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1 Introduction

Computers have been used for modeling and simulation from their early days.
The connection between biology and informatics started mainly with the use of
computer databases, storing protein sequences, allowing for quick searches on
similarities. However, the connection between the two has grown over the years.
The use of informatics for biology has expanded from just the use of databases,
towards large scale simulations. From large scale animal behaviour models to
models and simulations of protein interaction inside bacteria. This thesis is
deals with system biology, a field that uses computational and mathematical
modelling to understand biological systems. With these models and simulations,
it becomes possible to make predictions about certain biological systems. Most
in vivo and in vitro experiments are both expensive and time consuming. Thus
being able to first experiment inside a simulation can reduce the amount of
expensive experiments.

Streptococcus pneumoniae or formerly known as Diplococcus pneumoniae
is a wide spread bacteria. The name Pneumonia is associated with lung infec-
tion, but S. pneumoniaecan also cause a variety of different infections, spanning
from light ear- (otitis) and nose- (rhinitis) to brain- and spinal cord infections
(meningitis)[1]. Even though it is possible to prevent and treat S. pneumo-
niaeefficiently, it still is the cause of death for many children and elderly. Espe-
cially in Asia and Africa, where it is still the main cause of child death[10]. An
estimate from The World Health Organization (WHO) indicated that around
1.6 million people die of S. pneumoniaeeach year, of which around 50% were
under the age of 5 [1].

S. pneumoniaewas first discovered in 1881 and has been studied intensively
[12]. Currently there is a vaccine and in case of infection there is an antibiotics
treatment. The antibiotics used to treat S. pneumoniaehave a high chance of
success. However, the high mutation rate of S. pneumoniae, certain types of
vaccines and antibiotics are becoming less efficient[3]. This high mutation rate
in S. pneumoniaeis caused by a property called competence. Competence highly
increases the mutation rate of a cell under certain conditions. This is done by
taking in external bits of DNA. For S. pneumoniae, competence is activated
by stress, for example caused by antibiotics. Therefore each time a treatment
is started with antibiotics the chance of S. pneumoniaemutating against that
specific antibiotic is increased. This can lead to a depletion of antibiotics to
use. One possible remedy for this would be to stop the competence activation,
lowering the mutation rate of S. pneumoniae. For this reason it is important to
understand the exact workings of competence in S. pneumoniae.

With experiments and models it was discovered that S. pneumoniaeis not
competent all the time. When the bacteria becomes competent, it will reach a
peak in roughly 8 to 9 minutes, followed by a decline in 4.5 minutes. After an
invocation, the S. pneumoniaecompetence is unable to be activated for around
80 to 90 minutes [6]. The deactivation of competence is called competence
shutdown. Models about competence in S. pneumoniaeare already available[4].
However, new research has identified new factors that have influence on the
competence, such as the protein Dpra [6].

With these new discoveries an updated model might give a more accurate
simulation of competence. The updated model was created by Stefany Moreno.
Like the previously mentioned model [4], the updated model also uses a system
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ordinary differential equations to calculate the model. These ODEs are the most
used method for solving models of massaction kinetics. Massaction kinetics are
models that contain a direct correlation between a speed or rate of a chemical
reaction and the number of proteins. Simply put, a higher reaction rate gives
a larger number of proteins for that reaction. In this thesis we want to look at
an alternative method of solving these massaction kinetics models. An event-
driven, stochastic solution has been made that we compare to the deterministic
solution.

The motivation for this alternative method is that both the old model from
Karlsson [4] and the new updated model by Moreno have been solved deter-
ministically with differential equations. This might give problems in how accu-
rate these results are in comparison to the real world at low molecular counts.
Therefore this thesis is about comparing Morenoś deterministic solution to an
alternative event driven, stochastic, solution. Furthermore the aim of this work
is to see what the cost of creating a stochastic solution might be and finally see
if it might be possible to automate this conversion process from deterministic
to stochastic.

2 Background

2.1 Model of competence in S. pneumoniae

Some cells have the ability to incorporate external DNA. This property is called
competence. Competence can be artificially induced while other cells can be-
come competent without artificial interaction. The latter group of cells are
called naturalcompetent. S. pneumoniaeis a bacteria falls within the latter
group. When a cell dies or undergoes lysis its DNA will start to disintegrate
and float freely in the environment. Cells with competence are able to take
parts of these ”free” strands and take them in. There are multiple uses for this
ability. A cell is able to use the DNA as food, use it to repair its own DNA or
use it to improve his own genetic diversity. A cell is able to improve its diversity
by combining the free bits of DNA and integrating it into its own genome. This
process will speed up mutations and thus the evolution of the cell.

2.2 Biological model S. pneumoniaecompetence

Before a mathematical model can be created, it is important to understand
the biological model. The created biological model for competence in S. pneu-
moniaecontains 23 different proteins and peptides. The main activator of the
competence process is CSP (Competence Stimulating Peptide). CSP can be
sensed from an external source or created and excreted by the cell itself. CSP
sensing will also increase the CSP creation and excretion of the cell itself, trig-
gering neighbouring cells to also become competent. In order to gain better
understanding of this cycle, we have to look at the proteins involved in this
process.
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Figure 1: Diagram showing relationships between proteins and genes. Thick
lines indicate a higher binding probability.

The receptor of CSP is ComD which is a protein dimer that sits inside the
membrane of the cell. This allows external CSP to bind to ComD triggering
phosphorylation of the internal protein ComE. Phosphorylation is the process of
adding a phosphate group to a molecule, in this case a protein. Phosphorylated
ComE (ComE˜P) will promote the production of ComAB, ComC,ComD,ComE
and ComX proteins, trough transcription of the comAB comCDE and comX
genes.1 This gene group is part of the genes called early com (competence)
genes. If ComE does not get phosphorylated, it can bind to the early com
genes, blocking the transcription. So depending whether or not ComE is phos-
phorylated or not, it will either promote or suppress production of ComAB,
ComC,D,E and ComX. It does have a stronger connection for phosphorylation,
however. Thus if CSP is activating phosphorylation of ComE by ComD, then
that is stronger than the suppression mechanism. ComAB and ComC,D,E are

1Note that captitol Com is used to indicate proteins, while lower case com indicates genes.
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proteins that activate the start of the competence mechanism. ComAB trans-
ports CSP, produced in the cell, outside the cell membrane, promoting com-
petence in neighbouring cells. comCDE, transcription activated by ComE˜P,
will produce ComC, ComD and ComE. ComC is an early state of CSP. While
ComD and ComE have been explained. This leads us to conclude that if there
is a external source of CSP a cell will also start producing CSP, going full circle.
However there are also side proteins and mechanisms that get activated by the
CSP circle. The late com protein ComX is one of these proteins, the comX
gene is activated by ComE˜P. ComE˜P will also activate transcription of the
comW gene, producing ComW [8]. ComW prevents proteolysis of the ComX,
stabilizing and thus prolonging the presence of ComX. The protein ComX is
the main protagonist in controlling transcription of the late competence genes.
Activating the transcription of genes for uptake and processing of external DNA.

2.3 Mathematical Biological model

From this biological model Moreno created the mathematical model for the de-
terministic solution. This model was crafted by converting known reactions into
formulas. As an example we look at the amount of ComC in the model. We
know that the amount of ComC is based on either the suppression by ComE,
or the transcription activation ComE˜P. We also know that ComC is used in
the production of CSP, and that there is a certain amount of degradation of the
protein

dComC

dt
=
σC

δCR
· (β0

C · (1− Y CEP ) + βC · Y CEP )

Production ComC

− e · ComAB · ComC
ComC + ke

ComC used for CSP

− δC · ComC
degradation ComC

This shows all the reactions that have influence on the the protein ComC. Each
term is a reaction in the biological model, either increasing or decreasing the
amount of ComC in the simulation. For example if we look at −δCComC,
then this indicates the degradation of ComC. Delta C (δC) indicates the speed
of the degradation over time. To calculate how many ComC proteins would
degradate, we multiply the amount of ComC by its degradation rate δC . σC

δCR
·

(β0
C · (1−Y CEP )+βC ·Y CEP ) shows the production of ComC based on the amount

of ComE˜P (Y CEP ). And lastly we see − e·ComAB·ComC
ComC+ke

indicating the amount
of ComC that is used for the production of CSP.

In a similar way the other process parts of the competence system have been
converted into mathematical equations (by Moreno). In appendix B on page 31
a full list of all the equations is given.

3 Models and Simulations

As indicated earlier, simulation of biological processes can save time and cost of
in vivo and in vitro experiments. Most processes can be modelled and simulated
if there is enough information about the system. One problem with this is that
if one important or even a few non important variables are missing in the model,
then the results of the simulation can stray away from the real world. However,
this does not per se mean that the results are useless.
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For example, Mirouze [6] discovered that the protein Dpra has a large influ-
ence in the competence shutdown of the S. pneumoniae. The 2007 model from
Karlsson 2007 [4], does not contain this protein. The addition of Dpra in com-
bination with other newly discovered proteins is the main reason for creating a
new model.

Choosing simulation method

Once a (biological) model is created there are a different methods to produce
results and predictions based on the model. These methods can be separated
in two categories, stochastic and deterministic. Both are used for algorithms
based on a time component.

