
Computation of the Size of

the Fragment [∧,∨,¬¬]n of

Intuitionistic Logic

Bachelor thesis in Mathematics

June 2015

Student: T. van der Vlugt (s2231689)

Primary supervisor: prof. dr. G.R. Renardel de Lavalette

Secondary supervisor: prof. dr. J. Top

Abstract

This thesis will give a step-by-step solution to the calculation of the size of the fragments

Fn = [∧,∨,¬¬]n of intuitionistic propositional logic. These fragments are sets of formulae

that contain at most n different propositional variables and only the connectives ∧, ∨ and

¬¬. The size of a fragment will be defined as the total number of equivalence classes of

Fn. The diagram of a fragment is the partially ordered set of equivalence classes ordered

by derivability. The calculation of the size of Fn will be done by finding the set of join-

irreducible elements I(Fn) of the diagram of Fn, and generate all upward closed subsets of

I(Fn). These will form a finite distributive lattice by Birkhoff’s theorem. The set of upper

sets is isomorphic to the diagram of Fn.

The algorithm successfully computed the sizes #F1 = 4, #F2 = 21 and #F3 = 1891 (with

> and ⊥ included in each fragment), but is not efficient enough to compute #F4, yet.

Keywords: Intuitionistic propositional logic, fragment, diagram, lattice, upper set

Contents

1 Introduction and Preliminaries 3
1.1 Intuitionistic Propositional Logic . 3
1.2 Partial Ordered Sets . 5
1.3 Fragments . 7

2 Exact Models & Irreducible formulae 9
2.1 Models . 9
2.2 Irreducibility . 9

3 Exact Model of [∧,∨,¬¬]n 12
3.1 [∧,∨]n . 12
3.2 [∧,∨,¬¬]n . 14

4 Computing the Size of [∧,∨,¬¬]n 18
4.1 Data Types . 18
4.2 Generating Upsets . 20
4.3 Constructing Irreducible Formulae of [∧,∨]n 21
4.4 Constructing Diagram of [∧,∨]n . 22
4.5 Constructing Irreducible Formulae of [∧,∨,¬¬]n 23
4.6 Counting the Size of [∧,∨,¬¬]n . 24

5 Conclusion 25

A List of Formulae in I([∧,∨,¬¬]4) 26

B Program 30

Bibliography 41

2

Chapter 1

Introduction and Preliminaries

In the early years of the twentieth century Dutch logician L.E.J. Brouwer created the found-
ations of intuitionistic logic. It can be seen as the logical implementation of mathematical
constructivism. Constructivism is based on the idea that mathematical objects can only
be proven to exist if it is possible to construct them. In the same manner intuitionism
considers mathematics as the product of the human mind and not as a representation of
properties of objective reality. Intuitionistic logic therefore rejects the classical concepts of
truth and falsehood and instead reads ` φ as “φ is provable” and ` ¬φ as “φ is refutable”
(id est “there exists a counterexample for φ”).
In practice this entails that the negation operator loses its symmetry. If a formula φ is
provable, then it is impossible to prove ¬φ, however it is not enough to show that it is
impossible to prove ¬φ to say that φ is provable. In other words, the classical law of
double negation elimination ¬¬φ ` φ does not hold in intuitionistic logic, while the reverse
φ ` ¬¬φ is still valid.
With these concepts in mind, intuitionistic logic can be seen as an extension of classical
logic where the law of the excluded middle (` φ ∨ ¬φ) and the aforementioned double neg-
ation elimination are not valid.
In this thesis we will take a look at the [∧,∨,¬¬]n fragment of intuitionistic logic. In short
this is the set of formulae consisting of n propositional atoms {p, q, r, . . . } and compositions
thereof using only the operators ∧, ∨ and ¬¬. In particular we shall compute the number
of equivalence classes in [∧,∨,¬¬]n.

1.1 Intuitionistic Propositional Logic

Intuitionistic propositional logic (IPL from now on) is a language consisting of the constants
> (tautology) and ⊥ (contradiction), infinitely many propositional variables {p1, p2, . . . },
and the logical connectives ∧, ∨ and → (respectively conjunction, disjunction and implic-
ation). Propositional variables are also called atomic formulae or atoms for short. Some
authors choose to classify ⊥ and > as atoms as well, but in this text we will not regard
them as such.

3

CHAPTER 1. INTRODUCTION AND PRELIMINARIES 4

Definition 1.1. A formula is defined inductively:
• ⊥ and > are formulae.
• φ is a formula if φ is an atom.
• If φ and ψ are formulae, then φ ∧ ψ, φ ∨ ψ and φ→ ψ are formulae.
• Nothing else is a formula.

Negation of a formula is defined by ¬φ ≡ φ→ ⊥, and bi-implication is defined similarly to
the classical case by φ↔ ψ ≡ (φ→ ψ) ∧ (ψ → φ).
Atoms will be written with lowercase letters from the Latin alphabet (p, q, r and s), while
formulae will be represented by lowercase Greek letters (φ, ψ and χ). Sets of atoms will be
written with uppercase Latin letters (P , Q and R) and sets of formulae will have uppercase
Greek letters (Γ and ∆) In order to avoid excessive parentheses the binding of the operators
∨ and ∧ is more powerful than the binding of → and ↔, while ¬ binds stronger than any
of the other operators, so with ¬p ∧ q → r ∨ s we mean [(¬p) ∧ q]→ (r ∨ s).
Furthermore there is the notion of entailment. If Γ is a set of formulae, then Γ ` φ (read
as Γ entails φ) is interpreted as “from the proofs of each formula ψ ∈ Γ it is possible to
construct a proof of the formula φ.” It is customary to omit Γ if it is the empty set (e.g.
` φ means “φ is provable”), also Γ ∪ {φ} ` ψ is abbreviated as Γ, φ ` ψ. Two formulae φ
and ψ are called equivalent if φ ` ψ and ψ ` φ. This is usually written as φ ≡ ψ. The
converse of ` is a, and φ ` ψ if and only if ψ a φ.
The rules of IPL can be described with a natural deduction system. This system consists
of three introduction rules:

• A proof of φ and a proof of ψ imply a proof of φ ∧ ψ, (∧-introduction)
• A proof of φ implies proofs of φ ∨ ψ and ψ ∨ φ, (∨-introduction)
• φ ` ψ implies a proof of φ→ ψ, (→-introduction)

three elimination rules:
• A proof of φ ∧ ψ implies proofs of φ and ψ, (∧-elimination)
• φ ` χ and ψ ` χ implies φ ∨ ψ ` χ, (∨-elimination)
• A proof of φ and a proof of φ→ ψ imply a proof of ψ, (→-elimination)

and the principle of explosion:
• ⊥ ` φ

Note that this system can be converted to classical propositional logic if one adds the rule
• A proof of ¬¬φ implies a proof of φ. (¬¬-elimination)

Although ¬¬-elimination is not possible in IPL, the reverse φ ` ¬¬φ is still a valid inference.
Some other classical laws hold as well, such as the associativity and commutativity of ∧
and ∨, the distributivity of ∧ and ∨ over each other, and ¬¬¬φ ≡ ¬φ. Of the de Morgan
laws only ¬(φ ∧ ψ) ` ¬φ ∨ ¬ψ is invalid, the three other laws hold.
The principle of double-negation translation can be very useful, as it translates a classical
formula to a intuitionistic equivalent. The easiest variant, which holds in propositional

CHAPTER 1. INTRODUCTION AND PRELIMINARIES 5

logic, but not in predicate logic, was discovered by Glivenko, and therefore bears his name.
Let `C mean classical entailment and `I intuitionistic entailment.

Theorem 1.2 (Glivenko’s Theorem). If φ is a formula, then `C φ if and only if `I ¬¬φ.

Two very useful laws which are confirmed by Glivenko’s theorem are ¬¬(φ∧ψ) ≡ ¬¬φ∧¬¬ψ
and ¬¬(φ→ ψ) ≡ ¬¬φ→ ¬¬ψ. We will call this double negation shift. These laws can be
used to extend Glivenko’s theorem:

Corollary 1.3. Let φ be a formula, Γ = {ψ1, . . . , ψk} a set of formulae, and Γ∗ =

{¬¬ψ1, . . . ,¬¬ψk} the set with the double negation of the formulae of Γ. Then Γ `C φ if
and only if Γ∗ `I ¬¬φ.

Proof. Suppose Γ `C φ, then `C
∧

Γ → φ and therefore by Glivenko’s theorem
`I ¬¬(

∧
Γ→ φ). Use double negation shift to rewrite this as `I (

∧
Γ∗)→ ¬¬φ (note

that ¬¬
∧

Γ is equivalent to
∧

Γ∗, since Γ∗ is the double negation of Γ). Finally we
conclude that Γ∗ `I ¬¬φ.

1.2 Partial Ordered Sets

Before we can define what a fragment is, we need a basic understanding and terminology of
partial ordered sets. The following section will briefly summarise some basic concept and
properties related to partial ordered sets. A more thorough explanation of this subject can
be found in [1] or [2].

Definition 1.4. A partial order on a set A is a binary relation ≤ in which the following
conditions hold for all a, b, c ∈ A:

• a ≤ a, (reflexive)
• a ≤ b and b ≤ a imply a = b, (antisymmetric)
• a ≤ b and b ≤ c imply a ≤ c. (transitive)

The pair 〈A,≤〉 is called a partially ordered set, often abbreviated as poset.

The statement (a ≤ b and a 6= b) is to be written as a < b. The inverse ≥ of ≤ will be
defined by a ≥ b⇔ b ≤ a. Similarly > is the inverse of <.

Definition 1.5. The power set of a set A is the set of all subsets of A, denoted P(A) =

{X | X ⊆ A}.

Definition 1.6. Let 〈S,≤〉 be a poset. An upset (upward closed subset) is a subset
X ⊆ S such that ∀x ∈ X,∀y ∈ S we have x ≤ y ⇒ y ∈ X. A downset (downward closed
subset) is a subset Y ⊆ S such that ∀y ∈ Y,∀x ∈ S we have y ≥ x⇒ x ∈ Y .

CHAPTER 1. INTRODUCTION AND PRELIMINARIES 6

The set of all upsets will be P↑(A) = {X ∈ P(A) | X is an upset}, whereas the set of all
downsets will be P↓(A) = {X ∈ P(A) | X is a downset}. The function ↑ maps a subset X
to the upset ↑ (X) = {x ∈ A | ∃y ∈ X : x ≥ y}. Similarly ↓(X) = {x ∈ A | ∃y ∈ X : x ≤ y}
gives us a downset.

Definition 1.7. Let 〈S,≤〉 be a poset and let x, y ∈ S. The element w ∈ S / v ∈ S is
defined as the join / meet of x and y if:

• x ≤ w and y ≤ w / v ≤ x and v ≤ y
• ∀z ∈ S we have x ≤ z and y ≤ z ⇒ w ≤ z / z ≤ x and z ≤ y ⇒ z ≤ v.

Such an element w / v will be denoted as w = x> y / v = x? y. Note that the definition
implies that the join / meet of two elements is either unique or non-existent.

Well known examples of join and meet operators are the ∪ and ∩ operators in set theory,
the lcm and gcd in number theory, and, as we will see in lemma 1.18, ∨ and ∧ in logic.

Definition 1.8. Let 〈S,≤〉 be a poset. The top of S, if existing, is the element w ∈ S
such that ∀x ∈ S we have w > x = w. The bottom of S, if existing, is the element v ∈ S
such that ∀x ∈ S we have v ? x = v.

Definition 1.9. A poset S is called a lattice if for all elements x, y ∈ S there exists a
join x> y and meet x? y.

In a lattice, the join and meet operators are associative, commutative and idempotent
binary relations. We can therefore define the join of a finite subset X = {x1, x2, . . . , xn} of
lattice S as 6X = x1 > x2 > . . .> xn. The meet of a subset is defined similarly. Note that
the top of S is equal to 6S, and the bottom of S is equal to 7S. We will define 6∅ as
the bottom element and 7∅ as the top element.

