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A B S T R AC T

This thesis describes several simple models of ocean flows, such as the Stommel model and
the Munk model. Some physical and mathematical background is given on the concepts and
equations of fluid dynamics, of which the Navier-Stokes equations are of biggest importance.
These equations will be adapted to describe flows in a rotating spherical coordinate system that
is applicable to large-scale flows on planet Earth and other planets.

In order to make the models of interest analytically solvable, some simplifications are in-
troduced. The curved planet’s surface is, for instance, approximated by a tangent plane. The
equations of Henry Stommel’s Gulf Stream model are introduced and solved analytically. A
more general approach to model ocean streams derived by Joseph Pedlosky is also introduced,
from which both the Stommel model and the Munk model, another important model by Walter
Munk, can be obtained. Finally, Pedlosky’s method is used to introduce time-dependent tidal
forces into the time-independent Stommel model. Several graphs and MATLAB scripts are
included to visualize the models.
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1

I N T RO D U C T I O N

In the field of Fluid Dynamics, models of any kind of fluid flow are studied and developed. It
thus has physical applications, but also has very mathematical aspects: some simple models can
be solved analytically by applying, for instance, Fourier methods and separation of variables to
solve differential equations, whereas other models only allow for numerical solutions, by their
complexity.

The goal of this thesis is to study the effect of Coriolis force on particle motion in a fluid
flow, that comes into play when large-scale flows in a rotating system are considered, such as
the Gulf Stream.

In Chapter 2 the relevant physical quantities of Fluid Dynamics are introduced and shortly
explained. Several models for describing a flow will be introduced in Chapter 3 and it will
be shown that they are equivalent. The Navier-Stokes equations, a system of differential equa-
tions describing the dynamics of fluid flows, will be derived and useful concepts such as the
substantial derivative and stream functions are introduced.

In Chapter 4, a coordinate transformation will be applied to the Navier-Stokes equations to
find their counterparts in a rotating spherical coordinate system. Due to this transformation,
some extra terms appear in the equations, that represent a pseudo force called the Coriolis
effect, which is experienced due to the rotation. The use of this rotating system is necessary
for large-scale systems on Earth. When working with a spherical coordinate system, one has to
cope with many nonlinearities and curved surfaces that are relatively complicated to calculate
with. Therefore, it is sometimes easier to approximate areas of the planet surface by a tangent
plane, a method called the β -plane approximation, which is presented in the last section of this
chapter.

In the next chapter, Chapter 5, some approximations are given to describe fluid flows in
shallow water, which give rise to the shallow water equations.

In Chapter 6, some first simple flow models are studied.
The model of Henry Stommel was derived to explain the cumulation of streamlines that

appears along the western boundary of large-scale ocean flows such as the Gulf Stream. Stom-
mel’s model, that is presented in Chapter 7, describes a simplified linear model of a flow in a
rectangular basin, but definitely shows this cumulation.

Chapter 8 states the ocean model of Walter Munk, that is in many respects very similar to the
Stommel model, and gives a more general method of derivation introduced by Joseph Pedlosky,
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that uses a series expansion and can also be used to find and solve more accurate higher order
models.

The general model of Pedlosky is used in the last chapter, Chapter 9, to extend the (time-
independent) Stommel model to a time-dependent model that deals with the tidal force exerted
by a satellite such as the moon.

In the Appendices, several MATLAB scripts are included that reproduce graphs and simula-
tions presented in this work.
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2

C O N C E P T S O F F L U I D DY NA M I C S

The goal of this thesis is to describe some effect in a physical system: the impact of Coriolis
force on the behaviour of fluid motion. Any physical system is described by its physical quanti-
ties. This chapter is dedicated to defining the physical quantities of our system, the main four of
which are pressure, density, temperature and flow velocity. Since these will be common terms
to most physicists, they will only be discussed shortly.

Besides these quantities, some other basal concepts will be introduced in the following sec-
tions. The notions being introduced and discussed in this chapter are mainly taken from [2, ch.
1], which could be read by anyone seeking for more background information.

2.1 P H Y S I C A L Q UA N T I T I E S

2.1.1 Pressure

The physical quantity pressure represents the amount of normal force per unit area on some
surface. This surface can either be a real surface (the surface of an object), or some (artificial)
free surface, defined somewhere in space. Pressure (denoted p) can be defined mathematically
at any point of a surface as

p :=
dF
dA

, (2.1)

where dA denotes a local infinitesimal element of the surface and dF is the normal force acting
on the surface element dA. Since force equals the time derivative of momentum, pressure can
physically be seen as the change of momentum per cross-sectional area per unit time. In SI
units, this scalar quantity is expressed in newtons per square meter (Nm−2) or pascals (Pa).

2.1.2 Density

In physics, density is a quantity that describes the amount of mass per unit volume. We can
define this quantity locally by giving this mass-volume ratio in an infinitesimal volume element.
The density, indicated by ρ , of any substance in three dimensional space can thus be defined at
any fixed point as

ρ :=
dm
dV

, (2.2)
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where dm is the (infinitesimal) amount of mass contained in the infinitesimal volume dV . Den-
sity is also a scalar quantity, expressed in kilograms per qubic meter (kgm−3).

2.1.3 Temperature

The random motion of molecules strongly correlates with their temperature. At high tempera-
tures, the velocity of random motion is much higher than at lower temperatures. Temperature
T , a scalar quantity expressed in Kelvins (K), is calculated from the (local) mean kinetic energy
Ek and the Boltzmann constant k, by

Ek =
3
2

kT , (2.3)

an equation known from thermodynamics. In more sophisticated models, temperature differ-
ences between regions in the flow may play an important role. However, the models presented
later on in this work in general ignore any temperature dependency.

2.1.4 Flow velocity

The last fundamental quantity we will introduce is the flow velocity. The flow velocity phys-
ically represents the velocity of a small volume in the flow and is defined mathematically as
the average velocity of particles in an infinitesimal fluid element of a flowing liquid or gas at
any fixed point in space. Whereas pressure, density and temperature are all scalar quantities,
since any velocity can have both magnitude and direction, the flow velocity is a vector and it is
denoted1 as V .

In a steady flow, the particle orbits are continuous and velocities do not depend on time
explicitly.

2.2 F O R C E S A N D T O R Q U E S

In computational fluid dynamics, forces acting on a body are divided into two distinct groups:
forces that act from a distance, such as gravitational and electrical forces, and forces that act
directly on the surface of an object, for instance the force due to pressure. Without saying any-
thing specific about their origin, we can group these first forces, which are called body forces,
into a single quantity f , which is the amount of body force per unit mass. We will come back
to the body force later on.

Forces acting on the surface of the body are called surface forces. We can distinguish be-
tween pressure distribution, which is related to normal forces, and shear stress distribution,
related to forces tangential to the body surface. The shear stress τ has the same dimensions as

1 Throughout this thesis, scalar quantities are printed in normal weight, whereas vector quantities are printed in
boldface. Sets are also labelled in normal weight.
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pressure p. Pressure p and stress τ give rise to a force due to surface forces R and a torque M
on the body.

2.3 A P P ROX I M AT I O N S / T Y P E S O F F L O W S

In order to make flow models more easy to solve, it may be helpful to assert certain approxi-
mations. Unless stated otherwise, the following approximations are assumed in all models that
will be discussed.

Continuity Although any real flow actually consists of a finite number of separate particles, in
general fluids are so dense and the length scales of the models are so large that the
fluid can be considered to be a continuum.

Inviscidity Viscosity is a physical quantity that represents the shear stress between particles in a
fluid. When the Reynolds number is high, as it is for ocean-like streams2, the fluid
can accurately be modelled as an inviscid flow, such that shear stress between fluid
particles can be ignored.

Incompressibility When a liquid is incompressible, its Mach number is low3 (M� 1) and the density
is constant throughout the fluid (it is homogeneous). Though in reality different
layers of the ocean will have different densities, models become much more simple
when this property is ignored. The low Mach number implies a subsonic flow which
has smooth streamlines and disturbances that are felt throughout the entire flow
field, in contrast to supersonic flow.

In reality, there exist no flows that are fully continuous, inviscid or incompressible, but the
ocean flows under discussion approximate these properties closely. Models can be created and
exist that do not assume these properties, but in general they require a much more advanced set
of equipment to be solved. Imagine for instance modelling a fluid by considering all individual
fluid particles separately, instead of viewing the fluid as a continuum. For small samples of a
low-density gas it would be doable, but the number of particles in 1 ml water is already of the
order of 1022, too much probably even for the best computers.

The quantities introduced in this chapter, the most important of which are pressure p, flow
density ρ and flow velocity V , and the approximations of continuity, inviscidity and incompress-
ibility will be used in the next chapter in the derivation of the equations of fluid dynamics.

2 The Reynolds number is defined as the ratio of inertial or external forces to viscous forces and is proportional to
the dimensions of the stream, which are of course large in the oceans.

3 The Mach number is defined as the ratio of the flow speed to the speed of sound in the medium.
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3

E Q UAT I O N S O F F L U I D DY NA M I C S

In this chapter, first you will read about several ways a fluid can be modelled, and then the fun-
damental equations of fluid dynamics are introduced and discussed. These equations are based
on the physical principles of mass conservation, energy conservation and Newton’s second law.

The introduction of models, concepts and equations in this chapter mainly follows the line
of Anderson in [1], and for a more firm explanation and full derivations of the concepts and
formulas the reader is referred to this book.

3.1 M O D E L S

In fluid dynamics there exist four commonly used ways to model a continuum fluid. This
section shortly describes all those four models.

3.1.1 Fixed finite control volume (FFCV)

The first model to describe a continuum flow, is a method that uses a finite control volume fixed
in space and studies the fluid moving through it. The finite control volume is in this case a fixed
volume V in space, and its surface S is called the control surface.

The physical principles of fluid dynamics are applied to the part of the fluid inside the vol-
ume and the flow through the boundary of the volume, to find the equations that describe the
dynamics of the fluid. From now on, we will refer to this model as FFCV.

3.1.2 Moving finite control volume (MFCV)

The second model uses, as the above one, a finite control volume V . However, this time the
volume is not fixed in space, but it shape and position evolve in such a way that the particles
inside the volume remain the same particles as time elapses. The control surface S is again the
surface of the control volume and the equations of fluid dynamics are again found by applying
the appropriate physical principles. This model will be referred to as MFCV.
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(a) The fixed finite control volume.
(b) The moving finite control volume.

(c) The fixed infinitesimal fluid element.
(d) The moving infinitesimal fluid element.

Figure 1.: The four fluid models. Pictures taken from [1]

3.1.3 Fixed infinitesimal fluid element (FIFE)

The third model we describe is very similar to the first one. The main difference is that instead
of a finite control volume, an infinitesimal fluid element dV is used. Physically, this does only
make sense if the fluid is considered to be a continuum. This fluid element is fixed in space and
physical principles are applied to it to find the dynamics of the flow. We denote this model as
FIFE.

3.1.4 Moving infinitesimal fluid element (MIFE)

The last model that is of importance regards a infinitesimal element dV that is moving with the
flow velocity along a streamline. Again the dynamics of the flow can be found by application
of the physical principles to this element. The name of this model is abbreviated to MIFE.
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3.2 T H E S U B S TA N T I A L D E R I VAT I V E

When we consider a moving infinitesimal fluid element as in the MIFE model, and denote the
velocity vector of this element by V , we can define the substantial derivative, labelled D

Dt , as

D
Dt

:=
∂

∂ t︸︷︷︸
local derivative

+ (V ·∇)︸ ︷︷ ︸
convective derivative

. (3.1)

Physically, the substantial derivative of a quantity can be seen as the time rate of change of that
quantity following the moving element (see [1, pp. 47-49] for a derivation). The first term ( ∂

∂ t )
denotes the local derivative, because of local fluctuations with respect to time. The second term
(V ·∇), is called the convective derivative and denotes the rate of change due to the movement
of the fluid element.

Mathematically, we can write for any scalar function F :

DF
Dt

=
∂F
∂ t

+V ·∇F

=
∂F
∂ t

+
dx
dt

∂F
∂x

+
dy
dt

∂F
∂y

+
dz
dt

∂F
∂ z

=
dF
dt

.

Thus, mathematically speaking, the substantial derivative is just the total derivative with respect
to time. It is of importance since it appears frequently in equations we will introduce or derive.

The substantial derivative can be applied to vector functions by applying it to all vector
elements, giving the time derivative of the vector.

3.3 D I V E R G E N C E O F T H E V E L O C I T Y

Another term that appears frequently throughout in computational fluid dynamics, and also in
the rest of this thesis, is the divergence of the velocity, ∇ ·V . This divergence can mathemati-
cally be written on using an infinitesimally small fluid element δV as

∇ ·V =
1

δV

D(δV )

Dt
. (3.2)

Physically, this divergence represents the time rate of change of the volume of a moving fluid
element per unit volume.

3.4 T H E N AV I E R - S T O K E S E Q UAT I O N S

As mentioned earlier, the equations that describe the dynamics of a fluid are based on three
key physical principles: mass conservation, energy conservation and Newton’s second law.
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These three principles lead to a system of equations which are together called the Navier-Stokes
equations1.