3.1 Deterministic methods

Deterministic methods are all methods that will produce the same result if the
same input is used. An easy example of a deterministic function would be

dComD
dt = γComDComD − δComDComD

In biology systems the most common method used is the use of ordinary
differential equations (ODE), or a system of ODEs [11]. This is mostly because
creating and solving ODEs is both relatively easy and fast. This is also helped
by the fact that there are a lot of different tools available that help with solving
and creating the ODEs. ODEs are basically formulas that, once solved, will
result in the data for the model. ODEs are not the only deterministic method
that exists. The fact that deterministic methods always produce the same result
has some benefits. An example is that if one tries out new parameter values only
a single execution is required to get to a result. The downside is however that
real world experiments will often not result in fully identical results. Mostly
because of fundamental randomness at quantum scales. Very slight differences
in temperatures or quantities might alter the result. Often these differences
are minimal and not a problem, but the variations that a stochastic method
provides can give better insight in the system.

There are mixed methods such as the stochastic differential equation (SDE)
that adds a stochastic component into a ODE. Creating a mixture of the two.
But theoretically these are just stochastic methods, often just variations of de-
terministic methods to provide a stochastic component.

3.2 Event driven methods

While deterministic methods will always produce the same output, event driven
methods will not. Event driven methods are therefore called stochastic. They
contain randomness, resulting in different outcomes each run. For a function (or
algorithm) to be stochastic there needs to be a random factor in the equation,
for a basic example
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dComD
dt = γComDComD − δComDComD + σ

Where σ ∈ U([0, 1]), so σ is some value between 0 and 1. Each time this function
is calculated, the added sigma will add randomness to the result. Therefore the
output of the function will may vary each time.

Creating stochastic algorithms is often more complex than their determinis-
tic counterparts. Stochastic algorithms have to be written for each model. We
could not find general stochastic tools that makes it easy to create the algorithm
through an easy to use interface. Because of this additional complexity stochas-
tic methods are less used in system biology. There are, however, a lot of code
examples available. One example of an event driven method is the Gillespie
algorithm. Simply put, it is an algorithm that uses weighted chance to decide
what event happens based on the previous state of the model. This weighted
chance is based on the number of certain molecules in the model, in combination
with a probability of that event happening. Once an event is selected the model
is updated and a new event is randomly chosen. Each update of the model will
add or subtract a certain (integer) number from some substances of the model.
Resulting in a new state, with slightly adjusted chances for the events. From
this new state the entire process can start again to calculate the next state.
These steps are repeated until an equilibrium is found or until a simulation
time has been exceeded.

3.3 Event driven vs Stochastic

Even though deterministic methods are considered to be easier to use and imple-
ment, they do have some problems. When thinking about modelling as replicat-
ing a real world system, it becomes logical to include some degree of randomness
in the model. The reason behind this is that it is very hard to completely cover
every aspect of a system. There are just too many parameters to take into
account, which makes it highly likely that some parameter will be missed. This
gives all the more reason for the use of a stochastic method. Since the added
random factor might be able to cover the missing parameters, or changes and
inaccuracies in parameters. However, there is a cost to pay for using stochastic
methods. Both the time to create and to run such a model takes a lot longer.
If we look at a stochastic function based on time:

f(x, t) = f(x, t− 1) + σ

Where f(x, 0) = 0 and t is the time (t ∈ R), we see that to calculate any f(x, t),
we will need to know the previous state of the function. Additionally for every
iteration we increase the time by a unit, a new random value for σ has to be
created. Generating a few random numbers will not cause a problem. But since
this function will not result in a contiguous graph, it might prove necessary to
use a very small time step, to create a smooth curvature. This will result in a
large number of random numbers that need to be generated. While the most
common method for deterministic methods, the ODE, can be solved by different
techniques, such as the Runge-Kutta method, that takes significantly less time.
Therefore it is a choice between possible inaccuracies and calculation time.
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3.4 Ordinary differential equation vs Gillespie algorithm

If we take a closer look into the deterministic ODE and stochastic Gillespie
algorithm we can find some additional important differences.

When using ODEs in modelling, a series of ODEs representing the model
need to be created. These combinations of ODEs are called system of ODEs.
As explained ODEs will always produce the same result, which is not realistic,
in comparison how the real system works. Besides this there is another point
that makes ODEs less realistic. Namely, they are calculated by solving the
differential equation, resulting in a pure smooth series. The values from this
can be any float positive or negative. This gives two problems. When modelling
for example a specific process in a cell, the quantities should be counted as
integer (natural numbers) because logically there cannot be a half or a negative
number of proteins (or any other real world substance). Most ODE solvers are
able to remove the possibility of negativity. However they still work with float
numbers. This can have strange effect on the models results. For example if
at some point the quantity of some substance is around 0.2 then an equation
influenced by this value will still just calculate a result, assuming that this is
correct. This can, however, become a problem. For instance, there is quite a
large difference between 0.2 and the rounded value (0), if you keep calculating
with it. This is less of a concern when the values stay higher. Logically the
larger the amounts the less of a concern this should be. It is still something
that should be looked into before the results can be taken seriously.

The Gillespie algorithms does not have this problem. It starts with a state
in which every substance has an integer value. Each step a reaction is chosen.
This reaction then adds or subtracts a (integer) value from some substances.
This way the state of the model will always hold integer values. This is more
realistic, but logically more computational heavy.

For these reasons it might be important to analyse models both deterministic
and stochastic. When none of these problems occur, the easy route of the simple
deterministic ODE can be chosen.

4 Implementation of the models

4.1 Deterministic model

The first model that we tried to reproduce was of the 2007 model by Karlsson[4].
However, this happened to be problematic since the paper did not contain all the
necessary information for recreation of the model mainly because some variables
values that were missing in combination with vagueness about the units of the
values.

As stated before, Stefany Moreno was able to create a similar biological
model. From which she created both versions of the deterministic models (with-
out Dpra and with Dpra). This was done by creating a system of non-linear
ordinary differential equations, with an extended version which included Dpra.

All the models are systems of ODE, which can be solved by ODE solvers.
The code is written in python and uses the LSODA [5] solver. LSODA is a
”Ordinary Differential Equation Solver for Stiff or Non-Stiff System” which is
able to switch dynamically between a stiff and nonstiff method depending on
the data. LSODA is part of the ODEPACK contained in scipy, a ”Python-based
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ecosystem of open-source software for mathematics, science, and engineering”
[9].

4.2 Event driven

We chose to use the Gillespie algorithm for the event driven method. The reason
for this is that it is a relatively simple algorithm that has a clear structure. This
algorithm also has a very exact simulation, in which each step will always hold
a valid ”natural” state.

4.3 General Gillespie algorithm

The Gillespie algorithm has been shortly explained in the previous section. Here
we will take a closer look at the algorithm. As explained above the basic steps
for the algorithm are [2]:

1: Initialize: Set number of molecules in model state 0, set reaction constants
2: while t 6= endT ime do
3: Generate random number, to choose next reaction. This will also set

time interval step.
4: Update the model with the selected reaction, increase the time t by the

interval value.
5: end while
6: return Finalstate

The algorithm starts with initializing all the molecules at the correct value for
state 0. The reaction constants together with the number of molecules for a
certain reaction define the reaction hazard. As a final step of the initialization
a random generator is chosen, which is used to throw the weighted dice for
selecting a reaction.

Calculating the reaction hazard is quite straightforward. First all the re-
actions are calculated. Reactions are often in the form of a molecule count
multiplied by a rate constant. However others are more simplistic, for example
consisting of only a single rate constant. More complex reactions also exist, with
multiple molecules and rate constants having influence on the final rate. For
every modeled reaction the rate is calculated. These rates represent the chance
that a specific reaction takes place. Reactions that interact with a molecule
that is present in large quantities will have a higher chance of being chosen than
reactions with a similar constant value, but with a smaller quantity. All these
reactions are stored separately and also added together to get a rate sum, the
combined value of all the reactions. To choose the reaction, a random number
between zero and one is created which is then multiplied with the rate sum.
To get the chosen reaction, the separate reaction rates are added together and
compared. If at one point the combined value exceeds the random value, then
the reaction of that rate will be executed.

Executing a reaction is done by looking at the reaction and adding or sub-
tracting a certain number from a molecule quantity, dependent on what is con-
sumed and produced by that reaction. After quantities of the molecules are
adjusted the whole process will start again.
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4.4 Converting ODE equations to stochastic equations

In order to implement the Gillespie algorithm it is required to first convert
the ODE equations into a usable format for the stochastic solution. This is a
straightforward process. If we expand our example from earlier

dComD
dt = γComDComD − δComDComD

This simple example shows that the amount of ComD is dependent on its syn-
thesis (γComDComD) and the degradation (δComDComD). Here gamma and
delta represent synthesis rate and degradation rate, respectively. ComD indi-
cates the current amount of this protein in the model. Each element of this
equations is equal to a specific reaction that can take place. However, for the
Gillespie algorithm we need to separate the equation into single reactions, given
by

Synthesis = γComDComD

Degradation = −δComDComD

Converting this simple example will give two reactions

φ
γComD−−−−→ ComD

ComD
δD−−→ φ

By separating the reactions into single reactions it becomes possible to calculate
the reaction hazard.

When we look at a more complicated example we can also see specific in-
teraction between two differential equations when we convert them. We take
the example of the production of CSP. As explained before CSP is created by
ComAB by consumption of ComC. The differential equations showing this are:

dComC

dt
=
σC

δCR
· (β0

C · (1− Y CEP ) + βC · Y CEP )− e · ComAB · ComC
ComC + ke

− δC · ComC

CSP

dt
=
e · ComAB · ComC

ComC + ke
− δCSP · CSP

For ComC we can quickly see similarities with our previous example for synthesis
and degradation. Degradation of CSP is also straightforward. Giving us these
reactions:

φ
λComC−−−−→ ComC

ComC
δC−−→ φ

CSP
δCSP−−−→ φ

For CSP synthesis we notice that the term e·ComAB·ComC
ComC+ke

appears in both
equations as an addition and a subtraction. This shows that ComC is used to
produce CSP. In essence this is just one reaction and thus we want to convert
it into one reaction. This will give us the reaction:
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ComAB + ComC
e

ComC+ke−−−−−−→ ComAB + CSP

This shows us that one unit of ComC is consumed for the synthesis of CSP.
Since ComAB appears on both sides of the reaction, it indicates that ComAB
is only used as a enzyme and is not consumed.