Definition 1.10. A lattice is distributive if one of the distributive laws hold:
• x> (y ? z) = (x> y) ? (y > z),
• x? (y > z) = (x? y) > (y ? z).

Note that each distributive law implies the other, so both laws are automatically valid in a
distributive lattice.

Definition 1.11. Let S and P be lattices. An isomorphism is a bijective mapping
f : S 7→ P such that for every x, y ∈ S it holds that f(x> y) = f(x) > f(y) and f(x? y) =

f(x) ? f(y). If such a mapping exists, S and P are called isomorphic.

Definition 1.12. Let 〈S,≤〉 and 〈P,≤′〉 be posets and f : S 7→ P a function. f is called
order-preserving if a ≤ b implies that f(a) ≤′ f(b).

Theorem 1.13. Let 〈S,≤〉 and 〈P,≤′〉 be lattices and f : S 7→ P a bijective function with

CHAPTER 1. INTRODUCTION AND PRELIMINARIES 7

inverse f−1, then f is an isomorphism if and only if both f and f−1 are order preserving.

Proof. A proof can be found in [1].

Finally we will introduce a way to draw partial ordered sets: the Hasse diagram. In a
Hasse diagram each element of the poset is drawn as a vertex of a graph. The order rela-
tion is drawn as an edge between two vertices. An edge will only be drawn if an element is
directly larger than the other (e.g. if x < y < z, then there will never be an edge between x
and z). The vertical placement of the elements determines the direction of the relation. If
for example a > b, the vertex a will be drawn higher than the vertex b. The Hasse diagram
of poset 〈{a, b, c, d, e}, (a>b, a>c, b>d, c>d, c>e)〉 is drawn below:

a

b
c

d e

1.3 Fragments

Definition 1.14. A fragment of intuitionistic logic F = [c1, . . . , ck, p1, . . . , pn] is a set
of formulae (and a sublanguage of IPL) generated by restricting the set of atoms to the
(possibly infinite) set {p1, . . . , pn} and the set of connectives to {c1, . . . , ck}.

If P = {p1, . . . , pn} is a set of propositional variables, then we sometimes use the notation
[c1, . . . , ck, P] where we mean [c1, . . . , ck, p1, . . . , pn]. When it is of lesser importance which
atoms are used, the fragment will be written as F = [c1, . . . , ck]n, where n is the number
of atoms. The set Atom(F) denotes the propositional variables F is restricted to, and the
set Con(F) denotes the connectives F is restricted to.
Although > and ⊥ need not necessarily be embedded in every fragment, they will be
included in all the fragments containing ∧ and ∨ for the remainder of this text. The reason
for this will become apparent in lemma 1.19 and 1.20, using the facts that the join and
meet of the empty set are defined as the bottom and top elements.

Definition 1.15. The size of fragment F will be defined if F has finitely many equivalence
classes. In that case F will be called a finite fragment, and we will denote the number of
equivalence classes by #F . If F has infinitely many equivalence classes we will call F an
infinite fragment.

CHAPTER 1. INTRODUCTION AND PRELIMINARIES 8

Definition 1.16. The diagram of fragment F (denoted Diag(F)) is the partially ordered
set 〈F,`〉, which is created by ordering the equivalence classes of F by derivability.

Definition 1.17. Let F be a finite fragment, let n = #F , and let F = {φ1, . . . , φn} be a
set of formulae in F such that φi ≡ φj implies i = j.

∧
F will be defined as the conjunction

of all elements of F . Similarly
∨
F will be defined as the disjunction of all elements of F .

Lemma 1.18. If we consider Diag(F) where ∨ ∈ Con(F), then φ > ψ is equivalent to
φ ∨ ψ. If ∧ ∈ Con(F), then φ? ψ is equivalent to φ ∧ ψ.

Proof. Let F be a fragment containing ∨ and let φ, ψ ∈ F . ∨-introduction gives
us φ ` φ ∨ ψ and ψ ` φ ∨ ψ. Suppose φ ` χ and ψ ` χ for some χ ∈ F , then
∨-elimination says that φ ∨ ψ ` χ. We can see that ∨ satisfies all conditions to be
the join operator.
The equivalence between ? and ∧ can be proven similarly with ∧-elimination and
∧-introduction.

Lemma 1.19. Let F be a finite fragment with ∨,∧ ∈ Con(F), then Diag(F) is a finite
distributive lattice with top

∨
F and bottom

∧
F .

Proof.
∧
F ` φ for any φ ∈ F by ∧-elimination, so

∧
F `

∧
F ∧ φ. Furthermore∧

F ∧φ `
∧
F by ∧-elimination, so we have shown that

∧
F ≡

∧
F ∧φ for any φ (thus∧

F is the bottom element).
On the other hand we have

∨
F `

∨
F and φ `

∨
F , therefore

∨
F ∨ φ `

∨
F by

∨-elimination, and conversely
∨
F `

∨
F ∨ φ by ∨-introduction. This means that∨

F ≡
∨
F ∨ φ for any φ (thus

∨
F is the top element).

We can conclude that Diag(F) with join and meet operators ∨ and ∧ is a lattice,
since ∧ and ∨ are defined for each pair φ, ψ ∈ F .
The classical distributive laws for ∧ and ∨ are valid in IPL, so the lattice Diag(F) is
distributive.

Theorem 1.20. If >,⊥ ∈ F , then > is the top element and ⊥ the bottom element.

Proof. In the proof of lemma 1.19 we saw that
∨
F is the top element. Since > `

∨
F

(by ∨-introduction) and
∨
F ` > (anything entails >), we can assure that > ≡

∨
F .

Similarly we saw that
∧
F is the bottom element, and both

∧
F ` ⊥ (by ∧-elimination)

and ⊥ `
∧
F (by the principle of explosion) are true, so

∧
F ≡ ⊥.

Chapter 2

Exact Models & Irreducible formulae

Since the diagram of a fragment consists of all equivalence classes of the fragment, the
computation of Diag(F) automatically yields the size of F . While the computation of
Diag(F) is a hard task in general, it can be simplified by constructing a model of Diag(F).

2.1 Models

Definition 2.1. A model for fragment F is a triple 〈W,≤, ω〉, where 〈W,≤〉 is a poset,
and ω is a function F 7→ P↑(W) which maps formulae φ, ψ ∈ F to upsets of W in an order-
preserving fashion, so φ ` ψ implies ω(φ) ⊆ ω(ψ). The set W is called a set of worlds. We
will define a forcing relation for a world w ∈W and a formula φ ∈ F as w
 φ (w forces
φ) if and only if w ∈ ω(φ), and the following rules for the forcing relation:

• If p ∈ Atom(F) and w
 p, then w ≤ u implies u
 p,
• w
 φ ∧ ψ if and only if w
 φ and w
 ψ,
• w
 φ ∨ ψ if and only if w
 φ or w
 ψ,
• w
 φ→ ψ if and only if for each u ≥ w we have u
 φ implies u
 ψ,
• w�
 ⊥.

Definition 2.2. A model M = 〈W,≤, ω〉 is called complete for F if ∀φ, ψ ∈ F it holds
that φ ` ψ ⇔ ω(φ) ⊆ ω(ψ).

Definition 2.3. A model M = 〈W,≤, ω〉 is called exact for F if it is complete and ω is
a surjection.

This means that ω forms a bijection between a fragment F and the downsets of a (most
likely considerably smaller) set of worlds W .

2.2 Irreducibility

Definition 2.4. Let 〈A,≤〉 be a poset. An element a ∈ A is called (join-)irreducible if it
is not the bottom element of A and if a ≤ x> y then a ≤ x or a ≤ y. The set of irreducible
elements of a poset A is written as I(A).

9

CHAPTER 2. EXACT MODELS & IRREDUCIBLE FORMULAE 10

The set of irreducible formulae in Diag(F) is denoted as I(F). Note that I(F) is a poset
as well, ordered by entailment.

Theorem 2.5 (Birkhoff’s theorem). If 〈A,≤〉 is a finite distributive lattice, then it is
isomorphic to the lattice 〈P↓(I(A)),⊆〉.

Proof. Our proof will be constructive: define the mapping:

ω(x) = {a ∈ I(A) | a ≤ x}

Since ≤ is transitive, ω produces an downset of I(A) for each element x ∈ A. Now,
to prove ω is an isomorphism, we use ω(x> y) = {a ∈ I(A) | a ≤ x> y}. Since each
a is join-irreducible, a ≤ x or a ≤ y, so we can derive:

ω(x> y) = {a ∈ I(A) | a ≤ x> y}
= {a ∈ I(A) | a ≤ x ∨ a ≤ y}
= {a ∈ I(A) | a ≤ x} ∪ {a ∈ I(A) | a ≤ y}

Since ∪ is the join operator of ⊆, we conclude ω(x> y) = ω(x) > ω(y).
Now for ω(x? y) we have the following derivation:

ω(x? y) = {a ∈ I(A) | a ≤ x? y}
= {a ∈ I(A) | a ≤ x ∧ a ≤ y}
= {a ∈ I(A) | a ≤ x} ∩ {a ∈ I(A) | a ≤ y}

Once again ∩ is the meet operator of ⊆, so we conclude ω(x? y) = ω(x) ? ω(y).
The mapping ω(x) = X is a bijection, since it has the inverse ω−1(X) = 6X, the
join of all elements in X. This fulfils the conditions given in definition 1.11, so A and
P↓(I(A)) are isomorphic.

Example 2.6. Below we see a Hasse diagram of a poset A with six elements. The irre-
ducible elements are encircled and form the exact model of A. Each downset of the exact
model corresponds with an element of A; the empty set corresponds with the bottom ele-
ment, a ? b, while every other downset X corresponds with the element 6X, the join of
the irreducible elements that make up X.

CHAPTER 2. EXACT MODELS & IRREDUCIBLE FORMULAE 11

a

c

a? b

a> b

a> c

b

Poset A

a

b

c

Exact model of A

Theorem 2.7. Let F be a fragment and let ∧,∨ ∈ Con(F). The set of irreducible elements
I(F) of a fragment F forms an exact model for F .

Proof. Lemma 1.19 showed that Diag(F) is a distributive lattice if ∧,∨ ∈ Con(F),
so we can use the ω function given in the proof of Birkhoff’s theorem to formulate the
model 〈I(F),`, ω〉. Birkhoff’s theorem states that this ω is an isomorphism, so ω is
a surjection. Furthermore the model is complete by theorem 1.13. We conclude that
〈I(F),`, ω〉 is an exact model for Diag(F).

Chapter 3

Exact Model of [∧,∨,¬¬]n

Theorem 2.7 states that it is possible to construct the exact model of [∧,∨,¬¬]n from its
irreducible elements. To find each irreducible formula, we need to be able to generate all
formulae of [∧,∨]n, so we start by finding I([∧,∨]n).

3.1 [∧,∨]n

As an example, the diagrams of fragment [∧,∨]3 and its irreducible elements are drawn
below. The formulae that were too long to be drawn in the fragment are φ1 ≡ q ∨ (p ∧ r),
φ2 ≡ (p∧r)∨(p∧q)∨(q∧r), φ3 ≡ (p∧r)∨(q∧r), φ4 ≡ (p∧q)∨(q∧r) and φ5 ≡ (p∧q)∨(p∧r).
The encircled elements are irreducible.

⊥

p ∧ q ∧ r

p ∧ q
p ∧ r q ∧ r

φ5
φ4

φ3

p φ2 q r

p ∨ (q ∧ r) φ1
r ∨ (p ∧ q)

p ∨ q p ∨ r
q ∨ r

p ∨ q ∨ r

>

Diag([∧,∨, p, q, r])

>

p q r

p ∧ q p ∧ r q ∧ r

p ∧ q ∧ r

I([∧,∨, p, q, r])

Lemma 3.1. Let F = [∧,∨]n. Every formula φ ∈ F can be written as a disjunction of
formulae

∧
Q where each Q is a subset of Atom(F).

