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Abstract

In this thesis the maximum number of ordinary double points on an al-
gebraic surface in complex three-space is investigated. For lower degree
surfaces a proof of this maximum number can be given; for higher degree
surfaces various examples of surfaces with many ordinary double points
are discussed.
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1 Introduction

Singular points on algebraic surfaces have always been a major subject of inter-
est in the field of algebraic geometry. These points are different from the other
points of the surface, the regular points, in a certain way and they are often
easily recognized from the plots of the surface. Initially, singular points were
observed in the study of algebraic plane curves, the zeros of a polynomial in
two variables. In a singular point the tangent space has a dimension exceeding
the dimension of the variety, which makes the point qualitatively different from
the regular points. Such singular points were quickly generalized to algebraic
varieties of higher dimensions. We will give an exact explanation of the way in
which these singularities differ from regular points later on.

In this bachelor’s thesis we will specifically be concerned with a certain type of
singularity: ordinary double points. In two variables there is a complete answer
to the question of how many of these singularities are possible depending on the

degree d of the curve: at most (d−1)(d−2)
2 (see for example chapter IV, remark

3.11.1 in Algebraic Geometry [6]). The first nontrivial case is for three variables
and this is the case we will be interested in. It was proved already in the 19th
century that an algebraic surface in complex three-space admits at most finitely
many ordinary double points and we will investigate the global question of the
maximum possible number depending on the degree of the surface. For lower
degree surfaces this number is known; they are given in the following table where
d is the degree of the surface and µ(d) stands for the maximum possible number
of ordinary double points.

d µ(d)

1 0
2 1
3 4
4 16
5 31
6 65

For higher degree surfaces the maximum number of ordinary double points is not
yet known, but lower and upper bounds have been found and are still improved
nowadays.

d µ(d) ≥ µ(d) ≤
7 99 104
8 168 174
9 216 246
10 345 360
11 425 480
12 600 645
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In this thesis we will thus investigate the maximum number of ordinary double
points on surfaces in complex three-space. The following chapter will go deeper
into what it means for a point to be singular. We will introduce some basic
definitions that we will be using throughout this thesis and we will try to estab-
lish some lower and upper bounds ourselves. In the chapters that follow we will
study surfaces of a specific degree and the maximum possible number of ordi-
nary double points on them. In the case of lower degree surfaces we will be able
to give full proofs of this maximum number. For higher degree we will only give
examples of surfaces allowing the maximum number of ordinary double points
and study them. This way we will gain some fundamental understanding of
ordinary double points on algebraic surfaces and see various examples of them.
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2 Singularities

2.1 Properties

As was already mentioned, we will be mainly interested in ordinary double
points on algebraic surfaces in complex three-space. Let us first define properly
what is meant by this.

Definition 1. An algebraic surface of degree d in C3 is the set of solutions of
an equation f(x, y, z) = 0 in which f ∈ C[x, y, z] is an irreducible polynomial of
degree d.

These surfaces can have sharp peaks, known as singularities.

Definition 2. A singularity of a surface in C3 is a point z0 ∈ C3 such that
f(z0) = fx(z0) = fy(z0) = fz(z0) = 0.

Ordinary double points (also called nodes) form a specific type of singularity,
defined as follows. [3]

Definition 3. An ordinary double point of a surface in C3 is a point z0 ∈ C3

that is a singularity with the additional property that det(Hf(z0)) 6= 0, i.e.
Hf(z0) is of rank 3. Here Hf represents the Hessian of f , given by:

Hf(x, y, z) =


∂2f
∂x2

∂2f
∂x∂y

∂2f
∂x∂z

∂2f
∂y∂x

∂2f
∂y2

∂2f
∂y∂z

∂2f
∂z∂x

∂2f
∂z∂y

∂2f
∂z2


Now what can we say about singular points? Suppose we take an arbitrary
surface in complex three-space: S = {f(x, y, z) = 0} and a singular point
p = (a, b, c) on it. Since p is singular, f and all its first partial derivatives vanish
in (a, b, c). Now let us define local coordinates (ξ, η, ζ) = (x − a, y − b, z − c);
it follows that (x, y, z) = (ξ + a, η + b, ζ + c). In these coordinates (0, 0, 0) is
singular and the Taylor expansion of f in the point (ξ, η, ζ) = (0, 0, 0) will be of
the form:

f(x, y, z) = f(ξ + a, η + b, ζ + c) ≈ f(p) + αξ + βη + γζ + higher order terms

= αξ + βη + γζ + higher order terms

where

α =
∂f

∂x
(p)

β =
∂f

∂y
(p)

γ =
∂f

∂z
(p).
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But since p is a singular point, we see that all partial derivatives of f vanish
and thus that the Taylor expansion in p starts quadratically. We will be seeing
this many times during the rest of this thesis.

The last concept I would like to introduce is that of the complex projective
three-space CP3, which can be thought of as all lines in C4 through (x, y, z, w) =
(0, 0, 0, 0). A point of CP3 is defined by four homogeneous complex coordinates
that are not all equal to zero; these coordinates are thus considered up to a
scalar multiple.[15] A point (x, y, z) in C3 corresponds to a point (x : y : z : 1)
in CP3. We will often consider surfaces in complex projective space instead of
just complex space because of simplicity and clarity.

2.2 Lower and upper bounds

We will now use the definition of singularities to create singular points on sur-
faces of a given degree. If we take an arbitrary surface of degree d in complex
projective three-space, then it will be given by a polynomial

f(x, y, z, w) = a0 + a1x+ a2y+ a3z+ a4w+ a5x
2 + a6y

2 + a7z
2 + a8w

2 + ... = 0.