Once all the ODE equations are translated with this method, then they can
be used in a Gillespie algorithm. For a full list of all the differential equations
see page 31 and for the converted reactions see page 27.

4.5 Implementation Gillespie algorithm

In a first attempt to create the event driven solver, Matlab was chosen to imple-
ment the Gillespie algorithm. The implementation worked correctly, however,
there where some problems with the calculation speed. The average time for
the Matlab implementation was around 7.4 seconds with an simulation time of
100.000 seconds. When implemented in C++ the running time was cut down
to only 2.6 seconds. Since this first initial implementation did not contain the
proteins related to Dpra, the difference would only become larger with more
proteins and thus more variables. Therefore the entire code was converted into
C++ and the later extensions where also implemented in C++.
The final implementation scales linear with the simulation time. However this is
only the case when the protein numbers stay equal, there are more variables that
have an influence on the execution time. The main influence for the execution
time is the total chance of a reaction taking place. When there is a low number
of protein molecules in the model the time it takes for a reaction to take place
increases. If this is the case the time increases more quickly and therefore the
amount of total reactions over the entire simulation decreases. This decrease
in amount of reactions leads to a direct increase in performance, lowering the
execution time significantly2.

4.5.1 C++ implementation

There are a few required input parameters for the C++ program, namely: rates
file, result file name, step size, end time and number of cycles.

The full code can be found in appendix D page 33. Here the important parts
of the algorithm are explained. The C++ code is separated into two parts.
First the file, Gillespie.cc, handles initialization of the program and the general
algorithm as described earlier. The second file, reactions.cc handles the exact
state of the simulation. It also handles the calculating of hazards and adjusting
the model to update to a new state. Since the reaction rates are not hard coded
into the program the first steps are to parse the rates.txt file. This is done in a
straight naive parsing method. Then the program is ready for its core algorithm.

2All timing tests done on an Intel Core i5-4670K CPU at 4Ghz, timed on a single thread

12



Listing 1: Gillespie
21 void G i l l e s p i e : : run ( double timeEnd , i n t c y c l e s )
22 {
23 double currentTime , measureTime ;
24 in t idx ;
25 f o r ( idx = 0 ; idx < c y c l e s ; ++idx )
26 {
27 currentTime = 0 . 0 ;
28 measureTime = TIMESTEP;
29 reac t i ons−>resetCurStat ( ) ;
30 whi le ( currentTime < timeEnd )
31 {
32 reac t i ons−>calcHazard ( ) ;
33 currentTime += thi s−>getNextTime ( ) ;
34 r eac t i ons−>chooseReact ion ( currentTime ) ;
35 i f ( currentTime > measureTime )
36 {
37 reac t i ons−>measureState (measureTime ) ;
38 measureTime += TIMESTEP;
39 }
40 }
41 }
42 reac t i ons−>calcAverage ( ) ;
43 r eac t i ons−>pr in tS ta tu s ( ) ;
44 r eac t i ons−>wr i teResu l t ( ) ;
45 }

The inner loop here clearly shows the translation from pseudocode (page 10) to
C++. First the reactions hazards are calculated. This is simply done by the
formulas given in appendix A, see page 27. Followed by the calculation of the
sum of these hazards.

When the reaction hazard sum is known it becomes possible to calculate the
time until a new reaction will occur.

Listing 2: Find the new time step.
9 /∗ Gen e r a t e n e x t t im e i n t e r v a l ∗/

10 double G i l l e s p i e : : getNextTime ( )
11 {
12 double randVal ;
13 do
14 {
15 randVal = ( ( double ) rand ( ) / ( double ) (RAND MAX) ) ;
16 } whi le ( randVal == 0) ;
17 return ( ( 1 . 0 / reac t i ons−>getSum () ) ∗( log (1 . 0/ randVal ) ) ) ;
18 }

First a random value 0 < rand <= 1 is chosen. Then with this a random time
is calculated, which is used as indicator for how long it takes before a new reac-
tion happens. This time is then added to the current time, indicating the time
between the next and the previous reaction.

The following step is to find the next reaction that takes place.
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Listing 3: Select reaction.
190 void React ions : : chooseReact ion ( double currentTime )
191 {
192 double cumSumArr [NUMREACTIONS] ;
193 double randVal ;
194 in t idx , reacNum ;
195 in t diffComX ;
196
197 randVal = ( ( double ) rand ( ) / ( double ) (RAND MAX) ) ;
198 randVal = randVal ∗ rateSum ;
199
200 cumSumArr [ 0 ] = rateValues [ 0 ] ;
201 i f (cumSumArr [ 0 ] <= randVal )
202 {
203 f o r ( idx = 1 ; idx < NUMREACTIONS; ++idx )
204 {
205 cumSumArr [ idx ] = rateValues [ idx ] + cumSumArr [ idx −1];
206 i f (cumSumArr [ idx ] > randVal )
207 {
208 reacNum = idx ;
209 break ;
210 }
211 }
212 }
213 e l s e
214 {
215 reacNum = 0;
216 }
217 diffComX = curStat [ 9 ] ;
218 f o r ( idx = 0 ; idx < NUMPROTEINS; ++idx )
219 {
220 curStat [ idx ] += react ionsArray [ reacNum ] [ idx ] ;
221 }
222 i f ( flagComX == f a l s e && diffComX < 150 && curStat [ 9 ] >= 150)
223 {
224 cout << currentTime << endl ;
225 flagComX = true ;
226 }
227 }

Also here a random value is taken to, this random value is 0 <= rand <=∑
reactionhazards. The cumulative sum of the reaction hazards are taken un-

til the random time is smaller than the sum. This is then followed by adjusting
the state with that given reaction. The reactions are all stored in a large 2D
array, indicating which proteins get adjusted. See appendix on page 27.

These are the essential parts for the Gillespie algorithm. However, a few
things have been added in the program. There is a timer that will store current
states of the model, otherwise only the result would be visible. An extra loop
around the Gillespie algorithm makes it possible to take multiple runs with the
same starting condition, followed by taking the average of all the runs.

The final result is written to the output file in a comma separated file.
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5 Results

Lambda No CSP 1000 CSP
induction

0.000100 0 0

0.000101 0 0

0.000102 0 0

0.000103 0 1

0.000104 1 0

0.000105 0 0

0.000106 0 2

0.000107 3 3

0.000108 6 6

0.000109 2 8

0.000110 5 8

0.000111 13 23

0.000112 22 27

0.000113 39 27

0.000114 35 47

0.000115 47 67

0.000116 69 72

0.000117 81 80

0.000118 87 91

0.000119 96 92

0.000120 100 99

0.000121 99 100

Table 1: Table show-
ing percentage of acti-
vation.

The main goal for the event driven implementation,
was to find possible differences against the determin-
istic method. This was first done by testing the same
experiments done by Moreno. After which new test
runs where done to find possible differences.

5.1 Competence activation comparison

The first comparison is based on tests on competence
activation. These tests are carried out without the
presence of the Dpra protein, since it suppresses com-
petence activation by binding to the ComEP protein.
We started with a comparison between the bistable
switch point by adjusting the phosphorylation rate of
ComE by ComDPdim (λ)3. Both simulations are con-
sidered to have active competence once the amount of
the ComX protein becomes higher than 150. ComX is
chosen for this because it is the activator of the genes
for competence activation. The Gillespie implemen-
tation appears to have an earlier competence activa-
tion. This is especially apparent when a lower value
for lambda is used. The range of the data starts at
1.0e-04 lambda to 3.0e-04 lambda with an step size of
1.0e-05. Between 1.0e-04 and 1.3e-04 extra samples
were taken with step size 1.0e-06.

When lambda is lowered to 0.000110034 the
stochastic simulation still has a small change of acti-
vating competence. This however only happens when
the simulation time is extremely high, only activating
after roughly 1.728e+6 seconds (20 days) see figure
3. Table 1 shows the activation percentages of the
stochastic simulation after one hundred runs. For all
lambda values above 0.000121 and with CSP induction
of 10.000 the stochastic simulation gives a 100% activation.

3For a full list of variable values used, see appendix C on page 33
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Figure 2: Plots showing both stochastic and deterministic activation times.
There are a hundred data points for each lambda value, average is taken from

these points.

When slowly increasing lambda, starting at 1.0e-04, the deterministic simu-
lation also activates competence. However the time gap between these two can
be as high as 150.000 seconds, 41 hours. While increasing lambda this gap be-
comes smaller, until both simulations activate competence roughly at the same
time. For high values of lambda, larger than 4.0e-04, the activation is very
similar, with the stochastic simulation showing activation slightly earlier. This
difference keeps getting smaller the higher lambda is chosen. Some stochastic
runs have a slower activation than the deterministic simulation, but the average
time is always lower, figure 2.
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Figure 3: Jagged lines are from the stochastic simulation.
Smooth lines are from deterministic simulation.

λ = 0.00012793387

5.2 Competence activation comparison with CSP induc-
tion

CSP induction was simulated by adjusting the starting amount of CSP in both
simulations. Two starting values for CSP induction have been tested, 1.000 and
10.000.
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Figure 4: Plots showing both stochastic and deterministic activation times
with 10.000 CSP induction. There are a hundred data points for each lambda

value, average is taken from these points.