12

CHAPTER 3. EXACT MODEL OF [∧,∨,¬¬]n 13

Proof. Any nested disjunction φ ∧ (ψ ∨ χ) can be unnested by application of the
distributive law φ ∧ (ψ ∨ χ) ≡ (φ ∧ ψ) ∨ (φ ∧ χ). The lemma follows by induction.
Nota bene: the top and bottom can be written as > ≡

∧
∅ and ⊥ ≡

∨
∅.

Theorem 3.2. Let F = [∧,∨]n, then φ is an irreducible element of F if and only if
φ ≡

∧
Q, where Q ⊆ Atom(F) is some set of atoms.

Proof. Let φ be an irreducible formula. Lemma 3.1 says that it has to be of the form
φ ≡

∨
[
∧
QI], where each Qi (i ∈ I) is a set of atoms. Since

∨
[
∧
QI] `

∨
[
∧
QI] is true,

if φ is irreducible, we need
∨

[
∧
QI] `

∧
Qi for some i ∈ I. But then ∨-introduction

gives us
∧
Qi `

∨
[
∧
QI] and therefore

∨
[
∧
Qi] ≡

∧
Qi.

Bottom element ⊥ cannot be written as the conjunction of atoms, so the only can-
didates which can be irreducible are the formulae

∧
Q where Q ⊆ Atom(F).

Let P be a non-emty set of atoms which is disjoint from Q (so P ∩ Q = ∅), then∧
Q �̀

∧
P . Now let P1, . . . , Pk be nonempty sets of atoms which are all disjoint from

Q, then we have
∧
Q �̀

∨
[
∧
PI], where I = {1, . . . , k}. Suppose that

∧
Q `

∨
[
∧
QI].

Then we have the following: ∧
Q `

∧
Q ∧

∨
[
∧
QI]

≡
∧
Q ∧

∨
[
∧

(QI \Q)]

`
∨

[
∧

(QI \Q)]

Since each Qi \ Q is disjoint from Q, the only way this entailment holds is if one of
the Qi \ Q is empty. In that case we have

∧
(Qi \ Q) ≡

∧
∅ ≡ >, and therefore∨

[
∧

(QI \ Q)] ≡ >. However, if Qi \ Q = ∅, then Qi ⊆ Q, so then
∧
Q `

∧
Qi.

We can conclude that
∧
Q `

∨
[
∧
QI] implies that

∧
Q `

∧
Qi for some i ∈ I, and

therefore
∧
Q is irreducible.

If we want to construct the diagram of I([∧,∨]), we also need to be able to say when an
irreducible formula φ directly entails another irreducible formula ψ.

Definition 3.3. Let F be a set of formulae and φ, ψ ∈ F , then φ directly entails ψ in
F if φ 6≡ ψ and for every χ ∈ F such that φ ` χ and χ ` ψ that either φ ≡ χ or ψ ≡ χ.
This will be denoted as φ `1 ψ in F .

Lemma 3.4. Let φ ≡
∧
Q1 and ψ ≡

∧
Q2 (Q1, Q2 ⊆ Atom(F)) be irreducible formulae

of fragment F = [∧,∨]n, then φ `1 ψ in I(F) if and only if Q1 = Q2 ∪ {p} for some atom
p /∈ Q2.

Proof. Naturally
∧
Q1 `

∧
Q2 if and only if Q2 ⊆ Q1. Suppose Q2 ∪ {p} ≡ Q1 for

some p /∈ Q2 and
∧
Q1 `

∧
P and

∧
P `

∧
Q2. P has to be a subset of Q1, but Q2

has to be a subset of P . If p /∈ P , we have that P ⊆ Q1 \ {p} = Q2, so P = Q2. On

CHAPTER 3. EXACT MODEL OF [∧,∨,¬¬]n 14

the other hand if p ∈ P , then Q2 ∪ {p} = Q1 ⊆ P , so P = Q1. We conclude that∧
Q1 `1

∧
Q2.

Of course
∧
Q1 6`1

∧
Q2 if Q1 = Q2 or if Q2 6⊂ Q1, so let us focus on the remaining case

where Q2 ⊂ Q1 and Q1\Q2 has more than one element. Let’s say p, q ∈ Q1\Q2, where
p 6= q. Then of course

∧
Q1 `

∧
(Q1 \ {p}) `

∧
Q2. Since

∧
Q1 6≡

∧
(Q1 \ {p}) 6≡

∧
Q2

(because p is only in Q1, while q is in each set except for Q2) we have
∧
Q1 6`1

∧
Q2

3.2 [∧,∨,¬¬]n

We are now able to construct the [∧,∨]n fragments, so we can move on to the [∧,∨,¬¬]n

fragments. We have again drawn an example of the diagram and irreducible elements of
[∧,∨,¬¬]2 below. In the diagrams the formulae φ1 ≡ p ∨ q ∨ ¬¬(p ∧ q), φ2 ≡ ¬¬(p ∧ q)
and φ3 ≡ (p ∧ ¬¬q) ∨ (q ∧ ¬¬p).

⊥

p ∧ q

p ∧ ¬¬q q ∧ ¬¬p

p
φ3

q

p ∨ (q ∧ ¬¬p)
φ2

q ∨ (p ∧ ¬¬q)

p ∨ ¬¬(p ∧ q)
p ∨ q

q ∨ ¬¬(p ∧ q)

¬¬p
φ1 ¬¬q

¬¬p ∨ q p ∨ ¬¬q

¬¬p ∨ ¬¬q

¬¬(p ∨ q)

>

Diag([∧,∨,¬¬, p, q])

p ∧ q

p ∧ ¬¬q q ∧ ¬¬p

p
φ2

q

¬¬p ¬¬q

¬¬(p ∨ q)

>

I([∧,∨,¬¬, p, q])

Lemma 3.5. All formulae φ ∈ F = [∧,∨,¬¬]n are equivalent to a disjunction of formulae
(
∧
Q) ∧ ¬¬ψ, where each Q ⊆ Atom(F) and each ψ ∈ [∧,∨, Atom(F) \Q].

CHAPTER 3. EXACT MODEL OF [∧,∨,¬¬]n 15

Proof. We will show with Glivenko’s theorem (or actually corollary 1.3) that any
formula ¬¬ψ∗ in which ψ∗ ∈ [∧,∨,¬¬]n can be reduced to a formula ¬¬ψ, where ψ ∈
[∧,∨]n. That is, double negations inside double negations are unnecessary. Suppose
ψ∗ ∈ [∧,∨,¬¬]n contains double negations, then classically ψ∗ is equivalent to a
formula ψ ∈ [∧,∨]n, because double negation elimination can remove any double
negation. Since ψ ≡C ψ∗, Glivenko’s theorem tells us that ¬¬ψ ≡I ¬¬ψ∗.
Now suppose we have a formula that consists of conjunctions and disjunctions of
double negated formulae of [∧,∨]n, then we can arrange that formula in the form of∨

(
∧

Γ∗I) by the distributive rules over ∧ and ∨, where Γ∗i is a set of double negated
formulae for each i ∈ I. We can convert each Γ∗i to Γi, where each Γi is equal to
Γ∗i with all negations removed. We know because of double negation shift,

∧
¬¬φ ≡

¬¬
∧
φ, that therefore

∨
(
∧

Γ∗I) ≡
∨
¬¬(

∧
ΓI). Note that

∧
ΓI is itself a formula in

[∧,∨]n, therefore we know that there are some ψi ∈ [∧,∨]n for each i ∈ I such that∨
¬¬(

∧
ΓI) ≡

∨
¬¬ψI .

Finally we look at a formula that consists of the conjunctions and disjunctions of
both double negated formulae from [∧,∨]n and atomic formulae (this is in fact any
formula in [∧,∨,¬¬]n). By the same arguments as before this formula is equivalent
to

∨
(
∧

∆I), where each ∆i (i ∈ I) is a set with double negated formulae and atoms.
Define a set Qi and a set Γ∗i for each ∆i, such that Qi is the atomic part of ∆i and
Γ∗i the double negated part, then we will see that

∨
(
∧

∆I) ≡
∨

(
∧
QI ∧

∧
Γ∗I) ≡∨

(
∧
QI ∧ ¬¬ψI) with each ψi ∈ [∧,∨]n. We have now shown that any formula of

[∧,∨,¬¬]n can be written as the disjunction of formulae (
∧
Q) ∧ ¬¬ψ.

Theorem 3.6. Let F = [∧,∨,¬¬]n. A formula φ ∈ F is irreducible or the bottom element
if and only if there exist a subset Q ⊆ Atom(F) and a formula ψ ∈ [∧,∨, Atom(F) \ Q],
such that φ ≡ (

∧
Q) ∧ ¬¬ψ.

Proof. Let an element φ ∈ I([∧,∨,¬¬]n) be irreducible, then lemma 3.5 says it can
be written as a disjunction of elements (

∧
Qi) ∧ ¬¬ψi for i ∈ I. Since we assumed φ

to be irreducible, there has to be an i ∈ I such that φ ` (
∧
Qi)∧¬¬ψi, and therefore

we have φ ≡ (
∧
Q) ∧ ¬¬ψ.

If we assume that (
∧
Q) ∧ ¬¬ψ is not irreducible, it must be the disjunction of some

other irreducible formulae. So there must be a set of formulae φi ≡ Qi ∧¬¬ψi (i ∈ I)
not equivalent to φ ≡ (

∧
Q) ∧ ¬¬ψ such that for all i ∈ I we have φi ` φ and

φ ≡
∨

[φI]. This means that for all i we need Qi ⊇ Q and ψi ∧
∧
Qi \Q ` ψ.

We can see that
∧
Atom(F) has to be irreducible: the only possible superset Qi of

Atom(F) is Atom(F) itself, which gives only two options for ψi ∈ [∧,∨]0, namely
> and ⊥. Note that in the case of > we have Atom(F) ∧ ¬¬> ≡ Atom(F) and in
the case of ⊥ we have Atom(F) ∧ ¬¬⊥ ≡ ⊥. The first case is obviously equivalent

CHAPTER 3. EXACT MODEL OF [∧,∨,¬¬]n 16

to Atom(F), while the second is the bottom element, therefore Atom(F) must be
irreducible.
If we take a look at formula φ ≡ (

∧
Q) ∧ ¬¬

∧
(Atom(F) \ Q), with Q 6= Atom(F),

then Qi = Q implies that ψi ≡ ⊥ (this is because
∧
Atom(F \Q) is implied by only∧

Atom(F \ Q) and ⊥, and only in the latter case we have φi 6≡ φ), which makes
φi ≡ ⊥, therefore for every i ∈ I we have Qi ⊃ Q. This means that φ �̀

∨
φI ,

since for all i ∈ I we have φi ` p for some p /∈ Q. Therefore we can conclude that
(
∧
Q) ∧ ¬¬

∧
(Atom(F) \Q) is irreducible.

Lastly we have formulae of the form φ ≡ (
∧
Q)∧¬¬ψ where ψ 6≡

∧
Atom(F) \Q. In

this case for any φi with Qi ⊃ Q we can find the irreducible formula φ∗i ≡ (
∧
Q) ∧

¬¬(ψi ∧
∧

[Qi \ Q]), for which we have
∧
Qi ∧ ¬¬ψi ` φ∗i ` (

∧
Q) ∧ ¬¬ψ, so the

set of irreducible formulae for which φ ≡
∨
φI with the least elements has for each

i ∈ I that Qi = Q. Because the atoms in ψ and each ψi do not overlap with the
atoms in Q, we can see that ¬¬ψ ≡

∨
¬¬ψI has to be true. Since double negation

shift for disjunction is not generally valid in IPL (that is ¬¬(χ ∨ ω) �̀ ¬¬χ ∨ ¬¬ω),
we can see that the double negations in

∨
¬¬ψI can only be brought outside of the

disjunction when there is a certain ψj such that ψj ` ψi for every i ∈ I (in that case∨
¬¬ψI ≡ ¬¬ψj). But then we have ψj ≡ ψ, which contradicts our assumption that

φi 6≡ φ for any i ∈ I. Therefore φ has to be irreducible.
In conclusion, any formula (

∧
Q)∧¬¬ψ either is equivalent to ⊥ or is irreducible.

