

faculty of mathematics

and natural sciences

Non-stationary sparse time series
chain graphical models for
reconstructing networks

Bachelor Project Mathematics

June 2015

Student: R.P.W. van Ommeren

First superv isor: Prof.dr. E.C. Wit

Second supervisor: D. Valesin, PhD

Abstract

This paper consists of 2 main parts. In the first part the theory behind
the stationary sparse time series chain graphical model (STSCGM) for re-
constructing multivariable networks is explained at length. This model
is parametrized by a precision matrix and an autoregressive coefficient
matrix. By using penalized likelihood and the SCAD penalty the un-
derlying relationships between the variables is explored. The second part
consists of two non-stationary alterations of this model. In the first model
we look at multivariable data where drastic changes in the autoregressive
matrix could occur at different change points, leaving the precision ma-
trix untouched. In the latter, we look at multivariable data where the
autoregressive matrix slowly changes over time, leaving the precision ma-
trix untouched again. Combining both non-stationary models gives us a
good method to analyze data where changes in the autoregressive coeffi-
cient matrix occur at unknown points in time. In the end we will look at
the performance of these 3 models using simulated data.

2

Contents

1 Stationary sparse time series chain graphical models 4
1.1 Non-sparse time series graphical chain models 4
1.2 Sparse time series chain graphical models 5

1.2.1 Lasso penalty . 5
1.2.2 SCAD penalty . 6
1.2.3 Penalized likelihood . 7

1.3 Solving the STSCGM . 8
1.3.1 Step 1: Initial estimates 8
1.3.2 Step 2: Solving for Θ . 8
1.3.3 Step 3: Solving for Γ . 9

1.4 Model Selection . 10

2 Non-stationary sparse time series graphical chain models 12
2.1 Sparse time series graphical chain models with change points . . 12
2.2 Slowly changing sparse time series chain graphical model 14

3 Simulations 18
3.1 Simulation 1 . 18
3.2 Simulation 2 . 21
3.3 Simulation 3 . 23

4 Conclusion and Discussion 27

A
Proofs and calculations 28
A.1 Section 1 . 28
A.2 Section 2 . 30

B
R code: functions 32

C
R code: simulations 45

3

1 Stationary sparse time series chain graphical
models

1.1 Non-sparse time series graphical chain models

Following Dahlhaus and Eichler (2003), we define a time series chain graph as
follows.

Definition 1.1. (Time series chain graph) The time series chain graph of a
stationary process X over time T is the chain graph G = (V,E) with V =
V0 ∪ . . . ∪ VT and edge set E such that

(a, t− u)→ (b, t) 6∈ E ⇔ u ≤ 0 or Xa(t− u) ⊥⊥ Xb(t)

(a, t− u)↔ (b, t) 6∈ E ⇔ u 6= 0 or Xa(t) ⊥⊥ Xb(t)

Here ⊥⊥ means conditionally independent of. From the stationarity assump-
tion, we have that for undirected edges

(a, t)↔ (b, t) 6∈ E ⇔ (a, s)↔ (b, s) 6∈ E ∀s ∈ {1, . . . , T}

The same shift-invariance holds for the directed edges. Plus, a directed edge
can only occur from one time block Vt to another time block Vu if t < u. So Xt

cannot be influenced by a state further in time. An undirected edge can only
occur in the same time block. Such a block can be seen as a Gaussian graphical
model, where no edge between two variables is equivalent to conditional inde-
pendence.

For simplicity, we will only consider the case where Xa(t − u) ⊥⊥ Xb(t)
for u > 1. That is, the state of Xt is conditionally independent of the states
X0, . . . , Xt−2. Then we can rewrite the joint probability density function of
X0, . . . , XT by using the first-order Markovian property as

f(X0, . . . , XT) = f(X0)f(X1 | X0) . . . f(XT | XT−1)

Since the time series chain graph is stationary, f(Xt | Xt−1) is the same for
all t. Now assume that we can approximate this conditional distribution by a
multivariate normal distribution of the form

Xt|Xt−1 ∼ N(ΓXt−1,Σ) (1)

for some matrix Γ and Σ. The non-zero elements γij of Γ represent a directed
edge between two successive time blocks. To understand the meaning of Σ, let
Θ = Σ−1. Then by Whittaker (2008, Chapter 5), the non-zero elements θij of
Θ represent undirected edges between vertices in the same time block, like in
the Gaussian graphical model.

4

Let the conditional pdf of Xt|Xt−1 be

f(Xt|Xt−1) = (2π)−p/2 det(Σ)−1/2 exp{−1

2
(Xt − ΓXt−1)′Σ−1(Xt − ΓXt−1)}.

The log-likelihood ` is proportional to

`(Γ,Θ) ∝ log det(Θ)− tr(SΓΘ) + c, (2)

see Appendix A. Here SΓ is the maximum likelihood estimator of the covariance
matrix given by

SΓ =
1

nT

n∑
i=1

T∑
t=1

(Xt − ΓXt−1)(Xt − ΓXt−1)′

= Sy − SyxΓ′ − ΓS′yx + ΓSxΓ′ (3)

where we have defined the following matrices:

Sy =
1

nT

n∑
i=1

T∑
t=1

XtX
′
t. Syx =

1

nT

n∑
i=1

T∑
t=1

XtX
′
t−1

Sx =
1

nT

n∑
i=1

T∑
t=1

Xt−1X
′
t−1

1.2 Sparse time series chain graphical models

For a time series chain graphical model with a first-order Markov property the
number of parameters in the model grows exponentially with the number of
variables. To improve our estimates we could introduce a penalty function for
the elements of Γ and Θ. We want to find a penalty function such that our
estimate has the following properties:

• Unbiasedness. When the true parameter is large, the estimate should be
close to unbiased to avoid excessive estimation bias.

• Sparsity. Small coefficients should be estimated to zero to reduce model
complexity.

• Continuity. The estimator should be continuous in the data to avoid
instability in model prediction.

We define two penalty function for the elements of Γ and Θ, the lasso penalty
and the SCAD penalty.

1.2.1 Lasso penalty

The least shrinkage and selection operator (lasso) proposed in Tibshirani (1996)
is an L1 penalty. In linear regression the estimator blasso is found from solving

blasso = arg min
β

{(n∑
i=1

(yi − xiβ
)2

+ λ

p∑
j=1

|βj |
}
.

5

Thus the penalty function for each parameter in the model is Pλ(x) = λ|x|. The
lasso problem is equivalent to solving

blasso = arg min
β

{(n∑
i=1

(yi − xiβ
)2}

such that

p∑
j=1

|βj | ≤ t,

for some t, where there exists a one-to-one relationship between λ and t. To see
that this leads to sparsity in the model, consider the case where p = 2 in Figure
1.

Figure 1: Geometric interpretation of the lasso with 2 parameters. The black
dot is the OLS estimator, the elliptical lines are the level curves of the squared
residuals. The probability that small coefficients are estimated zero increases
by introducing the L1 penalty.

The lasso uses the good features of both subset selection and ridge regres-
sion. Like in ridge regression, the lasso shrinks coefficients to reduce prediction
error. OLS estimates tend to have small bias but large variance. Prediction
accuracy can sometimes be improved by shrinking coefficients, sacrificing a lit-
tle bias. Like in subset selection it sets other coefficients to zero leading to an
understandable model.

1.2.2 SCAD penalty

The lasso estimate satisfies the last two criteria of our desired estimate. How-
ever, it will shrink large coefficients and this will lead to biasedness when the
true parameter is large. The SCAD penalty proposed in Fan and Li (2001) is

6

an alteration of the lasso penalty. Its penalty function is given by the derivative

P ′λ(x) = λ
{
I{x ≤ λ}+

(aλ− x)+

(a− 1)λ
I{x > λ}

}
,

for some λ > 0 and some a > 2. This defines a quadratic spline with knots at
λ and aλ. From Figure 2 it can be seen that the SCAD penalty is the same
as the lasso penalty for small values, so the SCAD penalty will set smaller
coefficients to zero. However, the penalty for bigger coefficients is much smaller
than the lasso penalty. This means that the SCAD estimate will not shrink large
coefficients as much as the lasso does. Optimal values of (λ, a) can be obtained
by cross-validation or other model selection criteria, but a value of a = 3.7 is
recommended by Fan and Li (2001).