In principle, any of the four models described above could be used to derive the Navier-
Stokes equations. They give rise to different forms of the same equations. We state the equa-
tions here accompanied by some small derivations and refer to [1] for a full derivation.

3.4.1 The continuity equation

The principle of mass conservation is applied to any of the fluid models in Section 3.1 to find
different forms of the continuity equation. We will briefly discuss and state the versions that
follow from the various models and sketch how they are related.

3.4.1.1 In the FFCV model

Mass conservation implies that mass does not simply disappear. Thus when the amount of mass
inside a fixed control volume V increases, it physically means there must occur a mass flow
equal through the surface S of the control volume V . The mass flow through any fixed surface is
equal to the product of the density times the component of velocity perpendicular to the surface
times the area of the surface. Over an infinitesimal surface element dS (pointing in direction
outward of the control volume), this can be written as ρV · dS. Integration over the whole
surface gives the total mass flow through S. In this orientation (with dS pointing outward), this
must equal the decrease of mass inside V , in integral form (the continuity equation):

∂

∂ t

[
y

V

ρ dV

]
︸ ︷︷ ︸

mass increase inside volume

+
{

S

ρV ·dS︸ ︷︷ ︸
net mass flow out of control volume

= 0. (3.3)

3.4.1.2 In the MFCV model

Due to mass conservation, in the MFCV model, the mass in the control volume is constant,
since it is defined as the volume containing a certain set of particles. The mass inside the
control volume V equals

t

V

ρ dV , and so its substantial derivative is zero, which gives the

continuity equation:
D
Dt

y

V

ρ dV = 0. (3.4)

There is no mass flow through the control surface S.

3.4.1.3 In the FIFE model

In an infinitesimal fluid element dV = dx dy dz, the net outflow through the opposite surface
sides of the fluid element in x-direction is ∂ (ρVx)

∂x dx dy dz, where Vx denotes the x-component

1 Historically, only the momentum equations were derived by Navier and Stokes. However, in computational fluid
dynamics, the entire system of equations is often referred to as the Navier-Stokes equations nowadays.
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of V . Similar net flows are found in the y- and z-directions, giving a total outgoing net mass
flow

(
∂ (ρVx)

∂x +
∂ (ρVy)

∂y + ∂ (ρVz)
∂ z

)
dx dy dz, which can be written as ∇ · (ρV).

The net outgoing mass flow must equal the time rate of decrease of mass inside the element,
∂ρ

∂ t dx dy dz, and thus (after division by dx dy dz) in this model we find the equation

∂ρ

∂ t
+∇ · (ρV) = 0. (3.5)

3.4.1.4 In the MIFE model

In the MIFE model, we follow a fluid element δV having a fixed mass. If we denote this mass
by δm, then δm = ρ δV , and since D(δm)

Dt = 0,

0 =
D(ρ δV )

Dt
= ρ

D(δV )

Dt
+ δV

Dρ

Dt
,

or, remembering Equation 3.2:
Dρ

Dt
+ρ∇ ·V = 0. (3.6)

3.4.1.5 Relation between the equations

Both finite control models give rise to equations that contain an integral, those are called in-
tegral forms. The infinitesimal fluid element models on the other hand, give rise to equations
that are partially differential equations and are called the partial differential equation forms.
Equations 3.3 and 3.5 are both in a form that emphasizes the principle of mass conservation
and are therefore said to be in conservation form. The form of Equations 3.4 and 3.6 is called
the nonconservation form.

It is easily seen that for instance Equations 3.3 and 3.5 are equivalent: the second integral
in 3.3 can be rewritten to a volume integral using the divergence theorem. Taking the partial
derivative inside the integral we find

y

V

∂ρ

∂ t
+∇ · (ρV) dV = 0.

Since this must hold for any arbitrary fixed volume V , it must be that the integrand equals zero,
which gives us Equation 3.5.

The equality of Equations 3.5 and 3.6 can be seen very easily by substituting ∇ · (ρV) =
ρ∇ ·V +V · (∇ρ) into 3.5 and applying the definition of the substantial derivative to 3.6.

For the proof of the other identities we refer to [1].

3.5 T H E M O M E N T U M E Q UAT I O N

Application of Newton’s second law to one of the various flow models, gives a system of
equations called the momentum equation(s). In a viscid flow, the momentum equations become
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quite complex, but when the flow is assumed to be inviscid, which for ocean modelling is a
valid approximation, then the equations become a lot shorter. We will state the two differential
forms. In Cartesian coordinates, write V = (vx,vy,vz)t and the equations are given by

ρ
Dvx

Dt
= −∂ p

∂x
+ρ fx, (3.7a)

ρ
Dvy

Dt
= −∂ p

∂y
+ρ fy, (3.7b)

ρ
Dvz

Dt
= −∂ p

∂ z
+ρ fz, (3.7c)

in nonconservation form, and equivalently in conservation form by

∂ (ρvx)

∂ t
+∇ · (ρvxV) = −∂ p

∂x
+ρ fx, (3.8a)

∂ (ρvy)

∂ t
+∇ · (ρvyV) = −∂ p

∂y
+ρ fy, (3.8b)

∂ (ρvz)

∂ t
+∇ · (ρvzV) = −∂ p

∂ z
+ρ fz. (3.8c)

In those equations, p denotes the pressure and f = ( fx, fy, fz)t is the body force (force acting
on volumetric mass) per unit mass per volume. In viscous fluids, some extra terms appear due
to normal and shear stress, which disappear in inviscid flows.

3.6 R E L E VA N T E Q UAT I O N S

In Computational Fluid Dynamics, mainly the two partial differential equation-forms are used.
For good measure, we restate these forms here.

Equation 3.6,
Dρ

Dt
+ρ∇ ·V = 0, (3.6)

from the MIFE-model is called a nonconservation form. Equation 3.5, from the FIFE-model,

∂ρ

∂ t
+∇ · (ρV) = 0, (3.5)

is said to be in conservation form. When we assume the density ρ to be constant (as in an
incompressible flow), those equations both are equivalent to

∇ ·V = 0. (3.9)

From the momentum equations we will mostly use Equation 3.7, here given in vector nota-
tion:

ρ
DV
Dt

= −∇p+ρ f . (3.10)

Another equation that may be of importance in Fluid Dynamics is the energy equation, based
on the principle of energy conservation. However, for inviscid, incompressible, irrotational
flows this equation follows from the momentum equation and it is superfluous. Therefore we
left it out here.
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3.7 S T R E A M F U N C T I O N S

It would be good to mention here that when the vertical component of the flow velocity is
assumed to be zero (which is a good approximation in a domain like ocean, we will come back
to that later), so V = (vx,vy,0)t , Equation 3.9 above implies ∂vx

∂x = −∂vy
∂y , so if vx is written as

the derivative with respect to y of some scalar function ψ(x,y, t), we find

vx =
∂ψ

∂y
, vy = −

∂ψ

∂x
. (3.11)

Such a function ψ is called a stream function.
An important property of stream functions is that, when vx and vy are time independent at

any point, and thus so is ψ , then since

dψ

dt
= ∇ψ ·V =

∂ψ

∂x
dx
dt

+
∂ψ

∂y
dy
dt

=
∂ψ

∂x
∂ψ

∂y
− ∂ψ

∂y
∂ψ

∂x
= 0,

a stream function is constant along all particle trajectories and we know that the gradient of ψ

is perpendicular to its level curves.

3.8 P H Y S I C A L B O U N DA RY C O N D I T I O N S

Without imposing boundary conditions to the solution of a differential equation, it will in most
cases not be unique. Though the conditions may be chosen differently for any model, common
used conditions are that at the boundary walls of the domain either the total velocity, or the
velocity component perpendicular to the wall, vanishes. These conditions imply that there
is no slip along the boundary walls and that the boundary walls are non-porous, respectively.
When B is the domain of basin under consideration, we can write these boundary conditions

ψ|∂B = 0, (∇ψ ·n)|∂B = 0, (3.12)

which are the Dirichlet and Neumann conditions.

In the following chapter we will convert the equations from this chapter to a rotating spherical
coordinate system and then give a more simple approximation to them that is applicable to a
tangent plane.
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4

G E O P H Y S I C A L F L U I D DY NA M I C S

In this chapter, the Navier-Stokes equations introduced earlier will be rewritten into spherical
coordinates on a rotating spherical planet, such as the Earth. Due to the rotation, objects will
experience a fictitious force or pseudo force. This effect is called the Coriolis effect, after the
French scientist Gaspard-Gustave Coriolis, and is of main importance for the goal of this thesis.
When the link between the fixed and rotating frames is studied, the Coriolis term will pop up
automatically.

4.1 C O R I O L I S F O R C E

Consider two coordinate systems, both having an orthonormal sets of basis vectors with com-
mon origin, {x̂, ŷ, ẑ} and {x̂′, ŷ′, ẑ′} that rotate with respect to each other over time. We call
the first coordinate system the rotating system, in which our planet would is fixed at the origin,
and the second system is called the fixed system, in which the planet is rotating. We can set
both z-axes to lie on the axis of rotation, such that

ẑ ≡ ẑ′. (4.1)

The other two axes of the rotating system can than be defined as

x̂ = cosΩt x̂′+ sinΩtŷ′ (4.2)

and
ŷ = −sinΩt x̂′+ cosΩtŷ′, (4.3)

where Ω is the angular rotation frequency. For positive values of Ω, the direction of rotation
agrees with Earth’s rotational direction. Note that dx̂

dt = Ωŷ and dŷ
dt = −Ωx̂, whereas dẑ

dt = 0
Let G = G1x̂ +G2ŷ +G3ẑ be an arbitrary time-dependent vector function in the rotating

basis. Then in the fixed basis, using time derivatives of the rotating frame vectors, the time
derivative of G is[

dG
dt

]
fxd

=
dG1

dt
x̂+

dG2

dt
ŷ+

dG3

dt
ẑ+G1

[
d x̂
dt

]
fxd

+G2

[
dŷ
dt

]
fxd

+G3

[
dẑ
dt

]
fxd

=

[
dG
dt

]
rot
+Ω · (G1ŷ−G2x̂)

=

[
dG
dt

]
rot
+Ω · (ẑ×G) ,
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where
[dG

dt

]
rot is the time derivative of G with respect to the rotating frame, that is: the vectors

x̂, ŷ and ẑ are treated as constant vectors.
Let Ω = Ωẑ, then [

dG
dt

]
fxd

=

[
dG
dt

]
rot
+Ω×G. (4.4)

In fact, the axis of rotation could be given by any fixed unit vector v̂; then for angular fre-
quency Ω we could define Ω = Ωv̂ and using this definition, Equation 4.4 would still hold.

For the second derivative we would find[
d2G
dt2

]
fxd

=

[
d2G
dt2

]
rot
+Ω×

[
dG
dt

]
rot
+Ω×

[
dG
dt

]
fxd

=

[
d2G
dt2

]
rot
+ 2Ω×

[
dG
dt

]
rot
+Ω× (Ω×G).

When we consider r to be the trajectory of a fluid particle on a planet at the origin of the
rotating system, and apply the above differentiation, we find

[
d2r
dt2

]
fxd

=

[
d2r
dt2

]
rot
+ 2Ω×

[
dr
dt

]
rot
+Ω× (Ω× r). (4.5)

The first term on the right-hand side,
[

d2r
dt2

]
rot

, gives the acceleration with respect to the

rotating frame. The second term, 2Ω×
[dr

dt

]
rot, is called the Coriolis force. For matters of

convenience we will write vr =
[dr

dt

]
rot from now on. The third term Ω× (Ω× r) describes a

centripetal acceleration, that on Earth induces a very small net force towards the equator. How-
ever, at Earth’s surface, due to the low rotation speed, this term is so small that it is negligible:

Ω ≈ 7.2 ·10−5 rad/s, |r| ≈ 6.4 ·106 m =⇒ |Ω× (Ω× r)| ≤Ω2|r|= 3.3 ·10−2 m/s2,

which is a lot smaller than, for instance, gravity acceleration (9.8 m/s2). Therefore, this term
will be neglected and we will write

[
d2r
dt2

]
fxd

=

[
dvr

dt

]
rot
+ 2Ω×vr (4.6)

onwards.

In small scale applications (such as water flow inside a pipeline or a river), the term 2Ω×vr
is also not relevant. In large scale applications like oceans however, it will not be negligible
and it will be the goal of this thesis to describe its effect on the fluid dynamics at ocean level.
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Recall that in the rotating frame we could define spherical coordinates as follows1:

r̂ = cosθ cosφ x̂+ sinθ cosφ ŷ+ sinφ ẑ, (4.7a)

φ̂ = −cosθ sinφ x̂− sinθ sinφ ŷ+ cosφ ẑ, (4.7b)

θ̂ = −sinθ x̂+ cosθ ŷ, (4.7c)

which can be inverted to

x̂ = cosθ cosφ r̂− cosθ sinφ φ̂− sinθ θ̂, (4.8a)

ŷ = sinθ cosφ r̂− sinθ sinφ φ̂+ cosθ θ̂, (4.8b)

ẑ == sinφ r̂+ cosφ φ̂, (4.8c)

such that
Ω = Ω

[
sinφ r̂+ cosφ φ̂

]
. (4.9)

The vector vr :=
[dr

dt

]
rot may be written as

vr = vr r̂+ vφ φ̂+ vθ θ̂, (4.10)

where vr = vr · r̂ = r′, vφ = rφ ′ and vθ = rθ ′ cosφ , where the prime denotes a time derivative.
We find2

2Ω×vr = Ω
[
sinφ r̂+ cosφ φ̂

]
×
[
vr r̂+ vφ φ̂+ vθ θ̂

]
= 2Ω

[
(vr cosφ − vφ sinφ ) θ̂+ vθ sinφ φ̂− vθ cosφ r̂

]
.