And finally we will determine the order of the irreducible elements of [∧,∨,¬¬]n.

Lemma 3.7. Let F = [∧,∨,¬¬]n and let φ1 ≡ (
∧
Q1) ∧ ¬¬ψ1 and φ2 ≡ (

∧
Q2) ∧ ¬¬ψ2

be formulae of I([F), with Q1, Q2 ⊆ Atom(F) and ψ1 ∈ G1 = [∧,∨, Atom(F) \ Q1],
ψ2 ∈ G2 = [∧,∨, Atom(F) \Q2]. Then φ1 `1 φ2 if and only if one of the following holds:

• Q1 = Q2 and ψ1 `1 ψ2,
• Q1 = Q2 ∪ {p} for p /∈ Q2 and ψ2 ≡ ψ1 ∧ p.

Proof. First we will mention that eitherQ1 = Q2 orQ1 = Q2∪{p} for some p /∈ Q2 has
to hold. Of course if Q1 ⊃ Q2 we have that (

∧
Q1)∧¬¬ψ1 �̀ (

∧
Q2)∧¬¬ψ2. If Q1 =

Q2∪{p, q} for p 6= q and p, q /∈ Q2, then we can find the formula (
∧
Q2∪{p})∧¬¬ψ2

which is not equivalent to (
∧
Q1) ∧ ¬¬ψ1 and not equivalent to (

∧
Q2) ∧ ¬¬ψ2, but

for which (
∧
Q1) ∧ ¬¬ψ1 ` (

∧
Q2 ∪ {p}) ∧ ¬¬ψ2 ` (

∧
Q2) ∧ ¬¬ψ2.

If we consider the first case, wherein Q1 = Q2, then also G1 = G2 and ψ1, ψ2 ∈
[∧,∨, Atom(F)\Q1]. So if (

∧
Q1)∧¬¬ψ1 ` (

∧
Q∗)∧¬¬ψ∗ ` (

∧
Q2)∧¬¬ψ2 we know

that Q∗ = Q1 = Q2 and ψ1 ` ψ∗ ` ψ2. We need ψ∗ ≡ ψ1 or ψ∗ ≡ ψ2, so therefore
ψ1 `1 ψ2 has to be true.
In the second case we have (

∧
Q1) ∧ ¬¬ψ1 ` (

∧
Q∗) ∧ ¬¬ψ∗ ` (

∧
Q2) ∧ ¬¬(ψ1 ∧ p).

Since (
∧
Q1)∧¬¬ψ1 ≡ (

∧
Q1)∧¬¬(ψ1 ∧ p) (because p ∈ Q1), we know that ψ1 ∧ p `

CHAPTER 3. EXACT MODEL OF [∧,∨,¬¬]n 17

ψ∗ ` ψ1 ∧ p, so therefore that ψ∗ ≡ ψ1 ∧ p ≡ ψ2. Together with the fact that
Q1 ⊇ Q∗ ⊇ Q2 we can deduct that Q∗ is equal to either Q1 or Q2, which makes
(Q∗) ∧ ¬¬ψ∗ equivalent to either (

∧
Q1) ∧ ¬¬ψ1 or (

∧
Q2) ∧ ¬¬ψ2 respectively, and

thus (
∧
Q2 ∪ {p}) ∧ ¬¬ψ1 `1 (

∧
Q2) ∧ ¬¬(ψ1 ∧ p).

Chapter 4

Computing the Size of [∧,∨,¬¬]n

The computation of the size of a fragment with an exact model can be split in two main
parts: generating the irreducible formulae and generating each upset of the exact model.
We will first discuss the data types that are being used. Although the code itself is written
in C++, this section will mostly use pseudocode to explain the algorithms, mainly because
pseudocode allows us to use the mathematical notations from the other parts of this thesis.
In the appendix the complete program can be found in C++.

4.1 Data Types

If we look back to how an irreducible formula of [∧,∨,¬¬]n is described in the last chapter,
we see that each formula is uniquely defined by the conjunction of a set of atoms Q and the
double negation of a formula ψ. This ψ is a formula of [∧,∨]n, and therefore it is described
as the disjunction of a set of conjunctions of sets of atoms Pi. So in the end our most basic
building blocks can be conjunctions of atoms. We will use the least significant bits of an
int in the range [0, 15] to define the presence of a certain atom in the conjunction; that
is, the ones-bit will stand for the atom p, the twos-bit for the atom q, the fours-bit for the
atom r and the eights-bit for the atom s. Since the computation of [∧,∨,¬¬]5 will most
likely be too expensive, the algorithm will be designed specifically to calculate [∧,∨,¬¬]n

for n ∈ {1, 2, 3, 4}. It can be easily modified to work with 5 atoms, however, by defining
the 16s-bit as the fifth atom. In our case the 16s-bit will be used to represent ⊥, which
cannot be expressed as the conjunction of atoms alone.
We will define the data structures forc, forcd and forcddn to be formulae from [∧],
[∧,∨] and I([∧,∨,¬¬]) respectively. The forc will be only a conjunction, and therefore
only consists of the integer we just described. The forcd will be a list of forcs, where the
formula is represented as the disjunction of all elements of the list. Finally the forcddn
will consist of a forc Q and a forcd ψ, representing

∧
Q ∧ ¬¬ψ.

Apart from having a data representation of the formulae, we need the ability to relate
formulae to one another. Such relation gives us the opportunity to put the structures
in sorted lists and heaps, so we can construct a diagram. To do this the operators ==
(equivalence), < (entailment) and - (direct entailment) will be overloaded for our data
structures.

18

CHAPTER 4. COMPUTING THE SIZE OF [∧,∨,¬¬]n 19

In the case of forc it is pretty easy. We saw in the last chapter that if
∧
Q1 `

∧
Q2, then

all the atoms of Q2 must be present in Q1, therefore Q1 OR Q2 should equal Q1, where OR
stands for the bitwise or operator. Direct entailment follows if Q1 has all the 1-bits of Q2

plus one extra (that is in the four least significant places), and equality is only true if both
integers are equal. The ideal part of this system is that the standard ordering of integers
by value also implies that the forcs are ordered by our overloaded operators.
The ordering of forcds in general is a bit more complicated, but it can be made easier if we
only allow those forcd such that their list of forcs is maximal. This means that for any
formula φ ∈ [∧] if φ `

∨
Γ, where Γ is our set of conjunctions, then φ ∈ Γ (so Γ contains all

irreducible elements that entail
∨

Γ). In the case where the set of conjunctions is maximal,
entailment of

∨
Γ1 `

∨
Γ2 follows once again if Γ2 is a subset of Γ1. Since we can sort Γ1

and Γ2 (they contain elements of the forc type), this is not too difficult to check. Direct
entailment follows from direct subsets and equality follows if the lists are equal.
Finally there is forcddn. We will start with direct entailment. There are two possibilities
if
∧
Q1∧¬¬ψ1 `

∧
Q2∧¬¬ψ2. In the first case Q1 = Q2 and we need the direct entailment

of ψ1 `1 ψ2 both of which can be checked with the operators for forc and forcd. The
second case is when Q1 is a direct superset of Q2. Now we need ψ2 to be equivalent to
ψ1 ∧ p, where p is the difference between Q1 and Q2. However, in our program the formula
ψ1∧p needs to be in disjunctive normal form, which can be done with one application of the
distributive rules. We therefore have to add p to each forc in the list of forcs contained
in the forcd ψ1. This is done by the forcd member-function augment(), which replaces
the original integers of the forcs with integers that have the new atom included. Normal
entailment now follows by checking that Q1 ⊃ Q2 and that ψ1 ∧

∧
(Q1 \Q2) ` ψ2 (that is,

ψ1 augmented with Q1 \Q2). Equality is once again the simplest, two forcddns are equal
if the contained forcs and forcds are equal.
The two remaining structures are the poset and the uptrie. The poset is a structure
that contains a list of elements, of the type poElem. These poElems are structures that
contain an element e (of an undefined type, in this application they will be of the type forc,
forcd, or forcddn), a list of children and a list of parents (both are lists of poElems
of the same type). Let p be a poElem, then the functions element(p), children(p) and
parents(p) respectively return its element, its list of children and its list of parents. The
list of poElems in the poset will be topologically ordered, so that if p is the parent of q,
then p will be earlier on the list than q. An uptrie is a trie structure that also contains
an element e (of an undefined type), a list of children and its parental node. If u is an
uptrie, then element(u), children(u) and parent(u) respectively return its element, its list
of children and its parent. The function upset(u) will return a list containing element(u)

and all elements of upset(parent(u)), effectively returning the elements of the corresponding
upset. We will speak of the reach of an uptrie u as the set containing u and the reach of its
children (in terms of upsets this will be the set of upsets that are supersets of the original).

CHAPTER 4. COMPUTING THE SIZE OF [∧,∨,¬¬]n 20

4.2 Generating Upsets

The algorithm used to transform a poset into a set of upsets is described in detail in [8],
in Dutch. In this section we will discuss briefly how it works.
An uptrie is a standard trie structure that describes all the upsets of a given poset P . The
root of the tree will be the empty set. Every other node will contain an element of P .
Furthermore the tree is topologically sorted, therefore each child is topologically smaller
than its parent and we can ascertain there will not be two different nodes corresponding to
the same upset.
Finding all upsets will thus be as easy as counting all the nodes of an uptrie. In our
case, if each node u contains an irreducible formula of fragment F , then the disjunction
of upset(u) will result in a unique formula in F . The hard part will be converting a
poset to an uptrie. This is done by two algorithms, findUpsetsWithElements() and
generateUptrie(). Below we have given the first algorithm in pseudo-code. The func-
tion takes two arguments; an uptrie u and a list (in our case of formulae) S, and it returns
a list of uptries H:
function FINDUPSETSWITHELEMENTS(uptrie u, list S)

list H ← ∅
if u is topologically the largest element of S then

S ← S \ {element(u)}
end if
if S = ∅ then

H ← H ∪ {u}
else if ∃v ∈ S : element(u) < v then

return ∅
end if
for all uptries v ∈ children(u) do

H ← H ∪ FINDUPSETSWITHELEMENTS(v, S)
end for
return H

end function

It will recursively determine the set of uptries that can be reached from u such that the
corresponding upset contains all the elements in S. This is done with a few steps:

• If element(u) is topologically the largest element of S, then all uptries that can be
reached from u will correspond with an upset containing element(u), so we can remove
element(u) from S (thereby continuing the search for the remainder of S).

• If S is empty, we know for sure that all uptries that can be reached from u correspond
with upsets that contain S, so we can add u to our list of uptries H.

CHAPTER 4. COMPUTING THE SIZE OF [∧,∨,¬¬]n 21

• If there is an element v in S such that element(u) is smaller, we know that v will not
be in the upsets that correspond with u. Since uptries are topologically sorted, we
know that this will also be the case for all the uptries that can be reached from u.
Therefore stop the search and return an empty list.

We can now search through all the children of u to find more uptries corresponding with
upsets that contain S.
The second algorithm utilises findUpsetsWithElements() to construct an uptrie from
a poset P . It will also depend on the fact that P is topologically ordered, and the resulting
uptrie will have the same ordering. The function has one argument, the poset P , and
returns the root of the uptrie:
function GENERATEUPTRIE(poset P)

uptrie r
for all poElems p ∈ P do

list H = FINDUPSETSWITHELEMENTS(r, parents(p))
for all uptries u ∈ H do

let up be an uptrie with element p

children(u)← children(u) ∪ {up}
end for

end for
end function

Since P is topologically ordered, we know that at each iteration element(p) is smaller than
all elements that can be reached from r, therefore, since H contains all the uptrie nodes
that have an upset containing all of parents(p), we know that the union of such an upset
and element(p) is an upset as well, therefore p can be added as a child to each uptrie node.

