61] to assess its tumor initiation
capacity[62].

Although the xenograft limiting dilution method is considered as the ‘golden
standard’ for identifying human CSCs, this method still has some caveats. First,
xenografts can only capture a snapshot of the state of CSCs when a tumor sample is
collected. The empirical validation of the stability of the CSCs is still not available.
Instead, some studies have indicated that the cancer cells can fluctuate between CSC
and non-CSC states[63-66]. For instance, H3K4 demethylase JARID1B is identified to
be differentially expressed in human melanoma cells, where JARID1B-cells cycle
faster than the JARID1B+ ones[64]. However, the researchers found that JARID1B-

can arise from JARID1B+ cells and vice versa. This indicates that one subpopulation

13



of cancer cells can have temporal heterogeneity which is required to maintain the
development of the tumor. Given such observations, the plasticity of CSCs should be
taken into consideration when xenograft experiment at a fixed intrinsic state is
applied to represent the CSC status of a tumor from which cancer treatment is
determined. The second caveat is the immune-compromised mice used in the
method. The immunodeficiency facilitates the transplantation of the human cells to
the mice. However, such system lacks the elements that are considered to be
substantial for the growth of tumors[67, 68]. Thirdly, the method depends on the
specificity of the markers. However, CSC cell surface markers remain largely
unknown for most tumor types, especially for solid cancers. Even though several cell-
surface markers have been proposed to identify CSCs in some solid tumors, such as
in breast[41], brain[42, 43] and colon[69] tumors, some markers are selected based
on the observation that they show heterogeneous expression patterns in a tumor
instead of direct evidence for their functional linkage with stem cells. This can lead
to the scenario the cells identified by these markers are simply a subclone with
growth advantages instead of CSCs. Such markers can lead to conflicting results. One
example is CD133+, which is among others used to identify CSCs in gliomas[52]. This
result was contested by the experiment in rat that CD133- cells can be tumorigenic
and give rise to CD133+ glioma cells[70]. Moreover, the currently CSCs xenograft
model does not take consideration of the possibility that more than one type of CSCs
may exist within one tumor sample. Different CSCs may co-exist in sample tumor
consisting genetically different subclones. An alternative method to identify CSCs in
solid tumor is sphere-forming assays[71]. Cells from tumors, usually solid tumors,
which are able to grow in suspension in non—adherent culture condition and form a
3-D sphere-shaped structure, are identified to be CSCs. This strategy has been
applied to multiple solid tumors, such as brain tumor[42, 72], breast tumor[73] and
melanomal[74], and provided evidence for the presence of CSCs in these tumors.
One caveat of this approach is that this type of assays requires small amounts of cells
to be plated. However, a tumor can be viewed as a complex social system[75], which
requires interaction between different tumor cells and normal cells in the tumor

environment. Without the stimulus provided via the interaction with surrounding
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cells or environment, a CSC does not form a sphere. As such, this can lead to the

under-estimation of the number of CSCs.

Limitations of the CSCs model

The CSCs model argues that tumor stem cells undergo epigenetic modification,
which is similar to the differentiation process of normal stem cells, to form a
hierarchical lineage with phenotypically various progeny that have limited
proliferation capacity. According to the model, tumor cells are viewed as a
genetically homogenous population and attribute the phenotypic heterogeneity
mostly to epigenetic variation. Thus, a major deficiency of this model is that it
ignores the existence of the genetic distinct subclones. One tumor might be
composed of multiple genetically different subclones, which differ in proliferation
potentials. Moreover, these subclones can possess different cell-surface makers.
Thus, the fractionation of CSCs out of non-CSCs can be simply the segregation of
subclones with high proliferation capability with subclones with low proliferation
capability. In this context, it is necessary to test the tumor initiating capability of
CSCs in a genetically identical subclone. Additionally, it is suggested to carry out
genetic analysis in xenografts and compare its mutation profile with that of the
primary tumor to figure out whether novel genetic mutations emerged that may
bear selection advantage and promote the expansion of the tumor. Such analysis can

shed light on whether CSCs also undergo evolution procedure.