Figure 2: Penalty functions of the lasso and SCAD penalty, with λ = 1 and
a = 3.7

1.2.3 Penalized likelihood

Consider the log-likelihood given by (2). We can now define two penalty func-
tions Pλ and Pρ corresponding to elements of the matrices Γ and Θ respectively.
The penalized log-likelihood for the sparse time series chain graphical model
(STSCGM) is

`pen(Γ,Θ) = log det(Θ)− tr(SΓΘ)−
p∑
i6=j

Pλ(|θij |)−
p∑
i,j

Pρ(|γij |). (4)

7

Solving (4) is very hard when the penalty function is a concave function like
the SCAD penalty. To solve it we use the local linear approximation (LLA)
proposed by Zou and Li (2008). The first-order Taylor approximation in a
neighbourhood of |x| is given by

Pλ(|x|) ≈ Pλ(|x0|) + P ′λ(|x0|)(|x| − |x0|)

In the following section we will explain the algorithm for solving (4).

1.3 Solving the STSCGM

1.3.1 Step 1: Initial estimates

We start with an initial estimate for the transition matrix Γ. This is done by
QR-decomposition. We then define the two local linear approximations in the
neighbourhood of |γ| and |θ|,

Pλ(|θ|) ≈ Pλ(|θ0|) + P ′λ(|θ0|)(|θ| − |θ0|), (5)

Pρ(|γ|) ≈ Pρ(|γ0|) + P ′ρ(|γ0|)(|γ| − |γ0|). (6)

Because we will differentiate the penalized likelihood with respect to θ or λ,
we will be left with the term depending on the first derivative of the penalty
function.

1.3.2 Step 2: Solving for Θ

First we update the estimate of Θ. Solving for Θ with Γ fixed gives the opti-
mization problem

arg max
Θ

{
log det(Θ)− tr(SΓΘ) +

p∑
i 6=j

Pλ(|θij |)
}

(7)

Let W be the matrix whose elements are the penalties for θij . That is,
wij = Pλ(|θij |). We will not penalize the diagonals of Θ, so wii = 0. The reason
we do this is because we assume that the variance of each variable is not equal
to zero. Plus, this assumption will be useful in step 3. Given our estimate Θ̂(k),

we could calculate W . However, we could find a slightly better estimate Θ̂
(k+1)
lasso

using the lasso penalty in (7). So we first solve

Θ̂
(k+1)
lasso = arg max

Θ

{
log det(Θ)− tr(SΓΘ) + λ

p∑
i6=j

|θij |
}

The graphical lasso algorithm from Friedman et al. (2007) solves this opti-
mizition problem very fast. After obtaining the better estimate for Θ, we cal-
culate the penalty matrix W using (5). Then we find Θ(k+1) by

Θ̂(k+1) = arg max
Θ

{
log det(Θ)− tr(SΓ(k)Θ) +

p∑
i 6=j

wij(|θij |)
}
.

8

Here we also use the graphical lasso algorithm.

1.3.3 Step 3: Solving for Γ

We start by updating the penalty matrix P using (6). An element ρij of P is
the penalty for γij . Then, for Θ fixed, we let

Γ̂(k+1) = arg max
Γ

{
`(Θ,Γ)−

p∑
i,j

ρij(|γij |)
}

= arg max
Γ

{
− tr(SΓΘ)−

p∑
i,j

ρij(|γij |)
}

= arg max
Γ

{
tr(SxyΓ′Θ + ΓS′xyΘ− ΓSxΓ′Θ)−

p∑
i,j

ρij |γij |
}

We solve this optimization problem by using a coordinate descent algorithm.
While keeping all other elements of Γ fixed, we let

γ̂
(k+1)
ij = arg max

γij

{
tr(SxyΓ′Θ + ΓS′xyΘ− ΓSxΓ′Θ)− ρij |γij |

}
= arg max

γij

{
g(γij)− ρij |γij |

}
(8)

Since the second derivative of g is a negative constant, see Appendix A.1, we
have that g is strictly concave. Subtracting the penalty term from this function
sets some elements of Γ to zero, see Figure 3.

Figure 3: Graph of f(x) = −(x+ 2)2 [left] and f(x)− 5|x| [right]

It takes some effort to see that γ̂
(k+1)
ij = 0 if and only if |g′(0)| ≤ ρij . Also,

adding a L1 penalty does not change the sign of the estimate in a single updat-
ing step. That is, the penalty can only shrink the estimate to zero or set it zero,

9

see Appendix A.1.

Differentiating the expression in (8) with respect to γij yields a linear func-
tion with discontinuity at γij = 0. Setting this score function equal to zero
yields

∂`pen
∂γij

= 2e′i(ΘSxy)ej − 2e′i(ΘΓSx)ej − sgn(γij)ρij = 0. (9)

This equation has no solution if and only if |2e′i(ΘSxy)ej − 2e′i(ΘΓSx)ej | < ρij ,
evaluated at γij = 0. But this is exactly when |g′(0)| < ρij , and therefore also

when γ̂
(k+1)
ij = 0.

Now that we have dealt with the case when the estimate is set to zero,suppose
the estimate should not be set to zero. Then (9) has a solution and it is easy to
solve (8) without the penalty term. Although we don’t have an exact expression,
we can use the Newton-Raphson method to find the exact zero point.

γ̂
(reg)
ij = γ̂

(k)
ij −

g′(γ̂
(k)
ij)

g′′(γ̂
(k)
ij)

Since adding the L1 penalty does not change the sign of the estimate, we now

know the sign of the estimate γ̂
(k+1)
ij . Then it is easy to solve (9), using the

Newton-Raphson method again. The updating formula for the estimate is

γ̂
(k+1)
ij = γ̂

(reg)
ij −

g′(γ̂
(reg)
ij)− ρij sgn(γ̂

(reg)
ij)

g′′(γ̂
(reg)
ij)

.

This coordinate descent approach is repeated until Γ̂ converges. Then the up-
dating steps 2 and 3 are repeated until both Θ̂ and Γ̂ converge.

1.4 Model Selection

Our final estimates of Γ and Θ are determined by the tuning parameters λ and
ρ. Optimal values can be obtained by various model selection criteria, like cross-
validation, the Akaike Information Criterion (AIC) or the Bayesian Information
Criterion. Like in Abegaz and Wit (2013) we will use the BIC. The BIC is
defined as

BIC(λ, ρ) = −nT
[

log det(Θ̂λ)− tr(SΓ̂ρ
)
]

+ log(nT)(
a

2
+ b+ p)

Here p is the number of non-zero diagonal entries of Θ̂λ, a
2 is the number of

off-diagonal non-zero elements of Θ̂λ divided by two because of symmetry and b
is the number of non-zero elements of Γ̂ρ The best pair (λ, ρ) is the one minimiz-
ing the BIC. Minimizing the BIC cannot be done in a analytic way. Therefore,

10

a grid-search (or parameter sweep) seems the best option. This is simply an
exhausting searching through a manually specified finite subset of reasonable
values.

This BIC is incorrect in the sense that the degrees of freedom of the model is
unequal to the number of parameters for small amounts of observations. How-
ever, it can be shown that the difference of the two is small and, given a model
A, we have that,

P{df(A) = p(A)} → 1 as nT →∞,

see Zhang et al. (2010). Here p(A) equals the number of parameters of A.

11

2 Non-stationary sparse time series graphical chain
models

In the previous model the transition matrix Γ was the same for all T . That is,
the STSCGM is a stationary process. However, so-called shocks can change a
multivariate time series like stock markets drastically. Think of events like the
burst of the Internet bubble in 2000, the terrorist attacks of September 11th
in 2001 or the bankruptcy of the Lehman Brothers in 2008, marking the start
of the financial crisis. Thus when analyzing these multivariate time series, we
have to take into account that at a sudden point, the model could change over
time. We consider two non-stationary alterations of the sgtscm.

2.1 Sparse time series graphical chain models with change
points

The first alteration we will look at is the following. Assume again that we have
n replicates of T time points of p variables. Assume that we know that the
transition matrix Γ could change completely at points T1, . . . , TK−1. Then we
have that conditional the pdf for X1, . . . , XT1

is influenced by Γ1, the conditional
pdf for XT1+1, . . . , XT2

is influenced by Γ2 and so on. Thus, letting T0 = 0 and
TK = T , we have

Xt|Xt−1 ∼ N(ΓkXt−1,Σ) for Tk−1 + 1 ≤ t ≤ Tk.