(4.11)

We can find the time derivatives of the rotating unit vectors as follows: to find e.g. dθ̂
dt , we

differentiate 4.7c with respect to t to find

dθ̂

dt
= −θ

′ cosθ x̂−θ
′ sinθ ŷ

= − vθ

r cosφ
(cosθ x̂+ sinθ ŷ) .

Using the inverse of the basis vector transformations (Equations 4.8), we find

dθ̂

dt
=

vθ

r cosφ

(
sinφ φ̂− cosφ r̂

)
. (4.12a)

In similar fashion we find (see [4])

dφ̂

dt
= −vθ tanφ

r
θ̂−

vφ

r
r̂ (4.12b)

1 By convention, when a planet is considered in spherical coordinates, the angle φ denotes the latitude: at the
equator, φ = 0°, at the North Pole, φ = 90° and at the South Pole, φ = −90°. The longitude is here denoted by θ

and increases in eastward direction, where θ = 0° denotes some arbitrary prime meridian, here chosen such that it
is contained in the (y≥ 0,z)-half-plane. The distance to the center of the planet is denoted by r. The unit vectors
θ̂, φ̂ and r̂ denote the direction of an infinitesimal increase of θ , φ and r respectively.

2 The orthogonality relations in a spherical coordinate system (see [4, p. 268]): θ̂× φ̂ = r̂, φ̂× r̂ = θ̂ and r̂× θ̂= φ̂.
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and
dr̂
dt

=
vθ

r
θ̂+

vφ

r
φ̂. (4.12c)

Using these equalities we may calculate[
dvr

dt

]
rot

=

(
dvθ

dt
−

vθ vφ

r
tanφ +

vθ vr

r

)
θ̂+

(
dvφ

dt
+

v2
θ

r
tanφ +

vφ vr

r

)
φ̂

+

(
dvr

dt
−

v2
θ
+ v2

φ

r

)
r̂. (4.13)

Combining these last two gives[
d2r
dt2

]
fxd

=

(
dvθ

dt
−

vθ vφ

r
tanφ +

vθ vr

r
+ 2Ω (vr cosφ − vφ sinφ )

)
θ̂

+

(
dvφ

dt
+

v2
θ

r
tanφ +

vφ vr

r
+ 2Ωvθ sinφ

)
φ̂

+

(
dvr

dt
−

v2
θ
+ v2

φ

r
−2Ωvθ cosφ

)
r̂. (4.14)

The above equation is one of the main ingredients for the derivation of the geophysical fluid
equations.

For a function f expressed in spherical coordinates, the gradient is given by (see [3, p. 221,
Eqn. 8])

∇ f =
1

r cosφ

∂ f
∂θ

θ̂+
1
r

∂ f
∂φ

φ̂+
∂ f
∂ r

r̂. (4.15)

The conversion of a function from Cartesian to spherical coordinates is basic calculus.

The divergence of a vector function G = (Gθ ,Gφ ,Gr)t is written in spherical coordinates as
(see [3, p. 221, Eqn. 9]3)

∇ ·G =
1

r cosφ

(
∂Gθ

∂θ
+

∂ (cosφGφ )

∂φ

)
+

∂Gr

∂ r
+

2Gr

r
. (4.16)

4.2 T H E N AV I E R - S T O K E S E Q UAT I O N S I N S P H E R I C A L C O O R D I N AT E S

We observe that the substantial derivative of a vector equals as in Equation 3.10, can be written
as

DV
Dt

=

[
d2r
dt2

]
fxd

, (4.17)

3 Note that in [3] φ is defined to be zero at the North Pole, while in our discussion and in general in geophysics,
φ = 0 at the equator.
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such that, taking the inner product of Equation 3.10 with θ̂, φ̂ and r̂, respectively, filling in the
above and division by ρ , we find

dvθ

dt
−

vθ vφ

r
tanφ +

vθ vr

r
+ 2Ω (vr cosφ − vφ sinφ ) = −

1
ρr cosφ

∂ p
∂θ

+ fθ , (4.18a)

dvφ

dt
+

v2
θ

r
tanφ +

vφ vr

r
+ 2Ωvθ sinφ = − 1

ρr
∂ p
∂φ

+ fφ , (4.18b)

dvr

dt
−

v2
θ
+ v2

φ

r
−2Ωvθ cosφ = − 1

ρ

∂ p
∂ r

+ fr−g. (4.18c)

From the continuity equation (Equation 3.9), we know, using Equation 4.16,

1
r cosφ

(
∂vθ

∂θ
+

∂ (cosφvφ )

∂φ

)
+

∂vr

∂ r
+

2vr

r
= 0. (4.19)

4.3 β - P L A N E A P P ROX I M AT I O N

When a flow is studied inside a small domain on the planet surface, it can be approximated
by an tangent plane. If we fix a point r0 = (θ0 , φ0 , r0 )t in the rotating sperical coordinate
system, we can define new4 unit vectors x̂, ŷ, ẑ around r0 that locally agree with

x̂ = θ̂, ŷ = φ̂, ẑ = r̂, (4.20)

such that by first order approximation we have a coordinate transformation for the coordinates
x,y,z:

x = r0 cosφ0 · (θ −θ0), y = r0(φ −φ0), z = r− r0. (4.21)

We may calculate then

∂

∂θ
= r0 cosφ0

∂

∂x
,

∂

∂φ
= r0

∂

∂y
,

∂

∂ r
=

∂

∂ z
. (4.22)

This can be filled in into the equations of geophysical fluid dynamics in the previous section.
The terms in the resulting equation that contain a factor 1

r are generally assumed to be negligible
in addition to some other approximations, described in [11], resulting in the system of equations

Dvx

Dt
− f vy = −

1
ρ

∂ p
∂x

+Fx, (4.23a)

Dvy

Dt
+ f vx = −

1
ρ

∂ p
∂y

+Fy, (4.23b)

Dvz

Dt
= − 1

ρ

∂ p
∂ z

+Fz−g, (4.23c)

4 These vectors have nothing to do with the unit vectors introduced earlier under the same names (x̂, ŷ and ẑ). These
names have only been chosen by regular convention.
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where f = 2Ω
(

sinφ0 +
y
r0

cosφ0

)
approximates 2Ω sinφ around φ0. When we take φ0 = 0,

we find
f = 2Ω

y
r0

.

The continuity equation becomes just

0 =
∂vx

∂x
+

∂vy

∂y
+

∂vz

∂ z
. (4.23d)

The dimensionless quantity y
r0

is also called β , after which this approximation is called.
When φ0 = 0, and also y� r0, so close to the equator, the term f (β ) that represents the Corio-
lis force is negligible, as we would expect for horizontal movements at the equator5.

Now we have derived the Navier-Stokes equations in a rotating spherical coordinate system,
in the next chapter we will first make an approximation of fluid behaviour in shallow water in
a non-rotating sytem and then add the Coriolis force to these equations.

5 At the equator, Coriolis force points radially inward toward the Earth’s inner core.
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5

S H A L L OW WAT E R E Q UAT I O N S

The goal of this chapter is to give a derivation of the shallow water equations, which describe
the dynamics of flows in shallow water, that is, flows where the horizontal dimensions exceed
the vertical dimensions largely, as is the case in oceans. We will mainly follow the lines of [4, ch.
8] to do so.

For simplicity, we will give the derivation for a two-dimensional basin. The equations are
easily expanded to three-dimensional form.

5.1 D E R I VAT I O N O F T H E E Q UAT I O N S

Let b be a function of position x that describes the bottom height of the basin (also called the
bathymetry), and h a function of position x and time t that describes the fluid height (or column)
above the bottom surface. Assume the fluid to be homogeneous, such that ρ is constant in the
time-dependent domain

B = {(x,z)|b(x) < z < b(x)+ h(x, t);x ∈R} . (5.1)

Figure 2.: Sketch of a possible domain B, where the bathymetry (b) and water height (b+ h) have been
indicated.

We denote the flow velocity by V = (vx,vz)t and the Navier-Stokes equations give

∂vx

∂x
+

∂vz

∂x
= 0 (5.2a)
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from the continuity equation (Equation 3.9), and

∂vx

∂ t
+V ·∇vx = −

1
ρ

∂ p
∂x

+ fx, (5.2b)

∂vz

∂ t
+V ·∇vz = −

1
ρ

∂ p
∂ z
−g+ fz (5.2c)

from the momentum equations (in vector notation, Equation 3.10). We assume that both sur-
faces are Lagrangian-invariant, which means that fluid particles on the fluid remain on the fluid.
For the bottom surface, this means it is impenetrable. On the top surface, a general assumption
is that the pressure function is continuous over both sides of the surface.

For a particle trajectory on the bottom surface, we must have

z(t) = b(x(t)), (5.3)

such that
dz
dt
(t) = vz(x,b(x), t) = vx(x,b(x), t)

∂b
∂x

(x). (5.4a)

Similarly, on the top surface, we find1

vz(x,b+ h, t) =
∂h
∂ t

(x, t)+ vx(x,b+ h, t)
[

∂b
∂x

(x)+
∂h
∂x

(x, t)
]

. (5.4b)

Equations 5.4 give the boundary conditions at the bottom (Equation 5.4a) and top (Equation
5.4b) boundaries of the domain B.

A first model can be derived by integration of Equation 5.2a over z from b(x) to b+ h, the
entire water column:

ˆ b+h

b

∂vx

∂x
(x,ζ , t) dζ = −

ˆ b+h

b

∂vz

∂ z
(x,ζ , t) dζ

= −vz(x,b+ h, t)+ vz(x,b, t).
(5.5)

By direct differentiation we know that

∂

∂x

[ˆ b+h

b
vx(x,ζ , t) dζ

]
=

ˆ b+h

b

∂vx

∂x
(x,ζ , t) dζ

− vx(x,b+ h, t)
[

∂b
∂x

(x)+
∂h
∂x

(x, t)
]
+ vx(x,b, t)

∂b
∂x

(x). (5.6)

Combining this last equation with the boundary conditions (Equations 5.4), we can rewrite
Equation 5.5 to

∂

∂x

[ˆ b+h

b
vx(x,ζ , t) dζ

]
+

∂h
∂ t

(x, t) = 0. (5.7)

1 To save some space, we may write instead of b(x) and h(x, t) just b and h.
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If we define U(x, t) to be the average horizontal velocity in a fluid column,

U(x, t) =
1
h

ˆ b+h

b
vx(x,ζ , t) dζ , (5.8)

we can rewrite Equation 5.7 to
∂ (hU)

∂x
+

∂h
∂ t

= 0. (5.9)

5.2 H Y D RO S TAT I C A P P ROX I M AT I O N

An approximation can be made into the governing system of equations by replacing Equation
5.2c by

0 = − 1
ρ

∂ p
∂ z
−g. (5.10)

This means that we neglect the vertical movement of fluid particles, and also the viscous dis-
sipation, relative to the horizontal movement and the pressure gradient term. This method is
sometimes called the hydrostatic approximation.

By integration of the above equation over the interval (z,b+ h), we find

p(x,z, t) = p0 +ρg · (b+ h− z), (5.11)

where p0 is the pressure at the ocean surface, which is assumed to be constant.
Differentiating the above, we can rewrite Equation 5.2b to

∂vx

∂ t
+V ·∇vx = −g

[
∂b
∂x

(x)+
∂h
∂x

(x, t)
]
+ fx (5.12)

and using a same method of integration over the vertical water column (see [4, p. 295-296]),
we arrive, together with Equation 5.9,

∂ (hU)

∂x
+

∂h
∂ t

= 0, (5.9, 5.13a)

at the equation below:

∂ (hU)

∂ t
+

∂

∂x

[ˆ b+h

b
v2

x dζ

]
= −g

[
∂b
∂x

(x)+
∂h
∂x

(x, t)
]

h(x, t)+
ˆ b+h

b
fx dζ , (5.13b)

which form the system of shallow water equations. When vx does not depend on depth and
neither does fx, then U ≡ vx and Equations 5.13b become a lot simpler:

0 =
∂ (hvx)

∂x
+

∂h
∂ t

, (5.14a)

∂ (hvx)

∂ t
+

∂

∂x

[
hv2

x +
1
2

gh2
]
= −g

[
∂b
∂x

(x)
]

h(x, t)+ h fx, (5.14b)
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which is called the reduced system of shallow water equations.
The shallow water equations can be extended to a three dimensional system trivially. Equa-

tion 5.14a, for instance, becomes

∇ ·

h

vx
vy
0

+ ∂h
∂ t

= 0. (5.15)

Equivalently we may write
Dh
Dt

+ h
(

∂vx

∂x
+

∂vy

∂y

)
= 0 (5.16)

(note that h does not depend on z explicitly, such that the term ∂h
∂ z vz from Dh

Dt vanishes).