The number of monomials xkylzmwn with degree d = k+ l+m+ n is equal to
the number of multicombinations of d elements chosen among n = 4 variables,
given by the binomial coefficient

(
d+n−1
n−1

)
=
(
d+(4−1)

4−1
)

=
(
d+3
3

)
. [2] Therefore the

total amount of possible combinations of coefficients, and thus the total amount
of possible surfaces, is given by:(

d+ 3

3

)
=

(d+ 1)(d+ 2)(d+ 3)

6
=

1

6
d3 + d2 +

11

6
d+ 1.

Thus a surface of degree d has

N := (
1

6
d3 + d2 +

11

6
d+ 1)− 1 =

1

6
d3 + d2 +

11

6
d

degrees of freedom, which is in fact the dimension of the vector space spanned by
the coefficients. We distract one from the total amount of possible surfaces, be-
cause the surface only depends on the ratio between the coefficients; multiplying
the given equation by a constant does not change the surface.

If we want an arbitrary point p to be a singularity on the surface, we get
four linear conditions on the coefficients, namely:

f(p) = 0

∂f

∂x
(p) = 0

∂f

∂y
(p) = 0

∂f

∂z
(p) = 0.
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It follows that if we want to have n singularities on a surface, we get 4n linear
conditions on the coefficients of the surface. If we take our n singularities to be
(pi, qi, ri, si), we get the following system that we want to solve:

1 p1 q1 r1 s1 p21 q21 r21 s21 · · ·
0 1 0 0 0 2p1 0 0 0 · · ·
0 0 1 0 0 0 2q1 0 0 · · ·
0 0 0 1 0 0 0 2r1 0 · · ·
1 p2 q2 r2 s2 p22 q22 r22 s22 · · ·
...

...
...

...
...

...
...

...
...

. . .

0 0 0 1 0 0 0 2rn 0 · · ·


·



a0
a1
a2
a3
a4
...
aN


=



0
0
0
0
0
...
0


where we do not want the trivial solution (a0, . . . , aN )T = (0, . . . , 0)T . Now
we can use a formula from linear algebra called the rank-nullity theorem which
states that the rank of a matrix and the nullity (dimension of the kernel) of a
matrix add up to the number of columns of the matrix (see for example Matrix
Analysis and Applied Linear Algebra [12]). In our case the number of columns
of the matrix (let us call it A) is equal to N + 1 and we know that the rank of
A is at most 4n, so we can deduce the following formula for the dimension of
the kernel of A:

dim(ker(A)) = N + 1− rank(A) ≥ N + 1− 4n.

Now we want a nontrivial solution, thus we want the dimension of the kernel to
be at least one. Combining this with the previous result, we get:

n ≤ N

4

where n is the number of singularities we have imposed on the surface and
N = 1

6d
3 +d2 + 11

6 d. We have to be careful before drawing any conclusions from
this calculation. We want the a′is to be such that they define an equation that
is irreducible and it is not so easy to see when this is the case. What we can
conclude from this argument, is that if a0, . . . , aN define an irreducible f , then
we can certainly find n singularities where n ≤ N

4 . We may expect that the

maximum number of ordinary double points on a surface is ≥ N
4 , depending on

whether the equation is irreducible. The following table lists the values of N
4

for the lower degree surfaces.

d N N
4

1 3 3
4

2 9 2 1
4

3 19 4 3
4

4 34 8 1
2

5 55 13 3
4
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We see that our expectation is not valid for surfaces of degree two, but for other
degrees the maximum number is indeed ≥ N

4 . Still this is not the best bound
we can find, so we will now try a different approach to find more accurate ones.

Let us take 2n lines in the xy-plane such that every triple l, m, n satisfies
l ∩ m ∩ n = ∅ and every pair l, m intersects. Suppose two lines intersect in
the point (x, y) = (a, b), or (ξ, η) = (0, 0) in local coordinates. These lines are
of the form 0 = η − λiξ, where i = 1, 2... and λi 6= λj for all i and j. Then
the product of these equations is a polynomial of degree 2n with no constant
and linear part in ξ and η. Now if we set the product of these equations equal
to z2 (which is quadratic in z), we get the generally irreducible polynomial∏2n

i=1(aix + bi − y) = z2 of which the point (ξ, η, 0) = (0, 0, 0) is singular. We
can prove that this point is an ordinary double point as well. We can write our
equation, call it f , as follows:

f =

2n∏
i=1

(aix+ bi − y)− z2 = x · y · (. . .)− z2 = 0

where (. . .) is some term in x and y. For the Hessian matrices we need to
calculate all second partial derivatives. So let us begin with the first partial
derivatives:

∂f

∂x
= x · (y · (. . .))x + y · (. . .) = x · y · (. . .)x + y · (. . .)

∂f

∂y
= y · (x · (. . .))y + x · (. . .) = y · x · (. . .)y + x · (. . .)

∂f

∂z
= −2z.

For the second partial derivatives we get:

∂2f

∂x2
= x · (y · (. . .)x)x + 2y · (. . .)x = x · y · (. . .)xx + 2y · (. . .)x

∂2f

∂y2
= y · (x · (. . .)y)y + 2x · (. . .)y = y · x · (. . .)yy + 2x · (. . .)y

∂2f

∂z2
= −2.

Filling in our singular point (0, 0, 0), we see that the first two partial derivatives
vanish. It is also obvious that the mixed second partial derivatives of x and z
and of y and z vanish as well. Now we only need to calculate the mixed second

partial derivative ∂2f
∂x∂y , which is of course equal to ∂2f

∂y∂x .

∂2f

∂x∂y
= x · (. . .)x + y · (x · (. . .)x)y + (. . .) + y · (. . .)y

= x · (. . .)x + y · (. . .)xy + (. . .) + y · (. . .)y
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Filling in our singular point (0, 0, 0) again, we see that ∂2f
∂x∂y = (. . .), which is a

term in x and y that is not zero in (0, 0, 0). The resulting Hessian matrix is of
the following form:

Hf(0, 0, 0) =

 0 6= 0 0
6= 0 0 0
0 0 −2


which is obviously of rank three. Therefore the singular point we found in this
way is an ordinary double point. Since we can always make the coordinate
change so that (0, 0, 0) is our singular point, we know that all singularities we
find in this manner are ordinary double points.