The log-likelihood of the conditional pdf is then

`(Γ,Θ) ∝ log det(Θ)− tr
[K∑
k=1

(SΓkΘ)
]

+ c,

see Appendix A.2. The Sk matrices are defined as follows

SΓk =
1

nT

n∑
i=1

Tk∑
t=Tk−1+1

(Xt − ΓkXt−1)(Xt − ΓkXt−1)′

= Syk − SyxkΓ′k − ΓkS
′
yxk

+ ΓkSxkΓ′k

where we have that

Syk =
1

nT

n∑
i=1

Tk∑
t=Tk−1+1

XtX
′
t, Syxk =

1

nT

n∑
i=1

Tk∑
t=Tk−1+1

XtX
′
t−1

Sxk =
1

nT

n∑
i=1

Tk∑
t=Tk−1+1

Xt−1X
′
t−1

To add sparsity to the model we penalize the likelihood. Because we want
to obtain sparse estimates for Θ and Γ1, . . . ,ΓK , we penalize all elements of

12

all K + 1 matrices. Assigning a penalty parameter to each transition matrix is
possible, but finding the optimal combination op parameters by a grid search
will be a very extensive search. For computational advantages, we choose one
penalty parameter for Θ and one for all the Γk matrices. This results in the
following penalized likelihood.

`pen(Γ1, . . . ,ΓK ,Θ) = log det(Θ)− tr
[K∑
k=1

(SΓkΘ
]
−

p∑
i 6=j

Pλ(|θij |)

−
K∑
k=1

p∑
i,j

Pρ(|γkij |). (10)

We will use SCAD penalty function, approximated by the LLA. We create K
subsets of the data, each subset belonging to the time interval which is affected
by Γk plus its initial state. Then we can find initial estimates for Γ1, . . . ,ΓK
by using QR-decomposition. Maximizing the log-likelihood will then be done in
an iterative manner again. We can use almost the same approach as in Abegaz
and Wit (2013) by alternatively updating Θ̂ and Γ̂1, . . . , Γ̂K . We start with

Θ̂(l+1) = arg max
Θ

{
log det(Θ)− tr

[(K∑
k=1

SΓk

)
Θ
]

+

p∑
i 6=j

Pλ(|θij |)
}
,

exactly as we did in the stationary STSCGM. Using this new value of Θ̂, we
obtain estimates by maximizing (10) for Γk, letting Θ and every other Γi 6=k
fixed.

Γ̂
(l+1)
k = arg max

Γk

{
− tr(SΓkΘ)−

p∑
i,j

Pρ(|γkij |)
}

It takes little effort to see that this can be solved in the same manner as (8).
The optimal pair of (λ, ρ) is obtained by finding the pair that minimizes the
BIC function

BIC(λ, ρ) = −nT
[

log det(Θ̂λ)− tr(SΓ̂ρ
)
]

+ log(nT)(
a

2
+

K∑
i=1

bi + p) (11)

Here a is the number of off-diagonal non-zero parameters of Θ, p the number
of diagonal parameters of Θ, all non-zero, and bi the number of parameters of
transition matrix Γi. The best pair of (λ, ρ) is again found by a grid search.

13

2.2 Slowly changing sparse time series chain graphical model

The second alteration we will look at is the slowly changing STSCGM. Here we
assume again that the transition matrix Γ changes over time. However, we don’t
expect to change very drastically. Small changes in for example the second fold
could change the transition matrix a little bit, but we can still use the data to
estimate the transition matrix in the first fold.

Let the time points at which the transition matrix changes be Tk and let
T1 = 0, the first time it changes. We can then divide the data in K folds. We
define the K transition matrices Γk as

Γ1 = D1, for T1 < t ≤ T2

Γ2 = Γ1 +D2 = D1 +D2, for T2 < t ≤ T3

...

ΓK = Γk−1 +DK = D1 +D2 + . . .+DK , for TK < t ≤ T

So we let the transition matrix slowly change over time, instead of choosing a
different Γ for each fold. The previous model with change points cannot be used
in this case, since every Γ is dependent of its predecessors.

To introduce sparsity in the model, we could apply the same method as
before. We add a penalty term to the log-likelihood and try to solve it in an it-
erative way. However, simply penalizing the elements of Dk will only introduce
sparsity in the Dk matrices and not in the Γk matrices. Vice versa, penalizing
the elements of Γk will not bring sparsity in the Dk matrices. Penalizing both
the elements of Dk and Γk could be a solution, but the belonging penalized
likelihood is hard to maximize. We propose a new approach of obtaining sparse
estimates of both Dk and Γk.

We start with finding initial estimates for Γ1, . . . ,ΓK . Although Γi affects
its successors, we will not take this into consideration yet. Thus we can easily
find the initial estimate for Γi by using QR-decomposition. Our initial estimates
for Di become

D̂k = Γ̂k − (D̂k−1 + D̂k−2 + ...+ D̂1) for k = 1, . . . ,K

Now we find estimates for Θ and the Di’s in an iterative manner as before.

The updating step for Θ is the same as in the previous two models. Setting

Γ̂k =

k∑
i=1

D̂i,

we define SΓk in the same way as in the STSCGM with change points. We then

14

update Θ̂ in the same way.

Θ̂(l+1) = arg max
Θ

{
log det(Θ)− tr

[(K∑
k=1

SΓk

)
Θ
]

+

p∑
i 6=j

Pλ(|θij |)
}

For updating D̂k we will have to transform the data. Dk only affects data
for t > Tk, so we want to clean the data from any influence of the other Di’s.
Suppose Xt, t > Tk, is affected by D1, . . . , Dk, . . . , Dm. Then Xt can be written
as.

Xt = (D1 + . . .+Di + . . .+Dm)Xt−1 + ε where ε ∼ N(0,Σ)

We then define the transformed data X̃t as follows.

X̃t = Xt − (D1 + . . .+Dk−1 +Dk+1 + . . .+Dm)Xt−1

= DkXt−1 + ε

That is, we predict the effect that the Di 6=k’s have on the data and subtract
these fitted values from the data. Now we can apply the theory of the STSCGM
to update Dk. Letting

SDk =
1

n(T − Tk)

n∑
i=1

T∑
t=Tk+1

(X̃t −DkXt−1)(X̃t −DkXt−1)′

= S̃y − S̃yxD′k −DkS̃
′
yx +DkS̃xD

′
k

with

S̃y =
1

n(T − Tk)

n∑
i=1

T∑
t=Tk+1

X̃tX̃t
′
, S̃yx =

1

n(T − Tk)

n∑
i=1

T∑
t=Tk+1

X̃tX
′
t−1

S̃x =
1

n(T − Tk)

n∑
i=1

T∑
t=Tk+1

Xt−1X
′
t−1

We then update D̂k by maximizing the penalized log-likelihood with respect to
Dk.

D̂
(l+1)
k = arg max

Dk

{
− tr(SDkΘ)−

p∑
i 6=j

Pρ(|Dkij |)
}

(12)

This gives us sparse estimate D̂k and we let Γ̂k = Γ̂k−1 + D̂k. Now we update
Γ̂k in a same manner as in (10). That is,

Γ̂k = arg max
Γk

{
− tr(SΓkΘ)−

p∑
i,j

Pµ(|γkij |)
}
. (13)

15

Now we could update the estimate for Dk again by letting

D̂k = Γ̂k − Γ̂k−1

and move on to the updating process of Dk+1. However, this does not lead to
the desired sparsity in both Γ̂k and D̂k. Instead, we update the estimate for
Dk in the following way. Find the zeros in Γ̂k. Suppose there occurs a zero at
(x, y), so Γ̂kxy = 0. Then change the estimate D̂k such that

∑k
i=1 D̂ixy is zero.

That is, let

D̂kxy = −
k−1∑
i=1

D̂ixy , (14)

completing the updating process for Dk. Notice that there are 3 penalty pa-
rameters involved. We have the penalty parameterized by λ for Θ as in the
STSCGM. Parameter ρ now regulates the sparsity in the Dk matrices and µ
regulates the sparsity in the Γk matrices. The last 2 have an interesting prop-
erty. Letting ρ or µ be smaller gives fewer zeros in Dk, so the transition matrix
will change more over time, while letting ρ and µ be bigger gives more zeros in
Dk which yields less change over time in the transition matrix.

Consider the following example where the algorithm is briefly explained.
Suppose we want to update D̂k. We have an estimate for Γk−1 and an initial
estimate D̂k, obtained by solving (12),

Γ̂k−1

[
−0.99 0

0 −0.98

]
, D̂k =

[
0 0
0 0.99

]
Adding both gives Γ̂k, which has one very small entry at (2,2) unequal to zero.
In (13) we will probably find a zero in that entry, that is, something like

Γ̂k =

[
−1 0

0 0

]
(15)

depending on the choice of penalty parameter µ. In (14), we set

D̂k2,2 = −
k−1∑
i=1

D̂i2,2 = −Γ̂k−12,2
= 0.98

So by sacrificing a little bit of prediction accuracy, we obtain sparse estimates
for both Γk and Dk.