5.3 C O R I O L I S E F F E C T O N T H E S H A L L O W WAT E R E Q UAT I O N S

In the above derivation, we completely neglected the effect of Coriolis force on the equations.
We now add this force, by using the equations from the β -plane approximation (Equations

4.23), where for now we neglect all external forces except gravity. The equation for pressure
becomes

p(x,y,z, t) = p0 +ρg[b(x,y)+ h(x,y, t)− z],

such that the system of relevant equations becomes

Dvx

Dt
− f vy = −g

(
∂b
∂x

+
∂h
∂x

)
, (5.17a)

Dvy

Dt
+ f vx = −g

(
∂b
∂y

+
∂h
∂y

)
, (5.17b)

Dh
Dt

+ h
(

∂vx

∂x
+

∂vy

∂y

)
= 0. (5.17c)

5.4 T H E M U LT I - L AY E R M O D E L

So far, we assumed our ocean to be homogeneous. However, in fact the density of ocean water
increases with depth. The model becomes more accurate if we account for this variation. This
can be done by approximating the ocean by a multi-layer model: multiple layers that all have a
different (constant) density. Equivalently, the density can be regarded as a step function.

We assume that layers with higher density lie below layers with lower density. Let ρ1 < ρ2 <

.. . < ρn for some n ∈N the possible values of the step function, then the domain becomes

B = B1∪B2∪ . . .∪Bn, (5.18)

where the Bi are the distinct layers having density ρi and Bi+1 lies below Bi. We let hi denote
the height of the ith basin, and so B1 lies between b and b+ h1, while B2 lies between b+ h1
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and b+ h1 + h2 and so on.

If we consider the two layer case of an inviscid flow two-dimensionally, so with no velocity
component in y-direction, and let vix be the horizontal velocity in layer Bi, from Equation 5.14a
we find

0 =
∂ (h1v1x)

∂x
+

∂h1

∂ t
, (5.19a)

0 =
∂ (h2v2x)

∂x
+

∂h2

∂ t
, (5.19b)

while from Equation 5.14b, we get

∂ (h1v1x)

∂ t
+

∂

∂x

[
h1v2

1x +
1
2

gh2
1

]
= −g

[
∂b
∂x

(x)+
∂h2

∂x
(x, t)

]
h1(x, t), (5.19c)

∂ (h2v2x)

∂ t
+

∂

∂x

[
h2v2

2x +
1
2

gh2
2

]
= −g

[
∂b
∂x

(x)+
ρ1

ρ2

∂h1

∂x
(x, t)

]
h2(x, t), (5.19d)

as stated in [4].

5.5 L I N E A R I Z AT I O N O F T H E S H A L L O W WAT E R E Q UAT I O N S

The differential equations we derived so far are nonlinear. The approach of this section is to
derive linear differential equations from small perturbations to a simple solution of Equations
5.14 that has vx = 0 and h equals some constant H, under the assumption that b≡ 0 everywhere.
The perturbed solution is written

(vx(x, t),h(x, t)) = (0,H)+ ε(υx(x, t),η(x, t)), (5.20)

where 0 < ε � 1. We made the assumption here that vx is independent from z.
Equation 5.14a can now be written as

0 = ε
∂η

∂ t
+ εH

∂υx

∂x
+ ε

2 ∂ (ηυx)

∂x
= 0. (5.21)

We divide the above by ε and assume ε to be small enough that the remaining ε-term can be
ignored, giving the linear equation

∂η

∂ t
+H

∂υx

∂x
= 0. (5.22)

When the flow is considered to be inviscid, Equation 5.14b becomes in terms of the pertur-
bation

εH
∂υx

∂ t
+ ε

2 ∂ (ηυx)

∂ t
+ ε

22υx
∂υx

∂x
· (H + εη)+ ε

3 ∂η

∂x
υ

2
x + g · (H + εη) · ε ∂η

∂x
= 0. (5.23)
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If we ignore all terms that contain a factor ε2 or ε3, after division by εH, we arrive at the
linear differential equation

∂υx

∂ t
+ g

∂η

∂x
, (5.24)

such that the combination of the two linear differential equations gives two times the second
order linear wave equations

0 =
∂ 2υx

∂ t2 −gH
∂ 2υx

∂x2 , (5.25)

0 =
∂ 2η

∂ t2 −gH
∂ 2η

∂x2 . (5.26)

Both equations above are of the same form,

∂ 2u
∂ t2 − c2 ∂ 2u

∂x2 = 0, (5.27)

where c =
√

gH. In a basin of length L, a usual set of boundary (5.28) and initial (5.29)
conditions is

u(0, t) = 0, u(L, t) = 0, (5.28)

u(x,0) = f (x),
∂u
∂ t

(x,0) = g(x). (5.29)

We use the concepts of this chapter to solve some simple models in the following chapter,
which will be used as a stepping stone to the discussion and solution of the Stommel model in
Chapter 7.
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6

S O M E S I M P L E M O D E L S

Now we have derived and simplified all the relevant equations, we proceed by examining some
simple models in this chapter to illustrate some techniques for solving them. The first model,
of a semi-infinite rectangular bay, is quite similar to the Stommel model to be discussed in the
next chapter, and is solved by using the technique of separation of variables. Also, a method
will be given that solves models that are of the form of the Poisson equation.

6.1 S E M I - I N F I N I T E R E C TA N G U L A R B AY

The first simple model we will develop is of irrotational, incompressible flows in the region

Figure 3.: The bathymetry under consideration. It is semi-infinite towards the left (in negative x̂-
direction).

Ω = {(x,y)|x < 0;0 < y < d}, (6.1)

which is the horizontal cross-section of a semi-infinite bay. As before, we assume the horizontal
velocity not to depend on depth and for simplicity we ignore the vertical velocity entirely, such
that our problem becomes a two-dimensional one in Ω. We also assume that both vx and vy do
not change over time, that is, we are dealing with a steady-state flow. Therefore we know about
the existence of a stream function ψ such that

vx =
∂ψ

∂y
, vy = −

∂ψ

∂x
. (3.11)
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Our goal is to find this function ψ .
Since the model is steady-state, dψ

dt will be zero and so any particle trajectory will be along
a level curve of ψ , as described in Section 3.7. The flow is irrotational, so the curl of V is zero,
meaning that

0 =
∂vy

∂x
− ∂vx

∂y
= −∂ 2ψ

∂x2 −
∂ 2ψ

∂y2 = −∆ψ , (6.2)

or simply ∆ψ = 0.
When the seawalls are assumed to be impenetrable, we find boundary conditions

vx(0,y) = 0 for 0 < y < d, (6.3)

vy(x,0)
vy(x,d)

= 0
= 0

}
for x < 0. (6.4)

In terms of ψ , we need that

∂ψ

∂x
(x,0) =

∂ψ

∂x
(x,d) =

∂ψ

∂y
(0,y) = 0, (6.5)

such that ψ is constant along the boundaries. By a continuity argument we assume that ψ has
the same value along all three seawalls, and since adding a constant to ψ does not change its
derivatives, we assume ψ = 0 along all boundaries:

ψ(x,y) = 0 ∀(x,y) ∈ ∂ Ω. (6.6)

This condition is called a Dirichlet boundary condition.
We use Fourier’s method of separation of variables to find a solution. Suppose ψ can be

written as
ψ(x,y) = F(x)G(y).

Then Equation 6.2 reduces to

F ′′(x)
F(x)

+
G′′(y)
G(y)

= 0 on Ω. (6.7)

Since the first fraction depends solely on x and the second one on y, we conclude they must
both be constant.

First assume F ′′(x)
F(x) = λ 2 > 0. Then

F ′′(x)−λ
2F(x) = 0, G′′(y)+λ

2G(y) = 0, (6.8)

giving

F(x) = a1eλx + a2e−λx, G(y) = b1 cosλy+ b2 sinλy. (6.9)

We can combine these functions to find

ψ(x,y) =
[
a1eλx + a2e−λx

]
· [b1 cosλy+ b2 sinλy] . (6.10)
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The condition ψ(x,0) = 0 gives either a1 = a2 = 0 or b1 = 0. We choose the latter since the
former represents the trivial solution ψ(x,y) = 0 for all (x,y) ∈Ω, and we can write now

ψ(x,y) =
[
Aeλx +Be−λx

]
· sinλy (6.11)

by defining A = a1b2 and B = a2b2.
The second condition, ψ(0,y) = 0, gives as non-trivial solution (A+B) = 0, or A = −B,

such that ψ becomes
ψ(x,y) =C sinhλx · sinλy, (6.12)

where C = 2A.
The last step is to apply the condition ψ(x,d) = 0, giving either C = 0 or sinλd = 0. The

latter expression is the non-trivial one, giving λd = nπ (n ∈Z), or

λn =
nπ

d
, n ∈Z. (6.13)

Since sin and sinh are both odd functions, their product is even and thus λn and λ−n give
the same result. Furthermore, λ0 gives the trivial solution ψ = 0, so we only need to consider
n ∈N, giving the linearly independent solutions

ψn(x,y) =Cn sinh
nπx

d
sin

nπy
d

. (6.14)

It is easily seen that any linear combination of solutions of the above form is also a solu-
tion. Therefore, we can impose another boundary condition, for instance at the line x = s, by
requiring

ψ(s,y) = f (y).

Using the theory of Fourier series, we can now find Cn as

Cn =
2

d sinh nπa
d

ˆ d

0
f (y) sin

nπy
d

dy. (6.15)

When we assume F ′′(x)
F(x) = −λ 2 < 0, then we would get the solution functions

ψ(x,y) = [a1 cosλx+ a2 sinλx] ·
[
b1eλy + b2e−λy

]
. (6.16)

However, using the same procedure as for the positive case, we first apply ψ(0,y) = 0 to find
a1 = 0, then we observe that ψ(x,0) = 0 requires b1 = −b2 so ψ is of the form

ψ(x,y) =C sinλx · sinhλy.

But then ψ(x,d) = 0 implies1 C = 0 so this way we only find the trivial solution ψ(x,y) = 0.

1 Since sinhλd = 0 iff λ = 0 and λ 2 > 0, so λ 6= 0.
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6.2 E I G E N F U N C T I O N S O F T H E L A P L AC E O P E R AT O R

When for some operator F , the equation F(ψ) = µψ has non-trivial solutions (µi,ψi), the
scalar constant µi is called an eigenvalue and the corresponding function ψi is called an eigen-
function of the operator F . In this section we present the eigenfuntions of the Laplace operator
∆.

On the domain
Ω = {(x,y)|0 < x < a;0 < y < b} , (6.17)

the Laplace operator ∆ has eigenfunctions ψ corresponding to eigenvalues −λ 2
nm, satisfying

the boundary condition
ψnm(x,y) = 0 ∀(x,y) ∈ ∂ Ω,

which are of the form
ψnm(x,y) = Anm sin

nπx
a

sin
mπy

b
, (6.18)

where

λ
2
nm =

(
n2

a2 +
m2

b2

)
π

2, n,m ∈N. (6.19)

6.3 P O I S S I O N E Q UAT I O N S O L U T I O N S

We can use the above to approximate solutions of the general Poisson equation

∆ψ = − f (x,y); ψ = 0 on ∂ Ω. (6.20)

First we can approximate f by a linear combination of the functions ψnm, using the tech-
niques known from any Linear Algebra course:

f (x,y) =
∞

∑
n,m

Anm sin
nπx

a
sin

mπy
b

, (6.21)

where

Anm =
4

ab

ˆ a

0

ˆ b

0
f (x,y) sin

nπx
a

sin
mπy

b
dx dy. (6.22)

We also want to express ψ in terms of the ψnm

ψ(x,y) =
∞

∑
n,m

Bnm sin
nπx

a
sin

mπy
b

.5 (6.23)

Our problem is to find the coefficients Bmn.
Since the Laplacian ∆ is a linear operator,

∆ψ =
∞

∑
n,m

∆
(

Bnm sin
nπx

a
sin

mπy
b

)
=

∞

∑
n,m
−λ

2
nm

(
Bnm sin

nπx
a

sin
mπy

b

)
,

(6.24)
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such that we need λ 2
nmBnm = Anm, or

Bnm =
Anm

λ 2
nm

.

Now we have solved some simple models, in the next chapter we proceed to solving the
Stommel model which is a bit more complicated.
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7

T H E S T O M M E L M O D E L

Figure 4.: Picture by Cyrill Purkyně and A. Bursík, taken from [7], showing ocean streamlines. The red
boxes (drawn by the author) indicate regions around the western border of an ocean stream,
where clearly the streamlines are more dense than at the eastern parts of the streams. The
Gulf Stream is situated between Europe/Northwest Africa and North America.

In this chapter we will discuss the Stommel model, which was first introduced by Henry
Stommel in his paper, [10], called “The Westward Intensification Of Wind-Driven Ocean Cur-
rents”, published in 1948, and which is also discussed in [4, sec. 9]. It is a simple model of
ocean circulation that takes into account the most prominent forces that affect the flow of the
fluid particles in ocean streams like the Gulf Stream.

The goal of Stommel’s paper, which was published in a scientific geophysical magazine, was
to give an explanation for the relatively high intensity of streamlines around the western borders
of oceans, seen for example in Figure 4. It was not necessarily his intention to give a model
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that accurately describes the fluid flows, but to produce a very simple model that still shows
accordance to reality at the level of these streamlines.