CSCs evolution model: a combination of CSCs and clonal evolution

model

Hypothesis for CSCs evolution model

In the previous paragraphs, we have discussed two different models that can
describe the origin of phenotypic intra-tumor heterogeneity observed at different
levels, ranging from cellular morphology to metastasis potential. The clonal
evolution model, which focuses on tracing the heritable source i.e., genetic mutants,

of intra-tumor heterogeneity, hypothesizes that subclones with specific genetic
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mutations will have growth advantage that will promote clonal expansion. On the
other hand, the CSCs model, which explains the non-heritable sources of intra-tumor
heterogeneity, proposes that the CSCs in the tumor have infinite self-renewal and
differentiation capacity, which is analogous to normal stem cells. According to this
model, the tumors are organized into a hierarchy of tumorigenic and non-
tumorigenic progeny. Both models can explain the observed intra-tumor
heterogeneity to some extent. However, as mentioned above both have some
limitations and fail to explain the heterogeneity completely.

Even though these two models are fundamentally different, they are not mutually
exclusive; instead, they can be unified to complement for each other’s limitation and
better explain the intra-tumor heterogeneity. For the clonal evolution model, the
main issue is that even cells within a genetically homogenous subclone can still
exhibit differences in functions, such as cell longevity, proliferation capacity and
sensitivity for chemotherapy[76]. One possible explanation is that there are CSCs in
such genetically homogenous subclones, which can result in a hierarchal structure of
cells with functional heterogeneity. As for the CSCs model, the cancer stem cells are
thought to be non-static entities; instead they can evolve. Studies that combined
cancer genetic analysis and functional xeno-engraftment have revealed that
subclonal genetic diversity exists among functionally defined tumorigenic cells, i.e.,
CSCs[77, 78]. The genetic variation detected in tumorigenic cells mirrors subclonal
patterns, which supports the evolution of CSCs. Moreover, these different genetic
mutations that identify subclones within the tumorigenic cells can lead to functional
heterogeneity including aggressiveness of xenografting repopulation[77].

Taken together, | propose CSCs evolution model as a unification of CSCs and clonal
evolution models. In this model, the emergence of a set of genetic identical CSCs
give rise to a tumor that consists of a hierarchy of a minority of CSCs (i.e.,
tumorigenic cells) and a large proportion of more differentiated non-tumorigenic
cells. Progressing with the time of tumor growth, the initial set of CSCs accumulates
growth/self-renewal advantageous genetic mutations. These genetic mutants lead to
the emergence of a new subset of CSCs that bear growth advantages and can

outcompete the initial CSCs set. As such, these CSCs can expand in subclones, which
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start and drive the clonal evolution in a tumor. In other words, clonal evolution

occurs within the CSC compartment of tumors (Figure 4).

Clonal evolution model
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Figure 4 CSCs evolution model. A set of genetically identified CSCs (red CSC) initiates the
growth of a tumor that is composed of a hierarchy of CSCs and differentiated non-
tumorigenic cells. Along the time of the tumor progression, genetic mutations that convey
growth or self-renewal advantages are accumulated in the initial CSCs, which give rise to a
novel set of CSCs (green CSC). This triggers the tumor to undergo clonal evolution. The newly

emerged CSCs bear growth advantage and have the potential to outcompete the initial CSCs.

Potential research techniques and methods

It remains largely unknown what are the most suitable techniques and methods that
can be applied in the study of the CSCs evolution model. Here, by revisiting and
integrating the available experimental and computation methods, | come up with
several potential ways that can be applied to reveal insight of the CSCs evolution

model.

Comparative analysis
Based on the description of the CSCs evolution model, the following straightforward

guestions need to be solved first; i) whether there exist genetically distinct CSCs
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among different genetic homogenous subclones; ii) if yes, what are the genetic and
epigenetic differences among these CSCs and do they exhibit functional variations
such as proliferation capacity; iii). Cancer types where the existence of CSCs has
been confirmed are likely to follow the CSCs evolution model. However, it should be
noted that perhaps not all cancers follow the CSCs model[79]. It is necessary to
figure out in what cancer types the CSCs evolution model plays a role. To answer
these questions, the first substantial step is to successfully identify and isolate the
CSCs in each genetically defined subclone. To achieve this, two steps of experiments
are required. The first step is to identify genetic homogenous subclones. According
to the examples listed in the previous section[77, 78], this can be achieved by
applying xenograft assays after the use of genomic analysis to classify the subclones
based on the genomic mutation profiles. The next step is to identify and isolate the
CSCs in each subclone, which can be realized by using specific surface makers.
Another way to study the diversity of CSCs in subclones is starting from single cells.
In a recent study[80], researchers established 4 subclones from 4 different single
cells derived from tissue from one glioblastoma patient. Differences in morphology,
the self-renewal and proliferation capacities among these 4 subclones were
observed. Comparing the subclones identified via genetic analysis showed that these
subclones derived from single cells can sustain the genetic homogeneity within a
subclone to the most extent, which ensure the identification of CSCs specific to only
one genetic subclone.