The weakness of the STSCGM with change points is that the change points
in the estimated model have to be exactly the same as the true values, if the
change in Γ is very large. For the slowly changing STSCGM the same problem
holds. The solution of this problem combines the two alterations. Letting the
number of folds in the slowly changing STSCGM be large, we obtain a great

16

number of Di matrices. A matrix with a lot of small or zero elements can only
be caused by a transition matrix that doesn’t change in that period of time.
Vice versa, a matrix with many bigger non-zero parameters can only be caused
by a big change in the transition matrix. These matrices reveal the underlying
structure of the data, giving us the true change points of the transition matrix.
Now both models can be used to find accurate estimates.

17

3 Simulations

3.1 Simulation 1

We start by randomly creating two high dimensional (p = 18) sparse matrices
Γ and Θ. The first one is created in such a way that the absolute value of the
sum of each row is smaller than 1, which is a desirable property for simulating
data. Also, all values are between 0.5 and 1. The latter is found by creating
a sparse upper triangular matrix and premultiply it by its transpose, reversing
the Cholesky Decomposition so that we are left with a positive definite matrix.
We then simulate 20 replicates of T = 60 time points. We will estimate the
transition matrix in two ways. We will test both the standard non-stationary
STSCGM model and the slowly changing STSCGM, with K = 5 transition
matrices.

We start by looking at the estimates of the stationary STSCGM. Figure 4
is the directed graph of the estimate Γ̂. The grey lines represent true positives,
edges that are estimated nonzero correctly. The red lines represent false posi-
tives, edges that are estimated nonzero falsely. A dashed red line means that
the estimate is smaller than 0.05 in absolute value. Dark blue lines represent
false negatives, edges that are estimated zero wrongly.

Figure 4: Γ̂, stationary STSCGM Figure 5: Θ̂−Θ, stationary STSCGM

Only one extra edge is included in the graph of Γ̂, but its corresponding
value in the matrix is 0.020. Instead of looking at the undirected graph of Γ̂
with all its edges, we will consider the edges belonging to false positives or false
negatives. In the estimate of Θ a few more edges have been included, but all
of the corresponding values are smaller than 0.05 in absolute value. Only one
edge (14− 5) has been left out of the model, but this edge belongs to a value of
0.037 in the true precision matrix.

18

Looking at the slowly changing STSCGM, we find that the estimates are
very accurate. Surprisingly, the slowly changing STSCGM has a lower value
of the BIC (21,767.14) than the stationary STSCGM (22,089.54). Looking at
Figure 6, we see that the first transition matrix graph of the slowly changing
STSCGM has all the edges that the graph of the true Γ has, but also two false
positive edges from 10 to 16 and 9 to 16. Although these entries are very small,
we would like to get rid of them. Ideally, D2 contains only two entries such that
Γ2 does not have any false positive edges. In Figure 7 we see that the same
two edges are present and in Figure 8 we have that the graph of Γ̂2 is equal to
the graph of Γ, as desired. After this correction, we see no more change in the
transition matrix, as D3 and D4 is the zero matrix.

Figure 6: Γ̂1, changing STSCGM Figure 7: D̂2, changing STSCGM

Figure 8: Γ̂2, changing STSCGM Figure 9: Θ̂−Θ, changing STSCGM

19

The difference graph of Θ̂−Θ is given by Figure 9. 87.8% of the zeros in Θ
were estimated zero correctly. The wrongly included edges all belong to small
values in the precision matrix.

Although including the right edges in the model is important we want our
estimate to be accurate as well. As a way to measure the distance between
matrices, we will use the Frobenius norm given by

‖A‖F =

√√√√ m∑
i=1

n∑
j=1

∣∣aij∣∣2
for an m× n matrix. We then see that for the stationary STSCGM

∥∥∥Γ− Γ̂
∥∥∥
F

= 0.056,
∥∥∥Θ− Θ̂

∥∥∥
F

= 0.417

and for the changing STSCGM

max
Γk

{∥∥∥Γ− Γ̂k

∥∥∥
F

}
= 0.066,

∥∥∥Θ− Θ̂
∥∥∥
F

= 0.471

All transition matrix estimates are very accurate. We see that the estimates for
Θ are a bit less accurate, as we would expect looking at the Figure 9

20

3.2 Simulation 2

We start by simulating a high dimensional (p = 18) precision matrix Θ and
three completely random transition matrices in the same manner as Simulation
1. Γ1 belongs to 1 ≤ t ≤ 20, Γ2 to 21 ≤ t ≤ 40 and Γ3 to 41 ≤ t ≤ 60.
We simulate 20 replicates of T = 60 time points. We could use the STSCGM
with change points to immediately estimate the matrices using change points
cp = (20, 40), but this seems a bit like cheating.

Suppose we don’t know the real change points. Running the stationary
STSCGM, we find that the model does not fit the data very well. We suspect
that there are some (major) change points. We could try to find these points by
using the slowly changing STSCGM and letting the number of transition ma-
trices K be large, K = 12. Doing so, we find that only D1, D2, D5 and D9 are
not close to zero. It is then clear that the change points occur at the beginning
of D5 and D9, that is, the change points are t ≈ 20 and t ≈ 40.

Figure 10: Γ̂1, STSCGM with cp Figure 11: Γ̂2, STSCGM with cp

21

Figure 12: Γ̂3, STSCGM with cp Figure 13: Θ̂−Θ, STSCGM with cp

The three transition matrices look perfect. No false negative or false positive
edges are included in the model. For the estimate of Θ, 82.1% of the real zeros
are indeed zero in Θ̂. Out of all the false positives, only 3 edges are belonging
to absolute values bigger than 0.05 in the estimated precision matrices.∥∥∥Γ1 − Γ̂1

∥∥∥
F

= 0.069,
∥∥∥Γ2 − Γ̂2

∥∥∥
F

= 0.106∥∥∥Γ3 − Γ̂3

∥∥∥
F

= 0.081,
∥∥∥Θ− Θ̂

∥∥∥
F

= 1.610

When looking at the norm of the difference of the matrices, we see that the
transition matrices are again very close to the true values. The estimate of Θ is
a bit less accurate, but considering that it is an 18× 18 matrices, the difference
is not that big.

22

3.3 Simulation 3

In the last example we will consider a transition matrix that slowly changes over
time. Consider again a high dimensional (p=18) sparse Θ and Γ. We will sim-
ulate n = 20 replicates of T = 100 time points. For simplicity, we let Γ change
every 10 time points by removing one or two edges at random. We will look
at the performance of both the STSCGM with change points and the slowly
changing STSCGM. Since the transition matrix does not change drastically, we
expect that the slowly changing STSCGM performs the best.

Letting the number of folds in both models be equal to the true value, 10,
we obtain the two estimated model. The slowly changing STSCGM has the
lowest BIC, 19,220.4 compared to the STSCGM with change points with a BIC
of 19,513.9.

Figure 14: Γ̂1, changing STSCGM Figure 15: Γ̂1, STSCGM with cp

23

Figure 16: Γ̂2, changing STSCGM Figure 17: Γ̂2, STSCGM with cp

Figure 18: Γ̂5, changing STSCGM Figure 19: Γ̂5, STSCGM with cp

24

Figure 20: Γ̂7, changing STSCGM Figure 21: Γ̂7, STSCGM with cp

Figure 22: Γ̂10, changing STSCGM Figure 23: Γ̂10, STSCGM with cp

As can be seen in Figure 14, in the first transition matrix there are a lot
of false positives in the slowly changing STSCGM. However, after this point,
not one false negative of false positive has been included in the 9 succeeding
matrices. The slowly changing STSCGM has some errors in matrix 5 and 7,
but looks very good overall as well.

25

Figure 24: Θ̂−Θ, changing STSCGM Figure 25: Θ̂−Θ, STSCGM with cp

As in the previous two simulations, the estimates for Θ include some false
positives. For the changing STSCGM and STSCGM with cp, we have∥∥∥Θ− Θ̂

∥∥∥
F

= 1.103,
∥∥∥Θ− Θ̂

∥∥∥
F

= 1.496,

respectively. Then we see that effect of the false positives is small and the
matrices are very close to the true values. Looking at the transition matrices,
we will consider the mean of the norms of the ten difference matrices. Then we
see that the slowly changing STSCGM (x = 0.074) does a bit better than the
STSCGM with change points (x = 0.211), as expected.