In general if we take 2n lines of the form y = aix + bi such that they have(
2n
2

)
different intersections, then a surface of degree 2n can be given by:

z2(z − 1)2 · · · (z − n+ 1)2 =

2n∏
i=1

(aix+ bi − y).

The number of singularities we can find is equal to the number of intersections
of the lines on the right side of the equation times the number of terms on
the left side. Reasoning as before, we know that all singularities we find in
this manner are ordinary double points. This surface therefore has

(
2n
2

)
· n =

1
2 ·2n(2n−1)·n = 2n3−n2 ordinary double points, which results in the following
table.

d = 2n n 2n3 − n2

2 1 1
4 2 12
6 3 45
8 4 112
10 5 225

Repeating the same argument for 2n+1 lines with
(
2n+1

2

)
different intersections,

we get surfaces of degree 2n+ 1 with
(
2n+1

2

)
·n = 1

2 · (2n+ 1)(2n) ·n = 2n3 +n2

ordinary double points, which results in the following table.

d = 2n+ 1 n 2n3 + n2

1 0 0
3 1 3
5 2 20
7 3 63
9 4 144

What we actually just did was create surfaces of degree 2n with 2n3 − n2 ordi-
nary double points and of degree 2n+ 1 with 2n3 + n2 ordinary double points,
which gives a lower bound for the possible number of those singularities on the
given surfaces. We know that the actual lower bound is higher, but still this is
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a lower bound that goes up very fast and is pretty accurate for a second attempt.

Now let us have a look at upper bounds. There have been found many upper
bounds that come very close to the actual maximum number (at least for lower
degree surfaces) of ordinary double points. We will discuss one that was found
in the 19th century and it has to do with the so-called dual of an algebraic
surface.

Given the projective space Pn = {(a0 : · · · : an)}, we can consider any linear
hypersurface in it: Xb0:···:bn = {(x0 : · · · : xn) ∈ Pn | b0x0 + . . . + bnxn = 0},
which is defined uniquely by the values of b0, . . . , bn. The dual of the projective
space is defined to be all of these linear hypersurfaces together, which defines
itself a projective space: Pn = {(b0 : · · · : bn)}. We denote this dual of the
projective space as P̌n. Now consider any hypersurface Xf = {f = 0} ⊂ Pn.
Its dual is given by X̌f = {Xb ∈ P̌n|Xb ⊂ Pn is a tangent space of Xf}.
Generally for a given hypersurface Xf ⊂ Pn with f a homogeneous equation
and p = (a0 : · · · : an) ∈ Xf a smooth point, the tangent space of Xf in p

is given by
∑n

i=0
∂f
∂xi

(p) · xi = 0. This explains why the dual is conventionally
defined as follows.

Definition 4. The dual of a hypersurface Xf = {f = 0} is the closure of the
image of the nonsingular points of Xf under the map x = (x0, . . . , xn) 7→
( ∂f
∂x0

(x), . . . , ∂f
∂xn

(x)).

In case Xf is not a cone (it does not consist of lines passing through a fixed
point), it is known that the dual is also a hypersurface. Therefore it has a
certain degree, which is generally called the class of the original surface.

We are going to use the class of a surface to create an upper bound for the
maximum possible number of ordinary double points on it. This is based on
the reasoning in Classical Algebraic Geometry [4]; we will sketch the idea here,
but the full proofs of some of the statements can be found there. The degree d
of the dual of a nonsingular hypersurface X is found in the following way. For
a point b = (b0, . . . , bn) ∈ Pn, its polar is given by Pb(X) =

∑
bi

∂f
∂xi

. We fix
n − 1 general points a1, . . . , an−1 in Pn and the polars Pai(X) through them.
The set of hyperplanes through a general set of n− 1 points is a line in the dual
space. [4] Since geometrically, the degree of X is equal to the number of its
intersections with a general line in the projective space, the degree of its dual
is likewise equal to the number of intersections of X̌ with a general line in the
dual projective space. Therefore we get that

deg(X̌) = #X ∩ Pa1
(X) ∩ · · · ∩ Pan−1

(X) = d(d− 1)n−1,

since the polars are made up of first partial derivatives and are therefore of
degree one less than the original surface. This formula holds for nonsingu-
lar hypersurfaces X, but we are interested in singular hypersurfaces, or more
specifically, in hypersurfaces with ordinary double points, and to calculate their
degree we need to adapt the formula slightly. This is because a singular point
lowers the degree of the dual. [8] Geometrically, an ordinary double point on

10



X corresponds to a tangent space that is tangent to two points on X̌ simul-
taneously. [14] Since the degree of X̌ is found by considering the number of
tangent spaces to X passing through a generic point in the projective space and
each ordinary double point is passed through with multiplicity two, we get the
following formula for the degree of the dual d∗ of singular hypersurfaces:

d∗ = deg(X̌) = d(d− 1)n−1 − 2δ

where δ stands for the number of ordinary double points on X. Now we will
use the following relationship between the class d∗ and the degree d of X:

d∗ ≥ d− 1. [10]

Combining this with the formula for d∗ and taking into account that we are
working in complex three-space, so that n = 3, we get that:

δ ≤ 1

2
[d(d− 1)2 − (d− 1)]

which is an upper bound for the number of ordinary double points on a surface
X in complex three-space, given in the following table.

d 1
2 [d(d− 1)2 − (d− 1)]

3 5
4 16 1

2

5 38
6 72
7 123

This upper bound holds for surfaces of degree ≥ 3, since the general definition
of the dual surface does not hold for quadrics. We see that the upper bound is
accurate for low degree surfaces; the actual upper bound for surfaces of degree
four is indeed sixteen. Now that we have found both a lower and an upper
bound for the maximum possible number of ordinary double points on surfaces
of a given degree, we will turn to the specific surfaces containing that many
nodes.
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3 Lower degree surfaces

The maximum number of ordinary double points on surfaces of degree ≤ 2 is
easy to compute. We will start with the trivial case, that is, where the surface
is of degree one. The case where the degree of the surface is two is already not
trivial anymore, but the maximum number of ordinary double points on these
surfaces is still easily calculated.