Current technical developments in single cell level DNA sequencing[81], RNA
sequencing[82] and epigenome profiling[83] make it possible to generate genetic
data for CSCs that are low frequency in cancers. Provided with this rich data resource,
we can carry out all type of comparative analysis. For instance, we can compare the
RNA sequencing measured from different CSCs and identify the most differentially
expressed gene sets. A simple gene ontology (GO) term analysis on these
differentially expressed genes can reveal which cellular components, molecular
functions or biological processes are enriched in these differentially expressed genes.
This can potentially pinpoint the signaling, regulatory metabolic pathways whose
activation or suppression is the underlying reason for the observed functional

difference among these CSCs from subclones. Moreover, comparative analysis of
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DNA or RNA sequencing data can also reveal difference of mutations in cancer genes,
i.e., oncogenes or tumor suppressor genes, among CSCs from subclones. The drug
inhibitor information is already available for some of the cancer genes, such as
gefitinib and erlotinib hydrochloride as inhibitors for epidermal growth factor
receptor (EGFR)[84] and nilotinib as an inhibitor for Bcr-Abl tyrosine kinase[85].
Together with the knowledge of effective drug inhibitors, knowing which cancer
genes promote the growth of different subclones is very valuable in providing
instruction for designing drug combinations to inhibit the growth of all subclones
within a tumor.

The previously described comparative analysis can provide an explanation for intra-
tumor heterogeneity on one dimension, i.e., the difference between the evolving
CSCs. If the data for CSCs and its differentiated cell population from a genetic
homogenous subclone are available, one can explain intra-tumor heterogeneity from
another dimension, i.e., heterogeneity attributed to non-heritable sources such as
variation on epigenetic level. In the study of stem cells, it has already been shown
that transcription regulatory networks play a key role in the programming of
differentiation and dedifferentiation[86, 87]. For instance, comparing the epigenetic
landscapes of CSCs against the differentiated progeny can identify the transcriptional
factors (TFs) whose activation or dysfunction can manipulate the programming
between tumorigenic and non-tumorigenic cells[88]. The identification of such TFs
can shed light on therapeutic targets that are essential for the dedifferentiation

capacity.

Metabolic network modeling

Some studies have already shown that genetic variations in tumors could lead to
variation in metabolism, such as difference in serine metabolism dependence[89] or
TCA cycle function[90]. Such cases indicate the potential to use modeling and
simulation of cancer cells to figure out the extent to which enzymes, metabolites or
pathways exhibit heterogeneity i) between the evolving CSCs identified in genetically
defined clones or ii) between CSCs and their differentiated progeny. This can provide
informative molecular mechanisms underlying the observed phenotypic

heterogeneity.
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Here, | will discuss about using metabolic network modeling to explore how the CSCs
evolution model can explain intra-tumor heterogeneity. In metabolic network
modeling, metabolic reactions are represented as a stoichiometric matrix (S) of size
m*n (m rows and n columns), where each row represents a metabolite, each column
is a reaction and each element is the stoichiometry coefficient of the metabolite in
that reaction. Constraint-based modeling, a systems biology approach, is applied to
simulate the basic phenotypes, such as cell growth (i.e., represented by the biomass
equation) or the production of certain metabolites. There are two main types of
constraints imposed on the network: mass balance (stoichiometric) and capacity
boundaries. The former constraint is represented as equations that balance the
inputs and outputs of each reaction and the second constraints is represented as
inequalities that put capacity constraints on the each reaction flux. These two types
of constraints define the solution space for the simulated phenotypes, i.e. one can
find the optimal flux distribute for all the reaction in the solution space that can lead
to the maximal cell growth. (see [91] for more detail).