7.1 E Q UAT I O N S A N D A P P ROX I M AT I O N S

In his work, Stommel considers a rectangular basin with ground plane

{(x,y)|0 < x < λ ;0 < y < b}

and a time-independent height D + h(x,y), where D is the constant water height when the
water is at rest. Due to currents, the water height will slightly deviate from D, by an amount
of h, so the interface between sea and air is at z = D+ h. Stommel assumes the water to be
homogeneous and incompressible, such that the density, ρ = ρ0, is constant. Furthermore he
ignores all vertical movement.

On the northern hemisphere, the sea wind at small latitudes is towards the (south-)western
direction and at higher latitudes in (north-)eastern direction. For simplicity, Stommel ignores
the wind components in north-south direction and simplifies the wind stress T on the water
surface to be

T(y) =

−T cos πy
b

0
0

 , (7.1)

in agreement with the directions on the northern hemisphere (T is some constant).
In order to prevent the water in the model from accelerating to infinite speeds, Stommel also

adds a bottom friction term R:

R = −RV = −R

vx
vy
0

 , (7.2)

where V = (vx,vy,0) is the velocity vector and R is some constant. How exactly these terms
appear in the equations, will become clear further below.

We apply these concepts to the equations from the β -plane approximation (Equations 4.23)
and assume that the DV

Dt -terms are negligible compared to the other factors1, as Stommel did.
These equations then become

−ρ0 f vy = −
∂ p
∂x

+ρ0Fx, (7.3a)

ρ0 f vx = −
∂ p
∂y

+ρ0Fy, (7.3b)

0 = −∂ p
∂ z

+ρ0Fz, (7.3c)

1 In doing so, we neglect the nonlinear term V ·∇V and arrive at a linear differential equation. The non-linear case
where this term is not being neglected, will be given at the end of Chapter 8.
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and

0 =
∂vx

∂x
+

∂vy

∂y
. (7.3d)

where Fz = −g, while Fx and Fy are related to R and T .
Integration of Equation 7.3d with respect to z gives

p(x,y,z, t) = p0 +

ˆ D+h

z
−ρ0g = p0 +ρ0g · [D+ h(x,y, t)− z], (7.4)

where the air pressure p0 is assumed to be constant with respect to time and position, as in [4].
Substituting this into Equations 7.3a and 7.3b gives, after division by ρ0,

− f vy = −g
∂h
∂x

+Fx, (7.5a)

f vx = −g
∂h
∂y

+Fy. (7.5b)

If we integrate the above equations from z = 0 to z = D+ h, which is an easy calculation
since the terms in the equations do not depend on z, and make the approximation D ≈ D+ h,
we find that

− f vyD = −g
∂h
∂x

D+FxD, (7.6a)

f vxD = −g
∂h
∂y

D+FyD. (7.6b)

Here Stommel lets FxD equal the x-component of T +R and FyD its y-component.
Looking at Equation 7.3d, we recall from Section 3.7 that we can use a stream function ψ

to express the components of V : we can write vx =
∂ψ

∂y and vy = −∂ψ

∂x . When we do this and
apply this to the right partial derivatives of Equations 7.6, we find

∂ f
∂y

∂ψ

∂x︷ ︸︸ ︷
−∂ f

∂y
vy− f

∂vy

∂y
− f

∂vx

∂x︸ ︷︷ ︸
− f ·

(
∂vx
∂x +

∂vy
∂y

)
=0

=

− R
D ∆ψ︷ ︸︸ ︷

R
D

∂vy

∂x
− R

D
∂vx

∂y
+

T π

Db
sin

πy
b

, (7.7)

such that we arrive at the partial differential equation that does not depend on time explicitly:

∆ψ +α
∂ψ

∂x
= γ sin

πy
b

, (7.8)

where

α =
D
R

∂ f
∂y

, γ =
T π

Rb
. (7.9)
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The boundary condition applied by Stommel is just the condition we also introduced in the
previous chapter, namely that ψ is zero at the boundary of the basin:

ψ(0,y, t) = ψ(λ ,y, t) = ψ(x,0, t) = ψ(x,b, t) = 0 for all x,y, t. (7.10)

Typical values for the constants in [4] and [10] are

D = 2 ·102 m, λ = 107 m, b = 2π ·106 m,

while the wind and bottom friction parameters T and R are given the values

T = 0.1 m2/s2, R = 0.02 m/s

in order to make the results comparable to reality2.
The value of α is given by α = D

R
∂ f
∂y . Up to first order around the equator (at y = 0), f (y) =

2Ω y
r0

, where Ω = 2π

60·60·24 s−1 and re = 6.24 ·106 m are the angular frequency and radius of the

earth. For small y-values we thus find ∂ f
∂y ≈ 2 ·10−11 m−1s−1 and for simplicity we approximate

∂ f
∂y to be equal to this value constantly.

7.2 T H E S T R E A M F U N C T I O N

The differential equation 7.8 has, as Stommel states, a particular solution

ψp(x,y) = −γ
b2

π2 sin
πy
b

, (7.11)

while the homogeneous equation is

∆ψh +α
∂ψh

∂x
= 0. (7.12)

Using the method of separation of variables, by writing ψh(x,y) = F(x)G(y), in which the
differential equation reduces to

F ′′(x)G(y)+F(x)G′′(y)+αF ′(x)G(y) = 0, (7.13)

or
F ′′(x)+αF ′(x)

F(x)
= −G′′(y)

G(y)
, (7.14)

where both fractions must be constant as before. In the case where F ′′(x)+αF ′(x)
F(x) = −G′′(y)

G(y) =

−β 2 < 0, we find G(y) = b1eβy + b2e−betay. Applying the boundary conditions ψp(x,0) =
ψp(x,b) = 0, we find either the trivial solution F(x) = 0 or the conditions G(0) = G(b) = 0.

2 This value of T corresponds to a force per unit area of ρ0T ≈ 100 N/m2.
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The first one, G(0) = 0, implies b1 =−b2, while the second one implies b1 =−b2e−2βb. Since
β 6= 0 and b > 0, this also leads to the trivial solution. Therefore we assume

F ′′(x)+αF ′(x)
F(x)

= −G′′(y)
G(y)

= β
2 > 0,

such that we have solutions for G′′(y)+β 2G(y) = 0:

G(y) = b1 sinβy+ b2 cosβy, (7.15)

where b1 and b2 are arbitrary constants. We know ψp(x,0) = ψp(x,b) = 0, such that the
condition ψ(x,0) = ψ(x,b) = 0 implies that ψh is zero at y = 0 and y = b. This either gives
F(x) = 0, the trivial solution, or G(0) = G(b) = 0, which is the property we will assume to
find a non-trivial solution. Since G(0) = 0, we need b2 = 0, and thus

G(y) = b1 sinβy. (7.15*)

The condition G(b) = 0 gives βb = kπ with k ∈N (or in Z, but a negative k only adds a minus
sign, which can also be caught into b1), such that we find possibilities βk =

kπ

b .

The second differential equation we need to solve is

F ′′(x)+αF ′(x)−β
2F(x) = 0.

A well-known method from differential calculus to solve this equation is to suggest a solution
F(x) = eµx. Applying this suggestion, gives

(µ2 +αµ−β
2)eµx = 0,

which we can solve for µ:

µ =
−α±

√
α2 + 4β 2

2
. (7.16)

This gives, by linear combination of the + and −-solutions, the general solution

F(x) = e−
α

2 x (a1 sinhκx+ a2 coshκx) , (7.17)

where κ =
√

α2

4 +β 2.
We can now write

ψh,k(x,y) = e−
α

2 x sin(βky) (Ak sinhκkx+Bk coshκkx) , (7.18)

where Ak = a1b1 and Bk = a2b1 are the appropriate constants, giving a full solution

ψ(x,y) = e−
α

2 x
∞

∑
k=1

[sin(βky) (Ak sinhκkx+Bk coshκkx)]− γ
b2

π2 sin
πy
b

. (7.19)

37



The condition ψ(0,y) = 0 implies

∞

∑
k=1

[sin(βky)Bk]− γ
b2

π2 sin
πy
b

= 0

for all y, giving B1 = γ
b2

π2 , and Bi = 0 for i > 1.
The final condition, ψ(λ ,y) = 0, tells us

∞

∑
k=1

e−
α

2 λ [Ak sin(βky) sinhκkλ ]− γ
b2

π2 sin
πy
b

(
1− e−

α

2 λ coshκ1λ

)
= 0.

We solve this for Ak by first letting A′k = Ake−
α

2 λ sinhκkλ and solving

∞

∑
k=1

A′k sin
kπy

b
= γ

b2

π2 sin
πy
b

(
1− e−

α

2 λ coshκ1λ

)
,

which gives

A′k =
2
b

γ
b2

π2

(
1− e−

α

2 λ coshκ1λ

)ˆ b

0
sin

πy
b

sin
kπy

b
dy

=

{
γ

b2

π2

(
1− e−

α

2 λ coshκ1λ

)
if k = 1

0 if k 6= 1
,

(7.20)

such that A1 = γ
b2

π2
1−e−

α
2 λ coshκ1λ

e−
α
2 λ sinhκ1λ

= γ
b2

π2
e

α
2 λ−coshκ1λ

sinhκ1λ
.

The full solution now becomes

ψ(x,y) = γ
b2

π2 e−
α

2 x sin
πy
b

(
e

α

2 λ − coshκλ

sinhκλ
sinhκx+ coshκx− e

α

2 x

)
, (7.21)

with κ =
√

α2

4 + π2

b2 .

7.3 T H E WAT E R H E I G H T

From the stream function ψ in Equation 7.21 we can find by differentiation

vx(x,y) =
∂ψ

∂y
= γ

b
π

e−
α

2 x cos
πy
b

(
e

α

2 λ − coshκλ

sinhκλ
sinhκx+ coshκx− e

α

2 x

)
,

vy(x,y) = −∂ψ

∂x
= −γ

b2

π2 e−
α

2 x sin
πy
b

[
−α

2

(
e

α

2 λ − coshκλ

sinhκλ
sinhκx+ coshκx

)

+κ

(
e

α

2 λ − coshκλ

sinhκλ
coshκx+ sinhκx

)]
.
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such that we can solve the equations 7.6 to find h up to a constant. Using the linear approxima-
tion f (y) ≈ αR

D y and rewriting Equation 7.6b, we find

∂h
∂y

=
− f (y)vx(x,y)−R/D · vy(x,y)

g

= K1(x)ycos
πy
b
+K2(x) sin

πy
b

,

where K1 and K2 are functions of x that contain all constant factors and factors depending on
x that appear in ∂h

∂y , which for matters of convenience we do not write down explicitly here.
Integration and substitution of K1 and K2 gives

h(x,y) =C(x)− b2

π2
T α

gD
e−

α

2 x
[

πy
b

sin
πy
b
· (Bsinhκx+ coshκx− e

α

2 x)

+ cos
πy
b
·
(

1
2
(Bsinhκx+ coshκx)+

κ

α
(Bcoshκx+ sinhκx)− e

α

2 x
)]

, (7.22)

where B = e
α
2 λ−coshκλ

sinhκλ
. Taking the derivative of the above with respect to x and comparing

to Equation 7.6a, tells us ∂C(x)
∂x = 0, so C is an arbitrary constant and we put it equal to zero,

giving

h(x,y) = − b2

π2
T α

gD
e−

α

2 x
[

πy
b

sin
πy
b
· (Bsinhκx+ coshκx− e

α

2 x)

+ cos
πy
b
·
(

1
2
(Bsinhκx+ coshκx)+

κ

α
(Bcoshκx+ sinhκx)− e

α

2 x
)]

. (7.22*)

7.4 VO RT I C I T Y

Vorticity is a pseudovector field describing the local spinning motion of the flow and is defined
as ω = ∇×V . In the case that V = (ψy(x,y),−ψx(x,y),0)t , the x- and y-components of ω are
both zero and the z-component equals

ωz =
∂

∂x
vy−

∂

∂y
vx

= −ψxx−ψyy

= −∆ψ .

(7.23)

A negative value of ωz implies that the spin is locally in clockwise direction when observing
the sea from above. Straightforward calculation gives

ωz = −γ sin
πy
b

(
1+

b2

π2 e−
α

2 x
[

α2

2
(Bsinhκx+ coshκx)−ακ (Bcoshκx+ sinhκx)

])
.

(7.24)
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7.5 A Q UA N T I TAT I V E D I S C U S S I O N

There are several conclusions that we may draw from Equations 7.21, 7.22* and 7.24. A first
observation is that in both ψ and h the wind stress coefficient T has been factored out into a
multiplicative constant (remember that γ = T π

Rb ), such that a change in T would not change the
shape of the streamlines and the surface contours, except when T = 0. For T = 0, of course,
the stable solution without rotation is a stationary ocean where h is constant. In that case, the
Coriolis force would by its velocity dependence be equal to zero and so when the planet’s
rotation is considered, the result would still be a non-rotating ocean.