4.3 Constructing Irreducible Formulae of [∧,∨]n

Of the two fragments we will compute, the generation of I([∧,∨]n) is the easiest, since
this is equal to [∧]n without ⊥. Our structure for a formula of [∧]n gives us a fairly easy
solution: all irreducible formulae of [∧,∨]n (with n < 5) are uniquely representable by an
integer between 0 and 15. We want the possibility of choosing which atoms to include,
therefore the function irrCD() has a list of chars (atoms) as argument. It returns a
poset with forcs:
function IRRCD(list L)

list F

let f be a forc equivalent to
∧
L.

for i from 0 to 15 do
let g be a forc with integer i

CHAPTER 4. COMPUTING THE SIZE OF [∧,∨,¬¬]n 22

let pg be a poElem with element g

if f ` g then
F ← F ∪ {pg}

end if
end for
for all poElems pi ∈ F [0, 1, ..] do

for all poElems pj ∈ F [i+ 1, i+ 2, ..] do
if element(pi) `1 element(pj) then

add pj as child of pi.
end if

end for
end for
let P be a poset with list F

return P

end function

In this function the list F is a list of poElems. To this list we will add all the conjunctions
of atoms that are entailed by the formula

∧
L, with L the list of atoms (therefore making

[∧, L] without ⊥). After that we will compare each poElem pi with every other pj in the
list F , and if they entail directly we will add pj as child of pi. In the end we create and
return a poset with list F .

4.4 Constructing Diagram of [∧,∨]n

The generation of the diagram of [∧,∨]n will be generating all the formulae of [∧,∨]n and
putting them in the right order. Luckily we can already do this with all the tools we have.
The function diagCD() also has a list of chars (atoms) as its only argument, like we saw
in the last section, and the returning value will be a poset with forcds:
function DIAGCD(list L)

list F

poset I ← IRRCD(L)
uptrie r ← GENERATEUPTRIE(I)
list U ← FINDUPSETSWITHELEMENTS(r, ∅)
for all uptries u ∈ U do

let f be a forcd with list upset(u)

let pf be a poElem with element f

F ← F ∪ {pf}
end for
F ← SORT(F)

CHAPTER 4. COMPUTING THE SIZE OF [∧,∨,¬¬]n 23

for all poElems pi ∈ F [0, 1, ..] do
for all poElems pj ∈ F [i+ 1, i+ 2, ..] do

if element(pi) `1 element(pj) then
add pj as child of pi.

end if
end for

end for
let P be a poset with list F

return P

end function

First we generate I([∧,∨]) using the already familiar function irrCD(), convert this poset
to an uptrie using generateUptrie(), then make a list with all the nodes of the
uptrie by calling findUpsetsWithElements() with an empty list as second argument
and convert each uptrie node to a poElem with type forcd. All the poElems will be put
inside F and sorted by the number of elements of the upset that resulted in each formula.
This also implies sorting by entailment. Now each poElem pi will be compared with every
other pj in the list F , and if they entail directly we will add pj as child of pi. Finally we
return a poset with list F .

4.5 Constructing Irreducible Formulae of [∧,∨,¬¬]n

The function that constructs I([∧,∨,¬¬]n) is called irrCDDN() and like the last two
functions, it has a list of chars L as argument and returns a poset with forcddns. One
additional function that is used is the complementaryAtoms() function, which takes
two arguments: a forc f and a list of chars L. If Lf is the list of atoms that are used in
f , then complementaryAtoms() returns the list L \ Lf .
function IRRCDDN(list L)

list F

poset PQ ← IRRCD(L)
for all poElems q ∈ PQ do

list C ← COMPLEMENTARYATOMS(element(q), L)
poset PΓ ← DIAGCD(C) \ {⊥}
for all poElems ψ ∈ PΓ do

let f be a forcddn with forc element(q) and forcd element(ψ)

let pf be a poElem with element f

F ← F ∪ {pf}
end for

end for

CHAPTER 4. COMPUTING THE SIZE OF [∧,∨,¬¬]n 24

for all poElems pi ∈ F [0, 1, ..] do
for all poElems pj ∈ F [i+ 1, i+ 2, ..] do

if element(pi) `1 element(pj) then
add pj as child of pi.

end if
end for

end for
let P be a poset with list F

return P

end function

The algorithm first creates a poset PQ, containing all the possible values for Q in
∧
Q∧¬¬ψ.

They will be the forc parts of the forcddns that will be generated. It then creates for
every forc in PQ a poset of forcds, that will be the ψ parts of the formulae, or the forcd
parts of the forcddns. In the inner for-loop each forcddn is constructed, gets put in
a poElem and added to the list F . Then finally the same procedure as with the last two
function happens: the child-parent relations of the poset are determined and the poset
with list F is returned.

4.6 Counting the Size of [∧,∨,¬¬]n

The very last step is to convert a poset of forcddn to an uptrie with generateUptrie()
and counting the number of nodes of this uptrie. This all happens in the main function
and is quite straightforward. It is possible to make the diagram of [∧,∨,¬¬]n with a
method similar to diagCD(). Since the main goal of this text was only to find the size of
[∧,∨,¬¬]n, such a function has not been implemented.

Chapter 5

Conclusion

This text has explained a way to calculate the size of the fragment [∧,∨,¬¬]n for arbitrary n
and describes an algorithm that can compute this number for n < 5. The number #[∧,∨]n

is equal to the Dedekind number Dn, and these numbers grow super-exponentially, see [7].
Since [∧,∨]n is embedded in [∧,∨,¬¬]n, we know that #[∧,∨,¬¬]n also grows at least
super-exponentially. The complexity of the given algorithm is therefore quite poor. It
produces results for n < 4 without a problem and in a short timespan. The sizes for n = 1,
n = 2 and n = 3 are 4, 21 and 1891 respectively. This is in line with the results showed
in [6] (Nota bene, in that text the sizes are computed without > and ⊥, therefore the sizes
result in the numbers 2, 19 and 1889).
However, the size for n = 4 is problematic. The diagram of I([∧,∨,¬¬]4) is computed
pretty quickly and learns us that there are 282 irreducible formulae. The list of computed
elements of I([∧,∨,¬¬]4) is given in the appendix. The program wil then proceed to
generate the uptrie for this poset, by looping through the poElems. Timing the duration
of each iteration shows that the duration will have a more or less exponential growth, and
extrapolation of these results indicates that the estimated time needed to complete the
algorithm will be in the order of hundreds of millions of years.
It might be possible to improve the current algorithm by using some properties of the
diagrams. The lattices I([∧,∨,¬¬]n) are stratified, which means it can be divided in layers
A0 to Ak, such that for all elements in Ai the children of those elements are in Ai+1.
Naturally these layers are only a fraction of the size of the original diagram, so we can
compute the upsets that have at least one element in a layer Ai but none in layer Ai+1.
However this still might be difficult, since the number of elements per layer grows rapidly.
For the fragment with four atoms, as a matter of fact, the number of elements per layer is
given by:

{1, 4, 10, 16, 19, 22, 22, 22, 25, 22, 23, 24, 19, 18, 13, 10, 6, 4, 1, 1}

The sum of the total number of subsets per layer is approximately 76 million, therefore the
computation might still be quite expensive.

25

Appendix A

List of Formulae in I([∧,∨,¬¬]4)

1. p ∧ q ∧ r ∧ s

2. q ∧ r ∧ s ∧ ¬¬p

3. q ∧ r ∧ s

4. p ∧ r ∧ s ∧ ¬¬q

5. p ∧ r ∧ s

6. r ∧ s ∧ ¬¬(p ∧ q)

7. r ∧ s ∧ ¬¬p

8. r ∧ s ∧ ¬¬q

9. r ∧ s ∧ ¬¬[q ∨ p]

10. r ∧ s

11. p ∧ q ∧ s ∧ ¬¬r

12. p ∧ q ∧ s

13. q ∧ s ∧ ¬¬(p ∧ r)

14. q ∧ s ∧ ¬¬p

15. q ∧ s ∧ ¬¬r

16. q ∧ s ∧ ¬¬(r ∨ p)

17. q ∧ s

18. p ∧ s ∧ ¬¬(q ∧ r)

19. p ∧ s ∧ ¬¬q

20. p ∧ s ∧ ¬¬r

21. p ∧ s ∧ ¬¬(r ∨ q)

22. p ∧ s

23. s ∧ ¬¬(p ∧ q ∧ r)

24. s ∧ ¬¬(p ∧ q)

25. s ∧ ¬¬(p ∧ r)

26. s ∧ ¬¬(q ∧ r)

27. s ∧ ¬¬[(p ∧ r) ∨ (p ∧ q)]

28. s ∧ ¬¬[(q ∧ r) ∨ (p ∧ q)]

29. s ∧ ¬¬[(q ∧ r) ∨ (p ∧ r)]

30. s ∧ ¬¬p

31. s ∧ ¬¬q

32. s ∧ ¬¬[(q ∧ r) ∨ (p ∧ r) ∨ (p ∧ q)]

33. s ∧ ¬¬r

34. s ∧ ¬¬[(q ∧ r) ∨ p]

35. s ∧ ¬¬[(p ∧ r) ∨ q]

36. s ∧ ¬¬[r ∨ (p ∧ q)]

37. s ∧ ¬¬(q ∨ p)

38. s ∧ ¬¬(r ∨ p)

39. s ∧ ¬¬(r ∨ q)

40. s ∧ ¬¬(r ∨ q ∨ p)

41. s

42. p ∧ q ∧ r ∧ ¬¬s

43. p ∧ q ∧ r

44. q ∧ r ∧ ¬¬(p ∧ s)

45. q ∧ r ∧ ¬¬p

46. q ∧ r ∧ ¬¬s

47. q ∧ r ∧ ¬¬(s ∨ p)

48. q ∧ r

49. p ∧ r ∧ ¬¬(q ∧ s)

50. p ∧ r ∧ ¬¬q

51. p ∧ r ∧ ¬¬s

52. p ∧ r ∧ ¬¬(s ∨ q)

53. p ∧ r

54. r ∧ ¬¬(p ∧ q ∧ s)

55. r ∧ ¬¬(p ∧ q)

56. r ∧ ¬¬(p ∧ s)

57. r ∧ ¬¬(q ∧ s)

58. r ∧ ¬¬[(p ∧ s) ∨ (p ∧ q)]

59. r ∧ ¬¬[(q ∧ s) ∨ (p ∧ q)]

60. r ∧ ¬¬[(q ∧ s) ∨ (p ∧ s)]

61. r ∧ ¬¬p

62. r ∧ ¬¬q

63. r ∧ ¬¬[(q ∧ s) ∨ (p ∧ s) ∨ (p ∧ q)]

64. r ∧ ¬¬s

65. r ∧ ¬¬[(q ∧ s) ∨ p]

66. r ∧ ¬¬[(p ∧ s) ∨ q]

67. r ∧ ¬¬[s ∨ (p ∧ q)]

68. r ∧ ¬¬(q ∨ p)

69. r ∧ ¬¬(s ∨ p)

70. r ∧ ¬¬(s ∨ q)

71. r ∧ ¬¬(s ∨ q ∨ p)

72. r

73. p ∧ q ∧ ¬¬(r ∧ s)

74. p ∧ q ∧ ¬¬r

75. p ∧ q ∧ ¬¬s

76. p ∧ q ∧ ¬¬(s ∨ r)

26

APPENDIX A. LIST OF FORMULAE IN I([∧,∨,¬¬]4) 27

77. p ∧ q

78. q ∧ ¬¬(p ∧ r ∧ s)

79. q ∧ ¬¬(p ∧ r)

80. q ∧ ¬¬(p ∧ s)

81. q ∧ ¬¬(r ∧ s)

82. q ∧ ¬¬[(p ∧ s) ∨ (p ∧ r)]

83. q ∧ ¬¬[(r ∧ s) ∨ (p ∧ r)]

84. q ∧ ¬¬[(r ∧ s) ∨ (p ∧ s)]

85. q ∧ ¬¬p

86. q ∧ ¬¬r

87. q ∧ ¬¬[(r ∧ s) ∨ (p ∧ s) ∨ (p ∧ r)]