3.1 Planes

A surface of degree one is called a plane in C3. It can be easily seen that planes
cannot have any singularities and thus in particular cannot have any ordinary
double points.

A plane in C3 can be given by the following equation:

f(x, y, z) = ax+ by + cz + d = 0

where a,b,c,d ∈ C. A singularity of such a plane is a point for which f = fx =
fy = fz = 0. In this case we find that:

fx = a

fy = b

fz = c.

For all these partial derivatives to be zero, we get that a = b = c = 0. But for
f to vanish as well, we get that d must equal zero too. The resulting equation
of the plane is 0 = 0, but this does not restrict x, y, z in any way and thus does
not describe a plane. Therefore a plane cannot have any singularities and in
particular cannot have any ordinary double points.

3.2 Quadrics

A surface of degree two is called a quadric and it is generally of the following
form:

f(x, y, z) = ax2 + by2 + cz2 + dxy + fxz + gyz + hx+ jy + kz + l = 0

where a,b,c,d,f ,g,h,j,k,l ∈ C. To find the maximum number of ordinary double
points on these surfaces we need a different method than in the case of a plane.
Let us first consider the question geometrically. The following claim will then
be of great help:

Theorem 1. If a point p is a singularity of a quadric S in C3, then every line
through p intersects S at least doubly in p.
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Proof. A line through p can be given by the equation:

y = p+ t · ~r

where t is a parameter and ~r a direction vector. Then f(p+ t · ~r) = 0 gives us
all intersections of S and the line y. The first-order Taylor expansion of this
equation in the point p will be:

f(p+ t · ~r) ≈ f(p) + t · 〈grad(f(p)), ~r〉

But since f(p) = 0 and grad(f(p)) = 0, we see that the full Taylor expansion in
p starts quadratically. Therefore every line through a singularity of S intersects
the quadric at least doubly in that point.

Now take another point of the surface q, then lpq (the line through p and q) is
given by y = p + t · (q − p). Then f(p + t · (q − p)) is an element of C[t] with
degree ≤ 2 and t = 0 a double zero because of Theorem 1. Then f(p+ t · (q−p))
must be of the form α · t2 with α ∈ C. But t = 1 must be a (single) zero as well,
since q is a point of S and therefore α = 0 and f(p + t · (q − p)) is identically
zero. Therefore lpq ⊂ S. So we see that p ∈ S ⊂ C3 (with S a quadric and p a
singular point) implies that lpq ⊂ S for a point q ∈ S with p 6= q. The quadric
thus consists of lines through p which results in a cone. We will see later on that
p is the only ordinary double point that this surface can have and thus that any
quadric can have at most one ordinary double point.

The fact that a quadric can only have one ordinary double point does not im-
ply that it cannot have more singularities. A quadric can in fact have infinitely
many singularities. Take for example the quadric S given by f = xy = 0.
Points on the quadric are of the form {(x, y, z)|xy = 0} = {(0, ·, ·)} ∪ {(·, 0, ·)}.
Then the singularities are exactly {(0, 0, ·)}, because in (0, 0, ·) we have that
f = fx = fy = fz = 0. But the thing is that these singularities form the line of
intersection of two planes and are therefore not isolated. Therefore they cannot
be ordinary double points.

We can prove that a quadric can have at most one ordinary double point ana-
lytically by using the general classification of quadrics (see for example [11]).

Theorem 2. Every quadric can be moved into the form of a cone, an ellipsoid or
a hyperbolic paraboloid and their projective equivalents through a rotation and/or
a translation. These forms are given by the following equations respectively:

1. ax2 + by2 + cz2 = 0

2. ax2 + by2 + cz2 − 1 = 0

3. ax2 + by2 − z = 0

where a, b, c are constants.

We can now consider all possible singularities in these three cases.

13



Case 1.

fx = 2ax

fy = 2by

fz = 2cz.

For a, b, c 6= 0, we get that x = y = z = 0, which is indeed a point of the quadric.
If det(Hf(0, 0, 0)) = 2a · 2b · 2c 6= 0, this is indeed an ordinary double point.
Otherwise we may assume (after permuting x,y,z if necessary) that a = 0, and
then by2 + cz2 = (

√
b · y +

√
−c · z) · (

√
b · y −

√
−c · z) is reducible.

Case 2.

fx = 2ax

fy = 2by

fz = 2cz.

For a, b, c 6= 0, we get again that x = y = z = 0, but in this case this point is not
on the quadric, since 0+0+0−1 6= 0. Thus no singularities are found in this case.

Case 3.

fx = 2ax

fy = 2by

fz = −1

Since −1 6= 0, no singularities can be found in this case either.
We can conclude that the only singularity that a quadric can have is the

point (0, 0, 0) in the case where the quadric looks like ax2 + by2 + cz2 = 0. As
we have seen before, the resulting quadric is a cone, the classic form of which
is for a, b > 0 and c < 0. Now we have also shown that the one singularity of
this cone is really an ordinary double point. The cone is plotted in the following
figure, where we thus have taken a, b > 0 and c < 0.

14



Figure 1: Cone with one ordinary double point.
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4 Cubics and quartics

If the surface is of degree higher than two, finding the maximum number of
ordinary double points is not so easy anymore. For degree three and four this
number is known though and we will investigate two of the most famous surfaces
in history: Cayley’s cubic and Kummer’s quartic.