26

4 Conclusion and Discussion

We considered 3 sparse models for time series chain graphs. The models combine
the features of the Gaussian graphical model and time series chain graphs to
infer conditional relationships between variables. By adding a penalty term to
the log-likelihood we obtain sparse estimates. The theory behind the stationary
STSCGM has been discussed extensively, explaining each step carefully. Using
this theory, we proposed two non-stationary sparse models. In the first model,
we considered possible drastic changes in the transition matrix Γ. We showed
that almost no extra theory is needed for solving the belonging optimization
problem. In the second model we let Γ slowly change over time. We proposed a
method for obtaining sparse estimates for both the difference matrices and the
transition matrices. For all the models, we used the SCAD penalty to obtain
the desired sparsity. The models performed really well on the simulated data,
having the desired sparsity and accuracy.

For discussion and further improvement, one could test the robustness of
these models by testing on data which violates one of the assumptions. The
model assumptions, Gaussian error terms, linear dynamics and first-order Markov
properties are quite demanding. One should carefully investigate if all hold for
time series data before using the model. Also, the STSCGM with change points
requires that the exact change points are known. Although the change points
can be approximated by using the slowly changing STSCGM, this doesn’t seem
the best option. The estimates of the first transition matrix of the slowly chang-
ing STSCGM look inaccurate. Although this effect is erased by the second dif-
ference transition matrix, there could be a better way. Further studies could
also consider different model selection criteria than the BIC and a Markovian
property of order d ≥ 1.

27

A
Proofs and calculations

A.1 Section 1

Log-likelihood of the stationary model

Let the conditional pdf of Xt|Xt−1 be

f(Xt|Xt−1) = (2π)−p/2 det(Σ)−1/2 exp{−1

2
(Xt − ΓXt−1)′Σ−1(Xt − ΓXt−1)}.

Assume that we have n replicates of T time points of p variables. Using the
equality tr(x′Ax) = tr(xx′A), the conditional log-likelihood can be written as

`(Γ,Θ) =

n∑
i=1

T∑
t=1

log f(Xt|Xt−1)

= −npT
2

log(2π)− nT

2
log det(Σ)− 1

2

n∑
i=1

T∑
t=1

(Xt − ΓXt−1)′Σ−1(Xt − ΓXt−1)

=
nT

2
log det(Θ)− 1

2

n∑
i=1

T∑
t=1

tr
{

(Xt − ΓXt−1)′Θ(Xt − ΓXt−1)
}

+ c

=
nT

2
log det(Θ)− 1

2
tr
{ n∑
i=1

T∑
t=1

(Xt − ΓXt−1)(Xt − ΓXt−1)′Θ
}

+ c

=
nT

2
log det(Θ)− nT

2
tr(SΓΘ) + c

∝ log det(Θ)− tr(SΓΘ) + c2

Derivatives of g in (8)

Before we differentiate g, we define the matrix whose elements are the partial
derivatives of a scalar function f(A) as ∇Af(A). Then we have that

∇A tr(AB) = B′

∇A tr(A′B) = B

Using the product rule, we get

∇A tr(ABA′C) = ∇A tr(ABX ′C) +∇A tr(XBA′C) (letting X = A)

= (BX ′C)′ +∇A tr(CXBA′)

= (BX ′C)′ +∇A tr(AB′X ′C ′)

= B′AC ′ +BAC,

28

using that the trace is invariant under cyclic permutations. Thus differentiating
g with respect to γij using the properties of the trace and the symmetry of xtx
and Θ gives

∇Γ g(Γ) = ∇Γ

[
tr(SyxΓ′Θ + ΓS′yxΘ− ΓSxΓ′Θ)

]
= ∇Γ tr(SyxΓ′Θ) +∇Γ tr(ΓS′yxΘ)−∇Γ tr(ΓSxΓ′Θ)

= ∇Γ tr(ΘΓS′yx) +∇Γ tr(ΓS′yxΘ)−∇Γ tr(ΓSxΓ′Θ)

= ∇Γ tr(ΓS′yxΘ) +∇Γ tr(ΓS′yxΘ)−∇Γ tr(ΓSxΓ′Θ)

= ΘSyx + ΘSyx −ΘΓSx −ΘΓSx

= 2 ΘSyx − 2 ΘΓSx

For the second derivative of g with respect to γij we get

∂2g

∂γ2
ij

=
∂g

∂γij

[
e′i(2 ΘSyx − 2 ΘΓSx)e′j

]
=

∂g

∂γij

[
2e′i(ΘSyx)ej − 2e′i(ΘΓSx)e′j

]
= 0− e′i(Θ)ei e

′
i(Sx)ej

= −Θii Sxjj .

The diagonals of Θ and xtx are strictly positive. Therefore, the second derivative
is strictly negative.

Properties of concave function with L1 penalty term

Proposition 1. Let f(x) be a strictly concave continuously differentiable func-
tion and let g(x) = f(x)− λ|x|, λ > 0. Then

sgn(max
x

g(x)) = sgn(max
x

f(x)) or max
x

g(x) = 0

max
x

g(x) = 0⇔ |f ′(0)| ≤ λ

Proof. Let’s start with the first part. Without loss of generality, assume
sgn(xmax) = sgn(maxx f(x)) = −1. For an example, see Figure 3. Then
f ′(xmax) = 0 and because f is strictly concave, f ′(0) < 0. That means that for
any x > 0, g′(x) < 0. So the maximum of g cannot occur at any positive value
of x. Because of the discontinuity it could occur at x = 0 or a negative value of x.

29

We will proof the second part in two parts.
(⇐) Let |f ′(0)| ≤ λ. Then we have that

lim
x↑0

g′(x) = f ′(0) + λ ≥ 0

lim
x↓0

g′(x) = f ′(0)− λ ≤ 0

It takes little effort to see that g achieves its maximum at x = 0.
(⇒) Let maxx g(x) = 0. Then it must be that

lim
x↑0

g′(x) = f ′(0) + λ ≥ 0

lim
x↓0

g′(x) = f ′(0)− λ ≤ 0

Therefore it must be that |f ′(0)| ≤ λ

A.2 Section 2

Log-likelihood of stscgm with change points

Let the conditional pdf of Xt be

Xt|Xt−1 ∼ N(ΓkXt−1,Σ) for Tk−1 + 1 ≤ t ≤ Tk.

The likelihood the conditional pdf is

L(Γ1, . . . ,Γk,Θ) =

n∏
i=1

T∏
t=1

f(Xt|Xt−1) =

n∏
i=1

K∏
k=1

Tk∏
t=Tk−1+1

fk(Xt|Xt−1),

30

The log-likelihood can then be written as

`(Γ,Θ) =

n∑
i=1

K∑
k=1

Tk∑
t=Tk−1+1

log fk(Xt|Xt−1)

= −npT
2

log(2π)− nT

2
log det(Σ)

− 1

2

n∑
i=1

K∑
k=1

Tk∑
t=Tk−1+1

(Xt − ΓkXt−1)′Σ−1(Xt − ΓkXt−1)

=
nT

2
log det(Θ)− 1

2

n∑
i=1

K∑
k=1

Tk∑
t=Tk−1+1

tr
[
(Xt − ΓkXt−1)(Xt − ΓkXt−1)′Θ

]
+ c

=
nT

2
log det(Θ)− nT

2

n∑
i=1

K∑
k=1

Tk∑
t=Tk−1+1

1

nT
tr
[
(Xt − ΓkXt−1)(Xt − ΓkXt−1)′Θ

]
+ c

∝ log det(Θ)−
n∑
i=1

K∑
k=1

Tk∑
t=Tk−1+1

1

nT
tr
[
(Xt − ΓkXt−1)(Xt − ΓkXt−1)′Θ

]
+ c

= log det(Θ)− tr
[n∑
i=1

K∑
k=1

Tk∑
t=Tk−1+1

1

nT
(Xt − ΓkXt−1)(Xt − ΓkXt−1)′Θ

]
+ c

= log det(Θ)− tr
[K∑
k=1

n∑
i=1

Tk∑
t=Tk−1+1

1

nT
(Xt − ΓkXt−1)(Xt − ΓkXt−1)′Θ

]
+ c

= log det(Θ)− tr
[K∑
k=1

(SΓkΘ)
]