88. q ∧ ¬¬s

89. q ∧ ¬¬[(r ∧ s) ∨ p]

90. q ∧ ¬¬[(p ∧ s) ∨ r]

91. q ∧ ¬¬[s ∨ (p ∧ r)]

92. q ∧ ¬¬(r ∨ p)

93. q ∧ ¬¬(s ∨ p)

94. q ∧ ¬¬(s ∨ r)

95. q ∧ ¬¬(s ∨ r ∨ p)

96. q

97. p ∧ ¬¬(q ∧ r ∧ s)

98. p ∧ ¬¬(q ∧ r)

99. p ∧ ¬¬(q ∧ s)

100. p ∧ ¬¬(r ∧ s)

101. p ∧ ¬¬[(q ∧ s) ∨ (q ∧ r)]

102. p ∧ ¬¬[(r ∧ s) ∨ (q ∧ r)]

103. p ∧ ¬¬[(r ∧ s) ∨ (q ∧ s)]

104. p ∧ ¬¬q

105. p ∧ ¬¬r

106. p ∧ ¬¬[(r ∧ s) ∨ (q ∧ s) ∨ (q ∧ r)]

107. p ∧ ¬¬s

108. p ∧ ¬¬[(r ∧ s) ∨ q]

109. p ∧ ¬¬[(q ∧ s) ∨ r]

110. p ∧ ¬¬[s ∨ (q ∧ r)]

111. p ∧ ¬¬(r ∨ q)

112. p ∧ ¬¬(s ∨ q)

113. p ∧ ¬¬(s ∨ r)

114. p ∧ ¬¬(s ∨ r ∨ q)

115. p

116. ¬¬(p ∧ q ∧ r ∧ s)

117. ¬¬(p ∧ q ∧ r)

118. ¬¬(p ∧ q ∧ s)

119. ¬¬(p ∧ r ∧ s)

120. ¬¬(q ∧ r ∧ s)

121. ¬¬[(p ∧ q ∧ s) ∨ (p ∧ q ∧ r)]

122. ¬¬[(p ∧ r ∧ s) ∨ (p ∧ q ∧ r)]

123. ¬¬[(p ∧ r ∧ s) ∨ (p ∧ q ∧ s)]

124. ¬¬[(q ∧ r ∧ s) ∨ (p ∧ q ∧ r)]

125. ¬¬[(q ∧ r ∧ s) ∨ (p ∧ q ∧ s)]

126. ¬¬[(q ∧ r ∧ s) ∨ (p ∧ r ∧ s)]

127. ¬¬(p ∧ q)

128. ¬¬(p ∧ r)

129. ¬¬[(p ∧ r ∧ s) ∨ (p ∧ q ∧ s) ∨ (p ∧ q ∧ r)]

130. ¬¬(p ∧ s)

131. ¬¬(q ∧ r)

132. ¬¬[(q ∧ r ∧ s) ∨ (p ∧ q ∧ s) ∨ (p ∧ q ∧ r)]

133. ¬¬(q ∧ s)

134. ¬¬[(q ∧ r ∧ s) ∨ (p ∧ r ∧ s) ∨ (p ∧ q ∧ r)]

135. ¬¬[(q ∧ r ∧ s) ∨ (p ∧ r ∧ s) ∨ (p ∧ q ∧ s)]

136. ¬¬(r ∧ s)

137. ¬¬[(p ∧ r ∧ s) ∨ (p ∧ q)]

138. ¬¬[(p ∧ q ∧ s) ∨ (p ∧ r)]

139. ¬¬[(p ∧ s) ∨ (p ∧ q ∧ r)]

140. ¬¬[(q ∧ r ∧ s) ∨ (p ∧ q)]

141. ¬¬[(p ∧ q ∧ s) ∨ (q ∧ r)]

142. ¬¬[(q ∧ s) ∨ (p ∧ q ∧ r)]

143. ¬¬[(q ∧ r ∧ s) ∨ (p ∧ r)]

144. ¬¬[(p ∧ r ∧ s) ∨ (q ∧ r)]

145. ¬¬[(q∧r∧s)∨(p∧r∧s)∨(p∧q∧s)∨(p∧q∧r)]

146. ¬¬[(q ∧ r ∧ s) ∨ (p ∧ s)]

147. ¬¬[(p ∧ r ∧ s) ∨ (q ∧ s)]

148. ¬¬[(r ∧ s) ∨ (p ∧ q ∧ r)]

149. ¬¬[(r ∧ s) ∨ (p ∧ q ∧ s)]

150. ¬¬[(p ∧ r) ∨ (p ∧ q)]

151. ¬¬[(p ∧ s) ∨ (p ∧ q)]

152. ¬¬[(p ∧ s) ∨ (p ∧ r)]

153. ¬¬[(q ∧ r) ∨ (p ∧ q)]

154. ¬¬[(q ∧ s) ∨ (p ∧ q)]

155. ¬¬[(q ∧ s) ∨ (q ∧ r)]

156. ¬¬[(q ∧ r) ∨ (p ∧ r)]

157. ¬¬[(q ∧ r ∧ s) ∨ (p ∧ r ∧ s) ∨ (p ∧ q)]

158. ¬¬[(q ∧ r ∧ s) ∨ (p ∧ q ∧ s) ∨ (p ∧ r)]

159. ¬¬[(p ∧ r ∧ s) ∨ (p ∧ q ∧ s) ∨ (q ∧ r)]

160. ¬¬[(q ∧ r ∧ s) ∨ (p ∧ s) ∨ (p ∧ q ∧ r)]

161. ¬¬[(p ∧ r ∧ s) ∨ (q ∧ s) ∨ (p ∧ q ∧ r)]

162. ¬¬[(q ∧ s) ∨ (p ∧ s)]

163. ¬¬[(r ∧ s) ∨ (p ∧ r)]

164. ¬¬[(r ∧ s) ∨ (q ∧ r)]

165. ¬¬[(r ∧ s) ∨ (p ∧ q ∧ s) ∨ (p ∧ q ∧ r)]

166. ¬¬[(r ∧ s) ∨ (p ∧ s)]

167. ¬¬[(r ∧ s) ∨ (q ∧ s)]

168. ¬¬[(p ∧ s) ∨ (p ∧ r) ∨ (p ∧ q)]

169. ¬¬[(q ∧ s) ∨ (q ∧ r) ∨ (p ∧ q)]

170. ¬¬[(q ∧ r ∧ s) ∨ (p ∧ r) ∨ (p ∧ q)]

171. ¬¬[(p ∧ r ∧ s) ∨ (q ∧ r) ∨ (p ∧ q)]

172. ¬¬[(p ∧ q ∧ s) ∨ (q ∧ r) ∨ (p ∧ r)]

APPENDIX A. LIST OF FORMULAE IN I([∧,∨,¬¬]4) 28

173. ¬¬[(q ∧ r ∧ s) ∨ (p ∧ s) ∨ (p ∧ q)]

174. ¬¬[(q ∧ r ∧ s) ∨ (p ∧ s) ∨ (p ∧ r)]

175. ¬¬[(p ∧ s) ∨ (q ∧ r)]

176. ¬¬[(p ∧ r ∧ s) ∨ (q ∧ s) ∨ (p ∧ q)]

177. ¬¬[(q ∧ s) ∨ (p ∧ r)]

178. ¬¬[(p ∧ r ∧ s) ∨ (q ∧ s) ∨ (q ∧ r)]

179. ¬¬[(q ∧ s) ∨ (p ∧ s) ∨ (p ∧ q ∧ r)]

180. ¬¬[(r ∧ s) ∨ (q ∧ r) ∨ (p ∧ r)]

181. ¬¬[(r ∧ s) ∨ (p ∧ q)]

182. ¬¬[(r ∧ s) ∨ (p ∧ q ∧ s) ∨ (p ∧ r)]

183. ¬¬[(r ∧ s) ∨ (p ∧ q ∧ s) ∨ (q ∧ r)]

184. ¬¬[(r ∧ s) ∨ (p ∧ s) ∨ (p ∧ q ∧ r)]

185. ¬¬[(r ∧ s) ∨ (q ∧ s) ∨ (p ∧ q ∧ r)]

186. ¬¬[(r ∧ s) ∨ (q ∧ s) ∨ (p ∧ s)]

187. ¬¬p

188. ¬¬q

189. ¬¬[(q ∧ r) ∨ (p ∧ r) ∨ (p ∧ q)]

190. ¬¬[(q ∧ r ∧ s) ∨ (p ∧ s) ∨ (p ∧ r) ∨ (p ∧ q)]

191. ¬¬[(p ∧ s) ∨ (q ∧ r) ∨ (p ∧ q)]

192. ¬¬[(p ∧ s) ∨ (q ∧ r) ∨ (p ∧ r)]

193. ¬¬[(q ∧ s) ∨ (p ∧ r) ∨ (p ∧ q)]

194. ¬¬[(p ∧ r ∧ s) ∨ (q ∧ s) ∨ (q ∧ r) ∨ (p ∧ q)]

195. ¬¬[(q ∧ s) ∨ (q ∧ r) ∨ (p ∧ r)]

196. ¬¬[(q ∧ s) ∨ (p ∧ s) ∨ (p ∧ q)]

197. ¬¬[(q ∧ s) ∨ (p ∧ s) ∨ (p ∧ r)]

198. ¬¬[(q ∧ s) ∨ (p ∧ s) ∨ (q ∧ r)]

199. ¬¬r

200. ¬¬[(r ∧ s) ∨ (p ∧ r) ∨ (p ∧ q)]

201. ¬¬[(r ∧ s) ∨ (q ∧ r) ∨ (p ∧ q)]

202. ¬¬[(r ∧ s) ∨ (p ∧ q ∧ s) ∨ (q ∧ r) ∨ (p ∧ r)]

203. ¬¬[(r ∧ s) ∨ (p ∧ s) ∨ (p ∧ q)]

204. ¬¬[(r ∧ s) ∨ (p ∧ s) ∨ (p ∧ r)]

205. ¬¬[(r ∧ s) ∨ (p ∧ s) ∨ (q ∧ r)]

206. ¬¬[(r ∧ s) ∨ (q ∧ s) ∨ (p ∧ q)]

207. ¬¬[(r ∧ s) ∨ (q ∧ s) ∨ (p ∧ r)]

208. ¬¬[(r ∧ s) ∨ (q ∧ s) ∨ (q ∧ r)]

209. ¬¬[(r ∧ s) ∨ (q ∧ s) ∨ (p ∧ s) ∨ (p ∧ q ∧ r)]

210. ¬¬s

211. ¬¬[(q ∧ r ∧ s) ∨ p]

212. ¬¬[(p ∧ s) ∨ (q ∧ r) ∨ (p ∧ r) ∨ (p ∧ q)]

213. ¬¬[(p ∧ r ∧ s) ∨ q]

214. ¬¬[(q ∧ s) ∨ (q ∧ r) ∨ (p ∧ r) ∨ (p ∧ q)]

215. ¬¬[(q ∧ s) ∨ (p ∧ s) ∨ (p ∧ r) ∨ (p ∧ q)]

216. ¬¬[(q ∧ s) ∨ (p ∧ s) ∨ (q ∧ r) ∨ (p ∧ q)]

217. ¬¬[(q ∧ s) ∨ (p ∧ s) ∨ (q ∧ r) ∨ (p ∧ r)]

218. ¬¬[(r ∧ s) ∨ (q ∧ r) ∨ (p ∧ r) ∨ (p ∧ q)]

219. ¬¬[(p ∧ q ∧ s) ∨ r]

220. ¬¬[(r ∧ s) ∨ (p ∧ s) ∨ (p ∧ r) ∨ (p ∧ q)]

221. ¬¬[(r ∧ s) ∨ (p ∧ s) ∨ (q ∧ r) ∨ (p ∧ q)]

222. ¬¬[(r ∧ s) ∨ (p ∧ s) ∨ (q ∧ r) ∨ (p ∧ r)]