The differences between the stochastic and deterministic results are smaller
than when there is no CSP induction, figure 4a and 4b. However with CSP
induction it follows the same trend as without. When the lambda value is large
the difference is smaller, and when lowering the lambda value the difference
increases. With very small lambda values the difference is not as great compared
to no CSP induction. However this can be explained by the minimal lambda
value of 1.0e-04 which was tested.
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Figure 5: Plots showing both stochastic and deterministic activation times
with 1.000 CSP induction. There are a hundred data points for each lambda

value, average is taken from these points.
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Figure 6: For clarity, plot showing both stochastic and deterministic mean
activation times comparison for the different CSP inductions. Step size 1.0e-05.

With only 1.000 CSP induction there is a smaller difference. When adding
smaller amounts of CSP the competence activation of the deterministic simula-
tion is even lower, at some points, than the stochastic simulation. Besides this
the difference overall for activation is here the smallest, as seen in figure 5.
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Using kernel density estimates on the stochastic data we found some indica-
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tions of bimodality. When plotting the density estimates at lambda values from
1.13e-04 to 1.18e-04 a growing bimodality forms from 1.13e04 reaching a clear
double peak at 1.15e-04, which then declines and smooths out again.

5.3 Individual proteins comparison

All but one protein show no noticeable difference after stabilization. While com-
petence activation is starting, a difference can be seen, however this is expected
because of the differences in activation times. Once a stable state is reached all
the proteins have a similar value. The exception is ComX, as it has a slightly
higher value in the stochastic solution, compared to the deterministic solution.
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Figure 8: ComX stochastic vs deterministic, ”ComXp” is from the
deterministic simulation

When competence does not activate the mean difference after stabilization
for ComX is around 7.5, with the stochastic standard deviation of 1.7113 and a
standard error of mean 0.0104, see figure 8a.

The difference is slightly higher when stabilizing with active competence.
The difference is then around 12.8, with the stochastic SD of 4.3207 and SEM
0.0262, see figure 8b.

6 Discussion

First, we found three properties of the stochastic simulation that are noteworthy
from the results.

• The stochastic simulation activates earlier compared to the deterministic
simulation.

• The bimodality of the activation times in around 1.15e-04 lambda values

• A difference in the value of ComX was found between the two simulations.
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The difference in activation time between the two simulations could simply
be caused by the stochastic property of the Gillespie Algorithm. When simulat-
ing deterministically, the simulated cell behaves exactly the same way each run,
acting as if each cell would always behave exactly the same. With the stochas-
tic simulation each run represents a single cell, but now with the possibility of
anomalies. This entails that the stochastic simulated cell has the possibility to
randomly create a bit more CSP, which in turn increases the chance of earlier
competence activation. Over time the chance of this added CSP creation grows
over time. This could lead to an increased possibility of early activation, which
is the case for most simulations run, see figure 7. This is a possible explanation
for the earlier activation times for the stochastic model.

The bimodality found in the activation times around roughly 1.15e-04, figure
7, is likely because of the bistable switch also found in Karlsson 2007 model [4].
This was also found in the current deterministic model by Moreno [7].

Lastly we take a look at the difference in ComX value. With the current
information we cannot explain this difference. The difference is only found for
ComX, both models have been investigated for possible errors and differences
in reaction values, no differences where found. The possibility that it is caused
by the differences between the ODE and Gillespie Algorithm within small val-
ues, can be crossed out because this difference also occurs when ComX has a
relatively high value. And protein ComEPdim is consistent while having lower
values. Therefore, the differences in ComX values cannot be caused by the
possible inaccuracies of working with low quantities in a ODE.

7 Future work

The main focus of this thesis was the comparison of deterministic versus stochas-
tic simulations. This has been done for this specific biological model. However
the code created is quite static and aimed at this specific model. The program
could highly benefit from being refactored into a more dynamic program.

For example, adding a new protein and corresponding reactions requires
multiple files to be edited now. The reason for this is that even though the
proteins and their rates are given in an input file, the parsing of this file is done
in a very static method, with a fixed number of proteins and a fixed order of
the proteins. Adding a reaction takes even more work. For this reason, the
large reactions array (the array indicating what the effect of each reaction is
on the model) has to be adjusted. If it is just a new reaction only the height
would increase, but for each added protein (or modelled substance) each current
reaction has to increase in length. The first step here would be to change the
input file in such a way that it contains not only the reaction rates. It could
contain a list of, proteins, reaction rates, reaction equations and reaction effects.
Especially the last two require quite some work. It might be best to start
working with XML style of input files. This is because the reaction equations
are quite flexible. The simple ones might be easily parsed but there are more
complex equations that reference multiple different proteins and reaction rates.
Linking all of this together might be a difficult task.

However, it would not be impossible and might even be worth the time. At
the time of writing this thesis the current model has already become slightly
outdated. Since S. pneumoniaeis such a widely researched bacteria, new ideas
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about the workings of competence appear quite often. A more flexible program
should allow quick adjustments to the program to continue using the same basis
while including the updates.

It should even be possible to look a step further. To create a more flexible
Gillespie Algorithm program that is able to not only work with this S. pneu-
moniaemodel but is able to be used as an alternative for all ODE simulations.
This could be done, since the conversion from ODE to stochastic equations has
a fixed set of rules. The main difficulty would be to create an easy method for
the program to parse the ODE equations into a standard format. This with-
out enforcing difficult time consuming tasks for the user, such as the reaction
conversion that is needed.

There are a lot of examples and usable code for different languages of the
Gillespie Algorithm. However implementing if from a biological or ODE model
still takes quite some time and also some coding experience. Especially when
implemented in a low level programming language for speed, which would be
recommended if the simulation would be used extensively. This might be the
reason why it is not used very often in comparison to ODE simulations. As
explained earlier this lack of ready to use tools, could probably be solved. Cre-
ating an easy to use Gillespie program that only requires extra processing hours,
and not human resources, might increase the usage of stochastic simulating.

Besides the scalability and reusability the program could also benefit from
other optimizations, mainly by the use of parallel execution. For a single run
parallelization would slightly increase the execution time, this is because the
only part that can be executed in parallel is the calculation of the reaction
hazards. The benefit from this is limited while the overhead for combining the
results for each time step would cost more. However since it is often recom-
mended to take an average of multiple runs making those runs run in parallel
would improve the total run time significantly.

Lastly if expended to a full program, an easy to use Gillespie program would
benefit from a more expanded data output. When using averages it would be
good to have an easy way to find separate spikes for each value. This can-
not solely be done with keeping a maximum and minimum value for each run.
Besides storing the average of the multiple runs also storing the separate runs
would allow the user to see specific data from runs where a certain peak ap-
peared. This would increase the user’s awareness of possible anomalies that
could occur.

Considering this specific biological model. While working on the stochas-
tic simulation Moreno has expended the deterministic model such that that it
includes cell growth. As said in the discussion a possible problem with the sim-
ulation’s and the in-vitro experiments activation time might have been caused
because of the lack of simulated cell growth. Besides this the difference for the
ComX protein could not be explained within this thesis. An in-vitro experiment
could have the possibility to confirm which simulation is a closer fit. Followed
by an investigation into why this difference occurs. Especially since this dif-
ference also occurs when the quantity of the ComX protein is high, while it is
assumed that when the quantities are high the difference between stochastic and
deterministic simulation should be close to equal.
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8 Conclusion

This thesis explored the differences between stochastic and deterministic mod-
elling and simulating of biological processes. Doing this would also allow us
to investigate the process that is needed for a conversion from deterministic to
stochastic simulation. The ultimate aim would be that of analysing the possi-
bility of automating the conversion process.

This was explored by converting a deterministic simulation of the compe-
tence shutdown of S. pneumoniaeinto a stochastic simulation. I cooperated
with Stefany Moreno who created the deterministic simulation, using a system
of ODEs. The Gillespie Algorithm was chosen for the stochastic simulation.
This algorithm was chosen because it is well documented and easy to implement.

Working on the conversion, from deterministic to stochastic simulation, gave
insight into this specific model. The steps needed for converting a system of
ODEs into the reactions for the Gillespie algorithm, are steps that are possible
to be done by an automated computer program. This indicates that creating a
program that is able to convert system ODEs into a stochastic Gillespie simula-
tion is, in theory, possible. However, it is important to note that this conclusion
is only based on this one specific of system ODEs. Especially since the ODEs
in this model are all relatively simple equations. Expanding into more gen-
eral models and system of ODEs could quite possibly introduce new unforeseen
problems.

The final comparison between the two models has shown some differences in
the results, namely, the stochastic Gillespie algorithm has a lower competence
activation time compared to the deterministic system of ODEs and the value
of ComX is slightly higher in the results from the stochastic simulation. With
the current information, from the two simulations, I am unable to point to the
simulation that is the most similar to the natural behaviour.