4.1 Cubics

In the 19th century a lot of research was done on cubic surfaces, and specifically
on singular cubic surfaces. Ludwig Schläfli (1814-1895) made a classification
of singular cubics by their singularities in 1863 and in 1869 Arthur Cayley
(1821-1895) elaborated on this. It is appraised as one of the most important
contributions to the study of cubic surfaces to date. The unique surface of de-
gree three having four ordinary double points is named after Cayley.

First I would like to prove that a cubic cannot have any more singular points
than four. The proof is based on the proof given in Theory and History of
Geometric Models [13] and it is actually a construction of the unique cubic
surface with four ordinary double points.

Let S = {f(x, y, z, w) = 0} be a cubic in CP3 defined by an irreducible
equation f with finitely many singularities. Let us suppose that the number of
singularities on S is at least four. If we take four of the singularities and suppose
they are all contained in one plane, then we know that V ∩S is a curve of degree
three in P2, and p1,p2,p3,p4 are singular points on this curve. Reasoning as in
subsection 3.2, we know that the line through any combination of two singular
points is contained in the curve. This implies that all four singular points must
be on the same line, since otherwise our cubic would contain more than three
lines. So what we have is a line contained in a cubic surface with four singular
points on it. By possibly applying a linear transformation we may assume that
the line is such that x = y = 0 with singular points (0, 0, 0), (0, 0, 1) and two
more of them. The cubic surface can be given by the following equation in CP3:

f = αw3 + w2 · F1(x, y, z) + w · F2(x, y, z) + F3(x, y, z) = 0

which reduces to

f = α+ F1(x, y, z) + F2(x, y, z) + F3(x, y, z) = 0

for w = 1. Here Fi(x, y, z) is an expression in x, y, z of degree i. If we fill in
x = y = 0, we get that

α+ F1(z) + F2(z) + F3(z) = 0

which implies that all terms of this equation individually must be zero. What
remains for the equation of our cubic surface is of the form:

f = βx+γy+δx2 + εxy+κy2 +λxz+µyz+G3(x, y)+z ·G2(x, y)+z2 ·G1(x, y)
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where again Gi(x, y) is an expression in x, y of degree i. One condition for
this equation is that (0, 0, 0) is singular, so we get that β = 0 and γ = 0.
Likewise, for the three other singular points we get restrictions on the values of
our coefficients. Since all three partial derivatives must equal zero we get many
restrictions and we actually get so many that the value of z will not matter
anymore, so that we get a whole line of singularities. Since we assumed that
our cubic has finitely many of them, we conclude that four singularities cannot
be contained in one plane.

An alternative way to see why we cannot have three singularities on one
line ` runs as follows. Consider any plane containing `. The intersection of the
cubic surface with the plane contains the line ` and a curve given by a quadratic
equation. Since there are more than two singularities contained in `, the only
possibility is that the equation of ` divides the quadratic one. As a result, every
point of ` is singular on the cubic surface.

Since this is the case, we can apply a linear transformation such that the
singular points are (1 : 0 : 0 : 0), (0 : 1 : 0 : 0), (0 : 0 : 1 : 0) and (0 : 0 : 0 : 1). Let
us have a look at what it means for the equation of our surface that (1 : 0 : 0 : 0)
is singular. We can write it in the following manner:

f = υx3 + x2 · F1(y, z, w) + x · F2(y, z, w) + F3(y, z, w) = 0.

Filling in (1 : 0 : 0 : 0), we see that υ = 0. But since also all partial derivatives
must vanish in (1 : 0 : 0 : 0), we see that the linear part in y, z, w vanishes as
well. We are left with the equation x ·F2(y, z, w)+F3(y, z, w) = 0 and therefore
we conclude that if (1 : 0 : 0 : 0) is singular, then f has degree ≤ 1 in x. But
the same holds for y, z, w for the singular points (0 : 1 : 0 : 0), (0 : 0 : 1 : 0) and
(0 : 0 : 0 : 1). The equation we are left with is of the form:

f = c1yzw + c2xzw + c3xyw + c4xyz

where c1, ..., c4 are nonzero constants: if any of them were zero, then f would
be reducible. Now if we apply the transformation where

x 7→ c1x

y 7→ c2y

z 7→ c3z

w 7→ c4w

and we divide by c1...c4, we get the standard equation of Cayley’s cubic:

f = wxy + xyz + yzw + zwx = 0

where w = 1 − x − y − z. We can verify by hand that this surface has indeed
four ordinary double points and this shows that a cubic cannot have more sin-
gularities, and thus cannot have more ordinary double points than these.

The partial derivatives of f are given by:

fx = wy + wxxy + yz + wxyz + zw + wxzx

= wy − xy + yz − yz + zw − zx
= wy − xy + zw − zx = 0
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fy = wx+ wyxy + xz + zw + wyyz + wyzx

= wx− xy + xz + zw − yz − zx
= wx− xy + zw − yz = 0

fz = wzxy + xy + yw + wzyz + wx+ wzzx

= −xy + xy + yw − yz + wx− zx
= yw − yz + wx− zx = 0.

We see that both f and all partial derivatives vanish in the points where three
of the four coordinates equal zero and these are indeed the four singularities of
Cayley’s cubic surface that we have seen before: (1 : 0 : 0 : 0), (0 : 1 : 0 : 0),
(0 : 0 : 1 : 0) and (0 : 0 : 0 : 1). Now to verify if these singularities are
ordinary double points we need to compute the Hessian of f , where we use that
w = 1− x− y − z:

Hf(x, y, z) =

 −2y − 2z 1− 2x− 2y − 2z 1− 2x− 2y − 2z
1− 2x− 2y − 2z −2x− 2z 1− 2x− 2y − 2z
1− 2x− 2y − 2z 1− 2x− 2y − 2z −2x− 2y


The singular points we found give us the following Hessian matrices:

Hf(0, 0, 0) =

0 1 1
1 0 1
1 1 0

 Hf(1, 0, 0) =

 0 −1 −1
−1 −2 −1
−1 −1 −2



Hf(0, 1, 0) =

−2 −1 −1
−1 0 −1
−1 −1 −2

 Hf(0, 0, 1) =

−2 −1 −1
−1 −2 −1
−1 −1 0


We see that all these matrices are of rank three. Since singular points with
Hessian matrices of full rank are ordinary double points, we see that Cayley’s
cubic indeed contains four of these and they are all real points of the surface.
We have thus shown the existence of cubic surfaces with the maximum number
of ordinary double points. Cayley’s cubic is plotted in the figure below.
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Figure 2: Cayley’s cubic with four ordinary double points.