Another observation is the appearance of the term e−
α

2 x in both formulas. As mentioned
before, the goal of Stommel’s model is to explain the intensification of stream curves in west-
ward direction. This intensification is due to this exponential term only: By definition, α ∝ Ω,
so Ω = 0 implies that α = 0. When Ω = 0, the term e−

α

2 x is constant and both ψ and h are
symmetric under rotation over 180° around the center of the basin, as can be seen from Figure
5. Remember that in the southern half of the basin, the wind is in westward direction, and in the
northern half it blows eastward. This causes the water level to be pushed towards the southwest
and northeast corners.

When Ω is increased, e−
α

2 x becomes non-constant and ψ and h are both flattened out in east-
ward direction, pulling all streamlines westward, giving the effect Stommel wanted to model.
In Figure 6, we see the contour and surface plots of ψ and h when Ω equals the Earth’s ro-
tational frequency. In Figure 7, the value of Ω is again increased to twice Earth’s rotational
frequency, and one observes an even greater westwards stretch of the contour lines.

When the model is applied to a basin at the southern hemisphere instead, α will remain the
same so, as Stommel states in [10], the crowding of streamlines is still toward the western
ocean border.

In all cases the circulation is in clockwise direction, as is indicated by the nonpositive values
of the vorticity component ωz and which could of course be expected from the wind directions.
It is seen from the pictures that the vorticity is highest (in absolute value) at y = b

2 and decreases
with x, indicating the most spinning motion at the western boundary as well. Since the flux be-
tween any two streamlines is constant and distance between them around the western boundary
decreases, the flux density must increase heavily: the flow velocity therefore also becomes a lot
higher around the western boundary. This could also be observed directly from the increased
density of streamlines: vy =−∂ψ

∂x , which is proportional to the density of the contour lines of ψ .

We were able to solve the equations of the Stommel model analytically by the method of
separation of variables since they neglect the nonlinearity in V ·∇V . When this nonlinearity
is added again, we need more sophisticated methods to solve the model. Chapter 8 presents
a way to do so. Another way for solving for the nonlinearity is by the numerical method of
finite differences. Also, we used a rectangular domain to solve the equations on, which made
it possible to give an exact solution to the boundary value problem easily. A curved boundary
makes finding an exact solution a lot harder or even impossible.
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(a) Contour plot of the stream function ψ . (b) Surface plot of the stream function ψ .

(c) Contour plot of the height function h. (d) Surface plot of the height function h.

(e) Contour plot of the vorticity component ωz. (f) Surface plot of the vorticity component ωz.

Figure 5.: Contour and surface plots of ψ , h and ωz in a non-rotating system (Ω = 0). The contour plot
of ψ gives the streamlines of the fluid flow. The density of the streamlines gives the velocity. A
rotation around the center of the basin over 180° leaves the function values intact.
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(a) Contour plot of the stream function ψ . (b) Surface plot of the stream function ψ .

(c) Contour plot of the height function h. (d) Surface plot of the height function h.

(e) Contour plot of the vorticity component ωz. (f) Surface plot of the vorticity component ωz.

Figure 6.: Contour and surface plots of ψ , h and ωz in a rotating system (Ω = 2π

60·60·24 s−1, Earth’s
angular velocity). The contour plot of ψ gives the streamlines of the fluid flow. The density of
the streamlines gives the velocity.
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(a) Contour plot of the stream function ψ . (b) Surface plot of the stream function ψ .

(c) Contour plot of the height function h. (d) Surface plot of the height function h.

(e) Contour plot of the vorticity component ωz. (f) Surface plot of the vorticity component ωz.

Figure 7.: Contour and surface plots of ψ , h and ωz in a rotating system (Ω = 4π

60·60·24 s−1, twice Earth’s
angular velocity). The contour plot of ψ gives the streamlines of the fluid flow. The density of
the streamlines gives the velocity.
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8

T H E M U N K M O D E L A N D P E D L O S K Y ’ S D E R I VAT I O N

The model presented by Walter Munk in [6] slightly differs from the model presented by Stom-
mel, though their derivations can be done quite similar. In [4] and [8], this derivation is given
and we will follow these publications in the derivation we present in this chapter. The procedure
can easily be extended to give solutions that are more exact.

8.1 T H E M U N K M O D E L

The Munk model consists of a fourth order partial differential equation and a sufficient set of
boundary conditions. The equation derived by Munk is

A∆(∆ψ)−β
∂ψ

∂x
= −(∇×τ)3, (8.1)

where (∇×τ)3 (the z-element of the curl of τ = (τ1,τ2,τ3)t , a term due to surface influence of
the wind) equals ∂ τ2

∂x −
∂ τ1
∂y , and A represents the molecular viscosity of the flow. Note that the

main difference between the Stommel and Munk models lies in the origin of the counteracting
friction. The Stommel model assumes the bottom friction to be the only counteracting force,
giving a term R∆ψ , while he neglects viscosity. On the other hand, Munk models the viscosity,
which was neglected by Stommel, to preventing relative speeds from going to infinity, in a term
A∆(∆ψ), neglecting any bottom friction.

The boundary conditions that Munk imposes are the Dirichlet and Neumann conditions

ψ|∂B = 0, (∇ψ ·n)|∂B = 0, (8.2)

where B is the domain, ∂B its boundary and n a unit vector normal to the boundary.

The equation that was derived by Munk is a special case of the more general equation from
the derivation of Joseph Pedlosky in [8], which we tried to explain below.
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8.2 P E D L O S K Y ’ S D E R I VAT I O N

For his derivation, Pedlosky uses the equations of fluid dynamics where the vertical velocity is
neglected. He used a version that includes a friction term −RV just as in the Stommel model,
such that the equations are

∂vx

∂ t
+ vx

∂vx

∂x
+ vy

∂vx

∂y
− f vy = −

1
ρ0

∂ p
∂x
−Rvx +A∆vx +F1, (8.3a)

∂vy

∂ t
+ vx

∂vy

∂x
+ vy

∂vy

∂y
+ f vx = −

1
ρ0

∂ p
∂y
−Rvy +A∆vy +F2, (8.3b)

0 = − 1
ρ0

∂ p
∂ z
−g (8.3c)

and

0 =
∂vx

∂x
+

∂vy

∂y
. (8.3d)

We again know about the existence of a stream function ψ(x,y, t) such that vx =
∂ψ

∂y and

vy = −∂ψ

∂x . If we substitute this into the above equations, differentiate Equation 8.3a with
respect to y and 8.3b with respect to x, and subtract them from each other, we find

∆ψt +βψx +ψy∆ψx−ψx∆ψy = A∆(∆ψ)+ (F1)y− (F2)x−R∆ψ . (8.4)

The diffusion term A∆(∆ψ) does not actually appear in Pedlosky’s derivation in [8] but is added
in [4] in order to make the derivation suit the model of Munk. The term (F1)y− (F2)x−R∆ψ

is comparable to the right-hand side of Equation 7.7 of the Stommel model, where R was
considered to be part of F. We let (F1)y− (F2)x be equal to the surface influence of wind

(F1)y− (F2)x = −
τ

ρ0D
, (8.5)

with D the depth of the basin as in the Stommel model. In [4], the notation of a Jacobian matrix
is used to express

ψy∆ψx−ψx∆ψy = −J(ψ ,∆ψ), (8.6)

giving
∆ψt +βψx− J(ψ ,∆ψ) = A∆(∆ψ)− τ

ρ0D
−R∆ψ . (8.7)

Using the right definition of τ , setting R = 0, ignoring time dependence and approximating
J(ψ ,∆ψ) to be zero, we find exactly Munk’s model.

Similarly, defining τ right, letting β = αR, A = 0 and ignoring both time dependence and
J(ψ ,∆ψ), we find the equation of Stommel’s model.

In both [4] and [8], a non-dimensionalisation method is used, from which a dimensionless
differential equation is found:

∆Ψt +Ψx−Ro · J(Ψ,∆Ψ) = A∆(∆Ψ)−T −δ ∆Ψ. (8.8)
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Ro in this equation is called the Rossby number, Ψ is the non-dimensional stream function and
all derivatives are with respect to non-dimensional variables.

When Ro = 0, the differential equation is linear and a solution is found relatively easily.
Pedlosky makes use of this fact by assuming Ro to be small and expressing Ψ as a series
expansion around Ro = 0. The boundary conditions from Equation 8.2 are applied, where

B = {(x,y)|0 < x < λ ;0 < y < b},

as in the Stommel model. The Neumann condition is only required when A 6= 0. The solution
is written as

Ψ(x,y, t) =
∞

∑
i=0

RoiΨi(x,y, t). (8.9)

As will become clear below, Ψn can be solved by induction from Ψ0, . . . ,Ψn−1. The expansion
of the derivatives of Ψ is trivial, however J(Ψ,∆Ψ) has a more complicated series expansion:

J(Ψ,∆Ψ) =
∞

∑
i=0

Roi(Ψi)x

∞

∑
i=0

Roi(∆Ψi)y−
∞

∑
i=0

Roi(Ψi)y

∞

∑
i=0

Roi(∆Ψi)x

= J(Ψ0,∆Ψ0)+Ro[J(Ψ1,∆Ψ0)+ J(Ψ0,∆Ψ1)]+ . . .

=
∞

∑
i=0

[
Roi

i

∑
k=0

J(Ψk,∆Ψi−k)

]
, (8.10)

giving as differential equation

∞

∑
i=0

Roi ((∆Ψi)t + δ ∆Ψi +(Ψi)x−A∆(∆Ψi)) = −T +
∞

∑
i=0

[
Roi+1

i

∑
k=0

J(Ψk,∆Ψi−k)

]
.

(8.11)

Grouping all by powers of Ro, we find the equations

(∆Ψ0)t + δ ∆Ψ0 +(Ψ0)x−A∆(∆Ψ0) = −T , (8.12a)

(∆Ψ1)t + δ ∆Ψ1 +(Ψ1)x−A∆(∆Ψ1) = J(Ψ0,∆Ψ0), (8.12b)

(∆Ψ2)t + δ ∆Ψ2 +(Ψ2)x−A∆(∆Ψ2) =
1

∑
k=0

J(Ψk,∆Ψ1−k), (8.12c)

...
...

(∆Ψn)t + δ ∆Ψn +(Ψn)x−A∆(∆Ψn) =
n−1

∑
k=0

J(Ψk,∆Ψn−1−k), (8.12n)

... .
...

From the first of these equations, when a sufficient amount of boundary and initial value condi-
tions is applied, Ψ0 can be determined. After this is done, Ψ0 can be inserted into the right-hand
side of 8.12b to find Ψ1, etc..

The zeroth-order approximation is Ψ(x,y, t) = Ψ0(x,y, t), of which form are both the Stom-
mel en Munk models. A probably more accurate approximation is the first-order approximation
Ψ = Ψ0 +RoΨ1, and even more details could be uncovered when considering higher orders.
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8.3 A P P L I C AT I O N T O T H E S T O M M E L M O D E L

In Equations 7.3 we ignored the term DV
Dt in order to arrive at linear equations. If however we

add this term, we get equations

vx
∂vx

∂x
+ vy

∂vx

∂y
− f vy = −

1
ρ0

∂ p
∂x

+Fx, (8.13a)

vx
∂vy

∂x
+ vy

∂vy

∂y
+ f vx = −

1
ρ0

∂ p
∂y

+Fy, (8.13b)

0 = − 1
ρ0

∂ p
∂ z

+Fz, (8.13c)

and

0 =
∂vx

∂x
+

∂vy

∂y
. (8.13d)

This leads to the differential equation

∆ψ +α
∂ψ

∂x
− D

R
J(ψ ,∆ψ) = γ sin

πy
b

, (8.14)

where J(ψ ,∆ψ) is the Jacobian determinant

J(ψ ,∆ψ) =

∣∣∣∣ψx ∆ψx
ψy ∆ψy

∣∣∣∣ .
After non-dimensionalizing, we find the differential equation

δ ∆Ψ+Ψx−Ro · J(Ψ,∆Ψ) = sinπy′. (8.15)

This differential equation leads to a system of equations such as Equations 8.12:

δ ∆Ψ0 +(Ψ0)x = sinπy′, (8.16a)

δ ∆Ψ1 +(Ψ1)x = J(Ψ0,∆Ψ0), (8.16b)

δ ∆Ψ2 +(Ψ2)x =
1

∑
k=0

J(Ψk,∆Ψ1−k), (8.16c)

...
...

δ ∆Ψn +(Ψn)x =
n−1

∑
k=0

J(Ψk,∆Ψn−1−k), (8.16n)

... .
...

The total soultion becomes ∑
∞
n=0 RonΨn. We start by solving the first equation to find Ψ0, which

has a solution

Ψ0(x,y) =
1

δπ2 e−
x

2δ sinπy

(
e

λ ′
2δ − coshκλ ′

sinhκλ ′
sinhκx+ coshκx− e

x
2δ

)
, (8.17)

48



where κ =
√

1
4δ 2 +π2, similar to the solution in the previous chapter.

Knowing Ψ0, we may calculate J(Ψ0,∆Ψ0) and from Equation 8.16b, we will then be able to
find Ψ1, etc.. This process could best be done (numerically) by a computer, since the differential
equations start to become quite long from here on.
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9

A N A P P L I C AT I O N : M O O N ’ S G R AV I TAT I O NA L P U L L

Where both the Munk and Stommel models do not depend on time, we can study a time-
dependent system by considering the effect of Moon’s gravitational pull, the tidal force. We
assume the magnitude of the lunar pull to be constant and equal to

glunar =
2G ·mmoonrearth

R3
earth-moon

≈ 1 ·10−6 ms−2.