223. ¬¬[(r ∧ s) ∨ (q ∧ s) ∨ (p ∧ r) ∨ (p ∧ q)]

224. ¬¬[(r ∧ s) ∨ (q ∧ s) ∨ (q ∧ r) ∨ (p ∧ q)]

225. ¬¬[(r ∧ s) ∨ (q ∧ s) ∨ (q ∧ r) ∨ (p ∧ r)]

226. ¬¬[(r ∧ s) ∨ (q ∧ s) ∨ (p ∧ s) ∨ (p ∧ q)]

227. ¬¬[(r ∧ s) ∨ (q ∧ s) ∨ (p ∧ s) ∨ (p ∧ r)]

228. ¬¬[(r ∧ s) ∨ (q ∧ s) ∨ (p ∧ s) ∨ (q ∧ r)]

229. ¬¬[s ∨ (p ∧ q ∧ r)]

230. ¬¬[(q ∧ r) ∨ p]

231. ¬¬[(p ∧ r) ∨ q]

232. ¬¬[(q ∧ s) ∨ p]

233. ¬¬[(p ∧ s) ∨ q]

234. ¬¬[(q ∧ s)∨ (p∧ s)∨ (q ∧ r)∨ (p∧ r)∨ (p∧ q)]

235. ¬¬[r ∨ (p ∧ q)]

236. ¬¬[(r ∧ s) ∨ p]

237. ¬¬[(r∧ s)∨ (p∧ s)∨ (q ∧ r)∨ (p∧ r)∨ (p∧ q)]

238. ¬¬[(p ∧ s) ∨ r]

239. ¬¬[(r ∧ s) ∨ q]

240. ¬¬[(r∧ s)∨ (q ∧ s)∨ (q ∧ r)∨ (p∧ r)∨ (p∧ q)]

241. ¬¬[(q ∧ s) ∨ r]

242. ¬¬[(r∧ s)∨ (q ∧ s)∨ (p∧ s)∨ (p∧ r)∨ (p∧ q)]

243. ¬¬[(r∧ s)∨ (q ∧ s)∨ (p∧ s)∨ (q ∧ r)∨ (p∧ q)]

244. ¬¬[(r∧ s)∨ (q ∧ s)∨ (p∧ s)∨ (q ∧ r)∨ (p∧ r)]

245. ¬¬[s ∨ (p ∧ q)]

246. ¬¬[s ∨ (p ∧ r)]

247. ¬¬[s ∨ (q ∧ r)]

248. ¬¬[(q ∧ s) ∨ (q ∧ r) ∨ p]

249. ¬¬[(p ∧ s) ∨ (p ∧ r) ∨ q]

250. ¬¬[(r ∧ s) ∨ (q ∧ r) ∨ p]

251. ¬¬[(p ∧ s) ∨ r ∨ (p ∧ q)]

252. ¬¬[(r ∧ s) ∨ (p ∧ r) ∨ q]

253. ¬¬[(q ∧ s) ∨ r ∨ (p ∧ q)]

254. ¬¬[(r ∧ s) ∨ (q ∧ s) ∨ p]

255. ¬¬[(r ∧ s) ∨ (p ∧ s) ∨ q]

256. ¬¬[(r ∧ s) ∨ (q ∧ s) ∨ (p ∧ s) ∨ (q ∧ r) ∨ (p ∧
r) ∨ (p ∧ q)]

257. ¬¬[(q ∧ s) ∨ (p ∧ s) ∨ r]

258. ¬¬[s ∨ (p ∧ r) ∨ (p ∧ q)]

259. ¬¬[s ∨ (q ∧ r) ∨ (p ∧ q)]

260. ¬¬[s ∨ (q ∧ r) ∨ (p ∧ r)]

261. ¬¬(q ∨ p)

262. ¬¬(r ∨ p)

263. ¬¬(r ∨ q)

264. ¬¬[(r ∧ s) ∨ (q ∧ s) ∨ (q ∧ r) ∨ p]

265. ¬¬[(r ∧ s) ∨ (p ∧ s) ∨ (p ∧ r) ∨ q]

266. ¬¬[(q ∧ s) ∨ (p ∧ s) ∨ r ∨ (p ∧ q)]

267. ¬¬(s ∨ p)

APPENDIX A. LIST OF FORMULAE IN I([∧,∨,¬¬]4) 29

268. ¬¬(s ∨ q)

269. ¬¬[s ∨ (q ∧ r) ∨ (p ∧ r) ∨ (p ∧ q)]

270. ¬¬(s ∨ r)

271. ¬¬[(r ∧ s) ∨ q ∨ p]

272. ¬¬[(q ∧ s) ∨ r ∨ p]

273. ¬¬[(p ∧ s) ∨ r ∨ q]

274. ¬¬[s ∨ (q ∧ r) ∨ p]

275. ¬¬[s ∨ (p ∧ r) ∨ q]

276. ¬¬[s ∨ r ∨ (p ∧ q)]

277. ¬¬(r ∨ q ∨ p)

278. ¬¬(s ∨ q ∨ p)

279. ¬¬(s ∨ r ∨ p)

280. ¬¬(s ∨ r ∨ q)

281. ¬¬(s ∨ r ∨ q ∨ p)

282. >

Appendix B

Program

#include <iostream>
#include <list>
#include <string>
#include <ctime>
#include <cstdio>

using namespace std;

// Function tha t separa tes elements in a l i s t l with the element
10 // t , used for p r in t ing

template<typename T> list<T> intersperse(list<T> l, T t) {
list<T> k = {*l.begin()};
for (typename list<T>::iterator it = l.begin(); ++it != l.end();) {

k.push_back(t);
k.push_back(*it);

}
return k;

}

20 // Node of a p a r t i a l ordered set , contains the element e , and two
// l i s t s o f po in te r s to the ch i l d ren and parents o f the node .
template<typename T> struct poElem {

T e;
list<poElem<T>*> children;
list<poElem<T>*> parents;

// cons truc tor
poElem(T t) { e = t; }

30 // adds a ch i l d to t h i s node
void addChild(poElem<T> *c) { children.push_back(c);
c->parents.push_back(this); }

// returns the l i s t o f e lements tha t are in the parenta l
// nodes
list<T> listParents() {

list<T> l;
for (poElem<T> *p : parents)

30

APPENDIX B. PROGRAM 31

l.push_back(p->e);
return l;

40 }

string print() { return e.print(); }
};

// over load e qua l i t y operator between a node and an element
template<typename T> bool operator == (poElem<T> *p, T t) { return p->e == t; }

// A pa r t i a l ordered set , contains a l i s t o f nodes (poElem) l .
template<typename T> struct poset {

50 list<poElem<T>*> l;

// cons truc tor
poset(list<poElem<T>*> x) { l = x; }

// returns the number of nodes
unsigned long size() { return l.size(); }

string print() {
list<string> ss;

60 string s = "";
for (poElem<T> *p : l)

ss.push_back(p->print());
ss = intersperse<string>(ss, "\n");
for (string t : ss)

s += t;
return s;

}
};

70 // Uptrie node , contains an element e , a l i s t o f po in te r s to the
// ch i l d ren of t h i s node and a po in ter to i t s parent .
template<typename T> struct uptrie {

T e;
list<uptrie<T>*> children;
uptrie<T> *parent;

// cons t ruc tors
uptrie() { e = T::bottom(); parent = NULL; }
uptrie(T t) { e = t; parent = NULL; }

80

// adds a ch i l d node
void addChild(uptrie<T> &u) { u.parent = this; children.push_back(&u); }

// returns the t o t a l number of nodes tha t can be reached from
// t h i s node

APPENDIX B. PROGRAM 32

int size() {
int i = 1;
for (uptrie<T> *child : children) i += child->size();
return i;

90 }

// returns the path from the root o f the up t r i e to t h i s node
list<T> Upset() {

list<T> l = {e};
i f (parent != nullptr)

l.splice(l.begin(),parent->Upset());
return l;

}

100 // pr in t s an up t r i e fo r debugging purposes
ostream& deepPrint(ostream& os, int i) {

for (int j=0; j < i; j++) os << "\t";
os << e << " {\n";
for (uptrie<T> *u : children)

u->deepPrint(os, i+1);
for (int j=0; j < i; j++) os << "\t";
os << "}\n";
return os;

}
110 };

// over load ing the output stream operator << for poElems , pose t s
// and up t r i e s
template<typename T> ostream& operator << (ostream& os, poElem<T> p) { return

os << p.print(); }
template<typename T> ostream& operator << (ostream& os, poset<T> e) { return

os << e.print(); }
template<typename T> ostream& operator << (ostream& os, uptrie<T> u) { return

os << u.e; }

// Finds the c o l l e c t i o n s of Upsets tha t contain the elements
// in the sor ted l i s t s , where u i s the root o f the up t r i e i t

120 // searches in
template<typename T> void findUpsetsWithElements(uptrie<T> &u, list<T> s,

list<uptrie<T>*> &h) {

// i f u . e i s in s , i t i s the f i r s t element (s i s sor ted)
i f (s.size() > 0 && u.e == *s.begin())

s.pop_front(); // u . e has been found , remove from the l i s t

// i f the l i s t i s empty , then the current u corresponds to an
// upset tha t contains s

APPENDIX B. PROGRAM 33

130 i f (s.size() == 0)
h.push_back(&u);

// i f there e x i s t s an element i s s tha t i s smal l er than y ,
// then t h i s u and a l l i t s ch i l d ren w i l l not contain s ,
// t h e r e f o r e return an empty l i s t .
for (T x : s)
i f (x < u.e)
return *new list<uptrie<T>*>;

140 // continue the search in each ch i l d o f u
for (uptrie<T> *child : u.children)

// merge the found l i s t with the e x i s t i n g l i s t s
findUpsetsWithElements(*child, s, h);

}

// conver ts a sor ted poset p in to the root o f an up t r i e tha t
// contains a l l Upsets o f p
template<typename T> uptrie<T> generateUptrie(poset<T> p) {

uptrie<T> root = *new uptrie<T>();
150 for (poElem<T> *e : p.l) {

// Since p i s sorted , i f a l l parents o f e have been added
// to the uptr ie , so a node containing e can be added to
// a l l up t r i e nodes containing a l l o f the parents o f e
list<uptrie<T>*> h;
findUpsetsWithElements(root, e->listParents(), h);
for (uptrie<T> *v : h)

v->addChild(*new uptrie<T>(e->e));
}
return root;

160 }

// A data s t ruc tu re to represent a formula containing only
// conjunct ions ; the fragment [and]^4.
struct forc {

// the l a s t 4 b i t s represent a s p e c i f i c atom :
// 0 stands for T (which i s the conjunct ion of the empty s e t)
// the ones d i g i t r epresen t s atom p
// the twos d i g i t r epresen t s atom q
// the fours d i g i t represen t s atom r

170 // the e i g h t s d i g i t r epresen t s atom s
// 16 (10000) stands for con t rad i c t i on
int Q;

// cons t ruc tors
forc() {}
forc(list<char> l) {

Q = 0;

APPENDIX B. PROGRAM 34

i f (*find(l.begin(),l.end(),’p’) == ’p’) Q = Q | 1;
i f (*find(l.begin(),l.end(),’q’) == ’q’) Q = Q | 2;

180 i f (*find(l.begin(),l.end(),’r’) == ’r’) Q = Q | 4;
i f (*find(l.begin(),l.end(),’s’) == ’s’) Q = Q | 8;

}
static forc bottom() { // returns con t rad i c t i on

forc f;
f.Q = 16;
return f;

};

string print() {
190

i f (Q == 0) return "T";
else i f (Q == 16) return "B";
list<char> l; // l i s t o f atoms
i f ((Q & 1) == 1) l.push_back(’p’);
i f ((Q & 2) == 2) l.push_back(’q’);
i f ((Q & 4) == 4) l.push_back(’r’);
i f ((Q & 8) == 8) l.push_back(’s’);
// in t e r s p e r s e the ampersand in between the atoms
l = intersperse<char>(l, ’&’);

200 string s = "";
for (char c : l) // concatenate the l i s t

s += c;
return s;