4.2 Quartics

One year after Schläfli wrote his classification of singular cubic surfaces, Ernst
Kummer (1810-1893) found and published the most important results around
quartic surfaces to date. Though a lot of research into the maximum number of
ordinary double points on quartic surfaces had already been done, Kummer was
the first one to note that there actually existed a surface with this many nodes:
Fresnel’s wave surface, that was found by Augustin-Jean Fresnel in 1821. It is
given by the following equation in projective space:

a2x2

x2 + y2 + z2 − a2w2
+

b2y2

x2 + y2 + z2 − b2w2
+

c2z2

x2 + y2 + z2 − c2w2
= 0

for suitable a, b, c ∈ C. [8] Of course we can set w equal to 1 for simplicity. It is
not that clear from the equation that this surface is of degree four, but in the
appendix a Maple worksheet is given that show that the numerator of the full
equation is equal to the product of (x2 + y2 + z2) and another term. This other
term is the quartic surface we consider here. It is given by the equation

a2b2c2 − a2b2x2 − a2b2y2 − a2c2x2 − a2c2z2 + a2x4 + a2x2y2 + a2x2z2

− b2c2y2 − b2c2z2 + b2x2y2 + b2y4 + b2y2z2 + c2x2z2 + c2y2z2 + c2z4 = 0.
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Now it is clear that the surface is indeed a quartic. In the following figure
Fresnel’s wave surface is plotted with values a = 1, b = 0, 3 and c = 0, 5.

Figure 3: Fresnel’s wave surface with sixteen ordinary double points.
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After this discovery, Kummer wanted to find all quartic surfaces with the max-
imum number of ordinary double points and the result was a family of quartics,
all containing sixteen of these points.

Kummer’s quartic surfaces can be given by the following equation. An extended
discussion of this surface is given in Kummer’s Quartic Surface [7].

f = (x2 + y2 + z2 − µ2w2)2 − λpqrs = 0

where µ ∈ R and

λ =
3µ2 − 1

3− µ2

p = w − z −
√

2x

q = w − z +
√

2x

r = w + z +
√

2y

s = w + z −
√

2y.

We see that we need µ2 6= 3 and typically also the cases µ2 = 1
3 , which gives

λ = 0, and µ2 = 1, which gives λ = 1, are excluded from the general analysis
of Kummer’s quartic. We often let w = 1 for simplicity. It is known that the
Kummer surfaces have sixteen ordinary double points and these can be real or
complex, depending on the value of µ2.

µ2 real singularities complex singularities

0 ≤ µ2 < 1
3 4 12

1
3 < µ2 < 1 4 12
1 < µ2 < 3 16 0
µ2 > 3 16 0

Let us take a closer look at the equation to see what happens at a singular
point. In a point (x, y, z) = (α, β, γ) where two of the equations p, q, r and s
equal zero, say for example q = 0 and s = 0, these equations must be of the
following form:

q = (−z + γ) +
√

2 · (x− α)

s = (z − γ)−
√

2 · (y − β).

Then we see that the second term of the surface equation λpqrs consists of
quadratic terms of the form ξ2, ξη, ξζ et cetera, in terms of the local coordinates
(ξ, η, ζ) = (x−a, y− b, z− c). For the point to be singular we need that also the
first term of the surface equation consists of terms that are at least quadratic
and we see that we manage that by setting α2 +β2 + γ2−µ2 equal to zero. We
then get the sphere α2 + β2 + γ2 = µ2. This implies that we can find singular
points by finding the intersections of the sphere x2 + y2 + z2 = µ2 and the lines
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that we get by letting q and s (or any other two of the equations) equal zero.
In this manner we may find twelve singular points of the surface already.

Let us try this method by letting w = 1 and choose µ2 = 2. We know that
there should be sixteen real singular points on this surface. If we take q and s
to be zero, we see that z = 1 +

√
2x and z = −1 +

√
2y, which gives us the line

y =
√

2 + x. Now filling in z = 1 +
√

2x and y =
√

2 + x in x2 + y2 + z2 = 2
and solving for x, we get x = − 1

2

√
2± 1

2 and it follows that y = − 1
2

√
2∓ 1

2 and

z = ± 1
2

√
2. Thus we have found two singularities. We can find two singularities

for every line we intersect with the sphere, but the singularities found by letting
q = r = 0 are equal to the ones found by letting q = s = 0 and the same goes
for p = r = 0 and p = s = 0. Thus we find eight singularities in this way and
they are indeed eight of the sixteen we can find in total:

(0, 1, 1) (0,−1, 1)

(1, 0,−1) (−1, 0,−1)

(0,
1√
2
,

1

2
) (0,− 1√

2
,

1

2
)

(
1√
2
, 0,−1

2
) (− 1√

2
, 0,−1

2
)

(
1

2
− 1

2

√
2,

1

2
+

1

2

√
2,

1

2

√
2) (

1

2
− 1

2

√
2,−1

2
− 1

2

√
2,

1

2

√
2)

(
1

2
+

1

2

√
2,

1

2
− 1

2

√
2,−1

2

√
2) (

1

2
+

1

2

√
2,−1

2
+

1

2

√
2,−1

2

√
2)

(−1

2
− 1

2

√
2,

1

2
− 1

2

√
2,−1

2

√
2) (−1

2
− 1

2

√
2,−1

2
+

1

2

√
2,−1

2

√
2)

(−1

2
+

1

2

√
2,

1

2
+

1

2

√
2,

1

2

√
2) (−1

2
+

1

2

√
2,−1

2
− 1

2

√
2,

1

2

√
2).