Figure 8.: Top view of Earth (facing down on the North Pole), where direction of tidal force due to moon
position is indicated at several points. The blue areas indicate the tides. Since Earth rotates
in counter-clockwise direction and Moon orbits around Earth in the same direction but with
a lower angular velocity, the rotation of the moon can be seen as in clockwise direction. The
picture is not drawn to scale.

We approximate the Moon to be in the same position (relative to a point on Earth) every 25
hours (so with rotational frequency ω = 2π

25·3600 Hz), and consider its pull to be in the equator-
or x,z-plane, such that, neglecting any initial phase, we can write for the time dependent accel-
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eration, glunar(t), due to lunar pull in horizontal direction1 (see Figure 8 for an indication of the
direction of the tidal force at several positions),

glunar(x, t) = glunar sin(2[−θ −ωt])x̂ ≈ glunar sin
(
− x

πre
−2ωt

)
x̂, (9.1)

where any y-dependence is neglected2.
This gives us, besides the wind stress in the Stommel model, an additional volume force

Fg,1 = ρ0 · glunar sin
(
− x

πre
−2ωt

)
, while Fg,2 = Fg,3 = 0. Since (Fg,1)y = (Fg,2)x = 0, this

additional force term does not influence the differential equation of the Stommel model. Since
we are interested in time dependence here, the differential equation of the Stommel model is
adapted to

∆ψt +R∆ψ +αRψx = ARsin
πy
b

. (9.2)

Besides the original boundary condition

ψ(0,y, t) = ψ(λ ,y, t) = ψ(x,0, t) = ψ(x,b, t) = 0 for all x,y, t, (7.10)

another boundary condition is required now, since the differential equation has become third-
order because of the term ∆ψt . A reasonable condition is that the average net flow through the
boundary is zero. Physically, this condition implies that the amount of water inside the basin
is constant and thus, under the assumption of constant density, that the water height averaged
over the entire basin is constant in time.

The time-independent particular solution is still a valid solution for this equation. The same
holds for the time-independent homogeneous solutions, but we try to add time dependence to
them, again by separation of variables: we assume ψh(x,y, t) = F(x)G(y)H(t) to be a such a
solution. Inserting it into the homogeneous differential equation

∆(ψh)t +R∆ψh +αR(ψh)x = 0. (9.3)

gives
[F ′′G+FG′′]H ′+R[F ′′G+FG′′]H +αRF ′GH = 0, (9.4)

or
H ′

H
= −R[F ′′G+FG′′]+αRF ′G

[F ′′G+FG′′]
= constant. (9.5)

From this we can solve for H, finding H(t) = H0eCt , where C = H ′
H . Since terms in the differ-

ential equation are periodic, we expect our solution to be periodic as well and so we need C to
be purely imaginary. Therefore, for F and G we arrive at the differential equation

F ′′(x)G(y)+F(x)G′′(y)+ χF ′(x)G(y) = 0, (9.6)

1 For some background on tidal forces, see for instance [5, p. 471-477] and Fig. 10.14 from that book. We neglect
any vertical component of the tidal force since gravity is much stronger.

2 Actually, the amplitude of the tidal force is only equal to glunar when x
πre
− 2ωt, and at other places on the earth

surface it is a bit smaller. However, it is of the same order of magnitude as glunar and for simplicity we stick to the
round value mentioned above.
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where χ := α
R

C+R . This equation is similar to Equation 7.13.
We again can rewrite this to the form

F ′′(x)+ χF ′(x)
F(x)

= −G′′(y)
G(y)

= β
2 > 0,

and we find solutions in a similar manner as before that are of the form

ψh(x,y, t) = eCt−α

2 x (a1 sinhκx+ a2 coshκx) [b1 sinβy+ b2 cosβy] , (9.7)

where κ is now defined as κ =
√

χ2

4 +β 2. By the boundary conditions we know that G(0) =
G(b) = 0, such that again b2 = 0 and β must have one of the values βk =

kπ

b where k is an
integer that can be chosen to be positive. This can be rewritten to

ψ(x,y) = e−
α

2 x
∞

∑
C,k=1

[
eCt sin(βky) (AC,k sinhκC,kx+BC,k coshκC,kx)

]
− γ

b2

π2 sin
πy
b

. (9.8)

If we imply the condition ψ(0,y, t) = 0, we find that

∞

∑
C,k=1

[
BC,keCt sin(βky)

]
− γ

b2

π2 sin
πy
b

= 0

for all y, t, such that by the time-independence of the term −γ
b2

π2 sin πy
b , BC,i = 0 for C 6= 0. We

thus find BC=0,k=1 = γ
b2

π2 , and BC,i = 0 for i > 1, as in the time-independent case.
Similarly, the coefficients AC,k are found to be

AC,k =

{
γ

b2

π2
e

α
2 λ−coshκ0,1λ

sinhκ0,1λ
C = 0,k = 1

0 else
.

The resulting time-dependent stream function apparently equals the time-independent so-
lution we found in Chapter 7: apparently the fluid trajectories/streamlines and also the flow
velocities are not influenced by the tides, which is a quite remarkable result.

The time-dependent versions of Equations 7.6 now become, when the components of V are
expressed as derivatives of ψ ,

f ψx = −g
∂h
∂x
− R

D
ψy−

T
D

cos
πy
b
+ glunar sin

(
− x

πre
−2ωt

)
, (9.9a)

f ψy = −g
∂h
∂y

+
R
D

ψx. (9.9b)

Equation 9.9b is the same as in the time-independent case, such that ∂h
∂y is independent of t

and thus all time dependence is caught into the term C(x, t) that appears in the time-dependent
version of Equation 7.22. We find

∂

∂x
C(x, t) =

glunar

g
sin
(
− x

πre
−2ωt

)
, (9.10)
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such that

C(x, t) = πre
glunar

g
cos
(
− x

πre
−2ωt

)
+ c(t), (9.11)

where c(t) only depends on time. Since the density, ρ0, is assumed to be constant, we also
need the volume of the sea, and thus the average of h, to be constant. Therefore, we integrate
C(x, t)− c(t) over the whole basin3 and find c(t) up to a constant to be

c(t) = − 1
λb

ˆ x=λ

x=0

ˆ y=b

y=0
πre

glunar

g
cos
(
− x

πre
−2ωt

)
dxdy (9.12)

=
π2r2

e
λ

glunar

g

[
sin
(
− λ

πre
−2ωt

)
+ sin2ωt

]
. (9.13)

The full height function is now found to be

h(x,y, t) = − b2

π2
T α

gD
e−

α

2 x
[

πy
b

sin
πy
b
· (Bsinhκx+ coshκx− e

α

2 x)

+ cos
πy
b
·
(

1
2
(Bsinhκx+ coshκx)+

κ

α
(Bcoshκx+ sinhκx)− e

α

2 x
)]

+πre
glunar

g
cos
(
− x

πre
−2ωt

)
+

π2r2
e

λ

glunar

g

[
sin
(
− λ

πre
−2ωt

)
+ sin2ωt

]
. (9.14)

For small λ , the term x
πre

is small and thus cos
(
− x

πre
−2ωt

)
≈ cos(−2ωt) = cos2ωt for

x ∈ [0,λ ]. Furthermore, by L’Hôpital’s rule

lim
λ→0

πre

λ

[
sin
(
− λ

πre
−2ωt

)
+ sin2ωt

]
= lim

λ→0
cos
(
− λ

πre
−2ωt

)
= cos(−2ωt) = cos2ωt

as well, such that the time-dependence is almost cancelled for low values of λ .
When λ is increased, the term we labelled c(t) converges to zero and the amplitude of the

tidal waves converges to πre
glunar

g = 3.14 ·6.24 ·106 · 1·10−6

9.81 ≈ 2 m, which is of the same order of
magnitude as what is measured at the Dutch coastline (see, for instance, [9] for measurements).

Using the MATLAB code in the appendices (by running the script StommelDiagramAnima-
tion.m from the Appendix), an animation can be played that shows the time-dependence. Dur-
ing this animation, every few seconds the value of λ is increased to show the dependence of the
tides on this quantity. Remark that when λ → ∞, B→−1 while at large x, sinhκx ≈ coshκx,
such that at large values of λ the x-dependence of the time-independent part of the height func-
tion at the eastern side of the basin disappears. The most remarkable result, however, is that the
stream function, and therefore the streamlines and stream velocity, do not depend on time when

3 We only need the average of C(x, t) to be constant in time, since the rest of h is by time-independence automatically
constant in time.
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the tidal force is in x̂-direction and does not depend on y. Note that in reality there is a small
ŷ-component since the rotation of the moon is not exactly contained in the equator plane. Also
there is some small y-dependence, such that the streamlines and flow velocities are influenced
a bit.

55





10

S O M E C O N C L U D I N G T H O U G H T S

We conclude this thesis by a short concluding chapter. Some short notes on the achievements of
this work will be given. Also some current trends in physical oceanography will be discussed.

10.1 AC C O M P L I S H M E N T S A N D AC H I E V E M E N T S

According to the research proposal preceding this thesis, its goal was to study the impact of
Coriolis force on the behaviour of flow particle motions. In particular, circulation problems
like shallow water models of the Gulf Stream, as the Stommel model, were to be studied and
solved.

In this thesis, we have read about the concepts and basic equations of fluid dynamics, the
Navier-Stokes equations. We have studied the effect of Earth’s rotation on large-scale systems,
to find the impact of the Coriolis force on large scale fluid dynamics such as ocean flows. A
simple model, the model of Henry Stommel, was used to show the effect that Coriolis force
has on wind-driven ocean circulation. Using some simplifications and approximations, we
were able to solve this model analytically and we found an explanation on the accumulation of
stream-lines near the western boundary of wind-driven circulating ocean streams such as the
Gulf Stream. The method of Joseph Pedlosky to solve more sophisticated non-linear models
was explored.

Finally, in addition to the research proposal, a time-dependent adaption was made to the
Stommel model, adding tidal waves to it. It appeared that the tidal movement has no effect on
the streamlines and flow velocities of the ocean.

10.2 F U RT H E R I N V E S T I G AT I O N

The models and techniques described in this thesis originate from mid-twentieth century papers
and are extremely simplified approximations of reality. Nowadays computational methods and
hardware have been improved a lot and more complex models can be solved easily using nu-
merical methods. Solving the non-linear version of the Stommel model, presented in Chapter
8, numerically would be a lot easier now than it was fifty years ago and it would be good to
have a look at this in future investigations. Also more realistic domains and bathymetries could
be used in models, to give more accurate results.
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One of the techniques used in physical oceanography over the past 50 years is including
measurement data in flow models to make predictions more accurate, as is described in [4].
The other way around, these models may be used to improve measurement techniques.

More advanced ocean models also play an important role in the hot discussions about climate
change, for instance in predicting the release and capture of carbon dioxide in the deep oceans
or the effect of polar cap melting on the ocean streams and ocean height.
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A
M AT L A B C O D E S

In this appendix, several MATLAB codes are included that were used for ocean simulations.
The script StommelDiagram.m can be used to graph the stream functions and height functions

of the Stommel model in Chapter 7. The MATLAB functions StommelStream, StommelHeight
and StommelVorticity from the scripts StommelStream.m, StommelHeight.m and StommelVor-
ticity.m are called in this script and calculate the values of the height and stream function.

The script StommelDiagramAnimation.m produces an animation of the time-dependent ex-
tended Stommel model from Chapter 9 and calls StommelHeightT.m to calculate the time-
dependent height.

Some of the scripts make use of the plugin oaxes which can be found on the internet. Also a
picture of a compass rose, called wind.jpg is used.

StommelDiagram.m

% StommelDiagram.m
% Rik Ledoux, 2015
% This script creates diagrams showing contour and surface

plots of the
% streamfunction and heightfunction from the Stommel model.