+ c,

where the Sk matrices are defined as follows

SΓk =
1

nT

n∑
i=1

Tk∑
t=Tk−1+1

(Xt − ΓkXt−1)(Xt − ΓkXt−1)′

= Syk − SyxkΓ′k − ΓkS
′
yxk

+ ΓkSxkΓ′k

31

B
R code: functions

cp.stscgm

cp.stscgm <-function(data = data, lam = lam, rho = rho, cp = NULL,

setting = setting)

{

dim.data <- dim(data)

t <- dim.data[1] -1

p <- dim.data[2]

n <- dim.data[3]

#if setting is not entered, use default setting

if (is.null(setting)){

setting = list()

setting$maxit.out = 50

setting$maxit.in = 15

setting$tol.out = 1e-2

setting$tol.in = 1e-2

setting$silent = FALSE

}

res <- BIC.cp.stscgm(data = data, lam = lam, rho = rho, cp = cp,

setting=setting)

return(res)

}

BIC.cp.stscgm

BIC.cp.stscgm <- function(data = data, lam = lam, rho = rho, cp = cp,

setting = setting)

{

t = dim(data)[1] -1

p = dim(data)[2]

n = dim(data)[3]

K = length(cp) + 1

BIC <- Inf

for (u in lam){

for (v in rho){

res.tmp <- compute.cp.stscgm(data, lam = u, rho = v, cp = cp,

setting = setting)

theta = res.tmp$theta

S = res.tmp$S

32

G.array = res.tmp$G.array

nzp.T = sum(theta !=0) - p

nzp.G <- 0

for (i in 1:K) nzp.G = nzp.G + sum(G.array[,,i] != 0)

BIC.tmp = -n*t *(log(det(theta)) - sum(diag(S %*% theta))) +

log(n*t)*(nzp.T/2 + nzp.G + p) #BIC

if (BIC.tmp < BIC){ #save best BIC

BIC = BIC.tmp

res <- res.tmp

lam.opt = u

rho.opt = v

}

}

}

return(list(theta = res$theta, G.array = res$G.array, lam.opt = lam.opt,

rho.opt = rho.opt, BIC = BIC))

}

compute.cp.stscgm

compute.cp.stscgm <- function(data = data, lam, rho, cp = cp, setting

= setting)

{

t = dim(data)[1] -1

p = dim(data)[2]

n = dim(data)[3]

K = length(cp) + 1

change = c(1,cp,t+1)

data.list = list(data[change[1]:change[2],,]) #create data.list

if (length(change) > 2){

for (j in (2:(length(change)-1))){

data.list <- append(data.list,list(data[(change[j]:change[j+1]),,]))

}}

#storage arrays

G.array <-array(NA, dim=(c(p,p,K)))

xtx.array <- array(NA, dim=(c(p,p,K)))

xty.array <- array(NA, dim=(c(p,p,K)))

yty.array <- array(NA, dim=(c(p,p,K)))

xtxt.array <- array(NA, dim=(c(p,p,K)))

samp.cov.arr <- array(NA, dim=(c(p,p,K)))

#storage vectors

mab.vec <- vector(mode="integer", length = K)

G.dist.vec <- vector(mode="integer", length = K)

33

for (i in 1:K)

{

data.tmp = data.list[[i]]

tmp = datamatrices(data.tmp)

xtx.array[,,i] = tmp$xtx

xty.array[,,i] = tmp$xty

yty.array[,,i] = tmp$yty

t.tmp = (dim(data.tmp))[1] -1

G.tmp = t(qr.solve(tmp$xtx + n*t.tmp*rho*diag(p), tmp$xty))

if(!is.numeric(G.tmp)) G.tmp <- matrix(0,p,p)

G.array[,,i] = G.tmp

mab.tmp = sum(abs(G.tmp))

mab.vec[i] = mab.tmp

}

k.out = 0

while(1)

{

k.out = k.out + 1

#calculate S

S = matrix(0,p,p)

for (i in 1:K) S = S + (yty.array[,,i] - t(xty.array[,,i]) %*%

t(G.array[,,i]) - G.array[,,i] %*% xty.array[,,i] +

G.array[,,i] %*% xtx.array[,,i] %*% t(G.array[,,i]))/(n*t)

#update theta

theta = update.theta(S = S, rho = lam)

#update gammas

warmstart = 1

if (k.out == 1) warmstart = 0

for (i in 1:K)

{

G.tmp = G.array[,,i]

tmp = SCAD(M = G.tmp, a = 3.7, lam = rho)

wt.G.tmp = tmp*n*t

xty.tmp = xty.array[,,i]

xtx.tmp = xtx.array[,,i]

mab.tmp = mab.vec[i]

new.G.tmp = rblasso(xtx = xtx.tmp, xty = xty.tmp, wt = wt.G.tmp,

tol = 1e-5, sbols = mab.tmp,

maxit =setting$maxit.in, warm = warmstart,

34

old.T = theta, old.G = G.tmp)

if(!is.numeric(new.G.tmp)) new.G.tmp <- matrix(0, nrow = p, ncol

= p)

G.dist.tmp = sum(abs(G.tmp - new.G.tmp))

G.dist.vec[i] = G.dist.tmp

G.array[,,i] = new.G.tmp

}

tol = (setting$tol.out)*mab.vec

if (sum(G.dist.vec < tol) == K) break

if (k.out > setting$maxit.out) break

cat(G.dist.vec,"\n")

} #end while loop

#extra sparsity

for (i in 1:K) G.array[,,i] = G.array[,,i]*(1*(abs(G.array[,,i])

> 0.01))

#calculate S

S = matrix(0,p,p)

for (i in 1:K) S = S + (yty.array[,,i] - t(xty.array[,,i]) %*% t(G.array[,,i])

- G.array[,,i] %*% xty.array[,,i] +

G.array[,,i] %*% xtx.array[,,i] %*% t(G.array[,,i]))/(n*t)

if (!setting$silent) cat(k.out, "\n")

return(list(theta = theta, G.array = G.array, S = S))

}

datamatrices

datamatrices <- function(data.m = data.m)

{

dim = dim(data.m)

t = dim[1]

X = data.m[1:(t-1),,]

Y = data.m[2:t,,]

dim = dim(X)

T <- dim[1]

p <- dim[2]

n <- dim[3]

xty.i <- array(NA, c(p,p,n))

35

xtx.i <- array(NA, c(p,p,n))

yty.i <- array(NA, c(p,p,n))

for(i in 1:n){

XX <- X[,,i]

YY <- Y[,,i]

xty.i[,,i]=crossprod(XX,YY)

xtx.i[,,i]=crossprod(XX)

yty.i[,,i]=crossprod(YY)

}

xty =apply(xty.i, c(1,2), sum)

xtx =apply(xtx.i, c(1,2), sum)

yty =apply(yty.i, c(1,2), sum)

return(list(xty = xty,xtx = xtx,yty = yty))

}

update.theta

update.theta <- function(S = S, rho = rho)

{

p = dim(S)[1]

#estimate theta with lasso penalty

lasso.out <- glasso(s=S, rho=rho, thr=1.0e-4, maxit=1e4, penalize.diagonal=FALSE,

approx=FALSE)

lasso.T=lasso.out$wi

lasso.T.i=lasso.out$w

if(!is.numeric(lasso.T)) lasso.T <- diag(p)

if(!is.numeric(lasso.T.i)) lasso.T.i <- diag(p)

wt.T <- SCAD(M = lasso.T, a = 3.7, lam = rho) #approximate scad penalty

with LLA

#scad estimate

SCAD.out <- glasso(s=S, rho=wt.T, thr=1.0e-4, maxit=1e4, penalize.diagonal=FALSE,

approx=FALSE, start="warm", w.init=lasso.T.i,

wi.init=lasso.T)

old.T = SCAD.out$wi

return(theta = old.T)

}

SCAD

SCAD <- function(M = M, a = a, lam = lam)

{

#approximate scad penalty with LLA

36

wt <- matrix(NA,ncol =dim(M)[1],nrow = dim(M)[2])

for(i in 1:dim(M)[1]){

for(j in 1:dim(M)[2]){

if(abs(M[i,j]) <= lam) wt[i,j] <- lam

else { if((lam <= abs(M[i,j])) & (abs(M[i,j]) < a*lam)) {

wt[i,j] <- ((a*lam-abs(M[i,j]))/((a-1))) }

else wt[i,j] <- 0 }

}}

return(wt)

}

rblasso

rblasso <- function(xtx = xtx, xty = xty, wt = wt, tol = tol, sbols

= sbols,

maxit = maxit, warm = warm, old.T = old.T, old.G

= old.G)