The key step in metabolic network modeling is to reconstruct a genome-scale
metabolic network that is most representative for a specific cancer cell, or a cancer
cell line. Recently, several studies have successfully reconstructed constraint-based
metabolic networks for individual cell lines, tissues or patients. Here, | present a
summary of the available methods to reconstruct the cancer cell/cell-line/tissue
specific metabolic networks (Table 2). The basic idea underlying the reconstruct is to
use different types of omics data to infer active reactions in certain cancer cells. For
instance, gene expression or protein abundance profiles of a sample can be
converted to a reaction activity according to the gene-protein-reaction(GPR)
association. The reactions that are not supported by the data, such as non-active
reactions, can be removed from the networks. After obtaining the metabolic
network, which can reflect the biological status of a certain cell line, one can
genome-widely predict the phenotypic response, such as cell growth or producing
certain metabolite, following gene knockouts/knockdowns[92], or simulate the

effects of drug applications[93].
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Table 2 Algorithms for the reconstruction of a tumor cell, cell line or tissue specific

metabolic network

Algorithm Reconstructed model Integrated data Purpose of the model ‘
General cancer model
MBA: Model Building Transcriptomic data Assessing metabolic
[21694718]
Algorithm[94] from 60 tumor cell lines drug targets

Tissue specific model
Immunohistochemical

INIT: Intergrative for both cancer and Identifying reporter
staining data,
Network Inference for health metabolites associated
metabolomics data and
Tissues samples[22615553] with cancer

transcriptomic data

mCADRE: Metabolic

Context-specificity 26 tumors and cell
Identifying cancer-
Assessed by lines[23234303] Transcriptomic data
specific pathways
Deterministic Reaction

Evaluation
Indetifying pathway via
iMAT: integrative HepG2 cell line specific Transcriptomic and
which p53 functions as a
Metabolic Analysis[95] model[96] proteomic data
tumor suppressor
MPA: Metabolic 392 breast tumor Predicting cell growth,
Transcriptomic data
Phenotype Analysis[97] samples models metabolite biomarkers

When metabolic network modeling is applied to study the CSCs evolution model to
better explain the intra-tumor heterogeneity, one can reconstruct a specific
metabolic network for each set of CSCs identified in a genetically defined subclone
by integrating their transcriptomic, proteomic, or epigenomic data. After the model
reconstruction of each set of CSCs, first, it is possible to simulate the growth rate
difference among these sets in the presence of certain selection pressures, such as
shortage of nutrition in the growth median or the application of drug inhibition. A
set of CSCs with maximal growth rate can be predicted to convey selection
advantages. It might outcompete the other subclones and needs specific drug
treatment to inhibit its growth to achieve effective tumor therapy. Secondly, one can

also reveal the difference of enzyme, metabolites phenotype or pathway activity
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among all the sets of CSCs in a certain growth medium. It should be noted that these
selection pressures could be easily simulated in metabolic network modeling by
constraining the flux of transporter reactions for growth nutrients or the flux of the
reactions whose enzymes are inhibited by applied drugs. Thirdly, current advances
focusing on simulating the cell-cell interactions[98, 99] make it possible to consider
cancer development as a result of a community of various cells. This is particularly
interesting to simulate the tumorigenic cells grow together with non-tumorigenic
cells and figure out the mutual interaction between them.

Cancer can be considered as a phenotypic representation of a dysfunctional
biological network involving multiple cellular processes such as transcription
regulatory, translation and signaling networks in addition to metabolism. It is still in
demand of breakthrough in mathematic modeling so that we can systematically
reconstruct the other types of networks. Future work should be focused on
developing methods[100, 101] to bridge the various types of networks into a whole
picture to better understand the interplay between different cellular processes. This
is particularly important to simulate the effect of microenvironment change in the
determination of cell fate, where molecular changes in the microenvironment can
trigger the activation of specific signaling pathways, which can provoke the response
on transcriptional regulatory networks. Consequently, protein/enzyme activity can
be affected due to the transcription of its encoding gene is regulated by the
transcription network.

Taken together, the integration of different types of omics to networks will enable us
to reconstruct a biologically representative network. It can trace and track the
dynamic genetic and environment change and estimate the consequence of the
variations. Most importantly, it can shed light on identifying novel biomolecules
targets for cancer treatment and the determination of effective therapeutic

strategies such as drug combination.
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