I have listed the specific points like this, because they make it clear that there is
a lot of symmetry going on in Kummer’s quartic. This is because of the way in
which p,q,r and s are defined. Later on we will see that higher degree surfaces
with many ordinary double points also have a certain symmetry, so that if you
find one ordinary double point, you immediately find many of them. Of course
this makes it easier to find them and as in Kummer’s case it makes that we can
find many of the ordinary double points by hand.

Let us verify that the singularities we find are indeed ordinary double points.
In order to do this, we need to calculate the Hessian of the equation in the
singular points that we found. We will verify that the rank of the Hessian in
the singular point (0, 1, 1) has indeed full rank; the Hessians in the other points
will have the same properties.

Hf(0, 1, 1) =

40 0 0
0 8 8
0 8 −12


Since this matrix is of rank three, the point (0, 1, 1) is indeed an ordinary double
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point. The other singularities will turn out to be ordinary double points as
well, which proves that there exists indeed a surface of degree four with sixteen
ordinary double points. Kummer’s quartic is plotted in the figure below.

Figure 4: Kummer’s quartic with sixteen ordinary double points.
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5 Higher degree surfaces

For surfaces of degree higher than four it becomes very difficult to determine
the maximum possible number of ordinary double points on them. For degree
five and six this number is known though, they are 31 and 65 respectively. But
for higher degree there is only a lower and an upper bound known yet. In this
chapter I will therefore not try to prove why these surfaces cannot have more
ordinary double points, but for degree five, six and seven I will show the surfaces
with this maximum (known) number and see what we can say about them.

5.1 Quintics

In 1937 Eugenio Giuseppe Togliatti (1890-1977) found a surface of degree five
with 31 ordinary double points, many years after Kummer constructed his quar-
tic surfaces. At that time the known upper bound for surfaces of degree five was
34 ordinary double points, so nobody knew that Togliatti’s surfaces contained
the maximum possible number. Finally in 1980 the French mathematician Ar-
naud Beauville (1947) was able to show that a quintic cannot have more than 31
singularities. Wolf Barth (1942) has made a construction of a quintic with this
many ordinary double points, that I would like to discuss here. For an extended
discussion, see World Record Surfaces [9].

We first define the following parameters and polynomials:

a = − 5

32

b = − (5−
√

5)

20

d = −1−
√

5

P =
1

16
· (x5 − 10x3y2 + 5xy4 − 5x4 − 10x2y2 − 5y4 + 20x2 + 20y2 − 16)

Q = bz2 + x2 + y2 + d+ z.

Then Barth’s quintic is given by:

f = P −Q2 · az

=
5

32
((−1

4
+

1

20

√
5)z2 + x2 + y2 − 1−

√
5 + z))2z +

1

16
x5

− 5

8
x3y2 +

5

16
xy4 − 5

16
x4 − 5

8
x2y2 − 5

16
y4 +

5

4
x2 +

5

4
y2 − 1.

Barth’s construction uses pentagonal symmetry and a value of d that is closely
related to the golden ratio 1

2 + 1
2

√
5. I am not going into this deeper, but the

use of (pentagonal) symmetry is clear from just looking at the following figure
of Barth’s quintic.
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Figure 5: Barth’s quintic with 31 ordinary double points.

We can let Maple find the singular points of this surface for us; in the appendix
the worksheet is given that confirms that there are indeed 31 singularities on
this surface. Also the ranks of the Hessian matrices in the singular points
are calculated: they are all equal to three, so all singularities are ordinary
double points. A first look at the singular points gives the impression that all of
them are in Q, the extension Q(

√
5) and a fourth-degree extension of the form

Q(
√
α+ β

√
5) for some integers α and β, which is again related to the golden

ratio.

5.2 Sextics

Barth is also the one after whom a very famous sextic is called, one with the
maximum possible number of ordinary points for surfaces of degree six, namely
65. He found this in 1996 and shortly after his construction a couple of math-
ematicians were able to prove that there were no more ordinary double points
possible on a sextic. [9]
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We first define the following parameters:

K = x2 + y2 + z2 − 1

t =
1

2
(1 +

√
5)

a =
1

4
(2t+ 1)

P = (t2 · x2 − y2) · (t2 · y2 − z2) · (t2 · z2 − x2).

Then Barth’s sextic is given by:

f = −K2 · a+ P

= −(x2 + y2 + z2 − 1)2 · (1

2
+

1

4

√
5) + ((

1

2
+

1

2

√
5)2x2 − y2)

· ((1

2
+

1

2

√
(5))2y2 − z2) · ((1

2
+

1

2

√
5)2z2 − x2).

We see that again the golden ratio plays an important part in the equation: t
is exactly equal to it. Where Barth’s quintic surface was constructed by using
the symmetry of a pentagon, the construction of this sextic is based on the
symmetry of an icosahedron, a polyhedron with 20 faces. [9] The appendix also
contains the Maple worksheet that finds the singular points of Barth’s sextic,
but it can only find 50 of them, since the other 15 are singular points at infinity.
We see again that all Hessian matrices in the singular points are of rank three.
The surface is plotted in the following figure.
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Figure 6: Barth’s sextic with 65 ordinary double points.