{

p = dim(xtx)[1] #dim

tol1 = tol*sbols

G = matrix(0, nrow=p, ncol = p)

if(warm==1) G = old.G

k.it = 0

while(1){

Gdiff = 0

k.it = k.it + 1

for(i in 1:p){

for(j in 1:p){

#update G_ij

gij = (old.T[i,i]*xtx[j,j])*G[i,j] + ((old.T%*%t(xty))[i,j]-

old.T%*%G%*%xtx)[i,j];

tmp =(abs(gij) - wt[i,j])/(old.T[i,i]*xtx[j,j]);

gnew=0;

if(tmp > 0){

if(gij > 0) gnew = tmp;

if(gij < 0) gnew = -tmp;

}

Gdiff= Gdiff + abs(G[i,j]-gnew);

G[i,j]=gnew;

}}

if (k.it > maxit) break

if (Gdiff < tol1) break

}

return(G)

}

37

nonst.stscgm

nonst.stscgm <- function (data = data, lam = lam, rho = rho , mu =

mu, K = 1, setting = NULL)

{

t = dim(data)[1]

n = dim(data)[3]

if (K%%1 != 0){

stop

cat("number of folds must be integer geq 1", "\n")

}

if (K < 1){

stop

cat("number of folds to must be geq 1", "\n")}

if (n*t/20 < (K+1)){

stop

cat("number of folds to big for data of dim t,n", "\n")

}

#if setting is not entered, use default setting

if (is.null(setting)){

setting = list()

setting$maxit.out = 50

setting$maxit.in = 15

setting$tol.out = 1e-2

setting$tol.in = 1e-2

setting$silent = FALSE

}

res <- BIC.nonst.stscgm(data = data, lam = lam, rho = rho, mu = mu,

K = K, setting = setting)

return(res)

}

BIC.nonst.stscgm

BIC.nonst.stscgm <- function(data=data,lam=lam, rho=rho, mu=mu, K =

K, setting = setting)

{

t <- dim(data)[1] -1

p <- dim(data)[2]

n <- dim(data)[3]

BIC <- Inf

for (u in lam){

for (v in rho){

38

for (w in mu){

res.tmp <- compute.nonst.stscgm(data, pen.pm = c(u,v,w), K

= K, setting = setting)

tmp.T = res.tmp$theta

sgamma = res.tmp$S

D.array = res.tmp$D.array

nzp.T = sum(tmp.T !=0) - p #number of nonzero off-diagonal

parameters

nzp.D = 0

for (i in 1:K) nzp.D = nzp.D + sum(D.array[,,i] != 0) #number

of nonzero parameters of D_i

BIC.tmp = -n*t *(log(det(tmp.T)) - sum(diag(sgamma %*% tmp.T)))

+ log(n*t)*(nzp.T/2 + nzp.D + p)

if (BIC.tmp < BIC){ #save best BIC

BIC = BIC.tmp

res <- res.tmp

}}}}

return(list(theta = res$theta, D.array = res$D.array, G.array = res$G.array,

lam= res$lam, rho = res$rho,

mu = res$mu, BIC = BIC))

}

compute.nonst.stscgm

compute.nonst.stscgm <- function(data = data, pen.pm = pen.pm, K =

K, setting = setting)

{

t <- dim(data)[1]

p <- dim(data)[2]

n <- dim(data)[3]

lam = pen.pm[1]

rho = pen.pm[2]

mu = pen.pm[3]

cp = seq(1,t,length.out = K+1)

data.list = list(data[cp[1]:cp[2],,])

if (length(cp) > 2){

for (j in (2:(length(cp)-1))){

data.list <- append(data.list,list(data[(cp[j]:cp[j+1]),,]))

}}

39

#storage arrays

D.array <- array(NA, dim=c(p,p,K))

G.array = array(NA, dim=c(p,p,K))

xtx.array <- array(NA, dim=(c(p,p,K)))

xty.array <- array(NA, dim=(c(p,p,K)))

yty.array <- array(NA, dim=(c(p,p,K)))

#storage vectors

t.vec <- vector(mode="integer", length = K)

G.dist.vec <- vector(mode="integer", length = K)

mab1 <- vector(mode="integer", length =K)

mab2 <- vector(mode="integer", length = K)

#initial steps

for (i in 1:K){

data.tmp = data.list[[i]]

tmp = datamatrices(data.tmp) #create xtx_i etc. for all K data

parts

xtx.array[,,i] = tmp$xtx

xty.array[,,i] = tmp$xty

yty.array[,,i] = tmp$yty

t.tmp = (dim(data.tmp))[1] -1

t.vec[i] = t.tmp

G.array[,,i] = t(qr.solve(tmp$xtx + n*t.tmp*mu * diag(p), tmp$xty))

if(!is.numeric(G.array[,,i])) G.array[,,i] <- matrix(0,p,p)

if(i == 1) D.array[,,i] <- G.array[,,i]

if(i != 1) D.array[,,i] <- G.array[,,i] - apply(D.array[,,1:(i-1)],c(1,2),sum)

mab1[i] = sum(abs(D.array[,,i]))

mab2[i] = sum(abs(G.array[,,i]))

}

rm(tmp); rm(data.tmp); rm(t.tmp)

k.out = 0

while(1){

k.out = k.out + 1

warmstart = 1

if (k.out == 1) warmstart = 0

#calculate S

S = matrix(0,p,p)

for (i in 1:K) S = S + (yty.array[,,i] - t(xty.array[,,i]) %*%

t(G.array[,,i]) - G.array[,,i] %*% xty.array[,,i] +

G.array[,,i] %*% xtx.array[,,i] %*%

t(G.array[,,i]))/(n*t)

#update theta

theta = update.theta(S = S, rho = lam)

40

#update D_k matrices

for (i in 1:K){

data.tf <- data #transform data for updating D_i

D.tmp <- D.array[,,i]

#remove predicted effect of the K-1 D_k matrices

rm.eff = (1:K)[-which((1:K)==i)] #select all matrices but D_i

for(j in rm.eff){

for(l in 1:n){

for(m in t:(cp[j]+1)){

data.tf[m,,l] = data.tf[m,,l] - D.array[,,j]%*%data[m-1,,l]

}}}

tmp = datamatrices2(data.tf = data.tf, data.or = data, cp = cp[i])

xtx.tmp = tmp$xtx; xty.tmp = tmp$xty;

tmp = SCAD(M = D.array[,,i], a = 3.7, lam = rho) #estimate SCAD

penalty with LLA

t.tmp = t - cp[i] #time X is affected by D_i

wt.tmp = tmp*t.tmp*n

new.D.tmp = rblasso(xtx = xtx.tmp, xty = xty.tmp, wt = wt.tmp,

tol = 1e-5, sbols = mab1[i],

maxit =setting$maxit.in, warm = warmstart,

old.T = theta, old.G = D.tmp)

if(!is.numeric(new.D.tmp)) new.D.tmp <- matrix(0, nrow = p, ncol

= p)

if (i != 1){

#update G_k matrices

G.tmp = apply(D.array[,,1:i-1],c(1,2),sum) + new.D.tmp

tmp = SCAD(M = G.tmp, a = 3.7, lam = mu)

wt.tmp = tmp*t*n

xtx.tmp = xtx.array[,,i]; xty.tmp = xty.array[,,i]

new.G.tmp = rblasso(xtx = xtx.tmp, xty = xty.tmp, wt = wt.tmp,

tol = 1e-5, sbols = mab2[i],

maxit =setting$maxit.in, warm = warmstart,

old.T = theta, old.G = G.tmp)

if(!is.numeric(new.G.tmp)) new.G.tmp <- matrix(0,p,p)

for (x in 1:p){

for (y in 1:p){

if (abs(new.G.tmp[x,y]) < 0.01) new.D.tmp[x,y]= - (apply(D.array[,,1:(i-1)],c(1,2),sum))[x,y]

41

}}

}

G.dist.vec[i] <- sum(abs(D.array[,,i] - new.D.tmp))

D.array[,,i] <- new.D.tmp

if (i == 1) G.array[,,i] = new.D.tmp

if (i != 1) G.array[,,i] = apply(D.array[,,1:(i-1)],c(1,2),sum)

+ new.D.tmp

}

cat(G.dist.vec,"\n")

if (sum(G.dist.vec < setting$tol.out) == K) break #break if all

G/D converge

if (k.out > setting$maxit.out) break

}

#calculate S

S = matrix(0,p,p)

for (i in 1:K) S = S + (yty.array[,,i] - t(xty.array[,,i]) %*% t(G.array[,,i])