};
};

struct indexSort {
// so r t s fo rc by t h e i r in t e g e r value , a l so imp l i e s so r t i ng by
// entai lment

210 inline bool operator() (const forc& f1, const forc& f2) {
return (f2.Q < f1.Q);

}
};

// over load ing operators , the minus operator w i l l func t ion as
// d i r e c t entai lment , s ince < w i l l be used as genera l entai lment .
ostream& operator << (ostream& os, forc f) { return os << f.print(); }
// equ iva l ence
bool operator == (forc f, forc g) { return f.Q == g.Q; }

220 bool operator < (forc f, forc g) { return (f.Q | g.Q) == f.Q; } // entai lment
bool operator - (forc f, forc g) { return (f < g) && ((f.Q ^ g.Q) == 1 || (f.Q

^ g.Q) == 2 || (f.Q ^ g.Q) == 4 || (f.Q ^ g.Q) == 8); } // d i r e c t
entai lment

// A data s t ruc tu re tha t represen t s the d i s j unc t i on of

APPENDIX B. PROGRAM 35

// conjunct ions ; the fragment [and , or]^4
struct forcd {

// l i s t o f conjunct ions . This l i s t w i l l be maximal
list<forc> P;

// cons t ruc tors
230 forcd() {}

forcd(list<forc> fs) { fs.sort(indexSort()); P = fs; }

// conver ts a formula p to the formula (p and a) , where a i s
// an atom . used to f ind d i r e c t entai lment for the
// i r r e d u c i b l e formulae of [and , or , double negat ion]
forcd augment(int i) { // i i s in {1 ,2 ,4 ,8}

list<forc> l;
// the atom ge t s added to each conjunct ion in P
for (forc f : P){

240 i f (!(f == forc::bottom())) {
forc g;
g.Q = (f.Q | i);
l.push_back(g);

} else
// i f f i s the bottom element , then (f and a) = f
l.push_back(forc::bottom());

}
return *new forcd(l);

}
250

// Returns the number of conjunct ions
unsigned long size() { return P.size(); }

string print() {
string s = "(";
list<string> ss;
for (forc f : P)

ss.push_back(f.print());
ss = intersperse<string>(ss, ")|(");

260 for (string t : ss)
s += t;

return s + ")";
}

};

ostream& operator << (ostream& os, forcd f) { return os << f.print(); }
// equ iva l ence
bool operator == (forcd f, forcd g) { return f.P == g.P; }
bool operator < (forcd f, forcd g) { // entai lment

270 // Since f .P and g .P are assumed to be maximal , we have f < g
// i f f f .P i s a subse t o f g .P

APPENDIX B. PROGRAM 36

i f (f.P.size() > g.P.size())
// f .P i s a subset , t h e r e f o r e smal l er than g .P
return false;

// check i f a l l conjunct ions in f are present in g by
// i t e r a t i n g through the l i s t
list<forc>::iterator gi = g.P.begin();
for (list<forc>::iterator fi = f.P.begin(); fi != f.P.end(); fi++)

280 while (!(*fi == *gi)) {
gi++;
i f (gi == g.P.end())

return false;
}

return true;
}
bool operator - (forcd f, forcd g) { // d i r e c t l y e n t a i l s

i f (f.P.size() != g.P.size()-1)
// f .P must be a d i r e c t subse t o f g .P

290 return false;
bool b = true; // f l a g to check i f there has been an element

// of g .P not present in f .P
list<forc>::iterator gi = g.P.begin();
for (list<forc>::iterator fi = f.P.begin(); fi != f.P.end(); fi++) {

i f (*fi == *gi)
gi++;

else i f (b && *fi == *(++gi)) {
// i f f l a g b i s true and the elements d i f f e r , change
// f l a g to f a l s e

300 b = fa lse;
gi++;

} else
// in t h i s case the f l a g b i s f a l s e and more than one
// element of g .P i s not in f .P
return false;

}
return true;

}

310 // A data s t ruc tu re tha t represen t s i r r e d u c i b l e formulae of the
// fragment [and , or , double negation]^4
struct forcddn {

forc Q; // The conjunct ion part
forcd psi; // The double negated part

// cons t ruc tors
forcddn() {}
forcddn (forc f, forcd g) { Q = f; psi = g; }
static forcddn bottom() {

APPENDIX B. PROGRAM 37

320 // not s t r i c t l y i r r educ i b l e , but needed to bu i l d the
// up t r i e
forcddn f;
f.Q = *new forc();
f.Q.Q = 0;
f.psi = *new forcd({ forc::bottom() });
return f;

};

string print() {
330 string s = Q.print() + "&!![" + psi.print() + "]";

return s;
}

};

ostream& operator << (ostream& os, forcddn f) { return os << f.print(); }
bool operator == (forcddn f, forcddn g) { return f.Q == g.Q && f.psi == g.psi;

} // equ iva l ence
bool operator < (forcddn f, forcddn g) { return (f.Q < g.Q &&

f.psi.augment(f.Q.Q ^ g.Q.Q) < g.psi); } // entai lment
bool operator - (forcddn f, forcddn g) { // d i r e c t entai lment

i f (f.Q == g.Q && f.psi - g.psi) return true;
340 return (f.Q - g.Q && f.psi.augment(f.Q.Q ^ g.Q.Q) == g.psi);

}

// Creates a poset with the i r r e d u c i b l e elements o f the [and , or]
// fragment
poset<forc> irrCD(list<char> l) {

list<poElem<forc>*> fs; // l i s t o f poElems containing the
// formulae

forc f (l);
// crea te each formula in [and]^4 with except ion of

350 // con t rad i c t i on
for (int i=15; i>=0; i--)

i f ((f.Q | i) == f.Q) {
forc g;
g.Q = i;
fs.push_back(new poElem<forc>(g));

}
for (list<poElem<forc>*>::iterator i=fs.begin(); i!=fs.end(); i++)

for (list<poElem<forc>*>::iterator j=i; ++j!=fs.end();)
i f ((*i)->e - (*j)->e)

360 // i f i d i r e c t l y e n t a i l s j , add j as c h i l d o f i
(*i)->addChild(*j);

poset<forc> p (fs); // make poset o f the l i s t o f poElems
return p;

}

APPENDIX B. PROGRAM 38

// Needed for fragCD () , s o r t s a formula on the number of
// d i s j unc t i on s a l so imp l i e s tha t the l i s t i s sor ted by
// entai lment
struct sizeSort {

370 inline bool operator() (poElem<forcd>*& p1, poElem<forcd>*& p2) {
return (p1->e.size() < p2->e.size());

}
};

// Creates a l l formulae in the [and , or] fragments with atoms
// s p e c i f i e d by l
poset<forcd> fragCD(list<char> l) {

list<poElem<forcd>*> fs;

380 poset<forc> i = irrCD(l);
uptrie<forc> u = generateUptrie(i); // generates the up t r i e
list<uptrie<forc>*> ul;

// l i s t a l l the up t r i e s
findUpsetsWithElements(u, *new list<forc>(), ul);
for (uptrie<forc> *x : ul) {

// convert each up t r i e to a formula (forcd)
static forcd f;
f.P = x->Upset();

390 fs.push_front(new poElem<forcd>(f));
}
fs.sort(sizeSort()); // so r t s the l i s t o f formulae

// Creates the d i r e c t connect ions in the poset
for (list<poElem<forcd>*>::iterator ip = fs.begin(); ip != fs.end(); ip++)

for (list<poElem<forcd>*>::iterator jp = ip; ++jp != fs.end();)
i f ((**ip).e - (**jp).e)

(**jp).addChild(*ip);

400 poset<forcd> p (fs); // make poset o f the l i s t o f poElems
return p;

}

// Needed for irrCDDN() , i f Q represen t s a group of atoms and l
// represen t s a l l atoms in use , then t h i s funct ion re turns a l i s t
// of atoms tha t are not in Q but are in l .
list<char> complementaryAtoms(int Q, list<char> l) {

list<char> c;
i f ((*find(l.begin(),l.end(),’p’) == ’p’) && (Q & 1) != 1)
c.push_front(’p’);

410 i f ((*find(l.begin(),l.end(),’q’) == ’q’) && (Q & 2) != 2)
c.push_front(’q’);

APPENDIX B. PROGRAM 39

i f ((*find(l.begin(),l.end(),’r’) == ’r’) && (Q & 4) != 4)
c.push_front(’r’);
i f ((*find(l.begin(),l.end(),’s’) == ’s’) && (Q & 8) != 8)
c.push_front(’s’);
return c;

}

// generates a l l the i r r e d u c i b l e formulae of fragment
// [and , or , doub le negat ion] with atoms in l .
poset<forcddn> irrCDDN(list<char> l) {

list<poElem<forcddn>*> fs;
420 // An i r r e du c i b l e formula of t h i s fragment con s i s t s o f a

// conjunct ion of atoms Q and a double negated formula of
// [and , or] which we w i l l c a l l p s i .

// Generate a l l p o s s i b i l i t i e s fo r Q
poset<forc> Qs = irrCD(l);
for (poElem<forc> *p : Qs.l) {

// f ind the atoms tha t are not in Q
list<char> c = complementaryAtoms(p->e.Q, l);

430 // generate a l l p o s s i b i l i t i e s fo r ps i with t h i s Q
poset<forcd> psis = fragCD(c);

// Remove f i r s t element (B) (id e s t con t rad i c t i on) from
// the poset
psis.l.pop_front();

// crea te a forcddn ob j e c t with each Q and ps i
for (poElem<forcd> *q : psis.l) {

forcddn f (p->e, q->e);
440 fs.push_back(new poElem<forcddn>(f));

}
}

// crea te the d i r e c t connect ions in the poset
for (poElem<forcddn> *p : fs)

for (poElem<forcddn> *q : fs)
i f (p->e - q->e)

p->addChild(q);

450 poset<forcddn> p (fs); // make poset o f the l i s t o f poElems
return p;

}

int main(int argc, const char * argv[]) {
clock_t start = clock();

APPENDIX B. PROGRAM 40

// 3 atoms :
poset<forcddn> p = irrCDDN({’p’,’q’,’r’});

460 // 4 atoms :
//poset<forcddn> p = irrCDDN({ ’ p ’ , ’ q ’ , ’ r ’ , ’ s ’}) ;

cout << "Irreducible formulae:\n" << p << "\nNumber of irreducible
formulae: " << p.size() << "\n\n";
uptrie<forcddn> u = generateUptrie(p);
cout << "Total number of formulae in the fragment: " << u.size() <<
"\n\n";

cout << "Computation time: " << (clock() - start) / (double)
CLOCKS_PER_SEC << " sec\n";
return 0;

}

Bibliography

[1] Burris, S., and Sankappanavar, H. P. A Course in Universal Algebra. Springer-
Verlag, 1981.

[2] Davey, B. A., and Priestley, H. A. Introduction to Lattices and Order. Cambridge
University Press, 2002.

[3] De Bruijn, N. Exact finite models for minimal propositional calculus over a finite
alphabet. Technological University Eindhoven, Report, 75-WSK-02, 1975.

[4] De Jongh, D., and Bezhanishvili, N. Intuitionistic Logic. University of Amsterdam:
Institute for Logic, Language and Computation, 2010.

[5] De Jongh, D., Hendriks, L., and Renardel de Lavalette, G. R. Computations
in fragments of intuitionistic propositional logic. Journal of Automated Reasoning 7, 4
(1991), 537–561.

[6] Hendriks, L. Computations in Propositional Logic. PhD thesis, University of Amster-
dam: Institute for Logic, Langage and Computation, 1996.

[7] Kleitman, D., and Markowsky, G. On Dedekind’s problem: The number of isotone
boolean functions. II. Trans. Amer. Math. Soc. 213 (1975), 373–390.

[8] Triesscheijn, R. A. Opwaarts gesloten deelverzamelingen in partieel geordende
verzamelingen. Bachelor thesis, University of Groningen: Faculty of Mathematics &
Natural Sciences, 2012.

41