%% definition of relevant constants
lambda=10^7; % x-dimension
b=2*pi*10^6; % y-dimension
dx1=1000000/5; % x-step for the surface plots
dy1=2*pi*1000000/20; % y-step for the surface plots
dx2=1000000/50; % x-step for the contour plots
dy2=2*pi*1000000/50; % y-steps for the contour plots
T=0.1; % wind stress factor
Omega=2*pi/(60*60*24); % rotational frequency
[X,Y]=meshgrid(0:dx1:lambda,0:dy1:b);
[X2,Y2]=meshgrid(0:dx2:lambda,0:dy2:b);
clf
%% calculation of streamfunction values
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Z=StommelStream(X,Y,lambda,b,T,Omega);
Z2=StommelStream(X2,Y2,lambda,b,T,Omega);
%% surface plot of the streamfunction
subplot(3,2,1)
surf(X,Y,Z)
% the code below is to make-up the plot
view([-2,-1,4])
hold on
oaxes([0 0 -10^7],'ZAxisLine','off','XTickMode','manual','

YTickMode','off','ZTickMode','off','XLabel',{'0', '\fontname
{Times} x'},'YLabel',{'', '\fontname{Times} y'},'Zlabel',{''
,''},'XTick',[0 lambda],'XTickLabel',{'\fontname{Times} 0',
'\fontname{Times} \it{\lambda}'},'YTick',[0 b],'YTickLabel'
,{'\fontname{Times} 0', '\fontname{Times} \it{b}'},'Arrow','
off')

axis off
grid off
axis([0 lambda 0 b -0.84*10^7 0])
plot3([0 lambda lambda 0 0],[0 0 b b 0],[0,0,0,0,0]-0.84*10^7,

'k')
plot3([0 lambda lambda 0 0],[0 0 b b 0],[0,0,0,0,0]+0,'k')
plot3([ 0 0],[b b],[-0.84*10^7 0],'k')
plot3([ lambda lambda],[b b],[-0.84*10^7 0],'k')
plot3([ 0 0],[0 0],[-0.84*10^7 0],'k')
plot3([ 0 0]+lambda,[0 0],[-0.84*10^7 0],'k')
colormap gray
hold off
%% contour plot of the streamfunction
subplot(3,2,2)
[C,h]=contour(X2,Y2,Z2,'k');
% the code below is to make-up the plot
axis([0-200000 lambda+1 -200000 +b+10])
oaxes([0 0 -10^7],'ZAxisLine','off','XTickMode','manual','

YTickMode','off','ZTickMode','off','XLabel',{'0', '\fontname
{Times} x'},'YLabel',{'', '\fontname{Times} y'},'Zlabel',{''
,''},'XTick',[0 lambda],'XTickLabel',{'\fontname{Times} 0',
'\fontname{Times} \it{\lambda}'},'YTick',[0 b],'YTickLabel'
,{'\fontname{Times} 0', '\fontname{Times} \it{b}'},'Arrow','
off')

hold on
axis off
grid off

62



plot([0 0 lambda lambda 0],[0 b b 0 0],'k')
hold off
%% calculation of the height function values
Z=StommelHeight(X,Y,lambda,b,T,Omega);
Z2=StommelHeight(X2,Y2,lambda,b,T,Omega);
%% surface plot of the height function
subplot(3,2,3)
surf(X,Y,Z)
% the code below is to make-up the plot
view([-2,-1,4])
hold on
oaxes([0 0 -10^7],'ZAxisLine','off','XTickMode','manual','

YTickMode','off','ZTickMode','off','XLabel',{'0', '\fontname
{Times} x'},'YLabel',{'', '\fontname{Times} y'},'Zlabel',{''
,''},'XTick',[0 lambda],'XTickLabel',{'\fontname{Times} 0',
'\fontname{Times} \it{\lambda}'},'YTick',[0 b],'YTickLabel'
,{'\fontname{Times} 0', '\fontname{Times} \it{b}'},'Arrow','
off')

axis off
grid off
axis([0 lambda 0 b -120. 120.])
plot3([0 lambda lambda 0 0],[0 0 b b 0],[0,0,0,0,0]-120.0,'k')
plot3([0 lambda lambda 0 0],[0 0 b b 0],[0,0,0,0,0]+120.0,'k')
plot3([ 0 0],[b b],[-120.0 120.0],'k')
plot3([ lambda lambda],[b b],[-120.0 120.0],'k')
plot3([ 0 0],[0 0],[-120.0 120.0],'k')
plot3([ 0 0]+lambda,[0 0],[-120.0 120.0],'k')
hold off
colormap gray
%% contour plot of height function
subplot(3,2,4)
[C,h]=contour(X2,Y2,Z2,20,'k');
% the code below is to make-up the plot
axis([0-200000 lambda+1 0-200000 b+10])
oaxes([0 0 -10^7],'ZAxisLine','off','XTickMode','manual','

YTickMode','off','ZTickMode','off','XLabel',{'0', '\fontname
{Times} x'},'YLabel',{'', '\fontname{Times} y'},'Zlabel',{''
,''},'XTick',[0 lambda],'XTickLabel',{'\fontname{Times} 0',
'\fontname{Times} \it{\lambda}'},'YTick',[0 b],'YTickLabel'
,{'\fontname{Times} 0', '\fontname{Times} \it{b}'},'Arrow','
off')

hold on
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axis off
grid off
plot([0 0 lambda lambda 0],[0 b b 0 0],'k')
hold off
%% calculation of the vorticity function values
Z=StommelVorticity(X,Y,lambda,b,T,Omega);
Z2=StommelVorticity(X2,Y2,lambda,b,T,Omega);
%% surface plot of the vorticity function
subplot(3,2,5)
surf(X,Y,Z)
% the code below is to make-up the plot
view([-2,-1,4])
hold on
oaxes([0 0 -10^7],'ZAxisLine','off','XTickMode','manual','

YTickMode','off','ZTickMode','off','XLabel',{'0', '\fontname
{Times} x'},'YLabel',{'', '\fontname{Times} y'},'Zlabel',{''
,''},'XTick',[0 lambda],'XTickLabel',{'\fontname{Times} 0',
'\fontname{Times} \it{\lambda}'},'YTick',[0 b],'YTickLabel'
,{'\fontname{Times} 0', '\fontname{Times} \it{b}'},'Arrow','
off')

axis off
grid off
axis([0 lambda 0 b -5*10^-6 0])
plot3([0 lambda lambda 0 0],[0 0 b b 0],[0,0,0,0,0]-5*10^-6,'k

')
plot3([0 lambda lambda 0 0],[0 0 b b 0],[0,0,0,0,0]+0,'k')
plot3([ 0 0],[b b],[-5*10^-6 0],'k')
plot3([ lambda lambda],[b b],[-5*10^-6 0],'k')
plot3([ 0 0],[0 0],[-5*10^-6 0],'k')
plot3([ 0 0]+lambda,[0 0],[-5*10^-6 0],'k')
hold off
colormap gray
%% contour plot of vorticity function
subplot(3,2,6)
[C,h]=contour(X2,Y2,Z2,20,'k');
% the code below is to make-up the plot
axis([0-200000 lambda+1 0-200000 b+10])
oaxes([0 0 -10^7],'ZAxisLine','off','XTickMode','manual','

YTickMode','off','ZTickMode','off','XLabel',{'0', '\fontname
{Times} x'},'YLabel',{'', '\fontname{Times} y'},'Zlabel',{''
,''},'XTick',[0 lambda],'XTickLabel',{'\fontname{Times} 0',
'\fontname{Times} \it{\lambda}'},'YTick',[0 b],'YTickLabel'
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,{'\fontname{Times} 0', '\fontname{Times} \it{b}'},'Arrow','
off')

hold on
axis off
grid off
plot([0 0 lambda lambda 0],[0 b b 0 0],'k')
hold off

StommelStream.m

% StommelStream.m
% Rik Ledoux, 2015
% A function that calculates the values of the streamfunction

from the
% Stommel model.

function z=StommelStream(x,y,lambda,b,T,Omega)
z=0;
D=200;
R=0.02;
gamma=T*pi/(R*b);
alpha=D/R*Omega*2.5*10^-7;
kappa=sqrt(alpha^2/4+pi^2/(b^2));

z=gamma*b^2/(pi^2)*exp(-alpha*x/2).*sin(pi*y/b).*((exp(
alpha*lambda/2)-cosh(kappa*lambda))/sinh(kappa*lambda)*
sinh(kappa*x)+cosh(kappa*x)-exp(alpha*x/2));

end

StommelHeight.m

% StommelStream.m
% Rik Ledoux, 2015
% A function that calculates the values of the height function

from the
% Stommel model.

function z=StommelHeight(x,y,lambda,b,T,Omega)
z=0;
D=200;
R=0.02;
gamma=T*pi/(R*b);
alpha=D/R*Omega*2.5*10^-7;

65



kappa=sqrt(alpha^2/4+pi^2/(b^2));
r=6240*1000;
g=9.81;

B=(exp(alpha*lambda/2)-cosh(kappa*lambda))/sinh(kappa*
lambda);

z=-b^2/pi^2*T*alpha/(g*D)*exp(-alpha*x/2).*(sin(pi*y/b)*pi
.*y/b.*(B*sinh(kappa*x)+cosh(kappa*x)-exp(alpha*x/2))+
cos(pi*y/b).*(1/2*(B*sinh(kappa*x)+cosh(kappa*x))-exp(
alpha*x/2)+kappa/alpha*(B*cosh(kappa*x)+sinh(kappa*x))))
;

end

StommelVorticity.m

% StommelStream.m
% Rik Ledoux, 2015
% A function that calculates the values of the z-vorticity

from the
% Stommel model.

function z=StommelVorticity(x,y,lambda,b,T,Omega)
z=0;
D=200;
R=0.02;
gamma=T*pi/(R*b);
alpha=D/R*Omega*2.5*10^-7;
kappa=sqrt(alpha^2/4+pi^2/(b^2));
B=(exp(alpha*lambda/2)-cosh(kappa*lambda))/sinh(kappa*

lambda);
z=-gamma.*sin(pi*y/b).*(1+b^2/(pi^2)*exp(-alpha*x/2).*(

alpha^2/2*(B*sinh(kappa*x)+cosh(kappa*x))-alpha*kappa*(B

*cosh(kappa*x)+sinh(kappa*x))));
end

StommelDiagramAnimation.m

% StommelDiagram.m
% Rik Ledoux, 2015
% This script creates diagrams showing contour and surface

plots of the
% streamfunction and heightfunction from the Stommel model.
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%% definition of relevant constants
lambda0=10^7; % x-dimension
b=2*pi*10^6; % y-dimension
glunar=1*10^-6; %amplitude of the tidal force
%glunar is set to 10 times its actual value, to make

differences visible
T=0.1; % wind stress factor
Omega=2*pi/(60*60*24); % rotational frequency
Tstep=5; % time step in hours/second
Tmax=500*3600; % maximum number of hours.
%%
clf
ii=0;

t=0;
%% loading image for bottom surface wind directions
img = 256*round(imread('wind.jpg')/256); % load the image in

black/white
imgtra = (img==0);
zImage = [0 0; 0 0]-120; % the z-data for the image corners
h=figure(1);
while t<Tmax

tic
lambda=floor(t/(3600*50)+1)*lambda0;
dx1=lambda/80;
dy1=b/20;
[X,Y]=meshgrid(0:dx1:lambda,0:dy1:b);
xImage = [0 lambda; 0 lambda]/2; % the x-data for the

image corners
yImage = [b b; 0 0]/2; % the y-data for the

image corners
Z=StommelHeightT(X,Y,t,lambda,b,T,Omega,glunar);
ii=ii+1;

surf(X,Y,Z)

% the lines below are to markup the plot
view([-1.2,-4.5,6])
hold on
set(h,'Color',[1 1 1])
axis off
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grid off
axis([0 lambda 0 b -120. 120.])
plot3([0 lambda lambda 0 0],[0 0 b b 0],[0,0,0,0,0]-120.0,

'k')
plot3([0 lambda lambda 0 0],[0 0 b b 0],[0,0,0,0,0]+120.0,

'k')

plot3([ 0 0],[b b],[-120.0 120.0],'k')
plot3([ lambda lambda],[b b],[-120.0 120.0],'k')
plot3([ 0 0],[0 0],[-120.0 120.0],'k')
plot3([ 0 0]+lambda,[0 0],[-120.0 120.0],'k')
colormap(1/1.2*(1.2-gray))
text(lambda/20,b,150,strcat('Time: ',num2str(mod(t

/3600,50),'%10.1f'),' hours'),'FontSize',16)
text(lambda/8,b,90,strcat('Every 50 hours, \lambda is

increased:'),'FontSize',16)
text(lambda/8,b,60,(strcat('\lambda =',num2str(lambda,'

%10.0e'),' m')),'Color',[.7 0 0],'FontSize',16)
text(lambda/8,b,30,(strcat('b =',num2str(b,' %10.0e'),' m'

)),'FontSize',16)
text(lambda/8,b,0,(strcat('g_{lunar} =',num2str(glunar,'

%10.0e'),' ms^{-2}')),'FontSize',16)
surf(xImage,yImage,zImage,'CData',img,'FaceColor','

texturemap','EdgeColor','none');

hold off

pause(0.001)
t=t+toc*3600*Tstep;

end

StommelHeightT.m

% StommelStream.m
% Rik Ledoux, 2015
% A function that calculated the values of the height function

from the
% Stommel model.

function z=StommelHeightT(x,y,t,lambda,b,T,Omega,glunar)
z=0;
D=200;
R=0.02;
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gamma=T*pi/(R*b);
alpha=D/R*Omega*2.5*10^-7;
kappa=sqrt(alpha^2/4+pi^2/(b^2));
r=6240*1000;
g=9.81;
omega=2*pi/(25*3600);

B=(exp(alpha*lambda/2)-cosh(kappa*lambda))/sinh(kappa*
lambda);

z=-b^2/pi^2*T*alpha/(g*D)*exp(-alpha*x/2).*(sin(pi*y/b)*pi
.*y/b.*(B*sinh(kappa*x)+cosh(kappa*x)-exp(alpha*x/2))+
cos(pi*y/b).*(1/2*(B*sinh(kappa*x)+cosh(kappa*x))-exp(
alpha*x/2)+kappa/alpha*(B*cosh(kappa*x)+sinh(kappa*x))))
+pi*r*glunar/g*cos(-x/(pi*r)-2*omega*t) +pi^2*r^2/lambda

*glunar/g*(sin(-lambda/(pi*r)-2*omega*t)+sin(2*omega*t))
;

end
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