For these reasons, to be able to give a comprehensive answers to our two
original questions, several additional elements have to be explored. To create a
general purpose ODE to Gillespie converter, a more extended analysis of differ-
ent system ODEs are needed. Exploring different exceptions in the converting
process is necessary to be able to make it easy to use for a large public. Lastly,
to understand the reasons for the differences between the created stochastic
solution and the deterministic solution, a more in-depth analysis of both sim-
ulations is needed with possibly an extension of the stochastic simulation such
that it also includes cell growth.
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9 Appendix A: Stochastic Equations

9.1 Degradation and Synthesis

EH = ComE
KE

H

EPC = ComEPdim

KEP
C

Y EPC = EPC

EPC+(1+EH)2

EPX = ComEPdim

KEP
X

EL = ComE
KE

L

Y EPX = EPX

EPX+((1+EL)∗(1+EH))

λComD = σD

δRD
(β0
D(1− Y EPC ) + βDY

EP
C )

λComE = σE

δRE
(β0
E(1− Y EPC ) + βEY

EP
C )

λComC = σC

δRC
(β0
C(1− Y EPC ) + βCY

EP
C )

λComAB = σAB

δRAB

(β0
AB(1− Y EPC ) + βABY

EP
C )

λComX = σX

δRX
(β0
X(1− Y EPX ) + βXY

EP
X )

ComAB

ComAB
δAB−−→ φ (1)

φ
λComAB−−−−−→ ComAB (2)

ComC

ComC
δC−−→ φ (3)

φ
λComC−−−−→ ComC (4)

CSP

CSP
δCSP−−−→ φ (5)

ComD

ComD
δD−−→ φ (6)

φ
λComD−−−−−→ ComD (7)

ComDdim

ComDdim δDdim−−−−→ φ (8)

ComE

ComE
δE−−→ φ (9)

φ
λComE−−−−→ ComE (10)
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ComEP

ComEP
δEP−−→ φ (11)

ComEPdim

ComEPdim
δEPdim−−−−−→ φ (12)

ComDP dim

ComDP dim
δDPdim−−−−−→ φ (13)

ComX

ComX
δX−−→ φ (14)

φ
λComX−−−−−→ ComX (15)

9.2 Export

ComAB + ComC
e

ComC+ke−−−−−−→ ComAB + CSP (16)

2ComD
dD−−→ ComDdim (17)

ComDdim d−D−−→ 2ComD (18)

ComDdim k0−→ ComDP dim (19)

ComDP dim
k−−−→ ComDdim (20)

ComDP dim + ComE
λ−→ ComDdim + ComEP (21)

2ComEP
dEP−−−→ ComEP dim (22)

ComEP dim
d−EP−−−→ 2ComEP (23)

ComDdim CSP∗k−−−−−→ ComDP dim (24)

9.3 Added equations for Dpra

XdprA = ComX
KX

λDprA =
σDprA∗βDprA

δRDprA

∗ (
XDprA

1+XDprA
)

DprA
δDprA−−−−→ φ (25)

φ
λDprA−−−−→ DprA (26)

2DprA
dDprA−−−−→ DprAdim (27)
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DprAdim
δ
DprAdim

−−−−−−→ φ (28)

DprAdim
d−DprA−−−−→ 2DprA (29)

DprAdim + ComEP dim
r−→ DEP (30)

DEP
r−−−→ DprAdim + ComEP dim (31)

DEP
δDEP−−−−→ φ (32)
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10 Appendix B: ODE equations

10.1 Degradation and Synthesis

EH = ComE
KE

H

EPC = ComEPdim

KEP
C

Y EPC = EPC

EPC+(1+EH)2

EPX = ComEPdim

KEP
X

EL = ComE
KE

L

Y EPX = EPX

EPX+((1+EL)∗(1+EH))

Synthesis of ComAB

dComAB
dt = σAB

δRAB

(β0
AB(1− Y EPC ) + βABY

EP
C )− δABComAB

Synthesis of ComC and export of CSP

dComC
dt = σC

δRC
(β0
C(1− Y EPC ) + βCY

EP
C )− δCComC − eComABComC

ComC+ke

dCSP
dt = eComABComC

ComC+ke
− δCSPCSP

Synthesis of ComD

dComD
dt = σD

δRD
(β0
D(1− Y EPC ) + βDY

EP
C )− 2dDComD

2 + 2d−DComD
dim − δDComD

dComDdim

dt = dDComD
2 − k0ComDdim+ k−ComDP dim − kCSPComDdim + λComDP dimComE

−δDdimComDdim

dComDPdim

dt = k0ComD
dim+ kCSPComDdim − k−ComDP dim − λComDP dimComE

−δDPdimComDP dim

Synthesis of ComE and ComEP

dComE
dt = σE

δRE
(β0
E(1− Y EPC ) + βEY

EP
C )− λComDP dim − δEComE

dComEP
dt = λComDP dim − 2dEPComEP

2 + 2d−EPComEP
dim − δEPComEP

dComEPdim

dt = dEPComEP
2 − d−EPComEP dim − δEPdimComEP dim−

rDprAdimComEP dim + r−DEP
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Synthesis of ComX and DprA

dComX
dt = σX

δRX
(β0
X(1− Y EPX ) + βXY

EP
X )− δXComX

dDprA
dt =

σDprA∗βDprA

δRDprA

∗ (
XDprA

1+XDprA
)− δDprADprA− 2dDprADprA

2 + 2d−DprADprA
dim

dDpradim

dt = dDprADprA
2 − d−DprADprAdim − rDprAdimComEP dim

+r−DEP − δDprAdimDprAdim

dDEP
dt = rDprAdimComEP dim − r−DEP − δDEPDEP
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11 Appendix C: Variable values

Listing 4: Parameter values.
1 55
2 1=0.0004 deltaAB ( d ab ) Degration Rates
3 2=0.0004 deltaC
4 3=0.0004 deltaCSP
5 4=0.0004 deltaD
6 5=0.0004 deltaDdim
7 6=0.0004 deltaE
8 7=0.0004 deltaEP
9 8=0.0004 deltaEPdim

10 9=0.0004 deltaDPdim
11 10=0.0004 deltaX
12 11=50 Ke ( ke )
13 12=0.006 e ( re )
14 13=0.024 dD (dim)
15 14=0.1 dMinD (dimn)
16 15=0.0 k0 ( alp )
17 16=0.05 kMin ( kapd ) 0.000110034 00012793387 00012773387
18 17=0.000126 lambda ( lamb )
19 18=0.024 dEP ( dep )
20 19=0.1 dMinEP ( depn )
21 20=0.0001 k ( kap )
22 21=10 Keh ( khe )
23 22=10 KEPC ( kcep )
24 23=0.04 sigAB ( s i g ab ) t r a n s l a t i o n ra te
25 24=0.01 deltaRAB ( s i g r ab ) RNA degradat ion ra te
26 25=0.04 sigD
27 26=0.01 deltaRD
28 27=0.04 sigC
29 28=0.01 deltaRC
30 29=0.04 sigX
31 30=0.01 deltaRX
32 31=0.04 sigE
33 32=0.01 deltaRE
34 33=0.004 beta0AB ( b0 ab ) Basal t r a n s c r i p t i o n ra te
35 34=0.004 beta0D
36 35=0.004 beta0C
37 36=0.0 beta0X
38 37=0.004 beta0E
39 38=0.05 betaAB ( b ab ) ComEP induced Transc r ip t i on ra te
40 39=0.05 betaD
41 40=0.05 betaC
42 41=0.05 betaX
43 42=0.05 betaE
44 43=0.0004 deltaDprA ( d dpra )
45 44=0.024 dDprA ( ddpra )
46 45=0.1 dMinDprA ( dndpra )
47 46=0.0004 deltaDprAdim ( d dprad )
48 47=0.01 r ( r )
49 48=0.00015 rMin ( rn )
50 49=0.0004 deltaDEP ( d dep )
51 50=10 KˆX (kx )
52 51=20 Kepx ( kxep )
53 52=20 Kel ( k l e )
54 53=0.15 sigDpra ( s i g dpra )
55 54=0.01 deltaRDprA ( s i g r dp r a )
56 55=0.0 betaDprA ( b dpra )
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12 Appendix D: Source Code

Listing 5: gillespie.cc
1 #inc lude " r e a c t i o n s . h "
2 #inc lude " g i l l e s p i e . h "
3 #inc lude " s t r i n g "
4 #inc lude <c s td l i b>
5 #inc lude <cmath>
6
7 us ing namespace std ;
8
9 /∗ Gen e r a t e n e x t t im e i n t e r v a l ∗/

10 double G i l l e s p i e : : getNextTime ( )
11 {
12 double randVal ;
13 do
14 {
15 randVal = ( ( double ) rand ( ) / ( double ) (RAND MAX) ) ;
16 } whi le ( randVal == 0) ;
17 return ( ( 1 . 0 / reac t i ons−>getSum () ) ∗( log (1 . 0/ randVal ) ) ) ;
18 }
19
20 /∗ Main l o o p i t e r a t i n g o v e r s t e p s . ∗/
21 void G i l l e s p i e : : run ( double timeEnd , i n t c y c l e s )
22 {
23 double currentTime , measureTime ;
24 in t idx ;
25 f o r ( idx = 0 ; idx < c y c l e s ; ++idx )
26 {
27 currentTime = 0 . 0 ;
28 measureTime = TIMESTEP;
29 reac t i ons−>resetCurStat ( ) ;
30 whi le ( currentTime < timeEnd )
31 {
32 reac t i ons−>calcHazard ( ) ;
33 currentTime += thi s−>getNextTime ( ) ;
34 r eac t i ons−>chooseReact ion ( currentTime ) ;
35 i f ( currentTime > measureTime )
36 {
37 reac t i ons−>measureState (measureTime ) ;
38 measureTime += TIMESTEP;
39 }
40 }
41 }
42 reac t i ons−>calcAverage ( ) ;
43 r eac t i ons−>pr in tS ta tu s ( ) ;
44 r eac t i ons−>wr i teResu l t ( ) ;
45 }
46
47 in t main ( i n t argc , char ∗argv [ ] )
48 {
49 double timeEnd , c y c l e s ;
50 double s t epS i z e = 1 ;
51 i f ( argc < 6)
52 {
53 cout << " not e n o u g h a r g u m e n t s give rate c o n s t a n t s f i l e n a m e p l e a s e . (

f i l e n a m e o u t n a m e t i m e E n d s t e p S i z e c y c l e s ) " << endl ;
54 return −1;
55 }
56 s t r i n g f i leName ( argv [ 1 ] ) ;
57 s t r i n g outName( argv [ 2 ] ) ;
58 timeEnd = ( double ) a t o i ( argv [ 3 ] ) ;
59 s t epS i z e = ( double ) a t o i ( argv [ 4 ] ) ;
60 cy c l e s = ( double ) a t o i ( argv [ 5 ] ) ;
61 TIMESTEP = st epS i z e ;
62 React ions∗ r eac t = new React ions ( fi leName , outName , s t epS i z e , timeEnd , c y c l e s ) ;
63 G i l l e s p i e a lg ( r eac t ) ;
64 a lg . run ( timeEnd , c y c l e s ) ;
65 return 0 ;
66 }