- G.array[,,i] %*% xty.array[,,i] +

G.array[,,i] %*% xtx.array[,,i] %*% t(G.array[,,i]))/(n*t)

if (!setting$silent) cat(k.out, "\n")

return(list(theta = theta, D.array = D.array, G.array = G.array,

S = S, lam = lam, rho = rho, mu = mu))

}

datamatrices2

datamatrices2 <- function(data.tf = data.tf, data.or = data.or, cp)

{

if (dim(data.tf)[1] != dim(data.or)[1]) cat("something went terribly

wrong in datamatrices2","\n")

t = dim(data.or)[1]

X = data.or[cp:(t-1),,]

Y = data.tf[(cp+1):t,,]

dim = dim(X)

T <- dim[1]

p <- dim[2]

n <- dim[3]

xty.i <- array(NA, c(p,p,n))

42

xtx.i <- array(NA, c(p,p,n))

yty.i <- array(NA, c(p,p,n))

for(i in 1:n){

XX <- X[,,i]

YY <- Y[,,i]

xty.i[,,i]=crossprod(XX,YY)

xtx.i[,,i]=crossprod(XX)

yty.i[,,i]=crossprod(YY)

}

xty =apply(xty.i, c(1,2), sum)

xtx =apply(xtx.i, c(1,2), sum)

yty =apply(yty.i, c(1,2), sum)

xtxt =apply(xtx.i, c(1,2), sum)/(n*T)

return(list(xty = xty,xtx = xtx,yty = yty,xtxt = xtxt))

}

sparse.G

sparse.G <- function(p.spar = p.spar, p = p)

{

M <- matrix(runif(p^2),p,p)

G <- matrix(0,p,p)

for(x in 1:p){

for(y in 1:p){

if (M[x,y] < p.spar){

G[x,y] = runif(1,.5,1)*sign(runif(1,-1,1))

if (sum(abs(G[x,])) > 1) G[x,y] = 0

}}}

return(G)

}

sparse.T

sparse.T <- function(p.spar = p.spar, p = p)

{

L = diag(p)

for (x in 1:p){

for (y in 1:p){

if (y>x){

r = runif(1,0,1)

if (r < p.spar){

if (r< p.spar/2){

L[x,y] = runif(1,0.5,1)

} else{

43

L[x,y] = runif(1,-1,-0.5)

}}}}}

S.i = t(L)%*%L

return(S.i = S.i)

}

44

C
R code: simulations

Simulation 1

library(MASS); library(glasso); library(igraph)

source("BIC.cp.stscgm.R");

source("BIC.nonst.stscgm.R");

source("compute.cp.stscgm.R");

source("compute.nonst.stscgm.R");

source("cp.stscgm.R");

source("datamatrices.R");

source("datamatrices2.R");

source("nonst.stscgm.R");

source("rblasso.R");

source("SCAD.R");

source("update.theta.R")

source("sparseG.R")

#simulation 1

n = 20;p = 18;t = 61;

set.seed(123)

G = sparse.G(p.spar = 0.2,p)

theta = sparse.T(p.spar = 0.1,p)

sigma = solve(theta)

data = array(NA,dim=c(t,p,n))

set.seed(123)

for (i in 1:n){

data[1,,i] = rnorm(p,0,1) #starting values

}

for (j in 2:t){

for (i in 1:n){

data[j,,i] = mvrnorm(n=1, G%*%data[j-1,,i],sigma)

}}

res1.1 <- cp.stscgm(data = data, lam = 0.06, rho = 0.15, cp = NULL,

setting = NULL)

res1.2 <- nonst.stscgm(data =data, lam = 0.06, rho = .2, mu = .25,

K = 5, setting= NULL)

norm(G - res1.1$G.array[,,1], type = "F")

norm(G - res1.2$G.array[,,1], type = "F")

#for plots, see plots.R

45

#simulation 2

#model with drastic changes in Gamma

set.seed(124)

n = 20;p = 18;t = 61;

G1 = sparse.G(p.spar = 0.2,p)

G2 = sparse.G(p.spar = 0.2,p)

G3 = sparse.G(p.spar = 0.2,p)

theta = sparse.T(p.spar = 0.1,p)

sigma = solve(theta)

data = array(NA,dim=c(t,p,n))

for (i in 1:n){

data[1,,i] = rnorm(p,0,1) #starting values

}

for (j in 2:21){

for (i in 1:n){

data[j,,i] = mvrnorm(n=1, G1%*%data[j-1,,i],sigma)

}}

for (j in 22:41){

for (i in 1:n){

data[j,,i] = mvrnorm(n=1, G2%*%data[j-1,,i],sigma)

}}

for (j in 42:61){

for (i in 1:n){

data[j,,i] = mvrnorm(n=1, G3%*%data[j-1,,i],sigma)

}}

lam = 0.06; rho = 0.14; mu =0.2

res2.0 <- nonst.stscgm(data =data, lam = lam, rho = rho, mu = mu, K

= 12, setting= NULL)

res2.1 <- cp.stscgm(data = data, lam = 0.06, rho = 0.14, cp = c(21,41),

setting = NULL)

norm(G1 - res2.1$G.array[,,1], type = "F")

norm(G2 - res2.1$G.array[,,2], type = "F")

norm(G3 - res2.1$G.array[,,3], type = "F")

norm(theta - res2.1$theta, type = "F")

#simulation 3

set.seed(125)

n = 10; p = 18; t = 101

G = sparse.G(p.spar = 0.3,p = p)

theta = sparse.T(p.spar = 0.2, p = p)

sigma = solve(theta)

46

K = 10

cp = seq(1,t,length.out = K+1)

cp = cp[-1]

cp[K] = cp[K]+1

G.array = array(dim=c(p,p,K))

G.array[,,1] = G

data = array(NA,dim=c(t,p,n))

a=1

for (i in 1:n){

data[1,,i] = rnorm(p,0,1) #starting values

}

for(j in 2:t){

for (i in 1:n){

data[j,,i] = mvrnorm(n=1, G.array[,,a]%*%data[j-1,,i],sigma)

}

if (j == cp[a]){

nonz = which(G.array[,,a] != 0)

q = sample(c(1,2),1)

rem = sample(nonz,q)

G.array[,,a+1] = G.array[,,a]

G.array[,,a+1][rem] = 0

a = a+1

}

}

lam = 0.05; rho = 0.14; mu = 0.22

res3.1 <- cp.stscgm(data=data, lam = lam, rho = rho, cp = seq(11,91,length.out

= 9), setting = NULL)

lam = 0.04; rho = 0.21; mu = 0.23

res3.2 <- nonst.stscgm(data = data, lam = lam, rho = rho, mu = mu,

K = 10, setting = NULL)

dif3.1 <- vector(mode="integer", length = K)

dif3.2 <- vector(mode="integer", length = K)

for (i in 1:10){

dif3.1[i] = norm(G.array[,,i] - res3.1$G.array[,,i], type = "F")

}

for (i in 1:10){

dif3.2[i] = norm(G.array[,,i] - res3.2$G.array[,,i], type = "F")

}

mean(dif3.1)

mean(dif3.2)

norm(theta - res3.1$theta, type = "F")

47

norm(theta - res3.2$theta, type = "F")

48

References

Fentaw Abegaz and Ernst Wit. Sparse time series chain graphical models for
reconstructing genetic networks. Biostatistics, 14(3):586–599, 2013.

Rainer Dahlhaus and Michael Eichler. Causality and graphical models in time
series analysis. Universitat Heidelberg, 2003.

Jianqing Fan and Runze Li. Variable selection via nonconcave penalized likeli-
hood and its oracle properties. Journal of the American Statistical Associa-
tion, 96:1348–1360, 2001.

Jerome Friedman, Trevor Hastie, and Robert Tibshirani. Sparse inverse covari-
ance estimation with the graphical lasso. Biostatistics, 0(0):1–10, 2007.

Robert Tibshirani. Regression shrinkage and selection via the lasso. Journal of
the Royal Statistical Society, 58(1):267–288, 1996.

Joe Whittaker. Graphical Models in Applied Multivariate Statistics. Wiley,
2008.

Yiyun Zhang, Runze Li, and Chih-Ling Tsai. Regularization parameter selec-
tions via generalized information criterion. Journal of the American Statistical
Association, 105(489):312–323, 2010.

Hui Zou and Runze Li. One-step sparse estimates in noncave penalized likeli-
hood models. The Annals of Statistics, 36(4):1509–1533, 2008.

49