5.3 One last example

Since the maximum possible number of ordinary double points on a surface is
not yet known for degree higher than six, many mathematicians are still search-
ing for new constructions of these surfaces with many of these points and thus
new examples may still be found nowadays. The last example that I would like
to mention in this thesis is one found by Oliver Labs in 2004. It is a septic (a
surface of degree seven) with 99 real ordinary double points and up to now no
one has been able to find a septic with more of them, while the known upper
bound is 104. Labs constructed this septic while writing his PhD dissertation
Hypersurfaces with Many Singularities [8]; a thorough description of his con-
struction can be found there.

We first define a to be the only real solution of 7x3 + 7x+ 1 = 0. Furthermore,
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we define:

w = 1

a1 = −12

7
a2 − 384

49
a− 8

7

a2 = −32

7
a2 +

24

49
a− 4

a3 = −4a2 +
24

49
a− 4

a4 = −8

7
a2 +

8

49
a− 8

7

a5 = 49a2 − 7a+ 50

U = (a5w + z) · ((z + w)(x2 + y2) + a1z
3 + a2z

2w + a3zw
2 + a4w

3)2

P = x(x6 − (3 · 7)x4y2 + (5 · 7)x2y4 − 7y6) + 7z((x2 + y2)3

− 23z2(x2 + y2) · (x2 + y2) + 24z4(x2 + y2))− 26z7.

The actual surface is given by:

f = P − U

and it is plotted in the following figure.
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Figure 7: Labs’s sextic with 99 real ordinary double points.

What we see in many surfaces is that the construction makes use of the sym-
metry of a certain polyhedron. In general, this makes it easier to find many
of the singularities: if you find one, you immediately find many of them. This
symmetric aspect is also apparent from the solutions, that often only differ from
one another in sign.

Of course there are many other constructions of higher degree surfaces with
many ordinary double points that I am not going to discuss in this thesis. Many
optimal examples come from the 1990s and it seems to be very difficult to con-
struct surfaces with even more ordinary double points. But Labs’s construction
shows that this is not impossible and that examples are still found in present
times.
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6 Conclusion

At the beginning of this thesis, I wrote that I wanted to elaborate on the fun-
damentals of ordinary double points on algebraic surfaces, on the maximum
possible number of this type of singularity on surfaces of a given degree and dis-
cuss various examples of surfaces containing many ordinary double points. In
the first chapter I have examined the basic properties of ordinary double points
and how we find simple upper and lower bounds for their maximum possible
number. After that we saw the surfaces of degree two through six with the max-
imum possible number of ordinary double points. For the lowest degree surfaces
we were able to prove why this is the maximum number, but from degree five
on this becomes very difficult, and too involved for this bachelor’s thesis. We
did verify that the examples presented in the literature indeed have the asserted
number of ordinary double points.

We saw that the equations of the quintic, sextic and septic we considered are
very long. Since for surfaces of degree higher than six the maximum possible
number of ordinary double points is not yet known, it will be very interesting to
see how these numbers are established. The example by Labs dates from 2004,
so that is not that long ago. It proves that nowadays people are still involved
in this topic and are still trying to find optimal examples of surfaces with many
ordinary double points. Labs himself is one of the people who is mainly involved
in this subject, but he is not the only one. All in all, it is a very interesting
topic to keep following: who knows what surfaces with many ordinary double
points people will come up with in the future.
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Appendices

A Maple worksheet Fresnel’s wave surface

> w := 1 :
> f := a2 ∗ x2/(−a2 ∗w2 + x2 + y2 + z2) + b2 ∗ y2/(−b2 ∗w2 + x2 + y2 + z2)
> +c2 ∗ z2/(−c2 ∗ w2 + x2 + y2 + z2) :
> numer(f) :
> factor(%);
> −(x2 +y2 +z2)(a2b2c2−a2b2x2−a2b2y2−a2c2x2−a2c2z2 +a2x4 +a2x2y2

> +a2x2z2−b2c2y2−b2c2z2+b2x2y2+b2y4+b2y2z2+c2x2z2+c2y2z2+c2z4)

B Maple worksheet Barth’s quintic surface

> a := −5/32 :
> b := −(5− sqrt(5)) ∗ (1/20) :
> d := −1− sqrt(5) :
> P := 1/16 ∗ (x5 − 10 ∗ x3 ∗ y2 + 5 ∗ x ∗ y4 − 5 ∗ x4 − 10 ∗ x2 ∗ y2 − 5 ∗ y4 +
> 20 ∗ x2 + 20 ∗ y2 − 16) :
> Q := b ∗ z2 + x2 + y2 + d+ z :
> f := −Q2 ∗ a ∗ z + P :

> sols := solve({f, diff(f, x), diff(f, y), diff(f, z)}, {x, y, z}, explicit) :
> list := [seq([evalf(E[1]), evalf(E[2]), evalf(E[3])], E in sols)] :
> S := {} :
> forE in listdoS := union(S, {E}) end do :
> nops(S);
> 31

> with(V ectorCalculus) :
> with(LinearAlgebra) :
> A := {} :
> forE inS doA := union(A, {Rank(Hessian(f, [x, y, z], E))}) end do :
> A;
> {3}
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C Maple worksheet Barth’s sextic surface

> K := x2 + y2 + z2 − 1 :
> t := 1/2 ∗ (1 + sqrt(5)) :
> a := 1/4 ∗ (2 ∗ t+ 1) :
> P := (t2 ∗ x2 − y2) ∗ (t2 ∗ y2 − z2) ∗ (t2 ∗ z2 − x2) :
> f := −K2 ∗ a+ P :

> sols := solve({f, diff(f, x), diff(f, y), diff(f, z)}, {x, y, z}, explicit) :
> list := [seq([evalf(E[1]), evalf(E[2]), evalf(E[3])], E in sols)] :
> S := {} :
> forE in listdoS := union(S, {E}) end do :
> nops(S);
> 50

> with(V ectorCalculus) :
> with(LinearAlgebra) :
> A := {} :
> forE inS doA := union(A, {Rank(Hessian(f, [x, y, z], E))}) end do :
> A;
> {3}
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