Listing 6: gillespie.h
1 #i f n d e f GILLESPIE H
2 #de f i n e GILLESPIE H
3 #inc lude <c s td l i b>
4 #inc lude " r e a c t i o n s . h "
5 #inc lude <time . h>
6
7 us ing namespace std ;
8
9 double TIMESTEP = 1 ;

10
11 c l a s s G i l l e s p i e
12 {
13 pub l i c :
14 G i l l e s p i e ( React ions∗ r e a c t i on s ) : r e a c t i on s ( r e a c t i on s )
15 {
16 srand ( ( unsigned ) time (NULL) ) ;
17 }
18 ˜ G i l l e s p i e ( )
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19 {
20 de l e t e r e a c t i on s ;
21 }
22
23 void run ( double endTime , i n t c y c l e s ) ;
24
25 pr iva t e :
26 React ions∗ r e a c t i on s ;
27 double getNextTime ( ) ;
28 } ;
29 #end i f

Listing 7: reactions.cc
1 #inc lude <iostream>
2 #inc lude <fstream>
3 #inc lude <s t r ing>
4 #inc lude <s t d l i b . h>
5 #inc lude <boost / l e x i c a l c a s t . hpp>
6 #inc lude <l im i t s>
7
8 #inc lude " r e a c t i o n s . h "
9

10 us ing namespace std ;
11 /∗ D e f i n i n g t h e r e a c t i o n s ∗/
12 in t react ionsArray [NUMREACTIONS] [NUMPROTEINS] ={{−1, 0 , 0 , 0 , 0 , 0 , 0 , 0 ,

0 , 0 , 0 , 0 , 0} ,
13 {1 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0} ,
14 {0 , −1, 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0} ,
15 {0 , 1 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0} ,
16 {0 , 0 , −1, 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0} ,
17 {0 , 0 , 0 , −1, 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0} ,
18 {0 , 0 , 0 , 1 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0} ,
19 {0 , 0 , 0 , 0 , −1, 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0} ,
20 {0 , 0 , 0 , 0 , 0 , −1, 0 , 0 , 0 , 0 , 0 , 0 , 0} ,
21 {0 , 0 , 0 , 0 , 0 , 1 , 0 , 0 , 0 , 0 , 0 , 0 , 0} ,
22 {0 , 0 , 0 , 0 , 0 , 0 , −1, 0 , 0 , 0 , 0 , 0 , 0} ,
23 {0 , 0 , 0 , 0 , 0 , 0 , 0 , −1, 0 , 0 , 0 , 0 , 0} ,
24 {0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , −1, 0 , 0 , 0 , 0} ,
25 {0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , −1, 0 , 0 , 0} ,
26 {0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 1 , 0 , 0 , 0} ,
27 {0 , −1, 1 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0} ,
28 {0 , 0 , 0 , −2, 1 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0} ,
29 {0 , 0 , 0 , 2 , −1, 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0} ,
30 {0 , 0 , 0 , 0 , −1, 0 , 0 , 0 , 1 , 0 , 0 , 0 , 0} ,
31 {0 , 0 , 0 , 0 , 1 , 0 , 0 , 0 , −1, 0 , 0 , 0 , 0} ,
32 {0 , 0 , 0 , 0 , 1 , −1, 1 , 0 , −1, 0 , 0 , 0 , 0} ,
33 {0 , 0 , 0 , 0 , 0 , 0 , −2, 1 , 0 , 0 , 0 , 0 , 0} ,
34 {0 , 0 , 0 , 0 , 0 , 0 , 2 , −1, 0 , 0 , 0 , 0 , 0} ,
35 {0 , 0 , 0 , 0 , −1, 0 , 0 , 0 , 1 , 0 , 0 , 0 , 0} ,
36
37 {0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ,−1 , 0 , 0} ,
38 {0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 1 , 0 , 0} ,
39 {0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ,−2 , 1 , 0} ,
40 {0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ,−1 , 0} ,
41 {0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 2 ,−1 , 0} ,
42 {0 , 0 , 0 , 0 , 0 , 0 , 0 , −1, 0 , 0 , 0 ,−1 , 1} ,
43 {0 , 0 , 0 , 0 , 0 , 0 , 0 , 1 , 0 , 0 , 0 , 1 ,−1} ,
44 {0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ,−1}};
45
46 /∗ I n i t i a l i z a t i o n o f a r r a y s and c o u n t e r ∗/
47 void React ions : : prepareMeasureArr ( double s tepS ize , i n t t imeSteps )
48 {
49 in t idx ;
50 numSteps = ( timeSteps / s t epS i z e ) + 1 ;
51 re su l tMatr ix = new double ∗ [ numSteps ] ;
52 resultMinMaxMatrix = new double ∗ [ numSteps ∗ 2 ] ;
53 f o r ( idx = 0 ; idx < numSteps ; ++idx )
54 {
55 re su l tMat r ix [ idx ] = new double [NUMPROTEINS+1]() ;
56 resultMinMaxMatrix [ idx ∗2] = new double [NUMPROTEINS] ( ) ;
57 resultMinMaxMatrix [ ( idx ∗2)+1] = new double [NUMPROTEINS] ( ) ;
58 }
59 }
60
61 /∗ R e s e t t i n g t h e run , a l s o a l l o w s p r o t e i n i n d u c t i o n a t s t a r t o f a run ∗/
62 void React ions : : r e setCurStat ( )
63 {
64 in t idx ;
65 f o r ( idx = 0 ; idx < NUMPROTEINS; ++idx )
66 {
67 curStat [ idx ] = 0 ;
68 }
69
70 //CSP i n d u c t i o n !
71 re su l tMatr ix [ 0 ] [ CSP] += 1000;
72 curStat [CSP] = 1000;
73 stepsTaken = 1 ;
74 flagComX = f a l s e ;
75 }
76
77 /∗ Rea d i n g i n t h e r e a c t i o n r a t e s f r om f i l e ∗/
78 void React ions : : loadReact ionRates ( s t r i n g r a t eF i l e )
79 {
80 i f s t r eam i F i l e ( r a t eF i l e . c s t r ( ) ) ;
81 s t r i n g token ;
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82 double value ;
83 in t num, idx , idy ;
84 g e t l i n e ( iF i l e , token ) ;
85 in t amount = ato i ( token . c s t r ( ) ) ;
86 reactArr = new double [ amount ] ;
87 rateValues = new double [NUMREACTIONS] ;
88 curStat = new in t [NUMPROTEINS] ;
89 /∗ Whi l e t h e r e i s s t i l l a l i n e . Or u n t i l l a l l r a t e s h a v e b e e n r e a d . ∗/
90 whi le ( g e t l i n e ( iF i l e , token ) ) {
91 num = ato i ( token . subst r (0 , token . f i nd ( " = " ) ) . c s t r ( ) ) ;
92 value = s t r tod ( token . subst r ( token . f i nd ( " = " )+1, token . f i nd ( " " ) ) . c s t r ( ) ,

NULL) ;
93 reactArr [num−1] = value ;
94 }
95
96
97 f o r ( idx = 0 ; idx < NUMREACTIONS; ++idx )
98 {
99 rateValues [ idx ] = 0 ;

100 }
101 re su l tMatr ix [ 0 ] [ idx ] = 0 ;
102 f o r ( idy = 0 ; idy < numSteps ; ++idy )
103 {
104 f o r ( idx = 0 ; idx < NUMPROTEINS; ++idx )
105 {
106 re su l tMatr ix [ idy ] [ idx ] = 0 ;
107 resultMinMaxMatrix [ ( idy ∗2) +1] [ idx ] = std : : numer i c l imi t s<double > : :min ( ) ;
108 resultMinMaxMatrix [ ( idy ∗2) ] [ idx ] = std : : numer i c l imi t s<double > : :max( ) ;
109 }
110 }
111
112 i F i l e . c l o s e ( ) ;
113 }
114
115 /∗ C a l c u l a t e t h e r e a c t i o n h a z a r d f o r a l l t h e r e a c t i o n s ∗/
116 void React ions : : calcHazard ( )
117 {
118 in t idx ;
119 double Eh = curStat [ComE]/ reactArr [Keh ] ;
120 double EPc = curStat [ComEPdim]/ reactArr [KECP] ;
121 double Ycep = EPc/(EPc + ((1+Eh) ∗ (1+Eh) ) ) ;
122
123 double lambdaComAB = ( reactArr [ SigAB ]/ reactArr [ deltaRAB ] ) ∗ ( reactArr [ beta0AB ] ∗

(1 − Ycep ) + reactArr [ betaAB ] ∗ Ycep ) ;
124 double lambdaComD = ( reactArr [ SigD ]/ reactArr [ deltaRD ] ) ∗ ( reactArr [ beta0D ] ∗ (1 −

Ycep ) + reactArr [ betaD ] ∗ Ycep ) ;
125 double lambdaComC = ( reactArr [ SigC ]/ reactArr [ deltaRC ] ) ∗ ( reactArr [ beta0C ] ∗ (1 −

Ycep ) + reactArr [ betaC ] ∗ Ycep ) ;
126 double lambdaComE = ( reactArr [ SigE ]/ reactArr [ deltaRE ] ) ∗ ( reactArr [ beta0E ] ∗ (1 −

Ycep ) + reactArr [ betaE ] ∗ Ycep ) ;
127
128 double EPx = curStat [ComEPdim] / ( double ) reactArr [ Kepx ] ;
129 double El = curStat [ComE] / ( double ) reactArr [ Kel ] ;
130
131 double Yxep = EPx/(EPx + ((1+El )∗(1+El ) ) ) ;
132 double lambdaComX = ( reactArr [ SigX ]/ reactArr [ deltaRX ] ) ∗ ( reactArr [ beta0X ] ∗ (1 −

Yxep) + reactArr [ betaX ] ∗ Yxep) ;
133
134 double XdprA = curStat [ComX]/KX;
135 double lambdaDprA = (( reactArr [ SigDprA ]∗ reactArr [ betaDprA ] ) / reactArr [ deltaDprA ] )

∗(XdprA/(1+XdprA) ) ;
136
137
138 rateValues [ 0 ] = curStat [ComAB] ∗ reactArr [ deltaAB ] ;
139 rateValues [ 1 ] = lambdaComAB ;
140 rateValues [ 2 ] = curStat [ComC] ∗ reactArr [ deltaC ] ;
141 rateValues [ 3 ] = lambdaComC ;
142 rateValues [ 4 ] = curStat [CSP] ∗ reactArr [ deltaCSP ] ;
143 rateValues [ 5 ] = curStat [ComD] ∗ reactArr [ deltaD ] ;
144 rateValues [ 6 ] = lambdaComD ;
145 rateValues [ 7 ] = curStat [ComDdim] ∗ reactArr [ deltaDdim ] ;
146 rateValues [ 8 ] = curStat [ComE] ∗ reactArr [ deltaE ] ;
147 rateValues [ 9 ] = lambdaComE ;
148 rateValues [ 1 0 ] = curStat [ComEP] ∗ reactArr [ deltaEP ] ;
149 rateValues [ 1 1 ] = curStat [ComEPdim] ∗ reactArr [ deltaEPdim ] ;
150 rateValues [ 1 2 ] = curStat [ComDPdim] ∗ reactArr [ deltaDPdim ] ;
151 rateValues [ 1 3 ] = curStat [ComX] ∗ reactArr [ deltaX ] ;
152 rateValues [ 1 4 ] = lambdaComX ;
153 rateValues [ 1 5 ] = curStat [ComAB] ∗ curStat [ComC] ∗ ( reactArr [ e ] / ( curStat [ComC]+

reactArr [Ke ] ) ) ;
154 rateValues [ 1 6 ] = curStat [ComD] ∗ ( curStat [ComD] −1) ∗ reactArr [dD ] ;
155 rateValues [ 1 7 ] = curStat [ComDdim] ∗ reactArr [ dMinD ] ;
156 rateValues [ 1 8 ] = curStat [ComDdim] ∗ reactArr [ k0 ] ;
157 rateValues [ 1 9 ] = curStat [ComDPdim] ∗ reactArr [ kMin ] ;
158 rateValues [ 2 0 ] = curStat [ComDPdim] ∗ curStat [ComE] ∗ reactArr [ lambda ] ;
159 rateValues [ 2 1 ] = curStat [ComEP] ∗ ( curStat [ComEP]−1) ∗ reactArr [dEP ] ;
160 rateValues [ 2 2 ] = curStat [ComEPdim] ∗ reactArr [ dMinEP ] ;
161 rateValues [ 2 3 ] = curStat [CSP] ∗ curStat [ComDdim] ∗ reactArr [ k ] ;
162
163
164 //DPRA r e a c t i o n s
165 rateValues [ 2 4 ] = curStat [DprA]∗ reactArr [ deltaDprA ] ;
166 rateValues [ 2 5 ] = lambdaDprA ;
167 rateValues [ 2 6 ] = curStat [DprA ] ∗ ( curStat [DprA ] −1) ∗ reactArr [ dDprA ] ;
168 rateValues [ 2 7 ] = curStat [ DprAdim ] ∗ reactArr [ deltaDprAdim ] ;
169 rateValues [ 2 8 ] = curStat [ DprAdim ] ∗ reactArr [ dMinDprA ] ;
170 rateValues [ 2 9 ] = curStat [ DprAdim ] ∗ curStat [ComEPdim] ∗ reactArr [ r ] ;
171 rateValues [ 3 0 ] = curStat [DEP] ∗ reactArr [ rMin ] ;
172 rateValues [ 3 1 ] = curStat [DEP] ∗ reactArr [ deltaDEP ] ;
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173
174 // r a t e V a l u e s [ 2 4 ] = c u r S t a t [ ComDPdim ] ∗ r e a c t A r r [ kMin ] ;
175
176 rateSum = 0 . 0 ;
177 f o r ( idx = 0 ; idx < NUMREACTIONS; ++idx )
178 {
179 rateSum += rateValues [ idx ] ;
180 i f ( rateValues [ idx ] < 0)
181 {
182 cout << " Error , n e g a t i v e v al ue f ou nd ! " << endl ;
183 cout << idx << " " << rateValues [ idx ] << " " << curStat [ComDPdim] <<endl ;
184 ex i t (−1) ;
185 }
186 }
187 }
188
189 /∗ Ch o o s i n g t h e r e a c t i o n , b a s e d on t im e g i v e n ∗/
190 void React ions : : chooseReact ion ( double currentTime )
191 {
192 double cumSumArr [NUMREACTIONS] ;
193 double randVal ;
194 in t idx , reacNum ;
195 in t diffComX ;
196
197 randVal = ( ( double ) rand ( ) / ( double ) (RAND MAX) ) ;
198 randVal = randVal ∗ rateSum ;
199
200 cumSumArr [ 0 ] = rateValues [ 0 ] ;
201 i f (cumSumArr [ 0 ] <= randVal )
202 {
203 f o r ( idx = 1 ; idx < NUMREACTIONS; ++idx )
204 {
205 cumSumArr [ idx ] = rateValues [ idx ] + cumSumArr [ idx −1];
206 i f (cumSumArr [ idx ] > randVal )
207 {
208 reacNum = idx ;
209 break ;
210 }
211 }
212 }
213 e l s e
214 {
215 reacNum = 0;
216 }
217 diffComX = curStat [ 9 ] ;
218 f o r ( idx = 0 ; idx < NUMPROTEINS; ++idx )
219 {
220 curStat [ idx ] += react ionsArray [ reacNum ] [ idx ] ;
221 }
222 i f ( flagComX == f a l s e && diffComX < 150 && curStat [ 9 ] >= 150)
223 {
224 cout << currentTime << endl ;
225 flagComX = true ;
226 }
227 }
228
229 /∗ S t o r e t h e c u r r e n t s t a t e i n t h e r e s u l t a r r a y s ∗/
230 void React ions : : measureState ( double measureTime )
231 {
232 in t idx ;
233 i f ( stepsTaken > numSteps )
234 {
235 c e r r << " E rr or does not c o m p u t e " << endl ;
236 ex i t (−1) ;
237 }
238 f o r ( idx = 0 ; idx < NUMPROTEINS; ++idx )
239 {
240 re su l tMatr ix [ stepsTaken ] [ idx ] += curStat [ idx ] ;
241 i f ( curStat [ idx ] > resultMinMaxMatrix [ ( stepsTaken ∗2) +1] [ idx ] )
242 {
243 resultMinMaxMatrix [ ( stepsTaken ∗2) +1] [ idx ] = curStat [ idx ] ;
244 }
245 i f ( curStat [ idx ] < resultMinMaxMatrix [ ( stepsTaken ∗2) ] [ idx ] )
246 {
247 resultMinMaxMatrix [ ( stepsTaken ∗2) ] [ idx ] = curStat [ idx ] ;
248 }
249
250 }
251 re su l tMatr ix [ stepsTaken ] [ idx ] = measureTime ;
252 stepsTaken++;
253 }
254
255 double React ions : : getSum ()
256 {
257 return rateSum ;
258 }
259
260 /∗ C a l c u l a t e a v e r a g e o v e r m u l t i p l e r u n s ∗/
261 void React ions : : ca lcAverage ( )
262 {
263 in t idx , idy ;
264 // c o u t << ” #: ” << r e s u l t M a t r i x [ 0 ] [ CSP ] << e n d l ;
265 f o r ( idx = 0 ; idx < numSteps ; ++idx )
266 {
267 f o r ( idy = 0 ; idy < NUMPROTEINS; ++idy )
268 {
269 re su l tMat r ix [ idx ] [ idy ] = re su l tMat r ix [ idx ] [ idy ] / c y c l e s ;
270 }
271 }
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272 }
273
274 void React ions : : p r in tS ta tus ( )
275 {
276 in t idx ;
277 f o r ( idx = 0 ; idx < NUMPROTEINS; ++idx )
278 {
279 // c o u t << PROTNAMES [ i d x ∗ 3 ] << ” #: ” << r e s u l t M a t r i x [ s t e p s T a k e n −1 ] [ i d x ] <<

e n d l ; // a v g
280 // c o u t << PROTNAMES [ ( i d x ∗3) +1] << ” #: ” << r e s u l tM i nM a xM a t r i x [ s t e p s T a k e n

∗ 2+1 ] [ i d x ] << e n d l ; // min
281 // c o u t << PROTNAMES [ ( i d x ∗3) +2] << ” #: ” << r e s u l tM i nM a xM a t r i x [ ( ( s t e p s T a k e n −1)

∗2) + 1 ] [ i d x ] << e n d l ; // max
282 }
283 }
284
285 void React ions : : wr i t eResu l t ( )
286 {
287 in t idx , idy ;
288 ofstream outputFi l e ( outputF i l eSt r . c s t r ( ) ) ;
289
290 outputFi l e << " Time , " ;
291 f o r ( idx = 0 ; idx < NUMPROTEINS−1; ++idx )
292 {
293 outputFi l e << PROTNAMES[ idx ∗3] << " , " ;
294 outputFi l e << PROTNAMES[ ( idx ∗3)+1] << " , " ;
295 outputFi l e << PROTNAMES[ ( idx ∗3)+2] << " , " ;
296 }
297 outputFi l e << PROTNAMES[ idx ∗3] << " , " ;
298 outputFi l e << PROTNAMES[ ( idx ∗3)+1] << " , " ;
299 outputFi l e << PROTNAMES[ ( idx ∗3)+2] << endl ;
300
301 f o r ( idx = 0 ; idx < numSteps ; ++idx )
302 {
303 outputFi l e << r e su l tMatr ix [ idx ] [NUMPROTEINS] << " , " ;
304 f o r ( idy = 0 ; idy < NUMPROTEINS−1; ++idy )
305 {
306 outputFi l e << r e su l tMatr ix [ idx ] [ idy ] << " , " ;
307 outputFi l e << resultMinMaxMatrix [ ( idx ∗2) ] [ idy ] << " , " ;
308 outputFi l e << resultMinMaxMatrix [ ( idx ∗2) +1] [ idy ] << " , " ;
309 }
310 outputFi l e << r e su l tMatr ix [ idx ] [ idy ] << " , " ;
311 outputFi l e << resultMinMaxMatrix [ ( idx ∗2) ] [ idy ] << " , " ;
312 outputFi l e << resultMinMaxMatrix [ ( idx ∗2) +1] [ idy ] << endl ;
313 }
314
315 }

Listing 8: reactions.h
1 #i f n d e f REACTIONS H
2 #de f i n e REACTIONS H
3
4 #inc lude <iostream>
5 #inc lude <s t r ing>
6 #inc lude <sys / s t a t . h>
7
8
9 /∗ Enum w i t h a l l t h e d i f f e r e n t p r o t e i n s ∗/

10
11 const i n t NUMPROTEINS = 13 ;
12 const i n t NUMREACTIONS = 32;
13
14 const std : : s t r i n g PROTNAMES[ ] = {
15 " Co m AB " ,
16 " m i n C o m A B " ,
17 " m a x C o m A B " ,
18 " ComC " ,
19 " m i n C o m C " ,
20 " m a x C o m C " ,
21 " CSP " ,
22 " m i n C S P " ,
23 " m a x C S P " ,
24 " ComD " ,
25 " m i n C o m D " ,
26 " m a x C o m D " ,
27 " C o m D d i m " ,
28 " m i n C o m D d i m " ,
29 " m a x C o m D d i m " ,
30 " ComE " ,
31 " m i n C o m E " ,
32 " m a x C o m E " ,
33 " Co m EP " ,
34 " m i n C o m E P " ,
35 " m a x C o m E P " ,
36 " C o m E P d i m " ,
37 " m i n C o m E P d i m " ,
38 " m a x C o m E P d i m " ,
39 " C o m D P d i m " ,
40 " m i n C o m D P d i m " ,
41 " m a x C o m D P d i m " ,
42 " ComX " ,
43 " m i n C o m X " ,
44 " m a x C o m X " ,
45 " DprA " ,
46 " m i n D p r A " ,
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47 " m a x D p r A " ,
48 " D p r A d i m " ,
49 " m i n D p r A d i m " ,
50 " m a x D p r A d i m " ,
51 " DEP " ,
52 " m i n D E P " ,
53 " m a x D E P "
54 } ;
55
56 const i n t ComAB = 0;
57 const i n t ComC = 1;
58 const i n t CSP = 2 ;
59 const i n t ComD = 3;
60 const i n t ComDdim = 4 ;
61 const i n t ComE = 5;
62 const i n t ComEP = 6;
63 const i n t ComEPdim = 7 ;
64 const i n t ComDPdim = 8 ;
65 const i n t ComX = 9;
66 const i n t DprA = 10;
67 const i n t DprAdim = 11;
68 const i n t DEP = 12;
69
70 const i n t deltaAB = 0 ;
71 const i n t deltaC = 1 ;
72 const i n t deltaCSP = 2 ;
73 const i n t deltaD = 3 ;
74 const i n t deltaDdim = 4 ;
75 const i n t deltaE = 5 ;
76 const i n t deltaEP = 6 ;
77 const i n t deltaEPdim = 7 ;
78 const i n t deltaDPdim = 8 ;
79 const i n t deltaX = 9 ;
80 const i n t Ke = 10 ;
81 const i n t e = 11 ;
82 const i n t dD = 12;
83 const i n t dMinD = 13;
84 const i n t k0 = 14 ;
85 const i n t kMin = 15 ;
86 const i n t lambda = 16 ;
87 const i n t dEP = 17;
88 const i n t dMinEP = 18;
89 const i n t k = 19 ;
90 const i n t Keh = 20 ;
91 const i n t KECP = 21;
92 const i n t SigAB = 22;
93 const i n t deltaRAB = 23;
94 const i n t SigD = 24;
95 const i n t deltaRD = 25;
96 const i n t SigC = 26 ;
97 const i n t deltaRC = 27;
98 const i n t SigX = 28 ;
99 const i n t deltaRX = 29;

100 const i n t SigE = 30 ;
101 const i n t deltaRE = 31;
102 const i n t beta0AB = 32;
103 const i n t beta0D = 33 ;
104 const i n t beta0C = 34 ;
105 const i n t beta0X = 35 ;
106 const i n t beta0E = 36 ;
107 const i n t betaAB = 37;
108 const i n t betaD = 38 ;
109 const i n t betaC = 39 ;
110 const i n t betaX = 40;
111 const i n t betaE = 41 ;
112 const i n t deltaDprA = 42;
113 const i n t dDprA = 43 ;
114 const i n t dMinDprA = 44;
115 const i n t deltaDprAdim = 45;
116 const i n t r = 46 ;
117 const i n t rMin = 47 ;
118 const i n t deltaDEP = 48;
119 const i n t KX = 49;
120 const i n t Kepx = 50 ;
121 const i n t Kel = 51 ;
122 const i n t SigDprA = 52 ;
123 const i n t deltaRDprA = 53 ;
124 const i n t betaDprA = 54 ;
125
126 c l a s s React ions
127 {
128 pub l i c :
129 React ions ( std : : s t r i n g ra t eF i l e , std : : s t r i n g outName , double s tepS ize , i n t

timeSteps , i n t runs )
130 {
131 prepareMeasureArr ( s tepS ize , t imeSteps ) ;
132 loadReact ionRates ( r a t eF i l e ) ;
133 f i leName = ra t eF i l e ;
134 cy c l e s = runs ;
135 stepsTaken = 1 ;
136 outputF i l eSt r = outName ;
137 }
138 ˜React ions ( )
139 {
140 in t idx ;
141 de l e t e [ ] reactArr ;
142 de l e t e [ ] curStat ;
143 de l e t e [ ] rateValues ;
144 f o r ( idx = 0 ; idx < numSteps ; ++idx )

38



145 {
146 de l e t e [ ] r e su l tMat r ix [ idx ] ;
147 de l e t e [ ] resultMinMaxMatrix [ idx ∗ 2 ] ;
148 de l e t e [ ] resultMinMaxMatrix [ ( idx ∗2) +1] ;
149 }
150 de l e t e [ ] r e su l tMatr ix ;
151 de l e t e [ ] resultMinMaxMatrix ;
152 }
153
154 void calcHazard ( ) ;
155 double getSum () ;
156 void chooseReact ion ( double currentTime ) ;
157 void pr in tS ta tus ( ) ;
158 void measureState ( double measureTime ) ;
159 void wr i t eResu l t ( ) ;
160 void calcAverage ( ) ;
161 void resetCurStat ( ) ;
162
163 pr i va t e :
164
165 void loadReact ionRates ( std : : s t r i n g r a t eF i l e ) ;
166 void prepareMeasureArr ( double s tepS ize , i n t t imeSteps ) ;
167
168 in t numProteins ;
169 in t ∗ curStat ;
170 double∗ rateValues ;
171 double∗ reactArr ;
172 double∗∗ r e su l tMatr ix ;
173 double∗∗ resultMinMaxMatrix ;
174 in t numSteps ;
175 in t stepsTaken ;
176 in t c y c l e s ;
177 double rateSum ;
178 bool flagComX ;
179 std : : s t r i n g f i leName ;
180 std : : s t r i n g outputF i l eSt r ;
181
182 } ;
183 #end i f

39


	Introduction
	Background
	Model of competence in S. pneumoniae
	Biological model S. pneumoniaecompetence
	Mathematical Biological model

	Models and Simulations
	Deterministic methods
	Event driven methods
	Event driven vs Stochastic
	Ordinary differential equation vs Gillespie algorithm

	Implementation of the models
	Deterministic model
	Event driven
	General Gillespie algorithm
	Converting ODE equations to stochastic equations
	Implementation Gillespie algorithm
	C++ implementation


	Results
	Competence activation comparison
	Competence activation comparison with CSP induction
	Individual proteins comparison

	Discussion
	Future work
	Conclusion
	Appendix A: Stochastic Equations
	Degradation and Synthesis
	Export
	Added equations for Dpra

	Appendix B: ODE equations
	Degradation and Synthesis

	Appendix C: Variable values
	Appendix D: Source Code

